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Abstract

We consider the problem of maximizing a non-negative function f : Z → R,
where Z is an arbitrary set. We assume that there is z∗ ∈ Z with f(z∗) ≥ f(z),
for all z ∈ Z. We assume that there is a non-negative function b : RN ×Z → R
such that

f(z) =

∫
b(x, z)dx.

Having found zk, we maximize the function

H(zk, z) =

∫
b(x, zk) log b(x, z)dx

to get zk+1. It then follows that the sequence {f(zk)} is increasing and the
sequence {b(x, zk)} is asymptotically regular, in the sense of cross-entropy;
that is, the sequence {KL(b(x, zk), b(x, zk+1))} converges to zero, where

KL(b(x, zk), b(x, zk+1)) =

∫ (
b(x, zk) log

b(x, zk)

b(x, zk+1)
+ b(x, zk+1)− b(x, zk)

)
dx.

This iterative procedure is a particular case of the alternating minimization
(AM) method of Csiszár and Tusnády [12]. With additional restrictions sug-
gested by the AM method, it follows that {f(zk)} converges to f(z∗). We
consider also a discrete version, in which the variable x takes values in a finite
or countably infinite set and the integral is replaced by a sum.

For particular choices of the functions b(x, z) this framework reduces to the
well-known “expectation maximization” (EM) algorithm for statistical param-
eter estimation. It can also be used to find approximate non-negative solutions
of non-negative systems of linear equations.
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1 Overview

The “expectation maximization” (EM) algorithm is a general framework for maxi-

mizing the likelihood in statistical parameter estimation [24], and is always presented

in probabilistic terms, involving the maximization of a conditional expected value.

The EM algorithm is not really a single algorithm, but a framework for the design

of iterative likelihood maximization methods; nevertheless, we shall continue to refer

to the EM algorithm. As we shall demonstrate in this paper, the essence of the EM

algorithm is not stochastic, and leads to a general approach for function maximiza-

tion, which we call the “generalized” EM (GEM) algorithm. In addition to being

more general, this new approach also simplifies much of the development of the EM

algorithm itself.

2 A Non-Stochastic EM Algorithm

In this section we present the essential aspects of the EM algorithm without relying

on statistical concepts. We shall use these results later to establish important facts

about the statistical EM algorithm.

2.1 The Continuous Case

The problem is to maximize a non-negative function f : Z → R, where Z is an

arbitrary set. We assume that there is z∗ ∈ Z with f(z∗) ≥ f(z), for all z ∈ Z. We

also assume that there is a non-negative function b : RN × Z → R such that

f(z) =

∫
b(x, z)dx.

Having found zk, we maximize the function

H(zk, z) =

∫
b(x, zk) log b(x, z)dx (2.1)

to get zk+1. The cross-entropy or Kullback-Leibler distance [21] is a useful tool for

analyzing the EM algorithm. For positive numbers u and v, the Kullback-Leibler

distance from u to v is

KL(u, v) = u log
u

v
+ v − u. (2.2)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL distance

is extended to nonnegative vectors component-wise, so that for nonnegative vectors
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a and b we have

KL(a, b) =
J∑
j=1

KL(aj, bj). (2.3)

One of the most useful facts about the KL distance is contained in the following

lemma; we simplify the notation by setting b(z) = b(x, z).

Lemma 2.1 For non-negative vectors a and b, with b+ =
∑J

j=1 bj > 0, we have

KL(a, b) = KL(a+, b+) +KL(a,
a+
b+
b). (2.4)

Maximizing H(zk, z) is equivalent to minimizing

G(zk, z) = KL(b(zk), b(z))− f(z), (2.5)

where

KL(b(zk), b(z)) =

∫
KL(b(x, zk), b(x, z))dx. (2.6)

Therefore,

−f(zk) = KL(b(zk), b(zk))− f(zk) ≥ KL(b(zk), b(zk+1))− f(zk+1),

or

f(zk+1)− f(zk) ≥ KL(b(zk), b(zk+1)).

It then follows that the sequence {f(zk)} is increasing and bounded above, so that

the sequence {b(x, zk)} is asymptotically regular, in the sense of cross-entropy; that

is, the sequence {KL(b(x, zk), b(x, zk+1))} converges to zero, where

KL(b(x, zk), b(x, zk+1)) =

∫ (
b(x, zk) log

b(x, zk)

b(x, zk+1)
+ b(x, zk+1)− b(x, zk)

)
dx.

Without additional restrictions, we cannot conclude that {f(zk)} converges to f(z∗).

