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Preface

I wrote these notes in order to help me discover how best to present
the circle of definitions and propositions that center on the Baillon–
Haddad and Krasnosel’skii-Mann-Opial Theorems in iterative optimiza-
tion. This short booklet is, for the most part, an abbreviated version of
my book Iterative Optimization in Inverse Problems, published in Jan-
uary, 2014, by CRC Press. Some of the results contained here are new,
particularly those pertaining to the Baillon–Haddad Theorem. My ar-
ticles listed in the bibliography can be downloaded from my website,
http://faculty.uml.edu/cbyrne/cbyrne.html.
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Chapter 1

Overview and Examples
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1.1 Overview

The basic problem we consider in these notes is to minimize a function
f : X → R over x in C ⊆ X, where X is an arbitrary nonempty set. Until
it is absolutely necessary, we shall not impose any structure on X or on
f . One reason for avoiding structure on X and f is that we can actually
achieve something interesting without it. The second reason is that when
we do introduce structure, it will not necessarily be that of a metric space;
for instance, cross-entropy and other Bregman distances play an important
role in some of the iterative optimization algorithms I discuss in these notes.

We investigate two classes of iterative optimization methods: sequential
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2 Lecture Notes on Iterative Optimization Algorithms

auxiliary-function (AF) methods; and fixed-point (FP) methods. As we
shall see, there is some overlap between these two classes of methods. As is
appropriate for an overview, in this chapter we make a number of assertions
without providing proofs. Proofs of most of these assertions will be given
in subsequent chapters.

1.2 Auxiliary-Function Methods

For k = 1, 2, ... we minimize the function

Gk(x) = f(x) + gk(x) (1.1)

over x in X to get xk. We shall say that the functions gk(x) are auxil-
iary functions if they have the properties gk(x) ≥ 0 for all x ∈ X, and
gk(xk−1) = 0. We then say that the sequence {xk} has been generated by
an auxiliary-function (AF) method. We then have the following result.

Proposition 1.1 If the sequence {xk} is generated by an AF method, then
the sequence {f(xk)} is nonincreasing.

Proof: We have

Gk(xk−1) = f(xk−1) + gk(xk−1) = f(xk−1)

≥ Gk(xk) = f(xk) + gk(xk) ≥ f(xk),

so f(xk−1) ≥ f(xk).

In order to have the sequence {f(xk} converging to β = inf{f(x)|x ∈ C}
we need to impose an additional property on the gk(x). We shall return to
this issue later in this chapter.

Perhaps the best known examples of AF methods are the sequential
unconstrained minimization (SUM) methods discussed by Fiacco and Mc-
Cormick in their classic book [94]. They focus on barrier-function and
penalty-function algorithms, in which the auxiliary functions are intro-
duced to incorporate the constraint that f is to be minimized over C.
In [94] barrier-function methods are called interior-point methods, while
penalty-function methods are called exterior-point methods.

A barrier function has the value +∞ for x not in C, while the penalty
function is zero on C and positive off of C. In more general AF methods, we
may or may not have C = X. If C is a proper subset of X, we can replace
the function f(x) with f(x) + ιC(x), where ιC(x) takes on the value zero
for x in C and the value +∞ for x not in C; then the gk(x) need not involve
C.
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Prior to the 1980’s linear programming and nonlinear programming
were viewed as separate subjects. In 1984 Karmarkar published his
polynomial-time interior-point algorithm for linear programming [113].
This event created much excitement at the time, even making the front
page of the New York Times. Although it appears now that some claims
for this algorithm were overstated, the arrival of the algorithm served to
revive interest in interior-point methods and to bring linear and nonlinear
programming closer together.

As we shall see, in addition to incorporating the constraint set C, the
gk(x) can be selected to make the computations simpler; sometimes we
select the gk(x) so that xk can be expressed in closed form. However, in the
most general, non-topological case, we are not concerned with calculational
issues involved in finding xk. Our objective is to select the gk(x) so that
the sequence {f(xk)} converges to β = inf{f(x), x ∈ C}. We begin with
two simple examples of the use of barrier functions.

1.2.1 Barrier-Function Methods: An Example

Our first problem is to minimize the function f(x) = f(x1, x2) = x21+x22,
subject to x1 + x2 ≥ 1. Here X = R2, the function f(x) is continuous,
indeed, differentiable, and the set C = {x|x1 + x2 ≥ 1} is closed and
convex. For each k we minimize the function

Bk(x) = f(x) +
1

k
b(x) = x21 + x22 −

1

k
log(x1 + x2 − 1) (1.2)

over x ∈ D, where D = {x|x1 + x2 > 1}. Note that C is the closure of D
and β = inf{f(x)|x ∈ D}. Setting the partial derivatives to zero, we find
that

xk1 = xk2 =
1

4
+

1

4

√
1 +

4

k
.

As k → +∞ the sequence {xk} converges to ( 1
2 ,

1
2 ), which is the solution.

In this example the auxiliary function − log(x1 +x2− 1) serves to limit
the calculations to those x satisfying the constraint x1 + x2 > 1, while
also permitting us to get xk in closed form. The minus sign may seem
unnecessary, since log(x1 +x2− 1) would similarly restrict the x. However,
without the minus sign there is no minimizer of Bk(x) within D.

1.2.2 Barrier-Function Methods: Another Example

Now we want to minimize the function f(x) = x1 + x2, subject to the
constraints −x21 + x2 ≥ 0 and x1 ≥ 0. Once again, we use the log function
to create our barrier function. We minimize

Bk(x) = f(x) +
1

k
b(x) = x1 + x2 +

1

k
(− log(−x21 + x2)− log x1) (1.3)
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to get xk. With a bit of algebra we find that

xk1 = −1

4
+

1

4

√
1 +

8

k
,

and

xk2 =
1

16

(
−1 +

√
1 +

8

k

)2

+
1

k
.

As k → +∞ the sequence {xk} converges to (0, 0), which is the answer.

1.2.3 Barrier-Function Methods for the Basic Problem

Now the problem is to minimize f : X → R, subject to x ∈ C. We select
b : X → (−∞,+∞] with C = {x|b(x) < +∞}. For each k we minimize
Bk(x) = f(x) + 1

k b(x) over all x ∈ X to get xk, which must necessarily lie
in C. Formulated this way, the method is not yet in AF form. Nevertheless,
we have the following proposition.

Proposition 1.2 The sequence {b(xk)} is nondecreasing, and the sequence
{f(xk)} is nonincreasing and converges to β = infx∈C f(x).

Proof: From Bk(xk−1) ≥ Bk(xk) and Bk−1(xk) ≥ Bk−1(xk−1), for k =
2, 3, ..., it follows easily that

1

k − 1
(b(xk)− b(xk−1)) ≥ f(xk−1)− f(xk) ≥ 1

k
(b(xk)− b(xk−1)).

Suppose that {f(xk)} ↓ β∗ > β. Then there is z ∈ C with

f(xk) ≥ β∗ > f(z) ≥ β,

for all k. Then

1

k
(b(z)− b(xk)) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0,

for all k. But the sequence { 1k (b(z) − b(xk))} converges to zero, which
contradicts the assumption that β∗ > β.

The proof of Proposition 1.2 depended heavily on the details of the
barrier-function method. Now we reformulate the barrier-function method
as an AF method, and obtain a different proof of Proposition 1.2 that leads
to the definition of the SUMMA class of of AF methods [47, 55].

Minimizing Bk(x) = f(x) + 1
k b(x) to get xk is equivalent to minimizing

kf(x) + b(x), which, in turn, is equivalent to minimizing

Gk(x) = f(x) + gk(x),
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where

gk(x) = [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)].

Clearly, gk(x) ≥ 0 and gk(xk−1) = 0. Now we have the AF form of the
method. Here is a different proof of Proposition 1.2.

A simple calculation shows that

Gk(x)−Gk(xk) = gk+1(x), (1.4)

for all x ∈ X. Suppose that the nonincreasing sequence {f(xk)} converges
to some β∗ > β. Then there is z ∈ C with β∗ > f(z) ≥ β. Then

gk(z)− gk+1(z) = gk(z)−Gk(z) +Gk(xk)

= gk(z)− f(z)− gk(z) + f(xk) + gk(xk) ≥ β∗ − f(z) > 0.

This is impossible, since {gkz) is then a nonincreasing sequence of non-
negative numbers whose successive differences are bounded below by the
positive number β∗ − f(z).

1.2.4 The SUMMA Class

Close inspection of the second proof of Proposition 1.2 reveals that
Equation (1.4) is unnecessary; all we need is the SUMMA Inequality

Gk(x)−Gk(xk) ≥ gk+1(x), (1.5)

for all x ∈ X. All iterative methods that can be reformulated as AF meth-
ods for which the inequality in (1.5) holds are said to belong to the SUMMA
class of methods. This may seem to be a quite restricted class of methods,
but, as we shall see, that is far from the case. Many well known iterative
methods fall into the SUMMA class [47, 55].

1.2.5 Cross-Entropy Methods

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler (KL)
distance [117] from a to b be

KL(a, b) = a log
a

b
+ b− a, (1.6)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =

J∑
j=1

KL(xj , zj). (1.7)
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Then KL(x, z) ≥ 0 and KL(x, z) = 0 if and only if x = z. Unlike
the Euclidean distance, the KL distance is not symmetric; KL(x, y) and
KL(y, x) are distinct. We can obtain different approximate solutions of a
nonnegative system of linear equations Px = y by minimizing KL(Px, y)
and KL(y, Px) with respect to nonnegative x. The SMART minimizes
KL(Px, y), while the EMML algorithm minimizes KL(y, Px). Both are it-
erative algorithms in the SUMMA class, and are best developed using the
alternating minimization (AM) framework.

1.2.6 Alternating Minimization

Let Θ : P × Q → (−∞,+∞], where P and Q are arbitrary nonempty
sets. In the alternating minimization (AM) method we minimize Θ(p, qn−1)
over p ∈ P to get pn and then minimize Θ(pn, q) over q ∈ Q to get qn. We
want

{Θ(pn, qn)} ↓ β = inf{Θ(p, q)|p ∈ P, q ∈ Q}. (1.8)

In [81] Csiszár and Tusnády show that if the function Θ possesses what
they call the five-point property, then Equation (1.8) holds. There seemed
to be no convincing explanation of why the five-point property should be
used, except that it works. I was quite surprised when I discovered that the
AM method can be reformulated as an AF method to minimize a function
of the single variable p and that the five-point property becomes precisely
the SUMMA condition.

1.2.7 Penalty-Function Methods

Once again, we want to minimize f : X → R, subject to x ∈ C. We
select a penalty function p : X → [0,+∞) with p(x) = 0 if and only if
x ∈ C. Then, for each k, we minimize

Pk(x) = f(x) + kp(x),

over all x, to get xk. Here is a simple example of the use of penalty-function
methods.

Let us minimize the function f(x) = (x+ 1)2, subject to x ≥ 0. We let
p(x) = 0 for x ≥ 0, and p(x) = x2, for x < 0. Then xk = − 1

k+1 , which

converges to zero, the correct answer, as k → +∞. Note that xk is not in
C = R+, which is why such methods are called exterior-point methods.

Clearly, it is equivalent to minimize

p(x) +
1

k
f(x),

which gives the penalty-function method the form of a barrier-function
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method. From Proposition 1.2 it follows that the sequence {p(xk)} is non-
increasing and converges to zero, while the sequence {f(xk)} is nondecreas-
ing, and, as we can easily show, converges to some γ ≤ β.

Without imposing further structure on X and f we cannot conclude
that {f(xk)} converges to β. The reason is that, in the absence of further
structure, such as the continuity of f , what f does within C is unrelated
to what it does outside C. If, for some f , we do have {f(xk)} converging
to β, we can replace f(x) with f(x)− 1 for x not in C, while leaving f(x)
unchanged for x in C. Then β remains unaltered, while the new sequence
{f(xk)} converges to γ = β − 1.

1.3 Fixed-Point Methods

We turn now to fixed-point (FP) methods, the second class of methods
we shall discuss in these notes. For our discussion of fixed-point methods
we shall impose some structure on X, although, as we shall see, it may not
be that of a metric space. However, most of the examples we shall present
will be in the setting of a Hilbert space H, usually H = RJ .

When we use an FP method to solve a problem iteratively, we select an
operator T : X → X such that z solves the problem if and only if z is a
fixed point of T , that is, Tz = z. The set of fixed points of T will be denoted
Fix(T ). Our iterative method is then to let xk = Txk−1, for k = 1, 2, .... If
we are trying to minimize f : X → R, subject to x ∈ C, then, as before,
we want the sequence {f(xk)} to converge to β. If we have imposed some
topology on X, we can also ask for the sequence {xk} to converge, at least
weakly, to a solution of the problem.

Definition 1.1 An operator T : H → H is convergent if T has at least
one fixed point and the sequence {T kx0} converges weakly to a fixed point
of T , for every starting point x0.

1.3.1 Gradient Descent Algorithms

Suppose that we want to minimize f : H → R. When f is Gâteaux
differentiable the derivative of f at x is the gradient, ∇f(x). A gradient-
descent algorithm has the iterative step

xk = xk−1 − γk∇f(xk−1), (1.9)

where the step-length parameters γk are adjusted at each step. When f is
Gâteaux differentiable at x, the one-sided directional derivative of f at x
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and in the direction d, denoted f ′+(x; d), is given by

f ′+(x; d) = 〈∇f(x), d〉.

When f is convex and Gâteaux differentiable and the gradient ∇f is L-
Lipschitz continuous, that is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,

for all x and y, we can modify the iteration in Equation (1.9). If 0 < γ < 2
L ,

and

xk = xk−1 − γ∇f(xk−1), (1.10)

then the sequence {xk} converges to a zero of ∇f , whenever there are such
zeros. Now that γ is independent of k, we can take T = I − γ∇f , with I
the identity operator, and write the iteration as xk = Txk−1. As we shall
show later, the operator T is convergent. A point z is a fixed point of T if
and only if ∇f(z) = 0, and so if and only if z minimizes f .

Definition 1.2 For any function f : H → R the epigraph of f is the set

epi(f) = {(x, γ) ∈ H × R|f(x) ≤ γ}.

Definition 1.3 A function f : H → R is lower semi-continuous or closed
if epi(f) is closed in H× R.

If f : H → R is closed and convex, then epi(f) is a nonempty, closed, and
convex set.

