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Chapter 1

Preface

VALENTINE: What she’s doing is, every time she works out a value for y,
she’s using that as her next value for x. And so on. Like a feedback. She’s
feeding the solution into the equation, and then solving it again. Iteration,
you see. ... This thing works for any phenomenon which eats its own
numbers.

HANNAH: What I don’t understand is... why nobody did this feedback
thing before- it’s not like relativity, you don’t have to be Einstein.

VALENTINE: You couldn’t see to look before. The electronic calculator
was what the telescope was for Galileo.

HANNAH: Calculator?

VALENTINE: There wasn’t enough time before. There weren’t enough
pencils. ... Now she’d only have to press a button, the same button, over
and over. Iteration. ... And so boring!

HANNAH: Do you mean that was the only problem? Enough time? And
paper? And the boredom?

VALENTINE: Well, the other thing is, you’d have to be insane.

Arcadia (Act 1, Scene 4), by Tom Stoppard

1
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The well known formula for solving a quadratic equation produces the
answer in a finite number of calculations; it is a non-iterative method, if we
are willing to accept a square-root symbol in our answer. Similarly, Gauss
elimination gives the solution to a system of linear equations, if there is one,
in a finite number of steps; it, too, is a non-iterative method. A typical
iterative algorithm (the name comes from the Latin word iterum, meaning
“again”), involves a relatively simple calculation, performed repeatedly.
An iterative method produces a sequence of approximate answers that,
in the best case, converges to the solution. The characters in Stoppard’s
play are discussing the apparent anticipation, by a (fictional) teenage girl
in 1809, of the essential role of iterative algorithms in chaos theory and
fractal geometry. A good example of an iterative algorithm is the bi-section
method for finding a root of a real-valued continuous function f(x) of the
real variable x: begin with an interval [a, b] such that f(a)f(b) < 0 and
then replace one of the endpoints with the average a+b

2 , maintaining the
negative product. The length of each interval so constructed is half the
length of the previous interval and each interval contains a root. In the
limit, the two sequences defined by the left endpoints and right endpoints
converge to the same root.

Iterative algorithms are used to solve problems for which there is no
non-iterative solution method, as well as problems for which non-iterative
methods are impractical, such as using Gauss elimination to solve a system
of thousands of linear equations in thousands of unknowns. We may want
to find a root of f(x) = x2 − 2 in order to approximate

√
2, or to solve an

algebraic equation, such as x = tanx, by writing the equation as f(x) =
x−tanx = 0. On the other hand, we may want a root of f(x) because f(x)
is the derivative of another function, say F (x), that we wish to optimize.
If our goal is to minimize F (x), we may choose, instead, to generate an
iterative sequence {xk}, k = 0, 1, ..., that converges to a minimizer of F (x).

Iterative algorithms are often formulated as fixed-point methods: the
equation f(x) = 0 is equivalent to x = f(x) + x = g(x), so we may try to
find a fixed point of g(x), that is, an x for which g(x) = x.

The idea of using iterative procedures for solving problems is an ancient
one. Archimedes’ use of the areas of inscribed and circumscribed regular
polygons to estimate the area of a circle is a famous instance of an iterative
procedure, as is his method of exhaustion for finding the area of a section
of a parabola.

It is not our aim here to describe all the various problems that can be
solved by iterative methods. We shall focus on iterative methods currently
being used in inverse problems, with special attention to remote-sensing
applications, such as image reconstruction from tomographic data in medi-
cal diagnostics and acoustic array signal processing. Such methods include
those for solving large systems of linear equations, with and without con-
straints, optimization techniques, such as likelihood and entropy maximiza-
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tion, data-extrapolation procedures, and algorithms for convex feasibility
problems.

Throughout these discussions we shall be concerned with the speed of
the algorithms, as well as their sensitivity to noise or errors in the data;
methods for accelerating and regularizing the algorithms will be treated in
detail.

The iterative algorithms we discuss take the form xk+1 = Txk, where
T is some (usually nonlinear) continuous operator on the space RJ of J-
dimensional real vectors, or CJ , the space of J-dimensional complex vec-
tors. If the sequence {T kx0} converges to x∗, then Tx∗ = x∗, that is, x∗

is a fixed point of T . To be sure that the sequence {T kx0} converges, we
need to know that T has fixed points, but we need more than that.

We shall focus on two broad classes of operators, those that are aver-
aged, non-expansive with respect to the Euclidean vector norm, and those
that are paracontractive with respect to some vector norm. Convergence
for the first class of operators is a consequence of the Krasnoselskii/Mann
(KM) Theorem, and the Elsner/Koltracht/Neumann (EKN) Theorem es-
tablishes convergence for the second class. The definitions of these classes
are derived from basic properties of orthogonal projection operators, which
are members of both classes.

In many remote-sensing applications, the (discretized) object sought is
naturally represented as a vector with nonnegative entries. For such prob-
lems, we can incorporate nonnegativity in the algorithms through the use
of projections with respect to entropy-based distances. These algorithms
are often developed by analogy with those methods using orthogonal pro-
jections. As we shall see, this analogy can often be further exploited to
derive convergence theorems.

The cross-entropy distance is just one example of a Bregman distance.
The notion of an operator being paracontractive, with respect to a norm,
can be extended to being paracontractive, with respect to a Bregman dis-
tance. Bregman projections onto convex sets are paracontractive in this
generalized sense, as are many of the operators of interest. The EKN The-
orem and many of its corollaries can be extended to operators that are
paracontractive, with respect to Bregman distances.

We begin with an overview of the algorithms and their applications.
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Chapter 2

Introduction

Because the field of iterative algorithms is vast, any set of lecture notes must
involve selection of a few topics that the author wishes to treat in some
detail. Here the goal is to discuss those methods most relevant to image
reconstruction and signal processing, especially medical tomographic image
reconstruction.

2.1 Overview

Although our chosen subject may sound narrow, it includes many of the
topics found in standard texts on procedures for iterative solution of linear
equations and iterative optimization. Our goal will require us to discuss
classes of linear and nonlinear operators on finite-dimensional real and com-
plex Euclidean space and the fixed-point algorithms associated with these
operators, eigenvalues and eigenvectors of matrices, cross-entropy distance
between nonnegative vectors, Fourier analysis, statistical likelihood max-
imization and Bayesian methods, regularization to decrease sensitivity to
noise, and acceleration techniques.

2.1.1 Image Reconstruction in Tomography

Image reconstruction from tomographic data is a fairly recent, and increas-
ingly important, area of applied numerical linear algebra, particularly for
medical diagnosis [74, 78, 89, 107, 108, 120, 121] . In the so-called algebraic
approach, the problem is to solve, at least approximately, a large system
of linear equations, Ax = b. The vector x is large because it is usually
a vectorization of a discrete approximation of a function of two or three
continuous spatial variables. The size of the system necessitates the use
of iterative solution methods [95]. Because the entries of x usually repre-
sent intensity levels, of beam attenuation in transmission tomography, and

5
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of radionuclide concentration in emission tomography, we require x to be
nonnegative; the physics of the situation may impose additional constraints
on the entries of x. In practice, we often have prior knowledge about the
function represented, in discrete form, by the vector x and we may wish to
include this knowledge in the reconstruction. In tomography the entries of
A and b are also nonnegative. Iterative algorithms tailored to find solutions
to these special, constrained problems may out-perform general iterative
solution methods [105]. To be medically useful in the clinic, the algorithms
need to produce acceptable reconstructions early in the iterative process.

2.1.2 Systems of Linear Equations

Exact solutions of Ax = b may not exist, so we need appropriate measures
of distance between vectors to obtain suitable approximate solutions. In
tomography and other forms of remote sensing, the entries of the vector
b are data obtained by measurements, and so are noisy. Consequently,
exact solutions of Ax = b, even when available, may be too noisy to be
useful. Bayesian or penalized optimization algorithms are used to obtain
reconstructions displaying the desired smoothness [59, 71, 75, 77, 96, 98].

2.1.3 Iterative Methods

The basic idea in iterative algorithms is to begin with an initial vector x0

and to transform that vector to get x1, and continue in this way to generate
a sequence of vectors {xk}, each obtained from the previous one by some
transformation, which we denote by T . The iterative step is xk+1 = Txk.
In the limit, further transformaton should result in no change; that is, we
have a fixed point of T . If there is a unique solution x̂ of the problem, we
often require that we get closer to x̂ with each step of the iteration; that
is,

||x̂ − xk+1|| < ||x̂ − xk||.
It is sensible, then, that we focus on operators T that are non-expansive(ne),
which means that

||Tx − Tz|| ≤ ||x − z||,
for all vectors x and z, where ||x|| denotes the Euclidean length or the
2-norm of the vector x. Being ne is not enough, in most cases, and we
shall require T to have additional properties that guarantee convergence
of the sequence {xk}. Although the 2-norm and the Euclidean distance
between vectors will play a prominent role in what follows, we shall also
be interested in other notions of distance, such as cross-entropy, along with
operators that are well-behaved with respect to these other distances.

Certain iterative algorithms require that we select a parameter that
governs the size of the steps taken at each iteration. For the Landweber
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and projected Landweber methods [12], this parameter is dependent on
the largest eigenvalue, λmax, of the matrix A†A. Because the system is
large, calculating A†A, let alone computing λmax, is impractical. If we
overestimate λmax, the step lengths become too small and the algorithm is
too slow to be practical; tight upper bounds for λmax that can be obtained
from A itself help to accelerate these algorithms. Upper bounds exist that
are particularly useful for the common case in which A is sparse, that is,
most of its entries are zero [31]. These upper bounds are shown to become
tighter as the size of the system increases [36].

The Fourier approach to tomographic image reconstruction maintains,
at least initially, the continuous model for the attenuation function. The
data are taken to be line integrals through the attenuator, that is, val-
ues of its so-called x-ray transform, which, in the two-dimensional case, is
the Radon transform. The Central Slice Theorem then relates the Radon-
transform values to values of the Fourier transform of the attenuation func-
tion. Image reconstruction then becomes estimation of the (inverse) Fourier
transform. In magnetic-resonance imaging (MRI), we again have the mea-
sured data related to the function we wish to image, the proton density
function, by a Fourier relation.

In the transmission and emission tomography, the data are photon
counts, so it is natural to adopt a statistical model and to convert the
image reconstruction problem into a statistical parameter-estimation prob-
lem. The estimation can be done using maximum likelihood (ML) or max-
imum a posteriori (MAP) Bayesian methods, which then require iterative
optimization algorithms.

2.2 Tomography

These days, the term tomography is used by lay people and practitioners
alike to describe any sort of scan, from ultrasound to magnetic resonance.
It has apparently lost its association with the idea of slicing, as in the
expression three-dimensional tomography. In this paper we focus on two
important modalities, transmission tomography and emission tomography.
An x-ray CAT scan is an example of the first, a positron-emission (PET)
scan is an example of the second. Although there is some flexibility in the
mathematical description of the image reconstruction problem posed by
these methods, we shall concentrate here on the algebraic formulation of
the problem. In this formulation, the problem is to solve, at least approxi-
mately, a large system of linear equations, Ax = b. What the entries of the
matrix A and the vectors x and b represent will vary from one modality to
another; for our purposes, the main point is simply that all of these entries
are nonnegative.

In both modalities the vector x that we seek is a vectorization, that
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is, a one-dimensional encoding, of an unknown two- or three-dimensional
discrete function. It is this transition from higher dimensions to a single
dimension that causes x to be large. The quantity xj , the j-th entry
of the vector x, represents the value of the function at the pixel or voxel
corresponding to the index j. The quantity bi, the i-th entry of the vector b,
is measured data, the discrete line integral of x along the i-th line segment,
in the transmission case, and photon counts at the i-th detector in the
emission case. The entries of the matrix A describe the relationship that
holds between the various pixels and the various detectors, that is, they
describe the scanning process whereby the information about the unknown
function is translated into measured data. In the transmission case, the
entries of A describe the geometric relationship between the patient and
the scanner, as well as the paths taken by the beams. In the emission
case, the entries of A are the probabilities of a photon being detected at
the various detectors, given that it was emitted at a particular pixel. In
both cases, there is a certain amount of simplification and guesswork that
goes into the choice of these entries. In the emission case, the probabilities
depend, in part, on the attenuation encountered as the photons pass from
within the body to the exterior, and so will depend on the anatomy of the
particular patient being scanned.

2.2.1 Transmission Tomography

When an x-ray beam travels along a line segment through the body it be-
comes progressively weakened by the material it encounters. By comparing
the initial strength of the beam as it enters the body with its final strength
as it exits the body, we can estimate the integral of the attenuation func-
tion, along that line segment. The data in transmission tomography are
these line integrals, corresponding to thousands of lines along which the
beams have been sent. The image reconstruction problem is to create a
discrete approximation of the attenuation function. The inherently three-
dimensional problem is usually solved one two-dimensional plane, or slice,
at a time, hence the name tomography [78].

The beam attenuation at a given point in the body will depend on the
material present at that point; estimating and imaging the attenuation as a
function of spatial location will give us a picture of the material within the
body. A bone fracture will show up as a place where significant attenuation
should be present, but is not.

The attenuation function is discretized, in the two-dimensional case, by
imagining the body to consist of finitely many squares, or pixels, within
which the function has a constant, but unknown, value. This value at
the j-th pixel is denoted xj . In the three-dimensional formulation, the
body is viewed as consisting of finitely many cubes, or voxels. The beam
is sent through the body along various lines and both initial and final
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beam strength is measured. From that data we can calculate a discrete
line integral along each line. For i = 1, ..., I we denote by Li the i-th line
segment through the body and by bi its associated line integral. Denote by
Aij the length of the intersection of the j-th pixel with Li; therefore, Aij

is nonnegative. Most of the pixels do not intersect line Li, so A is quite
sparse. Then the data value bi can be described, at least approximately, as

bi =

J
∑

j=1

Aijxj . (2.1)

Both I, the number of lines, and J , the number of pixels or voxels, are
quite large, although they certainly need not be equal, and are typically
unrelated.

