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Abstract

The forward-backward splitting (FBS) algorithm is a quite general itera-
tive method that includes, as particular cases, the projected gradient descent
algorithm for constrained minimization, the CQ algorithm for the split feasibil-
ity problem, the projected Landweber algorithm for constrained least squares,
and the simultaneous orthogonal projection algorithm for the convex feasibility
problem. The FBS algorithm involves iterating with respect to an averaged op-
erator that is the product of two firmly non-expansive operators, one of which
is Moreau’s proximity operator. The usual proof of convergence employs the
Krasnosel’skĭi-Mann Theorem. This proof depends, therefore, on knowing that
if the gradient of a convex differentiable function is non-expansive, then it is
firmly non-expansive, and that the composition of averaged operators is again
averaged. Neither of these results is trivial to prove, especially the former. In
this paper we give an elementary proof of convergence of the FBS algorithm
that does not rely on these results.
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1 Background

The usual proof of convergence of the forward-backward splitting algorithm, as pre-

sented, for example, by Combettes and Wajs [11], relies on properties of averaged

and firmly non-expansive operators, and on the Krasnosel’skĭi-Mann (KM) Theorem

[16, 18]. In this section we elaborate on these points. Details can be found in [14, 1, 6]

and in the references therein.
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1.1 Firmly Non-expansive and Averaged Operators

In this subsection we review the basic theory of firmly non-expansive and averaged

operators.

Definition 1.1 An operator T : RJ → RJ is L-Lipschitz continuous, with respect to

the two-norm on RJ , if , for every x and y in RJ we have

‖Tx− Ty‖2 ≤ L‖x− y‖2. (1.1)

Definition 1.2 An operator N on RJ is called non-expansive (ne), with respect to

the two-norm on RJ , if, for every x and y in RJ , we have

‖x− y‖2 ≥ ‖Nx−Ny‖2. (1.2)

Clearly, if T is L-Lipschitz continuous, then the operator N = 1
L
T is non-expansive.

Definition 1.3 An operator F on RJ is called firmly non-expansive (fne) if, for every

x and y in RJ , we have

〈Fx− Fy, x− y〉 ≥ ‖Fx− Fy‖22. (1.3)

Using Cauchy’s Inequality, we show easily that a firmly non-expansive operator on

RJ is non-expansive. The following lemma provides a useful characterization of fne

operators.

Lemma 1.1 An operator F : RJ → RJ is fne if and only if F = 1
2
(I +N), for some

operator N that is ne with respect to the two-norm.

Proof: Suppose that F = 1
2
(I +N). We show that F is fne if and only if N is ne in

the two-norm. First, we have

〈Fx− Fy, x− y〉 =
1

2
‖x− y‖22 +

1

2
〈Nx−Ny, x− y〉.

Also,

‖1

2
(I +N)x− 1

2
(I +N)y‖22 =

1

4
‖x− y‖2 +

1

4
‖Nx−Ny‖2 +

1

2
〈Nx−Ny, x− y〉.

Therefore,

〈Fx− Fy, x− y〉 ≥ ‖Fx− Fy‖22
if and only if

‖Nx−Ny‖22 ≤ ‖x− y‖22.
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Corollary 1.1 An operator F is fne if and only if I − F is fne.

Definition 1.4 An operator A : RJ → RJ is averaged (av) if A = (1 − α)I + αN ,

for some operator N that is non-expansive with respect to the two-norm, and some

scalar α in [0, 1).

It is clear from the definitions and Lemma 1.1 that any fne operator is av. The

product of finitely many av operators is again av [1]. According to the Krasnosel’skĭi-

Mann Theorem [18, 16], if A is averaged and has fixed points, then the sequence

{Anx0} converges to a fixed point of A, for every initial vector x0. The following

theorem is well known; see, for example, [15, 19].

Theorem 1.1 Let f(x) be convex and differentiable and its derivative, ∇f(x), non-

expansive in the two-norm. Then ∇f(x) is firmly non-expansive.

