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Abstract
Alternating minimization of a function of two vectors variables provides a

useful framework for the derivation of iterative optimization algorithms. The
main reference for alternating minimization is the paper [32] of Csiszár and
Tusnády. We use their three-point property and four-point property to provide
a somewhat simpler proof of convergence for their alternating minimization al-
gorithm. Examples include alternating orthogonal projection between closed
convex sets in RN and alternating entropic projection between closed convex
sets in RN

+ ; The SMART and EMML iterative algorithms are special cases of
the latter. Extensions of these notions to alternating orthogonal and general-
ized projection onto convex sets, the convex feasibility problem and the split
feasibility problem are also considered.

1 Alternating Minimization

Alternating minimization of a function of two vectors variables provides a useful

framework for the derivation of iterative optimization algorithms. The main reference

for alternating minimization (alt min) is the paper [32] of Csiszár and Tusnády. As

the authors of [55] remark, the geometric argument in [32] is “deep, though hard to

follow”. In this section we use three-point property and four-point property of [32] to

provide a somewhat simpler proof of convergence for their alternating minimization

algorithm.

1.1 The Basic Alt Min Framework

Suppose that P and Q are arbitrary sets and the function Θ(p, q) satisfies −∞ <

Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q.
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We assume that, for each p ∈ P , there is q ∈ Q with Θ(p, q) < +∞. Therefore,

d = inf
p∈P, q∈Q

Θ(p, q) < +∞.

We assume that d > −∞; in most applications, the function Θ(p, q) is non-negative,

so this additional assumption is unnecessary. We do not always assume there are

p̂ ∈ P and q̂ ∈ Q such that

Θ(p̂, q̂) = d;

when we do assume that such a p̂ and q̂ exist, we will not assume that p̂ and q̂ are

unique with that property.

The objective is to generate a sequence {(pn, qn)} such that

Θ(pn, qn)→ d.

The alternating minimization algorithm proceeds in two steps: we begin with some

q0, and, having found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

In a later section we consider the special case of alternating cross-entropy mini-

mization. In that case, the vectors p and q are non-negative, and the function Θ(p, q)

will have the value +∞ whenever there is an index j such that pj > 0, but qj = 0. It

is important for that particular application that we select q0 with all positive entries.

We therefore assume, for the general case, that we have selected q0 so that Θ(p, q0)

is finite for all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by d, since we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1).

Therefore, the sequence {Θ(pn, qn)} converges to some D ≥ d. Without additional

assumptions, we can do little more.

We know two things:

Θ(pn, qn−1)−Θ(pn, qn) ≥ 0, (1.1)

and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (1.2)

We need to make these inequalities more precise.
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1.2 The Three- and Four-Point Properties

Suppose that ∆ : P × P → R is a non-negative function with ∆(p, p) = 0 for all

p ∈ P .

Definition 1.1 Say that p ∈ P has the three-point property if, for n = 1, 2, ..., we

have

Θ(p, qn) ≥ Θ(pn+1, qn) + ∆(p, pn+1), (1.3)

When the three-point property holds, the inequality in (1.2) is strengthened to

Θ(pn, qn)−Θ(pn+1, qn) ≥ ∆(pn, pn+1). (1.4)

Suppose that pn has the three-point property for all n. Then, from the inequalities

Θ(pn, qn) ≥ Θ(pn+1, qn) + ∆(pn, pn+1) ≥ Θ(pn+1, qn+1) + ∆(pn, pn+1),

we see not only that the sequence {Θ(pn, qn)} is decreasing, but that the sequence

{∆(pn, pn+1)} converges to zero. To prove the main theorem we need one more

property.

Definition 1.2 Say that p has the four-point property if, for all q ∈ Q and all n,

∆(p, pn) + Θ(p, q) ≥ Θ(p, qn). (1.5)

When the four-point property holds, the inequality in (1.1) is extended to

∆(pn, pn−1) ≥ Θ(pn, qn−1)−Θ(pn, qn) ≥ 0. (1.6)

We shall be particularly interested in cases in which p̂ has the three- and four-point

property. Then we shall have

Θ(p̂, qn) ≥ Θ(pn+1, qn) + ∆(p̂, pn+1), (1.7)

and

∆(p̂, pn) + Θ(p̂, q̂) ≥ Θ(p̂, qn). (1.8)

Combining these two inequalities, we obtain the inequality

∆(p̂, pn)−∆(p̂, pn+1) ≥ Θ(pn+1, qn)−Θ(p̂, q̂) ≥ 0. (1.9)

Now we are ready for the main theorem.
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1.3 The Main Theorem

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to converge to d,

that is, for D = d. Suppose that D > d. Then there are p′ and q′ such that

D > Θ(p′, q′) ≥ d.

If p′ has the three- and four-point properties, then

Θ(p′, q0) ≥ Θ(p1, q0) + ∆(p′, p1),

and

∆(p′, p1) ≥ Θ(p′, q1).

Since we have assumed that we have selected q0 so that Θ(p, q0) is finite for all p, it

follows that, if p′ has the three- and four-point properties, then Θ(p′, qn) and ∆(p′, pn)

are finite for all n. The main theorem is the following.

Theorem 1.1 Suppose that p has the three-point and four-point properties, for any

p for which there is a q with Θ(pn, qn) ≥ Θ(p, q) for all n. Then D = d and so

Θ(pn, qn)→ d. (1.10)

Proof: Suppose that D > d and p′ and q′ are as above. Then we have

∆(p′, pn)−∆(p′, pn+1) ≥ Θ(pn+1, qn)−Θ(p′, q′) ≥ 0. (1.11)

We know that ∆(p′, pn+1) is finite for each n. It follows that the right side of (1.11)

converges to zero, being the difference of successive terms of a decreasing, non-negative

sequence. Therefore, D = Θ(p′, q′), which is a contradiction. So D = d.

Corollary 1.1 If there are p̂ and q̂ such that Θ(p̂, q̂) = d, Θ(p̂, q0) is finite, and p̂

has the three- and four-point properties, then

{Θ(pn, qn)} → Θ(p̂, q̂).

We know, therefore, that if the three- and four-point properties hold, then

Θ(pn, qn)→ Θ(p̂, q̂).

Up to now we have said nothing about convergence of the {pn} or {qn} themselves;

for that, we need to assume some topology on the sets P and Q and make further

assumptions.
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1.4 Possible Additional Assumptions

Here are some assumptions that we may make in order to establish convergence of

the sequences {pn} and {qn}.

• P and Q are subsets of (possibly different) metric spaces, such as RN ;

• if {∆(p, pn)} is decreasing, then {pn} has a subsequence {pnk} converging to p∗

and {qnk} converges to q∗;

• the sequence {Θ(pnk , qnk)} converges to Θ(p∗, q∗), so Θ(p∗, q∗) = d;

• the sequence {∆(p∗, pnk)} converges to ∆(p∗, p∗) = 0;

• if {∆p∗, pn)} converges to zero, then {pn} converges to p∗.

Substituting p∗ for p̂, we find that the sequence {∆(p∗, pn)} is decreasing, since

d = Θ(p∗, q∗) ≤ Θ(pn, qn) for all n. Therefore, the sequence {∆(p∗, pn)} converges to

zero, since a subsequence converges to zero. We conclude then that {pn} converges

to p∗.

2 Alternating Euclidean Distance Minimization

Let P and Q be non-empty closed convex subsets of RN . Our objective is to minimize

the function ‖p − q‖2 over all p ∈ P and q ∈ Q. If P ∩ Q 6= ∅, then the alternating

minimization method will find a member of the intersection.

Let Θ(p, q) = ‖p − q‖2 and ∆(p, p′) = ‖p − p′‖2. Then pn+1 is the orthogonal

projection of qn onto P and qn+1 is the orthogonal projection of pn+1 onto Q.

