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Abstract

The Baillon–Haddad Theorem asserts that, if the gradient operator of a
convex and Fréchet differentiable function on a Hilbert space is nonexpansive,
then it is firmly nonexpansive. This theorem plays an important role in iterative
optimization. In this note we present a short, elementary proof of a recent
extension of the Baillon–Haddad Theorem due to Bauschke and Combettes.
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1 Introduction

We denote by H a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. An

operator T : H → H is nonexpansive if, for all x and y in H,

‖Tx− Ty‖ ≤ ‖x− y‖, (1.1)

and firmly nonexpansive if, in addition,

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2. (1.2)

Clearly, if T is firmly nonexpansive, then T is nonexpansive. However, it is possible

for (1.1) to hold without (1.2) holding; let T = −Id, for example, where Id is the

identity operator. For certain operators T the two properties are equivalent; we have

the following theorem.
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Theorem 1.1 (The Baillon–Haddad Theorem) ([1], Corollaire 10]) Let f : H →
R be convex, Fréchet differentiable on H, and its gradient operator T = ∇f nonex-

pansive. Then T is firmly nonexpansive.

In [1] this theorem appears as a corollary of a more general theorem concerning n-

cyclically monotone operators in normed vector space.

In [2] Bauschke and Combettes generalize the Baillon–Haddad Theorem, giving

four additional conditions equivalent to the two in Theorem 1.1. An abbreviated

summary of their results is the following theorem.

Theorem 1.2 (Bauschke and Combettes) Let f : H → R be convex and Fréchet

differentiable . The following are equivalent:

1. the gradient operator T = ∇f is nonexpansive;

2. the function F (x) = 1
2
‖x‖2 − f(x) is convex;

3. for all x and z we have

1

2
‖z − x‖2 ≥ Df (z, x) = f(z)− f(x)− 〈∇f(x), z − x〉 ≥ 0; (1.3)

4. the gradient operator T = ∇f is firmly nonexpansive.

In [2] the proof that Condition 1. of Theorem 1.2 (their Condition (i)) implies

Condition 4. (their condition (vi)), that is, the proof of the Baillon–Haddad Theorem

1.1, is indirect. Their intermediate conditions (iii), (iv) and (v) involve the Fenchel

conjugate, Moreau’s proximity operator, the Moreau envelope, and the Moreau De-

composition Theorem. Our proof of Theorem 1.2 is short and elementary and uses

only fundamental properties of convex functions. The proof of Theorem 1.1 given in

[7] was reproduced in [3]. The proof given here for Theorem 1.2 is based on the one

given for Theorem 1.1 in [4] and [5].

2 Proof of Theorem 1.2

Prove (2), assuming (1), that the operator T = ∇f is nonexpansive. The function

F (x) = 1
2
‖x‖2 − f(x) is therefore Fréchet differentiable and ∇F (x) = x − ∇f(x).

Since

〈∇F (z)−∇F (x), z − x〉 ≥ ‖z − x‖(‖z − x‖ − ‖∇f(z)−∇f(x)‖) ≥ 0,
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we know that F (x) is a convex function.

Prove (3), assuming (2), that F is convex. Since F is convex, and ∇F (x) =

x−∇f(x), we have

F (z) ≥ F (x) + 〈∇F (x), z − x〉, (2.1)

which is equivalent to

1

2
‖z − x‖2 ≥ Df (z, x). (2.2)

Prove (4), assuming (3), that (2.2) holds for all z and x. Let y ∈ H be arbitrary and

fixed. Let d(x) = Df (x, y). Then d(x) is convex and ∇d(x) = ∇f(x)−∇f(y). It is

easily seen that Df (z, x) = Dd(z, x), so from (2.2) we have

1

2
‖z − x‖2 ≥ Dd(z, x) = d(z)− d(x)− 〈∇f(x)−∇f(y), z − x〉. (2.3)

Now let z = x−∇f(x) +∇f(y). Inserting this z into (2.3), we obtain

Df (x, y) = d(x) ≥ d(z) +
1

2
‖∇f(x)−∇f(y)‖2. (2.4)

Similarly, we can show that

Df (y, x) ≥ 1

2
‖∇f(x)−∇f(y)‖2. (2.5)

Adding the previous two inequalities, we get

〈∇f(x)−∇f(y), x− y〉 ≥ ‖∇f(x)−∇f(y)‖2, (2.6)

so T = ∇f is firmly nonexpansive. Since (4) obviously implies (1), the proof is

complete.