The matrix A is large and rectangular. The system Ax = b may or may
not have exact solutions. We are always free to select J , the number of
pixels, as large as we wish, limited only by computation costs. We may also
have some choice as to the number I of lines, but within the constraints
posed by the scanning machine and the desired duration and dosage of
the scan. When the system is underdetermined (J > I), there may be
infinitely many exact solutions; in such cases we usually impose constraints
and prior knowledge to select an appropriate solution. As we mentioned
earlier, noise in the data, as well as error in our model of the physics of
the scanning procedure, may make an exact solution undesirable, anyway.
When the system is overdetermined (J < I), we may seek a least-squares
approximate solution, or some other approximate solution. We may have
prior knowledge about the physics of the materials present in the body
that can provide us with upper bounds for xj , as well as information about
body shape and structure that may tell where xj = 0. Incorporating such
information in the reconstruction algorithms can often lead to improved
images [105].

2.2.2 Emission Tomography

In single-photon emission tomography (SPECT) and positron emission to-
mography (PET) the patient is injected with, or inhales, a chemical to
which a radioactive substance has been attached [121]. The chemical is de-
signed to become concentrated in the particular region of the body under
study. Once there, the radioactivity results in photons that travel through
the body and, at least some of the time, are detected by the scanner. The
function of interest is the actual concentration of the radioactive material at
each spatial location within the region of interest. Learning what the con-
centrations are will tell us about the functioning of the body at the various
spatial locations. Tumors may take up the chemical (and its radioactive
passenger) more avidly than normal tissue, or less avidly, perhaps. Mal-
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functioning portions of the brain may not receive the normal amount of the
chemical and will, therefore, exhibit an abnormal amount of radioactivity.

As in the transmission tomography case, this nonnegative function is
discretized and represented as the vector x. The quantity bi, the i-th entry
of the vector b, is the photon count at the i-th detector; in coincidence-
detection PET a detection is actually a nearly simultaneous detection of
a photon at two different detectors. The entry Aij of the matrix A is the
probability that a photon emitted at the j-th pixel or voxel will be detected
at the i-th detector.

In the emission tomography case it is common to take a statistical view
[94, 93, 112, 115, 120], in which the quantity xj is the expected number of
emissions at the j-th pixel during the scanning time, so that the expected
count at the i-th detector is

E(bi) =

J
∑

j=1

Aijxj . (2.2)

The system of equations Ax = b is obtained by replacing the expected
count, E(bi), with the actual count, bi; obviously, an exact solution of the
system is not needed in this case. As in the transmission case, we seek an
approximate, and nonnegative, solution of Ax = b, where, once again, all
the entries of the system are nonnegative.

2.2.3 Maximum-Likelihood Parameter Estimation

The measured data in tomography are values of random variables. The
probabilities associated with these random variables are used in formulating
the image reconstruction problem as one of solving a large system of linear
equations. We can also use the stochastic model of the data to formulate
the problem as a statistical parameter-estimation problem, which suggests
the image be estimated using likelihood maximization. When formulated
that way, the problem becomes a constrained optimization problem. The
desired image can then be calculated using general-purpose iterative opti-
mization algorithms, or iterative algorithms designed specifically to solve
the particular problem.
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Chapter 3

Convergence Theorems

In this chapter we consider three fundamental convergence theorems that
will play important roles in much of what follows.

3.1 Fixed Points of Iterative Algorithms

The iterative methods we shall consider can be formulated as

xk+1 = Txk, (3.1)

for k = 0, 1, ..., where T is a linear or nonlinear continuous operator on (all
or some of) the space X of real or complex J-dimensional vectors and x0 is
an arbitrary starting vector. For any such operator T on X the fixed point
set of T is

Fix(T ) = {z|Tz = z}.

Exercise 3.1 Show that, if the iterative sequence defined by Equation (3.1)
converges, then the limit is a member of Fix(T ).

A wide variety of problems can be solved by finding a fixed point of a
particular operator and algorithms for finding such points play a prominent
role in a number of applications. The paper [124] is an excellent source
of background on these topics, particularly as they apply to signal and
image processing. The more recent article by Bauschke and Borwein [8] is
also quite helpful. The book by Borwein and Lewis [14] is an important
reference.

In the algorithms of interest here the operator T is selected so that the
set Fix(T ) contains those vectors z that possess the properties we desire in
a solution to the original signal processing or image reconstruction problem;
finding a fixed point of the iteration leads to a solution of our problem.

13
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3.2 Convergence Theorems for Iterative Al-
gorithms

In general, a sequence of the form {T kx0} need not converge, even when
T has fixed points. The Newton-Raphson iteration, for example, may con-
verge only when the starting vector x0 is sufficiently close to a solution.
We shall be concerned mainly with classes of operators T for which con-
vergence holds for all starting vectors, whenever T has fixed points. The
class of strict contractions provides a good example.

3.2.1 Strict Contractions

An operator T on X is Lipschitz continuous, with respect to a vector norm
|| · ||, if there is a positive constant λ such that

||Tx − Ty|| ≤ λ||x − y||,

for all x and y in X .
An operator T on X is a strict contraction (sc), with respect to a vector

norm || · ||, if there is r ∈ (0, 1) such that

||Tx − Ty|| ≤ r||x − y||,

for all vectors x and y.

Exercise 3.2 Show that a strict contraction can have at most one fixed
point.

For strict contractions, we have the Banach-Picard theorem [64]:

Theorem 3.1 Let T be sc. Then, there is a unique fixed point and, for
any starting vector x0, the sequence {T kx0} converges to the fixed point.

The key step in the proof is to show that {xk} is a Cauchy sequence,
therefore, it has a limit.

Exercise 3.3 Show that the sequence {xk} is a Cauchy sequence. Hint:
consider

||xk − xk+n|| ≤ ||xk − xk+1|| + ... + ||xk+n−1 − xk+n||,

and use
||xk+m − xk+m+1|| ≤ rm||xk − xk+1||.

Exercise 3.4 Since {xk} is a Cauchy sequence, it has a limit, say x̂. Let
ek = x̂−xk. Show that {ek} → 0, as k → +∞, so that {xk} → x̂. Finally,
show that T x̂ = x̂.
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Exercise 3.5 Suppose that we want to solve the equation

x =
1

2
e−x.

Let Tx = 1
2e−x for x in R. Show that T is a strict contraction, when re-

stricted to non-negative values of x, so that, provided we begin with x0 > 0,
the sequence {xk = Txk−1} converges to the unique solution of the equa-
tion. Hint: use the mean value theorem from calculus.

Exercise 3.6 Let T be an affine operator, that is, T has the form Tx =
Bx + d, where B is a linear operator, and d is a fixed vector. Show that T
is a strict contraction if and only if ||B||, the induced matrix norm of B,
is less than one.

The spectral radius of B, written ρ(B), is the maximum of |λ|, over all
eigenvalues λ of B. Since ρ(B) ≤ ||B|| for every norm on B induced by
a vector norm, B is sc implies that ρ(B) < 1. When B is Hermitian, the
matrix norm of B induced by the Euclidean vector norm is ||B||2 = ρ(B),
so if ρ(B) < 1, then B is sc with respect to the Euclidean norm.

When B is not Hermitian, it is not as easy to determine if the affine
operator T is sc with respect to a given norm. Instead, we often tailor the
norm to the operator T .

To illustrate, suppose that B is a diagonalizable matrix, that is, there
is a basis for X consisting of eigenvectors of B. Let {u1, ..., uJ} be such a
basis, and let Buj = λju

j , for each j = 1, ..., J . For each x in X , there are
unique coefficients aj so that

x =

J
∑

j=1

aju
j .

Then let

||x|| =

J
∑

j=1

|aj |. (3.2)

Exercise 3.7 Show that || · || defines a norm on X .

Exercise 3.8 Suppose that ρ(B) < 1. Show that the affine operator T is
sc, with respect to the norm defined by Equation (3.2).

Actually, this result holds for any square matrix B, even if B is not diag-
onalizable. According to Lemma 35.1, for any square matrix B and any
ε > 0, there is a vector norm for which the induced matrix norm satisfies
||B|| ≤ ρ(B) + ε.
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In many of the applications of interest to us, there will be multiple
fixed points of T . Therefore, T will not be sc for any vector norm, and the
Banach-Picard fixed-point theorem will not apply. We need to consider
other classes of operators.

The first class we consider are the paracontractive (pc) operators. This
class is particularly important for the study of affine operators, since T
being pc can be related to the behavior of the eigenvalues of B.

For the (possibly) non-affine case, we shall begin with operators that
are non-expansive (ne) with respect to the Euclidean norm, and then focus
on an important sub-class, the averaged operators.

3.3 Paracontractive Operators

An operator T on X is a paracontraction (pc), with respect to a vector
norm || · ||, if, for every fixed point y of T , and every x, we have

||Tx − y|| < ||x − y||,

unless Tx = x. If T has no fixed points, then T is trivially pc. An operator
T is strictly non-expansive (sne) if

||Tx − Ty|| < ||x − y||,

unless Tx − Ty = x − y. Clearly, if T is sc, then T is sne.

Exercise 3.9 Show that, if T is sne, then T is pc.

Exercise 3.10 Let H(a, γ) = {x|〈x, a〉 = γ}. Show that P , the orthogonal
projection onto H(a, γ), is given by

Px = x +
γ − 〈x, a〉

〈a, a〉 a.

Then show that P is pc, but not sc, with respect to the Euclidean norm.

To illustrate, suppose, once again, that B is a diagonalizable matrix,
that is, there is a basis for X consisting of eigenvectors of B. Let {u1, ..., uJ}
be such a basis, and let Buj = λju

j , for each j = 1, ..., J .

Exercise 3.11 Suppose that |λj | < 1, for all eigenvalues λj that are not
equal to one. Show that the affine operator T , given by Tx = Bx + d, is
pc, with respect to the norm defined by Equation (3.2).

Our interest in paracontractions is due to the Elsner/Koltracht/Neumann
(EKN) Theorem [67]:



3.4. AVERAGED NON-EXPANSIVE OPERATORS 17

Theorem 3.2 Let T be pc with respect to some vector norm. If T has
fixed points, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

The product of two or more sne operators is again sne. The product of two
or more pc operators will be pc if the operators share at least one fixed
point, but not generally.

3.4 Averaged Non-expansive Operators

An operator T on X is non-expansive (ne), with respect to some vector
norm, if, for every x and y, we have

||Tx − Ty|| ≤ ||x − y||.

The identity map Ix = x for all x is clearly ne; more generally, for any
fixed vector w in X , the maps Nx = x + w and Nx = −x + w are ne. If
T is pc, then T is ne. Being ne is not enough to guarantee convergence of
the iterative sequence {T kx0}, as the example T = −I illustrates.

An operator T is averaged (av) if there is α ∈ (0, 1) and a non-expansive
operator N , such that

T = (1 − α)I + αN,

where I is the identity operator. We also say that T is α-av.

Exercise 3.12 Show that an av operator is ne.

Although this defines the av operators for any vector norm, the notion of
av operators is most useful in the context of the Euclidean norm, that is,
the operator N in the definition is ne, with respect to the Euclidean norm.
The main reason for this is the following identity, relating an operator T
to its complement G = I − T , which holds only for the Euclidean norm:

||x − y||22 − ||Tx − Ty||22 = 2Re(〈Gx − Gy, x − y〉) − ||Gx − Gy||22. (3.3)

Our interest in averaged operators is due to the Krasnoselskii/Mann
Theorem [100]:

Theorem 3.3 Let T be averaged, with respect to the Euclidean norm. If
T has fixed points, then the iterative sequence {T kx0} converges to a fixed
point of T , for every starting vector, x0.

To make use of the KM Theorem, we shall assume, from now on, that all
av operators are averaged with respect to the Euclidean norm.

The product of two or more av operators is again av, which makes the
class of av operators important for the development of convergent iterative
algorithms.



18 CHAPTER 3. CONVERGENCE THEOREMS

3.5 Projection onto Convex Sets

Let C be a nonempty, closed convex subset of X . It is a basic result in
Hilbert space theory that, for every x in X , there is a unique point in C
closest to x, in the Euclidean distance; this point is denoted PCx and the
operator PC is the orthogonal projection onto C. For most sets C we will
not be able to describe PCx explicitly. We can, however, characterize PCx
as the unique member of C for which

Re(〈PCx − x, c − PCx〉) ≥ 0, (3.4)

for all c in C; see Proposition 34.2.

Exercise 3.13 Show that the orthogonal projection operator T = PC is
nonexpansive, with respect to the Euclidean norm. Hint: use Inequality
(3.4) to get

Re(〈PCy − PCx, PCx − x〉) ≥ 0,

and
Re(〈PCx − PCy, PCy − y〉) ≥ 0.

Add the two inequalities and use the Cauchy inequality.

In fact, this exercise shows that

Re(〈PCx − PCy, x − y〉) ≥ ||PCx − PCy||22,

which says that the operator T = PC is not simply ne, but is firmly non-
expansive (fne). As we shall see later, being fne implies being av, so the PC

operators are av. If Ci, i = 1, ..., I are convex sets, and Pi the orthogonal
projection onto Ci, then the operator

T = PIPI−1 · · · P2P1

is again av. When the intersection of the Ci is non-empty, the sequence
{xk} will converge to a member of that intersection.

Proposition 3.1 For any closed, convex set C, the operator PC is pc, with
respect to the Euclidean norm.

Proof: It follows from Cauchy’s Inequality that

||PCx − PCy||2 ≤ ||x − y||2,

with equality if and only if

PCx − PCy = α(x − y),
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for some scalar α with |α| = 1. But, because

0 ≤ Re(〈PCx − PCy, x − y〉) = α||x − y||22,

it follows that α = 1, and so

PCx − x = PCy − y.

This shows that the PC operators are pc.

3.6 Generalized Projections

So far, we have been discussing algorithms that apply to any vectors in
X . In a number of applications, the vectors of interest will naturally have
non-negative entries. For such problems, it is reasonable to consider dis-
tances that apply only to non-negative vectors, such as the cross-entropy, or
Kullback-Leibler, distance. Associated with such distances are generalized
projections. Algorithms that are based on orthogonal projection operators
can then be extended to employ these generalized projections. Of course,
new proofs of convergence will be needed, but even there, aspects of earlier
proofs are often helpful.

