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Abstract

In 1815, at the end of the war with England, the US was a developing
country, with most people living on small farms, eating whatever they could
grow themselves. Only those living near navigable water could market their
crops. Poor transportation and communication kept them isolated. By 1848,
at the end of the next war, this time with Mexico, things were different. The US
was a transcontinental power, integrated by railroads, telegraph, steamboats,
the Erie Canal, and innovations in mass production and agriculture. In 1828,
the newly elected President, Andrew Jackson, arrived in Washington by horse-
drawn carriage; he left in 1837 by train. The most revolutionary change was in
communication, where the recent advances in understanding electromagnetism
produced the telegraph. It wasn’t long before efforts began to lay a telegraph
cable under the Atlantic Ocean, even though some wondered what England and
the US could possibly have to say to one another.

The laying of the trans-Atlantic cable was, in many ways, the 19th century
equivalent of landing a man on the moon, involving, as it did, considerable
expense, too frequent failure, and a level of precision in engineering design and
manufacturing never before attempted. From a scientific perspective, it was
probably more difficult, given that the study of electromagnetism was in its
infancy at the time.

In this note we discuss the efforts to develop an accurate mathematical
model for transmission of signals through a long underwater cable, the leading
role this model played in inspiring the technological innovation that eventually
led to the success of the enormous effort, and the partial differential equation
on which so much money depended.
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1 Introduction

In 1815, at the end of the war with England, the US was a developing country, with

most people living on small farms, eating whatever they could grow themselves. Only

those living near navigable water could market their crops. Poor transportation and

communication kept them isolated. By 1848, at the end of the next war, this time

with Mexico, things were different. The US was a transcontinental power, integrated

by railroads, telegraph, steamboats, the Erie Canal, and innovations in mass produc-

tion and agriculture. In 1828, the newly elected President, Andrew Jackson, arrived

in Washington by horse-drawn carriage; he left in 1837 by train. The most revolu-

tionary change was in communication, where the recent advances in understanding

electromagnetism produced the telegraph. It wasn’t long before efforts began to lay a

telegraph cable under the Atlantic Ocean, even though some wondered what England

and the US could possibly have to say to one another.

The laying of the trans-Atlantic cable was, in many ways, the 19th century equiv-

alent of landing a man on the moon, involving, as it did, considerable expense, too

frequent failure, and a level of precision in engineering design and manufacturing

never before attempted. From a scientific perspective, it was probably more difficult,

given that the study of electromagnetism was in its infancy at the time.

Early on, Faraday and others worried that sending a message across a vast distance

would take a long time, but they reasoned, incorrectly, that this would be similar to

filling a very long hose with water. What they did not realize initially was that, as

William Thomson was to discover, the transmission of a pulse through an undersea

cable was described more by a heat equation than a wave equation. This meant that a

signal that started out as a sharp pulse would be spread out as time went on, making

communication extremely slow. The problem was the increased capacitance with the

ground.

Somewhat later, Oliver Heaviside realized that, when all four of the basic elements

of the electrical circuit, the inductance, the resistance, the conductance to the ground

and the capacitance to the ground, were considered together, it might be possible to

adjust these parameters, in particular, to increase the inductance, so as to produce

undistorted signals. Heaviside died in poverty, but his ideas eventually were adopted.

In 1859 Queen Victoria sent President Buchanan a 99 word greeting using an

early version of the cable, but the message took over sixteen hours to be received.

By 1866 one could transmit eight words a minute along a cable that stretched from

Ireland to Newfoundland, at a cost of about 1500 dollars per word in today’s money.
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With improvements in insulation, using gutta percha, a gum from a tropical tree also

used to make golf balls, and the development of magnetic alloys that increased the

inductance of the cable, messages could be sent faster and more cheaply.

In this note we survey the development of the mathematics of the problem. We

focus, in particular, on the partial differential equations that were used to describe the

transmission problem. What we give here is a brief glimpse; more detailed discussion

of this problem is found in the books by Körner [2], Gonzalez-Velasco [1], and Wylie

[3].

2 The Electrical Circuit ODE

We begin with the ordinary differential equation that describes the horizontal motion

of a block of wood attached to a spring. We let x(t) be the position of the block

relative to the equilibrium position x = 0, with x(0) and x′(0) denoting the initial

position and velocity of the block. When an external force f(t) is imposed, a portion

of this force is devoted to overcoming the inertia of the block, a portion to compressing

or stretching the spring, and the remaining portion to resisting friction. Therefore,

the differential equation describing the motion is

mx′′(t) + ax′(t) + kx(t) = f(t), (2.1)

where m is the mass of the block, a the coefficient of friction, and k the spring

constant.

The charge Q(t) deposited on a capacitor in an electrical circuit due to an imposed

electromotive force E(t) is similarly described by the ordinary differential equation

LQ′′(t) + RQ′(t) +
1

C
Q(t) = E(t). (2.2)

The first term, containing the inductance coefficient L, describes the portion of the

force E(t) devoted to overcoming the effect of a change in the current I(t) = Q′(t);

here L is analogous to the mass m. The second term, containing the resistance

coefficient R, describes that portion of the force E(t) needed to overcome resistance

to the current I(t); now R is analogous to the friction coefficient a. Finally, the third

term, containing the reciprocal of the capacitance C, describes the portion of E(t)

used to store charge on the capacitor; now 1
C

is analogous to k, the spring constant.
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3 The Telegraph Equation

The objective here is to describe the behavior of u(x, t), the voltage at location x along

the cable, at time t. In the beginning, it was believed that the partial differential

equation describing the voltage would be the wave equation

uxx = α2utt.

