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Abstract

The geometric programming problem (GP) is to minimize a posynomial

g(t) =
I
∑

i=1

ci

(

J
∏

j=1

t
aij

j

)

,

over t = (t1, ..., tJ) positive, with ci > 0 and aij real. The dual geometric
programming problem is to maximize

v(δ) =
I
∏

i=1

(ci

δi

)δi

,

over all positive vectors δ with
∑I

i=1 δi = 1, and
∑I

i=1 aijδi = 0, for j = 1, ..., J .
Maximizing v(δ), subject to these linear constraints, is equivalent to minimizing
the Kullback-Leibler distance

KL(δ, c) =
I
∑

i=1

(

δi log
(δi

ci

)

+ ci − δi

)

,

subject to the same constraints. We can use the iterative multiplicative al-
gebraic reconstruction technique (MART) to solve the DGP problem, even
though the system of linear equations involves a matrix with some negative
entries. When the solution of the DGP problem is positive, we can use it to
obtain the solution of the GP problem.

1 Introduction

The Geometric Programming (GP) Problem involves the minimization of functions

g(t) = g(t1, ..., tJ) of a special type, known as posynomials. The first systematic
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treatment of geometric programming appeared in the book by Duffin, Peterson and

Zener [3], the founders of geometric programming. As we shall see, the General-

ized Arithmetic-Geometric Mean (GAGM) Inequality plays an important role in the

theoretical treatment of geometric programming.

The GAGM Inequality, applied to the function g(t), leads to the inequality

g(t) ≥ v(δ) = v(δ1, ..., δI),

where v(δ) is a second function of a particular type. The dual geometric programming

(DGP) problem is to maximize the function v(δ) over positive vectors δ satisfying

certain linear constraints. The function v(δ) is closely related to cross-entropy and the

DGP problem can be solved using the iterative multiplicative algebraic reconstruction

technique (MART), even though the system of linear equality constraints involves a

matrix with some negative entries.

We begin by describing the GP problem and deriving the DGP problem, following

the treatment in Peressini, Sullivan and Uhl [6]. Then we state and prove the main

convergence theorem for the MART. Finally, we return to the DGP problem, to show

how the linear constraints in that problem can be modified to fit the requirements of

the MART.

2 The GP and DGP Problems

2.1 An Example of a GP Problem

The following optimization problem was presented originally by Duffin, et al. [3] and

discussed by Peressini et al. in [6]. It illustrates well the type of problem considered

in geometric programming. Suppose that 400 cubic yards of gravel must be ferried

across a river in an open box of length t1, width t2 and height t3. Each round-trip

cost ten cents. The sides and the bottom of the box cost 10 dollars per square yard

to build, while the ends of the box cost twenty dollars per square yard. The box will

have no salvage value after it has been used. Determine the dimensions of the box

that minimize the total cost.

With t = (t1, t2, t3), the cost function is

g(t) =
40

t1t2t3
+ 20t1t3 + 10t1t2 + 40t2t3, (2.1)

which is to be minimized over tj > 0, for j = 1, 2, 3. The function g(t) is an example

of a posynomial.
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2.2 Posynomials and the GP Problem

Functions g(t) of the form

g(t) =
I
∑

i=1

ci

(

J
∏

j=1

t
aij

j

)

, (2.2)

with t = (t1, ..., tJ), the tj > 0, ci > 0 and aij real, are called posynomials. The geo-

metric programming problem, or the GP problem, is to minimize a given posynomial

over positive t. In order for the minimum to be greater than zero, we need some of

the aij to be negative.