The orthogonal projection operators lead us to both the averaged opera-
tors and the paracontractive operators, as well as to generalized projections
and Bregman paracontractions, and the algorithms built from them.
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Chapter 4

Averaged Non-expansive
Operators

Many well known algorithms in optimization, signal processing, and im-
age reconstruction are iterative in nature. The Jacobi, Gauss-Seidel, and
successive overrelaxation (SOR) procedures for solving large systems of
linear equations, projection onto convex sets (POCS) methods and iter-
ative optimization procedures, such as entropy and likelihood maximiza-
tion, are the primary examples. The editorial [95] provides a brief intro-
duction to many of the recent efforts in medical imaging. It is a pleas-
ant fact that convergence of many of these algorithms is a consequence
of the Krasnoselskii/Mann (KM) Theorem for averaged operators or the
Elsner/Koltracht/Neumann (EKN) Theorem for paracontractions. In this
chapter we take a closer look at averaged non-expansive operators and the
Krasnoselskii/Mann Theorem. In the following chapter, we turn to para-
contractive non-expansive operators and the results of Elsner, Koltracht
and Neumann.

4.1 Convex Feasibility

Recall that an operator T on X is averaged (av) if there is an α in the
interval (0, 1) and an operator N , non-expansive with respect to the Eu-
clidean norm, for which T = (1 − α)I + αN . For such T , the sequence
{T kx0} converges to a fixed point of T , whenever fixed points exist; this is
the content of the KM Theorem.

To illustrate, suppose that C is a closed convex set in X , such as the
nonnegative vectors in RJ . The orthogonal projection operator PC asso-
ciates with every x in X the point PCx in C that is nearest to x, in the
Euclidean distance. If C1 and C2 are two such sets the fixed points of the

21
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operator T = PC2PC1 are the vectors in the intersection C = C1 ∩ C2.
Finding points in the intersection of convex sets is called the convex feasi-
bility problem (CFP). If C is nonempty; then the sequence {xk} generated
by Equation (3.1) converges to a member of C. This is a consequence of
the KM Theorem, since the operator T is av.

4.2 Constrained Optimizaton

Some applications involve constrained optimization, in which we seek a
vector x in a given convex set C that minimizes a certain function f . For
suitable γ > 0 the operator T = PC(I − γ∇f) will be av and the sequence
{T kx0} will converge to a solution.

4.3 Solving Linear Systems

An important class of operators are the affine linear ones, having the form

Tx = Bx + h,

where B is linear, so that Bx is the multiplication of the vector x by the
matrix B, and h is a fixed vector. Affine linear operators occur in iterative
methods for solving linear systems of equations.

4.3.1 The Landweber Algorithm

The Landweber algorithm for solving the system Ax = b is

xk+1 = xk + γA†(b − Axk),

where γ is a selected parameter. We can write the Landweber iteration as

xk+1 = Txk,

for
Tx = (I − γA†A)x + A†b = Bx + h.

The Landweber algorithm actually solves the square linear system A†A =
A†b for a least-squares solution of Ax = b. When there is a unique solution
or unique least-squares solution of Ax = b, say x̂, then the error at the k-th
step is ek = x̂ − xk and we see that

Bek = ek+1.

We want ek → 0, and so we want ||B||2 < 1; this means that both T and
B are Euclidean strict contractions. Since B is Hermitian, B will be sc if
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and only ||B||2 < 1, where ||B||2 = ρ(B) is the matrix norm induced by
the Euclidean vector norm.

On the other hand, when there are multiple solutions of Ax = b, the
solution found by the Landweber algorithm will be the one closest to the
starting vector. In this case, we cannot define ek and we do not want
||B||2 < 1; that is, we do not need that B be a strict contraction, but
something weaker. As we shall see, since B is Hermitian, B will be av
whenever γ lies in the interval (0, 2/ρ(B)).

4.3.2 Splitting Algorithms

Affine linear operators also occur in splitting algorithms for solving a square
system of linear equations, Sx = b. We write S = M − K, with M
invertible. Then, the iteration is

xk+1 = M−1Kxk + M−1b,

which can be written as

xk+1 = Txk,

for the affine linear operator

Tx = M−1Kx + M−1b = Bx + h.

When S is invertible, there is a unique solution of Sx = b, say x̂, and we
can define the error ek = x̂ − xk. Then ek+1 = Bek, and again we want
||B||2 < 1, that is, B is a strict contraction. However, if S is not invertible
and there are multiple solutions, then we do not want B to be sc. Since B
is usually not Hermitian, deciding if B is av may be difficult. Therefore,
we may instead ask if there is a vector norm with respect to which B is pc.

We begin, in the next section, a detailed discussion of averaged oper-
ators, followed by an examination of the proof of the Krasnoselskii/Mann
theorem.

4.4 Averaged Non-expansive Operators

As we have seen, the fact that a ne operator N has fixed points is not suf-
ficient to guarantee convergence of the orbit sequence {Nkx0}; additional
conditions are needed. Requiring the operator to be a strict contraction is
quite restrictive; most of the operators we are interested in here have mul-
tiple fixed points, so are not sc, in any norm. For example, if T = PC , then
C = Fix(T ). Motivated by the KM Theorem, we concentrate on averaged
operators, by which we shall always mean with respect to the Euclidean
norm.
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4.4.1 Properties of Averaged Operators

As we shall see now, in seeking fixed points for an operator T it is helpful
to consider properties of its complement, G = I − T . An operator G on X
is called ν-inverse strongly monotone (ν-ism) [73] (also called co-coercive
in [52]) if there is ν > 0 such that

Re(〈Gx − Gy, x − y〉) ≥ ν||Gx − Gy||22.

Exercise 4.1 Show that N is ne if and only if its complement G = I − N
is 1

2 -ism. If G is ν-ism and γ > 0 then the operator γG is ν
γ -ism.

Lemma 4.1 An operator A is av if and only if its complement G = I − A
is ν-ism for some ν > 1

2 .

Proof: We assume first that A is av. Then there is α ∈ (0, 1) and ne
operator N such that A = (1 − α)I + αN , and so G = I − A = α(I − N).
Since N is ne, I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely,

assume that G is ν-ism for some ν > 1
2 . Let α = 1

2ν and write A =
(1 − α)I + αN for N = I − 1

αG. Since I − N = 1
αG, I − N is αν-ism.

Consequently I − N is 1
2 -ism and N is ne. Therefore, A is av.

Exercise 4.2 Show that, if the operator A is α-av and 1 > β > α, then A
is β-av.

Exercise 4.3 Note that we can establish that a given operator is av by
showing that there is an α in the interval (0, 1) such that the operator

1

α
(A − (1 − α)I)

is ne. Use this approach to show that if T is sc, then T is av.

Lemma 4.2 Let T = (1 − α)A + αN for some α ∈ (0, 1). If A is averaged
and N is non-expansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1 − γ = (1 − α)(1 − β). Then we have

T = (1 − γ)I + γ[(1 − α)βγ−1M + αγ−1N ].

Since the operator K = (1 − α)βγ−1M + αγ−1N is easily shown to be ne
and the convex combination of two ne operators is again ne, T is averaged.

Corollary 4.1 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.
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An operator F on X is called firmly non-expansive (fne), with respect
to the Euclidean norm, if it is 1-ism [124], [8].

Lemma 4.3 An operator F is fne if and only if its complement I − F is
fne. If F is fne then F is av.

Proof: By Equation (34.4), we know that, for any operator F with G =
I − F , we have

Re(〈Fx−Fy, x−y〉)−||Fx−Fy||22 = Re(〈Gx−Gy, x−y〉)−||Gx−Gy||22.

The left side is nonnegative if and only if the right side is. Finally, if F is
fne then I − F is fne, so I − F is ν-ism for ν = 1. Therefore F is av by
Lemma 4.1.

Corollary 4.2 Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne
and N is Euclidean-ne then T is averaged.

Proposition 4.1 For any closed, convex set C, the operator PC is fne,
and, therefore, is av.

Proof: Since the orthogonal projection of x onto C is characterized by the
inequalities

Re(〈c − PCx, PCx − x〉) ≥ 0

for all c ∈ C, we have

Re(〈PCy − PCx, PCx − x〉) ≥ 0

and
Re(〈PCx − PCy, PCy − y〉) ≥ 0.

Adding, we find that

Re(〈PCx − PCy, x − y〉) ≥ ||PCx − PCy||22;

the operator PC is fne, and therefore also av.
The orthogonal projection operators PH onto hyperplanes H = H(a, γ)

are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1 − ω)I + ωPH ,

for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH −I,
which is reflection through H; that is,

PHx =
1

2
(x + RHx),

for each x.
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Exercise 4.4 Show that RH is an isometry; that is,

||RHx − RHy||2 = ||x − y||2,

for all x and y, so that RH is ne.

Exercise 4.5 Show that, for ω = 1 + γ in the interval [1, 2), we have

(1 − ω)I + ωPH = αI + (1 − α)RH ,

for α = 1−γ
2 ; therefore, T = (1 − ω)I + ωPH is av.

The product of finitely many ne operators is again ne, while the product
of finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1 − α)I + αN is averaged and B is averaged then T = AB has
the form T = (1 − α)B + αNB. Since B is av and NB is ne, it follows
from Lemma 4.1 that T is averaged. Summarizing, we have

Proposition 4.2 If A and B are averaged, then T = AB is averaged.

It is possible for Fix(AB) to be nonempty while Fix(A)∩Fix(B) is
empty; however, if the latter is nonempty, it must coincide with Fix(AB)
[8]:

Proposition 4.3 Let A and B be averaged operators and suppose that
Fix(A)∩Fix(B) is nonempty. Then Fix(A)∩Fix(B) =Fix(AB)=Fix(BA).

Proof: Let I − A be νA-ism and I − B be νB-ism, where both νA and νB

are taken greater than 1
2 . Let z be in Fix(A)∩Fix(B) and x in Fix(BA).

Then
||z − x||22 ≥ ||z − Ax||22 + (2νA − 1)||Ax − x||22

≥ ||z − BAx||22 + (2νB − 1)||BAx − Ax||22 + (2νA − 1)||Ax − x||22
= ||z − x||22 + (2νB − 1)||BAx − Ax||22 + (2νA − 1)||Ax − x||22.

Therefore ||Ax − x||2 = 0 and ||BAx − Ax||2 = ||Bx − x||2 = 0.

4.4.2 Averaged Linear Operators

Affine linear operators have the form Tx = Bx + d, where B is a matrix.
The operator T is av if and only if B is av. It is useful, then, to consider
conditions under which B is av.

When B is averaged, there is a positive α in (0, 1) and a Euclidean ne
operator N , with

B = (1 − α)I + αN.
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Therefore

N =
1

α
B + (1 − 1

α
)I (4.1)

is non-expansive. Clearly, N is a linear operator; that is, N is multiplication
by a matrix, which we also denote N . When is such an operator N ne?

Exercise 4.6 Show that a linear operator N is ne, in the Euclidean norm,
if and only if ||N ||2 =

√

ρ(N†N), the matrix norm induced by the Euclidean
vector norm, does not exceed one.

We know that B is av if and only if its complement, I − B, is ν-ism for
some ν > 1

2 . Therefore,

Re(〈(I − B)x, x〉) ≥ ν||(I − B)x||22,

for all x. This implies that x†(I − B)x ≥ 0, for all x. Since this quadratic
form can be written as

x†(I − B)x = x†(I − Q)x,

for Q = 1
2 (B + B†), it follows that I − Q must be non-negative definite.

Moreover, if B is av, then B is ne, so that ||B||2 ≤ 1. Since ||B||2 = ||B†||2,
and ||Q||2 ≤ 1

2 (||B||2 + ||B†||2), it follows that Q must be Euclidean ne. In
fact, since N is Euclidean ne if and only if N† is, B is av if and only if B†

is av. Consequently, if the linear operator B is av, then so is the Hermitian
operator Q, and so the eigenvalues of Q must lie in the interval (−1, 1]. We
also know from Exercise ?? that, if B is av, then |λ| < 1, unless λ = 1, for
every eigenvalue λ of B.

In later chapters we shall be particularly interested in linear operators
B that are Hermitian, in which case N will also be Hermitian. Therefore,
we shall assume, for the remainder of this subsection, that B is Hermitian,
so that all of its eigenvalues are real. It follows from our discussion relating
matrix norms to spectral radii that a Hermitian N is ne if and only if
ρ(N) ≤ 1. We now derive conditions on the eigenvalues of B that are
equivalent to B being an av linear operator.

For any (necessarily real) eigenvalue λ of B, the corresponding eigen-
value of N is

ν =
1

α
λ + (1 − 1

α
).

Exercise 4.7 Show that |ν| ≤ 1 if and only if

1 − 2α ≤ λ ≤ 1.
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From the exercise, we see that the Hermitian linear operator B is av if
and only if there is α in (0, 1) such that

−1 < 1 − 2α ≤ λ ≤ 1,

for all eigenvalues λ of B. This is equivalent to saying that

−1 < λ ≤ 1,

for all eigenvalues λ of B. The choice

α0 =
1 − λmin

2

is the smallest α for which

N =
1

α
B + (1 − 1

α
)I

will be non-expansive; here λmin denotes the smallest eigenvalue of B. So,
α0 is the smallest α for which B is α-av.

The linear operator B will be fne if and only if it is 1
2 -av. Therefore, B

will be fne if and only if 0 ≤ λ ≤ 1, for all eigenvalues λ of B. Since B is
Hermitian, we can say that B is fne if and only if B and I − B are non-
negative definite. We summarize the situation for Hermitian B as follows.
Let λ be any eigenvalue of B. Then

B is non-expansive if and only if −1 ≤ λ ≤ 1, for all λ;

B is averaged if and only if −1 < λ ≤ 1, for all λ;

B is a strict contraction if and only if −1 < λ < 1, for all λ;

B is firmly non-expansive if and only if 0 ≤ λ ≤ 1, for all λ.

4.5 The KM Theorem

The Krasnoselskii/Mann Theorem is the following:

Theorem 4.1 Let T be an av operator on X and let Fix(T ) be nonempty.
Then the orbit sequence {T kx} converges to a member of Fix(T ), for any
x.