For any closed convex subset C the orthogonal projection operator PC has the

characterizing property that

〈PCx− x, c− PCx〉 ≥ 0, (2.1)

for all c ∈ C. From this it follows that

‖PCx− PCz‖ ≤ ‖x− z‖. (2.2)

for all x and z. If f : RN → R is differentiable, and there is x ∈ C such that

f(x) ≤ f(c), for all c ∈ C, then

〈∇f(x), c− x〉 ≥ 0,

for all c ∈ C.
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2.1 The Three- and Four-Point Properties Hold

First, we show that the three-point property holds for all p. We have

‖p− qn‖2 = ‖p− pn+1 + pn+1 − qn‖2

= ‖p− pn+1‖2 + ‖pn+1 − qn‖2 + 2〈p− pn+1, pn+1 − qn〉

so that

‖p− qn‖2 − ‖pn+1 − qn‖2 ≥ ‖p− pn+1‖2.

This is the three-point property.

Now, we show that the four-point property holds for all p. According to the

authors of [32], the four-point property comes from another simple application of the

inequality in (2.1), but it appears to require a bit of calculation. Our goal is to show

that

‖p− pn‖2 + ‖p− q‖2 ≥ ‖p− qn‖2,

for all p and q, and for all n.

We have

‖p− pn‖2 = ‖p− q + q − pn‖2 = ‖p− q‖2 + ‖q − pn‖+ 2〈p− q, q − pn〉

= ‖p− q‖2 + ‖q − qn + qn − pn‖2 + 2〈p− q, q − pn〉

= ‖p− q‖2 + ‖q − qn‖2 + ‖qn − pn‖2 + 2〈q − qn, qn − pn〉+ 2〈p− q, q − pn〉

≥ ‖p− q‖2 + ‖q − qn‖2 + ‖qn − pn‖2 + 2〈p− q, q − pn〉.

Next, we use

‖q − qn‖2 = ‖q − p + p− qn‖2 = ‖q − p‖2 + ‖p− qn‖2 + 2〈q − p, p− qn〉,

and

2〈q − p, p− qn〉+ 2〈p− q, q − pn〉 = −2‖p− q‖2 + 2〈p− q, qn − pn〉

to get

‖p− pn‖2 ≥ ‖p− qn‖2 + ‖qn − pn‖2 + 2〈p− q, qn − pn〉.

Finally, we use

‖qn − pn‖2 + 2〈p− q, qn − pn〉 = ‖p− q + qn − pn‖2 − ‖p− q‖2

to get

‖p− pn‖2 + ‖p− q‖2 ≥ ‖p− qn‖2 + ‖p− q + qn − pn‖2,
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from which the four-point property follows immediately.

From the main theorem we can conclude that the sequence {‖pn−qn‖2} converges

to d. It is possible for d = 0 without there being any p̂ and q̂. For example, let RN

be R2, P be the epi-graph of the function y = 1/x, for x > 0, and Q the closed lower

half-plane. If there are p̂ and q̂ with ‖p̂− q̂‖2 = d, then, from the three- and four-point

properties, we have that the sequences {‖p̂ − pn‖2} and {‖p̂ − qn‖2} are decreasing,

so that {pn} and {qn} are bounded. It is then easy to show that {pn} → p∗ and

{qn} → q∗, with ‖p∗ − q∗‖2 = d. This result was given by Cheney and Goldstein in

1959 [27] (see also [2]).

2.2 Approximate Methods

We have implicitly assumed, throughout this section, that the orthogonal projection

onto P and Q are easily calculated. In general, this will not be the case, and ap-

proximate methods will be needed. One such approximate method is, at each step,

to replace the orthogonal projection onto P or Q with orthogonal projection onto

a supporting hyperplane. We shall discuss this approach in more detail when we

consider the split feasibility problem.

3 A Landweber-Type Algorithm

Using the theory of the previous section, we derive an iterative algorithm for solving

a system Ax = b of linear equations. Such algorithms are useful when the number

of equations and unknowns is large. The algorithm we obtain is a special case of

Landweber’s algorithm [45] (see also [16]).

3.1 The Alt Min Formulation

Let N = IJ and P be the set of all I by J arrays p = {pij} in RN such that

bi =
∑J

j=1 pij for all i. Let Q be the set of all I by J arrays in RN of the form

q = q(x) = {qij = Aijxj} for some vector x. The subsets P and Q are non-empty,

closed and convex in RN .

First, we minimize ‖p− q(x)‖ over all p ∈ P . Using Lagrange multipliers, we find

that the optimal p must satisfy the equations

pij = Aijxj + λi,

for some constant λi. Summing over the index j, we find that

bi = (Ax)i + Jλi,

7



for each i. Therefore,

λi =
1

J
(bi − (Ax)i),

so that the optimal p has the entries

pij = Aijxj +
1

J
(bi − (Ax)i);

we denote this p by p(x). Note that

‖p(x)− q(x)‖2 = ‖b− Ax‖2.

Now we minimize ‖p(x)− q(z)‖ with respect to z.

Setting the z-gradient to zero, we have

0 = (
I∑

i=1

A2
ij)(xj − zj) +

1

J

I∑
i=1

Aij(bi − (Ax)i),

for each j. Therefore, the optimal z has the entries

zj = x′j = xj + αj

I∑
i=1

Aij(bi − (Ax)i),

with

αj = (J
I∑

i=1

A2
ij)

−1.

3.2 The Iterative Algorithm

Our algorithm then has the iterative step

xn+1
j = xn

j + αj

I∑
i=1

Aij(bi − (Ax)i), (3.1)

for each j. The sequence {xn} converges to a minimizer of the function ‖b−Ax‖, as

a consequence of our previous results. We can also establish convergence by relating

this iterative method to that of Landweber.

3.3 Using The Landweber Algorithm

Let

βj = α−1
j = J

I∑
i=1

A2
ij.

Define the matrix B to have the entries

Bij = Aij

√
βj,
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and

zj = xj
√

αj.

Then Bz = Ax and the iteration in Equation (3.1) becomes

zn+1
j = zn

j +
I∑

i=1

Bij(bi − (Bzn)i), (3.2)

for each j. The Landweber iteration for the system Bz = b is

zn+1
j = zn

j + γ
I∑

i=1

Bij(bi − (Bzn)i).

It is well known (see, for example, [16]), that the Landweber iterative sequence con-

verges to the minimizer of ‖b−Bz‖ closest to z0, provided that 0 < γ < 2
L
, where L

is the largest eigenvalue of the matrix BT B. Since the trace of BT B is one, it follows

that the choice of γ = 1 is acceptable and that the iterative sequence generated by

Equation (3.2) converges to the minimizer of ‖b − Bz‖ closest to z0. Therefore, our

original iterative sequence {xn} converges to the minimizer of ‖b−Ax‖ for which the

function
J∑

j=1

|βj(xj − x0
j)|2

is minimized. The Cimmino algorithm [28] is a special case of the Landweber algo-

rithm.

3.4 The Projected Landweber Algorithm

Suppose that we want to find a minimizer of the function ‖b − Ax‖ over x ∈ C,

where C is a non-empty, closed convex subset of RJ . We can then use the projected

Landweber theory [16], which tells us that the sequence defined by

xn+1 = PC(xn + γAT (b− Axn))

converges to a solution of this problem.

The projected Landweber algorithm can be viewed as successive orthogonal pro-

jection onto three distinct closed convex sets, P , Q, and finally C. Here our goal is to

find a member of the intersection of these three sets. Later we shall discuss the convex

feasibility problem, which involves any finite number of closed convex sets. Successive

orthogonal projection works in this more general case as well.
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3.5 Accelerating Convergence

In our use of Landweber’s algorithm we employed the trace of the matrix BT B as

our estimate of L, the spectral radius. In many applications this estimate is too high,

particularly when B is sparse. Tighter upper bounds for L were presented in [18] and

we can use these results to accelerate the convergence of the iteration in Equation

(3.1).