Note that when f : RJ → R is convex, it is continuous. It is also true in
the infinite-dimensional case, provided that f is closed as well ([15], Corol-
lary 8.30). For any convex f : H → R, Gâteaux differentiability and Fréchet
differentiability are equivalent for finite-dimensional H, but not necessarily
equivalent in the case of infinite-dimensional Hilbert space. We shall use
the word “differentiable” to mean Gâteaux differentiable. Whenever f is
differentiable and ∇f is continuous, f is Fréchet differentiable. Therefore,
if ∇f is L-Lipschitz continuous, then f is Fréchet differentiable.

A function f : H → [−∞,+∞] is proper if there is no x with f(x) = −∞
and some x with f(x) < +∞. All the functions we consider are proper.

1.3.2 Projected Gradient Descent

For any nonempty, closed convex subset C of a Hilbert space H and any
x in H there is a unique z ∈ C closest to x. This z is denoted z = PCx and
the operator PC is called an orthogonal projection (or metric projection)
operator.
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Suppose now that we want to minimize a differentiable closed convex
function f : H → R over x ∈ C, where C is a nonempty closed, convex
subset of H. Assume that ∇f is L-Lipschitz continuous, and 0 < γ < 2

L .
The projected gradient descent algorithm has the iterative step

xk = PC(xk−1 − γ∇f(xk−1)). (1.11)

The sequence {xk} converges weakly to a point z ∈ C with f(z) ≤ f(x),
for all x ∈ C, whenever such a point z exists. It is not hard to show that
such z are the fixed points of the operator T = PC(I − γ∇f), which is a
convergent operator.

1.3.3 Solving Ax = b

Suppose that A is a real M by N matrix and b is a member of RM . We
want x ∈ RN so that Ax = b, or, if there are no such x, then we want an x
that minimizes the function f(x) = 1

2‖Ax−b‖
2, where the norm is the two-

norm (that is, the usual Euclidean norm). There is a closed-form solution
for this problem: x = (ATA)−1AT b, provided that ATA is invertible. In
many applications in image processing and remote sensing the matrix A
can be quite large, with M and N in the tens of thousands. In such cases,
using the closed-form expression for the solution is not practical and we
turn to iterative methods.

The function f(x) = 1
2‖Ax− b‖

2 is differentiable and its derivative,

∇f(x) = AT (Ax− b),

is L-Lipschitz continuous for L = ρ(ATA), the spectral radius of ATA,
which, in this case, is the largest eigenvalue of ATA. Applying the gradient
descent algorithm in the previous section, we get the Landweber iteration
[118, 20],

xk = xk−1 − γAT (Axk−1 − b), (1.12)

for 0 < γ < 2
ρ(ATA)

. The sequence {xk} converges to the minimizer of f(x)

closest to x0.

1.3.4 Projected Landweber Algorithm

Suppose that we want to find x ∈ C ⊆ RN such that Ax = b, or,
failing that, to minimize the function 1

2‖Ax − b‖
2 over x ∈ C. Applying

the projected gradient descent algorithm, we get the projected Landweber
algorithm [20],

xk = PC(xk−1 − γAT (Axk−1 − b)). (1.13)

The sequence {xk} converges to a minimizer of f over C, whenever such
minimizers exist.
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1.3.5 The Split Feasibility Problem

Let C and Q be nonempty closed, convex subsets of RN and RM , re-
spectively, and A a real M by N matrix. The split feasibility problem (SFP)
is to find x ∈ C with Ax ∈ Q, or, failing that, to minimize the function
f(x) = 1

2‖PQAx − Ax‖2 over x ∈ C. It can be shown [55] that f(x) is
differentiable and its gradient is

∇f(x) = AT (I − PQ)Ax.

The gradient is again L-Lipschitz continuous for L = ρ(ATA). Applying
the gradient descent algorithm we have the CQ algorithm [42, 43]:

xk = PC(xk−1 − γAT (I − PQ)Axk−1). (1.14)

Solutions of the problem are the fixed points of the convergent operator
T : H → H given by T = PC(I − γAT (I − PQ)A).

In [66, 62] Yair Censor and his colleagues modified the CQ algorithm
and used their modified method to derive protocols for intensity modified
radiation therapy (IMRT).

1.3.6 Firmly Nonexpansive Operators

We are interested in operators T that are convergent. For such operators
we often find that ‖xk+1 − xk‖ ≤ ‖xk − xk−1‖ for each k. This leads us to
the definition of nonexpansive operators.

Definition 1.4 An operator T on H is nonexpansive (ne) if, for all x and
y, we have

‖Tx− Ty‖ ≤ ‖x− y‖.

Nonexpansive operators need not be convergent, as the ne operator T = −I
illustrates.

As we shall see later, the operators T = PC are nonexpansive. In fact,
the operators PC have a much stronger property; they are firmly nonex-
pansive.

Definition 1.5 An operator T on H is firmly nonexpansive (fne) if, for
every x and y, we have

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2.

If T is fne then T is convergent. The class of fne operators is smaller than
the class of ne operators and does yield convergent iterative sequences.
However, the product or composition of two or more fne operators need
not be fne, which limits the usefulness of this class of operators. Even
the product of PC1

and PC2
need not be fne. We need to find a class of

convergent operators that is closed to finite products.
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1.3.7 Averaged Operators

It can be shown easily that an operator F is fne if and only if there is
a nonexpansive operator N such that

F =
1

2
I +

1

2
N.

Definition 1.6 An operator A : H → H is α-averaged (α-av) if there is a
nonexpansive operator N such that

A = (1− α)I + αN,

for some α in the interval (0, 1). If A is α-av for some α then A is an
averaged (av) operator.

All averaged operators are nonexpansive, all firmly nonexpansive op-
erators are averaged, the class of averaged operators is closed to finite
products, and averaged operators are convergent. In other words, the class
of averaged operators is precisely the class that we are looking for.

1.3.8 Useful Properties of Operators on H
It turns out that properties of an operator T are often more easily

studied in terms of properties of its complement, G = I −T . The following
two identities are easy to prove and are quite helpful. For any operator
T : H → H and G = I − T we have

‖x− y‖2 − ‖Tx− Ty‖2 = 2〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2, (1.15)

and

〈Tx− Ty, x− y〉 − ‖Tx− Ty‖2 = 〈Gx−Gy, x− y〉 − ‖Gx−Gy‖2.(1.16)

Definition 1.7 An operator G : H → H is ν-inverse strongly monotone
(ν-ism) for some ν > 0 if

〈Gx−Gy, x− y〉 ≥ ν‖Gx−Gy‖2,

for all x and y.

Clearly, if G is ν-ism then γG is ν
γ -ism. Using the two identities in (1.15)

and (1.16) it is easy to prove the following theorem.

Theorem 1.1 Let T : H → H be arbitrary and G = I − T . Then

1. T is ne if and only if G is ν-ism for ν = 1
2 ;

2. T is α-av if and only if G is ν-ism for ν = 1
2α , for some 0 < α < 1;
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3. T is fne if and only if G is ν-ism for ν = 1.

4. T is fne if and only if G is fne;

5. If G is ν-ism and 0 < µ ≤ ν, then G is µ-ism.

1.3.9 Subdifferentials and Subgradients

Subdifferentials and subgradients are important tools in optimization,
particularly in convex optimization.

Definition 1.8 Let f : H → [−∞,∞]. Then ∂f(x) is the subdifferential
of f at x, defined by

∂f(x) = {u|〈u, z − x〉+ f(x) ≤ f(z)}, (1.17)

for all z. The members of ∂f(x) are the subgradients of f at x.

It is easy to see that, if z ∈ H minimizes f(x) over x ∈ H, then 0 ∈ ∂f(z).
There is a subtle point to be aware of here: if f is differentiable, but not

convex, ∇f(x) need not be a member of ∂f(x), which may be empty. If f is
closed and convex and ∂f(x) is a singleton set, then f is differentiable and
∂f(x) = {∇f(x)}. The following proposition provides a characterization of
convexity for nondifferentiable functions.

Proposition 1.3 A function f : H → R is closed and convex if and only
if ∂f(x) is nonempty, for every x ∈ H.

Proof: When f is closed and convex, its epigraph is a closed convex set.
We can then use orthogonal projection to find a supporting hyperplane for
the epigraph at the point (x, f(x)). From the normal to the hyperplane we
can construct a member of ∂f(x) [56]. Now we prove the converse.

By Proposition 17.39 of [15], if f : H → R is convex and ∂f(x) is
nonempty, for each x, then f is closed. Now let x and y be arbitrary in H,
z = (1− α)x+ αy, for some α ∈ (0, 1), and u a member of ∂f(z). Then

f(x)− f(z) ≥ 〈u, x− z〉 = α〈u, x− y〉,

and

f(y)− f(z) ≥ 〈u, y − z〉 = (1− α)〈u, y − x〉 = −(1− α)〈u, x− y〉.

Therefore,

(1− α)(f(x)− f(z)) ≥ (1− α)α〈u, x− y〉 ≥ α(f(z)− f(y)),

and so
(1− α)f(x) + αf(y) ≥ (1− α)f(z) + αf(z) = f(z).
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Proposition 1.4 For any f : H → R and g : H → R we have

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x). (1.18)

If f and g are closed and convex, then

∂f(x) + ∂g(x) = ∂(f + g)(x). (1.19)

Proof: The containment in (1.18) follows immediately from the definition
of the subdifferential. For the proof of (1.19) see Corollary 16.38 of [15].

In some discussions, convex functions may be allowed to take on the
value +∞. In such cases only the containment in (1.18) may hold; see
Corollary 16.38 of [15].

Corollary 1.1 If f : H → R and g : H → R are both closed and convex,
and f + g = h is differentiable, then both f and g are differentiable.

Proof: From Proposition 1.4 we have

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x) = ∂h(x) = {∇h(x)}.

Since both ∂f(x) and ∂g(x) are nonempty, they must be singleton sets.
Therefore, both functions are differentiable, according to Proposition 17.26
of [15].

1.3.10 Monotone Operators

There is an interesting connection between fne operators and monotone
operators.

Definition 1.9 A set-valued function B : H → 2H is said to be monotone
if, for each x and y in H and u ∈ B(x) and v ∈ B(y) we have 〈u−v, x−y〉 ≥
0. If there is no monotone A : H → 2H with B(x) ⊆ A(x) for all x, then
B is a maximal monotone operator.

If f : H → R is closed and convex then B(x) = ∂f(x) defines a mono-
tone operator. In particular, if f is also differentiable then T = ∇f is a
monotone operator. We have the following proposition.

Proposition 1.5 If B is monotone and x ∈ z + B(z) and x ∈ y + B(y),
then z = y

The proof is not difficult and we leave it to the reader.
It follows from Proposition 1.5 that z is uniquely defined by the inclusion

x ∈ z + B(z) and we write z = JBx. The operator JB : H → H is the
resolvent of the monotone operator B. Sometimes we write JB = (I+B)−1.
The operator JB is fne and T is a fne operator if and only if there is
monotone operator B : H → 2H such that T = JB . Given operator T ,
define B(x) = T−1({x})− x. Then T is fne if and only if B is monotone.
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1.3.11 The Baillon–Haddad Theorem

The Baillon–Haddad Theorem [4, 14] provides one of the most impor-
tant links between fixed-point methods and iterative optimization. The
proof we give here is new [52]. It is the first elementary proof of this the-
orem and depends only on basic properties of convex functions. The non-
elementary proof of this theorem in [100] was repeated in the book [46].
The proof given here and in [52] is closely related to that given in the book
[55].

Definition 1.10 Let f : H → R be convex and differentiable. The Breg-
man distance associated with f is Df (x, y) given by

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.

Then Df (x, y) ≥ 0, and Df (x, x) = 0. If f is strictly convex, then
Df (x, y) = 0 if and only if x = y.

Theorem 1.2 Let f : H → R be convex and differentiable, and let q(x) =
1
2‖x‖

2. The following are equivalent:

1. g = q − f is convex;

2. 1
2‖z − x‖

2 ≥ Df (z, x) for all x and z;

3. T = ∇f is firmly nonexpansive;

4. T = ∇f is nonexpansive and f is Fréchet differentiable.

Proof:

• (1. implies 2.) Because g is convex, we have

g(z) ≥ g(x) + 〈∇g(x), z − x〉,

which is easily shown to be equivalent to

1

2
‖z − x‖2 ≥ f(z)− f(x)− 〈∇f(x), z − x〉 = Df (z, x).

• (2. implies 3.) Fix y and define d(x) by

d(x) = Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 0.

Then
∇d(x) = ∇f(x)−∇f(y)

and Df (z, x) = Dd(z, x) for all z and x. Therefore, we have

1

2
‖z − x‖2 ≥ Dd(z, x) = d(z)− d(x)− 〈∇d(x), z − x〉.
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Now let z − x = ∇f(y)−∇f(x), so that

d(x) = Df (x, y) ≥ 1

2
‖∇f(x)−∇f(y)‖2.

Similarly,

Df (y, x) ≥ 1

2
‖∇f(x)−∇f(y)‖2.

Adding these two inequalities gives

〈∇f(x)−∇f(y), x− y〉 ≥ ‖∇f(x)−∇f(y)‖2.

• (3. implies 4.) Clearly, if ∇f is firmly nonexpansive, it is also nonex-
pansive. Since it is then continuous, f must be Fréchet differentiable.

• (4. implies 1.) From ∇g(x) = x−∇f(x) we get

〈∇g(x)−∇g(y), x− y〉 = ‖x− y‖2 − 〈∇f(x)−∇f(y), x− y〉

≥ ‖x− y‖(‖x− y‖ − ‖∇f(x)−∇f(y)‖) ≥ 0.

Therefore, g is convex.

We get a slightly more general version of Theorem 4.1, but with a
slightly less elementary proof, if we assume that f is closed and omit the
assumption that f be differentiable. Once we assume 1., the differentiablil-
ity of f follows from Proposition 1.4 and Corollary 1.1.