As we shall see, many of the iterative methods used in signal and image
processing are special cases of the KM approach.
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Proof of the theorem: Let z be a fixed point of non-expansive operator
N and let α ∈ (0, 1). Let T = (1−α)I +αN , so the iterative step becomes

xk+1 = Txk = (1 − α)xk + αNxk. (4.2)

The identity in Equation (34.3) is the key to proving Theorem 4.1.
Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xk||22 − ||Tz − xk+1||22 = 2Re(〈Gz − Gxk, z − xk〉) − ||Gz − Gxk||22.

Since, by Lemma 4.1, G is 1
2α -ism, we have

||z − xk||22 − ||z − xk+1||22 ≥ (
1

α
− 1)||xk − xk+1||22. (4.3)

Consequently the sequence {xk} is bounded, the sequence {||z − xk||2} is
decreasing and the sequence {||xk −xk+1||2} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗ − xk||2}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete.

For those cases in which N is the operator of interest, and we form
T only to apply the KM Theorem, it might appear that Equation 4.3 is
telling us to select α small, so as to make the term 1

α − 1, and therefore,
the left side, quite large. However, a small α will tend to make ||x∗ − xk||2
small as well. Selecting the best α is not a simple matter.

As we outlined in the Introduction, a wide variety of operators T can
be shown to be av. The convergence of the iterative fixed-point algorithms
associated with these operators then follows as a consequence of this theo-
rem.

4.6 The De Pierro-Iusem Approach

As we have seen, the class of non-expansive operators is too broad, and the
class of strict contractions too narrow, for our purposes. The KM Theorem
encourages us to focus on the intermediate class of averaged operators.
While this is certainly a fruitful approach, it is not the only possible one.
In [60] De Pierro and Iusem take a somewhat different approach, basing
their class of operators on properties of orthogonal projections onto convex
sets.

Exercise 4.8 Use the Cauchy-Schwarz Inequality and the fact that T =
PC is firmly non-expansive to show that

||Tx − Ty||2 = ||x − y||2 (4.4)
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implies that

Tx − Ty = x − y, (4.5)

and

〈Tx − x, x − y〉 = 0. (4.6)

De Pierro and Iusem consider operators Q : RJ → RJ that are non-
expansive and for which the property in Equation (4.4) implies both Equa-
tions (4.5) and (4.6). They then show that this class is closed to finite
products and convex combinations.



Chapter 5

Paracontractive Operators

An affine linear operator Tx = Bx + d is an averaged non-expansive op-
erator if and only if its linear part, B, is also averaged. A Hermitian B
is av if and only if −1 < λ ≤ 1, for each eigenvalue λ of B. When B is
not Hermitian, deciding if B is av is harder. In such cases, we can ask if
there is some vector norm, with respect to which B is paracontractive (pc).
As we shall see, if B is diagonalizable, then B is pc if |λ| < 1, for every
eigenvalue λ of B that is not equal to one. Then we can use the results of
Elsner, Koltracht and Neumann to establish convergence of the iterative
algorithm given by Equation (3.1).

5.1 Paracontractions and Convex Feasibility

An operator T on X is paracontractive (pc), with respect to some vector
norm || · ||, if, for every fixed point y of T and for every x, we have

||Tx − y|| < ||x − y||,

unless Tx = x. Note that T can be pc without being continuous, hence
without being ne. We shall restrict our attention here to those pc operators
that are continuous.

Let Ci, i = 1, ..., I, be non-empty, closed convex sets in X , with non-
empty intersection C. The orthogonal projection Pi = PCi

onto Ci is
pc, with respect to the Euclidean norm, for each i. The product T =
PIPI−1 ···P1 is also pc, since C is non-empty. The SOP algorithm converges
to a member of C, for any starting vector x0, as a consequence of the
EKN Theorem. For the SOP to be a practical procedure, we need to
be able to calculate easily the orthogonal projection onto each Ci. The
cyclic subgradient projection method (CSP) (see [45]) provides a practical
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alternative to the SOP, for sets Ci of the form

Ci = {x|gi(x) ≤ bi},

where gi is a convex function on X . In the case in which g is differentiable,
for each i, let

Tix = x − ωαi(x)∇gi(x),

for

αi(x) = max(gi(x) − bi, 0)/||∇gi(x)||2.

From [67] we have

Theorem 5.1 For 0 < ω < 2, the operators Ti are pc, with respect to the
Euclidean norm.

Proof: A vector y is a fixed point of Ti if and only if gi(y) ≤ 0, so if and
only if y ∈ Ci. Let x be a vector outside of Ci, and let α = αi(x). Since
gi has no relative minimum outside of Ci, Tix is well defined. We want to
show that ||Tix − y|| < ||x − y||. This is equivalent to showing that

ω2α2||∇gi(x)||2 ≤ 2ωα〈∇gi(x), x − y〉,

which, in turn, is equivalent to showing that

ω(gi(x) − bi) ≤ 〈∇gi(x), x − y〉. (5.1)

Since gi(y) ≤ bi and gi is convex, we have

(gi(x) − β) ≤ (gi(x) − gi(y)) ≤ 〈∇gi(x), x − y〉.

Inequality (5.1) follows immediately.

The CSP algorithm has the iterative step

xk+1 = Ti(k)x
k,

where i(k) = k(mod I)+1. Since each of the operators Ti is pc, the sequence
converges to a member of C, whenever C is non-empty, as a consequence
of the EKN Theorem.

Let A be an I by J real matrix, and for each i let gi(x) = (Ax)i. Then
the gradient of gi is ∇gi(x) = ai, the ith column of AT . The set Ci is
the half-space C = {x| (Ax)i ≤ bi}, and the operator Ti is the orthogonal
projection onto Ci. The CSP algorithm in this case becomes the AMS
algorithm for finding x with Ax ≤ b.
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5.2 The EKN Theorem

We have the Elsner/Koltracht/Neumann Theorem and its corollaries from
[67]:

Theorem 5.2 Suppose that there is a vector norm on X , with respect to
which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩I

i=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I)+1, and xk+1 = Ti(k)x

k.

The sequence {xk} converges to a member of F , for every starting vector
x0.

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)x
k − y|| ≤ ||xk − y||,

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix
∗ − y|| = ||x∗ − y||,

and Tix
∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary

member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a
subsequence converges to zero, so the whole sequence must converge to
zero. This completes the proof.

Corollary 5.1 If T is pc with respect to some vector norm, and T has
fixed points, then the iterative sequence {xk} generated by Equation (3.1)
converges to a fixed point of T , for every starting vector x0.

Corollary 5.2 If T = TITI−1 · · ·T2T1, and F = ∩I
i=1Fix (Ti) is not empty,

then F = Fix (T ).

Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T ),

for every x0. Select x0 in F .

Corollary 5.3 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩I

i=1Fix (Ti) is not empty.

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T ), we
have

||Tx − y|| = ||x − y||.
Then, since

||TI(TI−1 · · · T1)x − y|| ≤ ||TI−1 · · · T1x − y|| ≤ ... ≤ ||T1x − y|| ≤ ||x − y||,
it follows that

||Tix − y|| = ||x − y||,
and Tix = x, for each i. Therefore, Tx = x.
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5.3 Linear and Affine Paracontractions

Say that the linear operator B is diagonalizable if X has a basis of eigen-
vectors of B. In that case let the columns of V be such an eigenvector
basis. Then we have V −1BV = L, where L is the diagonal matrix having
the eigenvalues of B along its diagonal.

5.3.1 Back-propagation-of-error Methods

Suppose that A is I by J , with J > I and that Ax = b has infinitely many
solutions. A backpropagation-of-error approach leads to an algorithm with
the iterative step

xk+1 = xk + γC†(b − Axk),

where C is some I by J matrix. The algorithm can then be written in the
form xk+1 = T kx0, for T the affine operator given by

Tx = (I − γC†A)x + γC†b.

Since Ax = b has multiple solutions, A has a non-trivial null space, so that
some of the eigenvalues of B = (I − γC†A) are equal to one. As we shall
see, if γ is chosen so that |λ| < 1, for all the remaining eigenvalues of B,
and B is diagonalizable, then T will be pc, with respect to some vector
norm, and the iterative sequence {xk} will converge to a solution. For such
a γ to exist, it is necessary that, for all nonzero eigenvalues µ = a + bi of
the matrix C†A, the real parts a be nonzero and have the same sign, which
we may, without loss of generality, assume to be positive. Then we need to
select γ in the intersection of the intervals (0, 2a/(a2+b2)), taken over every
eigenvalue µ. When C = A, all the nonzero eigenvalues of C†A = A†A are
positive, so such a γ exists. As C deviates from A, the eigenvalues of C†A
begin to change. We are asking that the C not deviate from A enough to
cause the real part of an eigenvalue to become negative.

5.3.2 Defining the Norm

Suppose that Tx = Bx + d is an affine linear operator whose linear part B
is diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal
to one. Let {u1, ..., uJ} be linearly independent eigenvectors of B. For each
x, we have

x =

J
∑

j=1

aju
j ,

for some coefficients aj . Define

||x|| =

J
∑

j=1

|aj |,
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We know from a previous exercise that T is pc with respect to this norm.
It follows from Theorem 3.2 that the iterative sequence {xk} will converge
to a fixed point of T , whenever T has fixed points.

5.3.3 Proof of Convergence

It is not difficult to prove convergence directly, as we now show.

Proof of convergence: Let the eigenvalues of B be λj , for j = 1, ..., J ,
with associated linearly independent eigenvectors uj . Define a norm on
vectors x by

||x|| =

J
∑

j=1

|aj |,

for

x =

J
∑

j=1

aju
j .

Assume that λj = 1, for j = K +1, ..., J , and that |λj | < 1, for j = 1, ..., K.
Let

d =

J
∑

j=1

dju
j .

Let x̂ be an arbitrary fixed point of T , with

x̂ =

J
∑

j=1

âju
j .

From T x̂ = x̂ we have

J
∑

j=1

âju
j =

J
∑

j=1

(λj âj + dj)u
j .

Then with

xk =

J
∑

j=1

ajkuj ,

and

xk+1 = Bxk + h =

J
∑

j=1

(λjajk + dj)u
j ,

we have

xk − x̂ =

J
∑

j=1

(ajk − âj)u
j ,
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and

xk+1 − x̂ =

K
∑

j=1

λj(ajk − âj)u
j +

J
∑

j=K+1

(ajk − âj)u
j .

Therefore,

||xk − x̂|| =

K
∑

j=1

|ajk − â| +

J
∑

j=K+1

|ajk − âj |,

while

||xk+1 − x̂|| =

K
∑

j=1

|λj ||ajk − â| +

J
∑

j=K+1

|ajk − âj |.

Consequently,

||xk − x̂|| − ||xk+1 − x̂|| =

K
∑

j=1

(1 − |λj |)|ajk − âj |.

It follows that the sequence {||xk−x̂||} is decreasing, and that the sequences
{|ajk − âj |} converge to zero, for each j = 1, ..., K.

Since the sequence {xk} is then bounded, select a cluster point, x∗, with

x∗ =

J
∑

j=1

a∗
ju

j .

Then we must have
{|ajk − a∗

j |} → 0,

for j = 1, ..., K. It follows that âj = a∗
j , for j = 1, ..., K. Therefore,

x̂ − x∗ =

J
∑

j=K+1

cju
j ,

for cj = âj − a∗
j . We can conclude, therefore, that

x̂ − Bx̂ = x∗ − Bx∗,

so that x∗ is another solution of the system (I − B)x = d. Therefore,
the sequence {||xk − x∗||} is decreasing; but a subsequence converges to
zero, so the entire sequence must converge to zero. We conclude that {xk}
converges to the solution x∗.

It is worth noting that the condition that B be diagonalizable cannot
be omitted. Consider the non-diagonalizable matrix

B =

[

1 1
0 1

]

,
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and the affine operator

Tx = Bx + (1, 0)T .

The fixed points of T are the solutions of (I − B)x = (1, 0)T , which are
the vectors of the form x = (a,−1)T . With starting vector x0 = (1, 0)T ,
we find that xk = (k − 1)x0, so that the sequence {xk} does not converge
to a fixed point of T . There is no vector norm for which T is pc.

If T is an affine linear operator with diagonalizable linear part, then
T is pc whenever T is av, as we know from Exercise ??. We see from
that exercise that, for the case of affine operators T whose linear part is
not Hermitian, instead of asking if T is av, we can ask if T is pc; since
B will almost certainly be diagonalizable, we can answer this question by
examining the eigenvalues of B.
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Chapter 6

Bregman-Paracontractive
Operators

In the previous chapter, we considered operators that are paracontractive,
with respect to some norm. In this chapter, we extend that discussion to
operators that are paracontractive, with respect to some Bregman distance.
Our objective here is to examine the extent to which the EKN Theorem
and its consequences can be extended to the broader class of Bregman
paracontractions. Typically, these operators are not defined on all of X ,
but on a restricted subset, such as the non-negative vectors, in the case of
entropy. For details concerning Bregman distances and related notions, see
the appendix.

6.1 Bregman Paracontractions

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x) − f(z) − 〈∇f(z), x − z〉,

where D = {x |f(x) < +∞} is the essential domain of f . When the domain
of f is not all of RJ , we define f(x) = +∞, for x outside its domain. Note
that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let C be a nonempty closed convex set with C ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto C, with respect to f , is

P f
C(z) = argminx∈C∩DDf (x, z).
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If f is essentially strictly convex, then P f
C(z) exists. If f is strictly convex

on D then P f
C(z) is unique. We assume that f is Legendre, so that P f

C(z)
is uniquely defined and is in intD; this last condition is sometimes called
zone consistency.