We get zk+1 by minimizing G(zk, z). When we minimize G(z, zk+1), we get zk+1

again. Therefore, we can put the GEM algorithm into the alternating minimization

(AM) framework of Csiszár and Tusnády [12], to be discussed further in Section 4.
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2.2 The Discrete Case

Again, the problem is to maximize a non-negative function f : Z → R, where Z is

an arbitrary set. As previously, we assume that there is z∗ ∈ Z with f(z∗) ≥ f(z),

for all z ∈ Z. We also assume that there is a finite or countably infinite set B and a

non-negative function b : B × Z → R such that

f(z) =
∑
x∈B

b(x, z).

Having found zk, we maximize the function

H(zk, z) =
∑
x∈B

b(x, zk) log b(x, z) (2.7)

to get zk+1.

We set b(z) = b(x, z) again. Maximizing H(zk, z) is equivalent to minimizing

G(zk, z) = KL(b(zk), b(z))− f(z), (2.8)

where

KL(b(zk), b(z)) =
∑
x∈B

KL(b(x, zk), b(x, z)). (2.9)

As previously, we find that the sequence {f(zk)} is increasing, and {KL(b(zk), b(zk+1))}
converges to zero. Without additional restrictions, we cannot conclude that {f(zk)}
converges to f(z∗).

3 The EM Algorithm

In statistical parameter estimation one typically has an observable random vector

Y taking values in RN that is governed by a probability density function (pdf) or

probability function (pf) of the form fY (y|θ), for some value of the parameter vector

θ ∈ Θ, where Θ is the set of all legitimate values of θ. Our observed data consists

of one realization y of Y ; we do not exclude the possibility that the entries of y

are independently obtained samples of a common real-valued random variable. The

true vector of parameters is to be estimated by maximizing the likelihood function

Ly(θ) = fY (y|θ) over all θ ∈ Θ to obtain a maximum likelihood estimate, θML.

To employ the EM algorithmic approach, it is assumed that there is another

related random vector X, which we shall call the preferred data, such that, had

we been able to obtain one realization x of X, maximizing the likelihood function
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Lx(θ) = fX(x|θ) would have been simpler than maximizing the likelihood function

Ly(θ) = fY (y|θ). Of course, we do not have a realization x of X. The basic idea of

the EM approach is to estimate x using the current estimate of θ, denoted θk, and to

use each estimate xk of x to get the next estimate θk+1. The EM algorithm based on

X generates a sequence {θk} of parameter vectors. In decreasing order of importance

and difficulty, the goals are these:

• 1. to have the sequence of parameters {θk} converging to θML;

• 2. to have the sequence of functions {fX(x|θk)} converging to fX(x|θML);

• 3. to have the sequence of numbers {Ly(θk)} converging to Ly(θML);

• 4. to have the sequence of numbers {Ly(θk)} increasing.

Our focus here is mainly on the fourth goal, with some discussion of the third

goal. We do present some examples for which all four goals are attained. Clearly, the

first goal requires a topology on the set Z.

3.1 The Discrete Case

In the discrete case, we assume that Y is a discrete random vector taking values in a

finite or countably infinite set A, and governed by probability fY (y|θ). We assume, in

addition, that there is a second discrete random vector X, taking values in a finite or

countably infinite set B, and a function h : B → A such that Y = h(X). We define

the set

h−1(y) = {x ∈ B|h(x) = y}. (3.1)

Then we have

fY (y|θ) =
∑

x∈h−1(y)

fX(x|θ). (3.2)

The conditional probability function for X, given Y = y, is

fX|Y (x|y, θ) =
fX(x|θ)
fY (y|θ)

, (3.3)

for x ∈ h−1(y), and zero, otherwise. The so-called E-step of the EM algorithm is then

to calculate

E((log fX(X|θ)|y, θk) =
∑

x∈h−1(y)

fX|Y (x|y, θk) log fX(x|θ), (3.4)
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and the M-step is to maximize this function of θ to obtain θk+1.

Let χh−1(y)(x) be the characteristic function of the set h−1(y), that is,

χh−1(y)(x) = 1,

for x ∈ h−1(y), and zero, otherwise. With the choices z = θ, f(z) = fY (y|θ), and

b(z) = fX(x|θ)χh−1(y)(x), the discrete EM algorithm fits into the framework of the

non-stochastic EM algorithm. Consequently, we may conclude that the sequence

{fY (y|θk)} is increasing, and the sequence

{KL(b(zk), b(zk+1))} = {
∑

x∈h−1(y)

KL(fX(x|θk), fX(x|θk+1))}

converges to zero.

3.2 The Continuous Case

We now have a random vector Y taking values in RN and governed by the probability

density function fY (y|θ). The objective, once again, is to maximize the likelihood

function Ly(θ) = fY (y|θ) to obtain the maximum likelihood estimate of θ.

