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Overview

1. transmission tomography and non-iterative filtered
backprojection;
2. discretization and iteration- ART and MART;
3. emission tomography and iterative likelihood
maximization;
4. the EMML algorithm for emission tomography;
5. acceleration through block-iterative methods;
6. iterative entropy maximization;
7. the split feasibility problem and the CQ algorithm;
8. intensity-modulated radiation therapy (IMRT).



Transmission Tomography

In transmission tomography, radiation, usually x-ray, is
transmitted along many lines through the object of interest and
the initial and final intensities are measured. The intensity drop
associated with a given line indicates the amount of attenuation
the ray encountered as it passed along the line. It is this
distribution of attenuating matter within the patient, described
by a function of two or three spatial variables, that is the object
of interest. Unexpected absence of attenuation can indicate a
break in a bone, for example. The data are usually modeled as
line integrals of that function. The Radon transform is the
function that associates with each line its line integral.



Drop in X-ray Intensity Along Line L

The intensity of the x-ray beam upon entry is Iin and Iout is its
lower intensity after passing through the body, along line L.
Then we have

Iout = Iine−
R

L f , (1)

where f = f (x , y) ≥ 0 is the attenuation function describing the
two-dimensional distribution of matter within the slice of the
body being scanned and

∫
L f is the integral of the function f

over the line L along which the x-ray beam has passed.



The Exponential-Decay Model

The line L is parameterized by the variable s and the intensity
function is I(s). For small ∆s > 0, the drop in intensity from the
start to the end of the interval [s, s + ∆s] is approximately
proportional to the intensity I(s), to the attenuation f (s) and to
∆s, the length of the interval; that is,

I(s)− I(s + ∆s) ≈ f (s)I(s)∆s. (2)

Dividing by ∆s and letting ∆s approach zero, we get

I′(s) = −f (s)I(s), (3)

and so

I(s) = I(0) exp(−
∫ u=s

u=0
f (u)du). (4)



Radon Transform



The Radon Transform

For each fixed value of t , we compute the integral∫
L

f (x , y)ds =

∫
f (t cos θ − s sin θ, t sin θ + s cos θ)ds (5)

along the single line L corresponding to the fixed values of θ
and t . We repeat this process for every value of t and then
change the angle θ and repeat again. We denote by rf (θ, t) the
integral

rf (θ, t) =

∫
L

f (x , y)ds. (6)

The function rf (θ, t) is called the Radon transform of f .



The Central Slice Theorem

For fixed θ the function rf (θ, t) is a function of the single real
variable t ; let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =

∫
rf (θ, t)eiωtdt (7)

=

∫ ∫
f (t cos θ − s sin θ, t sin θ + s cos θ)eiωtdsdt (8)

=

∫ ∫
f (x , y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ), (9)

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier
transform of the function f (x , y), evaluated at the point
(ω cos θ, ω sin θ); this relationship is called the Central Slice
Theorem.



Filtered Backprojection

For fixed θ, as we change the value of ω, we obtain the values
of the function F along the points of the line making the angle θ
with the horizontal axis. As θ varies in [0, π), we get all the
values of the function F . Once we have F , we can obtain f
using the formula for the two-dimensional inverse Fourier
transform:

f (x , y) =
1

4π2

∫ ∫
F (u, v)e−i(xu+yv)dudv . (10)

The filtered backprojection methods commonly used in the
clinic are derived from different ways of calculating the double
integral in Equation (10).



The Discrete Model



The Discrete Model

The estimated attenuation function will ultimately be reduced to
a finite array of numbers prior to display. This discretization can
be performed at the end, or can be made part of the problem
model from the start. In the latter case, the attenuation function
is assumed to be constant over small pixels or voxels; these
constants are the object of interest now. The problem has been
reduced to solving a large system of linear equations, possibly
subject to non-negativity or other constraints.



A Statistical Approach

If the physical nature of the radiation is described using a
statistical model, then the pixel values can be viewed as
parameters to be estimated. The well-known maximum
likelihood parameter estimation method can then be employed
to obtain these pixel values. This involves a large-scale
optimization of the likelihood function.