As was mentioned previously, the Baillon–Haddad Theorem plays an
important role in linking fixed-point algorithms to optimization. Suppose
that f : H → R is convex and differentiable, and its gradient, ∇f , is L-
Lipschitz continuous. Then the gradient of the function g = 1

Lf is ne, and
so ∇g is fne. As we shall see in Chapter 4, it follows from the theory of av-
eraged operators and the Krasnosel’skii-Mann-Opial Theorem 4.2 that the
operator I−γ∇f is an averaged operator, therefore a convergent operator,
for 0 < γ < 2

L .
In [14] Bauschke and Combettes extend the Baillon–Haddad Theorem

to include several other equivalent conditions. These additional conditions
involve definitions and results that are not elementary; we shall return to
their expanded version of the theorem in Chapter 7.
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2.1 Auxiliary-Function Methods

We suppose that f : X → R and C ⊆ X, where X is an ar-
bitrary nonempty set. An iterative algorithm is in the AF class if, for
k = 1, 2, ... we minimize Gk(x) = f(x) + gk(x) over x ∈ X to get xk,
where gk(x) ≥ 0 and gk(xk−1) = 0. As we saw previously, the sequence
{f(xk)} is then nonincreasing. We want the sequence {f(xk)} to converge
to b = inf{f(x)|x ∈ C}. If C is a proper subset of X we replace f with
f + ιC at the beginning. In that case every xk lies in C.

2.2 Majorization Minimization

Majorization minimization (MM), also called optimization transfer, is a
technique used in statistics to convert a difficult optimization problem into
a sequence of simpler ones [138, 18, 121]. The MM method requires that we
majorize the objective function f(x) with g(x|y), such that g(x|y) ≥ f(x),
for all x and y, and g(y|y) = f(y). At the kth step of the iterative algorithm
we minimize the function g(x|xk−1) to get xk.

The MM methods are members of the AF class. At the kth step of an
MM iteration we minimize

Gk(x) = f(x) + [g(x|xk−1)− f(x)] = f(x) + d(x, xk−1), (2.1)

where d(x, z) = g(x|z) − f(x) is a distance function satisfying d(x, z) ≥ 0

17
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and d(z, z) = 0. Since gk(x) = d(x, xk−1) ≥ 0 and gk(xk−1) = 0, MM
methods are also AF methods; it then follows that the sequence {f(xk)} is
nonincreasing.

All MM algorithms have the form xk = Txk−1, where T is the operator
defined by

Tz = argminx {f(x) + d(x, z)}. (2.2)

If d(x, z) = 1
2‖x−z‖

2
2, then T is Moreau’s proximity operator Tz = proxf (z)

[131, 132, 133], which we shall discuss in some detail later.

2.3 The Method of Auslander and Teboulle

The method of Auslander and Teboulle [2] is a particular example of an
MM algorithm. We take C to be a closed, nonempty, convex subset of RJ ,
with interior U . At the kth step of their method one minimizes a function

Gk(x) = f(x) + d(x, xk−1) (2.3)

to get xk. Their distance d(x, y) is defined for x and y in U , and the gradient
with respect to the first variable, denoted ∇1d(x, y), is assumed to exist.
The distance d(x, y) is not assumed to be a Bregman distance. Instead, they
assume that the distance d has an associated induced proximal distance
H(a, b) ≥ 0, finite for a and b in U , with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (2.4)

for all c in U .
If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (2.5)

we see that Dh has H = Dh for its associated induced proximal distance,
so Dh is self-proximal, in the terminology of [2].

The method of Auslander and Teboulle seems not to be a particular
case of SUMMA. However, we can adapt the proof of Proposition 1.2 to
prove the analogous result for their method. We assume that f(x̂) ≤ f(x),
for all x in C.

Theorem 2.1 For k = 2, 3, ..., let xk minimize the function

Gk(x) = f(x) + d(x, xk−1).

If the distance d has an induced proximal distance H, then {f(xk)} → f(x̂).
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Proof: We know that the sequence {f(xk)} is decreasing and the sequence
{d(xk, xk−1)} converges to zero. Now suppose that

f(xk) ≥ f(x̂) + δ,

for some δ > 0 and all k. Since x̂ is in C, there is z in U with

f(xk) ≥ f(z) +
δ

2
,

for all k. Since xk minimizes Gk(x), it follows that

0 = ∇f(xk) +∇1d(xk, xk−1).

Using the convexity of the function f(x) and the fact that H is an induced
proximal distance, we have

0 <
δ

2
≤ f(xk)− f(z) ≤ 〈−∇f(xk), z − xk〉 =

〈∇1d(xk, xk−1), z − xk〉 ≤ H(z, xk−1)−H(z, xk).

Therefore, the nonnegative sequence {H(z, xk)} is decreasing, but its suc-
cessive differences remain bounded below by δ

2 , which is a contradiction.

It is interesting to note that the Auslander-Teboulle approach places a
restriction on the function d(x, y), the existence of the induced proximal
distance H, that is unrelated to the objective function f(x), but this con-
dition is helpful only for convex f(x). In contrast, the SUMMA approach
requires that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk),

which involves the f(x) being minimized, but does not require that this
f(x) be convex.

2.4 The EM Algorithm

The expectation maximization maximum likelihood (EM) “algorithm”
is not a single algorithm, but a framework, or, as the authors of [18] put it,
a “prescription” , for constructing algorithms. Nevertheless, we shall refer
to it as the EM algorithm.

The EM algorithm is always presented within the context of statistical
likelihood maximization, but the essence of this method is not stochastic;
the EM algorithms can be shown to form a subclass of AF methods. We
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present now the essential aspects of the EM algorithm without relying on
statistical concepts.

The problem is to maximize a nonnegative function f : Z → R, where Z
is an arbitrary set. In the stochastic context f(z) is a likelihood function of
the parameter vector z. We assume that there is z∗ ∈ Z with f(z∗) ≥ f(z),
for all z ∈ Z.

We also assume that there is a nonnegative function h : RJ × Z → R
such that

f(z) =

∫
h(x, z)dx.

Having found zk−1, we maximize the function

H(zk−1, z) =

∫
h(x, zk−1) log h(x, z)dx (2.6)

to get zk. Adopting such an iterative approach presupposes that maximiz-
ing H(zk−1, z) is simpler than maximizing f(z) itself. This is the case with
the EM algorithms.

One of the most useful and easily proved facts about the Kullback-
Leibler distance is contained in the following lemma.

Lemma 2.1 For nonnegative vectors x and z, with z+ =
∑J
j=1 zj > 0, we

have

KL(x, z) = KL(x+, z+) +KL(x,
x+
z+
z). (2.7)

This lemma can be extended by replacing the summation with integration
over the variable x. Then we obtain the following useful identity; we simplify
the notation by setting h(z) = h(x, z).

Lemma 2.2 For f(z) and h(x, z) as above, and z and w in Z, with f(w) >
0, we have

KL(h(z), h(w)) = KL(f(z), f(w)) +KL(h(z), (f(z)/f(w))h(w)). (2.8)

Maximizing H(zk−1, z) is equivalent to minimizing

Gk(z) = G(zk−1, z) = −f(z) +KL(h(zk−1), h(z)), (2.9)

where

gk(z) = KL(h(zk−1), h(z)) =

∫
KL(h(x, zk−1), h(x, z))dx. (2.10)

Since gk(z) ≥ 0 for all z and gk(zk−1) = 0, we have an AF method. Without
additional restrictions, we cannot conclude that {f(zk)} converges to f(z∗).

We get zk by minimizing Gk(z) = G(zk−1, z). When we minimize
G(z, zk), we get zk again. Therefore, we can put the EM algorithm into the
alternating minimization (AM) framework of Csiszár and Tusnády [81], to
be discussed in Chapter 6.
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3.1 The SUMMA Class of Algorithms

Through our examination of barrier-function methods we discovered the
SUMMA condition [47, 55]:

Gk(x)−Gk(xk) ≥ gk+1(x), (3.1)

for all x ∈ X. The SUMMA condition gives {f(xk)} ↓ β = infx f(x).
As we saw, barrier-function methods can be reformulated as SUMMA al-
gorithms and penalty-function methods can be reformulated as barrier-
function methods. Although the SUMMA condition may seem quite re-
strictive, the class of SUMMA algorithms is extensive. In this chapter we
examine several of these algorithms.

3.2 Proximal Minimization

Let h : H → (−∞,∞] be convex and differentiable on the interior
of dom h = {x|h(x) ∈ R}, its effective domain. The Bregman distance
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associated with the function h is

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉. (3.2)

Then Dh(x, y) ≥ 0, Dh(x, x) = 0, and if h is strictly convex then Dh(x, y) =
0 if and only if x = y.

Let f : H → (−∞,+∞] be a closed convex function. Let h : H →
(−∞,∞] be another convex function, with effective domain D, that is dif-
ferentiable on the nonempty open convex set int D. Assume that f(x) is
finite on C = D and attains its minimum value on C at x̂. Our objective
is to minimize f(x) over x in C = D.

3.2.1 The PMA

At the kth step of a proximal minimization algorithm (PMA) [72, 40],
we minimize the function

Gk(x) = f(x) +Dh(x, xk−1), (3.3)

to get xk. The Bregman distance Dh is sometimes called a proximity func-
tion. The function

gk(x) = Dh(x, xk−1) (3.4)

is nonnegative and gk(xk−1) = 0. We assume that each xk lies in int D. As
we shall see,

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x) ≥ 0, (3.5)

so any PMA is in the SUMMA class.
The Newton-Raphson algorithm for minimizing a twice differentiable

function f : RJ → R has the iterative step

xk = xk−1 −∇2f(xk−1)−1∇f(xk−1). (3.6)

Suppose now that f is also convex. It is interesting to note that, having
calculated xk−1, we can obtain xk by minimizing

Gk(x) = f(x) + (x− xk−1)T∇2f(xk−1)(x− xk−1)−Df (x, xk−1). (3.7)

3.2.2 Difficulties with the PMA

The PMA can present some computational obstacles. When we mini-
mize Gk(x) to get xk we find that we must solve the equation

∇h(xk−1)−∇h(xk) ∈ ∂f(xk), (3.8)
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where the set ∂f(x) is the subdifferential of f at x. When f(x) is differen-
tiable ∂f(x) = {∇f(x)} and we must solve

∇f(xk) +∇h(xk) = ∇h(xk−1). (3.9)

A particular case of the PMA, called the IPA for interior-point algorithm
[40, 47], is designed to overcome these computational obstacles. We discuss
the IPA later in this chapter. Another modification of the PMA that is
similar to the IPA is the forward-backward splitting (FBS) method, to be
discussed in Chapter 4.

3.2.3 All PMA are in the SUMMA Class

We show now that all PMA are in the SUMMA class. We remind the
reader that f(x) is now assumed to be convex.

Lemma 3.1 For each k we have

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x). (3.10)

Proof: Since xk minimizes Gk(x) within the set D, we have

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1), (3.11)

so that

∇h(xk−1) = uk +∇h(xk), (3.12)

for some uk in ∂f(xk). Then

Gk(x)−Gk(xk) = f(x)− f(xk) + h(x)− h(xk)− 〈∇h(xk−1), x− xk〉.

Now substitute, using Equation (3.12), to get

Gk(x)−Gk(xk) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, xk). (3.13)

Therefore,
Gk(x)−Gk(xk) ≥ Dh(x, xk),

since uk is in ∂f(xk).

3.2.4 Convergence of the PMA

From the discussion of the SUMMA we know that {f(xk)} is monoton-
ically decreasing to f(x̂). If H = RJ , if the sequence {xk} is bounded, and
if x̂ is unique, we can conclude that {xk} → x̂.

For the remainder of this subsection we assume that H = RJ , in order
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to make use of the results in Chpater 8. Suppose that x̂ is not known to be
unique, but can be chosen in D; this will be the case, of course, whenever
D is closed. Then Gk(x̂) is finite for each k. From the definition of Gk(x)
we have

Gk(x̂) = f(x̂) +Dh(x̂, xk−1). (3.14)

From Equation (3.13) we have

Gk(x̂) = Gk(xk) + f(x̂)− f(xk)− 〈uk, x̂− xk〉+Dh(x̂, xk). (3.15)

Therefore,
Dh(x̂, xk−1)−Dh(x̂, xk) =

f(xk)− f(x̂) +Dh(xk, xk−1) + f(x̂)− f(xk)− 〈uk, x̂− xk〉. (3.16)

It follows that the sequence {Dh(x̂, xk)} is decreasing and that {f(xk)}
converges to f(x̂). If either the function f(x) or the function Dh(x̂, ·) has
bounded level sets, then the sequence {xk} is bounded, has cluster points
x∗ in C, and f(x∗) = f(x̂), for every x∗. We now show that x̂ in D implies
that x∗ is also in D, whenever h is a Bregman–Legendre function (see
Chapter 8).

Let x∗ be an arbitrary cluster point, with {xkn} → x∗. If x̂ is not in
the interior of D, then, by Property B2 of Bregman–Legendre functions,
we know that

Dh(x∗, xkn)→ 0,

so x∗ is in D. Then the sequence {Dh(x∗, xk)} is decreasing. Since a sub-
sequence converges to zero, we have {Dh(x∗, xk)} → 0. From Property R5,
we conclude that {xk} → x∗.

If x̂ is in int D, but x∗ is not, then {Dh(x̂, xk)} → +∞, by Property R2.
But, this is a contradiction; therefore x∗ is in D. Once again, we conclude
that {xk} → x∗.

Now we summarize our results for the PMA. Let f : RJ → (−∞,+∞]
be closed, proper, and convex. Let h be a closed proper convex function,
with effective domain D, that is differentiable on the nonempty open convex
set int D. Assume that f(x) is finite on C = D and attains its minimum
value on C at x̂. For each positive integer k, let xk minimize the function
f(x) +Dh(x, xk−1). Assume that each xk is in the interior of D.

Theorem 3.1 If the restriction of f(x) to x in C has bounded level sets
and x̂ is unique, and then the sequence {xk} converges to x̂.

Theorem 3.2 If h(x) is a Bregman–Legendre function and x̂ can be cho-
sen in D, then {xk} → x∗, x∗ in D, with f(x∗) = f(x̂).
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3.2.5 The Non-Differentiable Case

In the discussion so far, we have assumed that the function h(x) is
differentiable; the gradient played a role in the definition of the Bregman
distance Dh(x, z). When h(x) is not differentiable, a PMA is still available.
In the non-differentiable case a Bregman distance is defined to be

Dh(x, z; p) = h(x)− h(z)− 〈p, x− z〉 , (3.17)

where p is a member of the subdifferential ∂h(z). We begin the PMA by
selecting initial vectors x0 and p0 ∈ ∂h(x0). Now the iterate xk minimizes

Gk(x) = f(x) +Dh(x, xk−1; pk−1), (3.18)

where pk−1 is a member of ∂h(xk−1). Therefore,

0 ∈ ∂f(xk) + ∂h(xk)− pk−1. (3.19)

We assume that this equation can be solved and that there are uk ∈ ∂f(xk)
and vk ∈ ∂h(xk) so that

vk = pk−1 − uk. (3.20)

We then define pk = vk, so that

Gk(x)−Gk(xk) =

Df (x, xk;uk) +Dh(x, xk; pk) ≥ Dh(x, xk; pk) = gk+1(x). (3.21)

Therefore, the SUMMA condition holds and the sequence {f(xk)} con-
verges to f(x̂).