The conventional formulation of the problem, in the continuous case, presents

some difficulties. One assumes that there is a random vector X, usually called the

“complete data” , taking values in RM , where typically M ≥ N , and often M > N ,

with probability density function fX(x|θ), and a function h : RM → RN such that

Y = h(X). For example, let X1 and X2 be independent and uniformly distributed

on [0, θ], X = (X1, X2) and Y = X1 + X2 = h(X). As is evident from this example,

the set h−1(y) consists of all points (x1, x2) in R2 for which y = x1 + x2, and this

set has Lebesgue measure zero in R2. Consequently, we cannot mimic Equation (3.2)

and say that

fY (y|θ) =

∫
h−1(y)

fX(x|θ)dx.

Note that, in this example, the conditional distribution of Y , given X = (x1, x2),

is the point mass supported on the point y = x1 + x2, and is independent of the

parameter θ.

We need to find a condition on the preferred data X sufficient to reach the

fourth goal, that the sequence {Ly(θk)} be increasing. As we shall show, in order

to have Ly(θ
k+1) ≥ Ly(θ

k), it is sufficient that X satisfy the acceptability condition

fY |X(y|x, θ) = fY |X(y|x). Our treatment of the EM algorithm for the continuous case

differs somewhat from most conventional presentations, by which we mean that given

6



in [13], repeated in [24], and used in many papers on the subject subsequent to 1977,

such as [34] and [25].

For the continuous case, the vector θk+1 is obtained from θk by maximizing the

conditional expected value

E(log fX(X|θ)|y, θk) =

∫
fX|Y (x|y, θk) log fX(x|θ)dx. (3.5)

Using

fX,Y (x, y|θk) = fX|Y (x|y, θk)fY (y|θk),

and

log fX(x|θ) = log fX,Y (x, y|θ)− log fY |X(y|x),

we find that maximizing E(log fX(x|θ)|y, θk) is equivalent to minimizing

H(θk, θ) =

∫
fX,Y (x, y|θk) log fX,Y (x, y|θ)dx. (3.6)

With z = θ, and b(z) = fX,Y (x, y|θ), this problem fits the framework of the non-

stochastic EM algorithm and is equivalent to minimizing

G(zk, z) = KL(b(zk), b(z))− f(z).

Once again, we may conclude that the likelihood function is increasing and that the

sequence {KL(b(zk), b(zk+1))} converges to zero.

4 Alternating Minimization

The iterative step of the GEM algorithm is to minimize G(zk, z) in Equation (2.5) to

get zk+1. If we then minimize G(z, zk+1), with respect to z, we get z = zk+1 again.

Consequently, the GEM algorithm can be viewed as alternating minimization in the

sense of Csiszár and Tusnády [12].

4.1 The Framework of Csiszár and Tusnády

Following [12], we take Ψ(p, q) to be a real-valued function of the variables p ∈ P

and q ∈ Q, where P and Q are arbitrary sets. Minimizing Ψ(p, qn) gives pn+1 and

minimizing Ψ(pn+1, q) gives qn+1, so that

Ψ(pn, qn) ≥ Ψ(pn, qn+1) ≥ Ψ(pn+1, qn+1). (4.1)
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The objective is to find (p̂, q̂) such that

Ψ(p, q) ≥ Ψ(p̂, q̂),

for all p and q. In order to show that {Ψ(pn, qn)} converges to

d = inf
p∈P,q∈Q

Ψ(p, q)

the authors of [12] assume the three- and four-point properties.

If there is a non-negative function ∆ : P × P → R such that

Ψ(p, qn+1)−Ψ(pn+1, qn+1) ≥ ∆(p, pn+1), (4.2)

then the three-point property holds. If

∆(p, pn) + Ψ(p, q) ≥ Ψ(p, qn+1), (4.3)

for all p and q, then the four-point property holds. Combining these two inequalities,

we have

∆(p, pn)−∆(p, pn+1) ≥ Ψ(pn+1, qn+1)−Ψ(p, q). (4.4)

From the inequality in (4.4) it follows easily that the sequence {Ψ(pn, qn)} converges

to d. Suppose this is not the case. Then there are p′, q′, and D > d with

Ψ(pn, qn) ≥ D > Ψ(p′, q′) ≥ d.

From Equation (4.4) we have

∆(p′, pn)−∆(p′, pn+1) ≥ Ψ(pn+1, qn+1)−Ψ(p′, q′) ≥ D −Ψ(p′, q′) > 0.

But since {∆(p′, pn)} is a decreasing sequence of positive quantities, successive dif-

ferences must converge to zero; that is, {Ψ(pn+1, qn+1)} must converge to Ψ(p′, q′),

which is a contradiction.