Discretization

For j = 1, ..., J, let xj be the unknown constant value of the
attenuation function within the j th pixel or voxel.

For i = 1, ..., I, let Li be the set of pixel indices j for which the j th
pixel intersects the i-th line segment, let |Li | be the cardinality of
the set Li .

Let bi > 0 be the measured approximation of the line integral of
f along Li .

Let Aij = 1 for j in Li , and Aij = 0 otherwise.

The line integral is replaced by (Ax)i =
∑

j∈Li
Aijxj .

The problem is then to solve Ax = b.



Algebraic Reconstruction Technique (ART)

With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xk

j +
1
|Li |

(bi − (Axk )i), (11)

for j in Li , and

xk+1
j = xk

j , (12)

if j is not in Li . In each step of ART, we take the error,
bi − (Axk )i , associated with the current xk and the i-th
equation, and distribute it equally over each of the pixels that
intersects Li . For the ART we do not require that the Aij , bi or
the xj be non-negative.



Solving Ax = b with the ART

The ART can be used to solve any system of linear equations
Ax = b. The iterative step of ART is

xk+1
j = xk

j +
1

||ai ||2
(bi − (Axk )i)ai , (13)

where ai denotes the i th column of A†.



ART: Consistent Case

In the consistent case, the ART converges to the solution
closest to the starting vector.



ART: The Inconsistent Case

In the inconsistent case, ART exhibits subsequential
convergence to a limit cycle of distinct vectors.



The Multiplicative ART (MART)

Suppose, now, that we have Aij ≥ 0, bi > 0 and we know that
the desired image we wish to reconstruct must be nonnegative.
We can begin with x0 > 0, but as we compute the ART steps,
we may lose nonnegativity. One way to avoid this loss is to
correct the current xk multiplicatively, rather than additively, as
in ART. This leads to the multiplicative ART (MART).
The MART, in this case, has the iterative step

xk+1
j = xk

j

( bi

(Axk )i

)
, (14)

for those j in Li , and

xk+1
j = xk

j , (15)

otherwise. Therefore, we can write the iterative step as

xk+1
j = xk

j

( bi

(Axk )i

)Aij
. (16)



The General MART

The MART can be used to solve systems of the form y = Px ,
where y has positive entries, P has non-negative entries, and
we seek a non-negative solution. The iterative step of MART is

xk+1
j = xk

j

( yi

(Pxk )i

)Pi,j/mi
, (17)

where mi = max{Pi,j j = 1, ..., J}. If y = Px has non-negative
solutions, then MART converges to such a solution; if not,
MART exhibits subsequential convergence to a limit cycle,
similar to ART.



Using Prior Knowledge

If we take J, the number of pixels, to be larger than I, the
number of measurements, then we have an under-determined
problem, with multiple solutions. In such cases, prior knowledge
can be used effectively to produce a reasonable reconstruction.



Emission Tomography

In emission tomography, a carefully designed chemical tagged
with a radioisotope is introduced into the body of the patient.
The chemical is selected to accumulate in a specific organ or
region of the body, such as the brain, or the heart wall. On the
basis of emissions from the radioisotope that are detected
outside the body, the distribution of the chemical within the
body is estimated. Unexpected absence of the radionuclide
from a given region, or a higher than expected concentration,
can indicate a medical problem.



PET and SPECT

There are two basic types of emission tomography:
single photon emission computed tomography (SPECT);
positron emission tomography (PET).

In SPECT the radioisotope emits a single photon, while in PET
a positron is emitted, which shortly meets an electron and the
resulting annihilation produces two gamma-ray photons
traveling in essentially opposite directions.



Randomness

In both SPECT and PET the data can be approximated as
integrals along lines through the body and FBP used in
reconstruction. However, more sophisticated models that more
accurately describe the physics of the situation are preferred.