3.3 The IPA

The IPA is a particular case of the PMA designed to overcome some of
the computational obstacles encountered in the PMA [40, 47]. At the kth
step of the PMA we must solve the equation

∇f(xk) +∇h(xk) = ∇h(xk−1) (3.22)

for xk, where, for notational convenience, we assume that both f and h
are differentiable. Solving Equation (3.22) is probably not a simple matter,
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however. In the IPA approach we begin not with h(x), but with a con-
vex differentiable function a(x) such that h(x) = a(x) − f(x) is convex.
Equation (3.22) now reads

∇a(xk) = ∇a(xk−1)−∇f(xk−1), (3.23)

and we choose a(x) so that Equation (3.23) is easily solved. We turn now
to several examples of the IPA.

3.4 Projected Gradient Descent

The problem now is to minimize f : RJ → R, over the closed, nonempty
convex set C, where f is convex and differentiable on RJ . We assume now
that the gradient operator ∇f is L-Lipschitz continuous; that is, for all x
and y, we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (3.24)

To employ the IPA approach, we let 0 < γ < 1
L and select the function

a(x) =
1

2γ
‖x‖2; (3.25)

the upper bound on γ guarantees that the function h(x) = a(x) − f(x) is
convex. At the kth step we minimize

Gk(x) = f(x) +Dh(x, xk−1) =

f(x) +
1

2γ
‖x− xk−1‖2 −Df (x, xk−1), (3.26)

over x ∈ C. The solution xk is in C and satisfies the inequality

〈xk − (xk−1 − γ∇f(xk−1)), c− xk〉 ≥ 0, (3.27)

for all c ∈ C. It follows then that

xk = PC(xk−1 − γ∇f(xk−1)); (3.28)

here PC denotes the orthogonal projection onto C. This is the projected
gradient descent algorithm. For convergence we must require that f have
certain additional properties needed for convergence of a PMA algorithm.
Note that the auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖2 −Df (x, xk−1) (3.29)
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is unrelated to the set C, so is not used here to incorporate the constraint;
it is used to provide a closed-form iterative scheme.

When C = RJ we have no constraint and the problem is simply to
minimize f . Then the iterative algorithm becomes

xk = xk−1 − γ∇f(xk−1); (3.30)

this is the gradient descent algorithm.

3.5 Relaxed Gradient Descent

In the gradient descent method we move away from the current xk−1

by the vector γ∇f(xk−1). In relaxed gradient descent, the magnitude of
the movement is reduced by a factor of α, where α ∈ (0, 1). Such relax-
ation methods are sometimes used to accelerate convergence. The relaxed
gradient descent method can also be formulated as an AF method.

At the kth step we minimize

Gk(x) = f(x) +
1

2γα
‖x− xk−1‖2 −Df (x, xk−1), (3.31)

obtaining

xk = xk−1 − αγ∇f(xk−1). (3.32)

3.6 Regularized Gradient Descent

In many applications the function to be minimized involves measured
data, which is typically noisy, as well as some less than perfect model of
how the measured data was obtained. In such cases, we may not want to
minimize f(x) exactly. In regularization methods we add to f(x) another
function that is designed to reduce sensitivity to noise and model error.

For example, suppose that we want to minimize

αf(x) +
1− α

2
‖x− p‖2, (3.33)

where p is chosen a priori. The regularized gradient descent algorithm for
this problem can be put in the framework of an AF method.
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At the kth step we minimize

Gk(x) = f(x) +
1

2γα
‖x− xk−1‖2 − 1

α
(x, xk−1)] +

1− α
2γα

‖x− p‖2, (3.34)

obtaining

xk = α(xk−1 − γ∇f(xk−1)) + (1− α)p. (3.35)

If we select p = 0 the iterative step becomes

xk = α(xk−1 − γ∇f(xk−1)). (3.36)

3.7 The Projected Landweber Algorithm

The Landweber (LW) and projected Landweber (PLW) algorithms are
special cases of projected gradient descent. The objective now is to minimize
the function

f(x) =
1

2
‖Ax− b‖2, (3.37)

over x ∈ RJ or x ∈ C, where A is a real I by J matrix. The gradient of
f(x) is

∇f(x) = AT (Ax− b) (3.38)

and is L-Lipschitz continuous for L = ρ(ATA), the largest eiqenvalue of
ATA. The Bregman distance associated with f(x) is

Df (x, z) =
1

2
‖Ax−Az‖2. (3.39)

We let

a(x) =
1

2γ
‖x‖2, (3.40)

where 0 < γ < 1
L , so that the function h(x) = a(x)− f(x) is convex.

At the kth step of the PLW we minimize

Gk(x) = f(x) +Dh(x, xk−1) (3.41)

over x ∈ C to get

xk = PC(xk−1 − γAT (Axk−1 − b)); (3.42)

in the case of C = RJ we get the Landweber algorithm.
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4.1 Introduction

We denote by H a real Hilbert space with inner product 〈·, ·〉 and norm
‖ ·‖. We say that an operator T : H → H is convergent if, for every starting
vector x0, the sequence {xk} defined by xk = Txk−1 converges weakly
to a fixed point of T , whenever T has a fixed point. Fixed-point iterative
methods are used to solve a variety of problems by selecting a convergent
T for which the fixed points of T are solutions of the original problem. It is
important, therefore, to identify properties of an operator T that guarantee
that T is convergent.

An operator T : H → H is nonexpansive if, for all x and y in H,

‖Tx− Ty‖ ≤ ‖x− y‖. (4.1)

Just being nonexpansive does not make T convergent, as the example T =
−Id shows; here Id is the identity operator. It doesn’t take much, however,
to convert a nonexpansive operator N into a convergent operator. Let 0 <
α < 1 and T = (1 − α)Id + αN ; then T is convergent. Such operators

29
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are called averaged [5, 8, 43] and are convergent as a consequence of the
Krasnosel’skii-Mann Theorem [15].

A operator T : H → H is firmly nonexpansive if, for all x and y in H,

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2. (4.2)

It is not hard to show that T is firmly nonexpansive if and only if
T = 1

2 (Id + N), for some nonexpansive operator N . Clearly, then, if T is
firmly nonexpansive, T is averaged, and therefore T is nonexpansive, and all
firmly nonexpansive operators are convergent. Also, T is firmly nonexpan-
sive if and only if G = Id−T is firmly nonexpansive. The Baillon–Haddad
Theorem is the following.

Theorem 4.1 (The Baillon–Haddad Theorem) ([4], Corollaire 10])
Let f : H → R be convex and Gâteaux differentiable on H, and its gra-
dient operator T = ∇f nonexpansive. Then f is Fréchet differentiable and
T is firmly nonexpansive.

In [4] this theorem appears as a corollary of a more general theorem con-
cerning n-cyclically monotone operators in normed vector space. In [14]
Bauschke and Combettes generalize the Baillon–Haddad Theorem, giving
several additional conditions equivalent to the two in Theorem 4.1. Their
proofs are not elementary.

The Baillon–Haddad Theorem provides an important link between con-
vex optimization and fixed-point iteration. If g : H → R is a Gâteaux dif-
ferentiable convex function and its gradient is L-Lipschitz continuous, that
is,

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖, (4.3)

for all x and y, then g is Fréchet differentiable and the gradient operator
of the function f = 1

Lg is nonexpansive. By the Baillon–Haddad Theorem
the gradient operator of f is firmly nonexpansive. It follows that, for any
0 < γ < 2

L , the operator Id − γ∇g is averaged, and therefore convergent.
The class of averaged operators is closed to finite products, and PC , the
orthogonal projection onto a closed convex set C, is firmly nonexpansive.
Therefore, the projected gradient-descent algorithm with the iterative step

xk+1 = PC(xk − γ∇g(xk)) (4.4)

converges weakly to a minimizer, over C, of the function g, whenever such
minimizers exist.
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4.2 The Krasnosel’skii-Mann-Opial Theorem

For any operator T : H → H that is averaged, weak convergence of
the sequence {T kx0} to a fixed point of T , whenever fixed points of T
exist, is guaranteed by the Krasnosel’skii-Mann-Opial (KMO) Theorem
[116, 128, 137]. The proof we present here is for the case of H = RJ ;
the proof is a bit more complicated for the infinite-dimensional case (see
Theorem 5.14 in [14]).

Theorem 4.2 Let T : RJ → RJ be α-averaged, for some α ∈ (0, 1). Then,
for any x0, the sequence {T kx0} converges to a fixed point of T , whenever
Fix(T ) is nonempty.

Proof: Let z be a fixed point of T . The identity in Equation (1.15) is the
key to proving Theorem 4.2.

Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xk||2 − ||Tz − xk+1||2 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||2.
(4.5)

Since G is 1
2α -ism, we have

||z − xk||2 − ||z − xk+1||2 ≥ (
1

α
− 1)||xk − xk+1||2. (4.6)

Consequently, the sequence {||z − xk||} is decreasing, the sequence {xk} is
bounded, and the sequence {||xk − xk+1||} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗ − xk||}
is decreasing. Since a subsequence converges to zero, the entire sequence
converges to zero.

A version of the KMO Theorem 4.2, with variable coefficients, appears
in Reich’s paper [139].

An operator T is said to be asymptotically regular if, for any x, the
sequence {‖T kx−T k+1x‖} converges to zero. The proof of the KMO The-
orem 4.2 involves showing that any averaged operator with fixed points
is asymptotically regular. In [137] Opial generalizes the KMO Theorem,
proving that, if T is nonexpansive and asymptotically regular, then the se-
quence {T kx} converges to a fixed point of T , whenever fixed points exist,
for any x.

Note that, in the KMO Theorem, we assumed that T is α-averaged, so
that G = I−T is ν-ism, for some ν > 1

2 . But we actually used a somewhat
weaker condition on G; we required only that

〈Gz −Gx, z − x〉 ≥ ν‖Gz −Gx‖2
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for z such that Gz = 0. This weaker property is called weakly ν-ism.
We showed previously that the projected gradient descent (PGD) al-

gorithm is a particular case of the PMA, for 0 < γ < 1
L . Convergence of

the PGD algorithm then follows, for those functions f that satisfy the con-
ditions needed for convergence of the PMA. Now that we have Theorem
4.2 we can say more. We know now that the operator T = PC(I − γ∇f)
is averaged, and therefore convergent, for 0 < γ < 2

L . We now know that
the CQ algorithm converges whenever there are fixed points, as do all par-
ticular cases of the CQ algorithm, such as the Landweber and projected
Landweber algorithms.

The CQ algorithm is a particular case of the more general forward-
backward splitting (FBS) algorithm. Before we can present the FBS algo-
rithm we need to discuss the Moreau envelope and the Fenchel conjugate.

4.3 The Fenchel Conjugate

The duality between convex functions on H and their tangent hyper-
planes is made explicit through the Legendre-Fenchel transformation. Ini-
tially, we take f : H → [−∞,+∞], without any additional assumptions on
f .

4.3.1 The Fenchel Conjugate

We say that a function h(x) : H → R is affine if it has the form
h(x) = 〈a, x〉 − γ, for some vector a and scalar γ. If γ = 0, then we call
the function linear. A function such as f(x) = 5x+ 2 is commonly called a
linear function in algebra classes, but, according to our definition, it should
be called an affine function.

For each fixed vector a in H, the affine function h(x) = 〈a, x〉 − γ is
beneath the function f(x) if f(x)− h(x) ≥ 0, for all x; that is,

f(x)− 〈a, x〉+ γ ≥ 0,

or

γ ≥ 〈a, x〉 − f(x). (4.7)

This leads us to the following definition, involving the supremum of the
right side of the inequality in (4.7), for each fixed a.

Definition 4.1 The conjugate function associated with f is the function

f∗(a) = supx∈H(〈a, x〉 − f(x)). (4.8)
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For each fixed a, the value f∗(a) is the smallest value of γ for which the
affine function h(x) = 〈a, x〉−γ is beneath f(x) for all x ∈ H. The passage
from f to f∗ is the Legendre–Fenchel Transformation. If f∗ is proper, then
so is f . The function f∗ is always convex, since

f∗(a) = sup
(x,η)∈epi(f)

{〈a, x〉 − η},

and the supremum of a family of affine functions is convex. The epigraph
of a function f : H → [−∞,+∞], denoted epi(f), is the set

epi(f) = {(x, η)|f(x) ≤ η}.

For example, suppose that f(x) = 1
2x

2. The function h(x) = ax + b is
beneath f(x) for all x if

ax+ b ≤ 1

2
x2,

for all x. Equivalently,

b ≤ 1

2
x2 − ax,

for all x. Then b must not exceed the minimum of the right side, which is
− 1

2a
2 and occurs when x− a = 0, or x = a. Therefore, we have

γ = −b ≥ 1

2
a2.

The smallest value of γ for which this is true is γ = 1
2a

2, so we have
f∗(a) = 1

2a
2.

4.3.2 The Conjugate of the Conjugate

Now we repeat this process with f∗(a) in the role of f(x). For each
fixed vector x, the affine function c(a) = 〈a, x〉 − γ is beneath the function
f∗(a) if f∗(a)− c(a) ≥ 0, for all a ∈ H; that is,

f∗(a)− 〈a, x〉+ γ ≥ 0,

or

γ ≥ 〈a, x〉 − f∗(a). (4.9)

This leads us to the following definition, involving the supremum of the
right side of the inequality in (4.9), for each fixed x.

Definition 4.2 The conjugate function associated with f∗ is the function

f∗∗(x) = supa(〈a, x〉 − f∗(a)). (4.10)
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For each fixed x, the value f∗∗(x) is the smallest value of γ for which the
affine function c(a) = 〈a, x〉 − γ is beneath f∗(a) for all a.

If f is closed and convex, we have (f∗)∗ = f∗∗ = f . Applying the
Separation Theorem to the epigraph of the closed, proper, convex function
f(x), it can be shown ([143], Theorem 12.1) that f(x) is the point-wise
supremum of all the affine functions beneath f(x); that is,

f(x) = sup
a,γ
{h(x)|f(x) ≥ h(x)}.