We shall make much use of the Bregman Inequality (37.1):

Df (c, z) ≥ Df (c, P f
Cz) + Df (P f

Cz, z). (6.1)

A continuous operator T : intD → intD is called a Bregman paracon-
traction (bpc) if, for every fixed point z of T , and for every x, we have

Df (z, Tx) < Df (z, x),

unless Tx = x. In order for the Bregman distances Df (z, x) and Df (z, Tx)
to be defined, it is necessary that ∇f(x) and ∇f(Tx) be defined, and so
we need to restrict the domain and range of T in the manner above. This
can sometimes pose a problem, when the iterative sequence {xk+1 = Txk}
converges to a point on the boundary of the domain of f . This happens,
for example, in the EMML and SMART methods, in which each xk is
a positive vector, but the limit can have entries that are zero. One way
around this problem is to extend the notion of a fixed point: say that z is an
asymptotic fixed point of T if (z, z) is in the closure of the graph of T , that
is, (z, z) is the limit of points of the form (x, Tx). Theorems for iterative
methods involving Bregman paracontractions can then be formulated to
involve convergence to an asymptotic fixed point [27]. In our discussion
here, however, we shall not consider this more general situation.

6.1.1 Entropic Projections

As an example of a Bregman distance and Bregman paracontractions, con-
sider the function g(t) = t log(t) − t, with g(0) = 0, and the associated
Bregman-Legendre function

f(x) =

J
∑

j=1

g(xj),

defined for vectors x in the non-negative cone RJ
+. The corresponding

Bregman distance is the Kullback-Leibler, or cross-entropy, distance

Df (x, z) = f(x) − f(z) − 〈∇f(z), x − z〉 = KL(x, z).

For any non-empty, closed, convex set C, the entropic projection operator
P e

C is defined by P e
Cz is the member x of C ∩ RJ

+ for which KL(x, z) is
minimized.
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Theorem 6.1 The operator T = P e
C is bpc, with respect to the cross-

entropy distance.

Proof: The fixed points of T = P e
C are the vectors c in C ∩ RJ

+. From the
Bregman Inequality (6.1) we have

Df (c, x) − Df (c, P e
Cx) ≥ Df (P e

Cx, x) ≥ 0,

with equality if and only if Df (P e
Cx, x) = 0, in which case Tx = x.

6.1.2 Weighted Entropic Projections

Generally, we cannot exhibit the entropic projection onto a closed, convex
set C in closed form. When we consider the EMML and SMART algo-
rithms, we shall focus on non-negative systems Ax = b, in which the entries
of A are non-negative, those of b are positive, and we seek a non-negative
solution. For each i = 1, ..., I, let

Hi = {x ≥ 0|(Ax)i = bi}.

We cannot write the entropic projection of z onto Hi in closed form, but,
for each positive vector z, the member of Hi that minimizes the weighted
cross-entropy,

J
∑

j=1

AijKL(xj , zj) (6.2)

is

xj = (Qe
i z)j = zj

bi

(Az)i
.

Exercise 6.1 Show that the operator Qe
i is bpc, with respect to the Breg-

man distance in Equation (6.2). Hint: show that, for each x in Hi,

J
∑

j=1

AijKL(xj , zj) −
J
∑

j=1

AijKL(xj , (Q
e
i z)j) = KL(bi, (Az)i).

With
∑I

i=1 Aij = 1, for each j, the iterative step of the EMML algorithm
can be written as xk+1 = Txk, for

(Tx)j =

I
∑

i=1

Aij(Q
e
i x)j ,
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and that of the SMART is xk+1 = Txk, for

(Tx)j =

I
∏

i=1

[(Qe
i x)j ]

Aij .

It follows from the theory of these two algorithms that, in both cases, T is
bpc, with respect to the cross-entropy distance.

6.2 Extending the EKN Theorem

Now we present a generalization of the EKN Theorem.

Theorem 6.2 For i = 1, ..., I, let Ti be bpc, for the Bregman distance
Df . Let F = ∩I

i=1Fix(Ti) be non-empty. Let i(k) = k(mod I) + 1 and
xk+1 = Ti(k)x

k. Then the sequence {xk} converges to a member of F .

Proof: Let z be a member of F . We know that

Df (z, xk) − Df (z, xk+1) ≥ 0,

so that the sequence {Df (z, xk} is decreasing, with limit d ≥ 0. Then the
sequence {xk} is bounded; select a cluster point, x∗. Then T1x

∗ is also a
cluster point, so we have

Df (z, x) − Df (z, T1x) = 0,

from which we conclude that T1x = x. Similarly, T2T1x
∗ = T2x

∗ is a
cluster point, and T2x

∗ = x∗. Continuing in this manner, we show that x∗

is in F . Then {Df (x∗, xk)} → 0, so that {xk} → x∗.

We have the following generalization of Corollary 5.3:

Corollary 6.1 For i = 1, ..., I, let Ti be bpc, for the Bregman distance Df .
Let F = ∩I

i=1Fix(Ti) be non-empty. Let T = TITI−1 · · · T2T1. Then the
sequence {xk+1 = Txk} converges to a member of F .

Proof: Let z be in F . Since Df (z, Tix) ≤ Df (z, x), for each i, it follows
that

Df (z, x) − Df (z, Tx) ≥ 0.

If equality holds, then

Df (z, (TITI−1 · · · T1)x) = Df (z, (TI−1 · · · T1)x)

... = Df (z, T1x) = Df (z, x),

from which we can conclude that Tix = x, for each i. Therefore, Tx = x,
and T is bpc.

Corollary 6.2 If F is not empty, then F = Fix(T ).

Exercise 6.2 Prove this corollary.



6.3. MULTIPLE BREGMAN DISTANCES 43

6.3 Multiple Bregman Distances

We saw earlier that both the EMML and the SMART algorithms involve
Bregman projections with respect to distances that vary with the sets
Ci = Hi. This suggests that Theorem 6.2 could be extended to include
continuous operators Ti that are bpc, with respect to Bregman distances
Dfi

that vary with i. However, there is a counter-example in [32] that
shows that the sequence {xk+1 = Ti(k)x

k} need not converge to a fixed
point of T . The problem is that we need some Bregman distance Dh that
is independent of i, with {Dh(z, xk} decreasing. The result we present now
is closely related to the MSGP algorithm.

6.3.1 Assumptions and Notation

We make the following assumptions throughout this section. The function h
is super-coercive and Bregman-Legendre with essential domain D = domh.
For i = 1, 2, ..., I the function fi is also Bregman-Legendre, with D ⊆
dom fi, so that intD ⊆ int dom fi. For all x ∈ dom h and z ∈ int domh we
have Dh(x, z) ≥ Dfi

(x, z), for each i.

6.3.2 The Algorithm

The multi-distance extension of Theorem 6.2 concerns the algorithm with
the following iterative step:

xk+1 = ∇h−1
(

∇h(xk) − ∇fi(k)(x
k) + ∇fi(k)(Ti(k)(x

k))
)

. (6.3)

6.3.3 A Preliminary Result

For each k = 0, 1, ... define the function Gk(·) : domh → [0,+∞) by

Gk(x) = Dh(x, xk) − Dfi(k)
(x, xk) + Dfi(k)

(x, Ti(k)(x
k)). (6.4)

The next proposition provides a useful identity, which can be viewed as an
analogue of Pythagoras’ theorem. The proof is not difficult and we omit
it.

Proposition 6.1 For each x ∈ dom h, each k = 0, 1, ..., and xk+1 given
by Equation (6.3) we have

Gk(x) = Gk(xk+1) + Dh(x, xk+1). (6.5)

Consequently, xk+1 is the unique minimizer of the function Gk(·).

This identity (6.5) is the key ingredient in the proof of convergence of the
algorithm.
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6.3.4 Convergence of the Algorithm

We shall prove the following convergence theorem:

Theorem 6.3 Let F be non-empty. Let x0 ∈ int domh be arbitrary. Any
sequence xk obtained from the iterative scheme given by Equation (6.3)
converges to x∞ ∈ F ∩ dom h.

Proof: Let z be in F . Then it can be shown that

Dh(z, xk) − Dh(z, xk+1) = Gk(xk+1) + Dfi
(z, xk) − Dfi

(z, Ti(k)x
k).

Therefore, the sequence {Dh(z, xk)} is decreasing, and the non-negative
sequences {Gk(xk+1)} and {Dfi

(z, xk) − Dfi
(z, Ti(k)x

k)} converge to zero.
The sequence {xmI} is then bounded and we can select a subsequence
{xmnI} with limit point x∗,0. Since the sequence {xmnI+1} is bounded, it
has a subsequence with limit x∗,1. But, since

Df1(z, xmnI) − Df1(z, xmnI+1) → 0,

we conclude that T1x
∗,0 = x∗,0. Continuing in this way, we eventually

establish that Tix
∗,0 = x∗,0, for each i. So, x∗,0 is in F . Using x∗,0 in place

of z, we find that {Dh(x∗,0, xk)} is decreasing; but a subsequence converges
to zero, so the entire sequence converges to zero, and {xk} → x∗,0.



Part III

Systems of Linear
Equations
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Chapter 7

An Overview of
Algorithms

In this chapter we present an overview of iterative algorithms for solving
systems of linear equations. In the chapters to follow, we examine each
of these algorithms in some detail. We denote by A an arbitrary I by J
matrix and by S an N by N square matrix, both with complex entries. For
notational convenience, we shall assume throughout this chapter that the
rows of A have been rescaled to have Euclidean length one.

7.1 The Algebraic Reconstruction Technique
(ART)

The algebraic reconstruction technique (ART) applies to an arbitrary sys-
tem Ax = b of linear equations [74, 81, 88]. For an arbitrary starting point
x0 and i = k(mod I) + 1, we have

xk+1
j = xk

j + (

J
∑

n=1

|Ain|2)−1Aij(bi − (Axk)i).

Since the rows of A have length one, we can write

xk+1
j = xk

j + Aij(bi − (Axk)i). (7.1)

In the consistent case, the ART converges to the solution closest to x0, in
the sense of the Euclidean distance. In the inconsistent case, it does not
converge, but subsequences associated with the same i converge to distinct
vectors, forming a limit cycle.
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The iterative step in the ART can be written as xk+1 = Pix
k, where Pi

denotes the orthogonal projection onto the hyperplane associated with the
i-th equation. The operator Pi is an affine linear operator.

7.1.1 Relaxed ART

Let ω ∈ (0, 2). The relaxed ART algorithm has the iterative step

xk+1
j = xk

j + ωAij(bi − (Axk)i)). (7.2)

The relaxed ART converges to the solution closest to x0, in the consis-
tent case. In the inconsistent case, it does not converge, but subsequences
associated with the same i converge to distinct vectors, forming a limit
cycle.

7.1.2 Constrained ART

Let C be a closed, nonempty convex subset of CJ and PCx the orthogonal
projection of x onto C. The constrained ART algorithm has the iterative
step

xk+1
j = PC(xk

j + Aij(bi − (Axk)i)). (7.3)

For example, if A and b are real and we seek a nonnegative solution to
Ax = b, we can use

xk+1
j = (xk

j + Aij(bi − (Axk)i))+, (7.4)

where, for any real number a, a+ = max{a, 0}. The constrained ART
converges to a solution of Ax = b within C, whenever such solutions exist.

7.1.3 Regularized ART

If the entries of b are noisy but the system Ax = b remains consistent (which
can easily happen in the underdetermined case, with J > I), the ART
begun at x0 = 0 converges to the solution having minimum Euclidean norm,
but this norm can be quite large. The resulting solution is probably useless.
Instead of solving Ax = b, we regularize by minimizing, for example, the
function

Fε(x) = ||Ax − b||22 + ε2||x||22.
The solution to this problem is the vector

x̂ε = (A†A + ε2I)−1A†b.

However, we do not want to calculate A†A + ε2I when the matrix A is
large. Fortunately, there are ways to find x̂ε, using only the matrix A and
the ART algorithm.
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We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is presented in [34], while the second one is due
to Eggermont, Herman, and Lent [66].

In our first method we use ART to solve the system of equations given
in matrix form by

[A† γI ]

[

u
v

]

= 0.

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −γx̂ε.

The method of Eggermont et al. is similar. In their method we use
ART to solve the system of equations given in matrix form by

[A γI ]

[

x
v

]

= b.

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε as before, and that γv∞ = b − Ax̂ε.

7.2 Cimmino’s Algorithm

At each step of the ART algorithm, we perform the orthogonal projection
of the current vector xk onto the i-th hyperplane. Cimmino’s method is
to project the current vector onto all the hyperplanes and then take the
arithmetic mean [48]. The iterative step of Cimmino’s algorithm is

xk+1
j = xk

j +
1

I

I
∑

i=1

Aij(bi − (Axk)i), (7.5)

which can be written as

xk+1 = xk +
1

I
A†(b − Axk). (7.6)

As with the ART, Cimmino’s method converges to the solution closest to
x0, in the consistent case. Unlike the ART, Cimmino’s method converges
in the inconsistent case, as well, to the least-squares solution closest to x0.
Note that we can write the iterative step of Cimmino’s algorithm as

xk+1 =
1

I

I
∑

i=1

Pix
k = Txk.

The operator

T =
1

I

I
∑

i=1

Pi

is an affine linear operator.
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7.3 Landweber’s Algorithm

Landweber’s algorithm [92] has the iterative step

xk+1 = Txk = xk + γA†(b − Axk), (7.7)

which we can write as

xk+1 = (I − γA†A)xk + γA†b.

The operator T with

Tx = (I − γA†A)x + γA†b

is an affine linear operator, and the linear part,

B = I − γA†A,

is Hermitian.
For γ = 1

I we get Cimmino’s method. The Landweber algorithm
converges to the solution, or least squares solution, closest to x0, when
0 < γ < 2/ρ(A†A), where ρ(S) denotes the spectral radius of S, the max-
imum of |λ|, over all eigenvalues λ of S. Since the rows of A have length
one, the trace of AA†, which is the sum of its eigenvalues, is I; therefore
ρ(A†A) = ρ(AA†) ≤ I. The choice of γ = 1

I is therefore acceptable in the
Landweber algorithm.

The Landweber algorithm minimizes the function f(x) = 1
2 ||Ax − b||22.

The gradient of f(x) is ∇f(x) = A†(Ax − b). Therefore, the iterative step
of the Landweber algorithm can be written as

xk+1 = xk − γ∇f(xk). (7.8)

We see from Equation (7.8) that the Landweber algorithm is a special case
of gradient descent minimization of a function f(x).