The five-point property of [12] is obtained by combining (4.2) and (4.3):

Ψ(p, q) + Ψ(p, qn−1) ≥ Ψ(p, qn) + Ψ(pn, qn−1). (4.5)

Note that the five-point property does not involve the second function ∆(p′, p). How-

ever, assuming that the five-point property holds, it is possible to define ∆(p′, p) so

that both the three- and four-point properties hold. Assuming the five-point property,

we have

Ψ(p, qn−1)−Ψ(p, qn) ≥ Ψ(pn, qn)−Ψ(p, q), (4.6)

from which we can show easily that {Ψ(pn, qn)} converges to d.
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4.2 Alternating Minimization for the GEM Algorithm

In the GEM algorithm we minimize G(zk, z) to obtain zk+1. With P = Q = Z,

Ψ(p, q) = G(z, w), and

∆(p, p′) = ∆(z, z′) = KL(b(z), b(z′)), (4.7)

we find that the three-point property holds. If, in addition, the four-point property

holds, then we can say that the sequence {f(zk)} converges to f(z∗). The four-point

property for the GEM is

KL(b(z), b(zk)) +KL(b(z), b(z′))− f(z′) ≥ KL(b(z), b(zk+1))− f(zk+1), (4.8)

for all z and z′.

The Kullback-Leibler distance is an example of a jointly convex Bregman distance.

According to a lemma of Eggermont and LaRiccia [14, 15], the four-point property

holds for alternating minimization of such distances, using ∆(p, p′) = KL(p, p′), pro-

vided that the sets P and Q are closed convex subsets of RN .

In [2] the authors consider the problem of minimizing a function of the form

Λ(p, q) = φ(p) + ψ(q) +Dg(p, q), (4.9)

where φ and ψ are convex and differentiable on RN , Dg is a Bregman distance, and

P = Q is the interior of the domain of g. In [7] it was shown that, when Dg is jointly

convex, the function Λ(p, q) has the five-point property of [12], which is equivalent to

the three- and four-point properties taken together. If Z is a closed, convex subset

of RN , and f is concave and differentiable, then G(z, w) has the form of Λ(p, q) in

Equation (4.9).

As we saw previously, to have Ψ(pn, qn) converging to d, it is sufficient that the

five-point property hold. It is conceivable, then, that the five-point property may hold

for Bregman distances under somewhat more general conditions than those employed

in the Eggermont-LaRiccia Lemma.

5 Sequential Unconstrained Minimization

The GEM algorithm can viewed as a particular case of sequential unconstrained

minimization, in which, at the kth step, we minimize the function

Gk(z) = s(z) + gk(z) (5.1)
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to get zk+1. Here s : Z → R is an arbitrary function, and the auxiliary function

gk(z) is non-negative, with gk(z
k) = 0. It then follows that the sequence {s(zk)} is

decreasing.

Typically, sequential unconstrained minimization algorithms, such as barrier-function

and penalty-function methods, are used to solve constrained minimization problems,

with the gk(z) chosen to impose constraints or penalize violation of the constraints

[18]. These methods can also be used to facilitate computation, with the gk(z) chosen

so that zk+1 can be expressed in closed form at each step [6].

5.1 SUMMA

In [6] a subclass of sequential unconstrained minimization algorithms called the

SUMMA class was presented. In order for a sequential unconstrained minimization

method to be in the SUMMA class it is required that the gk(z) be chosen so that

Gk(z)−Gk(z
k+1) ≥ gk+1(z), (5.2)

for all z ∈ Z. For iterations in the SUMMA class it can be shown that the sequence

{s(zk)} converges to infz s(z).

In [7] it was shown that alternating minimization methods can be reformulated as

sequential unconstrained minimization, and that those with the five-point property

are in the SUMMA class. In [8] the quite general forward-backward splitting methods

[11] were also shown to be members of the SUMMA class. These notions are discussed

in greater detail in [9].

5.2 SUMMA for GEM

For the kth step of the GEM algorithm we minimize G(zk, z), which can be written

as

G(zk, z) = Gk(z) = −f(z) +KL(b(zk), b(z)), (5.3)

so that s(z) = −f(z) and gk(z) = KL(b(zk), b(z)). Clearly, the GEM fits into the

sequential minimization framework. In order for the GEM algorithm to be in the

SUMMA class we need

KL(b(zk), b(z))− f(z)−KL(b(zk), b(zk+1)) + f(zk+1) ≥ KL(b(zk+1), b(z)), (5.4)

for all z ∈ Z. When this condition holds, we can conclude that the sequence {f(zk)}
converges to f(z∗).

We turn now to several examples in which the sequence {zk} converges to a

maximizer of f(z).
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6 Sums of Independent Poisson Random Variables

The EM is often used with aggregated data. The case of sums of independent Poisson

random variables is particularly important.