For i = 1, ..., I let si denote the number of non-zero entries in the ith row of the

matrix A. For j = 1, ..., J let

tj =
I∑

i=1

siA
2
ij,

and t be the maximum of the tj. It was shown in [18] that L ≤ t. It follows that the

iteration defined by

xn+1
j = xn

j + t−1
j

I∑
i=1

Aij(bi − (Axn)i) (3.3)

converges to a minimizer of ‖b−Ax‖. This iterative method is closely related to the

CAV algorithm in [26].

Note that for sparse matrices si will be much less than J , so the increment xn+1
j −xn

j

in Equation (3.3) will be much larger than the corresponding one in Equation (3.1).

This will tend to accelerate the convergence of the iteration.

4 Alternating Entropic Distance Minimization

Now we suppose that P and Q are closed convex subsets of RN
+ and we want to

minimize a different distance, the cross-entropy or Kullback-Leibler distance between

p ∈ P and q ∈ Q.

4.1 The Kullback-Leibler Distance

For a > 0 and b > 0, the Kullback-Leibler distance, KL(a, b), is defined as

KL(a, b) = a log
a

b
+ b− a. (4.1)

In addition, KL(0, 0) = 0, KL(a, 0) = +∞ and KL(0, b) = b. The KL distance is

then extended to nonnegative vectors coordinate-wise [44]. The following lemma is

easy to prove.

Lemma 4.1 For x ∈ RJ let x+ =
∑J

j=1 xj. Then

KL(z, x) ≥ KL(z+, x+).
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4.2 Minimizing KL(p, q)

Now we suppose that P and Q are closed convex subsets of RN
+ and we want to

minimize KL(p, q) over p ∈ P and q ∈ Q. We apply the alternating minimization

formulation, with

Θ(p, q) = KL(p, q),

and

∆(p, p′) = KL(p, p′).

We assume that we have been able to select a starting vector q0 ∈ Q such that

KL(p, q0) is finite for all p ∈ P .

4.3 The Three-Point Property Holds

Let p1 minimize KL(p, q0) over all p ∈ P . The partial derivative of f(p) = KL(p, q0)

with respect to pn is
∂f

∂pn

= log
pn

q0
n

,

so that
N∑

n=1

(pn − p1
n) log

p1
n

q0
n

≥ 0,

for all p ∈ P . Then

KL(p, q0)−KL(p, p1) =
N∑

n=1

(
pn log

p1
n

q0
n

+ q0
n − p1

n

)

=
N∑

n=1

(
p1

n log
p1

n

q0
n

+ q0
n − p1

n

)
+

N∑
n=1

(pn − p1
n) log

p1
n

q0
n

≥ KL(p1, q0).

So the three-point property holds for all p.

4.4 The Four-Point Property Holds

We know that q1 minimizes KL(p1, q) over all q ∈ Q, and that the partial derivative

of g(q) = KL(p1, q) with respect to qn is

∂g

∂qn

= −p1
n

qn

+ 1.

Therefore,
N∑

n=1

(q1
n − qn)

p1
n

q1
n

≥
N∑

n=1

(q1
n − qn).
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So we have
N∑

n=1

p1
n −

N∑
n=1

p1
n

qn

q1
n

≥
N∑

n=1

(q1
n − qn),

or
N∑

n=1

p1
n

qn

q1
n

≤
N∑

n=1

p1
n − q1

n + qn.

Now we write

KL(p, p1) + KL(p, q)−KL(p, q1) =
N∑

n=1

(
pn log

pnq
1
n

p1
nqn

+ p1
n − pn + qn − q1

n

)
.

Using the inequality

log
pnq

1
n

p1
nqn

≥ 1− p1
nqn

pnq1
n

,

we have
N∑

n=1

pn

(
log

pnq
1
n

p1
nqn

)
≥

N∑
n=1

pn −
N∑

n=1

p1
n

qn

q1
n

≥
N∑

n=1

pn − p1
n + q1

n − qn.

It follows that

KL(p, p1) + KL(p, q) ≥ KL(p, q1),

which is the four-point property. It follows from the main theorem that

KL(pn, qn)→ inf
p∈P, q∈Q

KL(p, q) = d.

Suppose now that there are vectors p̂ ∈ P and q̂ ∈ Q such that

KL(p̂, q̂) ≤ KL(p, q),

for all p ∈ P and q ∈ Q. From the three- and four-point properties it follows that

KL(p̂, pn)−KL(p̂, pn+1) ≥ KL(pn, qn)−KL(p̂, q̂) ≥ 0,

for all n. Then the sequence {KL(p̂, pn)} is decreasing and

{KL(pn, qn)} → KL(p̂, q̂).

Since the distance KL(p, q) has bounded level sets in each variable, it follows that

the sequence {pn} is bounded. From the four-point property, we have

KL(p∗, pn) + KL(p̂, q̂) ≥ KL(p∗, qn),
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which tells us that the sequence {qn} is also bounded. Passing to subsequences as

needed, we may conclude that there are subsequences {pnk} and {qnk} converging to

p∗ ∈ P and q∗ ∈ Q, respectively, and that

KL(p∗, q∗) = KL(p̂, q̂).

Substituting p∗ for p̂, we find that the sequence {KL(p∗, pn)} is decreasing; since a

subsequence converges to zero, the entire sequence converges to zero and pn → p∗.

5 The EMML Algorithm

The expectation maximization maximum likelihood (EMML) method we discuss here

is actually a special case of a more general approach to likelihood maximization,

usually called the EM algorithm [34]; the book by McLachnan and Krishnan [48] is

a good source for the history of this more general algorithm.

It was noticed by Rockmore and Macovski [51] that the image reconstruction

problems posed by medical tomography could be formulated as statistical parame-

ter estimation problems. Following up on this idea, Shepp and Vardi [53] suggested

the use of the EM algorithm for solving the reconstruction problem in emission to-

mography. In [46], Lange and Carson presented an EM-type iterative method for

transmission tomographic image reconstruction, and pointed out a gap in the conver-

gence proof given in [53] for the emission case. In [55], Vardi, Shepp and Kaufman

repaired the earlier proof, relying on techniques due to Csiszár and Tusnády [32]. In

[47] Lange, Bahn and Little improve the transmission and emission algorithms, by

including regularization to reduce the effects of noise. The question of uniqueness of

the solution in the inconsistent case was resolved in [9, 10].

The EMML, as a statistical parameter estimation technique, was not originally

thought to be connected to any system of linear equations. In [9], it was shown that

the EMML algorithm minimizes the function f(x) = KL(y, Px), over nonnegative

vectors x. Here y is a vector with positive entries, and P is a matrix with nonnegative

entries, such that sj =
∑I

i=1 Pij > 0. Consequently, when the non-negative system of

linear equations Px = y has a non-negative solution, the EMML converges to such a

solution.

Because KL(y, Px) is continuous in the variable x and has bounded level sets,

there is at least one non-negative minimizer; call it x̂. The vector Px̂ is unique, even

if x̂ is not. For convenience, we assume that the problem has been normalized so that

sj = 1, for all j.
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5.1 The Alt Min Framework for EMML

For each x ≥ 0, let q(x) and r(x) be the I by J arrays with entries

q(x)ij = xjPij, (5.1)

and

r(x)ij = xjPijyi/(Px)i, (5.2)

whenever q(x)ij > 0, and r(x)ij = 0 otherwise. We then let

P = {r = r(z)|z ≥ 0},

and

Q = {q = q(x)|x ≥ 0}.

The sets P and Q are closed and convex in the space RI+J . We also define

Θ(p, q) = KL(r(z), q(x)),

and

∆(p, p′) = KL(r(z), r(z′)),

where x ≥ 0,z ≥ 0 and z′ ≥ 0 are arbitrary.

5.2 The EMML Iteration

The iterative step of the EMML is to minimize the function KL(r(xn−1), q(x)) to get

x = xn. The EMML iteration begins with a positive vector x0. Having found the

vector xn−1, the next vector in the EMML sequence is xn, with entries given by

xn
j = xn−1

j

I∑
i=1

Pij

( yi

(Pxn−1)i

)
. (5.3)

It follows from the discussion in the previous section that the sequence {xn} converges

to a non-negative minimizer of the function KL(y, Px).