Suppose that g(x) : RJ → R is convex and the function ∇g(x) is L-Lipschitz

continuous. Let f(x) = 1
L
g(x), so that ∇f(x) is a non-expansive operator. According

to Theorem 1.1, the operator ∇f(x) = 1
L
∇g(x) is firmly non-expansive. The proof

of Theorem 1.1 is not trivial. In [15] Golshtein and Tretyakov prove the following

theorem, from which Theorem 1.1 follows immediately.

Theorem 1.2 Let g : RJ → R be convex and differentiable. The following are equiv-

alent:

• 1)

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (1.4)

• 2)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
1

2
||∇g(x)−∇g(y)||22; (1.5)

and

• 3)

〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22. (1.6)

The proof of Theorem 1.2 given in [15] is repeated in [8].

If f : RJ → R is convex and differentiable, and ∇f is L-Lipschitz continuous,

then A = I − γ∇f is averaged, for any γ in the interval (0, 2/L).
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1.2 Moreau’s Proximity Operators

Let f : RJ → R be convex. For each z ∈ RJ the function

mf (z) := min
x
{f(x) +

1

2
‖x− z‖22} (1.7)

is minimized by a unique x [24]. The operator that associates with each z the min-

imizing x is Moreau’s proximity operator, and we write x = proxf (z). The operator

proxf extends the notion of orthogonal projection onto a closed convex set [20, 21, 22].

We have x = proxf (z) if and only if z − x ∈ ∂f(x), where the set ∂f(x) is the sub-

differential of f at x, given by

∂f(x) := {u|〈u, y − x〉 ≤ f(y)− f(x), for all y}. (1.8)

Proximity operators are also firmly non-expansive [11]; indeed, the proximity operator

proxf is the resolvent of the maximal monotone operator B(x) = ∂f(x) and all such

resolvent operators are firmly non-expansive [4].

1.3 The Forward-Backward Splitting Algorithm

Our objective here is to provide an elementary proof of convergence for the forward-

backward splitting (FBS) algorithm; a detailed discussion of this algorithm and its

history is given by Combettes and Wajs in [11].

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differentiable, and

∇f2 L-Lipschitz continuous. The iterative step of the FBS algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
. (1.9)

The FBS iteration has the form xk = Axk−1. When we select γ in the interval (0, 2/L),

the operator A becomes averaged, since it is now the product of a fne operator and

an av operator. Convergence of the sequence {xk} to a fixed point of A, whenever A

has fixed points, then follows from the KM Theorem.

As we shall show, convergence of the sequence {xk} to a fixed point of A can be

established without using the KM Theorem or the machinery of fne and av operators,

if γ is chosen to lie within the interval (0, 1/L].

2 Sequential Unconstrained Optimization

Sequential unconstrained optimization algorithms can be used to minimize a function

f : RJ → (−∞,∞] over a (not necessarily proper) subset C of RJ [13]. At the kth
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step of a sequential unconstrained minimization method we obtain xk by minimizing

the function

Gk(x) = f(x) + gk(x), (2.1)

where the auxiliary function gk(x) is appropriately chosen. If C is a proper subset

of RJ we may force gk(x) = +∞ for x not in C, as in the barrier-function methods;

then each xk will lie in C. The objective is then to select the gk(x) so that the

sequence {xk} converges to a solution of the problem, or failing that, at least to have

the sequence {f(xk)} converging to the infimum of f(x) over x in C.

Our main focus in this paper is the use of sequential unconstrained optimization

algorithms to obtain iterative methods in which each iterate can be obtained in closed

form. Now the auxiliary functions gk(x) are selected not to impose a constraint, but

to facilitate computation.

3 SUMMA

In [7] we presented a particular class of sequential unconstrained minimization meth-

ods called SUMMA. As we showed in that paper, this class is broad enough to contain

barrier-function methods, proximal minimization methods, and the simultaneous mul-

tiplicative algebraic reconstruction technique (SMART). By reformulating the prob-

lem, the penalty-function methods can also be shown to be members of the SUMMA

class. Any alternating minimization (AM) problem with the five-point property [12]

can be reformulated as a SUMMA problem; therefore the expectation maximization

maximum likelihood (EMML) algorithm for Poisson data, which is such an AM al-

gorithm, must also be a SUMMA algorithm.