6.1 Poisson Sums

LetX1, ..., XN be independent Poisson random variables with expected valueE(Xn) =

λn. Let X be the random vector with Xn as its entries, λ the vector whose entries

are the λn, and λ+ =
∑N

n=1 λn. Then the probability function for X is

fX(x|λ) =
N∏
n=1

λxnn exp(−λn)/xn! = exp(−λ+)
N∏
n=1

λxnn /xn! . (6.1)

Now let Y =
∑N

n=1Xn. Then, the probability function for Y is

Prob(Y = y) = Prob(X1 + ...+XN = y)

=
∑

x1+...xN=y

exp(−λ+)
N∏
n=1

λxnn /xn! . (6.2)

As we shall see shortly, we have

∑
x1+...xN=y

exp(−λ+)
N∏
n=1

λxnn /xn! = exp(−λ+)λy+/y! . (6.3)

Therefore, Y is a Poisson random variable with E(Y ) = λ+.

When we observe an instance of Y , we can consider the conditional distribution

fX|Y (x|y, λ) of {X1, ..., XN}, subject to y = X1 + ...+XN . We have

fX|Y (x|y, λ) =
y!

x1!...xN !

( λ1
λ+

)x1
...
(λN
λ+

)xN
. (6.4)

This is a multinomial distribution.

Given y and λ, the conditional expected value of Xn is then

E(Xn|y, λ) = yλn/λ+.

To see why this is true, consider the marginal conditional distribution fX1|Y (x1|y, λ)

of X1, conditioned on y and λ, which we obtain by holding x1 fixed and summing

over the remaining variables. We have

fX1|Y (x1|y, λ) =
y!

x1!(y − x1)!

( λ1
λ+

)x1(λ′+
λ+

)y−x1 ∑
x2+...+xN=y−x1

(y − x1)!
x2!...xN !

N∏
n=2

(λn
λ′+

)xn
,
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where

λ′+ = λ+ − λ1.

As we shall show shortly,

∑
x2+...+xN=y−x1

(y − x1)!
x2!...xN !

N∏
n=2

(λn
λ′+

)xn
= 1,

so that

fX1|Y (x1|y, λ) =
y!

x1!(y − x1)!

( λ1
λ+

)x1(λ′+
λ+

)y−x1
.

The random variable X1 is equivalent to the random number of heads showing in

y flips of a coin, with the probability of heads given by λ1/λ+. Consequently, the

conditional expected value of X1 is yλ1/λ+, as claimed. In the next subsection we

look more closely at the multinomial distribution.

6.2 The Multinomial Distribution

When we expand the quantity (a1 + ...+aN)y, we obtain a sum of terms, each having

the form ax11 ...a
xN
N , with x1 + ... + xN = y. How many terms of the same form are

there? There are N variables an. We are to use xn of the an, for each n = 1, ..., N ,

to get y = x1 + ... + xN factors. Imagine y blank spaces, each to be filled in by a

variable as we do the selection. We select x1 of these blanks and mark them a1. We

can do that in
(
y
x1

)
ways. We then select x2 of the remaining blank spaces and enter

a2 in them; we can do this in
(
y−x1
x2

)
ways. Continuing in this way, we find that we

can select the N factor types in(
y

x1

)(
y − x1
x2

)
...

(
y − (x1 + ...+ xN−2)

xN−1

)
(6.5)

ways, or in

y!

x1!(y − x1)!
...

(y − (x1 + ...+ xN−2))!

xN−1!(y − (x1 + ...+ xN−1))!
=

y!

x1!...xN !
. (6.6)

This tells us in how many different sequences the factor variables can be selected.

Applying this, we get the multinomial theorem:

(a1 + ...+ aN)y =
∑

x1+...+xN=y

y!

x1!...xN !
ax11 ...a

xN
N . (6.7)

Select an = λn/λ+. Then,

1 = 1y =
( λ1
λ+

+ ...+
λN
λ+

)y
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=
∑

x1+...+xN=y

y!

x1!...xN !

( λ1
λ+

)x1
...
(λN
λ+

)xN
. (6.8)

From this we get

∑
x1+...xN=y

exp(−λ+)
N∏
n=1

λxnn /xn! = exp(−λ+)λy+/y! . (6.9)

7 Poisson Sums in Emission Tomography

Sums of Poisson random variables and the problem of complete versus incomplete

data arise in single-photon computed emission tomography (SPECT) (Wernick and

Aarsvold (2004) [33]).

7.1 The SPECT Reconstruction Problem

In their 1976 paper Rockmore and Makovski [30] suggested that the problem of recon-

structing a tomographic image be viewed as statistical parameter estimation. Shepp

and Vardi (1982) [31] expanded on this idea and suggested that the EM algorithm

discussed by Dempster, Laird and Rubin (1977) [13] be used for the reconstruction.