5.3 Pythagorean Identities

We can be a bit more precise about the iterations in the EMML algorithm. We have

the following Pythagorean identities [11]:
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• 1. KL(r(z), q(x)) = KL(r(x), q(x)) + KL(r(z), r(x)); and

• 2. KL(r(z), q(x)) = KL(r(z), q(z′)) + KL(z′, x),

where

z′j = zj

I∑
i=1

Pij
yi

(Pz)i

,

for each j. Note that KL(y, Px) = KL(r(x), q(x)).

6 The SMART

What is usually called the simultaneous multiplicative algebraic reconstruction tech-

nique (SMART) was discovered in 1972, independently, by Darroch and Ratcliff [33],

working in statistics, and by Schmidlin [52] in medical imaging. The SMART pro-

vides another example of alternating minimization having the three- and four-point

properties.

Darroch and Ratcliff called their algorithm generalized iterative scaling. It was

designed to calculate the entropic projection of one probability vector onto a family

of probability vectors with a pre-determined marginal distribution. They did not con-

sider the more general problems of finding a non-negative solution of a non-negative

system of linear equations y = Px, or of minimizing a function; they did not, there-

fore, consider what happens in the inconsistent case, in which the system of equations

y = Px has no non-negative solutions. This issue was resolved in [9], where it was

shown that the SMART minimizes the function f(x) = KL(Px, y), over nonnegative

vectors x. This function is continuous in the variable x and has bounded level sets, so

there is at least one minimizer; call it x̂. The vector Px̂ is unique, even if the vector x̂

is not. Again, y is a vector with positive entries, and P is a matrix with nonnegative

entries, such that sj =
∑I

i=1 Pij = 1.

6.1 SMART as Alt Min

To put the SMART algorithm into the framework of alternating minimization, we

take the sets P and Q as in the EMML case, but now let pn = q(xn), and qn = r(xn).

Generic vectors are p = q(z) for some z and q = r(x) for some x. Then we set

Θ(p, q) = KL(q(x), r(z)),

and, for arbitrary p = q(z) and p′ = q(w),

∆(p, p′) = KL(q(z), q(w)) = KL(z, w).
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Note that KL(Px, y) = KL(q(x), r(x)).

6.2 The SMART Iteration

The iterative step of the SMART is to minimize the function KL(q(x), r(xn−1)) to

get x = xn. The SMART iteration begins with a positive vector x0. Having found

the vector xn−1, the next vector in the SMART sequence is xn, with entries given by

xn
j = xn−1

j exp
( I∑

i=1

Pij log
( yi

(Pxn−1)i

))
. (6.1)

It follows from our discussion of entropic projection onto convex sets that the sequence

{xn} converges to a non-negative minimizer of the function KL(Px, y).

The Pythagorean identities in the SMART case are more helpful than in the

EMML case and enable us to prove more about the SMART.

6.3 The Pythagorean Identities

With r(z) and q(x) defined as above, we have the following Pythagorean identities:

• 1. KL(q(x), r(z)) = KL(q(x), r(x)) + KL(x, z)−KL(Px, Pz); and

• 2. KL(q(x), r(z)) = KL(q(z′), r(z)) + KL(x, z′),

where

z′j = zj exp
( I∑

i=1

Pij log
( yi

(Pz)i

))
,

for each j. From the Pythagorean identity

KL(q(x), r(z)) = KL(q(z′), r(z)) + KL(x, z′)

we have

Θ(p, qn) = Θ(pn+1, qn) + ∆(p, pn+1),

which is then the three-point property for p.

6.4 Convergence of the SMART

Using the three- and four-point properties, we are able to show that

KL(x̂, xn−1)−KL(x̂, xn) ≥ KL(q(xn), r(xn))−KL(q(x̂), r(x̂)) ≥ 0,
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so that we now know that

KL(Pxn, y) = KL(q(xn), r(xn))→ KL(q(x̂), r(x̂)).

We also know from the fact that

J∑
j=1

xn
j ≤

I∑
i=1

yi,

for n = 1, 2, ..., that the sequence {xn} is bounded. Therefore, there is a cluster point

x∗ that is the limit of a subsequence {xnk} of {xn}. From

{KL(q(xnk), r(xnk))} → KL(q(x∗), r(x∗)),

we conclude that

KL(q(x∗), r(x∗)) = KL(q(x̂), r(x̂)),

so that x∗ is a minimizer of KL(Px, y). Therefore, replacing x̂ with x∗, we learn that

the sequence {KL(x∗, xn)} is decreasing; but a subsequence converges to zero, so the

entire sequence converges to zero. Therefore, {xn} converges to x∗. We can actually

show even more.

Instead of just

KL(x̂, xn−1)−KL(x̂, xn) ≥ KL(q(xn), r(xn))−KL(q(x̂), r(x̂)) ≥ 0,

we can use the Pythagorean identities to obtain

KL(x̂, xn−1)−KL(x̂, xn) = KL(q(xn), r(xn))−KL(q(x̂), r(x̂))

+KL(Px̂, Pxn−1) + KL(xn, xn−1)−KL(Pxn, Pxn−1).

This tells us that KL(x̂, xn−1)−KL(x̂, xn) depends on the vector Px̂, but is otherwise

independent of the choice of x̂. Consequently, by summing both sides of the equation

over the index n, we find that KL(x̂, x0)−KL(x̂, x∗) is also independent of the choice

of x̂. Therefore, minimizing KL(x, x0) over all x ≥ 0 that minimize KL(Px, y) is

equivalent to minimizing KL(x, x∗) over all such x; but the answer to the latter

problem is clearly x = x∗. Therefore, x = x∗ is the minimizer of KL(x, x0) over all

x ≥ 0 that minimize KL(Px, y).

6.5 Related work of Csiszár

In [31] Csiszár shows that the generalized iterative scaling method of Darroch and

Ratcliff can be formulated in terms of successive entropic projection onto the sets P
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and Q. In other words, he views their method as an alternating projection method,

not as alternating minimization. He derives the generalized iterative scaling algorithm

in two steps:

• 1. minimize KL(r(x), q(xn)) to get r(xn); and then

• 2. minimize KL(q(x), r(xn)) to get q(xn+1).

Although [31] appeared five years after [32], Csiszár does not reference [32], nor does

he mention alternating minimization, instead basing his convergence proof here on

his earlier paper [30], which deals with entropic projection. He is able to make

this work because the order of the q(xn) and r(x) does not matter in the first step.

Therefore, the generalized iterative scaling, and, more generally, the SMART, is also

an alternating minimization algorithm, as well.

7 Alternating Bregman Distance Minimization

The general problem of minimizing Θ(p, q) is simply a minimization of a real-valued

function of two variables, p ∈ P and q ∈ Q. In the examples presented above, the

function Θ(p, q) is a distance between p and q, either ‖p−q‖2 or KL(p, q). In the case

of Θ(p, q) = ‖p− q‖2, each step of the alternating minimization algorithm involves an

orthogonal projection onto a closed convex set; both projections are with respect to

the same Euclidean distance function. In the case of cross-entropy minimization, we

first project qn onto the set P by minimizing the distance KL(p, qn) over all p ∈ P ,

and then project pn+1 onto the set Q by minimizing the distance function KL(pn+1, q).

This suggests the possibility of using alternating minimization with respect to more

general distance functions. We shall focus on Bregman distances.

7.1 Bregman Distances

Let f : RN → R be a Bregman function [6, 24, 8], and so f(x) is convex on its domain

and differentiable in the interior of its domain. Then, for x in the domain and z in

the interior, we define the Bregman distance Df (x, z) by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉.