For a method to be in the SUMMA class we require that each auxiliary function

gk(x) satisfy the inequality

0 ≤ gk(x) ≤ Gk−1(x)−Gk−1(x
k−1), (3.1)

for all x. Note that it follows that gk(x
k−1) = 0, for all k.

We assume that the inequality in (3.1) holds for each k. We also assume that

inf f(x) = b > −∞. The next two results are taken from [7].

Proposition 3.1 The sequence {f(xk)} is non-increasing and the sequence {gk(xk)}
converges to zero.
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Proof: We have

f(xk+1) + gk+1(x
k+1) = Gk+1(x

k+1) ≤ Gk+1(x
k) = f(xk).

Therefore,

f(xk)− f(xk+1) ≥ gk+1(x
k+1).

The sequence {f(xk)} is decreasing to a finite limit, since it is bounded below by b,

and, therefore, the sequence {gk(xk)} converges to zero.

Theorem 3.1 The sequence {f(xk)} converges to b.

Proof: Suppose that there is δ > 0 such that f(xk) ≥ b + 2δ, for all k. Then there

is z ∈ C such that f(xk) ≥ f(z) + δ, for all k. From the inequality in (3.1) we have

gk(z)− gk+1(z) ≥ f(xk) + gk(x
k)− f(z) ≥ f(xk)− f(z) ≥ δ, (3.2)

for all k. But this cannot happen; the successive differences of a non-increasing

sequence of non-negative terms must converge to zero.

4 Convergence of the FBS algorithm

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differentiable, and ∇f2
L-Lipschitz continuous. Let {xk} be defined by Equation (1.9) and let 0 < γ ≤ 1/L.

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, x

k−1), (4.1)

where

Df2(x, x
k−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (4.2)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman distance

formed from the function f2 [3].

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df2(x, x

k−1) (4.3)

can be rewritten as

gk(x) = Dh(x, x
k−1), (4.4)
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where

h(x) =
1

2γ
‖x‖22 − f2(x). (4.5)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.

We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (4.6)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (4.7)

Since ∇f2 is L-Lipschitz, the inequality (4.7) holds for 0 < γ ≤ 1/L.

Lemma 4.1 The xk that minimizes Gk(x) over x is given by Equation (1.9).

Proof: We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(x

k),

or, equivalently, (
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(x

k).

Consequently,

xk = proxγf1(x
k−1 − γ∇f2(xk−1)).

Theorem 4.1 The sequence {xk} converges to a minimizer of the function f(x),

whenever minimizers exist.

Proof: A relatively simple calculation shows that

Gk(x)−Gk(x
k) =

1

2γ
‖x− xk‖22 +

(
f1(x)− f1(xk)−

1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
. (4.8)

Since

(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(x
k),
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it follows that(
f1(x)− f1(xk)−

1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(x
k) ≥ 1

2γ
‖x− xk‖22 ≥ gk+1(x). (4.9)

Therefore, the inequality in (3.1) holds and the iteration fits into the SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(x
k) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(x
k−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(x

k−1)
)
−

(
Gk(x̂)−Gk(x

k)
)
≥ f(xk)− f(x̂) + gk(x

k) ≥ 0.

Therefore, the sequence {Gk(x̂) − Gk(x
k)} is decreasing and the sequences {gk(xk)}

and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(x
k) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded and that a subsequence converges to

some x∗ with f(x∗) = f(x̂).

Replacing the generic x̂ with x∗, we find that {Gk(x
∗) − Gk(x

k)} is decreasing,

and by Equation (4.8), a subsequence, and therefore, the entire sequence, converges

to zero. From the inequality in (4.9), we conclude that the sequence {‖x∗ − xk‖22}
converges to zero, and so {xk} converges to x∗. This completes the proof of the

theorem.

5 Some Examples

We present some examples to illustrate the application of the convergence theorem.

5.1 Projected Gradient Descent

Let C be a non-empty, closed convex subset of RJ and f1(x) = ιC(x), the function that

is +∞ for x not in C and zero for x in C. Then ιC(x) is convex, but not differentiable.
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We have proxγf1 = PC , the orthogonal projection onto C. The iteration in Equation

(1.9) becomes

xk = PC

(
xk−1 − γ∇f2(xk−1)

)
. (5.1)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever such mini-

mizers exist, for 0 < γ ≤ 1/L.