The region of interest within the body of the patient is discretized into J pixels (or

voxels), with λj ≥ 0 the unknown amount of radionuclide within the jth pixel; we

assume that λj is also the expected number of photons emitted from the jth pixel

during the scanning time. Emitted photons are detected at any one of I detectors

outside the body, with yi > 0 the photon count at the ith detector. The probability

that a photon emitted at the jth pixel will be detected at the ith detector is Pij, which

we assume is known; the overall probability of detecting a photon emitted from the

jth pixel is sj =
∑I

i=1 Pij > 0.

7.1.1 The Preferred Data

For each i and j the random variable Xij is the number of photons emitted from the

jth pixel and detected at the ith detector; the Xij are assumed to be independent

and Pijλj-Poisson. With xij a realization of Xij, the vector x with components xij is

our preferred data. The pdf for this preferred data is a probability vector, with

fX(x|λ) =
I∏
i=1

J∏
j=1

exp−Pijλj(Pijλj)
xij/xij! . (7.1)
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Given an estimate λk of the vector λ and the restriction that Yi =
∑J

j=1Xij, the

random variables Xi1, ..., XiJ have the multinomial distribution

Prob(xi1, ..., xiJ) =
yi!

xi1! · · · xiJ !

J∏
j=1

( Pijλj
(Pλ)i

)xij
.

Therefore, the conditional expected value of Xij, given y and λk, is

E(Xij|y, λk) = λkjPij

( yi
(Pλk)i

)
,

and the conditional expected value of the random variable

log fX(X|λ) =
I∑
i=1

J∑
j=1

(−Pijλj) +Xij log(Pijλj) + constants

becomes

E(log fX(X|λ)|y, λk) =
I∑
i=1

J∑
j=1

(
(−Pijλj) + λkjPij

( yi
(Pλk)i

)
log(Pijλj)

)
,

omitting terms that do not involve the parameter vector λ. In the EM algorithm, we

obtain the next estimate λk+1 by maximizing E(log fX(X|λ)|y, λk).
The log likelihood function for the preferred data X (omitting constants) is

LLx(λ) =
I∑
i=1

J∑
j=1

(
− Pijλj +Xij log(Pijλj)

)
. (7.2)

Of course, we do not have the complete data.

7.1.2 The Incomplete Data

What we do have are the yi, values of the random variables

Yi =
J∑
j=1

Xij; (7.3)

this is the given data. These random variables are also independent and (Pλ)i-

Poisson, where

(Pλ)i =
J∑
j=1

Pijλj.

The log likelihood function for the given data is

LLy(λ) =
I∑
i=1

(
− (Pλ)i + yi log((Pλ)i)

)
. (7.4)
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Maximizing LLx(λ) in Equation (7.2) is easy, while maximizing LLy(λ) in Equation

(7.4) is harder and requires an iterative method.

The EM algorithm involves two steps: in the E-step we compute the conditional

expected value of LLx(λ), conditioned on the data vector y and the current estimate

λk of λ; in the M-step we maximize this conditional expected value to get the next

λk+1. Putting these two steps together, we have the following EMML iteration:

λk+1
j = λkj s

−1
j

I∑
i=1

Pij
yi

(Pλk)i
. (7.5)

For any positive starting vector λ0, the sequence {λk} converges to a maximizer of

LLy(λ), over all non-negative vectors λ.

Note that, because we are dealing with finite probability vectors in this example,

it is a simple matter to conclude that

fY (y|λ) =
∑

x∈h−1(y)

fX(x|λ). (7.6)

7.2 Using the KL Distance

In this subsection we assume, for notational convenience, that the system y = Pλ

has been normalized so that sj = 1 for each j. Maximizing E(log fX(X|λ)|y, λk) is

equivalent to minimizing KL(r(λk), q(λ)), where r(λ) and q(λ) are I by J arrays with

entries

r(λ)ij = λjPij

( yi
(Pλ)i

)
,

and

q(λ)ij = λjPij.

In terms of our previous notation we identify r(λ) with b(θ), and q(λ) with f(θ). The

set F(Θ) of all f(θ) is now a convex set and the four-point property of [12] holds.

The iterative step of the EMML algorithm is then

λk+1
j = λkj

I∑
i=1

Pi,j
yi

(Pλk)i
. (7.7)

The sequence {λk} converges to a maximizer λML of the likelihood for any positive

starting vector.

As we noted previously, before we can discuss the possible convergence of the

sequence {λk} of parameter vectors to a maximizer of the likelihood, it is necessary to

have a notion of convergence in the parameter space. For the problem in this section,
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the parameter vectors λ are non-negative. Proof of convergence of the sequence {λk}
depends heavily on the following identities [4]:

KL(y, Pλk)−KL(y, Pλk+1) = KL(r(λk), r(λk+1)) +KL(λk+1, λk); (7.8)

and

KL(λML, λ
k)−KL(λML, λ

k+1) ≥ KL(y, Pλk)−KL(y, PλML). (7.9)

Any likelihood maximizer λML is also a non-negative minimizer of the KL distance

KL(y, Pλ), so the EMML algorithm can be thought of as a method for finding a non-

negative solution (or approximate solution) for a system y = Pλ of linear equations

in which yi > 0 and Pij ≥ 0 for all indices. This will be helpful when we consider

mixture problems.