For example, the KL distance is a Bregman distance with associated Bregman func-

tion

f(x) =
J∑

j=1

xj(log xj)− xj.
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Suppose now that f(x) is a Bregman function and P and Q are closed convex subsets

of the interior of the domain of f(x). Let pn+1 minimize Df (p, q
n) over all p ∈ P . It

follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0,

for all p ∈ P . Since

Df (p, q
n)−Df (p

n+1, qn) = Df (p, p
n+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉,

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q),

and

∆(p, p′) = Df (p, p
′).

To get the four-point property we need to restrict Df somewhat; we assume from now

on that Df (p, q) is jointly convex, that is, it is convex in the combined vector variable

(p, q) (see [3]). Now we can invoke a lemma due to Eggermont and LaRiccia [37].

7.2 The Eggermont-LaRiccia Lemma

Lemma 7.1 Suppose that the Bregman distance Df (p, q) is jointly convex. Then it

has the four-point property.

Proof: By joint convexity we have

Df (p, q)−Df (p
n, qn) ≥

〈∇1Df (p
n, qn), p− pn〉+ 〈∇2Df (p

n, qn), q − qn〉,

where ∇1 denotes the gradient with respect to the first vector variable. Since qn

minimizes Df (p
n, q) over all q ∈ Q, we have

〈∇2Df (p
n, qn), q − qn〉 ≥ 0,

for all q. Also,

〈∇1Df (p
n, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, q
n)−Df (p, p

n) = Df (p
n, qn) + 〈∇1Df (p

n, qn), p− pn〉
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≤ Df (p, q)− 〈∇2Df (p
n, qn), q − qn〉 ≤ Df (p, q).

Therefore, we have

Df (p, p
n) + Df (p, q) ≥ Df (p, q

n).

This is the four-point property.

We now know that the alternating minimization method works for any Bregman

distance that is jointly convex. This includes the Euclidean and the KL distances.

7.3 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimization, taken

from [14]. The problem is the convex feasibility problem (CFP), to find a member of

the intersection C ⊆ RJ of finitely many closed convex sets Ci, i = 1, ..., I, or, failing

that, to minimize the proximity function

F (x) =
I∑

i=1

Di(
←−
P ix, x), (7.1)

where fi are Bregman functions for which Di, the associated Bregman distance, is

jointly convex, and
←−
P ix the backward Bregman projection of x onto the set Ci, that

is,

Di(
←−
P ix, x) ≤ Di(z, x),

for all z ∈ Ci. Because each Di is jointly convex, the function F (x) is convex.

The problem can be formulated as an alternating minimization, where P ⊆ RIJ

is the product set

P = C1 × C2 × ...× CI

so that a typical member of P has the form

p = (c1, c2, ..., cI),

where ci ∈ Ci, and Q ⊆ RIJ is the diagonal subset, meaning that the elements of Q

are the I-fold product of a single x; that is

Q = {d(x) = (x, x, ..., x) ∈ RIJ}.

We then take

Θ(p, q) =
I∑

i=1

Di(ci, x),

and ∆(p, p′) = Θ(p, p′).

20



In [21] a similar iterative algorithm was developed for solving the CFP, using

the same sets P and Q, but using alternating projection, rather than alternating

minimization. Now it is not necessary that the Bregman distances be jointly convex.

Each iteration of their algorithm involves two steps:

• 1. minimize
∑I

i=1 Di(ci, x
n) over ci ∈ Ci, obtaining ci =

←−
P ix

n, and then

• 2. minimize
∑I

i=1 Di(x,
←−
P ix

n).

Because this method is an alternating projection approach, it converges only when the

CFP has a solution, whereas the previous alternating minimization method minimizes

F (x), even when the CFP has no solution.

7.4 Forward and Backward Projections

Because Bregman distances Df are not generally symmetric, we can speak of forward

and backward Bregman projections onto a closed convex set. For any allowable vector

x, the backward Bregman projection of x onto C, if it exists, is the vector
←−
P Cx

satisfying the inequality

Df (
←−
P Cx, x) ≤ Df (c, x),

for all c ∈ C. Similarly, the forward Bregman projection is the vector
−→
P Cx satisfying

the inequality

Df (x,
−→
P Cx) ≤ Df (x, c),

for any c ∈ C.

The alternating minimization approach described above to minimize the proximity

function

F (x) =
I∑

i=1

Di(
←−
P ix, x)

can be viewed as an alternating projection method, but employing both forward and

backward Bregman projections.

Consider the problem of finding a member of the intersection of two closed convex

sets C and D. We could proceed as follows: having found xn, minimize Df (x
n, d)

over all d ∈ D, obtaining d =
−→
P Dxn, and then minimize Df (c,

−→
P Dxn) over all c ∈ C,

obtaining

c = xn+1 =
←−
P C
−→
P Dxn.

The objective of this algorithm is to minimize Df (c, d) over all c ∈ C and d ∈ D;

such minimizers may not exist, of course.
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In [4] the authors note that the alternating minimization algorithm of [14] involves

forward and backward Bregman projections, which suggests to them iterative methods

involving a wider class of operators that they call “Bregman retractions”.

8 More Proximity Function Minimization

Proximity function minimization and forward and backward Bregman projections

play a role in a variety of iterative algorithms. We survey several of them in this

section.

8.1 Cimmino’s Algorithm

Our objective here is to find an exact or approximate solution of the system of I

linear equations in J unknowns, written Ax = b. For each i let

Ci = {z|(Az)i = bi},

and Pix be the orthogonal projection of x onto Ci. Then

(Pix)j = xj + αiAij(bi − (Ax)i),

where

(αi)
−1 =

J∑
j=1

A2
ij.

Let

F (x) =
I∑

i=1

‖Pix− x‖2.

Using alternating minimization on this proximity function gives Cimmino’s algorithm,

with the iterative step

xn+1
j = xn

j +
1

I

I∑
i=1

αiAij(bi − (Axn)i). (8.1)

8.2 Simultaneous Projection for Convex Feasibility

Now we let Ci be any closed convex subsets of RJ and define F (x) as in the previous

section. Again, we apply alternating minimization. The iterative step of the resulting

algorithm is

xn+1 =
1

I

I∑
i=1

Pix
n.

The objective here is to minimize F (x), if it has a minimizer.
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8.3 The EMML Revisited

As in our earlier discussion of the EMML method, we want an exact or approximate

solution of the system y = Px. For each i, let

Ci = {z ≥ 0 |(Pz)i = yi}.

The backward entropic projection of x > 0 onto Ci is the vector that minimizes

KL(ci, x), over all ci ∈ Ci; unfortunately, we typically cannot calculate this projection

in closed form. Instead, we define the distances

Di(z, x) =
J∑

j=1

PijKL(zj, xj),

and calculate the associated backward projections
←−
P ix onto the sets Ci; we have

Di(
←−
P ix, x) ≤ Di(ci, x),

for all ci ∈ Ci. We can calculate
←−
P ix in closed form:

(
←−
P ix)j = xj

yi

(Px)i

,

for each j. Note that, for the distances Di and these sets Ci, the backward and

forward projections are the same; that is

←−
P ix =

−→
P ix.

Applying alternating minimization to the proximity function

F (x) =
I∑

i=1

J∑
j=1

PijKL(
←−
P ix, x),

we obtain the iterative step

xn+1
j = xn

j

I∑
i=1

Pij
yi

(Pxn)i

,

which is the EMML iteration.

8.4 The SMART

Now we define the proximity function F (x) to be

F (x) =
I∑

i=1

J∑
j=1

PijKL(x,
−→
P ix).

Applying alternating minimization and using the fact that
←−
P ix =

−→
P ix, we discover

that the resulting iterative step is that of the SMART.
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9 Alternating Bregman Projection

The generalized alternating projection method is to minimize D1(p, q
n) over p ∈ P to

get pn+1 and then to minimize D2(q, p
n+1) over q ∈ Q to get qn+1. A more tractable

problem is alternating Bregman projection involving two distinct Bregman distances:

D1 = Df and D2 = Dg, where f and g are Bregman functions.

