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Abstract

The EM algorithm is not a single algorithm, but a template for the con-
struction of iterative algorithms. While it is always presented in stochastic
language, relying on conditional expectations to obtain a method for estimat-
ing parameters in statistics, the essence of the EM algorithm is not stochastic.
The conventional formulation of the EM algorithm given in many texts and
papers on the subject is inadequate. A new formulation is given here based on
the notion of acceptable data.

1 Introduction

The “expectation maximization” (EM) algorithm is a general framework for maxi-

mizing the likelihood function in statistical parameter estimation [1, 2, 3]. It is always

presented in probabilistic terms, involving the maximization of a conditional expected

value. The EM algorithm is not really a single algorithm, but a framework for the

design of iterative likelihood maximization methods, or, as the authors of [4] put it, a

“prescription for constructing an algorithm”; nevertheless, we shall continue to refer

to the EM algorithm. As we shall demonstrate in Section 2, the essence of the EM

algorithm is not stochastic. Our non-stochastic EM (NSEM) is a general approach

for function maximization that has the stochastic EM methods as particular cases.

Maximizing the likelihood function is a well studied procedure for estimating

parameters from observed data. When a maximizer cannot be obtained in closed

form, iterative maximization algorithms, such as the expectation maximization (EM)

maximum likelihood algorithms, are needed. The standard formulation of the EM

algorithms postulates that finding a maximizer of the likelihood is complicated be-

cause the observed data is somehow incomplete or deficient, and the maximization
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would have been simpler had we observed the complete data. The EM algorithm

involves repeated calculations involving complete data that has been estimated using

the current parameter value and conditional expectation.

The standard formulation is adequate for the most common discrete case, in which

the random variables involved are governed by finite or infinite probability functions,

but unsatisfactory in general, particularly in the continuous case, in which probability

density functions and integrals are needed.

We adopt the view that the observed data is not necessarily incomplete, but just

difficult to work with, while different data, which we call the preferred data, leads to

simpler calculations. To relate the preferred data to the observed data, we assume

that the preferred data is acceptable, which means that the conditional distribution

of the preferred data, given the observed data, is independent of the parameter. This

extension of the EM algorithms contains the usual formulation for the discrete case,

while removing the difficulties associated with the continuous case. Examples are

given to illustrate this new approach.

2 A Non-Stochastic Formulation of EM

The essence of the EM algorithm is not stochastic, and leads to a general approach for

function maximization, which we call the “non-stochastic” EM algorithm (NSEM)[6].

In addition to being more general, this new approach also simplifies much of the

development of the EM algorithm itself.

2.1 The Non-Stochastic EM Algorithm

We present now the essential aspects of the EM algorithm without relying on sta-

tistical concepts. We shall use these results later to establish important facts about

the statistical EM algorithm. For a broader treatment of the EM algorithm in the

context of iterative optimization, see [5].

2.1.1 The Continuous Case

The problem is to maximize a non-negative function f : Z → R, where Z is an

arbitrary set. We assume that there is z∗ ∈ Z with f(z∗) ≥ f(z), for all z ∈ Z. We

also assume that there is a non-negative function b : RN × Z → R such that

f(z) =

∫
b(x, z)dx.
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Having found zk, we maximize the function

H(zk, z) =

∫
b(x, zk) log b(x, z)dx (2.1)

to get zk+1. Adopting such an iterative approach presupposes that maximizing

H(zk, z) is simpler than maximizing f(z) itself. This is the case with the EM al-

gorithm.

The cross-entropy or Kullback-Leibler distance [7] is a useful tool for analyzing

the EM algorithm. For positive numbers u and v, the Kullback-Leibler distance from

u to v is

KL(u, v) = u log
u

v
+ v − u. (2.2)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL distance

is extended to nonnegative vectors component-wise, so that for nonnegative vectors

a and b we have

KL(a, b) =
J∑
j=1

KL(aj, bj). (2.3)

One of the most useful and easily proved facts about the KL distance is contained in

the following lemma; we simplify the notation by setting b(z) = b(x, z).

Lemma 2.1 For non-negative vectors a and b, with b+ =
∑J

j=1 bj > 0, we have

KL(a, b) = KL(a+, b+) +KL(a,
a+
b+
b). (2.4)

This lemma can be extended to obtain the following useful identity.

Lemma 2.2 For f(z) and b(x, z) as above, and z and w in Z, with f(w) > 0, we

have

KL(b(z), b(w)) = KL(f(z), f(w)) +KL(b(z), (f(z)/f(w))b(w)). (2.5)

Maximizing H(zk, z) is equivalent to minimizing

G(zk, z) = KL(b(zk), b(z))− f(z), (2.6)

where

KL(b(zk), b(z)) =

∫
KL(b(x, zk), b(x, z))dx. (2.7)
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Therefore,

−f(zk) = KL(b(zk), b(zk))− f(zk) ≥ KL(b(zk), b(zk+1))− f(zk+1),

or

f(zk+1)− f(zk) ≥ KL(b(zk), b(zk+1)) ≥ KL(f(zk), f(zk+1)).

Consequently, the sequence {f(zk)} is increasing and bounded above, so that the

sequence {KL(b(zk), b(zk+1))} converges to zero. Without additional restrictions, we

cannot conclude that {f(zk)} converges to f(z∗).

We get zk+1 by minimizing G(zk, z). When we minimize G(z, zk+1), we get zk+1

again. Therefore, we can put the NSEM algorithm into the alternating minimization

(AM) framework of Csiszár and Tusnády [12], to be discussed further Section 11.

2.1.2 The Discrete Case

Again, the problem is to maximize a non-negative function f : Z → R, where Z is

an arbitrary set. As previously, we assume that there is z∗ ∈ Z with f(z∗) ≥ f(z),

for all z ∈ Z. We also assume that there is a finite or countably infinite set B and a

non-negative function b : B × Z → R such that

f(z) =
∑
x∈B

b(x, z).

Having found zk, we maximize the function

H(zk, z) =
∑
x∈B

b(x, zk) log b(x, z) (2.8)

to get zk+1.

We set b(z) = b(x, z) again. Maximizing H(zk, z) is equivalent to minimizing

G(zk, z) = KL(b(zk), b(z))− f(z), (2.9)

where

KL(b(zk), b(z)) =
∑
x∈B

KL(b(x, zk), b(x, z)). (2.10)

As previously, we find that the sequence {f(zk)} is increasing, and {KL(b(zk), b(zk+1))}
converges to zero. Without additional restrictions, we cannot conclude that {f(zk)}
converges to f(z∗).
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3 The Stochastic EM Algorithm

3.1 The E-step and M-step

In statistical parameter estimation one typically has an observable random vector

Y taking values in RN that is governed by a probability density function (pdf) or

probability function (pf) of the form fY (y|θ), for some value of the parameter vector

θ ∈ Θ, where Θ is the set of all legitimate values of θ. Our observed data consists

of one realization y of Y ; we do not exclude the possibility that the entries of y

are independently obtained samples of a common real-valued random variable. The

true vector of parameters is to be estimated by maximizing the likelihood function

Ly(θ) = fY (y|θ) over all θ ∈ Θ to obtain a maximum likelihood estimate, θML.

To employ the EM algorithmic approach, it is assumed that there is another

related random vector X, which we shall call the preferred data, such that, had

we been able to obtain one realization x of X, maximizing the likelihood function

Lx(θ) = fX(x|θ) would have been simpler than maximizing the likelihood function

Ly(θ) = fY (y|θ). Of course, we do not have a realization x of X. The basic idea of

the EM approach is to estimate x using the current estimate of θ, denoted θk, and to

use each estimate xk of x to get the next estimate θk+1.

The EM algorithm proceeds in two steps. Having selected the preferred data X,

and having found θk, we form the function of θ given by

Q(θ|θk) = E(log fX(x|θ)|y, θk); (3.1)

this is the E-step of the EM algorithm. Then we maximize Q(θ|θk) over all θ to get

θk+1; this is the M-step of the EM algorithm. In this way, the EM algorithm based

on X generates a sequence {θk} of parameter vectors.

For the discrete case of probability functions, we have

Q(θ|θk) =
∑
x

fX|Y (x|y, θk) log fX(x|θ), (3.2)

and for the continuous case of probability density functions we have

Q(θ|θk) =

∫
fX|Y (x|y, θk) log fX(x|θ)dx. (3.3)

In decreasing order of importance and difficulty, the goals are these:

• 1. to have the sequence of parameters {θk} converging to θML;

• 2. to have the sequence of functions {fX(x|θk)} converging to fX(x|θML);

5



• 3. to have the sequence of numbers {Ly(θk)} converging to Ly(θML);

• 4. to have the sequence of numbers {Ly(θk)} non-decreasing.

Our focus here is mainly on the fourth goal, with some discussion of the third goal.