Therefore,

f(x) = sup
a

(
〈a, x〉 − f∗(a)

)
.

This says that

f∗∗(x) = f(x). (4.11)

If f(x) is a differentiable function, then, for each fixed a, the function

g(x) = 〈a, x〉 − f(x)

will attain its minimum if and only if

0 = ∇g(x) = a−∇f(x),

which says that a = ∇f(x).

4.3.3 Some Examples of Conjugate Functions

• The exponential function f(x) = exp(x) = ex has conjugate

exp∗(a) = a log a− a, (4.12)

if a > 0, 0 if a = 0, and +∞ if a < 0.

• The function f(x) = − log x, for x > 0, has the conjugate function
f∗(a) = −1− log(−a), for a < 0.

• The function f(x) = |x|p
p has conjugate f∗(a) = |a|q

q , where p > 0,

q > 0, and 1
p + 1

q = 1. Therefore, the function f(x) = 1
2‖x‖

2 is its

own conjugate, that is, f∗(a) = 1
2‖a‖

2.

• Let A be a real symmetric positive-definite matrix and

f(x) =
1

2
〈Ax, x〉.

Then

f∗(a) =
1

2
〈A−1a, a〉.
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• Let iC(x) be the indicator function of the closed convex set C, that
is, iC(x) = 0, if x ∈ C, and ∞ otherwise.Then

i∗C(a) = sup
x∈C
〈a, x〉,

which is the support function of the set C, usually denoted σC(a).

• Let C ⊆ RJ be nonempty, closed and convex. The gauge function of
C is

γC(x) = inf{λ ≥ 0 |x ∈ λC}.

If C = B, the unit ball of RJ , then γB(x) = ‖x‖. For each C define
the polar set for C by

C0 = {z|〈z, c〉 ≤ 1, for all c ∈ C}.

Then
γ∗C = ιC0 .

• Let C = {x| ||x|| ≤ 1}, so that the function φ(a) = ‖a‖2 satisfies

φ(a) = sup
x∈C
〈a, x〉.

Then
φ(a) = σC(a) = i∗C(a).

Therefore,
φ∗(x) = σ∗C(x) = i∗∗C (x) = iC(x).

4.3.4 Conjugates and Subgradients

We know from the definition of f∗(a) that

f∗(a) ≥ 〈a, z〉 − f(z),

for all z, and, moreover, f∗(a) is the supremum of these values, taken over
all z. If a is a member of the subdifferential ∂f(x), then, for all z, we have

f(z) ≥ f(x) + 〈a, z − x〉,

so that
〈a, x〉 − f(x) ≥ 〈a, z〉 − f(z).

It follows that
f∗(a) = 〈a, x〉 − f(x),
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so that
f(x) + f∗(a) = 〈a, x〉.

If f(x) is a differentiable convex function, then a is in the subdifferential
∂f(x) if and only if a = ∇f(x). Then we can say

f(x) + f∗(∇f(x)) = 〈∇f(x), x〉. (4.13)

If a = ∇f(x1) and a = ∇f(x2), then the function

g(x) = 〈a, x〉 − f(x)

attains its maximum value at x = x1 and at x = x2, so that

f∗(a) = 〈a, x1〉 − f(x1) = 〈a, x2〉 − f(x2).

Let us denote by x = (∇f)−1(a) any x for which ∇f(x) = a. Then the
conjugate of the differentiable function f : H → R can then be defined as
follows [143]. Let D be the image of H under the mapping ∇f . Then, for
all a ∈ D, define

f∗(a) = 〈a, (∇f)−1(a)〉 − f((∇f)−1(a)). (4.14)

The formula in Equation (4.14) is also called the Legendre Transform.

4.4 The Forward-Backward Splitting Algorithm

The forward-backward splitting (FBS) methods [78, 51] form a broad
class of SUMMA algorithms closely related the IPA. Note that minimizing
Gk(x) in Equation (3.3) over x ∈ C is equivalent to minimizing

Gk(x) = ιC(x) + f(x) +Dh(x, xk−1) (4.15)

over all x ∈ RJ , where ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise.
This suggests a more general iterative algorithm, the FBS.

Suppose that we want to minimize the function f1(x) + f2(x), where
both functions are convex and f2(x) is differentiable with its gradient L-
Lipschitz continuous in the Euclidean norm, by which we mean that

‖∇f2(x)−∇f2(y)‖ ≤ L‖x− y‖, (4.16)

for all x and y. At the kth step of the FBS algorithm we obtain xk by
minimizing

Gk(x) = f1(x) + f2(x) +
1

2γ
‖x− xk−1‖2 −Df2(x, xk−1), (4.17)

over all x ∈ RJ , where 0 < γ < 1
L .
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4.5 Moreau’s Proximity Operators

Following Combettes and Wajs [78], we say that the Moreau envelope
of index γ > 0 of the closed, proper, convex function f : H → (−∞,∞], or
the Moreau envelope of the function γf , is the continuous, convex function

γf(x) = envγf (x) = inf
y∈H
{f(y) +

1

2γ
||x− y||2}; (4.18)

see also Moreau [131, 132, 133]. In Chapter 7 we shall denote envf (x) by
mf (x).

In Rockafellar’s book [143] and elsewhere, it is shown that the infimum
is attained at a unique y, usually denoted proxγf (x). As we shall see in
Proposition 7.2, the proximity operators proxγf (·) are firmly nonexpansive;
indeed, the proximity operator proxf is the resolvent of the maximal mono-
tone operator B(x) = ∂f(x) and all such resolvent operators are firmly
nonexpansive [29]. Proximity operators also generalize the orthogonal pro-
jections onto closed, convex sets. Consider the function f(x) = ιC(x), the
indicator function of the closed, convex set C, taking the value zero for x in
C, and +∞ otherwise. Then proxγf (x) = PC(x), the orthogonal projection
of x onto C. The following characterization of x = proxf (z) is quite useful:
x = proxf (z) if and only if z − x ∈ ∂f(x) (see Proposition 7.1).

4.6 The FBS Algorithm

Our objective here is to provide an elementary proof of convergence for
the forward-backward splitting (FBS) algorithm; a detailed discussion of
this algorithm and its history is given by Combettes and Wajs in [78].

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differ-
entiable, and ∇f2 L-Lipschitz continuous. The iterative step of the FBS
algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
. (4.19)

As we shall show, convergence of the sequence {xk} to a solution can be
established, if γ is chosen to lie within the interval (0, 1/L].
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4.7 Convergence of the FBS algorithm

We shall prove convergence of the FBS algorithm in two ways. First, we
do so using the PMA framework. After that, we prove a somewhat stronger
convergence result using Theorem 4.2.

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differen-
tiable, and ∇f2 L-Lipschitz continuous. Let {xk} be defined by Equation
(4.19) and let 0 < γ ≤ 1/L.

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖2 −Df2(x, xk−1), (4.20)

where

Df2(x, xk−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (4.21)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f2.

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖2 −Df2(x, xk−1) (4.22)

can be rewritten as

gk(x) = Dh(x, xk−1), (4.23)

where

h(x) =
1

2γ
‖x‖2 − f2(x). (4.24)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (4.25)

for all x and y. This is equivalent to

1

γ
‖x− y‖2 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (4.26)

Since ∇f2 is L-Lipschitz, the inequality (4.26) holds for 0 < γ ≤ 1/L.

Lemma 4.1 The xk that minimizes Gk(x) over x is given by Equation
(4.19).
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Proof: We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(xk),

or, equivalently,(
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(xk).

Consequently,
xk = proxγf1(xk−1 − γ∇f2(xk−1)).

Theorem 4.3 The sequence {xk} converges to a minimizer of the function
f(x), whenever minimizers exist.

Proof: A relatively simple calculation shows that

Gk(x)−Gk(xk) =
1

2γ
‖x− xk‖2 +

(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
. (4.27)

Since
(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(xk),

it follows that(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖2 ≥ gk+1(x). (4.28)

Therefore, the SUMMA inequality holds and the iteration fits into the
SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.
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Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖2,

it follows that the sequence {xk} is bounded. Therefore, we may select a
subsequence {xkn} converging to some x∗∗, with {xkn−1} converging to
some x∗, and therefore f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x∗∗) − Gk(xk)} is
decreasing to zero. From the inequality in (4.28), we conclude that the
sequence {‖x∗−xk‖2} converges to zero, and so {xk} converges to x∗. This
completes the proof of the theorem.

Now we prove convergence of the FBS algorithm using Theorem 4.2.
By Proposition 7.2 the operator proxf is fne. Therefore, the operator T =

proxγf (I − γ∇f2) is averaged, for 0 < γ < 2
L . According to Theorem 4.2,

the FBS algorithm converges to a fixed point whenever fixed points exist.

4.8 Some Examples

We present some examples to illustrate the application of Theorem 4.2.

4.8.1 Projected Gradient Descent

Let C be a nonempty, closed convex subset of RJ and f1(x) = ιC(x),
the function that is +∞ for x not in C and zero for x in C. Then ιC(x)
is convex, but not differentiable. We have proxγf1 = PC , the orthogonal
projection onto C. The iteration in Equation (4.19) becomes

xk = PC

(
xk−1 − γ∇f2(xk−1)

)
. (4.29)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever
such minimizers exist, for 0 < γ ≤ 1/L.

4.8.2 The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex
sets. The split feasibility problem (SFP) is to find x in C such that Ax is
in Q. The function

f2(x) =
1

2
‖PQAx−Ax‖2 (4.30)
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is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spec-
tral radius of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (4.31)

We want to minimize the function f2(x) over x in C, or, equivalently, to
minimize the function f(x) = ιC(x)+f2(x). The projected gradient descent
algorithm has the iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
; (4.32)

this iterative method was called the CQ-algorithm in [42, 43]. The sequence
{xk} converges to a solution whenever f2 has a minimum on the set C, for
0 < γ ≤ 1/L.
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We turn now to iterative algorithms involving nonnegative vectors and
matrices. For such algorithms the two-norm will not play a major role. In-
stead, the Kullback-Leibler, or cross-entropy, distance will be our primary
tool. Our main examples are the simultaneous multiplicative algebraic re-
construction technique (SMART), the expectation maximization maximum
likelihood (EMML) algorithms, and various related methods.

5.1 The SMART Iteration

The SMART minimizes the function f(x) = KL(Px, y), over nonnega-
tive vectors x. Here y is a vector with positive entries, and P is a matrix

43
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with nonnegative entries, such that sj =
∑I
i=1 Pij > 0. Denote by X the

set of all nonnegative x for which the vector Px has only positive entries.
Having found the vector xk−1, the next vector in the SMART sequence

is xk, with entries given by

xkj = xk−1j exp

(
s−1j

I∑
i=1

Pij log
yi

(Pxk−1)i

)
. (5.1)

5.2 The EMML Iteration

The EMML algorithm minimizes the function f(x) = KL(y, Px), over
nonnegative vectors x. Having found the vector xk−1, the next vector in
the EMML sequence is xk, with entries given by

xkj = xk−1j s−1j

( I∑
i=1

Pij
yi

(Pxk−1)i

)
. (5.2)

5.3 The EMML and the SMART as AM

In [32] the SMART was derived using the following alternating mini-
mization (AM) approach.

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (5.3)

and

q(x)ij = xjPij . (5.4)

In the iterative step of the SMART we get xk by minimizing the function

KL(q(x), r(xk−1)) =

I∑
i=1

J∑
j=1

KL(q(x)ij , r(x
k−1)ij)

over x ≥ 0. Note that KL(Px, y) = KL(q(x), r(x)).
Similarly, the iterative step of the EMML is to minimize the function

KL(r(xk−1), q(x)) to get x = xk. Note that KL(y, Px) = KL(r(x), q(x)).
It follows from the identities to be discussed in the next section that the
SMART can also be formulated as a particular case of SUMMA.
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5.4 The SMART as SUMMA

We show now that the SMART is a particular case of SUMMA; Lemma
2.1 is helpful in that regard. For notational convenience, we assume, for
the remainder of this chapter, that sj = 1 for all j; if this is not the
case initially, we can rescale both P and x without changing Px. From
the identities established for the SMART in [32] and reviewed later in this
chapter, we know that the iterative step of SMART can be expressed as
follows: minimize the function

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (5.5)

to get xk. According to Lemma 2.1, the quantity

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)

is nonnegative, since sj = 1. The gk(x) are defined for all nonnegative x;
that is, the set D is the closed nonnegative orthant in RJ . Each xk is a
positive vector.

It was shown in [32] that

Gk(x) = Gk(xk) +KL(x, xk), (5.6)

from which it follows immediately that the SMART is in the SUMMA class.
Because the SMART is a particular case of the SUMMA, we know that

the sequence {f(xk)} is monotonically decreasing to f(x̂). It was shown
in [32] that if y = Px has no nonnegative solution and the matrix P and
every submatrix obtained from P by removing columns has full rank, then
x̂ is unique; in that case, the sequence {xk} converges to x̂. As we shall
see, the SMART sequence always converges to a nonnegative minimizer of
f(x). To establish this, we reformulate the SMART as a particular case of
the PMA.

5.5 The SMART as PMA

We take F (x) to be the function

F (x) =

J∑
j=1

xj log xj . (5.7)
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Then

DF (x, z) = KL(x, z). (5.8)

For nonnegative x and z in X , we have

Df (x, z) = KL(Px, Pz). (5.9)

Lemma 5.1 DF (x, z) ≥ Df (x, z).

Proof: We have

DF (x, z) ≥
J∑
j=1

KL(xj , zj) ≥
J∑
j=1

I∑
i=1

KL(Pijxj , Pijzj)

≥
I∑
i=1

KL((Px)i, (Pz)i) = KL(Px, Pz). (5.10)

We let h(x) = F (x)− f(x); then Dh(x, z) ≥ 0 for nonnegative x and z
in X . The iterative step of the SMART is to minimize the function

f(x) +Dh(x, xk−1). (5.11)

So the SMART is a particular case of the PMA.
The function h(x) = F (x)− f(x) is finite on D = RJ+, the nonnegative

orthant of RJ , and differentiable on its interior, so C = D is closed in this
example. Consequently, x̂ is necessarily in D. From our earlier discussion of
the PMA, we can conclude that the sequence {Dh(x̂, xk)} is decreasing and
the sequence {Df (x̂, xk)} → 0. Since the function KL(x̂, ·) has bounded
level sets, the sequence {xk} is bounded, and f(x∗) = f(x̂), for every
cluster point. Therefore, the sequence {Dh(x∗, xk)} is decreasing. Since a
subsequence converges to zero, the entire sequence converges to zero. The
convergence of {xk} to x∗ follows from basic properties of the KL distance.

