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Abstract
The problem of minimizing a function f(x) : R’ — R, subject to constraints
on the vector variable x, occurs frequently in inverse problems. Even without
constraints, finding a minimizer of f(x) may require iterative methods. We
consider here a general class of iterative algorithms that find a solution to the
constrained minimization problem as the limit of a sequence of vectors, each
solving an unconstrained minimization problem. Our sequential unconstrained
minimization algorithm (SUMMA) is an iterative procedure for constrained
minimization. At the kth step we minimize the function

Gi(x) = f(x) + ge(x),
to obtain x*. The auxiliary functions g;(x) : D € R’ — R, are nonnegative
on the set D, each x¥ is assumed to lie within D, and the objective is to minimize
the continuous function f : R’ — R overxin the set C = D, the closure of D.
We assume that such minimizers exist, and denote one such by ¥. We assume
that the functions g (x) satisfy the inequalities

0 < g (x) < Gro1(x) = G (671,
for k = 2,3, .... Using this assumption, we show that the sequence { f x"}is
decreasing and converges to f(X). If the restriction of f(x) to D has bounded
level sets, which happens if X is unique and f (x) is closed, proper and convex,
then the sequence {x*} is bounded, and f(x*) = f (&), for any cluster point
x*. Therefore, if X is unique, x* = X and {xk } — X. When x is not unique,
convergence can still be obtained, in particular cases. The SUMMA includes,
as particular cases, the well-known barrier- and penalty-function methods, the
simultaneous multiplicative algebraic reconstruction technique (SMART), the
proximal minimization algorithm of Censor and Zenios, the entropic proximal
methods of Teboulle, as well as certain cases of gradient descent and the
Newton—Raphson method. The proof techniques used for SUMMA can be
extended to obtain related results for the induced proximal distance method of
Auslander and Teboulle.
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1. Introduction

In many inverse problems, we have measured data pertaining to the object x, which may be,
for example, a vectorized image, as well as prior information about x, such that its entries are
nonnegative. Tomographic imaging is a good example. We want to find an estimate of x that
is (more or less) consistent with the data, as well as conforming to the prior constraints. The
measured data and prior information are usually not sufficient to determine a unique x and
some form of optimization is performed. For example, we may seek the image x for which
the entropy is maximized, or a minimum-norm least-squares solution.

There are many well-known methods for minimizing a function f : R/ — R; we can use
the Newton—Raphson algorithm or any of its several approximations, or nonlinear conjugate-
gradient algorithms, such as the Fletcher—Reeves, Polak—Ribiere, or Hestenes—Stiefel methods.
When the problem is to minimize the function f(x), subject to constraints on the variable x,
the problem becomes much more difficult. For such constrained minimization, we can employ
sequential unconstrained minimization algorithms [15].

We assume that f : R/ — (—o0, +00] is a continuous function. Our objective is to
minimize f(x) over x in some given closed nonempty set C. At the kth step of a sequential
unconstrained minimization algorithm we minimize a function Gy (x) to obtain the vector x*.
We shall assume throughout that a global minimizer x* exists for each k. The existence of
these minimizers can be established, once additional conditions, such as convexity, are placed
on the functions G (x); see, for example, Fiacco and McCormick [15], p 95. We shall consider
briefly, near the end of this paper, the issue of computing the x*.

In the best case, the sequence {x*} converges to a constrained minimizer of the original
objective function f(x). Obviously, the functions G (x) must involve both the function f(x)
and the set C. Those methods for which each x* is feasible, that is, each x¥isin C, are called
interior-point methods, while those for which only the limit of the sequence is in C are called
exterior-point methods. Barrier-function algorithms are typically interior-point methods,
while penalty-function algorithms are exterior-point methods. The purpose of this paper is to
present a fairly broad class of sequential unconstrained minimization algorithms, which we
call SUMMA. The SUMMA include both barrier- and penalty-function algorithms, as well as
proximity-function methods of Teboulle [24] and Censor and Zenios [13], the simultaneous
multiplicative algebraic reconstruction technique (SMART) [6], as well as certain cases of
gradient descent and the Newton—Raphson method. The proof techniques used for SUMMA
can be extended to obtain related results for the induced proximal distance method of Auslander
and Teboulle [3].

The sequential unconstrained minimization algorithms (SUMMA) we present here
minimize functions of the form

Gi(x) = f(x) + ge(x), (L.1)
to obtain the next iterate x*, with the auxiliary functions g (x) chosen so that

0 < gre1 (¥) < Gr(x) — Gr(x"), (1.2)
for k = 1,2,.... We assume throughout that there exists X minimizing the function f(x)

over x in C. Our main results are that the sequence { f (x¥)} is monotonically decreasing to
f(%), and, subject to certain conditions on the function f(x), the sequence {x*} converges to
a feasible x* with f(x*) = f(%).

We begin with a brief review of several types of sequential unconstrained minimization
methods, including those mentioned previously. Then we state and prove the convergence
results for the SUMMA. Finally, we show that each of these methods reviewed previously is
a particular case of the SUMMA.
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2. Barrier-function methods (I)

Let b(x) : R’ — (—o00, +00] be continuous, with effective domain the set
D = {x|b(x) < +00}.

The goal is to minimize the objective function f(x), over x in the closed set C = D, the
closure of D. In the barrier-function method, we minimize

F)+ %b(x) o

over x in D to obtain x*. Each x* lies within D, so the method is an interior-point algorithm.
If the sequence {x*} converges, the limit vector x* will be in C and f(x*) = f(&).

Barrier functions typically have the property that b(x) — 400 as x approaches the
boundary of D, so not only is x* prevented from leaving D, it is discouraged from approaching
the boundary.

2.1. Examples of barrier functions

Consider the convex programming (CP) problem of minimizing the convex function
f : R’ — R, subject to g;(x) < 0, where each g; : R/ — R is convex, fori = 1,...,1.
Let D = {x|gi(x) < 0,i = 1,...,1I}; then D is open. We consider two barrier functions
appropriate for this problem.

2.1.1. The logarithmic barrier function. A suitable barrier function is the logarithmic barrier
function

I
b(x) = — Y log(—gi(x)). 2.2)
i=1
The function —log(—g;(x)) is defined only for those x in D, and is positive for g;(x) > —1.
If g; (x) is near zero, then so is —g; (x) and b(x) will be large.

2.1.2. The inverse barrier function. Another suitable barrier function is the inverse barrier
function

1
~1
b(x) = ; e (2.3)

defined for those x in D.

2.1.3. An illustration. 'We minimize the function f(u, v) = u*+v2, subject to the constraint
that u+v > 1. The constraint is then written g(«, v) = 1 — (u+v) < 0. We use the logarithmic
barrier. The vector x* = (u*, v*) minimizing the function

1
Gi(x) = u*+v%> — z1og(u+v )

k_ ok /
==+ 1+,
u v 2 X

Note that u* +v* > 1, so each x* satisfies the constraint. As k — +00, x
which is the solution to the original problem.

has entries

¥ converges to (3, 1),
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3. Penalty-function methods (I)

When we add a barrier function to f(x) we restrict the domain. When the barrier function
is used in a sequential unconstrained minimization algorithm, the vector x* that minimizes
the function f(x) + %b(x) lies in the effective domain D of b(x), and we prove that, under
certain conditions, the sequence {x*} converges to a minimizer of the function f(x) over the
closure of D. The constraint of lying within the set D is satisfied at every step of the algorithm;
for that reason such algorithms are called interior-point methods. Constraints may also be
imposed using a penalty function. In this case, violations of the constraints are discouraged,
but not forbidden. When a penalty function is used in a sequential unconstrained minimization
algorithm, the x* need not satisfy the constraints; only the limit vector need be feasible. As
we shall see, under conditions to be specified later the penalty-function method can be used
to minimize a continuous function f(x) over the nonempty set of minimizers of another
continuous function p(x).