We do present some examples for which all four goals are attained. Clearly, the first

goal requires a topology on the set Θ.

3.2 Difficulties with the Conventional Formulation

In [1] we are told that

fX|Y (x|y, θ) = fX(x|θ)/fY (y|θ). (3.4)

This is false; integrating with respect to x gives one on the left side and 1/fY (y|θ) on

the right side. Perhaps the equation is not meant to hold for all x, but just for some

x. In fact, if there is a function h such that Y = h(X), then Equation (3.4) might

hold for those x such that h(x) = y. In fact, this is what happens in the discrete case

of probabilities; in that case we do have

fY (y|θ) =
∑

x∈h−1{y}

fX(x|θ), (3.5)

where

h−1{y} = {x|h(x) = y}.

Consequently,

fX|Y (x|y, θ) =

{
fX(x|θ)/fY (y|θ), if x ∈ h−1{y};

0, if x /∈ h−1{y}. (3.6)

However, this modification of Equation (3.4) fails in the continuous case of probability

density functions, since h−1{y} is often a subset of zero measure. Even if the set

h−1{y} has positive measure, integrating both sides of Equation (3.4) over x ∈ h−1{y}
tells us that fY (y|θ) ≤ 1, which need not hold for probability density functions.

3.3 An Incorrect Proof

Everyone who works with the EM algorithm will say that the likelihood is non-

decreasing for the EM algorithm. The proof of this fact usually proceeds as follows;

we use the notation for the continuous case, but the proof for the discrete case is

essentially the same. Use Equation (3.4) to get

log fX(x|θ) = log fX|Y (x|y, θ)− log fY (y|θ). (3.7)
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Then replace the term log fX(x|θ) in Equation (3.3) with the right side of Equation

(3.7), obtaining

log fY (y|θ)−Q(θ|θk) = −
∫
fX|Y (x|y, θk) log fX|Y (x|y, θ)dx. (3.8)

Jensen’s Inequality tells us that∫
u(x) log u(x)dx ≥

∫
u(x) log v(x)dx, (3.9)

for any probability density functions u(x) and v(x). Since fX|Y (x|y, θ) is a probability

density function, we have∫
fX|Y (x|y, θk) log fX|Y (x|y, θ)dx ≤

∫
fX|Y (x|y, θk) log fX|Y (x|y, θk)dx. (3.10)

We conclude, therefore, that log fY (y|θ)−Q(θ|θk) attains its minimum value at θ = θk.

Then we have

log fY (y|θk+1)− log fY (y|θk) ≥ Q(θk+1|θk)−Q(θk|θk) ≥ 0. (3.11)

This proof is incorrect; clearly it rests on the validity of Equation (3.4), which is

generally false. For the discrete case, with Y = h(X), this proof is valid, when we

use Equation (3.6), instead of Equation (3.4). In all other cases, however, the proof

is incorrect.

3.4 Acceptable Data

We turn now to the question of how to repair the incorrect proof. Equation (3.4)

should read

fX|Y (x|y, θ) = fX,Y (x, y|θ)/fY (y|θ), (3.12)

for all x. In order to replace log fX(x|θ) in Equation (3.3) we write

fX,Y (x, y|θ) = fX|Y (x|y, θ)fY (y|θ), (3.13)

and

fX,Y (x, y|θ) = fY |X(y|x, θ)fX(x|θ), (3.14)

so that

log fX(x|θ) = log fX|Y (x|y, θ) + log fY (y|θ)− log fY |X(y|x, θ). (3.15)
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We say that the preferred data is acceptable if

fY |X(y|x, θ) = fY |X(y|x); (3.16)

that is, the dependence of Y on X is unrelated to the value of the parameter θ. This

definition provides our generalization of the relationship Y = h(X).

When X is acceptable, we have that log fY (y|θ)−Q(θ|θk) again attains its mini-

mum value at θ = θk. The assertion that the likelihood is non-decreasing then follows,

using the same argument as in the previous incorrect proof.

4 The Discrete Case

In the discrete case, we assume that Y is a discrete random vector taking values in a

finite or countably infinite set A, and governed by probability fY (y|θ). We assume, in

addition, that there is a second discrete random vector X, taking values in a finite or

countably infinite set B, and a function h : B → A such that Y = h(X). We define

the set

h−1{y} = {x ∈ B|h(x) = y}. (4.1)

Then we have

fY (y|θ) =
∑

x∈h−1{y}

fX(x|θ). (4.2)

The conditional probability function for X, given Y = y, is

fX|Y (x|y, θ) =
fX(x|θ)
fY (y|θ)

, (4.3)

for x ∈ h−1{y}, and zero, otherwise. The so-called E-step of the EM algorithm is

then to calculate

Q(θ|θk) = E((log fX(X|θ)|y, θk) =
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX(x|θ), (4.4)

and the M-step is to maximize Q(θ|θk) as a function of θ to obtain θk+1.

Using Equation (4.3), we can write

Q(θ|θk) =
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θ) + log fY (y|θ). (4.5)
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Therefore,

log fY (y|θ)−Q(θ|θk) = −
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θ).

Since ∑
x∈h−1{y}

fX|Y (x|y, θk) =
∑

x∈h−1{y}

fX|Y (x|y, θ) = 1,

it follows from Jensen’s Inequality that

−
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θ) ≥ −
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θk).

Therefore, log fY (y|θ)−Q(θ|θk) attains its minimum at θ = θk. We have the following

result.

Proposition 4.1 The sequence {fY (y|θk)} is non-decreasing.

Proof: We have

log fY (y|θk+1)−Q(θk+1|θk) ≥ log fY (y|θk)−Q(θk|θk),

or

log fY (y|θk+1)− log fY (y|θk) ≥ Q(θk+1|θk)−Q(θk|θk) ≥ 0.

Let χh−1{y}(x) be the characteristic function of the set h−1{y}, that is,

χh−1{y}(x) =

{
1, if x ∈ h−1{y};
0, if x /∈ h−1{y}. (4.6)

With the choices z = θ, f(z) = fY (y|θ), and b(z) = fX(x|θ)χh−1{y}(x), the discrete

EM algorithm fits into the framework of the non-stochastic EM algorithm. Conse-

quently, we see once again that the sequence {fY (y|θk)} is non-decreasing, and also

that the sequence

KL(b(zk), b(zk+1)) =
∑

x∈h−1{y}

KL(fX(x|θk), fX(x|θk+1))

converges to zero.
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5 Missing Data

We say that there is missing data if the preferred data X has the form X = (Y,W ),

so that Y = h(X) = h(Y,W ), where h is the orthogonal projection onto the first

component. The case of missing data for the discrete case is covered by the discussion

in Section 4, so we consider here the continuous case in which probability density

functions are involved.

Once again, the E-step is to calculate Q(θ|θk) given by

Q(θ|θk) = E(log fX(X|θ)|y, θk). (5.1)

Since X = (Y,W ), we have

fX(x|θ) = fY,W (y, w|θ). (5.2)

Since the set h−1{y} has measure zero, we cannot write

Q(θ|θk) =

∫
h−1{y}

fX|Y (x|y, θk) log fX(x|θ)dx.

Instead, following [8], we write

Q(θ|θk) =

∫
fY,W (y, w|θk) log fY,W (y, w|θ)dw/fY (y|θk). (5.3)

Consequently, maximizing Q(θ|θk) is equivalent to maximizing∫
fY,W (y, w|θk) log fY,W (y, w|θ)dw.

With b(θ) = b(θ, w) = fY,W (y, w|θ) and

fY (y|θ) = f(θ) =

∫
fY,W (y, w|θ)dw =

∫
b(θ)dw,

we find that maximizing Q(θ|θk) is equivalent to minimizing KL(b(θk), b(θ))− f(θ).

Therefore, the EM algorithm for the case of missing data falls into the framework

of the non-stochastic EM algorithm. We conclude that the sequence {f(θk)} is non-

decreasing, and that the sequence {KL(b(θk), b(θk+1))} converges to zero.

Most other instances of the continuous case in which we have Y = h(X) can

be handled using the missing-data model. For example, suppose that Z1 and Z2 are

uniformly distributed on the interval [0, θ], for some positive θ, and that Y = Z1 +Z2.

We may, for example, then takeW to beW = Z1−Z2 andX = (Y,W ) as the preferred

data. We shall discuss these instances further in Section 7.
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6 The Continuous Case

We turn now to the general continuous case. We have a random vector Y taking values

in RN and governed by the probability density function fY (y|θ). The objective, once

again, is to maximize the likelihood function Ly(θ) = fY (y|θ) to obtain the maximum

likelihood estimate of θ.