If this were the case, an initial pulse

E(t) = H(t)−H(t− T )

would move along the cable undistorted; here H(t) is the Heaviside function that is

zero for t < 0 and one for t ≥ 0. Thomson (later Sir William Thomson, and even

later, Lord Kelvin) thought otherwise.

Thomson argued that there would be a voltage drop over an interval [x, x + ∆x]

due to resistance to the current i(x, t) passing through the cable, so that

u(x + ∆x, t)− u(x, t) = −Ri(x, t)∆x,

and so
∂u

∂x
= −Ri.

He also argued that there would be capacitance to the ground, made more significant

under water. Since the apparent change in current due to the changing voltage across

the capacitor is

i(x + ∆x, t)− i(x, t) = −Cut(x, t)∆x,

we have
∂i

∂x
= −C

∂u

∂t
.

Eliminating the i(x, t), we can write

uxx(x, t) = CRut(x, t), (3.1)

which is the heat equation, not the wave equation.

4 Consequences of Thomson’s Model

To see what Thomson’s model predicts, we consider the following problem. Suppose

we have a semi-infinite cable, that the voltage is u(x, t) for x ≥ 0, and t ≥ 0, and that
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u(0, t) = E(t). Let U(x, s) be the Laplace transform of u(x, t), viewed as a function

of t. Then, from Thomson’s model we have

U(x, s) = L(E)(s)e−
√

CRsx,

where L(E)(s) denotes the Laplace transform of E(t). Since U(x, s) is the product of

two functions of s, the convolution theorem applies. But first, it is helpful to find out

which function has for its Laplace transform the function e−αx
√

s. The answer comes

from the following fact: the function

be−b2/4t/2
√

πt3/2

has for its Laplace transform the function e−b
√

s. Therefore, we can write

u(x, t) =

√
CRx

2
√

π

∫ t

0
E(t− τ)

e−CRx2/4τ

τ
√

τ
dτ.

Now we consider two special cases.

4.1 Special Case 1: E(t) = H(t)

Suppose now that E(t) = H(t), the Heaviside function. Using the substitution

z = CRx2/4τ,

we find that

u(x, t) = 1− 2√
π

∫ √
CRx/2

√
π

0
e−z2

dz. (4.1)

The function

erf(r) =
2√
π

∫ r

0
e−z2

dz

is the well known error function, so we can write

u(x, t) = 1− erf
(√CRx

2
√

t

)
. (4.2)

4.2 Special Case 2: E(t) = H(t)−H(t− T )

Now suppose that E(t) is the pulse H(t) − H(t − T ). Using the results from the

previous subsection, we find that, for t > T ,

u(x, t) = erf
( √CRx

2
√

t− T

)
− erf

(√CRx

2
√

t

)
. (4.3)
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For fixed x, u(x, t) is proportional to the area under the function e−z2
, over an

interval that, as time goes on, moves steadily to the left and decreases in length. For

small t the interval involves only large z, where the function e−z2
is nearly zero and

the integral is nearly zero. As t increases, the interval of integration moves to the left,

so that the integrand grows larger, but the length of the interval grows smaller. The

net effect is that the voltage at x increases gradually over time, and then decreases

gradually; the sharp initial pulse is smoothed out in time.

5 Heaviside to the Rescue

It seemed that Thomson had solved the mathematical problem and discovered why

the behavior was not wave-like. Since it is not really possible to reduce the resistance

along the cable, and capacitance to the ground would probably remain a serious

issue, particularly under water, it appeared that little could be done to improve the

situation. But Heaviside had a solution.

Heaviside argued that Thomson had ignored two other circuit components, the

leakage of current to the ground, and the self-inductance of the cable. He revised

Thomson’s equations, obtaining

ux = −Lit −Ri,

and

ix = −Cut −Gu,

where L is the inductance and G is the coefficient of leakage of current to the ground.

The partial differential equation governing u(x, t) now becomes

uxx = LCutt + (LG + RC)ut + RGu, (5.1)

which is the formulation used by Kirchhoff. As Körner remarks, never before had so

much money been riding on the solution of one partial differential equation.

5.1 A Special Case: G = 0

If we take G = 0, thereby assuming that no current passes into the ground, the partial

differential equation becomes

uxx = LCutt + RCut, (5.2)

or

1

CL
uxx = utt +

R

L
ut. (5.3)
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If R/L could be made small, we would have a wave equation again, but with a

propagation speed of 1/
√

CL. This suggested to Heaviside that one way to obtain

undistorted signaling would be to increase L, since we cannot realistically hope to

change R. He argued for years for the use of cables with higher inductance, which

eventually became the practice, helped along by the invention of new materials, such

as magnetic alloys, that could be incorporated into the cables.

5.2 Another Special Case

Assume now that E(t) is the pulse. Applying the Laplace transform method described

earlier to Equation (5.1), we obtain

Uxx(x, s) = (Cs + G)(Ls + R)U(x, s) = λ2U(x, s),

from which we get

U(x, s) = A(s)eλx +
(1

s
(1− e−Ts)− A(s)

)
e−λx.

If it happens that GL = CR, we can solve easily for λ:

λ =
√

CLs +
√

GR.

Then we have

U(x, s) = e−
√

GRx 1

s
(1− e−Ts)e−

√
CLxs,

so that

u(x, t) = e−
√

GRx
(
H(t− x

√
CL)−H(t− T − x

√
CL)

)
. (5.4)

This tells us that we have an undistorted pulse that arrives at the point x at the time

t = x
√

CL.

In order to have GL = CR, we need L = CR/G. Since C and R are more or less

fixed, and G is typically reduced by insulation, L will need to be large. Again, this

argues for increasing the inductance in the cable.
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