The photons that travel through the body toward the external
detectors are sometimes absorbed by the body itself and not
detected. The probability of being detected depends on the
attenuation presented by the body. This attenuation, while not
the object of interest now, is an important part of the physical
model and needs to be included in the reconstruction method.

The randomness inherent in emission can also be included,
leading once again to probabilistic models and a maximum
likelihood approach to reconstruction.



The Poisson Model in SPECT

The discrete model for emission tomography is the following:
for j = 1, ..., J, xj ≥ 0 is the unknown expected number of
photons emitted from the j th pixel during the scan;
for i = 1, ..., I, yi > 0 is the number of photons detected at
the i th detector;
Pij ≥ 0 is the probability that a photon emitted at j will be
detected at i , which we shall assume is known;
sj =

∑I
i=1 Pij is the sensitivity to j , that is, probability that a

photon emitted at j will be detected;
the yi are realizations of independent Poisson random
variables with expected values (Px)i =

∑J
j=1 Pijxj .



Likelihood Maximization in SPECT

We view the unknown values xj ≥ 0 as parameters to be
estimated. To within a constant, the log of the likelihood
function is then

LL(x) =
I∑

i=1

yi log(Px)i − (Px)i . (18)

The EMML algorithm for maximizing LL(x) over x ≥ 0 has the
iterative step

xk+1
j = xk

j s−1
j

I∑
i=1

Pij

( yi

(Pxk )i

)
. (19)



Problems with the EMML Algorithm

Although the EM algorithm allows for more accurate description
of the physical situation, there are several disadvantages that
must be removed before the EM algorithm can be a useful
clinical tool:

Calculating (Pxk )i =
∑J

j=1 Pijxk
j , for each i , at each step of

the iteration is expensive, since I and J can be in the tens
of thousands;
The sequence {xk} usually converges quite slowly to the
maximizer of LL(x);
The maximum-likelihood (ML) solution will be a
non-negative solution of y = Px , in the consistent case,
that is, if such solutions exist, so may overfit noisy data;
The ML solution may not be a good choice, in the
inconsistent case, either.



Controlling Noise

It can be shown that, when the system y = Px has no
non-negative solutions, the maximum-likelihood solution will
have at most I − 1 non-zero pixel values, so, if J is greater than
I, the ML solution may be useless. To control noise and obtain
a useful image, one usually uses regularization, which means
maximizing the sum of the likelihood function and another
penalty function that is larger when the image is smooth.



Acceleration

In the early 1990’s it was noticed that if, when performing one
step of the EM iteration, one summed only over some of the
detector indices, instead of over all of them, one could usually
obtain a useful reconstruction more quickly.
Suppose that we take a partition B1 ∪ B2 ∪ · · · ∪ BN of the set
{i = 1, ..., I}, and, at the k th step of the iteration, we use only a
single Bn.



The Ordered-Subset EM

At the k th step of the OSEM we compute

xk+1
j = xk

j s−1
n,j

∑
i∈Bn

Pij

( yi

(Pxk )i

)
, (20)

for n = k(mod N) + 1 and sn,j =
∑

i∈Bn
Pij . Although its

mathematical foundations are a bit shaky, it has proven to be a
useful clinical tool.



Limit Cycle



Limit Cycles

Without strong under-relaxation, algorithms such as ART,
MART and the OSEM that use only some of the data at each
step of the iteration cannot converge to a single vector in the
inconsistent case. For MART and OSEM this means there is no
non-negative solution of y = Px , while for ART it simply means
Ax = b has no solution. In such cases, these algorithms exhibit
subsequential convergence to a limit cycle of (usually) N
distinct vectors. One problem with OSEM is that it sometimes
produces a limit cycle, even when there is a non-negative
solution of y = Px . This makes the OSEM images noisier than
they need to be, when the data is noisy.