6.1 Acceptable Preferred Data

For the continuous case, the vector θk+1 is obtained from θk by maximizing the

conditional expected value

Q(θ|θk) = E(log fX(X|θ)|y, θk) =

∫
fX|Y (x|y, θk) log fX(x|θ)dx. (6.1)

Assuming the acceptability condition and using

fX,Y (x, y|θk) = fX|Y (x|y, θk)fY (y|θk),

and

log fX(x|θ) = log fX,Y (x, y|θ)− log fY |X(y|x),

we find that maximizing E(log fX(x|θ)|y, θk) is equivalent to minimizing

H(θk, θ) =

∫
fX,Y (x, y|θk) log fX,Y (x, y|θ)dx. (6.2)

With f(θ) = fY (y|θ), and b(θ) = fX,Y (x, y|θ), this problem fits the framework of the

non-stochastic EM algorithm and is equivalent to minimizing

G(θk, θ) = KL(b(θk), b(θ))− f(θ).

Once again, we may conclude that the likelihood function is non-decreasing and that

the sequence {KL(b(θk), b(θk+1))} converges to zero.

In the discrete case in which Y = h(X) the conditional probability fY |X(y|x, θ) is

δ(y − h(x)), as a function of y, for given x, and is the characteristic function of the

set h−1(y), as a function of x, for given y. Therefore, we can write fX|Y (x|y, θ) using

Equation (3.6). For the continuous case in which Y = h(X), the pdf fY |X(y|x, θ) is

again a delta function of y, for given x; the difficulty arises when we need to view

this as a function of x, for given y. The acceptability property helps us avoid this

difficulty.

When X is acceptable, we have

fX|Y (x|y, θ) = fY |X(y|x)fX(x|θ)/fY (y|θ), (6.3)
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whenever fY (y|θ) 6= 0, and is zero otherwise. Consequently, when X is acceptable,

we have a kernel model for fY (y|θ) in terms of the fX(x|θ):

fY (y|θ) =

∫
fY |X(y|x)fX(x|θ)dx; (6.4)

for the continuous case we view this as a corrected version of Equation (3.5). In the

discrete case the integral is replaced by a summation, of course, but when we are

speaking generally about either case, we shall use the integral sign.

The acceptability of the missing data W is used in [9], but more for computational

convenience and to involve the Kullback-Leibler distance in the formulation of the

EM algorithm. It is not necessary that W be acceptable in order for likelihood to be

non-decreasing, as we have seen.

6.2 Selecting Preferred Data

The popular example of multinomial data given below illustrates well the point that

one can often choose to view the observed data as “incomplete” simply in order to

introduce “complete” data that makes the calculations simpler, even when there is no

suggestion, in the original problem, that the observed data is in any way inadequate

or “incomplete” . It is in order to emphasize this desire for simplification that we

refer to X as the preferred data, not the complete data.

In some applications, the preferred data X arises naturally from the problem,

while in other cases the user must imagine preferred data. This choice in selecting

the preferred data can be helpful in speeding up the algorithm (see [10]).

If, instead of maximizing∫
fX|Y (x|y, θk) log fX(x|θ)dx,

at each M-step, we simply select θk+1 so that∫
fX|Y (x|y, θk) log fX,Y (x, y|θk+1)dx−

∫
fX|Y (x|y, θk) log fX,Y (x, y|θk)dx > 0,

we say that we are using a generalized EM (GEM) algorithm. It is clear from the

discussion in the previous subsection that, whenever X is acceptable, a GEM also

guarantees that likelihood is non-decreasing.

6.3 Preferred Data as Missing Data

As we have seen, when the EM algorithm is applied to the missing-data model, the

likelihood is non-decreasing, which suggests that, for an arbitrary preferred data X,
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we could imagine X as W , the missing data, and imagine applying the EM algorithm

to Z = (Y,X). This approach would produce an EM sequence of parameter vectors for

which likelihood is non-decreasing, but it need not be the same sequence as obtained

by applying the EM algorithm to X directly. It is the same sequence, provided that X

is acceptable. We are not suggesting that applying the EM algorithm to Z = (Y,X)

would simplify calculations.

We know that, when the missing-data model is used and the M-step is defined

as maximizing the function in (5.3), the likelihood is not decreasing. It would seem

then that, for any choice of preferred data X, we could view this data as missing and

take as our complete data the pair Z = (Y,X), with X now playing the role of W .

Maximizing the function in (5.3) is then equivalent to maximizing∫
fX|Y (x|y, θk) log fX,Y (x, y|θ)dx; (6.5)

to get θk+1. It then follows that Ly(θ
k+1) ≥ Ly(θ

k). The obvious question is whether

or not these two functions given in (3.1) and (6.5) have the same maximizers.

For acceptable X we have

log fX,Y (x, y|θ) = log fX(x|θ) + log fY |X(y|x), (6.6)

so the two functions given in (3.1) and (6.5) do have the same maximizers. It follows

once again that, whenever the preferred data is acceptable, we have Ly(θ
k+1) ≥

Ly(θ
k). Without additional assumptions, however, we cannot conclude that {θk}

converges to θML, nor that {fY (y|θk)} converges to fY (y|θML).

7 The Continuous Case with Y = h(X)

In this section we consider the continuous case in which the observed random vec-

tor Y takes values in RN , the preferred random vector X takes values in RM , the

random vectors are governed by probability density functions fY (y|θ) and fX(x|θ),
respectively, and there is a function h : RN → RM such that Y = h(X). In most

cases, M > N and h−1{y} = {x|h(x) = y} has measure zero in RM .

7.1 An Example

For example, suppose that Z1 and Z2 are independent and uniformly distributed

on the interval [0, θ], for some θ > 0 to be estimated. Let Y = Z1 + Z2. With
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Z = (Z1, Z2), and h : R2 → R given by h(z1, z2) = z1 + z2, we have Y = h(Z). The

pdf for Z is

fZ(z|θ) = fZ(z1, z2|θ) =
1

θ2
χ[0,θ](z1)χ[0,θ](z2). (7.1)

The pdf for Y is

fY (y|θ) =

{ y
θ2
, if 0 ≤ y ≤ θ;

2θ−y
θ2
, if θ ≤ y ≤ 2θ.

(7.2)

It is not the case that

fY (y|θ) =

∫
h−1{y}

fZ(z|θ), (7.3)

since h−1{y} has measure zero in R2.

The likelihood function is L(θ) = fY (y|θ), viewed as a function of θ, and is given

by

L(θ) =

{ y
θ2
, if θ ≥ y;

2θ−y
θ2
, if y

2
≤ θ ≤ y.

(7.4)

Therefore, the maximum likelihood estimate of θ is θML = y.

Instead of using Z as our preferred data, suppose that we define the random

variable W = Z2, and let X = (Y,W ), a missing-data model. We then have Y =

h(X), where h : R2 → R is given by h(x) = h(y, w) = y. The pdf for Y given in

Equation (7.2) can be written as

fY (y|θ) =

∫
1

θ2
χ[0,θ](y − w)χ[0,θ](w)dw. (7.5)

The joint pdf is

fY,W (y, w|θ) =

{
1/θ2, forw ≤ y ≤ θ + w;

0, otherwise.
(7.6)

7.2 Censored Exponential Data

McLachlan and Krishnan [1] give the following example of a likelihood maximiza-

tion problem involving probability density functions. This example provides a good

illustration of the usefulness of the missing-data model.

Suppose that Z is the time until failure of a component, which we assume is

governed by the exponential distribution

f(z|θ) =
1

θ
e−z/θ, (7.7)
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where the parameter θ > 0 is the expected time until failure. We observe a random

sample of N components and record their failure times, zn. On the basis of this data,

we must estimate θ, the mean time until failure.

It may well happen, however, that during the time allotted for observing the

components, only r of the N components fail, which, for convenience, are taken to be

the first r items in the record. Rather than wait longer, we record the failure times

of those that failed, and record the elapsed time for the experiment, say T , for those

that had not yet failed. The censored data is then y = (y1, ..., yN), where yn = zn is

the time until failure for n = 1, ..., r, and yn = T for n = r + 1, ..., N . The censored

data is reasonably viewed as incomplete, relative to the complete data we would have

had, had the trial lasted until all the components had failed.

Since the probability that a component will survive until time T is e−T/θ, the pdf

for the vector y is

fY (y|θ) =
( r∏
n=1

1

θ
e−yn/θ

)
e−(N−r)T/θ, (7.8)

and the log likelihood function for the censored, or incomplete, data is

log fY (y|θ) = −r log θ − 1

θ

N∑
n=1

yn. (7.9)

In this particular example we are fortunate, in that we can maximize fY (y|θ) easily,

and find that the ML solution based on the incomplete, censored data is

θMLi =
1

r

N∑
n=1

yn =
1

r

r∑
n=1

yn +
N − r
r

T. (7.10)

In most cases in which our data is incomplete, finding the ML estimate from the

incomplete data is difficult, while finding it for the complete data is relatively easy.