From the fact that {Df (x̂, xk)} → 0, we conclude that Px̂ = Px∗.
Equation (3.16) now tells us that the difference Dh(x̂, xk−1) − Dh(x̂, xk)
depends on only on Px̂, and not directly on x̂. Therefore, the difference
Dh(x̂, x0) − Dh(x̂, x∗) also depends only on Px̂ and not directly on x̂.
Minimizing Dh(x̂, x0) over nonnegative minimizers x̂ of f(x) is therefore
equivalent to minimizing Dh(x̂, x∗) over the same vectors. But the solution
to the latter problem is obviously x̂ = x∗. Thus we have shown that the
limit of the SMART is the nonnegative minimizer of KL(Px, y) for which
the distance KL(x, x0) is minimized. The following theorem summarizes
the situation with regard to the SMART.
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Theorem 5.1 In the consistent case the SMART converges to the unique
nonnegative solution of y = Px for which the distance

∑J
j=1KL(xj , x

0
j ) is

minimized. In the inconsistent case it converges to the unique nonnegative
minimizer of the distance KL(Px, y) for which

∑J
j=1KL(xj , x

0
j ) is mini-

mized; if P and every matrix derived from P by deleting columns has full
rank then there is a unique nonnegative minimizer of KL(Px, y) and at
most I − 1 of its entries are nonzero.

5.6 Using KL Projections

For each i = 1, 2, ..., I, let Hi be the hyperplane

Hi = {z|(Pz)i = yi}. (5.12)

The KL projection of a given positive x onto Hi is the z in Hi that min-
imizes the KL distance KL(z, x). Generally, the KL projection onto Hi

cannot be expressed in closed form. However, the z in Hi that minimizes
the weighted KL distance

J∑
j=1

PijKL(zj , xj) (5.13)

is Ti(x) given by

Ti(x)j = xjyi/(Px)i. (5.14)

Both the SMART and the EMML can be described in terms of the Ti.
The iterative step of the SMART algorithm can be expressed as

xkj =

I∏
i=1

(Ti(x
k−1)j)

Pij . (5.15)

We see that xkj is a weighted geometric mean of the terms Ti(x
k−1)j .

The iterative step of the EMML algorithm can be expressed as

xkj =

I∑
i=1

PijTi(x
k−1)j . (5.16)

We see that xkj is a weighted arithmetic mean of the terms Ti(x
k−1)j , using

the same weights as in the case of SMART.
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5.7 The MART and EMART Algorithms

The MART algorithm has the iterative step

xkj = xk−1j

(
yi

(Pxk−1)i

)Pijm
−1
i

, (5.17)

where i = (k − 1)(mod I) + 1 and

mi = max{Pij |j = 1, 2, ..., J}. (5.18)

When there are nonnegative solutions of the system y = Px, the sequence
{xk} converges to the solution x that minimizes KL(x, x0) [35, 36, 37]. We
can express the MART in terms of the weighted KL projections Ti(x

k−1);

xkj = (xk−1j )1−Pijm
−1
i (Ti(x

k−1)j)
Pijm

−1
i . (5.19)

We see then that the iterative step of the MART is a relaxed weighted KL
projection onto Hi, and a weighted geometric mean of the current xk−1j

and Ti(x
k−1)j . The expression for the MART in Equation (5.19) suggests

a somewhat simpler iterative algorithm involving a weighted arithmetic
mean of the current xk−1j and Ti(x

k−1)j ; this is the EMART algorithm.
The iterative step of the EMART algorithm is

xkj = (1− Pijm−1i )xk−1j + Pijm
−1
i Ti(x

k−1)j . (5.20)

Whenever the system y = Px has nonnegative solutions, the EMART
sequence {xk} converges to a nonnegative solution, but nothing further is
known about this solution. One advantage that the EMART has over the
MART is the substitution of multiplication for exponentiation.

Block-iterative versions of SMART and EMML have also been investi-
gated; see [35, 36, 37] and the references therein.

5.8 Extensions of MART and EMART

As we have seen, the iterative steps of the MART and the EMART are
relaxed weighted KL projections onto the hyperplane Hi, resulting in vec-
tors that are not within Hi. This suggests variants of MART and EMART
in which, at the end of each iterative step, a further weighted KL pro-
jection onto Hi is performed. In other words, for MART and EMART the
new vector would be Ti(x

k), instead of xk as given by Equations (5.17) and
(5.20), respectively. Research into the properties of these new algorithms
is ongoing.
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5.9 Convergence of the SMART and EMML

In this section we prove convergence of the SMART and EMML algo-
rithms through a series of exercises. For both algorithms we begin with an
arbitrary positive vector x0. The iterative step for the EMML method is

xkj = (xk−1)′j = xk−1j

I∑
i=1

Pij
yi

(Pxk−1)i
. (5.21)

The iterative step for the SMART is

xmj = (xm−1)′′j = xm−1j exp
( I∑
i=1

Pij log
yi

(Pxm−1)i

)
. (5.22)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

5.9.1 Pythagorean Identities for the KL Distance

The SMART and EMML iterative algorithms are best derived using
the principle of alternating minimization, according to which the distances
KL(r(x), q(z)) and KL(q(x), r(z)) are minimized, first with respect to the
variable x and then with respect to the variable z. Although the KL dis-
tance is not Euclidean, and, in particular, not even symmetric, there are
analogues of Pythagoras’ theorem that play important roles in the conver-
gence proofs.

Ex. 5.1 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (5.23)

KL(r(x), q(z)) = KL(r(x), q(x′)) +KL(x′, z), (5.24)

for

x′j = xj

I∑
i=1

Pij
yi

(Px)i
; (5.25)

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz); (5.26)
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KL(q(x), r(z)) = KL(q(z′′), r(z)) +KL(x, z′′), (5.27)

for

z′′j = zj exp

(
I∑
i=1

Pij log
yi

(Pz)i

)
. (5.28)

Note that it follows from Equation (2.7) that KL(x, z)−KL(Px, Pz) ≥ 0.

5.9.2 Convergence Proofs

We shall prove convergence of the SMART and EMML algorithms
through a series of exercises.

Ex. 5.2 Show that, for {xk} given by Equation (5.21), {KL(y, Pxk)} is
decreasing and {KL(xk+1, xk)} → 0. Show that, for {xm} given by Equa-
tion (5.22), {KL(Pxm, y)} is decreasing and {KL(xm, xm+1)} → 0. Hint:
Use KL(r(x), q(x)) = KL(y, Px), KL(q(x), r(x)) = KL(Px, y), and the
Pythagorean identities.

Ex. 5.3 Show that the EMML sequence {xk} is bounded by showing

J∑
j=1

xk+1
j =

I∑
i=1

yi.

Show that the SMART sequence {xm} is bounded by showing that

J∑
j=1

xm+1
j ≤

I∑
i=1

yi.

Ex. 5.4 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML se-
quence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}. Hint: Use {KL(xk+1, xk)} → 0 and {KL(xm, xm+1)} → 0.

Ex. 5.5 Let x̂ and x̃ minimize KL(y, Px) and KL(Px, y), respectively,
over all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃. Hint: Apply Pythagorean
identities to KL(r(x̂), q(x̂)) and KL(q(x̃), r(x̃)).
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Note that, because of convexity properties of the KL distance, even if
the minimizers x̂ and x̃ are not unique, the vectors Px̂ and Px̃ are unique.

Ex. 5.6 For the EMML sequence {xk} with cluster point x∗ and x̂ as de-
fined previously, we have the double inequality

KL(x̂, xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂, xk+1), (5.29)

from which we conclude that the sequence {KL(x̂, xk)} is decreasing and
KL(x̂, x∗) < +∞. Hint: For the first inequality calculate KL(r(x̂), q(xk))

in two ways. For the second one, use (x)′j =
∑I
i=1 r(x)ij and Lemma 2.1.

Ex. 5.7 Show that, for the SMART sequence {xm} with cluster point x∗

and x̃ as defined previously, we have

KL(x̃, xm)−KL(x̃, xm+1) = KL(Pxm+1, y)−KL(Px̃, y)+

KL(Px̃, Pxm) +KL(xm+1, xm)−KL(Pxm+1, Pxm), (5.30)

and so KL(Px̃, Px∗) = 0, the sequence {KL(x̃, xm)} is decreasing and
KL(x̃, x∗) < +∞. Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean
identities.

Ex. 5.8 For x∗ a cluster point of the EMML sequence {xk} we have
KL(y, Px∗) = KL(y, P x̂). Therefore, x∗ is a nonnegative minimizer of
KL(y, Px). Consequently, the sequence {KL(x∗, xk)} converges to zero,
and so {xk} → x∗. Hint: Use the double inequality of Equation (5.29) and
KL(r(x̂), q(x∗)).

Ex. 5.9 For x∗ a cluster point of the SMART sequence {xm} we have
KL(Px∗, y) = KL(Px̃, y). Therefore, x∗ is a nonnegative minimizer of
KL(Px, y). Consequently, the sequence {KL(x∗, xm)} converges to zero,
and so {xm} → x∗. Moreover,

KL(x̃, x0) ≥ KL(x∗, x0)

for all x̃ as before. Hints: Use Exercise 5.7. For the final assertion use the
fact that the difference KL(x̃, xm) − KL(x̃, xm+1) is independent of the
choice of x̃, since it depends only on Px∗ = Px̃. Now sum over the index
m.
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5.10 Regularization

The “night sky” phenomenon that occurs in nonnegatively constrained
least-squares also happens with methods based on the Kullback-Leibler
distance, such as MART, EMML and SMART, requiring some sort of reg-
ularization.

5.10.1 The “Night-Sky” Problem

As we saw previously, the sequence {xk} generated by the EMML it-
erative step in Equation (5.2) converges to a nonnegative minimizer x̂ of
f(x) = KL(y, Px), and we have

x̂j = x̂j

I∑
i=1

Pij
yi

(Px̂)i
, (5.31)

for all j. We consider what happens when there is no nonnegative solution
of the system y = Px.

For those values of j for which x̂j > 0, we have

1 =

I∑
i=1

Pij =

I∑
i=1

Pij
yi

(Px̂)i
. (5.32)

Now let Q be the I by K matrix obtained from P by deleting rows j for
which x̂j = 0. If Q has full rank and K ≥ I, then QT is one-to-one, so
that 1 = yi

(Px̂)i
for all i, or y = Px̂. But we are assuming that there is no

nonnegative solution of y = Px. Consequently, we must have K < I and
I −K of the entries of x̂ are zero.

5.11 Modifying the KL distance

The SMART, EMML and their block-iterative versions are based on
the Kullback-Leibler distance between nonnegative vectors and require that
the solution sought be a nonnegative vector. To impose more general con-
straints on the entries of x we derive algorithms based on shifted KL dis-
tances, also called Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
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shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) +KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the interval
[uj , vj ]. Our objective is to mimic the derivation of the SMART, EMML
and RBI methods, replacing KL distances with shifted KL distances, to
obtain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each
j. The algorithms that result are the ABMART and ABEMML block-
iterative methods. These algorithms were originally presented in [38], in
which the vectors u and v were called a and b, hence the names of the
algorithms. As previously, we shall assume that the entries of the matrix
P are nonnegative. We shall denote by Bn, n = 1, ..., N a partition of the
index set {i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN)+1.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.

5.12 The ABMART Algorithm

We assume that (Pu)i ≤ yi ≤ (Pv)i and seek a solution of Px = y with
uj ≤ xj ≤ vj , for each j. The algorithm begins with an initial vector x0

satisfying uj ≤ x0j ≤ vj , for each j. Having calculated xk, we take

xk+1
j = αkj vj + (1− αkj )uj , (5.33)

with n = n(k),

αkj =
ckj
∏n

(dki )Pij

1 + ckj
∏n

(dki )Pij
, (5.34)

ckj =
(xkj − uj)
(vj − xkj )

, (5.35)

and

dkj =
(yi − (Pu)i)((Pv)i − (Pxk)i)

((Pv)i − yi)((Pxk)i − (Pu)i)
, (5.36)
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where
∏n

denotes the product over those indices i in Bn(k). Notice that,

at each step of the iteration, xkj is a convex combination of the endpoints

uj and vj , so that xkj lies in the interval [uj , vj ].
We have the following theorem concerning the convergence of the AB-

MART algorithm:

Theorem 5.2 If there is a solution of the system Px = y that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
blocks Bn, the ABMART sequence converges to that constrained solution
of Px = y for which the Fermi-Dirac generalized entropic distance from x
to x0,

KL(x− u, x0 − u) +KL(v − x, v − x0),

is minimized. If there is no constrained solution of Px = y, then, for N = 1,
the ABMART sequence converges to the minimizer of

KL(Px− Pu, y − Pu) +KL(Pv − Px, Pv − y)

for which
KL(x− u, x0 − u) +KL(v − x, v − x0)

is minimized.

The proof is similar to that for RBI-SMART and is found in [38].

5.13 The ABEMML Algorithm

We make the same assumptions as in the previous section. The iterative
step of the ABEMML algorithm is

xk+1
j = αkj vj + (1− αkj )uj , (5.37)

where

αkj = γkj /d
k
j , (5.38)

γkj = (xkj − uj)ekj , (5.39)

βkj = (vj − xkj )fkj , (5.40)

dkj = γkj + βkj , (5.41)
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ekj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
yi − (Pu)i

(Pxk)i − (Pu)i

)
, (5.42)

and

fkj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
(Pv)i − yi

(Pv)i − (Pxk)i

)
. (5.43)

We have the following theorem concerning the convergence of the ABE-
MML algorithm:

Theorem 5.3 If there is a solution of the system Px = y that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
blocks Bn, the ABEMML sequence converges to such a constrained solution
of Px = y. If there is no constrained solution of Px = y, then, for N = 1,
the ABEMML sequence converges to a constrained minimizer of

KL(y − Pu, Px− Pu) +KL(Pv − y, Pv − Px).

The proof is similar to that for RBI-EMML and is to be found in [38]. In
contrast to the ABMART theorem, this is all we can say about the limits
of the ABEMML sequences.