8 Finite Mixture Problems

Estimating the combining proportions in probabilistic mixture problems shows that

there are meaningful examples of our acceptable-data model, and provides important

applications of likelihood maximization.

8.1 Mixtures

We say that a random vector V taking values in RD is a finite mixture (see [16, 29])

if there are probability density functions or probabilities fj and numbers θj ≥ 0, for

j = 1, ..., J , such that the probability density function or probability function for V

has the form

fV (v|θ) =
J∑
j=1

θjfj(v), (8.1)

for some choice of the θj ≥ 0 with
∑J

j=1 θj = 1. We shall assume, without loss of

generality, that D = 1.

8.2 The Likelihood Function

The data are N realizations of the random variable V , denoted vn, for n = 1, ..., N ,

and the given data is the vector y = (v1, ..., vN). The column vector θ = (θ1, ..., θJ)T
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is the generic parameter vector of mixture combining proportions. The likelihood

function is

Ly(θ) =
N∏
n=1

(
θ1f1(vn) + ...+ θJfJ(vn)

)
. (8.2)

Then the log likelihood function is

LLy(θ) =
N∑
n=1

log
(
θ1f1(vn) + ...+ θJfJ(vn)

)
.

With u the column vector with entries un = 1/N , and P the matrix with entries

Pnj = fj(vn), we define

sj =
N∑
n=1

Pnj =
N∑
n=1

fj(vn).

Maximizing LLy(θ) is equivalent to minimizing

F (θ) = KL(u, Pθ) +
J∑
j=1

(1− sj)θj. (8.3)

8.3 A Motivating Illustration

To motivate such mixture problems, we imagine that each data value is generated by

first selecting one value of j, with probability θj, and then selecting a realization of a

random variable governed by fj(v). For example, there could be J bowls of colored

marbles, and we randomly select a bowl, and then randomly select a marble within

the selected bowl. For each n the number vn is the numerical code for the color of the

nth marble drawn. In this illustration we are using a mixture of probability functions,

but we could have used probability density functions.

8.4 The Acceptable Data

We approach the mixture problem by creating acceptable data. We imagine that we

could have obtained xn = jn, for n = 1, ..., N , where the selection of vn is governed by

the function fjn(v). In the bowls example, jn is the number of the bowl from which the

nth marble is drawn. The acceptable-data random vector is X = (X1, ..., XN), where

the Xn are independent random variables taking values in the set {j = 1, ..., J}. The

value jn is one realization of Xn. Since our objective is to estimate the true θj, the

values vn are now irrelevant. Our ML estimate of the true θj is simply the proportion

of times j = jn. Given a realization x of X, the conditional pdf or pf of Y does not

involve the mixing proportions, so X is acceptable. Notice also that it is not possible

to calculate the entries of y from those of x; the model Y = h(X) does not hold.
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8.5 The Mix-EM Algorithm

Using this acceptable data, we derive the EM algorithm, which we call the Mix-EM

algorithm.

With Nj denoting the number of times the value j occurs as an entry of x, the

likelihood function for X is

Lx(θ) = fX(x|θ) =
J∏
j=1

θ
Nj

j , (8.4)

and the log likelihood is

LLx(θ) = logLx(θ) =
J∑
j=1

Nj log θj. (8.5)

Then

E(logLx(θ)|y, θk) =
J∑
j=1

E(Nj|y, θk) log θj. (8.6)

To simplify the calculations in the E-step we rewrite LLx(θ) as

LLx(θ) =
N∑
n=1

J∑
j=1

Xnj log θj, (8.7)

where Xnj = 1 if j = jn and zero otherwise. Then we have

E(Xnj|y, θk) = prob (Xnj = 1|y, θk) =
θkj fj(vn)

f(vn|θk)
. (8.8)

The function E(LLx(θ)|y, θk) becomes

E(LLx(θ)|y, θk) =
N∑
n=1

J∑
j=1

θkj fj(vn)

f(vn|θk)
log θj. (8.9)

Maximizing with respect to θ, we get the iterative step of the Mix-EM algorithm:

θk+1
j =

1

N
θkj

N∑
n=1

fj(vn)

f(vn|θk)
. (8.10)

We know from our previous discussions that, since the preferred data X is ac-

ceptable, likelihood is increasing for this algorithm. We shall go further now, and

show that the sequence of probability vectors {θk} converges to a maximizer of the

likelihood.
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8.6 Convergence of the Mix-EM Algorithm

As we noted earlier, maximizing the likelihood in the mixture case is equivalent to

minimizing

F (θ) = KL(u, Pθ) +
J∑
j=1

(1− sj)θj,

over probability vectors θ. It is easily shown that, if θ̂ minimizes F (θ) over all non-

negative vectors θ, then θ̂ is a probability vector. Therefore, we can obtain the

maximum likelihood estimate of θ by minimizing F (θ) over non-negative vectors θ.