We say that the missing data are the times until failure of those components that

did not fail during the observation time. The preferred data is the complete data

x = (z1, ..., zN) of actual times until failure. The pdf for the preferred data X is

fX(x|θ) =
N∏
n=1

1

θ
e−zn/θ, (7.11)

and the log likelihood function based on the complete data is

log fX(x|θ) = −N log θ − 1

θ

N∑
n=1

zn. (7.12)

15



The ML estimate of θ from the complete data is easily seen to be

θMLc =
1

N

N∑
n=1

zn. (7.13)

In this example, both the incomplete-data vector y and the preferred-data vector x

lie in RN . We have y = h(x) where the function h operates by setting to T any

component of x that exceeds T . Clearly, for a given y, the set h−1{y} consists of all

vectors x with entries xn ≥ T or xn = yn < T . For example, suppose that N = 2,

and y = (y1, T ), where y1 < T . Then h−1{y} is the one-dimensional ray

h−1{y} = {x = (y1, x2)|x2 ≥ T}.

Because this set has measure zero in R2, Equation (7.3) does not make sense in this

case.

We need to calculate E(log fX(X|θ)|y, θk). Following McLachlan and Krishnan [1],

we note that since log fX(x|θ) is linear in the unobserved data Zn, n = r + 1, ..., N ,

to calculate E(log fX(X|θ)|y, θk) we need only replace the unobserved values with

their conditional expected values, given y and θk. The conditional distribution of

Zn − T , given that Zn > T , is still exponential, with mean θ. Therefore, we replace

the unobserved values, that is, all the Zn for n = r+ 1, ..., N , with T + θk. Therefore,

at the E-step we have

E(log fX(X|θ)|y, θk) = −N log θ − 1

θ

(( N∑
n=1

yn

)
+ (N − r)θk

)
. (7.14)

The M-step is to maximize this function of θ, which leads to

θk+1 =

(( N∑
n=1

yn

)
+ (N − r)θk

)
/N. (7.15)

Let θ∗ be a fixed point of this iteration. Then we have

θ∗ =

(( N∑
n=1

yn

)
+ (N − r)θ∗

)
/N,

so that

θ∗ =
1

r

N∑
n=1

yn,

which, as we have seen, is the likelihood maximizer.
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7.3 A More General Approach

Let X take values in RN , and Y = h(X) take values in RM , where M < N and

h : RN → RM is a (possibly) many-to-one function. Suppose that there is a second

function k : RN → RN−M such that the function

G(x) = (h(x), k(x)) = (y, w) = u (7.16)

has inverse H(y, w) = x. Denote by J(y, w) the determinant of the Jacobian matrix

associated with the transformation G. Let

W(y) = {w|w = k(x), and y = h(x)}.

Then

fY (y|θ) =

∫
w∈W(y)

fX(H(y, w))J(y, w)dw. (7.17)

Then we apply the missing-data model for the EM algorithm, with W = k(X) as the

missing data.

8 A Multinomial Example

In many applications, the entries of the vector y are independent realizations of a

single real-valued or vector-valued random variable V , as they are, at least initially, for

finite mixture problems to be considered later. This is not always the case, however,

as the following example shows.

A well known example that was used in [11] and again in [1] to illustrate the

EM algorithm concerns a multinomial model taken from genetics. Here there are

four cells, with cell probabilities 1
2

+ 1
4
θ0,

1
4
(1 − θ0),

1
4
(1 − θ0), and 1

4
θ0, for some

θ0 ∈ Θ = [0, 1] to be estimated. The entries of y are the frequencies from a sample

size of 197. We then have

fY (y|θ) =
197!

y1!y2!y3!y4!
(
1

2
+

1

4
θ)y1(

1

4
(1− θ))y2(1

4
(1− θ))y3(1

4
θ)y4 . (8.1)

It is then supposed that the first of the original four cells can be split into two sub-

cells, with probabilities 1
2

and 1
4
θ0. We then write y1 = y11 + y12, and let

X = (Y11, Y12, Y2, Y3, Y4), (8.2)

where X has a multinomial distribution with five cells. Note that we do now have

Y = h(X).
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This example is a popular one in the literature on the EM algorithm (see [11]

for citations). It is never suggested that the splitting of the first group into two

subgroups is motivated by the demands of the genetics theory itself. As stated in

[1], the motivation for the splitting is to allow us to view the two random variables

Y12 + Y4 and Y2 + Y3 as governed by a binomial distribution; that is, we can view the

value of y12 + y4 as the number of heads, and the value y2 + y3 as the number of tails

that occur in the flipping of a biased coin y12 + y4 + y2 + y3 times. This simplifies the

calculation of the likelihood maximizer.

9 The Example of Finite Mixtures

We say that a random vector V taking values in RD is a finite mixture if, for j =

1, ..., J , fj is a probability density function or probability function, θj ≥ 0 is a weight,

the θj sum to one, and the probability density function or probability function for V

is

fV (v|θ) =
J∑
j=1

θjfj(v). (9.1)

The value of D is unimportant and for simplicity, we shall assume that D = 1.

We draw N independent samples of V , denoted vn, and let yn, the nth entry of

the vector y, be the number vn. To create the preferred data we assume that, for each

n, the number vn is a sample of the random variable Vn whose pdf or pf is fjn , where

the probability that jn = j is θj. We then let the N entries of the preferred data X

be the indices jn. The conditional distribution of Y , given X, is clearly independent

of the parameter vector θ, and is given by

fY |X(y|x, θ) =
N∏
n=1

fjn(yn);

therefore, X is acceptable. Note that we cannot recapture the entries of y from those

of x, so the model Y = h(X) does not hold here. Note also that, although the vector

y is taken originally to be a vector whose entries are independently drawn samples

from V , when we create the preferred data X we change our view of y. Now each

entry of y is governed by a different distribution, so y is no longer viewed as a vector

of independent sample values of a single random vector.
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10 The EM and the Kullback-Leibler Distance

We illustrate the usefulness of acceptability and reformulate the M-step in terms of

cross-entropy or Kullback-Leibler distance minimization.

10.1 Using Acceptable Data

The assumption that the data X is acceptable helps simplify the theoretical discussion

of the EM algorithm.

For any preferred X the M-step of the EM algorithm, in the continuous case, is

to maximize the function∫
fX|Y (x|y, θk) log fX(x|θ)dx, (10.1)

over θ ∈ Θ; the integral is replaced by a sum in the discrete case. For notational

convenience we let

b(θk) = fX|Y (x|y, θk), (10.2)

and

f(θ) = fX(x|θ); (10.3)

both functions are functions of the vector variable x. Then the M-step is equivalent

to minimizing the Kullback-Leibler or cross-entropy distance

KL(b(θk), f(θ)) =

∫
fX|Y (x|y, θk) log

(fX|Y (x|y, θk)
fX(x|θ)

)
dx

=

∫
fX|Y (x|y, θk) log

(fX|Y (x|y, θk)
fX(x|θ)

)
+ fX(x|θ)− fX|Y (x|y, θk)dx. (10.4)

This holds since both fX(x|θ) and fX|Y (x|y, θk) are probability density functions or

probabilities.

For acceptable X we have

log fX,Y (x, y|θ) = log fX|Y (x|y, θ) + log fY (y|θ) = log fY |X(y|x) + log fX(x|θ).(10.5)

Therefore,

log fY (y|θk+1)− log fY (y|θ) =

KL(b(θk), f(θ))−KL(b(θk), f(θk+1)) +KL(b(θk), b(θk+1))−KL(b(θk), b(θ)).(10.6)
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Since θ = θk+1 minimizes KL(b(θk), f(θ)), we have that

log fY (y|θk+1)− log fY (y|θk) =

KL(b(θk), f(θk))−KL(b(θk), f(θk+1)) +KL(b(θk), b(θk+1)) ≥ 0. (10.7)

This tells us, once again, that the sequence of likelihood values {log fY (y|θk)} is

increasing, and that the sequence of its negatives, {− log fY (y|θk)}, is decreasing.

Since we assume that there is a maximizer θML of the likelihood, the sequence

{− log fY (y|θk)} is also bounded below and the sequences {KL(b(θk), b(θk+1))} and

{KL(b(θk), f(θk))−KL(b(θk), f(θk+1))} converge to zero.

Without some notion of convergence in the parameter space Θ, we cannot conclude

that {θk} converges to a maximum likelihood estimate θML. Without some additional

assumptions, we cannot even conclude that the functions f(θk) converge to f(θML).

11 The Approach of Csiszár and Tusnády

For acceptable X the M-step of the EM algorithm is to minimize the function

KL(b(θk), f(θ)) over θ ∈ Θ to get θk+1. To put the EM algorithm into the framework

of the alternating minimization approach of Csiszár and Tusnády [12], we need to

view the M-step in a slightly different way; the problem is that, for the continuous

case, having found θk+1, we do not then minimize KL(b(θ), f(θk+1)) at the next step.