Open Question: How does the limit of the ABEMML iterative sequence
depend, in the consistent case, on the choice of blocks, and, in general, on
the choice of x0?
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6.1 The Alternating-Minimization Framework

As we have seen, the SMART and the EMML algorithms are best de-
rived as alternating minimization (AM) algorithms. The main reference for
alternating minimization is the paper [81] of Csiszár and Tusnády. As the
authors of [153] remark, the geometric argument in [81] is “deep, though
hard to follow”. The main reason for the difficulty, I feel, is that the key to
their convergence theorem, what they call the five-point property, appears
to be quite ad hoc and the only good reason for using it that they give is
that it works. As we shall see, all AM algorithms can be reformulated as AF
methods. When this is done, the five-point property converts precisely into
the SUMMA inequality; therefore, all AM methods for which the five-point
property of [81] holds fall into the SUMMA class (see [50]).

The alternating minimization (AM) approach provides a useful frame-
work for the derivation of iterative optimization algorithms. In this section
we discuss the five-point property of [81] and use it to obtain a somewhat

57
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simpler proof of convergence for their AM algorithm. We then show that
all AM algorithms with the five-point property are in the SUMMA class.

6.2 The AM Framework

Suppose that P and Q are arbitrary non-empty sets and the function
Θ(p, q) satisfies −∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We
assume that, for each p ∈ P , there is q ∈ Q with Θ(p, q) < +∞. There-
fore, β = infp∈P, q∈Q Θ(p, q) < +∞. We assume also that β > −∞; in
many applications, the function Θ(p, q) is nonnegative, so this additional
assumption is unnecessary. We do not always assume there are p̂ ∈ P and
q̂ ∈ Q such that Θ(p̂, q̂) = β; when we do assume that such a p̂ and q̂
exist, we will not assume that p̂ and q̂ are unique with that property. The
objective is to generate a sequence {(pn, qn)} such that Θ(pn, qn) ↓ β.

6.3 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0,
and, having found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

In certain applications we consider the special case of alternating cross-
entropy minimization. In that case, the vectors p and q are nonnegative,
and the function Θ(p, q) will have the value +∞ whenever there is an
index j such that pj > 0, but qj = 0. It is important for those particular
applications that we select q0 with all positive entries. We therefore assume,
for the general case, that we have selected q0 so that Θ(p, q0) is finite for
all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by β, since
we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (6.1)

Therefore, the sequence {Θ(pn, qn)} converges to some β∗ ≥ β. Without
additional assumptions, we can say little more.
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We know two things:

Θ(pn+1, qn)−Θ(pn+1, qn+1) ≥ 0, (6.2)

and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (6.3)

Equation 6.3 can be strengthened to

Θ(p, qn)−Θ(pn+1, qn) ≥ 0. (6.4)

We need to make these inequalities more precise.

6.4 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and
n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (6.5)

6.5 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to
converge to β, that is, for β∗ = β. The following is the main result of [81].

Theorem 6.1 If the five-point property holds then β∗ = β.

Proof: Suppose that β∗ > β. Then there are p′ and q′ such that β∗ >
Θ(p′, q′) ≥ β. From the five-point property we have

Θ(p′, qn−1)−Θ(pn, qn−1) ≥ Θ(p′, qn)−Θ(p′, q′), (6.6)

so that

Θ(p′, qn−1)−Θ(p′, qn) ≥ Θ(pn, qn−1)−Θ(p′, q′) ≥ 0. (6.7)

All the terms being subtracted can be shown to be finite. It follows that
the sequence {Θ(p′, qn−1)} is decreasing, bounded below, and therefore
convergent. The right side of Equation (6.7) must therefore converge to
zero, which is a contradiction. We conclude that β∗ = β whenever the
five-point property holds in AM.
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6.6 AM as SUMMA

I have not come across any explanation for the five-point property other
than it works. I was quite surprised when I discovered that AM algorithms
can be reformulated as algorithms minimizing a function f : P → R and
that the five-point property is then the SUMMA condition in disguise.
We show now that the SUMMA class of AF methods includes all the AM
algorithms for which the five-point property holds.

For each p in the set P , define q(p) in Q as a member of Q for which
Θ(p, q(p)) ≤ Θ(p, q), for all q ∈ Q. Let f(p) = Θ(p, q(p)).

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(

Θ(p, qn−1)−Θ(p, q(p))
)

(6.8)

to get pn. With

gn(p) =
(

Θ(p, qn−1)−Θ(p, q(p))
)
≥ 0, (6.9)

we can write

Gn(p) = f(p) + gn(p). (6.10)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (6.11)

It follows that AM is a member of the SUMMA class.

6.7 The Three- and Four-Point Properties

In [81] the five-point property is related to two other properties, the
three- and four-point properties. This is a bit peculiar for two reasons:
first, as we have just seen, the five-point property is sufficient to prove
the main theorem; and second, these other properties involve a second
function, ∆ : P × P → [0,+∞], with ∆(p, p) = 0 for all p ∈ P . The three-
and four-point properties jointly imply the five-point property, but to get
the converse, we need to use the five-point property to define this second
function; it can be done, however.

The three-point property is the following:
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The Three-Point Property

Θ(p, qn)−Θ(pn+1, qn) ≥ ∆(p, pn+1), (6.12)

for all p. The four-point property is the following:

The Four-Point Property

∆(p, pn+1) + Θ(p, q) ≥ Θ(p, qn+1), (6.13)

for all p and q.
It is clear that the three- and four-point properties together imply the

five-point property. We show now that the three-point property and the
four-point property are implied by the five-point property. For that purpose
we need to define a suitable ∆(p, p̃). For any p and p̃ in P define

∆(p, p̃) = Θ(p, q(p̃))−Θ(p, q(p)), (6.14)

where q(p) denotes a member of Q satisfying Θ(p, q(p)) ≤ Θ(p, q), for all q
in Q. Clearly, ∆(p, p̃) ≥ 0 and ∆(p, p) = 0. The four-point property holds
automatically from this definition, while the three-point property follows
from the five-point property. Therefore, it is sufficient to discuss only the
five-point property when speaking of the AM method.

6.8 Alternating Distance Minimization

The general problem of minimizing Θ(p, q) is simply a minimization of
a real-valued function of two variables, p ∈ P and q ∈ Q. In many cases the
function Θ(p, q) is a distance between p and q, either ‖p− q‖2 or KL(p, q).
In the case of Θ(p, q) = ‖p− q‖2, each step of the alternating minimization
algorithm involves an orthogonal projection onto a closed convex set; both
projections are with respect to the same Euclidean distance function. In
the case of cross-entropy minimization, we first project qn onto the set
P by minimizing the distance KL(p, qn) over all p ∈ P , and then project
pn+1 onto the set Q by minimizing the distance function KL(pn+1, q). This
suggests the possibility of using alternating minimization with respect to
more general distance functions. We shall focus on Bregman distances.
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6.9 Bregman Distances

Let f : RJ → R be a Bregman function [26, 72, 31], and so f(x) is
convex on its domain and differentiable in the interior of its domain. Then,
for x in the domain and z in the interior, we define the Bregman distance
Df (x, z) by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (6.15)

For example, the KL distance is a Bregman distance with associated Breg-
man function

f(x) =

J∑
j=1

xj log xj − xj . (6.16)

Suppose now that f(x) is a Bregman function and P and Q are closed
convex subsets of the interior of the domain of f(x). Let pn+1 minimize
Df (p, qn) over all p ∈ P . It follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (6.17)

for all p ∈ P . Since

Df (p, qn)−Df (pn+1, qn) =

Df (p, pn+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉, (6.18)

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q), (6.19)

and

∆(p, p̂) = Df (p, p̃). (6.20)

To get the four-point property we need to restrict Df somewhat; we assume
from now on that Df (p, q) is jointly convex, that is, it is convex in the
combined vector variable (p, q) (see [10]). Now we can invoke a lemma due
to Eggermont and LaRiccia [90].

6.10 The Eggermont-LaRiccia Lemma

Lemma 6.1 Suppose that the Bregman distance Df (p, q) is jointly convex.
Then it has the four-point property.
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Proof: By joint convexity we have

Df (p, q)−Df (pn, qn) ≥

〈∇1Df (pn, qn), p− pn〉+ 〈∇2Df (pn, qn), q − qn〉,

where ∇1 denotes the gradient with respect to the first vector variable.
Since qn minimizes Df (pn, q) over all q ∈ Q, we have

〈∇2Df (pn, qn), q − qn〉 ≥ 0,

for all q. Also,

〈∇1Df (pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, qn)−Df (p, pn) = Df (pn, qn) + 〈∇1Df (pn, qn), p− pn〉

≤ Df (p, q)− 〈∇2Df (pn, qn), q − qn〉 ≤ Df (p, q).

Therefore, we have

Df (p, pn) +Df (p, q) ≥ Df (p, qn).

This is the four-point property.

We now know that the alternating minimization method works for any
Bregman distance that is jointly convex. This includes the Euclidean and
the KL distances.

6.11 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimiza-
tion taken from [41]. The problem is the convex feasibility problem (CFP),
to find a member of the intersection C ⊆ RJ of finitely many closed convex
sets Ci, i = 1, ..., I, or, failing that, to minimize the proximity function

F (x) =

I∑
i=1

Di(
←−
P ix, x), (6.21)

where fi are Bregman functions for which Di, the associated Bregman

distance, is jointly convex, and
←−
P ix are the left Bregman projection of x

onto the set Ci, that is,
←−
P ix ∈ Ci and Di(

←−
P ix, x) ≤ Di(z, x), for all z ∈ Ci.

Because each Di is jointly convex, the function F (x) is convex.
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The problem can be formulated as an alternating minimization, where
P ⊆ RIJ is the product set P = C1×C2× ...×CI . A typical member of P
has the form p = (c1, c2, ..., cI), where ci ∈ Ci, and Q ⊆ RIJ is the diagonal
subset, meaning that the elements of Q are the I-fold product of a single
x; that is Q = {d(x) = (x, x, ..., x) ∈ RIJ}. We then take

Θ(p, q) =

I∑
i=1

Di(c
i, x), (6.22)

and ∆(p, p̃) = Θ(p, p̃).
In [64] a similar iterative algorithm was developed for solving the CFP,

using the same sets P and Q, but using alternating projection, rather than
alternating minimization. Now it is not necessary that the Bregman dis-
tances be jointly convex. Each iteration of their algorithm involves two
steps:

1. minimize
∑I
i=1Di(c

i, xn) over ci ∈ Ci, obtaining ci =
←−
P ix

n, and
then

2. minimize
∑I
i=1Di(x,

←−
P ix

n).

Because this method is an alternating projection approach, it converges
only when the CFP has a solution, whereas the previous alternating mini-
mization method minimizes F (x), even when the CFP has no solution.

6.12 Right and Left Projections

Because Bregman distances Df are not generally symmetric, we can
speak of right and left Bregman projections onto a closed convex set. For
any allowable vector x, the left Bregman projection of x onto C, if it exists,

is the vector
←−
P Cx ∈ C satisfying the inequality Df (

←−
P Cx, x) ≤ Df (c, x),

for all c ∈ C. Similarly, the right Bregman projection is the vector
−→
P Cx ∈ C

satisfying the inequality Df (x,
−→
P Cx) ≤ Df (x, c), for any c ∈ C.

The alternating minimization approach described above to minimize
the proximity function

F (x) =

I∑
i=1

Di(
←−
P ix, x) (6.23)

can be viewed as an alternating projection method, but employing both
right and left Bregman projections.
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Consider the problem of finding a member of the intersection of two
closed convex sets C and D. We could proceed as follows: having found

xn, minimize Df (xn, d) over all d ∈ D, obtaining d =
−→
P Dx

n, and then

minimize Df (c,
−→
P Dx

n) over all c ∈ C, obtaining c = xn+1 =
←−
P C
−→
P Dx

n.
The objective of this algorithm is to minimize Df (c, d) over all c ∈ C and
d ∈ D; such a minimum may not exist, of course.

In [12] the authors note that the alternating minimization algorithm of
[41] involves right and left Bregman projections, which suggests to them
iterative methods involving a wider class of operators that they call “Breg-
man retractions”.

6.13 More Proximity Function Minimization

Proximity function minimization and right and left Bregman projec-
tions play a role in a variety of iterative algorithms. We survey several of
them in this section.

6.14 Cimmino’s Algorithm

Our objective here is to find an exact or approximate solution of the
system of I linear equations in J unknowns, written Ax = b. For each i let

Ci = {z|(Az)i = bi}, (6.24)

and Pix be the orthogonal projection of x onto Ci. Then

(Pix)j = xj + αiAij(bi − (Ax)i), (6.25)

where

(αi)
−1 =

J∑
j=1

A2
ij . (6.26)

Let

F (x) =

I∑
i=1

‖Pix− x‖2. (6.27)
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Using alternating minimization on this proximity function gives Cimmino’s
algorithm, with the iterative step

xkj = xk−1j +
1

I

I∑
i=1

αiAij(bi − (Axk−1)i). (6.28)

6.15 Simultaneous Projection for Convex Feasibility

Now we let Ci be any closed convex subsets of RJ and define F (x)
as in the previous section. Again, we apply alternating minimization. The
iterative step of the resulting algorithm is

xk =
1

I

I∑
i=1

Pix
k−1. (6.29)

The objective here is to minimize F (x), if there is a minimum.

6.16 The Bauschke-Combettes-Noll Problem

In [13] Bauschke, Combettes and Noll consider the following problem:
minimize the function

Θ(p, q) = Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (6.30)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and
P = Q is the interior of the domain of f . They assume that

β = inf
(p,q)

Λ(p, q) > −∞, (6.31)

and seek a sequence {(pn, qn)} such that {Λ(pn, qn)} converges to β. The
sequence is obtained by the AM method, as in our previous discussion. They
prove that, if the Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ β.
In this section we obtain this result by showing that Λ(p, q) has the five-
point property whenever D = Df is jointly convex. Our proof is loosely
based on the proof of the Eggermont-LaRiccia lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (6.32)
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Lemma 6.2 The inequality in (6.32) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥

D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (6.33)

Proof: The proof is left to the reader.

By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥

〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉, (6.34)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, eval-
uated at (pn, qn).

Since qn minimizes Λ(pn, q), it follows that

〈∇qΛ(pn, qn), q − qn〉 = 0, (6.35)

for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (6.36)

We have
〈∇pΛ(pn, qn), p− pn〉 =

〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉. (6.37)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (6.38)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (6.39)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉

= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (6.40)

Using (6.36) we obtain the inequality in (6.33). This shows that Λ(p, q) has
the five-point property whenever the Bregman distance D = Df is jointly
convex. From our previous discussion of AM, we conclude that the sequence
{Λ(pn, qn)} converges to β; this is Corollary 4.3 of [13].