5.1.1 The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex sets. The

split feasibility problem (SFP) is to find x in C such that Ax is in Q. The function

f2(x) =
1

2
‖PQAx− Ax‖22 (5.2)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spectral radius

of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (5.3)

We want to minimize the function f2(x) over x in C, or, equivalently, to minimize

the function f(x) = ιC(x) + f2(x). The projected gradient descent algorithm has the

iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
; (5.4)

this iterative method was called the CQ-algorithm in [5, 6]. The sequence {xk}
converges to a solution whenever f2 has a minimum on the set C, for 0 < γ ≤ 1/L.

In [10, 9] the CQ algorithm was extended to a multiple-sets algorithm and applied

to the design of protocols for intensity-modulated radiation therapy.

5.1.2 The Projected Landweber Algorithm

The problem is to minimize the function

f2(x) =
1

2
‖Ax− b‖22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-algorithm, with

Q = {b}. The resulting iteration is the projected Landweber algorithm [2]; when

C = RJ it becomes the Landweber algorithm [17].
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6 Minimizing f2 over a Linear Manifold

Suppose that we want to minimize f2 over x in the linear manifold M = S+p, where

S is a subspace of RJ of dimension I < J and p is a fixed vector. Let A be an I by

J matrix such that the I columns of AT form a basis for S. For each z ∈ RI let

d(z) = f2(A
T z + p),

so that d is convex, differentiable, and its gradient,

∇d(z) = A∇f2(AT z + p),

is K-Lipschitz continuous, for K = ρ(ATA)L. The sequence {zk} defined by

zk = zk−1 − γ∇d(zk−1) (6.1)

converges to a minimizer of d over all z in RI , whenever minimizers exist, for 0 < γ ≤
1/K.

From Equation (6.1) we get

xk = xk−1 − γATA∇f2(xk−1), (6.2)

with xk = AT zk + p. The sequence {xk} converges to a minimizer of f2 over all x in

M .

Suppose now that we begin with an algorithm having the iterative step

xk = xk−1 − γATA∇f2(xk−1), (6.3)

where A is any real I by J matrix having rank I. Let x0 be in the range of AT , so

that x0 = AT z0, for some z0 ∈ RI . Then each xk = AT zk is again in the range of AT ,

and we have

AT zk = AT zk−1 − γATA∇f2(AT zk−1). (6.4)

With d(z) = f2(A
T z), we can write Equation (6.4) as

AT
(
zk − (zk−1 − γ∇d(zk−1))

)
= 0. (6.5)

Since A has rank I, AT is one-to-one, so that

zk − zk−1 − γ∇d(zk−1) = 0. (6.6)

The sequence {zk} converges to a minimizer of d, over all z ∈ RI , whenever such

minimizers exist, for 0 < γ ≤ 1/K. Therefore, the sequence {xk} converges to a

minimizer of f2 over all x in the range of AT .
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7 Feasible-Point Algorithms

Suppose that we want to minimize a convex differentiable function f(x) over x such

that Ax = b, where A is an I by J full-rank matrix, with I < J . If Axk = b for each

of the vectors {xk} generated by the iterative algorithm, we say that the algorithm

is a feasible-point method.

7.1 The Projected Gradient Algorithm

Let C be the feasible set of all x in RJ such that Ax = b. For every z in RJ , we have

PCz = PNS(A)z + AT (AAT )−1b, (7.1)

where NS(A) is the null space of A. Using

PNS(A)z = z − AT (AAT )−1Az, (7.2)

we have

PCz = z + AT (AAT )−1(b− Az). (7.3)

Using Equation (1.9), we get the iteration step for the projected gradient algorithm:

xk = xk−1 − γPNS(A)∇f(xk−1), (7.4)

which converges to a solution for 0 < γ ≤ 1/L, whenever solutions exist.

In the next subsection we present a somewhat simpler approach.

7.2 The Reduced Gradient Algorithm

Let x0 be a feasible point, that is, Ax0 = b. Then x = x0 + p is also feasible if p is in

the null space of A, that is, Ap = 0. Let Z be a J by J − I matrix whose columns

form a basis for the null space of A. We want p = Zv for some v. The best v will be

the one for which the function

φ(v) = f(x0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent method, or the

Newton-Raphson method, or any other minimization technique.