A penalty function p(x) is a non-negative function that is positive outside C and zero on
C. At the kth step of the algorithm we minimize the function

J(x) +kp(x), (3.1
to obtain x*. Typically, p(x*) > 0 and no x* lies within C.

3.1. Examples of penalty functions

Consider the CP problem again. We wish to minimize the convex function f(x) over all x for
which the convex functions g;(x) < 0, fori =1, ..., [.

3.1.1. The absolute-value penalty function. We let g} (x) = max{g;(x), 0}, and

I
px) = g (x). (3.2)
i=l
This is the absolute-value penalty function; it penalizes violations of the constraints g; (x) < 0,
but does not forbid such violations. Then, for k = 1, 2, ..., we minimize
J(x) +kp(x), (3.3)

to obtain x*. As k — +o00, the penalty function becomes more heavily weighted, so that, in
the limit, the constraints g;(x) < 0 should hold. Because only the limit vector satisfies the
constraints, and the x* are allowed to violate them, such a method is called an exterior-point
method.

3.1.2. The Courant—Beltrami penalty function. The Courant—Beltrami penalty-function
method is similar, but uses
1

P =" [gf@] (3.4)

i=1
3.1.3. The quadratic-loss penalty function. Penalty methods can also be used with equality

constraints. Consider the problem of minimizing the convex function f(x), subject to the
constraints g;(x) = 0,i = 1, ..., I. The quadratic-loss penalty function is

1 1
p) =5 ) (&) (3.5)
i=1
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The inclusion of a penalty term can serve purposes other than to impose constraints on the
location of the limit vector. In image processing, it is often desirable to obtain a reconstructed
image that is locally smooth, but with well-defined edges. Penalty functions that favor such
images can then be used in the iterative reconstruction [16]. We survey several instances in
which we would want to use a penalized objective function.

3.1.4. Regularized least-squares. Suppose we want to solve the system of equations Ax = b.
The problem may have no exact solution, precisely one solution, or there may be infinitely
many solutions. If we minimize the function
f@) = 311Ax = bIL3,

we get a least-squares solution, generally, and an exact solution, whenever exact solutions
exist. When the matrix A is ill conditioned, small changes in the vector b can lead to large
changes in the solution. When the vector b comes from measured data, the entries of b may
include measurement errors, so that an exact solution of Ax = b may be undesirable, even
when such exact solutions exist; exact solutions may correspond to x with unacceptably large
norm, for example. In such cases, we may, instead, wish to minimize a function such as

1 €
§||Ax—b||%+5||x—z||§, (3.6)

for some vector z. If z = 0, the minimizing vector x. is then a norm-constrained least-squares
solution. We then say that the least-squares problem has been regularized. In the limit, as
€ — 0, these regularized solutions x. converge to the least-squares solution closest to z.

Suppose the system Ax = b has infinitely many exact solutions. Our problem is to select
one. Let us select z that incorporates features of the desired solution, to the extent that we
know them a priori. Then, as € — 0, the vectors x. converge to the exact solution closest to
z. For example, taking z = 0 leads to the minimum-norm solution.

3.1.5. Minimizing cross-entropy. In image processing, it is common to encounter systems
Px = yin which all the terms are non-negative. In such cases, it may be desirable to solve the
system Px = y, approximately, perhaps, by minimizing the cross-entropy or Kullback—Leibler
distance

I
Vi
KL(y, Px) ; (vilog o
over vectors x > 0. When the vector y is noisy, the resulting solution, viewed as an image,
can be unacceptable. It is wise, therefore, to add a penalty term, such as p(x) = € KL(z, x),
where z > 0 is a prior estimate of the desired x [6, 17, 18, 25].
A similar problem involves minimizing the function KL(Px, y). Once again, noisy results
can be avoided by including a penalty term, such as p(x) = € KL(x, z) [6].

+(P); = ¥i), (3.7

3.1.6. The Lagrangian in convex programming. When there is a sensitivity vector A for the
CP, minimizing f(x) is equivalent to minimizing the Lagrangian,

I
F@+) higito) = £+ pa); (3.8)
i=1
in this case, the addition of the second term, p(x), serves to incorporate the constraints
gi(x) < 0 in the function to be minimized, turning a constrained minimization problem into
an unconstrained one. The problem of minimizing the Lagrangian still remains, though. We
may have to solve that problem using an iterative algorithm.
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3.1.7. Moreau’s proximity-function method. The Moreau envelope [19] of the function f is
the function

my(z) = inf { f(x) + 3]lx — 2[5}, (3.9)

which is also the infimal convolution of the functions f(x) and %||x| |§. It can be shown that
the infimum is uniquely attained at the point denoted x = prox ,z (see [22, 23]). In similar
fashion, we can define m y+z and prox .z, where f*(z) denotes the function conjugate to f.

Proposition 3.1. The infimum of m (2), over all z, is the same as the infimum of f (x), over
all x.

Proof. We have
infm (z) = infinf { f(x) + 1{]x — zI3}
4 Z X

= ir;firzlf{f(x) +illx —z3) = ir)}f{f(x) + 5 inf [|x — zl13} = inf f (x). O

The minimizers of m ¢(z) and f(x) are the same, as well. Therefore, one way to use
Moreau’s method is to replace the original problem of minimizing the possibly non-smooth
function f(x) with the problem of minimizing the smooth function m ¢(z). Another way is
to convert Moreau’s method into a sequential minimization algorithm, replacing z with x*~!
and minimizing with respect to x to obtain x*. As we shall see, this leads to the proximal
minimization algorithm to be discussed below.

3.2. The roles penalty functions play

From the examples just surveyed, we can distinguish several distinct roles that penalty functions
can play.

3.2.1. Impose constraints. The first role is to penalize violations of constraints, as part
of sequential minimization, or even to turn a constrained minimization into an equivalent
unconstrained one: the Absolute-Value and Courant—Beltrami penalty functions penalize
violations of the constraints g;(x) < 0, while quadratic-loss penalty function penalizes
violations of the constraints g; (x) = 0. The augmented objective functions f(x) + kp(x) now
become part of a sequential unconstrained minimization method. It is sometimes possible for
f(x)and f(x)+ p(x) to have the same minimizers, or for constrained minimizers of f(x) to
be the same as unconstrained minimizers of f(x) + p(x), as happens with the Lagrangian in
the CP problem.

3.2.2. Regularization. The second role is regularization: in the least-squares problem, the
main purpose for adding the norm-squared penalty function in equation (3.6) is to reduce
sensitivity to noise in the entries of the vector b. Also, regularization will usually turn a
problem with multiple solutions into one with a unique solution.

3.2.3. Incorporate prior information. The third role is to incorporate prior information:
when Ax = b is under-determined, using the penalty function €||x — z| |§ and letting ¢ — 0
encourages the solution to be close to the prior estimate z.

6
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3.2.4. Simplify calculations. A fourth role that penalty functions can play is to simplify
calculation: in the case of cross-entropy minimization, adding the penalty functions KL(z, x)
and KL(x, z) to the objective functions KL(y, Px) and KL(Px, y), respectively, regularizes
the minimization problem. But, as we shall see later, the SMART algorithm minimizes
KL(Px, y) by using a sequential approach, in which each minimizer x* can be calculated in
closed form.

3.2.5. Sequential unconstrained minimization. More generally, a fifth role for penalty
functions is as part of sequential minimization. Here the goal is to replace one computationally
difficult minimization with a sequence of simpler ones. Clearly, one reason for the difficulty
can be that the original problem is constrained, and the sequential approach uses a series of
unconstrained minimizations, penalizing violations of the constraints through the penalty
function. However, there are other instances in which the sequential approach serves
to simplify the calculations, not to remove constraints, but, perhaps, to replace a non-
differentiable objective function with a differentiable one, or a sequence of differentiable
ones, as in Moreau’s method.