11.1 The Framework of Csiszár and Tusnády

Following [12], we take Ψ(p, q) to be a real-valued function of the variables p ∈ P

and q ∈ Q, where P and Q are arbitrary sets. Minimizing Ψ(p, qn) gives pn and

minimizing Ψ(pn, q) gives qn+1, so that

Ψ(pn, qn) ≥ Ψ(pn, qn+1) ≥ Ψ(pn+1, qn+1). (11.1)

The objective is to find (p̂, q̂) such that

Ψ(p, q) ≥ Ψ(p̂, q̂),

for all p and q. In order to show that {Ψ(pn, qn)} converges to

d = inf
p∈P,q∈Q

Ψ(p, q)

the authors of [12] assume the three- and four-point properties.
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If there is a non-negative function ∆ : P × P → R such that

Ψ(p, qn+1)−Ψ(pn+1, qn+1) ≥ ∆(p, pn+1), (11.2)

then the three-point property holds. If

∆(p, pn) + Ψ(p, q) ≥ Ψ(p, qn+1), (11.3)

for all p and q, then the four-point property holds. Combining these two inequalities,

we have

∆(p, pn)−∆(p, pn+1) ≥ Ψ(pn+1, qn+1)−Ψ(p, q). (11.4)

From the inequality in (11.4) it follows easily that the sequence {Ψ(pn, qn)} converges

to d. Suppose this is not the case. Then there are p′, q′, and D > d with

Ψ(pn, qn) ≥ D > Ψ(p′, q′) ≥ d.

From Equation (11.4) we have

∆(p′, pn)−∆(p′, pn+1) ≥ Ψ(pn+1, qn+1)−Ψ(p′, q′) ≥ D −Ψ(p′, q′) > 0.

But since {∆(p′, pn)} is a decreasing sequence of positive quantities, successive dif-

ferences must converge to zero; that is, {Ψ(pn+1, qn+1)} must converge to Ψ(p′, q′),

which is a contradiction.

The five-point property of [12] is obtained by combining (11.2) and (11.3):

Ψ(p, q) + Ψ(p, qn−1) ≥ Ψ(p, qn) + Ψ(pn, qn−1). (11.5)

Note that the five-point property does not involve the second function ∆(p′, p). How-

ever, assuming that the five-point property holds, it is possible to define ∆(p′, p) so

that both the three- and four-point properties hold. Assuming the five-point property,

we have

Ψ(p, qn−1)−Ψ(p, qn) ≥ Ψ(pn, qn)−Ψ(p, q), (11.6)

from which we can show easily that {Ψ(pn, qn)} converges to d.

11.2 Alternating Minimization for the EM Algorithm

Assume that X is acceptable. We define the function F (θ) to be

F (θ) =

∫
fX|Y (x|y, θ) log fY |X(y|x)dx, (11.7)
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for the continuous case, with a sum replacing the integral for the discrete case. Using

the identities

fX,Y (x, y|θ) = fX|Y (x|y, θ)fY (y|θ) = fY |X(y|x, θ)fX(x|θ) = fY |X(y|x)fX(x|θ),

we then have

log fY (y|θ) = F (θ′) +KL(b(θ′), b(θ))−KL(b(θ′), f(θ)), (11.8)

for any parameter values θ and θ′. With the choice of θ′ = θ we have

log fY (y|θ) = F (θ)−KL(b(θ), f(θ)). (11.9)

Therefore, subtracting Equation 11.9 from Equation 11.8, we get(
KL(b(θ′), f(θ))− F (θ′)

)
−
(
KL(b(θ), f(θ))− F (θ)

)
= KL(b(θ′), b(θ)). (11.10)

Now we can put the EM algorithm into the alternating-minimization framework.

Define

Ψ(b(θ′), f(θ)) = KL(b(θ′), f(θ))− F (θ′). (11.11)

We know from Equation (11.10) that

Ψ(b(θ′), f(θ))−Ψ(b(θ), f(θ)) = KL(b(θ′), b(θ)). (11.12)

Therefore, we can say that the M-step of the EM algorithm is to minimize Ψ(b(θk), f(θ))

over θ ∈ Θ to get θk+1 and that minimizing Ψ(b(θ), f(θk+1)) gives us θ = θk+1 again.

Because the EM algorithm can be viewed as an alternating minimization method, it

is also a particular case of the sequential unconstrained minimization techniques [13],

and of “optimization transfer” [4].

With the choice of

∆(b(θ′), b(θ)) = KL(b(θ′), b(θ)),

Equation (11.12) becomes

Ψ(b(θ′), f(θ))−Ψ(b(θ), f(θ)) = ∆(b(θ′), b(θ)), (11.13)

which is the three-point property.

With P = B(Θ) and Q = F(Θ) the collections of all functions b(θ) and f(θ), re-

spectively, we can view the EM algorithm as alternating minimization of the function
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Ψ(p, q), over p ∈ P and q ∈ Q. As we have seen, the three-point property holds.

What about the four-point property?

The Kullback-Leibler distance is an example of a jointly convex Bregman distance.

According to a lemma of Eggermont and LaRiccia [14, 15], the four-point property

holds for alternating minimization of such distances, using ∆(p′, p) = KL(p′, p), pro-

vided that the sets P and Q are closed and convex subsets of RN . In the continuous

case of the EM algorithm, we are not performing alternating minimization on the

function KL(b(θ), f(θ′)), but on KL(b(θ), f(θ′)) + F (θ). In the discrete case, when-

ever Y = h(X), the function F (θ) is always zero, so we are performing alternating

minimization on the KL distance KL(b(θ), f(θ′)). In [16] the authors consider the

problem of minimizing a function of the form

Λ(p, q) = φ(p) + ψ(q) +Dg(p, q), (11.14)

where φ and ψ are convex and differentiable on RJ , Dg is a Bregman distance, and

P = Q is the interior of the domain of g. In [13] it was shown that, when Dg is jointly

convex, the function Λ(p, q) has the five-point property of [12], which is equivalent to

the three- and four-point properties taken together. In some particular instances, the

collection of the functions f(θ) is a convex subset of RJ , as well, so the three- and

four-point properties hold.

As we saw previously, to have Ψ(pn, qn) converging to d, it is sufficient that the

five-point property hold. It is conceivable, then, that the five-point property may hold

for Bregman distances under somewhat more general conditions than those employed

in the Eggermont-LaRiccia Lemma.

The five-point property for the EM case is the following:

KL(b(θ), f(θk))−KL(b(θ), f(θk+1)) ≥

(
KL(b(θk), f(θk))− F (θk)

)
−
(
KL(b(θ), f(θ))− F (θ)

)
. (11.15)

12 Sums of Independent Poisson Random Vari-

ables

The EM is often used with aggregated data. The case of sums of independent Poisson

random variables is particularly important.
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12.1 Poisson Sums

LetX1, ..., XN be independent Poisson random variables with expected valueE(Xn) =

λn. Let X be the random vector with Xn as its entries, λ the vector whose entries

are the λn, and λ+ =
∑N

n=1 λn. Then the probability function for X is

fX(x|λ) =
N∏
n=1

λxnn exp(−λn)/xn! = exp(−λ+)
N∏
n=1

λxnn /xn! . (12.1)

Now let Y =
∑N

n=1Xn. Then, the probability function for Y is

Prob(Y = y) = Prob(X1 + ...+XN = y)

=
∑

x1+...xN=y

exp(−λ+)
N∏
n=1

λxnn /xn! . (12.2)

As we shall see shortly, we have

∑
x1+...xN=y

exp(−λ+)
N∏
n=1

λxnn /xn! = exp(−λ+)λy+/y! . (12.3)

Therefore, Y is a Poisson random variable with E(Y ) = λ+.

When we observe an instance of Y , we can consider the conditional distribution

fX|Y (x|y, λ) of {X1, ..., XN}, subject to y = X1 + ...+XN . We have

fX|Y (x|y, λ) =
y!

x1!...xN !

( λ1
λ+

)x1
...
(λN
λ+

)xN
. (12.4)

This is a multinomial distribution.

Given y and λ, the conditional expected value of Xn is then

E(Xn|y, λ) = yλn/λ+.

To see why this is true, consider the marginal conditional distribution fX1|Y (x1|y, λ)

of X1, conditioned on y and λ, which we obtain by holding x1 fixed and summing

over the remaining variables. We have

fX1|Y (x1|y, λ) =
y!

x1!(y − x1)!

( λ1
λ+

)x1(λ′+
λ+

)y−x1 ∑
x2+...+xN=y−x1

(y − x1)!
x2!...xN !