Rescaled Block-Iterative Reconstruction

The rescaled block-iterative EMML (RBI-EMML) is similar to the
OSEM, but converges to a non-negative solution of y = Px ,
whenever such solutions exist, for every starting vector x0 > 0
and every choice of blocks. Let x0 be an arbitrary positive
vector. For k = 0, 1, ..., let n = k(mod N) + 1. Then let

xk+1
j = (1−m−1

n s−1
j sn,j)xk

j + m−1
n s−1

j xk
j

∑
i∈Bn

(Pij
yi

(Pxk )i
), (21)

with
mn = max{sn,js−1

j |j = 1, ..., J}.



Entropy Maximization

When there are multiple non-negative solutions of y = Px , it
makes sense to select the solution closest to a prior estimate of
x , according to some measure of distance. The cross-entropy
or Kullback-Leibler distance is frequently used. As we shall see,
this distance is also closely related to the EMML algorithm.



The Kullback-Leibler Distance

The Kullback-Leibler distance between positive numbers α and
β is

KL(α, β) = α log
α

β
+ β − α.

We also define KL(α, 0) = +∞ and KL(0, β) = β. Extending to
non-negative vectors a = (a1, ..., aJ)T and b = (b1, ..., bJ)T , we
have

KL(a, b) =
J∑

j=1

KL(aj , bj) =
J∑

j=1

(
aj log

aj

bj
+ bj − aj

)
.

With a+ =
∑J

j=1 aj , and b+ > 0, we have

KL(a, b) = KL(a+, b+) + KL(a,
a+

b+
b). (22)



The EMML and Simultaneous MART

The EMML algorithm has the iterative step

xk+1
j = xk

j s−1
j

I∑
i=1

Pij

( yi

(Pxk )i

)
. (23)

It is interesting to compare this iteration with that of the
simultaneous MART (SMART):

xk+1
j = xk

j exp
[
s−1

j

I∑
i=1

Pij log
( yi

(Pxk )i

)]
. (24)



Convergence and Open Questions

Theorem

The SMART sequence {xk} converges to the non-negative
minimizer of KL(Px , y) for which KL(x , x0) is minimized, for any
choice of x0 > 0. The EMML sequence {xk} converges to a
non-negative minimizer of KL(y , Px), for any choice of x0 > 0.

It is an open question to which minimizer the EMML sequence
converges. In the consistent case, the limit is a non-negative
solution of y = Px . If there are multiple non-negative solutions
of y = Px , the limit will depend on x0 > 0, but we do not know
how it depends on x0.



SMART and Shannon Entropy

When y = Px has non-negative solutions, the SMART and
MART algorithms produce sequences that converge to the
unique non-negative solution that minimizes KL(x , x0), for any
x0 > 0. If x0 is the vector whose entries are all one, then
minimizing KL(x , x0) is equivalent to maximizing the Shannon
entropy

SE(x) =
J∑

j=1

xj(log xj)− xj .

So the SMART and MART can be used to maximize entropy.



The Split Feasibility Problem

Let A be a real I by J matrix, and C and Q non-empty closed,
convex sets in RJ and RI , respectively.

The split feasibility problem (SFP) is to find a vector x in C,
such that Ax is in Q.



The Inconsistent Case

When the SFP has no solution, it is sensible to seek a
minimizer of the function

f (x) =
1
2
||PQAx − Ax ||22, (25)

over x in C; PQ denotes the orthogonal projection onto Q.



The CQ Algorithm

For arbitrary x0 and k = 0, 1, ..., and γ in the interval
(0, 2/ρ(AT A)), where ρ(AT A) denotes the largest eigenvalue of
the matrix AT A, let

xk+1 = PC(xk − γAT (I − PQ)Axk ). (26)

This is the CQ algorithm. The CQ algorithm converges to a
solution of the SFP, whenever solutions exist. When there are
no solutions of the SFP, the CQ algorithm converges to a
minimizer, over x in C, of the function

f (x) =
1
2
||PQAx − Ax ||22, (27)

whenever such minimizers exist.