4. Proximity-function minimization (I)

Let f : R’ — (—00, +00] be closed, proper, convex and differentiable. Let / be a closed
proper convex function, with effective domain D, that is differentiable on the nonempty open
convex set int D. Assume that f(x) is finite on C = D and attains its minimum value on C at
X. The corresponding Bregman distance Dy (x, z) is defined for x in D and z in int D by

Dy(x,z) = h(x) — h(z) = (Vh(z),x —z). 4.1

Note that Dy (x, z) > 0 always. If & is essentially strictly convex, then Dy, (x, z) = 0 implies
that x = z. Our objective is to minimize f(x) over xin C = D.

4.1. Proximal minimization algorithm

At the kth step of the proximal minimization algorithm (PMA) [8], we minimize the function

Gi(x) = f(x) + Dy(x, x*71), (4.2)
to obtain x¥. The function
ge(x) = Dy (x, x*71) (4.3)

is nonnegative and g; (x*~!) = 0. We assume that each x* lies in int D.

4.2. The method of Auslander and Teboulle
In [3] Auslander and Teboulle consider an iterative method similar to the PMA, in which, at
the kth step, one minimizes the function

Fr(x) = f(x) +d(x, x*) 4.4)
to obtain x*. Their distance d(x, y) is not assumed to be a Bregman distance. Instead, they
assume that the distance d has an associated induced proximal distance H (a, b) = 0, finite
for a and b in D, with H(a, a) = 0 and

(Vid(b,a),c —b) < H(c,a) — H(c, b), 4.5)

for all ¢ in D. The notation Vid(x,y) denotes the gradient with respect to the vector
variable x.
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If d = Dy, that is, if d is a Bregman distance, then from the equation
(Vid(b, a), c — b) = Dy(c,a) — Dy(c, b) — Dy (b, a) (4.6)

we see that D, has H = D), for its associated induced proximal distance, so Dy, is self-
proximal, in the terminology of [3].

5. The simultaneous MART (SMART) (I)

Our next example is the simultaneous multiplicative algebraic reconstruction technique
(SMART). For a > 0 and b > 0, the Kullback—Leibler distance, KL(a, b), is defined as

KL(a,b):alog%+b—a. .1)

In addition, KL(0,0) = 0,KL(a,0 = +oco and KL(0,») = b. The KL distance is then
extended to nonnegative vectors coordinate wise.

5.1. The SMART iteration

The SMART minimizes the function f(x) = KL(Px, y), over nonnegative vectors x. Here
y is a vector with positive entries, and P is a matrix with nonnegative entries, such that
s; = Zil=1 P;; > 0. For notational convenience, we shall assume that the system y = Px has
been normalized so that s; = 1, for each j. Denote by X’ the set of all nonnegative x for which
the vector Px has only positive entries.

Having found the vector x*~!, the next vector in the SMART sequence is x¥, with entries
given by

I
xj = x"exp (Z Py log(y,-/<ka—1>i>) . (5.2)
i=1

5.2. SMART as alternating minimization

In [6] the SMART was derived using the following alternating minimization approach.
For each x € X, let r(x) and g (x) be the I by J arrays with entries

r(x)ij = x; Pijyi/(Px);, (5.3)
and

q(x)ij =x; Pi;. 5.4)
The iterative step of the SMART is to minimize the function KL(g(x), r(x*~')) to obtain

x = x¥. Note that f(x) = KL(g (x), 7 (x)).
Now we establish the basic results for the SUMMA.

6. Convergence theorems for SUMMA

At the kth step of the SUMMA we minimize the function G (x) to obtain x*. In practice, of
course, this minimization may need to be performed iteratively; we shall address this issue
only in passing this paper, and shall assume throughout that x* can be computed. We make
the following additional assumptions.

Assumption 1. The functions gi(x) are finite-valued and continuous on a set D in R”’, with
C=0D.

8
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Assumption 2. There is x in C with f(*) < f(x), for all x in C.
Assumption 3. The functions g, (x) satisfy the inequality in (1.2); that is,
0 < g(x) < Gio1(6) = Gy (27D,
for k = 2,3, .... Consequently,
g(x*hH =0.

Assumption 4. There is a real number o with
o < f(x),

for all x in R”.

Assumption 5. Each x* is in D.

Using these assumptions, we can conclude several things about the sequence {x}.

Proposition 6.1. The sequence { f(x*)} is decreasing, and the sequence {gi(x*)} converges
to zero.

Proof. We have
SO + g () = G M) < G (65 = FON) + g (85 = (x5,
Therefore,

F5) = FNY > g Fh > 0.

Since the sequence { f (x*)} is decreasing and bounded below by f (%), the difference sequence
must converge to zero. Therefore, the sequence {g; x*)} converges to zero. O

Theorem 6.1. The sequence { f (x*)} converges to f(&).

Proof. Suppose that there is § > 0 with
O = f@) +3,
for all k. Since x is in C, there is z in D with
e f+3,
for all k. From
81(2) < Gi(2) — G (xY),
we have
8:(2) = g1 (@) = )+ a0 = f@ = F(6H = f@) = % > 0.

This says that the nonnegative sequence {g;(z)} is decreasing, but that successive differences
remain bounded away from zero, which cannot happen. (|

Theorem 6.2. Let the restriction of f (x) to x in C have bounded level sets. Then the sequence
{(xX} is bounded, and f(x*) = f (&), for any cluster point x*. If X is unique, x* = % and
(xk} — %.

Proof. From the previous theorem we have f(x*) = f(&), for all cluster points x*. But, by
uniqueness, x* = %, and so {x¥} — %. O
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Corollary 6.1. Let f(x) be closed, proper and convex. If & is unique, the sequence {x*}
converges to X.

Proof. Let (- (x) be the indicator function of the set C, that is, t(c(x) = 0, for all x in C, and
tc(x) = +00, otherwise. Then the function g(x) = f(x) +¢c(x) is closed, proper and convex.
If X is unique, then we have

{xIf () +ic(x) < f(D)} = {x}.

Therefore, one of the level sets of g(x) is bounded and nonempty. It follows from
Corollary 8.7.1 of [22] that every level set of g(x) is bounded, so that the sequence {x*}
is bounded. ([l

If % is not unique, we may still be able to prove convergence of the sequence {x*}, for
particular cases of SUMMA, as we shall see shortly.

7. Barrier-function methods (II)

We return now to the barrier-function methods, to show that they are particular cases of the
SUMMA. The iterative step of the barrier-function method can be formulated as follows:
minimize

F@)+ k=1 f(x)+b(x)] (7.1)
to obtain x*. Since, for k = 2, 3, .. ., the function

(k—1) f(x)+b(x) (7.2)
is minimized by x*=1 the function

ge(@) = (k = D f(0) +b(x) = (k = Df T = b(x* (7.3)
is nonnegative, and x* minimizes the function

Gi(x) = f(x) + g (x). (7.4)

From

Gi(x) = f()+ (k= D f(x)+b(x) — (k — D f*) = b,
it follows that

Gi(x) — G (x") = kf (x) + b(x) — kf (x*) — b(x") = g (%),

so that g;.1(x) satisfies the condition in (1.2). This shows that the barrier-function method is
a particular case of SUMMA.

The goal is to minimize the objective function f(x), over x in the closed set C = D, the
closure of D. In the barrier-function method, we minimize

1
fx)+ Eb(X) (1.5)

over x in D to obtain x*. Each x* lies within D, so the method is an interior-point algorithm.
If the sequence {x*} converges, the limit vector x* will be in C and f(x*) = f(&).