The following theorem is found in [5].

Theorem 8.1 Let u be any positive vector, P any non-negative matrix with sj > 0

for each j, and

F (θ) = KL(u, Pθ) +
J∑
j=1

βjKL(γj, θj).

If sj + βj > 0, αj = sj/(sj + βj), and βjγj ≥ 0, for all j, then the iterative sequence

given by

θk+1
j = αjs

−1
j θkj

( N∑
n=1

Pn,j
un

(Pθk)n

)
+ (1− αj)γj (8.11)

converges to a non-negative minimizer of F (θ).

With the choices un = 1/N , γj = 0, and βj = 1− sj, the iteration in Equation (8.11)

becomes that of the Mix-EM algorithm. Therefore, the sequence {θk} converges to

the maximum likelihood estimate of the mixing proportions.

9 More on Convergence

There is a mistake in the proof of convergence given in Dempster, Laird, and Rubin

(1977) [13]. Wu (1983) [34] and Boyles (1983) [3] attempted to repair the error, but

also gave examples in which the EM algorithm failed to converge to a global maximizer

of likelihood. In Chapter 3 of McLachlan and Krishnan (1997) [24] we find the basic

theory of the EM algorithm, including available results on convergence and the rate of

convergence. Because many authors rely on the continuous version of Equation (3.2),

it is not clear that these results are valid in the generality in which they are presented.

There appears to be no single convergence theorem that is relied on universally; each

application seems to require its own proof of convergence. When the use of the EM
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algorithm was suggested for SPECT and PET, it was necessary to prove convergence

of the resulting iterative algorithm in Equation (7.5), as was eventually achieved in a

sequence of papers (Shepp and Vardi (1982) [31], Lange and Carson (1984) [22], Vardi,

Shepp and Kaufman (1985) [32], Lange, Bahn and Little (1987) [23], and [4]). When

the EM algorithm was applied to list-mode data in SPECT and PET (Barrett, White,

and Parra (1997) [1, 28], and Huesman et al. (2000) [20]), the resulting algorithm

differed slightly from that in Equation (7.5) and a proof of convergence was provided

in [5]. The convergence theorem in [5] also establishes the convergence of the iteration

in Equation (8.10) to the maximum-likelihood estimate of the mixing proportions.

10 Open Questions

As we have seen, the conventional formulation of the EM algorithm presents difficul-

ties when probability density functions are involved. We have shown here that the

use of acceptable preferred data can be helpful in resolving this issue, but other ways

may also be useful.

Proving convergence of the sequence {θk} appears to involve the selection of an

appropriate topology for the parameter space Θ. While it is common to assume that

Θ is a subset of Euclidean space and that the usual norm should be used to define

distance, it may be helpful to tailor the metric to the nature of the parameters. In

the case of Poisson sums, for example, the parameters are non-negative vectors and

we found that the cross-entropy distance is more appropriate. Even so, additional

assumptions appear necessary before convergence of the {θk} can be established. To

simplify the analysis, it is often assumed that cluster points of the sequence lie in the

interior of the set Θ, which is not a realistic assumption in some applications.

It may be wise to consider, instead, convergence of the functions fX(x|θk), or

maybe even to identify the parameters θ with the functions fX(x|θ). Proving conver-

gence to Ly(θML) of the likelihood values Ly(θ
k) is also an option.

11 Conclusion

The essential aspects of the EM algorithm are non-stochastic and are more simply

described in terms of a more general optimization procedure that we call the general-

ized EM (GEM) method. The EM algorithm for the discrete case of probabilities fits

into the GEM framework, which allows us to conclude that likelihood is increasing.

Difficulties with the conventional formulation of the EM algorithm in the con-
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tinuous case of probability density functions (pdf) has prompted us to adopt a new

definition, that of acceptable data. This new formulation of the EM algorithm for the

continuous case then fits into the GEM framework as well, from which we conclude,

once again, that likelihood is increasing.

In both the discrete and continuous cases, the two steps of the EM algorithm can

be viewed as alternating minimization, along the lines investigated by Csiszár and

Tusnády [12]. The GEM can also be viewed as sequential unconstrained minimization.

If the five-point property holds in the AM formulation, or the SUMMA condition holds

in the sequential unconstrained minimization formulation, then the sequence {f(zk)}
converges to f(z∗).
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