We denote by ui(t) the function

ui(t) = ci

J
∏

j=1

t
aij

j , (2.3)

so that

g(t) =
I
∑

i=1

ui(t). (2.4)

For any choice of δi > 0, i = 1, ..., I, with

I
∑

i=1

δi = 1,

we have

g(t) =
I
∑

i=1

δi

(ui(t)

δi

)

. (2.5)

Applying the Generalized Arithmetic-Geometric Mean (GAGM) Inequality, we have

g(t) ≥
I
∏

i=1

(ui(t)

δi

)δi

. (2.6)

Therefore,

g(t) ≥
I
∏

i=1

(ci

δi

)δi

(

I
∏

i=1

m
∏

j=1

t
aijδi

j

)

, (2.7)

or

g(t) ≥
I
∏

i=1

(ci

δi

)δi
(

m
∏

j=1

t
∑I

i=1
aijδi

j

)

, (2.8)
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Suppose that we can find δi > 0 with

I
∑

i=1

aijδi = 0, (2.9)

for each j. Then the inequality in (2.8) becomes

g(t) ≥ v(δ), (2.10)

for

v(δ) =
I
∏

i=1

(ci

δi

)δi

. (2.11)

2.3 The Dual GP Problem

The dual geometric programming problem, or the DGP problem, is to maximize the

function v(δ), over all feasible δ = (δ1, ..., δI), that is, all positive δ for which

I
∑

i=1

δi = 1, (2.12)

and

I
∑

i=1

aijδi = 0, (2.13)

for each j = 1, ..., J . Clearly, we have

g(t) ≥ v(δ), (2.14)

for any positive t and feasible δ. Of course, there may be no feasible δ, in which case

the DGP problem is said to be inconsistent.

As we have seen, the inequality in (2.14) is based on the GAGM Inequality. We

have equality in the GAGM Inequality if and only if the terms in the arithmetic mean

are all equal. In this case, this says that there is a constant λ such that

ui(t)

δi

= λ, (2.15)

for each i = 1, ..., I. Using the fact that the δi sum to one, it follows that

λ =
I
∑

i=1

ui(t) = g(t), (2.16)
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and

δi =
ui(t)

g(t)
, (2.17)

for each i = 1, ..., I. As the theorem below asserts, if t∗ is positive and minimizes

g(t), then δ∗, the associated δ from Equation (2.17), is feasible and solves the DGP

problem. Since we have equality in the GAGM Inequality now, we have

g(t∗) = v(δ∗).

The main theorem in geometric programming is the following.

Theorem 2.1 If t∗ > 0 minimizes g(t), then (DGP) is consistent. In addition, the

choice

δ∗

i =
ui(t

∗)

g(t∗)
(2.18)

is feasible and solves (DGP). Finally,

g(t∗) = v(δ∗); (2.19)

that is, there is no duality gap.

Proof: We have

∂ui(t
∗)

∂tj
=

aijui(t
∗)

t∗j
, (2.20)

so that

t∗j
∂ui(t

∗)

∂tj
= aijui(t

∗), (2.21)

for each j = 1, ..., J . Since t∗ minimizes g(t), we have

0 =
∂g(t∗)

∂tj
=

I
∑

i=1

∂ui(t
∗)

∂tj
, (2.22)

so that, from Equation (2.21), we have

0 =
I
∑

i=1

aijui(t
∗), (2.23)

for each j = 1, ..., J . It follows that δ∗ is feasible. Since we have equality in the

GAGM Inequality, we know

g(t∗) = v(δ∗). (2.24)

Therefore, δ∗ solves the DGP problem. This completes the proof.
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2.4 Solving the GP Problem

The theorem suggests how we might go about solving the GP problem. First, we

try to find a feasible δ∗ that maximizes v(δ). This means we have to find a positive

solution to the system of m + 1 linear equations in n unknowns, given by

I
∑

i=1

δi = 1, (2.25)

and

I
∑

i=1

aijδi = 0, (2.26)

for j = 1, ..., J , such that v(δ) is maximized. If there is no such vector, then the GP

problem has no minimizer. Once the desired δ∗ has been found, we set

δ∗

i =
ui(t

∗)

v(δ∗)
, (2.27)

for each i = 1, ..., I, and then solve for the entries of t∗. This last step can be simplified

by taking logs; then we have a system of linear equations to solve for the values log t∗j .

3 The MART

The MART [4], which can be applied only to linear systems y = Px in which the

matrix P has non-negative entries and the vector y has only positive entries, is a

sequential, or row-action, method that uses one equation only at each step of the

iteration. We present the general MART algorithm, and then two versions of the

MART.

3.1 The Algorithms

The general MART algorithm is the following [1].