From the results for SUMMA, we conclude that { f (x*)} is decreasing to f(X), and that
{gk x*) converges to zero. From the nonnegativity of g (x*) we have that

(k= DR = FEY) = bR — b(5).

Since the sequence { f (x¥)} is decreasing, the sequence {b(x*)} must be increasing, but might
not be bounded above.

10
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If % is unique, and f(x) has bounded level sets, then it follows, from our discussion of
SUMMA, that {x*} — %. Suppose now that % is not known to be unique, but can be chosen
in D, so that G, (X) is finite for each k. From

G+ %b(fc) > [ + %b(x")
we have
%(b@) —b(x) > f(x") = f(&) >0,
so that
b(%) — b(x") >0,
for all k. If either f or b has bounded level sets, then the sequence {x*} is bounded and has a
cluster point, x* in C. It follows that b(x*) < b(X) < +00, so that x* is in D. If we assume
that f(x) is convex and b(x) is strictly convex on D, then we can show that x* is unique in D,
so that x* = % and {x*} — %.
To see this, assume, to the contrary, that there are two distinct cluster points x* and x** in
D, with
oy — %,
and
{xdn} — x**,
Without loss of generality, we assume that
0 < ky < ju < knars
for all n, so that
b(x*) < bx) < b(xk).
Therefore,
b(x*) = b(x™) < b(%).
From the strict convexity of b(x) on the set D, and the convexity of f(x), we conclude that,

forO <A <landy=(1—X)x*+Ax™, we have b(y) < b(x*) and f(y) < f(x*). But, we
must then have f(y) = f(x*). There must then be some &, such that

1 1
Gi, () = f )+ b)) < fx,) + =b(xi,) = G, (x*).

n
But, this is a contradiction.

The following theorem summarizes what we have shown with regard to the barrier-
function method.

Theorem 7.1. Let f : R — (—o0, +00] be a continuous function. Let b(x) : R’ — (0, +00]
be a continuous function, with effective domain the nonempty set D. Let X minimize f (x) over
allxin C = D. For each positive integer k, let x* minimize the function f(x)+ %b(x). Then the
sequence { f(x)} is monotonically decreasing to the limit f (%), and the sequence {b(x")} is
increasing. If % is unique, and f (x) has bounded level sets, then the sequence {x*} converges
to X. In particular, if X can be chosen in D, if either f(x) or b(x) has bounded level sets, if
f(x) is convex and if b(x) is strictly convex on D, then X is unique in D and {x*} converges
to X.

Each step of the barrier method requires the minimization of the function f(x) + %b(x).
In practice, this must also be performed iteratively, with, say, the Newton—Raphson algorithm.
It is important, therefore, that barrier functions be selected so that relatively few Newton—
Raphson steps are needed to produce acceptable solutions to the main problem. For more on
these issues see Renegar [21] and Nesterov and Nemirovski [20].
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8. Penalty-function methods (IT)

Let M be the non-empty closed set of all x for which the continuous function p(x) attains its
minimum value; this value need not be zero. Now we consider the problem of minimizing
a continuous function f(x) : R/ — (—o0, +00] over the closed set M. We assume that the
constrained minimum of f(x) is attained at some vector X in M. We also assume that the
function p(x) has bounded level sets, that is, for all y > 0, the set {x|p(x) < y} is bounded.

Fork = 1,2, ..., let x* be a minimizer of the function f(x)+kp(x). As we shall see, we
can formulate this penalty-function algorithm as a barrier-function iteration.

8.1. Penalty-function methods as barrier-function methods

In order to relate penalty-function methods to barrier-function methods, we note that
minimizing f(x) + kp(x) is equivalent to minimizing p(x) + % f(x). This is the form of
the barrier-function iteration, with p(x) now in the role previously played by f(x), and f(x)
now in the role previously played by b(x). We are not concerned here with the effective domain
of f(x).

Now our assumption 2 simply says that there is a vector X at which p(x) attains its
minimum; so M is not empty. From our discussion of barrier-function methods, we know that
the sequence { p(x¥)} is decreasing to alimit p > p(%) and the sequence { f (x*)} is increasing.
Since p(x) has bounded level sets, the sequence {x*} is bounded; let x* be an arbitrary cluster
point. We then have p(x*) = p. It may seem odd that we are trying to minimize f(x) over
the set M using a sequence {x*} with { f (x*)} increasing, but remember that these x* are not
in M.

We now show that f(x*) = f(x); this does not follow from our previous discussion of
barrier-function methods.

Lets(x) = p(x) — p(x), so that s(x) > 0 and s(x) = 0. For each k, let

Ti(x) = f(x) +ks(x) = f(x) +kp(x) —kp(R).
Then x* minimizes T (x).
Lemma 8.1. The sequence {T} (x5} is increasing to some limit y < f(X).
Proof. Because the penalty function s(x) is nonnegative, we have
Te(x") < T < T + 5 () = T ().
‘We also have
f&) = fR) +ks(R) = Te(®) > Te(x"),
for all k. O

Lemma 8.2. For all cluster points x* of {x*} we have s(x*) = 0, so that p(x*) = p(%) and
x*isin M.
Proof. For each k we have
a+ks(xf) < fO) +hs(xf) = (") < f (),
so that
0 <ks(x") < f(B) —a,
for all k. It follows that {s(x¥)} converges to zero. By the continuity of s(x), we conclude that

s(x*) =0,s0x™isin M. O

12
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Lemma 8.3. For all cluster points x* of the sequence {x*} we have f(x*) = f(&), so x*
minimizes f(x) over x in M.

Proof. Let {x*"} — x*. We have
f@H) =) +s0) = Tim (f") +5(™)
< Jim (fGR) 4 ks (5) < F(R),
Since x* is in M, it follows that f(x*) = f(X). J

To assert that the sequence {x¥} itself converges, we would need to make additional
assumptions. For example, if the minimizer of f(x) over x in M is unique, then the sequence
{x¥} has # for its only cluster point, so must converge to £.

The following theorem summarizes what we have shown with regard to penalty-function
methods.

Theorem 8.1. Let f : RY — (—o0, +00] be a continuous function. Let p(x) : R’ — R be a
continuous function, with bounded level sets, and M be the set of all X such that p(X) < p(x)
forall x in R’ . Let % in M minimize f(X) over all X in M. For each positive integer k, let x*
minimize the function f(x)+kp(x). Then the sequence { f ()} is monotonically increasing to
the limit f (%), and the sequence { p(x*)} is decreasing to p(%). If & is unique, which happens,
for example, if f(x) is strictly convex on M, then the sequence {x*} converges to %.

9. The proximal minimization algorithm (II)

We show now that assumption 3 holds, so that the PMA is a particular case of the SUMMA.
We remind the reader that f(x) is now assumed to be convex and differentiable, so that the
Bregman distance D (x, z) is defined and nonnegative, for all x in D and z in int D.

Lemma 9.1. For each k we have

Gr(x) = G (x*) + D s (x, x*) + Dy (x, x"). 9.1)

k

Proof. Since x* minimizes Gy (x) within the set D, we have

0= V") +Vhaar) — VR, 9.2)
Then

Gr(x) = Gp(x*) = f(x) = f(") +h(x) = h(x") = (VA x = &),
Now substitute, using equation (9.2), and use the definition of Bregman distances. ]

It follows from lemma 9.1 that
Gi(x) = G (x*) = g1 (x) + Dy (x, xN),

so assumption 3 holds.

From the discussion of the SUMMA we know that { f (x*)} is monotonically decreasing
to f(%). As we noted previously, if the sequence {x*} is bounded, and % is unique, we can
conclude that {x*} — %.