Now we consider minimizing Df (p, q
n) over p ∈ P and then minimizing Dg(q, p

n)

over q ∈ Q, where, for simplicity, we assume that both P and Q are subsets of the

interiors of both domains. Generally, however, this approach of alternating Bregman

projection does not work, as the following example illustrates.

9.1 A Counter-example

Let Q be a closed convex subset of RN and A an invertible N by N real matrix. We

consider the problem of projecting a vector x onto the set A−1(Q). Because finding

the orthogonal projection of x onto A−1(Q) is difficult, we choose instead to minimize

the function

F (x) = (x− A−1q)T AT A(x− A−1q),

over all q ∈ Q. Since

F (x) =
1

2
‖x− A−1q‖2AT A =

1

2
‖A(x− A−1q)‖2 =

1

2
‖Ax− q‖2,

this oblique projection can be written in closed form; it is A−1PQAx. This suggests the

possibility of a sequential projection algorithm whereby we first perform the oblique

projection of x onto A−1(Q), and then the orthogonal projection of A−1PQAx onto

C. Unfortunately, this approach does not work in general, as the following counter-

example illustrates.

Let RN be R2, with C the x-axis and Q the y-axis. Let A be the matrix

A =
[

1 −1
−1 0

]
.

Starting with x0 = (1, 0)T , we find that PCA−1PQAx0 = x0, so the proposed sequential

method does not converge, even though the SFP has a solution, namely (0, 0)T .

10 Multiple-Distances Generalized Projection

We want to use the Bregman distances Dfi
and the associated backward Bregman

projections onto the Ci, which we denote by
←−
P i, to obtain a sequential algorithm for
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finding a member of the intersection of the sets Ci. As the counter-example showed,

the obvious way of simply taking one projection after another, does not always work.

As we shall see, what we need to do is to introduce a certain kind of relaxation into

every step [13].

Instead of simply taking
←−
P ix

k = xk+1, we want xk+1 to be some sort of combi-

nation of
←−
P ix

k and xk itself. To achieve this, we want to minimize a sum of two

distances,

Dfi
(x,
←−
P ix

k) + Di(x, xk),

for some carefully chosen distance Di. What works is to select a Bregman function

h with the property that Dh(x, z) ≥ Dfi
(x, z) for all i, and let Di = Dh −Dfi

. For

example, we could take h(x) =
∑I

i=1 fi(x).

To get xk+1 we minimize

Dfi
(x,
←−
P ix

k) + Dh(x, xk)−Dfi
(x, xk).

It follows that

0 = ∇fi(x
k+1)−∇fi(

←−
P ix

k) +∇h(xk+1)−∇h(xk)−∇fi(x
k+1)−∇fi(x

k),

so that

∇h(xk+1) = ∇fi(
←−
P ix

k) +∇h(xk)−∇fi(x
k).

11 The Split Feasibility Problem

Let C and D be non-empty closed convex subsets of RN and RM , respectively, and

A a real M by N matrix. The split feasibility problem (SFP) [21] is to find x ∈ C

with Ax ∈ D. We can reformulate this problem as alternating Euclidean distance

minimization in two ways. We can let P = C and Q = A−1(D) and apply alternating

minimization to the distance ‖p − q‖2, or we can let P = A(C) and Q = D and

minimize ‖p − q‖2. While we may wish to assume that the orthogonal projections

PC and PQ are easy to calculate, as they are for C and Q that are nice enough,

it is unlikely that the orthogonal projections onto A−1(D) or A(C) will be easy to

compute. This suggests the possibility of using distinct distances for the projections.

11.1 Alternating Oblique Projections

For example, we can let P = C and Q = A−1(D), but when we perform the projection

of p onto the set Q, we minimize the weighted Euclidean distance

dist2(p, q) = (p− q)T AT A(p− q);
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for convenience, we assume that M = N and that A is invertible. Clearly, minimizing

dist2(pn, q) with respect to q is equivalent to minimizing ‖Apn − d‖2, with respect to

d ∈ D. The optimal d is d = PD(Apn), so the optimal q is q = A−1PDApn. The next

pn+1 will be pn+1 = PCA−1PDApn. But, as we saw in the counter-example above, this

iterative procedure need not converge to a solution of the SFP. We want an iterative

algorithm that solves the SFP and employs PC and PD.

11.2 Projected Gradient Minimization

Suppose that f : RN → R is differentiable and we want to minimize f(x) over x ∈ RN .

The gradient descent method has the iterative step

xk+1 = xk − γk∇f(xk),

where the parameters γk are selected to guarantee convergence to a minimizer. If the

original problem is actually to minimize f(x), not over all x ∈ RN , but only over

x ∈ C, where C is some non-empty closed convex set, then the projected gradient

descent method can be employed. The iterative step now is

xk+1 = PC(xk − γk∇f(xk)).

We apply this idea to the SFP.

We try to solve the SFP by minimizing the function

f(x) = ‖PDAx− Ax‖2,

subject to x ∈ C. The gradient of f(x) is

∇f(x) = AT Ax− AT PDAx,

so the iterative step becomes

xk+1 = PC(xk − γAT (I − PD)Axk).

This algorithm was presented in [15] and discussed further in [16]. In those papers it is

called the CQ algorithm. It turns out that, for the CQ algorithm, we get convergence

to a solution of the SFP, whenever such exist, for any γ in the interval (0, 2/L), where

L is the largest eigenvalue of AT A. When no solutions exist, the iteration provides a

minimizer of the function f(x), for x ∈ C, provided that such minimizers exist.

In practice, the orthogonal projections PC and PD often need to be approximated

by orthogonal projection onto supporting hyperplanes. The paper by Yang [56] is one

of several articles that explore this issue.
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12 Multiple-Set Split Feasibility

In intensity modulated radiation therapy (IMRT) the objective is to modulate the

intensity levels of the radiation sources around the body of the patient so as to direct

sufficient radiation to the intended target while avoiding other regions [19, 20]. There

are mechanical constraints on the manner in which the modulation can be performed.

Taken together, the problem becomes a split-feasibility problem in which both C and

Q are the intersection of finitely many other closed convex subsets.

Let Cn, n = 1, ..., N and Qm, m = 1, ...,M be closed convex subsets of RJ and RI ,

respectively, with C = ∩N
n=1Cn and Q = ∩M

m=1Qm. Let A be a real I by J matrix.

The multiple-sets split feasibility problem (MSSFP) is to find x ∈ C with Ax ∈ Q.

The assumption is that the orthogonal projections onto each Cn and each Qm can be

easily computed.

A somewhat more general problem is to find a minimizer of the proximity function

f(x) =
1

2

N∑
n=1

αn||PCnx− x||22 +
1

2

M∑
m=1

βm||PQmAx− Ax||22, (12.1)

with respect to the nonempty, closed convex set Ω ⊆ RN , where αn and βm are

positive and
N∑

n=1

αn +
M∑

m=1

βm = 1.

In [20] it is shown that ∇f(x) is L-Lipschitz, for

L =
N∑

n=1

αn + ρ(AT A)
M∑

m=1

βm;

here ρ(AT A) is the spectral radius of AT A, which is also its largest eigenvalue. The

algorithm given in [20] has the iterative step

xk+1 = PΩ

(
xk + s

( N∑
n=1

αn(PCnxk − xk) +
M∑

m=1

βmAT (PQmAxk − Axk)
))

,

(12.2)

for 0 < s < 2/L. This algorithm converges to a minimizer of f(x) over Ω, whenever

such a minimizer exists, and to a solution, within Ω, of the MSSFP, whenever such

solutions exist.

13 Forward-Backward Splitting

Let f : RJ → (−∞, +∞] be a closed, proper, convex function. When f is differen-

tiable, we can find minimizers of f using techniques such as gradient descent. When
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f is not necessarily differentiable, the minimization problem is more difficult. One ap-

proach is to augment the function f and to convert the problem into one of minimizing

a differentiable function. Moreau’s approach uses Euclidean distances to augment f ,

leading to the definition of proximal operators [50], or proximity operators [29]. More

general methods, using Bregman distances to augment f , have been considered by

Teboulle [54] and by Censor and Zenios [23].