Algorithm 3.1 (The General MART) Let x0 be any positive vector, and i =

k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1

j = xk
j

( yi

(Pxk)i

)γjδiPij

. (3.1)

The parameters γj > 0 and δi > 0 are to be chosen subject to the inequality

γjδiPij ≤ 1,

6



for all i and j.

The first version of MART that we shall consider, MART I, uses the parameters

γj = 1, and

δi = 1/max {Pij |j = 1, ..., J}.

Algorithm 3.2 (MART I) Let x0 be any positive vector, and i = k(mod I) + 1.

Having found xk for positive integer k, define xk+1 by

xk+1

j = xk
j

( yi

(Pxk)i

)m−1

i
Pij

, (3.2)

where mi = max {Pij |j = 1, 2, ..., J}.

Some treatments of MART leave out the mi, but require only that the entries of P

have been rescaled so that Pij ≤ 1 for all i and j; this corresponds to the choices

γj = 1 and

δi = δ = 1/max {Pij |i = 1, ..., I, j = 1, ..., J},

for each i. Using the mi is important, however, in accelerating the convergence of

MART.

The second version of MART that we shall consider, MART II, uses the parameters

γj = s−1
j , and

δi = 1/max {Pijs
−1

j |j = 1, ..., J}.

Algorithm 3.3 (MART II) Let x0 be any positive vector, and i = k(mod I) + 1.

Having found xk for positive integer k, define xk+1 by

xk+1

j = xk
j

( yi

(Pxk)i

)n−1

i
s−1

j
Pij

, (3.3)

where ni = δ−1
i = max {Pijs

−1
j |j = 1, 2, ..., J}.

Note that the MART II algorithm can be obtained from the MART I algorithm if we

first rescale the entries of the matrix P , replacing Pij with Pijs
−1
j , and redefine the

vector of unknowns, replacing each xj with xjsj.

The MART can be accelerated by relaxation, as well.

Algorithm 3.4 (Relaxed MART I) Let x0 be any positive vector, and i = k(mod I)+

1. Having found xk for positive integer k, define xk+1 by

xk+1

j = xk
j

( yi

(Pxk)i

)τim
−1

i
Pij

, (3.4)

where τi is in the interval (0, 1).

As with ART, finding the best relaxation parameters is a bit of an art.
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3.2 Convergence of MART

In the consistent case, by which we mean that Px = y has nonnegative solutions, we

have the following convergence theorem for MART [1]. We assume that sj =
∑I

i=1 Pij

is positive, for all j.

Theorem 3.1 In the consistent case, the general MART algorithm converges to the

unique non-negative solution of Px = y for which the weighted cross-entropy

J
∑

j=1

γ−1

j KL(xj, x
0

j)

is minimized. The MART I algorithm converges to the unique nonnegative solution of

Px = y for which the cross-entropy KL(x, x0) is minimized. The MART II algorithm

converges to the unique non-negative solution of Px = y for which the weighted cross-

entropy
J
∑

j=1

sjKL(xj, x
0

j)

is minimized.

As with ART, the speed of convergence is greatly affected by the ordering of the

equations, converging most slowly when consecutive equations correspond to nearly

parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does not converge

to a single vector, but, like ART, is always observed to produce a limit cycle of vectors.

Unlike ART, there is no proof of the existence of a limit cycle for MART.

3.3 Proof of Convergence for MART I

We assume throughout this proof that x̂ is a nonnegative solution of Px = y. The

following lemma provides an important property of the KL distance; the proof is easy

and we omit it.

Lemma 3.1 Let x+ =
∑J

j=1 xj and z+ > 0 Then

KL(x, z) = KL(x+, z+) + KL(x,
x+

z+

z). (3.5)

For i = 1, 2, ..., I, let

Gi(x, z) = KL(x, z) + m−1

i KL((Px)i, yi) − m−1

i KL((Px)i, (Pz)i).

(3.6)
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Lemma 3.2 For all i, we have Gi(x, z) ≥ 0 for all x and z.

Proof: Use Equation (3.5).