7.3.1 SART

The SART algorithm is a special case of the Landweber algorithm. Suppose
now that Aij ≥ 0, for all i and j, and that

Ai+ =

J
∑

j=1

Aij > 0,

for each i, and

A+j =

I
∑

i=1

Aij > 0,
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for each j. The SART algorithm [2] has the iterative step

xk+1
j = xk

j +
1

A+j

I
∑

i=1

Aij(bi − (Axk)i)/Ai+. (7.9)

With
Bij = Aij/

√

Ai+A+j ,

zj = xj

√

A+j ,

and
ci = bi/

√

Ai+,

Equation (7.9) becomes

zk+1 = zk + BT (c − Bzk), (7.10)

which is a special case of the Landweber iteration, with γ = 1. It can be
shown that ρ(BT B) = 1, so the choice of γ = 1 is acceptable.

7.4 The Projected Landweber Algorithm

For a closed, nonempty convex set C in CJ , the projected Landweber
algorithm [12] has the iterative step

xk+1 = PC(xk + γA†(b − Axk)). (7.11)

The operator T with

Tx = PC((I − γA†A)x + γA†b)

is not an affine linear operator. For γ ∈ (0, 2/ρ(A†A)), the projected
Landweber algorithm minimizes the function f(x) = 1

2 ||Ax − b||22, over
x ∈ C, if such a minimizer exists. The projected Landweber iterative step
can be written as

xk+1 = PC(I − γ∇f(xk)),

which, for general functions f(x), is the iterative step of the projected gra-
dient descent method.

7.5 The CQ Algorithm

The CQ algorithm generalizes the Landweber and projected Landweber
methods. Let C and Q denote closed, nonempty convex sets in CJ and CI ,
respectively. The function f(x) = 1

2 ||PQAx − Ax||22 has for its gradient

∇f(x) = A†(I − PQ)Ax.
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The projected gradient descent algorthm now takes the form

xk+1 = PC(xk − γA†(I − PQ)Axk),

which is the iterative step of the CQ algorithm [31, 32]. This algorithm
minimizes f(x) over x in C, whenever such minimizers exist, provided that
γ is in the interval (0, 2/ρ(A†A)).

7.6 Splitting Methods for Sz = h

We turn now to square systems of linear equations, denoted Sz = h. The
splitting method involves writing S = M + K, where systems of the form
Mx = b are easily solved [4]. From

Mz = −Kz + h

we derive the iteration

zk+1 = −M−1Kzk + M−1h. (7.12)

The iteration can be written as

zk+1 = Tzk = Bzk + d,

where
B = −M−1K = I − M−1S,

and d = M−1h. The operator T is then an affine linear operator, but its
linear part B is typically not Hermitian. We consider next some important
examples of the splitting method.

7.7 The Jacobi Method

The square matrix S can be written as S = D + L + U , where D is its
diagonal part, L it lower triangular part, and U its upper triangular part.
We assume that D is invertible. The Jacobi method uses M = D. The
Jacobi iterative step is then

zk+1 = zk + D−1(h − Szk), (7.13)

which we can write as

zk+1 = Tzk = Bzk + d, (7.14)

for B = I−D−1S and d = D−1h. If S is diagonally dominant, then ρ(B) <
1, and there is a vector norm with respect to which T is a strict contraction;
the Jacobi method then converges to the unique solution of Sz = h. When
S is Hermitian, T is then a strict contraction in the Euclidean norm.
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7.8 The Jacobi Overrelaxation Method

In order to make this approach applicable to a more general class of prob-
lems, the Jacobi overrelaxation method (JOR) was introduced. The JOR
method uses M = 1

ω D. Then B = I − ωD−1S. We are particularly inter-
ested in the JOR algorithm for Hermitian, positive-definite S.

7.8.1 When S is Positive-Definite

Suppose that S is Hermitian and positive-definite. Such S arise when we
begin with a general system Ax = b and consider the normal equations
A†Ax = A†b, or the Björck-Elfving equations AA†z = b [57].Then S has
the form S = R†R, for R the N by N Hermitian, positive-definite square
root of S. Let A = RD−1/2, xk = D1/2zk, and b = (R†)−1h. Then the
JOR iterative step becomes

xk+1 = xk + ωA†(b − Axk),

which is the Landweber algorithm, for Ax = b. For convergence, we need
γ in the interval (0, 2/ρ(A†A)). Note that ρ(A†A) = ρ(D−1/2SD−1/2).

When we apply the JOR to the normal equations A†Ax = A†b, we find
that it is equivalent to the Landweber iteration on the system AD−1/2z = b.
When we apply the JOR iteration to the Björck-Elfving equations AA†z =
b, we find that it is equivalent to the Landweber iteration applied to the
system D−1/2Ax = D−1/2b.

7.9 The Gauss-Seidel Method

The Gauss-Seidel (GS) method uses the matrix M = D + L. The GS
iteration can be written as

xk+1 = Txk = Bxk + d,

for
B = I − (D + L)−1S

and d = (D +L)−1h. Once again, the operator T is affine linear; the linear
part B is typically not Hermitian.

7.9.1 When S is Nonnegative-Definite

If the matrix S is Hermitian, nonnegative-definite, then it can be shown
that |λ| < 1 for every eigenvalue λ of B that is not equal to one. Con-
sequently, there is a vector norm with respect to which the operator T is
paracontractive. The GS iteration then converges to a solution, whenever
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one exists. If S is positive-definite, then T is a strict contraction, for that
same vector norm, and the GS iteration converges to the unique solution
of Sz = h.

7.10 Successive Overrelaxation

The successive overrelaxation (SOR) method uses the matrix M = 1
ω D+L;

when ω = 1 we have the GS method. The SOR iteration can be written as

zk+1 = Tzk = Bzk + d,

for
B = (D + ωL)−1((1 − ω)D − ωU).

It can be shown that |det (B)| = |1 − ω|N , so that ρ(B) > 1, for ω < 0 or
ω > 2.

7.10.1 When S is Positive-Definite

Suppose that S is positive-definite. Then we can write S = AA†. Let {zk}
be the iterative sequence generated by the SOR. Then the sequence {xk =
A†zk} is the sequence generated by one full cycle of the ART algorithm,
applied to the system Ax = b.

7.11 Projecting onto Convex Sets

The iterative step of the ART algorithm is xk+1 = Pix
k, where Pi denotes

the orthogonal projection onto the hyperplane associated with the i-th
equation. This suggests a more general algorithm for finding a vector in
the nonempty intersection of closed, convex sets C1, ..., CI . For each k, let
i = k(mod I) + 1 and let

xk+1 = PCi
xk,

where PCi
denotes the orthogonal projection onto the set Ci. This algo-

rithm is the successive ortogonal projection (SOP) method [76]. It converges
whenever the intersection is nonempty.

7.11.1 The Agmon-Motzkin-Schoenberg Algorithm

When the convex sets Ci are half-spaces

Ci = {x|(Ax)i ≥ bi},

the SOP algorithm becomes the Agmon-Motzkin-Schoenberg (AMS) algo-
rithm [1, 104].
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7.12 The Multiplicative ART (MART)

We turn now to the case in which the entries of the matrix A and vector x
are nonnegative and those of b are positive. We seek a nonnegative solution
of the system Ax = b. The multiplicative ART (MART) algorithm [74] has
the iterative step

xk+1
j = xk

j (bi/(Axk))Aij/mi ,

for i = k(mod I) + 1 and mi = max{Aij |j = 1, ..., J}. When nonnegative
solutions exist, we say that we are in the consistent case. In the consistent
case, the MART converges to the nonnegative solution of Ax = b for which
the cross-entropy, or Kullback-Leibler distance KL(x, x0) is minimized.

7.13 The Simultaneous MART (SMART)

The MART algorithm resembles the ART algorithm, in that it uses only
a single equation at each step. Analogous to the Cimmino algorithm we
have the simultaneous MART (SMART) [20, 21, 56, 84, 113]. The SMART
method begins with a positive vector x0; having calculated xk, we calculate
xk+1 using

log xk+1
j = log xk

j + s−1
j

I
∑

i=1

Aij log
bi

(Axk)i
, (7.15)

where sj =
∑I

i=1 Aij > 0.
In the consistent case the SMART converges to the unique nonnegative

solution of b = Ax for which the KL distance KL(x, x0) is minimized. In
the inconsistent case it converges to the unique nonnegative minimizer of
the distance KL(Ax, b) for which KL(x, x0) is minimized; if A and every
matrix derived from A by deleting columns has full rank then there is a
unique nonnegative minimizer of KL(Ax, b) and at most I −1 of its entries
are nonzero.

7.14 The Expectation-Maximization Maximum
Likelihood (EMML) Method

The iterative tep of the EMML algorithm is

xk+1
j = xk

j s−1
j

I
∑

i=1

Aij
bi

(Axk)i
.

In the consistent case the EMML algorithm [20, 21, 58, 93, 94, 115, 120]
converges to nonnegative solution of Ax = b. In the inconsistent case it
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converges to a nonnegative minimizer of the distance KL(b, Ax); if A and
every matrix derived from A by deleting columns has full rank then there
is a unique nonnegative minimizer of KL(b, Ax) and at most I − 1 of its
entries are nonzero.

7.15 Block-Iterative Algorithms

We begin by selecting subsets Sn, n = 1, ..., N whose union is the set of
equation indices {i = 1, ..., I}; the Sn need not be disjoint. Having found
iterate xk, set n = k(modN) + 1. The RBI-EMML [23, 33] algorithm has
the following iterative step:

xk+1
j = xk

j (1 − m−1
n s−1

j snj) + xk
j m−1

n s−1
j

∑

i∈Sn

Aij
bi

(Axk)i
, (7.16)

where

mn = max {snj/sj |j = 1, ..., J}. (7.17)

For any choice of subsets Sn, and any starting vector x0 > 0, the RBI-
EMML converges to a nonnegative solution whenever one exists. The ac-
celeration, compared to the EMML, is roughly on the order of N , the
number of subsets. As with the ART, the composition of the subsets, as
well as their ordering, can affect the rate of convergence.

7.16 Summary

These algorithms fall into three broad categories. The first, involving or-
thogonal projection operators PC , affine operators with positive-definite
linear parts, or, more generally, operators of the form I −γ∇f , for suitable
γ and convex functions f(x), will be show to be averaged non-expansive
with respect to the Euclidean norm. Convergence of these algorithms will
follow from the Krasnoselskii-Mann Theorem 4.1. The second class, involv-
ing affine operators whose linear parts are not positive-definite, are shown
to be paracontractive, with respect to an appropriately chosen norm, and
their convergence will be established using the Elsner-Koltracht-Neumann
Theorem 5.2. The third class, those involving operators whose domain is re-
stricted to nonnegative vectors, are shown to be paracontractive in the gen-
eralized sense of cross-entropy. Many of these algorithms were obtained by
extending algorithms in the other classes to the cross-entropy case. Proofs
of convergence for these algorithms are then obtained by mimicking the
proofs for the other classes, but changing the notion of distance.



Chapter 8

The Algebraic
Reconstruction Technique

The algebraic reconstruction technique (ART) [74] is a sequential iterative
algorithm for solving an arbitrary system Ax = b of I real or complex linear
equations in J unknowns. For notational simplicity, we shall assume, from
now on in this chapter, that the equations have been normalized so that
the rows of A have Euclidean length one.

8.1 The ART

For each index value i let Hi be the hyperplane of J-dimensional vectors
given by

Hi = {x|(Ax)i = bi}, (8.1)

and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k.

Because the ART uses only a single equation at each step, it has been called
a row-action method [38].

We also consider the full-cycle ART, with iterative step zk+1 = Tzk,
for

T = PIPI−1 · · · P2P1.

As we saw previously, the operators Pi are averaged (av), so that the op-
erator T is av. According to the KM theorem, the sequence {T kx} will
converge to a fixed point of T , for any x, whenever such fixed points exist.

57
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When the system Ax = b has solutions, the fixed points of T are solutions.
When there are no solutions of Ax = b, the operator T will still have fixed
points, but they will no longer be exact solutions.

The ART can also include relaxation. For ω in the interval (0, 2), let

Qi = (1 − ω)I + ωPi.

As we have seen, the operators Qi are also av, as is their product.

8.2 Calculating the ART

Given any vector z the vector in Hi closest to z, in the sense of the Euclidean
distance, has the entries

xj = zj + Aij(bi − (Az)i)/

J
∑

m=1

|Aim|2 = zj + Aij(bi − (Az)i). (8.2)

The ART is the following: begin with an arbitrary vector x0; for each
nonnegative integer k, having found xk, let xk+1 be the vector in Hi closest
to xk. We can use Equation (8.2) to write

xk+1
j = xk

j + Aij(bi − (Axk)i). (8.3)

When the system Ax = b has exact solutions the ART converges to the
solution closest to x0. How fast the algorithm converges will depend on
the ordering of the equations and on whether or not we use relaxation. In
selecting the equation ordering, the important thing is to avoid particularly
bad orderings, in which the hyperplanes Hi and Hi+1 are nearly parallel.
Relaxed ART has the iterative step

xk+1
j = xk

j + γAij(bi − (Axk)i), (8.4)

where γ ∈ (0, 2).

8.3 When Ax = b Has Solutions

When the system Ax = b is consistent, that is, has solutions, the conver-
gence of the full-cycle ART sequence

zk+1 = PIPI−1 · · · P2P1z
k

to a solution is a consequence of the KM theorem. In fact, as we shall
show now, the ART sequence {xk+1 = Pi(k)x

k} also converges, and to the
solution closest to the initial vector x0.
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Exercise 8.1 Let x0 and y0 be arbitrary and {xk} and {yk} be the se-
quences generated by applying the ART algorithm, beginning with x0 and
y0, respectively; that is, yk+1 = Pi(k)y

k. Show that

||x0 − y0||22 − ||xI − yI ||22 =

I
∑

i=1

|(Axi−1)i − (Ayi−1)i|2. (8.5)

We give a proof of the following result.