13.1 Moreau’s Proximity Operators

The Moreau envelope of the function f is the function

mf (z) = inf
x
{f(x) +

1

2
||x− z||22}, (13.1)

which is also the infimal convolution of the functions f(x) and 1
2
||x||22. It can be

shown that the infimum is uniquely attained at the point denoted x = proxfz (see

[50]). The function mf (z) is differentiable and ∇mf (z) = z − proxfz. The point

x = proxfz is characterized by the property z − x ∈ ∂f(x). Consequently, x is a

global minimizer of f if and only if x = proxfx. For example, consider the indicator

function of the convex set C, f(x) = ιC(x) that is zero if x is in the closed convex set

C and +∞ otherwise. Then mfz is the minimum of 1
2
||x − z||22 over all x in C, and

proxfz = PCz, the orthogonal projection of z onto the set C.

13.2 Proximal Minimization Algorithm

The proximal minimization algorithm is the following.

Algorithm 13.1 (Proximal Minimization) Let x0 be arbitrary. For k = 0, 1, ...,

let

xk+1 = (1− γk)x
k + γkproxfx

k. (13.2)

Because

xk − proxfx
k ∈ ∂f(proxfx

k), (13.3)

the iteration in Equation (13.2) has the increment

xk+1 − xk ∈ −γk∂f(xk+1), (13.4)

in contrast to what we would have with the usual gradient descent method for differ-

entiable f :

xk+1 − xk = −γk∇f(xk). (13.5)
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It follows from the definition of the sub-differential ∂f(xk+1) that f(xk) ≥ f(xk+1)

for the iteration in Equation (13.2).

13.3 Forward-Backward Splitting

In [29] Combettes and Wajs consider the problem of minimizing the function f =

f1 + f2, where f2 is differentiable and its gradient is λ-Lipschitz continuous. The

function f is minimized at the point x if and only if

0 ∈ ∂f(x) = ∂f1(x) +∇f2(x), (13.6)

so we have

−γ∇f2(x) ∈ γ∂f1(x), (13.7)

for any γ > 0. Therefore

x− γ∇f2(x)− x ∈ γ∂f1(x). (13.8)

From Equation (13.8) we conclude that

x = proxγf1
(x− γ∇f2(x)). (13.9)

This suggests an algorithm, called the forward-backward splitting for minimizing the

function f(x).

Algorithm 13.2 (Forward-Backward Splitting) Beginning with an arbitrary x0,

and having calculated xk, we let

xk+1 = proxγf1
(xk − γ∇f2(x

k)), (13.10)

with γ chosen to lie in the interval (0, 2/λ).

The sequence {xk} converges to a minimizer of the function f(x), whenever minimizers

exist.

13.4 The CQ Algorithm as Forward-Backward Splitting

Recall that the split-feasibility problem (SFP) is to find x in C with Ax in QD. The

CQ algorithm minimizes the function

g(x) = ||PDAx− Ax||22, (13.11)
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over x ∈ C, whenever such minimizers exist, and so solves the SFP whenever it has

solutions. The CQ algorithm minimizes the function

f(x) = ιC(x) + g(x), (13.12)

where ιC is the indicator function of the set C. With f1(x) = ιC(x) and f2(x) = g(x),

the function f(x) has the form considered by Combettes and Wajs, and the CQ

algorithm becomes a special case of their forward-backward splitting method.

14 Projecting onto the Intersection of Closed

Convex Sets

The SOP algorithm need not converge to the point in the intersection closest to the

starting point. To obtain the point closest to x0 in the intersection of the convex

sets Ci, we can use Dykstra’s algorithm, a modification of the SOP method [36]. For

simplicity, we shall discuss only the case of C = A∩B, the intersection of two closed,

convex sets.

14.1 A Motivating Lemma

The following lemma will help to motivate Dykstra’s algorithm.

Lemma 14.1 If x = c+p+ q, where c = PA(c+p) and c = PB(c+ q), then c = PCx.

Proof: Let d be arbitrary in C. Then

〈c− (c + p), d− c〉 ≥ 0, (14.1)

since d is in A, and

〈c− (c + q), d− c〉 ≥ 0, (14.2)

since d is in B. Adding the two inequalities, we get

〈−p− q, d− c〉 ≥ 0. (14.3)

But

−p− q = c− x, (14.4)

so

〈c− x, d− c〉 ≥ 0, (14.5)

for all d in C. Therefore, c = PCx.
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14.2 Dykstra’s Algorithm

Dykstra’s algorithm is the following:

Algorithm 14.1 (Dykstra) Let b0 = x, and p0 = q0 = 0. Then let

an = PA(bn−1 + pn−1), (14.6)

bn = PB(an + qn−1), (14.7)

and define pn and qn by

x = an + pn + qn−1 = bn + pn + qn. (14.8)

Uing the algorithm, we construct two sequences, {an} and {bn}, both converging to

c = PCx, along with two other sequences, {pn} and {qn}. Usually, but not always,

{pn} converges to p and {qn} converges to q, so that

x = c + p + q, (14.9)

with

c = PA(c + p) = PB(c + q). (14.10)

Generally, however, {pn + qn} converges to x− c.

In [6], Bregman considers the problem of minimizing a convex function f : RJ →
R over the intersection of half-spaces, that is, over the set of points x for which

Ax =≥ b. His approach is a primal-dual algorithm involving the notion of projecting

onto a convex set, with respect to a generalized distance constructed from f . Such

generalized projections have come to be called Bregman projections. In [25], Censor

and Reich extend Dykstra’s algorithm to Bregman projections, and, in [7], Bregman,

Censor and Reich show that the extended Dykstra algorithm of [25] is the natural

extension of Bregman’s primal-dual algorithm to the case of intersecting convex sets.

14.3 The Halpern-Lions-Wittmann-Bauschke Algorithm

There is yet another approach to finding the orthogonal projection of the vector x

onto the nonempty intersection C of finitely many closed, convex sets Ci, i = 1, ..., I.

Algorithm 14.2 (HLWB) Let x0 be arbitrary. Then let

xk+1 = tkx + (1− tk)Pix
k, (14.11)

where Pi denotes the orthogonal projection onto Ci, tk is in the interval (0, 1), and

i = k(mod I) + 1.
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Several authors have proved convergence of the sequence {xk} to PCx, with various

conditions imposed on the parameters {tk}. As a result, the algorithm is known as

the Halpern-Lions-Wittmann-Bauschke (HLWB) algorithm, after the names of several

who have contributed to the evolution of the theorem; see also Corollary 2 in Reich’s

paper [49]. The conditions imposed by Bauschke [1] are {tk} → 0,
∑

tk = ∞, and∑ |tk−tk+I | < +∞. The HLWB algorithm has been extended by Deutsch and Yamada

[35] to minimize certain (possibly non-quadratic) functions over the intersection of

fixed point sets of operators more general than Pi.

14.4 Dykstra’s Algorithm for Bregman Projections

We are concerned now with finding the backward Bregman projection of x onto the

intersection C of finitely many closed convex sets, Ci. The problem can be solved by

extending Dykstra’s algorithm to include Bregman projections.

14.5 A Helpful Lemma

The following lemma helps to motivate the extension of Dykstra’s algorithm.

Lemma 14.2 Suppose that

∇f(c)−∇f(x) = ∇f(c)−∇f(c + p) +∇f(c)−∇f(c + q), (14.12)

with c =
←−
P

f

A(c + p) and c =
←−
P

f

B(c + q). Then c =
←−
P

f

Cx.