Then Gi(x, z), viewed as a function of z, is minimized by z = x, as we see from

the equation

Gi(x, z) = Gi(x, x) + KL(x, z) − m−1

i KL((Px)i, (Pz)i). (3.7)

Viewed as a function of x, Gi(x, z) is minimized by x = z′, where

z′

j = zj

( yi

(Pz)i

)m−1

i
Pij

, (3.8)

as we see from the equation

Gi(x, z) = Gi(z
′, z) + KL(x, z′). (3.9)

We note that xk+1 = (xk)′.

Now we calculate Gi(x̂, xk) in two ways, using, first, the definition, and, second,

Equation (3.9). From the definition, we have

Gi(x̂, xk) = KL(x̂, xk) − m−1

i KL(yi, (Pxk)i). (3.10)

From Equation (3.9), we have

Gi(x̂, xk) = Gi(x
k+1, xk) + KL(x̂, xk+1). (3.11)

Therefore,

KL(x̂, xk) − KL(x̂, xk+1) = Gi(x
k+1, xk) + m−1

i KL(yi, (Pxk)i). (3.12)

From Equation (3.12) we can conclude several things:

• 1) the sequence {KL(x̂, xk)} is decreasing;

• 2) the sequence {xk} is bounded, and therefore has a cluster point, x∗; and

• 3) the sequences {Gi(x
k+1, xk)} and {m−1

i KL(yi, (Pxk)i)} converge decreasingly

to zero, and so yi = (Px∗)i for all i.

Since y = Px∗, we can use x∗ in place of the arbitrary solution x̂ to conclude

that the sequence {KL(x∗, xk)} is decreasing. But, a subsequence converges to zero,

so the entire sequence must converge to zero, and therefore {xk} converges to x∗.
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Finally, since the right side of Equation (3.12) is independent of which solution x̂ we

have used, so is the left side. Summing over k on the left side, we find that

KL(x̂, x0) − KL(x̂, x∗) (3.13)

is independent of which x̂ we use. We can conclude then that minimizing KL(x̂, x0)

over all solutions x̂ has the same answer as minimizing KL(x̂, x∗) over all such x̂; but

the solution to the latter problem is obviously x̂ = x∗. This concludes the proof.

The proof of convergence of the general MART is similar, and we omit it. The

interested reader may consult [1].

4 Returning to the DGP

As we have just seen, the MART can be used to minimize the function KL(δ, c), sub-

ject to linear equality constraints, provided that the matrix involved has nonnegative

entries. We cannot apply the MART yet, because the matrix AT probably has some

negative entries.

The entries on the bottom row of AT are all one, as is the bottom entry of the

column vector u, since these entries correspond to the equation
∑I

i=1 δi = 1. By

adding suitably large positive multiples of this last equation to the other equations

in the system, we obtain an equivalent system, BT δ = s, for which the new matrix

BT and the new vector s have only positive entries.

For example, the linear system of equations AT δ = u corresponding to the posyn-

omial in Equation (2.1) is

AT δ = u =











−1 1 1 0
−1 0 1 1
−1 1 0 1
1 1 1 1





















δ1

δ2

δ3

δ4











=











0
0
0
1











.

Adding two times the last row to the other rows, the system becomes

BT δ = s =











1 3 3 2
1 2 3 3
1 3 2 3
1 1 1 1





















δ1

δ2

δ3

δ4











=











2
2
2
1











.

The matrix BT and the vector s are now positive. We are ready to apply the MART.

The matrix P is now BT , and y = s. Selecting as our starting vector x0 = δ0 = c,

the MART converges to δ∗ solving the DGP problem (if a solution exists). Using δ∗,

we find the optimal t∗ solving the GP problem.
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The MART iteration is as follows. With j = k(mod J +1)+1, µi = max {Bij |j =

1, 2, ..., J} and k = 0, 1, ..., let

δk+1

i = δk
i

( sj

(BT δk)j

)µ−1

i
Bij

.

5 Final Comments

Minimizing KL(δ, c) over a more general set of linear equality constraints is more

difficult, since we still need to find an equivalent system of linear equations that

involves a matrix with only non-negative entries.

Besides the MART, there are related algorithms that can also be used here. The

MART has been extended to fully simultaneous and block-iterative versions, the

simultaneous MART (SMART) and the rescaled block-iterative SMART. For details,

see [2].
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