Theorem 8.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (8.3). Then the sequence {||x̂ − xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

Proof: Let Ax̂ = b. Let vr
i = (AxrI+i−1)i and vr = (vr

1, ..., v
r
I )T , for

r = 0, 1, .... It follows from Equation (8.5) that the sequence {||x̂ − xrI ||2}
is decreasing and the sequence {vr − b} → 0. So {xrI} is bounded; let x∗,0

be a cluster point. Then, for i = 1, 2, ..., I, let x∗,i be the successor of x∗,i−1

using the ART algorithm. It follows that (Ax∗,i−1)i = bi for each i, from
which we conclude that x∗,0 = x∗,i for all i and that Ax∗,0 = b. Using x∗,0 in
place of the arbitrary solution x̂, we have that the sequence {||x∗,0−xk||2} is
decreasing. But a subsequence converges to zero, so {xk} converges to x∗,0.
By Equation (8.5), the difference ||x̂ − xk||22 − ||x̂ − xk+1||22 is independent
of which solution x̂ we pick; consequently, so is ||x̂ − x0||22 − ||x̂ − x∗,0||22.
It follows that x∗,0 is the solution closest to x0. This completes the proof.

8.4 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a single
vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...} converges
to a vector zi and the collection {zi |i = 1, ..., I} is called the limit cycle
[118, 60, 34]. For simplicity, we assume that I > J , and that the matrix
A has full rank, which implies that Ax = 0 if and only if x = 0. Because
the operator T = PIPi−1 · · · P2P1 is av, this subsequential convergence to
a limit cycle will follow from the KM theorem, once we have established
that T has fixed points.

8.4.1 Subsequential Convergence of ART

We know from Exercise (34.25) that the operator T is affine linear and has
the form

Tx = Bx + d,

where B is the matrix

B = (I − aI(aI)†) · · · (I − a1(a1)†),
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and d a vector.
The matrix I − B is invertible, since if (I − B)x = 0, then Bx = x. It

follows that x is in Hi0 for each i, which means that 〈ai, x〉 = 0 for each i.
Therefore Ax = 0, and so x = 0.

Exercise 8.2 Show that the operator T is strictly nonexpansive, meaning
that

||x − y||2 ≥ ||Tx − Ty||2,
with equality if and only if x = Tx and y = Ty. Hint: Write Tx − Ty =
Bx − By = B(x − y) Since B is the product of orthogonal projections, B
is av. Therefore, there is α > 0 with

||x − y||22 − ||Bx − By||22 ≥ (
1

α
− 1)||(I − B)x − (I − B)y||22.

The function ||x−Tx||2 has minimizers, since ||x−Tx||22 = ||x−Bx−d||22
is quadratic in x. For any such minimizer z we will have

||z − Tz||2 = ||Tz − T 2z||2.

Since T is strictly ne, it follows that z = Tz.

Exercise 8.3 Let AA† = L + D + L†, for diagonal matrix D and lower
triangular matrix L. Show that, for the operator T above, Tx can be written
as

Tx = (I − A†(L + D)−1)x + A†(L + D)−1b.

As we shall see, this formulation of the operator T provides a connection
between the full-cycle ART for Ax = b and the Gauss-Seidel method, as
applied to the system AA†z = b [57].

The ART limit cycle will vary with the ordering of the equations, and
contains more than one vector unless an exact solution exists. There are
several open questions about the limit cycle.

Open Question: For a fixed ordering, does the limit cycle depend on the
initial vector x0? If so, how?

8.4.2 The Geometric Least-Squares Solution

When the system Ax = b has no solutions, it is reasonable to seek an ap-
proximate solution, such as the least squares solution, xLS = (A†A)−1A†b,
which minimizes ||Ax−b||2. It is important to note that the system Ax = b
has solutions if and only if the related system WAx = Wb has solutions,
where W denotes an invertible matrix; when solutions of Ax = b exist, they
are identical to those of WAx = Wb. But, when Ax = b does not have
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solutions, the least-squares solutions of Ax = b, which need not be unique,
but usually are, and the least-squares solutions of WAx = Wb need not
be identical. In the typical case in which A†A is invertible, the unique
least-squares solution of Ax = b is

(A†A)−1A†b,

while the unique least-squares solution of WAx = Wb is

(A†W †WA)−1A†W †b,

and these need not be the same. A simple example is the following. Con-
sider the system

x = 1;x = 2,

which has the unique least-squares solution x = 1.5, and the system

2x = 2;x = 2,

which has the least-squares solution x = 1.2. The so-called geometric least-
squares solution of Ax = b is the least-squares solution of WAx = Wb, for
W the diagonal matrix whose entries are the reciprocals of the Euclidean
lengths of the rows of A. In our example above, the geometric least-squares
solution for the first system is found by using W11 = 1 = W22, so is again
x = 1.5, while the geometric least-squares solution of the second system is
found by using W11 = 0.5 and W22 = 1, so that the geometric least-squares
solution is x = 1.5, not x = 1.2.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?

There is a partial answer to the second question. In [24] (see also [34]) it
was shown that if the system Ax = b has no exact solution, and if I = J+1,
then the vectors of the limit cycle lie on a sphere in J-dimensional space
having the least-squares solution at its center. This is not generally true,
however.

Open Question: In both the consistent and inconsistent cases, the se-
quence {xk} of ART iterates is bounded [118, 60, 24, 34]. The proof is easy
in the consistent case. Is there an easy proof for the inconsistent case?

8.4.3 Nonnegatively Constrained ART

If we are seeking a nonnegative solution for the real system Ax = b, we
can modify the ART by replacing the xk+1 given by Equation (8.3) with
(xk+1)+. This version of ART will converge to a nonnegative solution,
whenever one exists, but will produce a limit cycle otherwise.
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8.5 Avoiding the Limit Cycle

Generally, the greater the minimum value of ||Ax−b||22 the more the vectors
of the LC are distinct from one another. There are several ways to avoid
the LC in ART and to obtain a least-squares solution. One way is the
double ART (DART) [28]:

8.5.1 Double ART (DART)

We know that any b can be written as b = Ax̂ + ŵ, where AT ŵ = 0 and
x̂ is a minimizer of ||Ax − b||22. The vector ŵ is the orthogonal projection
of b onto the null space of the matrix transformation A†. Therefore, in
Step 1 of DART we apply the ART algorithm to the consistent system of
linear equations A†w = 0, beginning with w0 = b. The limit is w∞ = ŵ,
the member of the null space of A† closest to b. In Step 2, apply ART
to the consistent system of linear equations Ax = b − w∞ = Ax̂. The
limit is then the minimizer of ||Ax − b||2 closest to x0. Notice that we
could also obtain the least-squares solution by applying ART to the system
A†y = A†b, starting with y0 = 0, to obtain the minimum-norm solution,
which is y = Ax̂, and then applying ART to the system Ax = y.

8.5.2 Strongly Underrelaxed ART

Another method for avoiding the LC is strong underrelaxation [39]. Let
t > 0. Replace the iterative step in ART with

xk+1
j = xk

j + tAij(bi − (Axk)i). (8.6)

In [39] it is shown that, as t → 0, the vectors of the LC approach the geo-
metric least squares solution closest to x0; a short proof is in [24]. Bertsekas
[13] uses strong underrelaxation to obtain convergence of more general in-
cremental methods.

8.6 Approximate Solutions and the Nonneg-
ativity Constraint

For the real system Ax = b, consider the nonnegatively constrained least-
squares problem of minimizing the function ||Ax − b||2, subject to the con-
straints xj ≥ 0 for all j; this is a nonnegatively constrained least-squares
approximate solution. As noted previously, we can solve this problem using
a slight modification of the ART. Although there may be multiple solutions
x̂, we know, at least, that Ax̂ is the same for all solutions.
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According to the Karush-Kuhn-Tucker theorem [109], the vector Ax̂
must satisfy the condition

I
∑

i=1

Aij((Ax̂)i − bi) = 0 (8.7)

for all j for which x̂j > 0 for some solution x̂. Let S be the set of all indices
j for which there exists a solution x̂ with x̂j > 0. Then Equation (8.7)
must hold for all j in S. Let Q be the matrix obtained from A by deleting
those columns whose index j is not in S. Then QT (Ax̂ − b) = 0. If Q has
full rank and the cardinality of S is greater than or equal to I, then QT is
one-to-one and Ax̂ = b. We have proven the following result.

Theorem 8.2 Suppose that A has the full-rank property, that is, A and
every matrix Q obtained from A by deleting columns has full rank. Suppose
there is no nonnegative solution of the system of equations Ax = b. Then
there is a subset S of the set {j = 1, 2, ..., J} with cardinality at most I − 1
such that, if x̂ is any minimizer of ||Ax− b||2 subject to x ≥ 0, then x̂j = 0
for j not in S. Therefore, x̂ is unique.

When x̂ is a vectorized two-dimensional image and J > I, the presence
of at most I − 1 positive pixels makes the resulting image resemble stars in
the sky; for that reason this theorem and the related result for the EMML
algorithm ([20]) are sometimes called night sky theorems. The zero-valued
pixels typically appear scattered throughout the image. This behavior
occurs with all the algorithms discussed so far that impose nonnegativity,
whenever the real system Ax = b has no nonnegative solutions.

This result leads to the following open question:

Open Question: How does the set S defined above vary with the choice
of algorithm, with the choice of x0 for a given algorithm, and for the choice
of subsets in the block-iterative algorithms?



64CHAPTER 8. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE



Chapter 9

Simultaneous ART

The ART is a sequential algorithm, using only a single equation from the
system Ax = b at each step of the iteration. In this chapter we consider
iterative procedures for solving Ax = b in which all of the equations are
used at each step. Such methods are called simultaneous algorithms. As
before, we shall assume that the equations have been normalized so that
the rows of A have Euclidean length one.

9.1 Cimmino’s Algorithm

The ART seeks a solution of Ax = b by projecting the current vector
xk orthogonally onto the next hyperplane H(ai(k), bi(k)) to get xk+1. In

Cimmino’s algorithm, we project the current vector xk onto each of the
hyperplanes and then average the result to get xk+1. The algorithm begins
with an arbitrary x0; the iterative step is then

xk+1 =
1

I

I
∑

i=1

Pix
k, (9.1)

where Pi is the orthogonal projection onto H(ai, bi).

Exercise 9.1 Show that the iterative step can then be written as

xk+1 = xk +
1

I
A†(b − Axk). (9.2)

As we saw in our discussion of the ART, when the system Ax = b has
no solutions, the ART does not converge to a single vector, but to a limit
cycle. One advantage of many simultaneous algorithms, such as Cimmino’s,
is that they do converge to the least squares solution in the inconsistent
case.
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Cimmino’s algorithm has the form xk+1 = Txk, for the operator T
given by

Tx = (I − 1

I
A†A)x +

1

I
A†b.

Experience with Cimmino’s algorithm shows that it is slow to converge.
In the next section we consider how we might accelerate the algorithm.

9.2 The Landweber Algorithms

The Landweber algorithm [92, 12], with the iterative step

xk+1 = xk + γA†(b − Axk), (9.3)

converges to the least squares solution closest to the starting vector x0,
provided that 0 < γ < 2/λmax, where λmax is the largest eigenvalue of
the nonnegative-definite matrix A†A. Loosely speaking, the larger γ is,
the faster the convergence. However, precisely because A is large, calcu-
lating the matrix A†A, not to mention finding its largest eigenvalue, can
be prohibitively expensive. The matrix A is said to be sparse if most of its
entries are zero. In [31] upper bounds for λmax were obtained in terms of
the degree of sparseness of the matrix A; we discuss these bounds in the
final section of this chapter.

9.2.1 Finding the Optimum γ

The operator

Tx = x + γA†(b − Ax) = (I − γA†A)x + γA†b

is affine linear and is av if and only if its linear part, the Hermitian matrix

B = I − γA†A,

is av. To guarantee this we need 0 ≤ γ < 2/λmax. Should we always try to
take γ near its upper bound, or is there an optimum value of γ? To answer
this question we consider the eigenvalues of B for various values of γ.

Exercise 9.2 Show that, if γ < 0, then none of the eigenvalues of B is
less than one.

Exercise 9.3 Show that, for

0 ≤ γ ≤ 2

λmax + λmin
,

we have
ρ(B) = 1 − γλmin;
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the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
,

and equals
λmax − λmin

λmax + λmin
.

Similarly, show that, for

γ ≥ 2

λmax + λmin
,

we have
ρ(B) = γλmax − 1;

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
,

and equals
λmax − λmin

λmax + λmin
.

We see from this exercise that, if 0 ≤ γ < 2/λmax, and λmin > 0, then
||B||2 = ρ(B) < 1, so that B is sc. We minimize ||B||2 by taking

γ =
2

λmax + λmin
,

in which case we have

||B||2 =
λmax − λmin

λmax + λmin
=

c − 1

c + 1
,

for c = λmax/λmin, the condition number of the positive-definite matrix
A†A. The closer c is to one, the smaller the norm ||B||2, and the faster the
convergence.

On the other hand, if λmin = 0, then ρ(B) = 1 for all γ in the interval
(0, 2/λmax). The matrix B is still av, but it is no longer sc. For example,
consider the orthogonal projection P0 onto the hyperplane H0 = H(a, 0),
where ||a||2 = 1. This operator can be written

P0 = I − aa†.

The largest eigenvalue of aa† is λmax = 1; the remaining ones are zero.
The relaxed projection operator

B = I − γaa†
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has ρ(B) = 1 − γ > 1, if γ < 0, and for γ ≥ 0, we have ρ(B) = 1. The
operator B is av, in fact, it is fne, but it is not sc.

It is worth noting that the definition of the condition number given
above applies only to positive-definite matrices. For general square, invert-
ible matrices S, the condition number depends on the particular induced
matrix norm and is defined as

c = ||S|| ||S−1||.

To motivate this definition of the condition number, suppose that x = S−1h
is the solution of Sx = h, and that h is perturbed to h + δh. Then let δx

be such that x + δx = S−1(h + δh). The relative change in the solution,
||δx||/||x||, is related to the relative change in h, ||δh||/||h||, by

||δx||
||x|| ≤ ||S|| ||S−1|| ||δh||

||h|| .

9.2.2 The Projected Landweber Algorithm

When we require a nonnegative approximate solution x for the real system
Ax = b we can use a modified version of the Landweber algorithm, called
the projected Landweber algorithm [12], in this case having the iterative
step

xk+1 = (xk + γA†(b − Axk))+, (9.4)

where, for any real vector a, we denote by (a)+ the nonnegative vector
whose entries are those of a, for those that are nonnegative, and are zero
otherwise. The projected Landweber algorithm converges to a vector that
minimizes ||Ax − b||2 over all nonnegative vectors x, for the same values of
γ.