Notice that we have actually proved a somewhat stronger inequality than (1.2):

〈∇f(x)−∇f(y), x− y〉 − ‖∇f(x)−∇f(y)‖2

≥ Df (x−∇f(x) +∇f(y), y) +Df (y −∇f(y) +∇f(x), x) ≥ 0. (2.7)

In Theorem 2.1 of [2] Bauschke and Combettes do not assume, a priori, that f

is Fréchet differentiable; they include Fréchet differentiability as part of conditions

(1), (3) and (4), making it necessary to prove that f is Fréchet differentiable, if F is

convex. Proving this involves tools that are not elementary; we can prove this using

the following proposition, which appears as Corollary 16.38 in [2]. The proof in [2]

uses the Fréchet differentiability of the Moreau envelope.

3



Proposition 2.1 Let f : H →]−∞,+∞] and g : H →]−∞,+∞] be proper, convex,

and lower semicontinuous. Then ∂(f + g) = ∂f + ∂g.

The proof of this proposition is not elementary. We use this result in the form of the

following corollary.

Corollary 2.1 Let f : H →] −∞,+∞] and g : H →] −∞,+∞] be proper, convex,

and lower semicontinuous, such that f +g is Gâteaux differentiable. Then both f and

g are Gâteaux differentiable.

Now, given that F (x) is convex and F (x) + f(x) = 1
2
‖x‖2, we may conclude that

f and F are Gâteaux differentiable. Now we proceed as in the earlier proof, showing

first that the inequality in (2.3) holds, and then that ∇f is firmly nonexpansive.

The Baillon-Haddad Theorem plays an important role in iterative optimization,

as we shall discuss in the next two sections.

3 The Krasnosel’skii–Mann Theorem

Let T : H → H be an arbitrary operator on H, and G = Id − T . Then an easy

calculation shows that, for any x and y in H, we have

‖x− y‖2 − ‖Tx− Ty‖2 = 2〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2. (3.1)

It follows immediately from Equation (3.1) that

〈Tx− Ty, x− y〉 − ‖Tx− Ty‖2 = 〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2. (3.2)

Definition 3.1 An operator G : H → H is ν-inverse strongly monotone (ν-ism) for

some ν > 0 if

〈Gx−Gy, x− y〉 ≥ ν‖Gx−Gy‖2. (3.3)

Using Equation (3.1), we find that T is nonexpansive if and only if G = Id − T is
1
2
-ism.

If T is a continuous operator and the sequence {xk} defined by xk = Txk−1, for

k = 1, 2, ..., converges to z, then Tz = z and z is called a fixed point of T . An

important problem in optimization theory is to find conditions on the operator T so

that the iterative sequence converges (weakly, if not strongly) to a fixed point of T .

Just having T nonexpansive is not enough, as the operator T = −Id illustrates.
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Definition 3.2 An operator T on H is called α-averaged (α-av), for some α in the

interval (0, 1), if there is a nonexpansive operator N such that

T = (1− α)Id+ αN. (3.4)

The following proposition follows immediately from Equations (3.1) and (3.2).

Proposition 3.1 An operator T is α-averaged if and only if G = Id− T is 1
2α

-ism.

Also T is firmly nonexpansive if and only if G = Id− T is 1-ism, and if and only if

G is firmly nonexpansive.

It is easy to see that, if G is ν-ism and γ > 0, then γG is ν
γ
-ism.

Showing that a given operator T is averaged by using Definition 3.4 can be difficult,

while showing that its complement, G = Id − T , is 1
2α

-ism can be simpler. The

operator PC , the orthogonal projection onto the nonempty, closed, convex set C, is

firmly nonexpansive, which can be easily shown using the well known characterization

of z = PCx in Proposition 3.2. Therefore, PC is also averaged, but this is far from

obvious, if we just focus on Definition 3.4.