N∏
n=2

(λn
λ′+

)xn
,

where

λ′+ = λ+ − λ1.
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As we shall show shortly,

∑
x2+...+xN=y−x1

(y − x1)!
x2!...xN !

N∏
n=2

(λn
λ′+

)xn
= 1,

so that

fX1|Y (x1|y, λ) =
y!

x1!(y − x1)!

( λ1
λ+

)x1(λ′+
λ+

)y−x1
.

The random variable X1 is equivalent to the random number of heads showing in

y flips of a coin, with the probability of heads given by λ1/λ+. Consequently, the

conditional expected value of X1 is yλ1/λ+, as claimed. In the next subsection we

look more closely at the multinomial distribution.

12.2 The Multinomial Distribution

When we expand the quantity (a1 + ...+aN)y, we obtain a sum of terms, each having

the form ax11 ...a
xN
N , with x1 + ... + xN = y. How many terms of the same form are

there? There are N variables an. We are to use xn of the an, for each n = 1, ..., N ,

to get y = x1 + ... + xN factors. Imagine y blank spaces, each to be filled in by a

variable as we do the selection. We select x1 of these blanks and mark them a1. We

can do that in
(
y
x1

)
ways. We then select x2 of the remaining blank spaces and enter

a2 in them; we can do this in
(
y−x1
x2

)
ways. Continuing in this way, we find that we

can select the N factor types in(
y

x1

)(
y − x1
x2

)
...

(
y − (x1 + ...+ xN−2)

xN−1

)
(12.5)

ways, or in

y!

x1!(y − x1)!
...

(y − (x1 + ...+ xN−2))!

xN−1!(y − (x1 + ...+ xN−1))!
=

y!

x1!...xN !
. (12.6)

This tells us in how many different sequences the factor variables can be selected.

Applying this, we get the multinomial theorem:

(a1 + ...+ aN)y =
∑

x1+...+xN=y

y!

x1!...xN !
ax11 ...a

xN
N . (12.7)

Select an = λn/λ+. Then,

1 = 1y =
( λ1
λ+

+ ...+
λN
λ+

)y
=

∑
x1+...+xN=y

y!

x1!...xN !

( λ1
λ+

)x1
...
(λN
λ+

)xN
. (12.8)
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From this we get

∑
x1+...xN=y

exp(−λ+)
N∏
n=1

λxnn /xn! = exp(−λ+)λy+/y! . (12.9)

13 Poisson Sums in Emission Tomography

Sums of Poisson random variables and the problem of complete versus incomplete

data arise in single-photon computed emission tomography (SPECT) [17].

13.1 The SPECT Reconstruction Problem

In their 1976 paper Rockmore and Makovski [18] suggested that the problem of recon-

structing a tomographic image be viewed as statistical parameter estimation. Shepp

and Vardi [19] expanded on this idea and suggested that the EM algorithm discussed

by Dempster, Laird and Rubin [11] be used for the reconstruction. The region of

interest within the body of the patient is discretized into J pixels (or voxels), with

λj ≥ 0 the unknown amount of radionuclide within the jth pixel; we assume that λj

is also the expected number of photons emitted from the jth pixel during the scan-

ning time. Emitted photons are detected at any one of I detectors outside the body,

with yi > 0 the photon count at the ith detector. The probability that a photon

emitted at the jth pixel will be detected at the ith detector is Pij, which we assume

is known; the overall probability of detecting a photon emitted from the jth pixel is

sj =
∑I

i=1 Pij > 0.

13.1.1 The Preferred Data

For each i and j the random variable Xij is the number of photons emitted from the

jth pixel and detected at the ith detector; the Xij are assumed to be independent

and Pijλj-Poisson. With xij a realization of Xij, the vector x with components xij is

our preferred data. The pdf for this preferred data is a probability vector, with

fX(x|λ) =
I∏
i=1

J∏
j=1

exp−Pijλj(Pijλj)
xij/xij! . (13.1)

Given an estimate λk of the vector λ and the restriction that Yi =
∑J

j=1Xij, the

random variables Xi1, ..., XiJ have the multinomial distribution

Prob(xi1, ..., xiJ) =
yi!

xi1! · · · xiJ !

J∏
j=1

( Pijλj
(Pλ)i

)xij
.
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Therefore, the conditional expected value of Xij, given y and λk, is

E(Xij|y, λk) = λkjPij

( yi
(Pλk)i

)
,

and the conditional expected value of the random variable

log fX(X|λ) =
I∑
i=1

J∑
j=1

(−Pijλj) +Xij log(Pijλj) + constants

becomes

E(log fX(X|λ)|y, λk) =
I∑
i=1

J∑
j=1

(
(−Pijλj) + λkjPij

( yi
(Pλk)i

)
log(Pijλj)

)
,

omitting terms that do not involve the parameter vector λ. In the EM algorithm, we

obtain the next estimate λk+1 by maximizing E(log fX(X|λ)|y, λk).
The log likelihood function for the preferred data X (omitting constants) is

LLx(λ) =
I∑
i=1

J∑
j=1

(
− Pijλj +Xij log(Pijλj)

)
. (13.2)

Of course, we do not have the complete data.

13.1.2 The Incomplete Data

What we do have are the yi, values of the random variables

Yi =
J∑
j=1

Xij; (13.3)

this is the given data. These random variables are also independent and (Pλ)i-

Poisson, where

(Pλ)i =
J∑
j=1

Pijλj.

The log likelihood function for the given data is

LLy(λ) =
I∑
i=1

(
− (Pλ)i + yi log((Pλ)i)

)
. (13.4)

Maximizing LLx(λ) in Equation (13.2) is easy, while maximizing LLy(λ) in Equation

(13.4) is harder and requires an iterative method.

The EM algorithm involves two steps: in the E-step we compute the conditional

expected value of LLx(λ), conditioned on the data vector y and the current estimate
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λk of λ; in the M-step we maximize this conditional expected value to get the next

λk+1. Putting these two steps together, we have the following EMML iteration:

λk+1
j = λkj s

−1
j

I∑
i=1

Pij
yi

(Pλk)i
. (13.5)

For any positive starting vector λ0, the sequence {λk} converges to a maximizer of

LLy(λ), over all non-negative vectors λ.

Note that, because we are dealing with finite probability vectors in this example,

it is a simple matter to conclude that

fY (y|λ) =
∑

x∈h−1{y}

fX(x|λ). (13.6)

13.2 Using the KL Distance

In this subsection we assume, for notational convenience, that the system y = Pλ

has been normalized so that sj = 1 for each j. Maximizing E(log fX(X|λ)|y, λk) is

equivalent to minimizing KL(r(λk), q(λ)), where r(λ) and q(λ) are I by J arrays with

entries

r(λ)ij = λjPij

( yi
(Pλ)i

)
,

and

q(λ)ij = λjPij.

In terms of our previous notation we identify r(λ) with b(θ), and q(λ) with f(θ). The

set F(Θ) of all f(θ) is now a convex set and the four-point property of [12] holds.

The iterative step of the EMML algorithm is then

λk+1
j = λkj

I∑
i=1

Pi,j
yi

(Pλk)i
. (13.7)

The sequence {λk} converges to a maximizer λML of the likelihood for any positive

starting vector.

As we noted previously, before we can discuss the possible convergence of the

sequence {λk} of parameter vectors to a maximizer of the likelihood, it is necessary to

have a notion of convergence in the parameter space. For the problem in this section,

the parameter vectors λ are non-negative. Proof of convergence of the sequence {λk}
depends heavily on the following [20]:

KL(y, Pλk)−KL(y, Pλk+1) = KL(r(λk), r(λk+1)) +KL(λk+1, λk); (13.8)
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and

KL(λML, λ
k)−KL(λML, λ

k+1) ≥ KL(y, Pλk)−KL(y, PλML). (13.9)

14 Non-Negative Solutions for Linear Equations

Any likelihood maximizer λML is also a non-negative minimizer of the KL distance

KL(y, Pλ), so the EMML algorithm can be thought of, more generally, as a method

for finding a non-negative solution (or approximate solution) for a system y = Pλ of

linear equations in which yi > 0 and Pij ≥ 0 for all indices. This will be helpful when

we consider mixture problems.

14.1 The General Case

Suppose we want a non-negative solution x for a system Ax = b of real equations;

unless b is positive and A has only non-negative entries, we cannot use the EMML

algorithm directly. We may, however, be able to transform Ax = b to Pλ = y.

Suppose that, by rescaling the equations in Ax = b, we can make cj =
∑I

i=1Aij >

0, for each j = 1, ..., J , and b+ =
∑I

i=1 bi > 0. Now replace Aij with Gij = Aij/cj,

and xj with zj = cjxj; then Gz = Ax = b and
∑I

i=1Gij = 1, for all j. We also know

now that b+ = z+ > 0, so z+ is now known.