Suppose that & is not known to be unique, but can be chosen in D; this will be the case, of
course, whenever D is closed. Then G (X) is finite for each k. From the definition of G (x)
we have

Gi(®) = f(&) + Dy(&, x*7h). 9.3)

13



Inverse Problems 24 (2008) 015013 C Byrne

From equation (9.1) we have

Gi(®) = G (x") + Dy (&, x*) + Dy (&, x5), 9.4)
so that

Gi(®) = f(5) + D (x*, XY + Dy (&, x5 + Dy (3, x5). 9.5)
Therefore,
Dy (%, X1 — Dy, x5 = £F) — F@) + D(x*, 1) + Dy (&, x5). (9.6)

It follows that the sequence {Dj (%, x*)} is decreasing and that the sequence {D/(X, x}
converges to 0. If either the function f(x) or the function D (X, -) has bounded level sets,
then the sequence {x*} is bounded, has cluster points x* in C, and f(x*) = f (%), for every
x*. We now show that & in D implies that x* is also in D, whenever / is a Bregman—Legendre
function.

Let x* be an arbitrary cluster point, with {x*"} — x*.If & is not in int D, then, by property
B2 of Bregman-Legendre functions, we know that

Dy (x*, x*) — 0,

so x* is in D. Then the sequence {D;(x*, x)} is decreasing. Since a subsequence converges
to zero, we have {D;,(x*, x¥)} — 0. From property R5, we conclude that {x¥} — x*.

If % is in int D, but x* is not, then {D; (%, x*)} — +oo0, by property R2. But, this is a
contradiction; therefore x* is in D. Once again, we conclude that {x¥} — x*.

Now we summarize our results for the PMA. Let f : R/ — (—o0, +00] be closed, proper,
convex and differentiable. Let & be a closed proper convex function, with effective domain
D, that is differentiable on the nonempty open convex set int D. Assume that f(x) is finite on
C = D and attains its minimum value on C at X. For each positive integer &, let x* minimize
the function f(x) + Dy (x, x*~!). Assume that each x* is in the interior of D.

Theorem 9.1. If the restriction of f(x) to x in C has bounded level sets and X is unique, then
the sequence {x*} converges to %.

Theorem 9.2. If h(x) is a Bregman—Legendre function and X can be chosen in D, then
{x*} = x*, x* in D, with f(x* = f(X).

9.1. The method of Auslander and Teboulle

The method of Auslander and Teboulle described in a previous section seems not to be a
particular case of SUMMA. However, we can adapt the proof of theorem 6.1 to prove the
analogous result for their method. Once again, we assume that f(X) < f(x), for all xin C.

Theorem 9.3. Fork = 2,3, ..., let x* minimize the function
Fi(x) = f(x) +d(x,x* ).
If the distance d has an induced proximal distance H, then { f (x*)} = f(%).
Proof. First, we show that the sequence { f (x¥)} is decreasing. We have
fEED = R = RGN = £65 +d @GR,

from which we conclude that the sequence {f(x¥)} is decreasing and the sequence
{d(x*, x¥=1} converges to zero.
Now suppose that

FeH = fG) +3,

14
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for some § > 0 and all k. Since X is in C, there is z in D with

)
fG5 > f)+ >

¥ minimizes Fj (x), it follows that

for all k. Since x
0= V" +Vvidr, X1,

Using the convexity of the function f(x) and the fact that H is an induced proximal distance,
we have

) k k k
0< 7 <) = f@) <(=VfE"),z—x")
= (Vid(x*, x* 1), z = x*) < H(z, x*") — H(z, x%).

Therefore, the nonnegative sequence {H (z, x*)} is decreasing, but its successive differences
remain bounded below by %, which is a contradiction. |

It is interesting to note that the Auslander—Teboulle approach places a restriction on
the function d(x, y), the existence of the induced proximal distance H, that is unrelated to
the objective function f(x), but this condition is helpful only for convex f(x). In contrast, the
SUMMA approach requires that

0 < g1 (x) < Gi(x) — G (xh),

which involves the f(x) being minimized, but does not require that this f(x) be convex.

9.2. Bregman-dominated distances

Assume that, for each fixed a, the function g(x) = d(x, a) is such that the associated Bregman
distance D, (c, b) can be defined. Then

Dy(c,b) = g(c) — g(b) — (Vg(b),c —b) =0, .7
for all b and c¢. Therefore,

D,(c,b) =d(c,a) —d(b,a) — (Vid(b,a),c —b) >0, 9.8)
for all b and c. Say that the distance d is Bregman dominated if

Dy(c,b) =2 d(c, ), 9.9)
for all a, b and c. It follows then that

d(c,a) —d(b,a) — (Vid(b,a),c — b) > d(c, b), (9.10)

or
(Vid(b,a), c —b) < d(c,a) —d(c,b) — d(b,a) < d(c,a) —d(c,b). (9.11)

Consequently, the choice of H = d satisfies the inequality in (4.5).
For each k, let Dy (x, y) = D,(x, y), for the choice a = x*=1. Since x
function d (x, x*~1), we have

Vid(x¥ xh =0,

k=1 minimizes the

and so

Di(x, x* 1 = d(x, x*¥ 1.
minimizes the function

Gr(x) = f(x) + Dilox, x*71).

Therefore, x¥
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From lemma 9.1, we conclude that
Gi(x) — Gr(x*) = Dy(x, x*) + Di(x, x*) > Di(x, x"), 9.12)

assuming, of course, that f is convex.
If the distance d is Bregman dominated, then we have

Gi(x) — G (x") = Dy(x, x*) > d(x, x*), (9.13)

so the iteration is a particular case of SUMMA.

10. The simultaneous MART (II)

It follows from the identities established in [6] that the SMART can also be formulated as a
particular case of the SUMMA.

10.1. The SMART as a case of SUMMA

We show now that the SMART is a particular case of the SUMMA. The following lemma is
helpful in that regard.

Lemma 10.1. For any non-negative vectors x and z, with 7, = ij.:l z; > 0, we have

KL(x, z) = KL(x,, z4) + KL <x, x—+z) . (10.1)
2+

From the identities established for the SMART in [6], we know that the iterative step of
SMART can be expressed as follows: minimize the function

G (x) = KL(Px, y) + KL(x, x*~!) — KL(Px, Px*™1) (10.2)
to obtain x*. According to lemma 10.1, the quantity
gr(x) = KL(x, x*~1) — KL(Px, Px*71)

is nonnegative, since s; = 1. The g;(x) are defined for all nonnegative x; that is, the set D is
the closed nonnegative orthant in R”. Each x* is a positive vector.
It was shown in [6] that

Gi(x) = Gi(x*) + KL(x, x%), (10.3)

from which it follows immediately that assumption 3 holds for the SMART.

Because the SMART is a particular case of the SUMMA, we know that the sequence
{f (x)} is monotonically decreasing to f(X). It was shown in [6] that if y = Px has no
nonnegative solution and the matrix P and every submatrix obtained from P by removing
columns has full rank, then X is unique; in that case, the sequence {x* converges to X. As
we shall see, the SMART sequence always converges to a nonnegative minimizer of f(x). To
establish this, we reformulate the SMART as a particular case of the PMA.

10.2. The SMART as a case of the PMA

We take F(x) to be the function
J
F(x):ijlong. (10.4)
j=1

16
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Then

Dr(x,z) = KL(x, 2). (10.5)
For nonnegative x and z in X', we have

Dy(x,z) = KL(Px, Pz). (10.6)

Lemma 10.2. Dr(x,z) > Dy(x, 2).

Proof. We have

J
Drp(x,z) > Z KL(x;,z;) > ZZ KL(P;x;j, P,jz;)
j=1 i

j=1i=1

1
> KL((Px);. (P2);) = KL(Px, P2). (10.7)
i=1 ([l

Then we let h(x) = F(x) — f(x); then D;(x,z) > 0 for nonnegative x and z in X. The
iterative step of the SMART is to minimize the function

f )+ Dy(x, X1, (10.8)

So the SMART is a particular case of the PMA.