Proof: Let d be arbitrary in C. We have

〈∇f(c)−∇f(c + p), d− c〉 ≥ 0, (14.13)

and

〈∇f(c)−∇f(c + q), d− c〉 ≥ 0. (14.14)

Adding, we obtain

〈∇f(c)−∇f(x), d− c〉 ≥ 0. (14.15)

This suggests the following algorithm for finding c =
←−
P

f

Cx, which turns out to be

the extension of Dykstra’s algorithm to Bregman projections.
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Algorithm 14.3 (Bregman-Dykstra) Begin with b0 = x, p0 = q0 = 0. Define

bn−1 + pn−1 = ∇f−1(∇f(bn−1) + rn−1), (14.16)

an =
←−
P

f

A(bn−1 + pn−1), (14.17)

rn = ∇f(bn−1) + rn−1 −∇f(an), (14.18)

∇f(an + qn−1) = ∇f(an) + sn−1, (14.19)

bn =
←−
P

f

B(an + qn−1), (14.20)

and

sn = ∇f(an) + sn−1 −∇f(bn). (14.21)

In place of

∇f(c + p)−∇f(c) +∇f(c + q)−∇f(c), (14.22)

we have

[∇f(bn−1) + rn−1]−∇f(bn−1) + [∇f(an) + sn−1]−∇f(an) = rn−1 + sn−1,

(14.23)

and also

[∇f(an) + sn−1]−∇f(an) + [∇f(bn) + rn]−∇f(bn) = rn + sn−1.

(14.24)

But we also have

rn−1 + sn−1 = ∇f(x)−∇f(bn−1), (14.25)

and

rn + sn−1 = ∇f(x)−∇f(an). (14.26)

Then the sequences {an} and {bn} converge to c. For further details, see the papers

of Censor and Reich [25] and Bauschke and Lewis [5].

In [7] Bregman, Censor and Reich show that the extension of Dykstra’s algorithm

to Bregman projections can be viewed as an extension of Bregman’s primal-dual algo-

rithm to the case in which the intersection of half-spaces is replaced by the intersection

of closed convex sets.
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15 Acceleration

Some iterative algorithms that find exact or approximate solutions of systems of

linear equations, such as the Landweber, the SMART and the EMML methods, tend

to be slow to converge. Since the intent is often to use these algorithms to solve

large systems of linear equations, speed is important and these methods become

impractical.

The Landweber, SMART and EMML algorithms use all of the equations at each

step of the iteration and are therefore called simultaneous methods. Variants of

these methods that use only some of the equations at each step are called block-

iterative methods. Those employing only a single equation at each step, such as the

algebraic reconstruction technique (ART) [38, 39], its multiplicative cousin MART

[38], and the related EMART, are called sequential methods [17]. For problems such

as medical image reconstruction, block-iterative methods have been shown to provide

useful reconstructed images in a fraction of the time required by the simultaneous

methods.

15.1 Block-iterative Versions of SMART and EMML

Darroch and Ratcliff included what are now called block-iterative versions of SMART

in their original paper [33]. Censor and Segman [22] viewed SMART and its block-

iterative versions as natural extension of the MART. Consequently, block-iterative

variants of SMART have been around for some time. The story with the EMML is

quite different.

The paper of Holte, Schmidlin, et al. [41] compares the performance of Schmidlin’s

method of [52] with the EMML algorithm. Almost as an aside, they notice the accel-

erating effect of what they call projection interleaving, that is, the use of blocks. This

paper contains no explicit formulas, however, and presents no theory, so one can only

make educated guesses as to the precise iterative methods employed. Somewhat later,

Hudson, Hutton and Larkin [42, 43] observed that the EMML can be significantly

accelerated if, at each step, one employs only some of the data. They referred to this

approach as the ordered subset EM method (OSEM). They gave a proof of conver-

gence of the OSEM, for the consistent case. The proof relied on a fairly restrictive

relationship between the matrix A and the choice of blocks, called subset balance. In

[12] a revised version of the OSEM, called the rescaled block-iterative EMML (RBI-

EMML), was shown to converge, in the consistent case, regardless of the choice of

blocks.

34



15.2 Basic assumptions

Methods based on cross-entropy, such as the MART, SMART, EMML and all block-

iterative versions of these algorithms apply to nonnegative systems that we denote

by Px = y, where y is a vector of positive entries, P is a matrix with entries Pij ≥ 0

such that for each j the sum sj =
∑I

i=1 Pij is positive and we seek a solution x

with nonnegative entries. If no nonnegative x satisfies y = Px we say the system is

inconsistent.

Simultaneous iterative algorithms employ all of the equations at each step of the

iteration; block-iterative methods do not. For the latter methods we assume that the

index set {i = 1, ..., I} is the (not necessarily disjoint) union of the N sets or blocks

Bn, n = 1, ..., N . We shall require that snj =
∑

i∈Bn
Pij > 0 for each n and each j.

Block-iterative methods like ART and MART for which each block consists of precisely

one element are called row-action or sequential methods. For each n = 1, ..., N let

mn = max{snjs
−1
j |j = 1, ..., J}. (15.1)

The original RBI-SMART is as follows:

Algorithm 15.1 (RBI-SMART) Let x0 be an arbitrary positive vector. For k =

0, 1, ..., let n = k(mod N) + 1. Then let

xk+1
j = xk

j exp
(
m−1

n s−1
j

∑
i∈Bn

Pij log
( yi

(Pxk)i

))
. (15.2)

Notice that Equation (15.2) can be written as

log xk+1
j = (1−m−1

n s−1
j snj) log xk

j + m−1
n s−1

j

∑
i∈Bn

Pij log
(
xk

j

yi

(Pxk)i

)
,

(15.3)

from which we see that xk+1
j is a weighted geometric mean of xk

j and the terms

(
←−
P ix

k)j = xk
j

( yi

(Pxk)i

)
,

for i ∈ Bn. This will be helpful in deriving block-iterative versions of the EMML

algorithm. The vectors
←−
P i(x

k) are sometimes called weighted KL projections.

For the row-action version of SMART, the multiplicative ART (MART), due to

Gordon, Bender and Herman [38], we take N = I and Bn = Bi = {i} for i = 1, ..., I.

The MART has the iterative

xk+1
j = xk

j

( yi

(Pxk)i

)m−1
i Pij

, (15.4)
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for j = 1, 2, ..., J , i = k(mod I) + 1 and mi > 0 chosen so that m−1
i Pij ≤ 1 for all j.

The smaller mi is the faster the convergence, so a good choice is mi = max{Pij|, j =

1, ..., J}. Although this particular choice for mi is not explicitly mentioned in the

various discussions of MART I have seen, it was used in implementations of MART

from the beginning [40].

Darroch and Ratcliff included a discussion of a block-iterative version of SMART

in their 1972 paper [33]. Close inspection of their version reveals that they require

that snj =
∑

i∈Bn
Pij = 1 for all j. Since this is unlikely to be the case initially, we

might try to rescale the equations or unknowns to obtain this condition. However,

unless snj =
∑

i∈Bn
Pij depends only on j and not on n, which is the subset balance

property used in [43], we cannot redefine the unknowns in a way that is independent

of n.

The MART fails to converge in the inconsistent case. What is always observed,

but for which no proof exists, is that, for each fixed i = 1, 2, ..., I, as m → +∞,

the MART subsequences {xmI+i} converge to separate limit vectors, say x∞,i. This

limit cycle LC = {x∞,i|i = 1, ..., I} reduces to a single vector whenever there is a

nonnegative solution of y = Px. The greater the minimum value of KL(Px, y) the

more distinct from one another the vectors of the limit cycle are. An analogous result

is observed for BI-SMART.

The original motivation for the RBI-EMML came from consideration of Equation

(15.3), replacing the geometric means with arithmetic means. This RBI-EMML is as

follows:

Algorithm 15.2 (RBI-EMML) Let x0 be an arbitrary positive vector. For k =

0, 1, ..., let n = k(mod N) + 1. Then let

xk+1
j = (1−m−1

n s−1
j snj)x

k
j + m−1

n s−1
j xk

j

∑
i∈Bn

(Pij
yi

(Pxk)i

). (15.5)

Both the RBI-SMART and the RBI-EMML converge to a non-negative solution of

y = Px, when such solutions exist.
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