Let U and u be the matrix and column vector whose entries are all one, respec-

tively, and let t > 0 be large enough so that all the entries of B = G+ tU and (tz+)u

are positive. Now

Bz = Gz + (tz+)u = b+ (tz+)u.

We then solve Bz = b+(tz+)u for z. It follows that Ax = Gz = b and x ≥ 0. Finally,

we let P = B, λ = z, and y = b+ (tb+)u.

14.2 Regularization

It is often the case, as in tomography, that the entries of the vector y are obtained by

measurements, and are therefore noisy. Finding an exact solution of y = Pλ or even

minimizing KL(y, Pλ) may not be advisable in such cases. To obtain an approximate

solution that is relatively insensitive to the noise in y we regularize. One way to do

that is to minimize not KL(y, Pλ), but

Fα(λ) = (1− α)KL(y, Pλ) + αKL(p, λ), (14.1)
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where α ∈ (0, 1) and p > 0 is a prior estimate of the desired λ. The iterative step of

the regularized EMML algorithm is now

λk+1
j = (1− α)

(
λkj s

−1
j

I∑
i=1

Pij
yi

(Pλk)i

)
+ αpj. (14.2)

As was shown in [20], the sequence {λk} converges to a minimizer of Fα(λ).

14.3 Acceleration

When the system y = Pλ is large, the EMML algorithm can be slow to converge.

One method that has been used to accelerate convergence to a solution is the use of

block iteration [21, 22, 23].

We begin by writing the index set {i = 1, 2, ..., I} as the (not necessarily disjoint)

union of Bn, n = 1, 2, ..., N . Of particular interest is the row-action EMML, obtained

by letting each block be a singleton. At each step of the iteration we employ only

those equations whose index is a member of the current block. We then cycle through

the blocks.

An obvious way to impose blocks would seem to be to modify the EMML iteration

as follows:

λk+1
j = λkj s

−1
n,j

∑
i∈Bn

Pij
yi

(Pλk)i
, (14.3)

where

sn,j =
∑
i∈Bn

Pij.

This doesn’t work, though.

Let Hi = {z ≥ 0|(Pz)i = yi}. Note that, for a fixed x > 0, we cannot calculate in

closed form the vector z ∈ Hi that minimizes KL(z, λ). However, the vector z = zi

in Hi that minimizes the weighted KL distance

J∑
j=1

PijKL(zj, λ
k
j )

is given by

zij = λkj
yi

(Pλk)i
. (14.4)

The iterative step of the EMML algorithm can then be interpreted as saying that

λk+1 is a weighted arithmetic mean of the zi; that is,

λk+1
j = s−1j

I∑
i=1

Pijz
i
j. (14.5)
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This suggests a different form for a block-iterative version of the EMML.

For k = 0, 1, , , ,, and n = n(k) = k(modN) + 1, let

λk+1
j = (1−m−1n snj)λ

k
j +m−1n λkj

∑
i∈Bn

Pij
yi

(Pλk)i
, (14.6)

where mn = maxj snj. This is the rescaled block-iterative EMML (RBI-EMML)

algorithm. The sequence {λk} converges to a non-negative solution of the system

y = Pλ, for any choice of blocks, whenever the system has a non-negative solution

[21].

When each block is a singleton, that is, Bn = Bi = {i}, for i = 1, 2, ..., I = N , the

RBI-EMML becomes the EMART algorithm, with the iterative step

λk+1
j = (1−m−1i Pij)λ

k
j + λkjm

−1
i Pij

yi
(Pλk)i

, (14.7)

where mi = maxj Pij > 0. It is interesting to compare the EMART algorithm with the

multiplicative algebraic reconstruction technique (MART)[24], which has the iterative

step

λk+1
j = λkj

( yi
(Pλk)i

)Pij/mi

, (14.8)

so that

λk+1
j =

(
λkj

)1−Pij/mi
(
λkj

yi
(Pλk)i

)pij/mi

, (14.9)

or

log λk+1
j = (1−m−1i Pij) log λkj +m−1i Pij log

(
λkj

yi
(Pλk)i

)
. (14.10)

The difference between the MART and the EMART is then the difference between a

geometric mean and an arithmetic mean.

The simultaneous MART (SMART) is analogous to the EMML and uses all the

equations at each step [25, 26, 20]. The iterative step for the SMART is

λk+1
j = λkj exp

(
s−1j

I∑
i=1

Pij log
yi

(Pλk)i

)
. (14.11)

Block-iterative versions of the MART (RBI-SMART) have been considered by [27]

and [21]. When y = Pλ has non-negative solutions, the RBI-SMART sequence con-

verges to the non-negative solution of y = Pλ for which the cross-entropy KL(λ, λ0)

is minimized. When there are no non-negative solutions of y = Pλ, the SMART con-

verges to the non-negative minimizer of KL(Pλ, y) for which KL(λ, λ0) is minimized

[28].
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14.4 Using Prior Bounds on λ

The EMML algorithm finds an approximate non-negative solution of y = Pλ. In

some applications it is helpful to be able to incorporate upper and lower bounds on

the λ [29].

The SMART, EMML, MART and EMART methods are based on the Kullback-

Leibler distance between nonnegative vectors. To impose more general constraints

on the entries of λ we derive algorithms based on shifted KL distances, also called

Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is defined

for vectors x and z having xj ≥ uj and zj ≥ uj. Similarly, the shifted distance

KL(v− x, v− z) applies only to those vectors x and z for which xj ≤ vj and zj ≤ vj.

For uj ≤ vj, the combined distance

KL(x− u, z − u) +KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the interval [uj, vj]. Our

objective is to mimic the derivation of the SMART and EMML methods, replacing KL

distances with shifted KL distances, to obtain algorithms that enforce the constraints

uj ≤ λj ≤ vj, for each j. The algorithms that result are the ABMART and ABEMML

block-iterative methods. These algorithms were originally presented in [30], in which

the vectors u and v were called a and b, hence the names of the algorithms. We

shall assume that the entries of the matrix P are nonnegative. We shall denote by

Bn, n = 1, ..., N a partition of the index set {i = 1, ..., I} into blocks. For k = 0, 1, ...

let n = n(k) = k(modN) + 1.

14.4.1 The ABMART Algorithm

We assume that (Pu)i ≤ yi ≤ (Pv)i and seek a solution of Pλ = y with uj ≤ λj ≤ vj,

for each j. The algorithm begins with an initial vector λ0 satisfying uj ≤ λ0j ≤ vj, for

each j. Having calculated λk, we take

λk+1
j = αkj vj + (1− αkj )uj, (14.12)

with n = n(k),

αkj =
ckj
∏n(dki )

Pij

1 + ckj
∏n(dki )

Aij
, (14.13)

ckj =
(λkj − uj)
(vj − λkj )

, (14.14)
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and

dkj =
(yi − (Pu)i)((Pv)i − (Pλk)i)

((Pv)i − yi)((Pλk)i − (Pu)i)
, (14.15)

where
∏n denotes the product over those indices i in Bn(k). Notice that, at each step

of the iteration, λkj is a convex combination of the endpoints uj and vj, so that λkj

always lies in the interval [uj, vj].

We have the following theorem concerning the convergence of the ABMART al-

gorithm:

Theorem 14.1 If there is a solution of the system Pλ = y that satisfies the con-

straints uj ≤ λj ≤ vj for each j, then, for any N and any choice of the blocks Bn,

the ABMART sequence converges to that constrained solution of Pλ = y for which

the Fermi-Dirac generalized entropic distance from λ to λ0, given by

KL(λ− u, λ0 − u) +KL(v − λ, v − λ0),

is minimized. If there is no constrained solution of Pλ = y, then, for N = 1, the

ABMART sequence converges to the minimizer of

KL(Pλ− Pu, y − Pu) +KL(Pv − Pλ, Pv − y)

for which

KL(λ− u, λ0 − u) +KL(v − λ, v − λ0)

is minimized.

The proof is in [30].

14.4.2 The ABEMML Algorithm

We make the same assumptions as previously. The iterative step of the ABEMML

algorithm is

λk+1
j = αkj vj + (1− αkj )uj, (14.16)

where

αkj = γkj /d
k
j , (14.17)

γkj = (λkj − uj)ekj , (14.18)
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βkj = (vj − λkj )fkj , (14.19)

dkj = γkj + βkj , (14.20)

ekj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
yi − (Pu)i

(Pλk)i − (Pu)i

)
, (14.21)

and

fkj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
(Pv)i − yi

(Pv)i − (Pλk)i

)
. (14.22)

The following theorem concerns the convergence of the ABEMML algorithm:

Theorem 14.2 If there is a solution of the system Pλ = y that satisfies the con-

straints uj ≤ λj ≤ vj for each j, then, for any N and any choice of the blocks Bn, the

ABEMML sequence converges to such a constrained solution of Pλ = y. If there is no

constrained solution of Pλ = y, then, for N = 1, the ABEMML sequence converges

to a constrained minimizer of

KL(y − Pu, Pλ− Pu) +KL(Pv − y, Pv − Pλ).