The function h(x) = F(x) — f(x) is finite on D the nonnegative orthant of R/, and
differentiable on the interior, so C = D is closed in this example. Consequently, % is
necessarily in D. From our earlier discussion of the PMA, we can conclude that the sequence
{D),(%, x*)} is decreasing and the sequence {Df(X, x¥)} — 0. Since the function KL(%, -)
has bounded level sets, the sequence {x*} is bounded, and f(x*) = f (%), for every cluster
point. Therefore, the sequence { D, (x*, x)}is decreasing. Since a subsequence converges to
zero, the entire sequence converges to zero. The convergence of {x*} to x* follows from basic
properties of the KL distance.

From the fact that {D (%, x¥)} = 0, we conclude that P = Px*. Equation (9.6) now
tells us that the difference D;, (%, x*~!) — D, (%, x*) depends only on PX, and not directly on
%. Therefore, the difference Dy, (%, x°) — Dy, (X, x*) also depends only on P and not directly
on %. Minimizing Dy, (%, x°) over nonnegative minimizers & of f(x) is therefore equivalent
to minimizing Dj (X, x*) over the same vectors. But the solution to the latter problem is
obviously * = x*. Thus we have shown that the limit of the SMART is the nonnegative
minimizer of KL(Px, y) for which the distance KL(x, x°) is minimized.

The following theorem summarizes the situation with regard to the SMART.

Theorem 10.1. In the consistent case the SMART converges to the unique nonnegative
solution of y = Px for which the distance KL(x, x°) is minimized. In the inconsistent case it
converges to the unique nonnegative minimizer of the distance KL(Px, y) for which KL(x, x°)
is minimized; if P and every matrix derived from P by deleting columns has full rank then there
is a unique nonnegative minimizer of KL(Px, y) and at most I — 1 of its entries are nonzero.

10.3. The EMML algorithm

The expectation maximization maximum likelihood (EMML) algorithm minimizes the
function f(x) = KL(y, Px) over x in X. In [12] the EMML algorithm and the SMART
are developed in tandem to reveal how closely related these two methods are. There, the
EMML algorithm is derived using alternating minimization, in which the vector x* is the one
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for which the function KL(r (x*~1), g (x)) is minimized. When we try to put the EMML into
the framework of SUMMA, we find that x¥ minimizes the function

Gi(x) = f(x) +KL(r(x*" 1), r(x)), (10.9)
over all positive vectors x. However, the functions
gr(x) = KL(r(x*"), r(x)) (10.10)

appear not to satisfy the condition in (1.2). It appears not to be true that the EMML is a
particular case of SUMMA, even though it is true that { f (x*)} does converge monotonically
to f(%) and {x*} does converge to a nonnegative minimizer of f(x). The obvious conjecture
is that the EMML is an example of a wider class of sequential unconstrained minimization
algorithms for which a nice theory of convergence still holds.

In the next section we present a variant of the SMART, designed to incorporate bounds
on the entries of the vector x.

11. Minimizing KL(Px, y) with bounds on x

Leta; < bj, for each j. Let &, be the set of all vectors x such that a; < x; < b;, for each j.
Now, we seek to minimize f(x) = KL(Px, y), over all vectors x in X N X,;,. We let

J
Fx) = Z((xj —aj)log(x; —a;)+(b; — x;)log(b; — x;)). (11.1)
=1
Then we have j
J
Dp(x.2) = Y (KL(x; — a;. 2; —a;) + KL(b; — x;. b; — 2;)). (11.2)
and, as before, -
Dy(x,z) = KL(Px, Pz). (11.3)

Lemma 11.1. For any ¢ > 0, witha > c and b > ¢, we have KL(a — ¢, b — ¢) > KL(a, b).

Proof. Let g(c) = KL(a — ¢, b — ¢) and differentiate with respect to ¢, to obtain

dO=2"C 110" >0 (11.4)
b—c b—c
We see then that the function g(c) is increasing with c. (]

As a corollary of lemma 11.1, we have

Lemma 11.2. Leta = (ay, ..., a;)7", and x and z in X with (Px); > (Pa);, (Pz); > (Pa);,
for each i. Then KL(Px, Pz) < KL(Px — Pa, Pz — Pa).

Lemma 11.3. Dr(x,z) > Dy(x, 2).

Proof. We can easily show that Dr(x, z) > KL(Px—Pa, Pz—Pa)+KL(Pb—Px, Pb—P>z),
along the lines used previously. Then, from lemma 11.2, we have KL(Px — Pa, Pz — Pa) >
KL(Px, Pz) = Dy(x, 2). O
Once again, we let h(x) = F(x) — f(x), which is finite on the closed convex set X' N X.

At the kth step of this algorithm we minimize the function
f @)+ Dy(x, x5 (11.5)

to obtain x.

18



Inverse Problems 24 (2008) 015013 C Byrne

Solving for x;?, we obtain
k+1 k k
it =dfa; + (1 —ab)by, (11.6)
where

-l xﬁ_l —4j - k-1
(@) =1+ (L—= ) exp (D Pjloglyi/(Px*"1) |. (11.7)

bj—x; i=1

Since the restriction of f(x) to X N X,; has bounded level sets, the sequence {x*} is bounded
and has cluster points. If % is unique, then {x*} — %.
This algorithm is closely related to those presented in [7].

12. Related Work

Let f: R’ — (—o00, +00] be a closed, proper, convex function. When f is differentiable,
we can find minimizers of f using techniques such as gradient descent. When f is not
necessarily differentiable, the minimization problem is more difficult. One approach is to
augment the function f and to convert the problem into one of minimizing a differentiable
function. Moreau’s approach [19] is one example of this.

12.1. The Moreau envelope

Proposition 12.1. The infimum of m ¢(z), over all z, is the same as the infimum of f(x), over
all x.

Proof. We have
inf m (z) = infinf { £ (x) + 3[]x — z[3}
z Z X
= infinf { £ (x) + [|x — z|3} = inf { f(x) + L inf [|x — 2|3} = inf £ (x). O
X Z X Z X

Later, we shall show that the minimizers of m ¢(z) and f(x) are the same, as well.

Both m  and m g+ are convex and differentiable. The point x = prox ,z is characterized
by the property z — x € df(x). Consequently, x is a global minimizer of f if and only if
X = Prox x.

For example, consider the indicator function of the convex set C, f(x) = ¥¢(x) that
is zero if x is in the closed convex set C and +oo otherwise. Then m sz is the minimum of
%||x —z| |§ over all x in C, and prox ;z = Pcz, the orthogonal projection of z onto the set C.

The operators prox, : z — prox ,z are proximal operators. These operators generalize
the projections onto convex sets, and, like those operators, are firmly non-expansive [14].

The support function of the convex set C is o¢(x) = sup,c{(x, u). It is easy to see that
oc = Y. For f*(z) = o¢(z), we can find m s+z using Moreau’s theorem ([22], p 338).

12.2. Moreau’s theorem and applications

Moreau’s theorem generalizes the decomposition of members of R’ with respect to a subspace.
For a proof, see the book by Rockafellar [22].

Theorem 12.1 (Moreau’s theorem). Let f be a closed, proper, convex function. Then
myz+mpz =3zl (12.1)
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and
ProX sz + Prox sz = 2. (12.2)
In addition, we have

prox .z € af (prox ;z),
prox .z = Vmy(2), and (12.3)
prox,z = Vm p(2).

Since o¢ = ¥, we have
Prox,.z =z — prox, .z =z — Pcz. (12.4)

The following proposition illustrates the usefulness of these concepts.
Proposition 12.2. The minimizers of m y and the minimizers of f are the same.