Estimating ρ(AT A)

The CQ algorithm employs the relaxation parameter γ in the
interval (0, 2/ρ(AT A)), where ρ(AT A) is the largest eigenvalue
of the matrix AT A. Choosing the best relaxation parameter in
any algorithm is a nontrivial procedure. Generally speaking, we
want to select γ near to 1/ρ(AT A). A simple estimate for
ρ(AT A) that is particularly useful when A is sparse is the
following: if A is normalized so that each row has length one,
then the spectral radius of AT A does not exceed the maximum
number of nonzero elements in any column of A. A similar
upper bound on ρ(AT A) was obtained for non-normalized,
ε-sparse A.



The Multi-set SFP

Recently, Censor, Elfving, Kopf and Bortfeld have extended the
CQ algorithm to the case in which the sets C and Q are the
intersections of finitely many other convex sets. The new
algorithm employs the orthogonal projections onto these other
convex sets.



Intensity-modulated Radiation Therapy

Censor, Bortfeld, Martin, and Trofimov use this new algorithm to
determine intensity-modulation protocols for radiation therapy.
The issue here is to determine the intensities of the radiation
sources external to the patient, subject to constraints on how
spatially varying the machinery permits these intensities to be,
on the maximum dosage directed to healthy areas, and on the
minimum dosage directly to the targets.



Particular Cases of the SFP

It is easy to find important examples of the SFP: if C = RJ and
Q = {b} then solving the SFP amounts to solving the linear
system of equations Ax = b; if C is a proper subset of RJ , such
as the nonnegative cone, then we seek solutions of Ax = b that
lie within C, if there are any. Generally, we cannot solve the
SFP in closed form and iterative methods are needed.



Particular Cases of the CQ Algorithm

A number of well known iterative algorithms, such as the
Landweber and projected Landweber methods, are particular
cases of the CQ algorithm.



The Landweber Algorithm

With x0 arbitrary and k = 0, 1, ..., the Landweber algorithm for
finding a (possibly least-squares) solution of Ax = b has the
iterative step

xk+1 = xk + γAT (b − Axk ). (28)



The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and
k = 0, 1, ..., the projected Landweber algorithm for finding a
(possibly constrained least-squares) solution of Ax = b in C
has the iterative step

xk+1 = PC(xk + γAT (b − Axk )). (29)



The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous
algebraic reconstruction technique (SART) of Anderson and
Kak for solving Ax = b, for nonnegative matrix A . Let A be an
M by N matrix with nonnegative entries. Let Am+ > 0 be the
sum of the entries in the mth row of A and A+n > 0 be the sum
of the entries in the nth column of A. Consider the (possibly
inconsistent) system Ax = b. For x0 arbitrary and k = 0, 1, ...,
let

xk+1
n = xk

n +
1

A+n

∑M

m=1
Amn(bm − (Axk )m)/Am+. (30)

This is the SART algorithm. With a change of variables, the
SART becomes a particular case of the Landweber iteration.



Changing Variables

We make the following changes of variables:

Bmn = Amn/(Am+)1/2(A+n)
1/2, (31)

zn = xn(A+n)
1/2, (32)

and

cm = bm/(Am+)1/2. (33)

Then the SART iterative step can be written as

zk+1 = zk + BT (c − Bzk ). (34)

This is a particular case of the Landweber algorithm, with
γ = 1. The convergence of SART follows, once we know that
the largest eigenvalue of BT B is less than two; in fact, it is one.



Proximal Minimization

The CQ algorithm is a particular case of an iterative algorithm
based on Moreau’s notion of proximity operator.



Proximity Operators

The Moreau envelope of a convex function f is the function

mf (z) = inf
x
{f (x) +

1
2
||x − z||22}, (35)

which is also the infimal convolution of the functions f (x) and
1
2 ||x ||

2
2. It can be shown that the infimum is uniquely attained at

the point denoted x = proxf z. The function mf (z) is
differentiable and ∇mf (z) = z − proxf z. The point x = proxf z is
characterized by the property z − x ∈ ∂f (x). Consequently, x is
a global minimizer of f if and only if x = proxf x .