The proof is found in [30]. In contrast to the ABMART theorem, this is all we can

say about the limits of the ABEMML sequences.

15 Finite Mixture Problems

Estimating the combining proportions in probabilistic mixture problems shows that

there are meaningful examples of our acceptable-data model, and provides important

applications of likelihood maximization.

15.1 Mixtures

We say that a random vector V taking values in RD is a finite mixture [31, 32] if

there are probability density functions or probabilities fj and numbers θj ≥ 0, for

j = 1, ..., J , such that the probability density function or probability function for V

has the form

fV (v|θ) =
J∑
j=1

θjfj(v), (15.1)

for some choice of the θj ≥ 0 with
∑J

j=1 θj = 1. As previously, we shall assume,

without loss of generality, that D = 1.
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15.2 The Likelihood Function

The data are N realizations of the random variable V , denoted vn, for n = 1, ..., N ,

and the given data is the vector y = (v1, ..., vN). The column vector θ = (θ1, ..., θJ)T

is the generic parameter vector of mixture combining proportions. The likelihood

function is

Ly(θ) =
N∏
n=1

(
θ1f1(vn) + ...+ θJfJ(vn)

)
. (15.2)

Then the log likelihood function is

LLy(θ) =
N∑
n=1

log
(
θ1f1(vn) + ...+ θJfJ(vn)

)
.

With u the column vector with entries un = 1/N , and P the matrix with entries

Pnj = fj(vn), we define

sj =
N∑
n=1

Pnj =
N∑
n=1

fj(vn).

Maximizing LLy(θ) is equivalent to minimizing

F (θ) = KL(u, Pθ) +
J∑
j=1

(1− sj)θj. (15.3)

15.3 A Motivating Illustration

To motivate such mixture problems, we imagine that each data value is generated by

first selecting one value of j, with probability θj, and then selecting a realization of a

random variable governed by fj(v). For example, there could be J bowls of colored

marbles, and we randomly select a bowl, and then randomly select a marble within

the selected bowl. For each n the number vn is the numerical code for the color of the

nth marble drawn. In this illustration we are using a mixture of probability functions,

but we could have used probability density functions.

15.4 The Acceptable Data

We approach the mixture problem by creating acceptable data. We imagine that we

could have obtained xn = jn, for n = 1, ..., N , where the selection of vn is governed by

the function fjn(v). In the bowls example, jn is the number of the bowl from which the

nth marble is drawn. The acceptable-data random vector is X = (X1, ..., XN), where
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the Xn are independent random variables taking values in the set {j = 1, ..., J}. The

value jn is one realization of Xn. Since our objective is to estimate the true θj, the

values vn are now irrelevant. Our ML estimate of the true θj is simply the proportion

of times j = jn. Given a realization x of X, the conditional pdf or pf of Y does not

involve the mixing proportions, so X is acceptable. Notice also that it is not possible

to calculate the entries of y from those of x; the model Y = h(X) does not hold.

15.5 The Mix-EM Algorithm

Using this acceptable data, we derive the EM algorithm, which we call the Mix-EM

algorithm.

With Nj denoting the number of times the value j occurs as an entry of x, the

likelihood function for X is

Lx(θ) = fX(x|θ) =
J∏
j=1

θ
Nj

j , (15.4)

and the log likelihood is

LLx(θ) = logLx(θ) =
J∑
j=1

Nj log θj. (15.5)

Then

E(logLx(θ)|y, θk) =
J∑
j=1

E(Nj|y, θk) log θj. (15.6)

To simplify the calculations in the E-step we rewrite LLx(θ) as

LLx(θ) =
N∑
n=1

J∑
j=1

Xnj log θj, (15.7)

where Xnj = 1 if j = jn and zero otherwise. Then we have

E(Xnj|y, θk) = prob (Xnj = 1|y, θk) =
θkj fj(vn)

f(vn|θk)
. (15.8)

The function E(LLx(θ)|y, θk) becomes

E(LLx(θ)|y, θk) =
N∑
n=1

J∑
j=1

θkj fj(vn)

f(vn|θk)
log θj. (15.9)
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Maximizing with respect to θ, we get the iterative step of the Mix-EM algorithm:

θk+1
j =

1

N
θkj

N∑
n=1

fj(vn)

f(vn|θk)
. (15.10)

We know from our previous discussions that, since the preferred data X is accept-

able, likelihood is non-decreasing for this algorithm. We shall go further now, and

show that the sequence of probability vectors {θk} converges to a maximizer of the

likelihood.

15.6 Convergence of the Mix-EM Algorithm

As we noted earlier, maximizing the likelihood in the mixture case is equivalent to

minimizing

F (θ) = KL(u, Pθ) +
J∑
j=1

(1− sj)θj,

over probability vectors θ. It is easily shown that, if θ̂ minimizes F (θ) over all non-

negative vectors θ, then θ̂ is a probability vector. Therefore, we can obtain the

maximum likelihood estimate of θ by minimizing F (θ) over non-negative vectors θ.

The following theorem is found in [33].

Theorem 15.1 Let u be any positive vector, P any non-negative matrix with sj > 0

for each j, and

F (θ) = KL(u, Pθ) +
J∑
j=1

βjKL(γj, θj).

If sj + βj > 0, αj = sj/(sj + βj), and βjγj ≥ 0, for all j, then the iterative sequence

given by

θk+1
j = αjs

−1
j θkj

( N∑
n=1

Pn,j
un

(Pθk)n

)
+ (1− αj)γj (15.11)

converges to a non-negative minimizer of F (θ).

With the choices un = 1/N , γj = 0, and βj = 1−sj, the iteration in Equation (15.11)

becomes that of the Mix-EM algorithm. Therefore, the sequence {θk} converges to

the maximum likelihood estimate of the mixing proportions.
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16 More on Convergence

There is a mistake in the proof of convergence given in [11]. Wu [34] and Boyles [35]

attempted to repair the error, but also gave examples in which the EM algorithm

failed to converge to a global maximizer of likelihood. In Chapter 3 of the book by

McLachlan and Krishnan [1] we find the basic theory of the EM algorithm, including

available results on convergence and the rate of convergence. Because many authors

rely on Equation (3.4), it is not clear that these results are valid in the generality in

which they are presented. There appears to be no single convergence theorem that is

relied on universally; each application seems to require its own proof of convergence.

When the use of the EM algorithm was suggested for SPECT and PET, it was

necessary to prove convergence of the resulting iterative algorithm in Equation (13.5),

as was eventually achieved in a sequence of papers [19], [36],[37],[38], and [20]). When

the EM algorithm was applied to list-mode data in SPECT and PET [39, 40, 41],

the resulting algorithm differed slightly from that in Equation (13.5) and a proof of

convergence was provided in [33]. The convergence theorem in [33] also establishes the

convergence of the iteration in Equation (15.10) to the maximum-likelihood estimate

of the mixing proportions.

17 Open Questions

As we have seen, the conventional formulation of the EM algorithm presents difficul-

ties when probability density functions are involved. We have shown here that the

use of acceptable preferred data can be helpful in resolving this issue, but other ways

may also be useful.

Proving convergence of the sequence {θk} appears to involve the selection of an

appropriate topology for the parameter space Θ. While it is common to assume that

Θ is a subset of Euclidean space and that the usual norm should be used to define

distance, it may be helpful to tailor the metric to the nature of the parameters. In

the case of Poisson sums, for example, the parameters are non-negative vectors and

we found that the cross-entropy distance is more appropriate. Even so, additional

assumptions appear necessary before convergence of the {θk} can be established. To

simplify the analysis, it is often assumed that cluster points of the sequence lie in the

interior of the set Θ, which is not a realistic assumption in some applications.

It may be wise to consider, instead, convergence of the functions fX(x|θk), or

maybe even to identify the parameters θ with the functions fX(x|θ). Proving conver-
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gence to Ly(θML) of the likelihood values Ly(θ
k) is also an option.

18 Conclusion

Difficulties with the conventional formulation of the EM algorithm in the continuous

case of probability density functions (pdf) has prompted us to adopt a new definition,

that of acceptable data. As we have shown, this model can be helpful in generating

EM algorithms in a variety of situations. For the discrete case of probability functions

(pf), the conventional approach remains satisfactory. In both cases, the two steps of

the EM algorithm can be viewed as alternating minimization of the Kullback-Leibler

distance between two sets of parameterized pf or pdf, along the lines investigated by

Csiszár and Tusnády [12]. In order to use the full power of their theory, however, we

need the sets to be closed and convex. This does occur in the important special case

of sums of independent Poisson random variables, but is not generally the case.
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