Proof. From Moreau’s theorem we know that
Vm g (z) = prox s.z = z — prox,z, (12.5)

so Vm gz = 0 is equivalent to z = prox ,z. ]

12.3. Iterative minimization of m sz

Because the minimizers of m ; are also minimizers of f, we can find global minimizers of
f using standard iterative methods, such as gradient descent, on m y. The gradient descent
iterative step has the form

X =Xk — e Vim (x5, (12.6)

We know from Moreau’s theorem that

Vm gz = Prox .z = z — prox sz, 12.7)
so that equation (12.6) can be written as
K = xk (k= proxka)
=(1- yk)xk + Vi proxka. (12.8)
Because
Xk — proxka € 8f(proxka), (12.9)

the iteration in equation (12.8) has the increment
K xk e —paf (xfh, (12.10)

in contrast to what we would have with the usual gradient descent method for
differentiable f:

X xk = V(). (12.11)

It follows from the definition of df(x**!) that f(x¥) > f(x**!) for the iteration in
equation (12.8).

20



Inverse Problems 24 (2008) 015013 C Byrne

12.4. Forward-backward splitting

In [14] the authors consider the problem of minimizing the function f = f; + f>, where f; is
differentiable and its gradient is A-Lipschitz continuous. The function f is minimized at the
point x if and only if

0€df(x) =03fi(x) +V fa(x), (12.12)
so we have

—yVfalx) € y3fix), (12.13)
for any y > 0. Therefore

x —yVhx)—xeyifikx). (12.14)
From equation (12.14) we conclude that

X = prox,, . (x —yVLHix). (12.15)
This suggests an algorithm with the iterative step

X =prox,, ; (x* — yV o(x"). (12.16)

In order to guarantee convergence, y is chosen to lie in the interval (0, 2/1). It is also possible
to allow y to vary with the k. This is called the forward—backward splitting approach. As noted
in [14], the forward—backward splitting approach has, as a particular case, the CQ algorithm
of [9, 10].

12.5. Generalizing the Moreau envelope

The Moreau envelope involves the infimum of the function
fO)+ 51l =zl (12.17)

Consequently, the Moreau envelope can be generalized in various ways, either by changing
the % to a variable parameter, or replacing the Euclidean distance by a more general distance
measure.

For real A > 0, the Moreau—Yosida approximation of index A [1] is the function

1
Fi@) =inf { £00 + -l = 2113}. (12.18)

For fixed A, the theory is much the same as for the Moreau envelope [1, 2]. For fixed A, F(2)
can be viewed as an approximate minimization of f(x), involving regularization based on an
additive penalty term. If z = 0, then F; (0) is a norm-constrained minimization of f(x).

12.6. Proximity operators using Bregman distances

Several authors have extended Moreau’s results by replacing the Euclidean squared distance
with a Bregman distance. Let & be a closed proper convex function that is differentiable on
the nonempty set int D. The corresponding Bregman distance Dy, (x, z) is defined for x € R’
and z € int D by

Dj(x,z) = h(x) — h(z) — (Vh(z),x — 2). (12.19)

Note that Dy, (x, z) > 0 always and that Dy, (x, z) = +00 is possible. If & is essentially strictly
convex then Dy (x, z) = 0 implies that x = z.
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12.6.1. Teboulle’s entropic proximal mappings. Teboulle [24] considers the function
R(x,z) = f(x) +eDy(x, 2), (12.20)

and shows that, with certain restrictions on f and A, the function R(-, z) attains its minimum
value, R.(z), at a unique x = E,(f, z). He then generalizes Moreau’s theorem, proving that
the operator Ej,(f, -) has properties analogous to the proximity operators prox ;(-). He then
demonstrates that several nonlinear programming problems can be formulated using such
functions R(x, z). He is primarily concerned with the behavior of R.(z), as z varies, and not
as € varies.

Teboulle’s method relies on Fenchel’s Duality theorem [22], and therefore requires the
conjugate of the function g(x) = Dj(x, z). As he shows,

§°(y) = h*(y + Vh(2)) — h*(Vh(2)). (12.21)

His main result requires the joint convexity of the function Dy (x, z).

12.6.2. The proximal minimization of Censor and Zenios. Censor and Zenios [13] also
consider R(x, z). They are less interested in the properties of the operator Ej ( f, -) and more
interested in the behavior of their PMD iterative algorithm defined by

xF = argmin( f (x) + Dy (x, x%)). (12.22)

In their work, the function % is a Bregman function with zone S. They show that, subject to
certain assumptions, if the function f has a minimizer within the closure of S, then the PMD
iterates converge to such a minimizer. It is true that their method and results are somewhat
more general, in that they consider also the minimizers of R(x, z) over another closed convex
set X; however, this set X is unrelated to the function 4.

The PMA presented here has the same iterative step as the PMD method of Censor
and Zenios. However, the assumptions about f and & are different, and our theorem
asserts convergence of the iterates to a constrained minimizer of f over C = D, whenever
such a minimizer exists. In other words, we solve a constrained minimization problem,
whereas Censor and Zenios solve the unconstrained minimization problem, under a restrictive
assumption on the location of minimizers of f, and more restrictive assumptions on % (x).

12.6.3. Alternating Bregman proximity operators. Recent work by Bauschke, Combettes and
Noll [5] extends the proximal minimization idea to include the use of the Bregman distance
with the variable vector in both the left and right positions, that is, minimizing functions
of x involving first D f(x,xk’l) and then D f(xk ,x). This approach leads to alternating
minimization algorithms for minimizing objective functions of the form

)+ Y () +Dy(x,y).

13. Computation

As we noted previously, we do not address computational issues in any detail in this paper.
Nevertheless, it cannot be ignored that both equation (5.2) for the SMART and equations (11.6)
and (11.7) for the generalized SMART provide easily calculated iterates, in contrast to other
examples of SUMMA. At the same time, showing that these two algorithms are particular
cases of SUMMA requires the introduction of functions Gy (x) that appear to be quite ad hoc.
The purpose of this section is to motivate these choices of G;(x) and to indicate how other
analogous computationally tractable SUMMA iterative schemes may be derived.
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13.1. Landweber’s algorithm
Suppose that A is a real / x J matrix and we wish to obtain a least-squares solution & of
Ax = b by minimizing the function
2

f(x) = 3l|Ax —b| .
We know that

AT Az = ATp, (13.1)
S0, in a sense, the problem is solved. However, in many applications, the dimensions / and J
are quite large, perhaps in the tens of thousands, as in some image reconstruction problems.
Solving equation (13.1), and even calculating AT A, can be prohibitively expensive. In such
cases, we turn to iterative methods, not necessarily to incorporate constraints on x, but to
facilitate calculation. Landweber’s algorithm is one such iterative method for calculating a

least-squares solution.
The iterative step of Landweber’s algorithm is

=Xkt AT (AX — b, (13.2)

The sequence {x*} converges to the least-squares solution closest to x°, for any choice of

y in the interval (0,2/p(AT A)), where p(AT A), the spectral radius of AT A, is its largest

eigenvalue; this is a consequence of the Krasnoselskii-Mann theorem (see, for example, [10]).
It is easy to verify that the x* given by equation (13.2) is the minimizer of the function

1 1 _ 1 _
Gix) = S l|Ax —bl* + gnx —x*1P - FllAx — Ax 12, (13.3)

that, for y in the interval (0, 1/0(AT A)), the iteration in equation (13.2) is a particular case
of SUMMA, and

1
Gi(x) — G (x*) = vk X%,
Y

The similarity between the Gj(x) in equation (13.3) and that in equation (10.2) is not
accidental and both are particular cases of a more general iterative scheme involving proximal
minimization.