The steepest descent method, applied to φ(v), is called the reduced steepest de-

scent algorithm [23]. The gradient of φ(v), also called the reduced gradient, is

∇φ(v) = ZT∇f(x),
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where x = x0 +Zv; the gradient operator ∇φ is then K-Lipschitz, for K = ρ(ATA)L.

Let x0 be feasible. The iteration in Equation (1.9) now becomes

vk = vk−1 − γ∇φ(vk−1), (7.5)

so that the iteration for xk = x0 + Zvk is

xk = xk−1 − γZZT∇f(xk−1). (7.6)

The vectors xk are feasible and the sequence {xk} converges to a solution, whenever

solutions exist, for any 0 < γ < 1
K

.

7.3 The Reduced Newton-Raphson Method

The same idea can be applied to the Newton-Raphson method. The Newton-Raphson

method, applied to φ(v), is called the reduced Newton-Raphson method [23]. The

Hessian matrix of φ(v), also called the reduced Hessian matrix, is

∇2φ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

xk = xk−1 − Z
(
ZT∇2f(xk−1)Z

)−1

ZT∇f(xk−1). (7.7)

Let c0 be feasible. Then each xk is feasible. The sequence {xk} is not guaranteed to

converge.

8 Conclusions

The forward-backward splitting algorithm can be formulated as a member of the

SUMMA class of sequential unconstrained minimization algorithms. Convergence of

the iterative sequence can then be established without relying on the machinery of

firmly non-expansive and averaged operators. Examples are given to illustrate the

usefulness of the forward-backward splitting algorithm.

References

1. Bauschke, H., and Borwein, J. (1996) “On projection algorithms for solving con-

vex feasibility problems.” SIAM Review, 38 (3), pp. 367–426.

12



2. Bertero, M., and Boccacci, P. (1998) Introduction to Inverse Problems in Imaging

Bristol, UK: Institute of Physics Publishing.

3. Bregman, L.M. (1967) “The relaxation method of finding the common point

of convex sets and its application to the solution of problems in convex pro-

gramming.” USSR Computational Mathematics and Mathematical Physics 7,

pp. 200–217.

4. Bruck, R., and Reich, S. (1977) “Nonexpansive projections and resolvents of

accretive operators in Banach spaces.” Houston J. of Mathematics 3, pp. 459–

470.

5. Byrne, C. (2002) “Iterative oblique projection onto convex sets and the split

feasibility problem.”Inverse Problems 18, pp. 441–453.

6. Byrne, C. (2004) “A unified treatment of some iterative algorithms in signal

processing and image reconstruction.”Inverse Problems 20, pp. 103–120.

7. Byrne, C. (2008) “Sequential unconstrained minimization algorithms for con-

strained optimization.” Inverse Problems, 24(1), article no. 015013.

8. Byrne, C. (2011) A First Course in Optimization, available as a pdf file at my

web site.

9. Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. “A unified approach for in-

version problems in intensity-modulated radiation therapy.” Physics in Medicine

and Biology 51 (2006), 2353-2365.

10. Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2005) “The multiple-sets split

feasibility problem and its application for inverse problems.” Inverse Problems,

21 , pp. 2071-2084.

11. Combettes, P., and Wajs, V. (2005) “Signal recovery by proximal forward-

backward splitting.” Multiscale Modeling and Simulation, 4(4), pp. 1168–1200.

12. Csiszár, I. and Tusnády, G. (1984) “Information geometry and alternating mini-

mization procedures.” Statistics and Decisions Supp. 1, pp. 205–237.

13. Fiacco, A., and McCormick, G. (1990) Nonlinear Programming: Sequential Un-

constrained Minimization Techniques. Philadelphia, PA: SIAM Classics in Math-

ematics (reissue).

13



14. Goebel, K., and Reich, S. (1984) Uniform Convexity, Hyperbolic Geometry, and

Nonexpansive Mappings, New York: Dekker.

15. Golshtein, E., and Tretyakov, N. (1996) Modified Lagrangians and Monotone

Maps in Optimization. New York: John Wiley and Sons, Inc.
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