Richard Kaufman

Homework #4 

Applied Math 1

Typed using MathType

FOURIER SERIES
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7.26]  Graph each of the following functions and find their corresponding Fourier series using properties of even and odd functions wherever applicable.
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   Period 4


(b) 
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    Period 8


(c)  
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(d) 
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    Period 6
7.27]  In each part of Problem 7.26, tell where the discontinuities of f(x) are located and to what value the series converges at these discontinuities.
7.29]  (a) Expand 
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,  in a Fourier sine series.

(b) How should f(x) be defined at 
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 so that the series will converge to f(x) for 
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7.30]  (a)  Expand in a Fourier series 
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 if the period is 
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; and   (b) compare with the result of Problem 7.29, explaining the similarities and differences if any.
ORTHOGONAL FUNCTIONS
7.42]  Given the functions 
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 where 
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 are constants.  Determine the constants so that these functions are mutually orthogonal in (-1,1) and thus obtain the functions.
7.46]  Let r be any three dimensional vector.  Show that

(a)  
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(b)  
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and discuss these with reference to Bessel’s inequality and Parseval’s identity.  Compare with Problem 7.15.
7.48]  Let 
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  be orthogonal in (a,b).  Prove that 
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is a minimum when 
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Discuss the connection of this to  (a)  Fourier series and  (b) Problem 7.45.
7.49]  (a)  Show that the functions  
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 with respect to the density function 
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.   (b) Obtain a mutually orthogonal set.
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