13.2. Extending the PMA

The proximal minimization algorithm (PMA) requires us to minimize the function Gy (x)
given by equation (4.2) to obtain x*. How x* may be calculated was not addressed previously.
Suppose, instead of minimizing G (x) in equation (4.2), we minimize

Gi(x) = f(x) + Dy(x, x*71) — Dy (x, x*71), (13.4)
with the understanding that f(x) is convex and

Dy(x,z) — Dy(x,2) 20,
for all appropriate x and z. The next iterate x* satisfies the equation

0= Vh(x*) — Vaa" + vk, (13.5)
so that

Vh(x*) = VR — v Fedh. (13.6)

This iterative scheme is the interior-point algorithm (IPA) presented in [8]. If the function
h(x) is chosen carefully, then we can solve for x* easily. The Landweber algorithm, the
SMART, and the generalized SMART are all particular cases of this IPA.
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Using lemma 9.1, we can show that
Gi(x) — Gy (x*) = Dy (x, xb), (13.7)

for all appropriate x, so that the IPA is a particular case of SUMMA. We consider now several
other examples.

If welet h(x) = % ||x]|? in equation (13.4), the iteration becomes

=Xty v . (13.8)
If, for example, the operator V f is L-Lipschitz continuous, that is,
IIVf(x) =V @Il < Lllx —zll,
then, for any y in the interval (0, 1/2L), we have
1
gllx — 2P > Lllx —zl? 2 (Vf(x) = Vf (@), x —2) = Dp(x,2) + Ds(z, %) > Dys(x, 2).

Therefore, this iteration is a particular case of SUMMA. It should be noted that, in this case,
the Krasnoselskii-Mann theorem gives convergence for any y in the interval (0, 2/L).

Finally, we consider what happens if we replace the Euclidean norm with that induced by
the local geometry derived from f itself. More specifically, let us take

hx) = %xTVZf(xk_l)x,
so that
Dy(x, ) = L = x*HI V2D (e — xF ).
Then the IPA iterate x* becomes
=k V2T ), (13.9)

which is the Newton—Raphson iteration. Using the SUMMA framework to study the Newton—
Raphson method is work in progress.

Algorithms such as Landweber’s and SMART can be slow to converge. It is known
that convergence can often be accelerated using incremental gradient (partial gradient, block-
iterative, ordered-subset) methods. Using the SUMMA framework to study such incremental
gradient methods as the algebraic reconstruction technique (ART), its multiplicative version
(MART), and other block-iterative methods is also the subject of on-going work.

Appendix: Bregman-Legendre functions

In [4] Bauschke and Borwein show convincingly that the Bregman—Legendre functions provide
the proper context for the discussion of Bregman distances and Bregman projections onto
closed convex sets. The summary here follows closely the discussion given in [4].

A.l. Basic notions

A convex function & : RY — [—o0, +00] is proper if there is no x with h(x) = —oco and some
x with A(x) < +00. The effective domain of h is dom h = {x|h(x) < +00}. A proper convex
function 4 is closed if it is lower semi-continuous, that is, if #(x) = liminf A(y), as y — x.
A convex function is continuous on any relatively open convex subset of dom A.

The subdifferential of h at x is the set

0h(x) = {x*|(x*,z — x) < h(z) — h(x), forall z}. (A.1)
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The domain of 9/ is the set dom 04 = {x|dh(x) # @}. The elements of the subdifferential are
subgradients. If h is differentiable, then the subdifferential contains only the gradient, that is,

oh(x) = {Vh(x)). (A2)
The conjugate function associated with £ is the function
h*(a) = sup, ({a, x) — h(x)). (A.3)

A.2. Essential smoothness and essential strict convexity

Following [22] we say that a closed proper convex function £ is essentially smooth if int D,
the interior of D, is not empty, 4 is differentiable on int D, and x” € int D, with x" — x, with
x in bdry D, the boundary of D, implies that ||VA(x™)|| — +o0.

A closed proper convex function h is essentially strictly convex if h is strictly convex on
every convex subset of dom d4.

The closed proper convex function 4 is essentially smooth if and only if the subdifferential
dh(x) is empty for x € bdD and is {Vh(x)} for x € int D (so h is differentiable on int D) if
and only if the function i* is essentially strictly convex.

A closed proper convex function / is said to be a Legendre function if it is both essentially
smooth and essentialy strictly convex. So 4 is Legendre if and only if its conjugate function
is Legendre, in which case the gradient operator V# is a topological isomorphism with VAi*
as its inverse. The gradient operator Vi maps int dom 4 onto int dom 4*. If int dom h* = R’
then the range of Vi is R’ and the equation Vi(x) = y can be solved for every y € R”.
In order for int dom h* = R’ it is necessary and sufficient that the Legendre function £ be
super-coercive, that is,

h(x)
lixll—+oo ||x]|
If the essential domain of 4 is bounded, then / is super-coercive and its gradient operator is a
mapping onto the space R”.

A.3. Bregman projections onto closed convex sets

Let K be a nonempty closed convex set with K N int D # (. Pick z € int D. The Bregman
projection of z onto K, with respect to A, is

P}é (z) = argmin, g np Dp(x, 2).
If & is essentially strictly convex, then P,’} (z) exists. If A is strictly convex on D then P,’é (z) is

unique. If & is Legendre, then P,f (z) is uniquely defined and is in int D; this last condition is
sometimes called zone consistency.

Example. Let J = 2 and h(x) be the function that is equal to one-half the norm squared on
D, the nonnegative quadrant, +oo elsewhere. Let K be the set K = {(x, x2)|x; + xo = 1}.
The Bregman projection of (2, 1) onto K is (1, 0), which is not in int D. The function % is not
essentially smooth, although it is essentially strictly convex. Its conjugate is the function #*
that is equal to one-half the norm squared on D and equal to zero elsewhere; it is essentially
smooth, but not essentially strictly convex.

If & is Legendre, then Plh( (z) is the unique member of K N int D satisfying the inequality

(Vh(PR(2)) — Vh(z), Pg(z) — ¢) > 0, (A.4)
for all ¢ € K. From this we obtain the Bregman Inequality:
Di(c, 2) > Dy(c, Pg () + Di(Pg (2), 2), (A.5)

forallc € K.
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A.4. Bregman—Legendre functions

Following Bauschke and Borwein [4], we say that a Legendre function & is a Bregman—
Legendre function if the following properties hold:

B1: for x in D and any a > 0 the set {z| D, (x, z) < a} is bounded.

B2: if x is in D but not in int D, for each positive integer n, y” is in int D with y" — y € bd
D and if {Dj,(x, y")} remains bounded, then D;(y, y") — 0,sothat y € D.

B3: if x" and y” are in int D, with x" — x and y" — y, where x and y are in D but not in int
D, and if D, (x", y*) — Othen x = y.

A.5. Useful results about Bregman—Legendre functions

The following results are proved in somewhat more generality in [4].

R1: If y" € intdom 4 and y* — y € int dom A, then Dy (y, y") — 0.

R2: If x and y" € int dom 4 and y" — y € bd dom A, then Dy (x, y") — +00.

R3: If x* € D,x" - x € D,y" €int D,y" — y € D,{x,y}Nnint D # @ and
Dp(x",y") — 0,thenx = yand y € int D.

R4: If x and y are in D, but are not in int D, y" € int D, y* — y and Dy (x, y") — 0, then
x=y.
As a consequence of these results we have the following.

R5: If { Dy (x, y")} — 0, for y" € int D and x € R, then {y"} — x.

Proof of R5. Since {D;(x, y")} is eventually finite, we have x € D. By property B1 above
it follows that the sequence {y"} is bounded; without loss of generality, we assume that
{y"} — y, for some y € D. If x is in int D, then, by result R2 above, we know that y is also
in int D. Applying result R3, with x" = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are two cases to consider:
(1) y isin int D; (2) y is not in int D. In case (1) we have D;(x, y") — Dy(x,y) = 0, from
which it follows that x = y. In case (2) we apply result R4 to conclude that x = y. |
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