The Conjugate Function

The conjugate function associated with f is the function
f ∗(x∗) = supx(〈x∗, x〉 − f (x)). In similar fashion, we can define
mf∗z and proxf∗z. Both mf and mf∗ are convex and
differentiable.



Moreau’s Theorem

Theorem
Let f be a closed, proper, convex function with conjugate f ∗.
Then

mf z + mf∗z =
1
2
||z||2;

proxf z + proxf∗z = z;

proxf∗z ∈ ∂f (proxf z);

proxf∗z = ∇mf (z), and

proxf z = ∇mf∗(z). (36)



An Example

For example, consider the indicator function of the convex set
C, f (x) = ιC(x) that is zero if x is in the closed convex set C
and +∞ otherwise. Then mf z is the minimum of 1

2 ||x − z||22
over all x in C, and proxf z = PCz, the orthogonal projection of z
onto the set C. The operators proxf : z → proxf z are proximity
operators. These operators generalize the projections onto
convex sets, and, like those operators, are firmly non-expansive
(Combettes and Wajs).
The support function of the convex set C is
σC(x) = supu∈C〈x , u〉. It is easy to see that σC = ι∗C . For
f ∗(z) = σC(z), we can find mf∗z using Moreau’s Theorem:

proxσC
z = z − proxιC

z = z − PCz. (37)



Using Moreau’s Theorem

The minimizers of mf and the minimizers of f are the same.
From Moreau’s Theorem we know that

∇mf (z) = proxf∗z = z − proxf z, (38)

so ∇mf z = 0 is equivalent to z = proxf z.



Proximal Minimization

Because the minimizers of mf are also minimizers of f , we can
find global minimizers of f using gradient descent iterative
methods on mf .
Let x0 be arbitrary. Then let

xk+1 = xk − γk∇mf (xk ). (39)

We know from Moreau’s Theorem that

∇mf z = proxf∗z = z − proxf z, (40)

so that Equation (39) can be written as

xk+1 = xk − γk (xk − proxf x
k )

= (1− γk )xk + γk proxf x
k . (41)

It follows from the definition of ∂f (xk+1) that f (xk ) ≥ f (xk+1).



Minimizing F (x) = f1(x) + f2(x)

Combettes and Wajs consider the problem of minimizing the
function F (x) = f1(x) + f2(x), where f2(x) is differentiable and
its gradient is λ-Lipschitz continuous. The function F is
minimized at the point x if and only if

0 ∈ ∂F (x) = ∂f1(x) +∇f2(x), (42)

so we have

−γ∇f2(x) ∈ γ∂f1(x), (43)

for any γ > 0. Therefore

x − γ∇f2(x)− x ∈ γ∂f1(x). (44)

From Equation (44) we conclude that

x = proxγf1(x − γ∇f2(x)). (45)

This suggests an algorithm, called the forward-backward
splitting for minimizing the function F (x).



Forward-Backward Splitting

Beginning with an arbitrary x0, and having calculated xk , we let

xk+1 = proxγf1(x
k − γ∇f2(xk )), (46)

with γ chosen to lie in the interval (0, 2/λ). The operator
I − γ∇f2 is then averaged. Since the operator proxγf1 is firmly
non-expansive, the sequence {xk} converges to a minimizer of
the function F (x), whenever minimizers exist. It is also possible
to allow γ to vary with the k .



The CQ Algorithm as Forward-Backward Splitting

Recall that the split-feasibility problem (SFP) is to find x in C
with Ax in Q. The CQ algorithm minimizes the function

f (x) = ||PQAx − Ax ||22, (47)

over x ∈ C, whenever such minimizers exist, and so solves the
SFP whenever it has solutions. The CQ algorithm therefore
minimizes the function

F (x) = ιC(x) + f (x), (48)

where ιC is the indicator function of the set C. With
f1(x) = ιC(x) and f2(x) = f (x), the function F (x) has the form
considered by Combettes and Wajs, and the CQ algorithm
becomes a special case of their forward-backward splitting
method.



The End

THE END