If ψ = 0, then {Λ(pn, qn)} converges to β, even without the assumption
that the distance Df is jointly convex. In such cases, Λ(p, q) has the form of
the objective function in proximal minimization and therefore the problem
falls into the SUMMA class (see Lemma 3.1).
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In [14] Heinz Bauschke and Patrick Combettes extend the Baillon–Haddad
Theorem to include several additional conditions equivalent to the gradi-
ent of a convex function being nonexpansive. These additional conditions
involve the Moreau envelope and the Fenchel conjugate. We review these
concepts first, and then present their extended Baillon–Haddad Theorem.

7.1 The Fenchel Conjugate

We let f : H :→ (−∞,+∞] be proper. The conjugate of the function f
is the function f∗ given by

f∗(a) = supx∈H{〈a, x〉 − f(x)}. (7.1)

The conjugate of f∗ is defined in the obvious way.

7.2 The Moreau Envelope

The Moreau envelope of the function f : H → (−∞,∞] is the continu-
ous convex function

mf (x) = envf (x) = inf
y∈C
{f(y) +

1

2
‖x− y‖2}. (7.2)

69
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We assume, from now on, that f is closed, proper, and convex, in which case
the infimum is uniquely attained at y = proxf (x). Since y = z minimizes

F (y) = f(y) + 1
2‖x− y‖

2 if and only if 0 ∈ ∂F (z), we see, using Equation
1.19 of Proposition 1.4, that

0 ∈ ∂f(proxf (x))− x+ proxf (x),

or
x ∈ ∂f(proxf (x)) + proxf (x).

This characterization of z = proxf (x), which we restate now as Proposition
7.1, can be obtained without relying on Proposition 1.4. The proof we give
here is that of Proposition 12.26 of [15].

Proposition 7.1 A point p ∈ H is p = proxf (x) if and only if x ∈ p +
∂f(p).

Proof: Suppose that p = proxf (x). Then

f(p) +
1

2
‖x− p‖2 ≤ f(y) +

1

2
‖x− y‖2,

for all y ∈ H. Therefore,

f(y)− f(p) ≥ 1

2
‖x− p‖2 − 1

2
‖x− y‖2 = 〈y − p, x− p〉 − 1

2
‖p− y‖2.

But we want to show that

f(y)− f(p) ≥ 〈y − p, x− p〉.

To get this we need to do more work. Let pα = (1 − α)p + αy, for some
α ∈ (0, 1). Then

f(p) +
1

2
‖x− p‖2 ≤ f(pα) +

1

2
‖x− pα‖2.

From
f(pα) ≤ (1− α)f(p) + αf(y),

we can get

f(y)− f(p) ≥ 〈y − p, x− p〉 − α

2
‖y − p‖2,

for all α in (0, 1). Now let α go to zero.

Using Proposition 7.1 we can prove the following Proposition.

Proposition 7.2 The operator T = proxf is firmly nonexpansive.
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Proof: Let p = proxf (x) and q = proxf (y). Then we have x − p ∈ ∂f(p),
and y − q ∈ ∂f(q). Therefore,

f(q)− f(p) ≥ 〈x− p, q − p〉,

and
f(p)− f(q) ≥ 〈y − q, p− q〉,

from which we obtain

〈p− q, x− y〉 ≥ ‖p− q‖2.

If C ⊆ H is a nonempty, closed, convex subset, and f = ιC , then
proxf = PC . Also ∂f(x) = NC(x), the normal cone to C at x and

J∂ιC = JNC
= proxιC = PC .

Proposition 7.3 The Moreau envelope mf (x) = envf (x) is Fréchet dif-
ferentiable and

∇mf (x) = x− proxf (x). (7.3)

Proof: Let p = proxf (x) and q = proxf (y). Then

mf (y)−mf (x) = f(q) +
1

2
‖q − y‖2 − f(p)− 1

2
‖p− x‖2

= f(q)−f(p)+
1

2
‖q−y‖2− 1

2
‖p−x‖2 ≥ 〈q−p, x−p〉+ 1

2
‖q−y‖2− 1

2
‖p−x‖2.

Consequently,

mf (y)−mf (x) ≥ 1

2
‖y − q − x+ p‖2 + 〈y − x, x− p〉 ≥ 〈y − x, x− p〉.

Similarly,
mf (x)−mf (y) ≥ 〈x− y, y − q〉.

Then

0 ≤ mf (y)−mf (x)− 〈y − x, x− p〉 ≤ ‖x− y‖2 − ‖q − p‖2,

where we have used the fact that T = proxf is fne. Therefore,

mf (y)−mf (x)− 〈y − x, x− p〉
‖x− y‖

≤ ‖x− y‖.

Now let y → x.
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Proposition 7.4 Let f : H → (−∞,∞] be closed, proper, and convex.
Then x = z minimizes f(x) if and only if x = z minimizes mf (x).

Proof: We have x = z minimizes mf (x) if and only if

0 = ∇mf (z) = z − proxf (z),

or
proxf (z) = z.

Since, for any x, z = proxf (x) if and only if x− z ∈ ∂f(z), it follows, using
x = z, that 0 ∈ ∂f(z) and so z minimizes f ,

7.3 Infimal Convolution

Let f : H → R and g : H → R be arbitrary. Then the infimal convolu-
tion of f and g, written f ⊕ g, is

(f ⊕ g)(x) = inf
y
{f(y) + g(x− y)}; (7.4)

see Lucet [125] for details. Using g(x) = q(x) = 1
2‖x‖

2, we have f⊕q = mf .

Proposition 7.5 Let f and g be functions from H to R. Then we have
(f ⊕ g)∗ = f∗ + g∗.

Proof: Select a ∈ H. Then

(f ⊕ g)∗(a) = sup
x

(
〈a, x〉 − inf

y
{f(y) + g(x− y)}

)

= sup
y

(
〈y, a〉 − f(y) + sup

x
{〈x− y, a〉 − g(x− y)}

)
= f∗(a) + g∗(a).

Corollary 7.1 With q(x) = 1
2‖x‖

2 = q∗(x) in place of g(x), we have

1. (mf )∗ = (f ⊕ q)∗ = f∗ + q;

2. mf = f ⊕ q = (f∗ + q)∗; and

3. mf∗ = f∗ ⊕ q = (f + q)∗.

Proposition 7.6 Let f : H → R be closed and convex. The following hold:
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1. mf = q − (f + q)∗;

2. mf +mf∗ = q; and

3. proxf + proxf∗ = I.

Proof: First we prove 1. For any x ∈ H we have

mf (x) = inf
y
{f(y) + q(x− y)} = inf

y
{f(y) + q(x) + q(y)− 〈x, y〉}

= q(x)− sup
y
{〈x, y〉 − f(y)− q(y)} = q(x)− (f + q)∗(x).

Assertion 2. then follows from the previous corollary, and we get Assertion
3. by taking gradients.

Proposition 7.7 Let f : H → R be closed and convex, q(x) = 1
2‖x‖

2,
g(x) = q(x)− f(x), and h(x) = f∗(x)− q(x). If g is convex, then so is h.

Proof: We have

f(x) = q(x)− g(x) = q(x)− g∗∗(x) = q(x)− sup
u
{〈u, x〉 − g∗(u)}

= inf
u
{q(x)− 〈u, x〉+ g∗(u)}.

Therefore

f∗(a) = sup
x

sup
u
{〈a, x〉+ 〈u, x〉 − q(x)− g∗(u)}

so
f∗(a) = sup

u
{q∗(a+ u)− g∗(u)}.

From

q∗(a+ u) =
1

2
‖a+ u‖2 =

1

2
‖a‖2 + 〈a, u〉+

1

2
‖u‖2,

we get

f∗(a) =
1

2
‖a‖2 + (g∗ − q)∗(a),

or

h(a) = f∗(a)− 1

2
‖a‖2 = (g∗ − q)(a) = sup

x
{〈a, x〉 − g∗(x) + q(x)},

which is the supremum of a family of affine functions in the variable a, and
so is convex.

Proposition 7.8 Let f : H → R be closed and convex, q(x) = 1
2‖x‖

2, and
h(x) = f∗(x)− q(x). If h is convex, then f = mh∗ .

Proof: From h = f∗ − q we get f∗ = h+ q, so that

f = f∗∗ = (h+ q)∗ = h∗ ⊕ q = mh∗ .
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7.4 The Extended Baillon–Haddad Theorem

Now we are in a position to consider the extended Baillon–Haddad
Theorem of Bauschke and Combettes. To avoid technicalities, we present
a slightly simplified version of the theorem in [14, 15].

Theorem 7.1 Let f : H → R be closed and convex, q(x) = 1
2‖x‖

2, g(x) =
q(x)− f(x), and h(x) = f∗(x)− q(x). The following are equivalent:

1. f is Fréchet differentiable and the operator T = ∇f is nonexpansive;

2. g is convex;

3. h is convex;

4. f = mh∗ ;

5. ∇f = proxh = I − proxh∗ ;

6. f is Fréchet differentiable and the operator T = ∇f is firmly nonex-
pansive.

Proof: Showing 1. implies 2. was done previously, in the earlier version of
the Baillon–Haddad Theorem. To show that 2. implies 3. use Proposition
7.7. Assuming 3., we get 4. using Proposition 7.8. Then to get 4. implies 5.
we use Proposition 7.3 and Proposition 7.6. Finally, we assume 5. and get
6. from Proposition 7.2 and the continuity of ∇f .

As the authors of [14] noted, their proof was new and shorter than those
found in the literature up to that time, since several of the equivalences they
employ were already established by others. The equivalence of conditions
2., 3., and 4. was established in [133]. The equivalence of conditions 1., 3.,
4., and 6. was shown in Euclidean spaces in [144], Proposition 12.60, using
different techniques.
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Appendix: Bregman–Legendre
Functions
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8.3.1 Useful Results about Bregman–Legendre Functions . . . . 77

In [9] Bauschke and Borwein show convincingly that the Bregman–
Legendre functions provide the proper context for the discussion of Breg-
man projections onto closed convex sets in RJ . The summary here follows
closely the discussion given in [9].

8.1 Essential Smoothness and Essential Strict Convex-
ity

Let f : RJ → (−∞,∞] be closed, proper and convex, with essential
domain D = {x|f(x) ∈ R}. Following [143] we say that f is essentially
smooth if intD is not empty, f is differentiable on intD and xn ∈ intD,
with xn → x ∈ bdD, implies that ‖∇f(xn)‖2 → +∞. Here intD and bdD
denote the interior and boundary of the set D. A closed proper convex
function f is essentially strictly convex if f is strictly convex on every
convex subset of dom ∂f = {x|∂f(x) 6= ∅}.

The closed proper convex function f is essentially smooth if and only if
the subdifferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD
(so f is differentiable on intD) if and only if the function f∗ is essentially
strictly convex.

Definition 8.1 A closed proper convex function f is said to be a Legendre
function if it is both essentially smooth and essentialy strictly convex.

So f is Legendre if and only if its conjugate function is Legendre, in
which case the gradient operator ∇f is a topological isomorphism with

75



76 Lecture Notes on Iterative Optimization Algorithms

∇f∗ as its inverse. The gradient operator ∇f maps int dom f onto int
dom f∗. If int dom f∗ = RJ then the range of ∇f is RJ and the equation
∇f(x) = y can be solved for every y ∈ RJ . In order for int dom f∗ = RJ it
is necessary and sufficient that the Legendre function f be super-coercive,
that is,

lim
||x||2→+∞

f(x)

||x||2
= +∞. (8.1)

If the effective domain of f is bounded, then f is super-coercive and its
gradient operator is a mapping onto the space RJ .

8.2 Bregman Projections onto Closed Convex Sets

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (8.2)

Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set with K ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto K, with respect to f , is

P fK(z) = argminx∈K∩DDf (x, z). (8.3)

If f is essentially strictly convex, then P fK(z) exists. If f is strictly convex

on D then P fK(z) is unique. If f is Legendre, then P fK(z) is uniquely defined
and is in intD; this last condition is sometimes called zone consistency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the
norm squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be
the set K = {(x1, x2)|x1 + x2 = 1}. The Bregman projection of (2, 1) onto
K is (1, 0), which is not in intD. The function f is not essentially smooth,
although it is essentially strictly convex. Its conjugate is the function f∗

that is equal to one-half the norm squared on D and equal to zero elsewhere;
it is essentially smooth, but not essentially strictly convex.

If f is Legendre, then P fK(z) is the unique member of K∩intD satisfying
the inequality

〈∇f(P fK(z))−∇f(z), P fK(z)− c〉 ≥ 0, (8.4)
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for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c, P fK(z)) +Df (P fK(z), z), (8.5)

for all c ∈ K.

8.3 Bregman–Legendre Functions

Following Bauschke and Borwein [9], we say that a Legendre function
f is a Bregman–Legendre function if the following properties hold:

B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.
B2: if x is in D but not in intD, for each positive integer n, yn is in intD
with yn → y ∈ bdD and if {Df (x, yn)} remains bounded, then Df (y, yn)→
0, so that y ∈ D.
B3: if xn and yn are in intD, with xn → x and yn → y, where x and y are
in D but not in intD, and if Df (xn, yn)→ 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges
to a member ofK provided that one of the following holds: 1) f is Bregman–
Legendre; 2) K ∩ intD 6= ∅ and dom f∗ is open; or 3) dom f and dom f∗

are both open.
The Bregman functions form a class closely related to the Bregman-

Legendre functions. For details see [31].

8.3.1 Useful Results about Bregman–Legendre Functions

The following results are proved in somewhat more generality in [9].
R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, yn)→ 0.
R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, yn) →
+∞.
R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅
and Df (xn, yn)→ 0, then x = y and y ∈ int D.
R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and
Df (x, yn)→ 0, then x = y.
As a consequence of these results we have the following.
R5: If {Df (x, yn)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, yn)} is eventually finite, we have x ∈ D. By
Property B1 above it follows that the sequence {yn} is bounded; without
loss of generality, we assume that {yn} → y, for some y ∈ D. If x is in int
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D, then, by result R2 above, we know that y is also in int D. Applying
result R3, with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are
two cases to consider: 1) y is in int D; 2) y is not in int D. In case 1) we
have Df (x, yn) → Df (x, y) = 0, from which it follows that x = y. In case
2) we apply result R4 to conclude that x = y.
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