Proposition 3.2 Let C ⊆ H be nonempty, closed, and convex. Then z = PCx if

and only if z is a member of C, and, for all members y of C, we have

〈z − x, y − z〉 ≥ 0. (3.5)

It is interesting to note that the operator PC is actually the gradient of the convex,

differentiable function f(x) = 1
2

(
‖x‖2 − ‖x − PCx‖2

)
. The Krasnosel’skii–Mann

Theorem is the following.

Theorem 3.1 Let T be α-averaged, with a fixed point. Then, for any x0, the sequence

{xk} defined by xk = Txk−1, for k = 1, 2, ..., converges weakly to a fixed point of T .

Proof: Let Tz = z. We have

‖z − xk‖2 − ‖z − xk+1‖2 ≥
( 1

α
− 1

)
‖xk − xk+1‖2, (3.6)

from which we conclude that the sequence {‖z − xk‖2} is decreasing, the sequence

{‖xk − xk+1‖2} converges to zero, and the sequence {xk} is bounded. If H is finite-

dimensional, we know that {xk} has a cluster point x∗, and that Tx∗ = x∗; using x∗

in place of z, we find that the entire sequence {‖x∗ − xk‖2} converges to zero. In the

infinite-dimensional case the proof is a bit more complicated; we must show that the

weak cluster point is unique (see [6]).
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The class of nonexpansive operators is closed to finite products, but, as we have

seen, nonexpansiveness is not strong enough for our purposes. Being firmly nonex-

pansive is sufficient for Theorem 3.1 to apply, but the firmly nonexpansive operators

are not closed to finite products; the operator PC is firmly nonexpansive, but the finite

product of such operators need not be firmly nonexpansive. The class of averaged op-

erators is the appropriate class to consider, since it contains the firmly nonexpansive

operators, is closed to finite products, and Theorem 3.1 holds for averaged operators.

4 Gradient Descent Methods

Suppose now that g : H → R is a convex, differentiable function, and we want to

minimize g(x). The well known gradient descent method has the iterative step

xk+1 = xk − γk∇g(xk), (4.1)

where the step-length parameters γk are selected to guarantee that g(xk+1) ≤ g(xk).

It is helpful if we can select a parameter γ > 0 that is independent of k and so that

the iteration

xk+1 = xk − γ∇g(xk) (4.2)

generates a sequence {xk} that converges (weakly, if not strongly) to a point z with

∇g(z) = 0. With the operator T given by

T = Id− γ∇g, (4.3)

we see that ∇g(z) = 0 if and only if Tz = z. The question is then: When is T

α-averaged?

Definition 4.1 An operator T on H is called L-Lipschitz continuous if, for all x and

y, we have

‖Tx− Ty‖ ≤ L‖x− y‖. (4.4)

It is a obvious consequence of Theorem 1.1 that, if ∇g is L-Lipschitz continuous,

then ∇g is 1
L

-ism. Suppose now that T = ∇g is L-Lipschitz continuous. Then ∇f
nonexpansive, for the function f = 1

L
g. Therefore, according to the Baillon-Haddad

Theorem, ∇f is firmly nonexpansive, and

γ∇g = (γL)(
1

L
∇g) = (γL)∇f
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is 1
γL

-ism. Consequently, if γL = 2α, for some α in (0, 1), then the operator T =

Id− γ∇g is α-averaged and Theorem 3.1 applies.

Determining if the gradient of g(x) is Lipschitz continuous may not be easy, and,

if it is, finding L may not be easy. Consider the function g(x) = 1
2
‖Ax − b‖22, where

A is a real M by N matrix. The gradient of g(x) is L-Lipschitz continuous, for

L = ρ(ATA), which, in this case, is the largest eigenvalue of the matrix ATA. In

many image-processing problems the x is a vectorized image, A is sparse, and both

M and N can be several thousand. In such cases calculating the matrix ATA is

unreasonable. Also, ATA need not be sparse, even if A is sparse. Because the step-

length parameter γ must be chosen in the interval (0, 2/L), we want an estimate of

L that does not greatly overestimate it, and makes use of the sparseness of A. Such

estimates are discussed in [4].
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