The projected Landweber algorithm is actually more general. For any
closed, nonempty convex set C in X, define the iterative sequence

xk+1 = PC(xk + γA†(b − Axk)).

This sequence converges to a minimizer of the function ||Ax − b||2 over all
x in C, whenever such minimizers exist.

Both the Landweber and projected Landweber algorithms are special
cases of the CQ algorithm [31], which, in turn, is a special case of the
more general iterative fixed point algorithm, the Krasnoselskii/Mann (KM)
method.
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9.3 An Upper Bound for the Maximum Eigen-
value of A†A

The upper bounds for λmax we present here apply to any matrix A, but
will be particularly helpful when A is sparse.

9.3.1 The Normalized Case

We assume now that the matrix A has been normalized so that each of
its rows has Euclidean length one. Denote by sj the number of nonzero
entries in the jth column of A, and let s be the maximum of the sj . Our
first result is the following [31]:

Theorem 9.1 For normalized A, λmax, the largest eigenvalue of the ma-
trix A†A, does not exceed s.

Proof: For notational simplicity, we consider only the case of real matrices
and vectors. Let AT Av = cv for some nonzero vector v. We show that
c ≤ s. We have AAT Av = cAv and so wT AAT w = vT AT AAT Av =
cvT AT Av = cwT w, for w = Av. Then, with eij = 1 if Aij 6= 0 and eij = 0
otherwise, we have

(

I
∑

i=1

Aijwi)
2 = (

I
∑

i=1

Aijeijwi)
2

≤ (

I
∑

i=1

A2
ijw

2
i )(

I
∑

i=1

e2
ij) =

(

I
∑

i=1

A2
ijw

2
i )sj ≤ (

I
∑

i=1

A2
ijw

2
i )s.

Therefore,

wT AAT w =

J
∑

j=1

(

I
∑

i=1

Aijwi)
2 ≤

J
∑

j=1

(

I
∑

i=1

A2
ijw

2
i )s,

and

wT AAT w = c

I
∑

i=1

w2
i = c

I
∑

i=1

w2
i (

J
∑

j=1

A2
ij)

= c

I
∑

i=1

J
∑

j=1

w2
i A2

ij .

The result follows immediately.
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When A is normalized the trace of AAT , that is, the sum of its diagonal
entries, is M . Since the trace is also the sum of the eigenvalues of both
AAT and AT A, we have λmax ≤ M . When A is sparse, s is much smaller
than M , so provides a much tighter upper bound for λmax.

9.3.2 The General Case

A similar upper bound for λmax is given for the case in which A is not
normalized.

Theorem 9.2 For each i = 1, ..., I let νi =
∑J

j=1 |Aij |2 > 0. For each

j = 1, ..., J , let σj =
∑I

i=1 eijνi, where eij = 1 if Aij 6= 0 and eij = 0
otherwise. Let σ denote the maximum of the σj. Then the eigenvalues of
the matrix A†A do not exceed σ.

The proof of Theorem 9.2 is similar to that of Theorem 9.1; the details are
in [31].

9.3.3 Upper Bounds for ε-Sparse Matrices

If A is not sparse, but most of its entries have magnitude not exceeding
ε > 0 we say that A is ε-sparse. We can extend the results for the sparse
case to the ε-sparse case.

Given a matrix A, define the entries of the matrix B to be Bij = Aij if
|Aij | > ε, and Bij = 0, otherwise. Let C = A − B; then |Cij | ≤ ε, for all
i and j. If A is ε-sparse, then B is sparse. The 2-norm of the matrix A,
written ||A||2, is defined to be the square root of the largest eigenvalue of
the matrix A†A, that is, ||A||2 =

√
λmax. From Theorem 9.2 we know that

||B||2 ≤ σ. The trace of the matrix C†C does not exceed IJε2. Therefore

√

λmax = ||A||2 = ||B + C||2 ≤ ||B||2 + ||C||2 ≤ √
σ +

√
IJε, (9.5)

so that

λmax ≤ σ + 2
√

σIJε + IJε2. (9.6)

Simulation studies have shown that these upper bounds become tighter
as the size of the matrix A increases. In hundreds of runs, with I and J
in the hundreds, we found that the relative error of the upper bound was
around one percent [36].



Chapter 10

Block-Iterative Variants
of ART

As we have seen, the ART uses one equation at a time, while the simul-
taneous Cimmino and Landweber algorithms use all the equations at each
step of the iteration. Block-iterative ART is more general, in that it allows
us to use some, but perhaps not all, of the equations at each step.

10.1 The Block-Iterative ART

We consider the system of linear equations Ax = b, where A is a complex I
by J matrix. For notational simplicity, we shall assume that the equations
have been rescaled so that each row of A has Euclidean length one. Let the
index set {i = 1, ..., I} be partitioned into N subsets, or blocks, B1,...,BN ,
for some positive integer N , with 1 ≤ N ≤ I. Let In be the cardinality of
Bn. Let An be the In by J matrix obtained from A by discarding all rows
except those whose index is in Bn. Similarly, let bn be the In by 1 vector
obtained from b. For k = 0, 1, ..., let n = k(modN)+1. The block-iterative
ART (BI-ART) has the iterative step

xk+1 = xk +
1

In
A†

n(bn − Anxk). (10.1)

10.2 The Rescaled Block-Iterative ART

More generally, the rescaled BI-ART (RE-BI-ART) has the iterative step

xk+1 = xk + γnA†
n(bn − Anxk), (10.2)
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for 0 < γn < 2/Ln, where Ln is the largest eigenvalue of the matrix A†
nAn.

How we select the blocks and the parameters γn will determine the speed
of convergence of RE-BI-ART

10.3 Convergence of the RE-BI-ART

Suppose now that the system is consistent and that Ax̂ = b. Then

||x̂ − xk||22 − ||x̂ − xk+1||22
= 2γnRe〈x̂ − xk, A†

n(bn − Anxk)〉 − γ2
n||A†

n(bn − Anxk)||22
= 2γn||bn − Anxk||22 − γ2

n||A†
n(bn − Anxk)||22.

Therefore, we have

||x̂ − xk||22 − ||x̂ − xk+1||22 ≥ (2γn − γ2
nLn)||bn − Anxk||22. (10.3)

It follows that the sequence {||x̂−xk||22} is decreasing and that the sequence
{||bn − Anxk||22} converges to 0. The sequence {xk} is then bounded; let
x∗ be any cluster point of the subsequence {xmN}. Then let

x∗,n = x∗,n−1 + γnA†
n(bn − Anx∗,n−1),

for n = 1, 2, ..., N . It follows that x∗,n = x∗ for all n and that Ax∗ = b.
Replacing the arbitrary solution x̂ with x∗, we find that the sequence {||x∗−
xk||22} is decreasing; but a subsequence converges to zero. Consequently, the
sequence {||x∗ − xk||22} converges to zero. We can therefore conclude that
the RE-BI-ART converges to a solution, whenever the system is consistent.
In fact, since we have shown that the difference ||x̂−xk||22 −||x̂−xk+1||22 is
nonnegative and independent of the solution x̂ that we choose, we known
that the difference ||x̂−x0||22−||x̂−x∗||22 is also nonnegative and independent
of x̂. It follows that x∗ is the solution closest to x0.

From the Inequality (10.3) we see that we make progress toward a so-
lution to the extent that the right side of the inequality,

(2γn − γ2
nLn)||bn − Anxk||22

is large. One conclusion we draw from this is that we want to avoid ordering
the blocks so that the quantity ||bn − Anxk||22 is small. We also want to
select γn reasonably large, subject to the bound γn < 2/Ln; the maximum
of 2γn − γ2

nLn is at γn = Ln. Because the rows of An have length one, the
trace of A†

nAn is In, the number of rows in An. Since Ln is not greater than
this trace, we have Ln ≤ In, so the choice of γn = 1/In used in BI-ART is
acceptable, but possibly far from optimal, particularly if An is sparse.

Inequality (10.3) can be used to give a rough measure of the speed of
convergence of RE-BI-ART. The term ||bn − Anxk||22 is on the order of In,
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while the term 2γn − γ2
nLn has 1/Ln for its maximum, so, very roughly, is

on the order of 1/In. Consequently, the improvement made in one step of
BI-ART is on the order of one. One complete cycle of BI-ART, that is, one
complete pass through all the blocks, then corresponds to an improvement
on the order of N , the number of blocks. It is a “rule of thumb” that block-
iterative methods are capable of improving the speed of convergence by a
factor of the number of blocks, if unfortunate ordering of the blocks and
selection of the equations within the blocks are avoided, and the parameters
are well chosen.

To obtain good choices for the γn , we need to have a good estimate of
Ln. As we have seen, such estimates are available for sparse matrices.

10.4 Using Sparseness

Let snj be the number of non-zero elements in the j-th column of An, and
let sn be the maximum of the snj . We know then that Ln ≤ sn. Therefore,
we can choose γn < 2/sn.

Suppose, for the sake of illustration, that each column of A has s non-
zero elements, for some s < I, and we let r = s/I. Suppose also that
In = I/N and that N is not too large. Then sn is approximately equal
to rIn = s/N . On the other hand, unless An has only zero entries, we
know that sn ≥ 1. Therefore, it is no help to select N for which s/N <
1. For a given degree of sparseness s we need not select N greater than
s. The more sparse the matrix A, the fewer blocks we need to gain the
maximum advantage from the rescaling, and the more we can benefit from
parallelizability in the calculations at each step of the RE-BI-ART.
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Chapter 11

Jacobi and Gauss-Seidel
Methods

Linear systems Ax = b need not be square but can be associated with
two square systems, A†Ax = A†b, the so-called normal equations, and
AA†z = b, sometimes called the Björck-Elfving equations [57]. In this chap-
ter we consider two well known iterative algorithms for solving square sys-
tems of linear equations, the Jacobi method and the Gauss-Seidel method.
Both these algorithms are easy to describe and to motivate. They both
require not only that the system be square, that is, have the same num-
ber of unknowns as equations, but satisfy additional constraints needed for
convergence.

Both the Jacobi and the Gauss-Seidel algorithms can be modified to
apply to any square system of linear equations, Sz = h. The resulting
algorithms, the Jacobi overrelaxation (JOR) and successive overrelaxation
(SOR) methods, involve the choice of a parameter. The JOR and SOR will
converge for more general classes of matrices, provided that the parameter
is appropriately chosen.

When we say that an iterative method is convergent, or converges, under
certain conditions, we mean that it converges for any consistent system of
the appropriate type, and for any starting vector; any iterative method will
converge if we begin at the right answer.

11.1 The Jacobi and Gauss-Seidel Methods:
An Example

Suppose we wish to solve the 3 by 3 system

S11z1 + S12z2 + S13z3 = h1
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S21z1 + S22z2 + S23z3 = h2

S31z1 + S32z2 + S33z3 = h3,

which we can rewrite as

z1 = S−1
11 [h1 − S12z2 − S13z3]

z2 = S−1
22 [h2 − S21z1 − S23z3]

z3 = S−1
33 [h3 − S31z1 − S32z2],

assuming that the diagonal terms Smm are not zero. Let z0 = (z0
1 , z0

2 , z0
3)T

be an initial guess for the solution. We then insert the entries of z0 on the
right sides and use the left sides to define the entries of the next guess z1.
This is one full cycle of Jacobi’s method.

The Gauss-Seidel method is similar. Let z0 = (z0
1 , z0

2 , z0
3)T be an initial

guess for the solution. We then insert z0
2 and z0

3 on the right side of the
first equation, obtaining a new value z1

1 on the left side. We then insert
z0
3 and z1

1 on the right side of the second equation, obtaining a new value
z1
2 on the left. Finally, we insert z1

1 and z1
2 into the right side of the third

equation, obtaining a new z1
3 on the left side. This is one full cycle of the

Gauss-Seidel (GS) method.

11.2 Splitting Methods

The Jacobi and the Gauss-Seidel methods are particular cases of a more
general approach, known as splitting methods. Splitting methods apply
to square systems of linear equations. Let S be an arbitrary N by N
square matrix, written as S = M −K. Then the linear system of equations
Sz = h is equivalent to Mz = Kz + h. If M is invertible, then we can also
write z = M−1Kz +M−1h. This last equation suggests a class of iterative
methods for solving Sz = h known as splitting methods. The idea is to
select a matrix M so that the equation

Mzk+1 = Kzk + h

can be easily solved to get zk+1; in the Jacobi method M is diagonal, and
in the Gauss-Seidel method, M is triangular. Then we write

zk+1 = M−1Kzk + M−1h. (11.1)

From K = M − S, we can write Equation (17.8) as

zk+1 = zk + M−1(h − Szk). (11.2)

Suppose that S is invertible and ẑ is the unique solution of Sz = h. The
error we make at the k-th step is ek = ẑ − zk.
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Exercise 11.1 Show that ek+1 = M−1Kek

We want the error to decrease with each step, which means that we should
seek M and K so that ||M−1K|| < 1. If S is not invertible and there are
multiple solutions of Sz = h, then we do not want M−1K to be a strict
contraction, but only av or pc. The operator T defined by

Tz = M−1Kz + M−1h = Bz + d

is an affine linear operator and will be a sc or av operator whenever B =
M−1K is.

It follows from our previous discussion concerning linear av operators
that, if B = B† is Hermitian, then B is av if and only if

−1 < λ ≤ 1,

for all (necessarily real) eigenvalues λ of B.
In general, though, the matrix B = M−1K will not be Hermitian, and

deciding if such a non-Hermitian matrix is av is not a simple matter. We
do know that, if B is av, so is B†; consequently, the Hermitian matrix
Q = 1

2 (B +B†) is also av. Therefore, I −Q = 1
2 (M−1S +(M−1S)†) is ism,

and so is non-negative definite. We have −1 < λ ≤ 1, for any eigenvalue λ
of Q.

Alternatively, we can use Theorem 5.2. According to that theorem, if
B has a basis of eigenvectors, and |λ| < 1 for all eigenvalues λ of B that are
not equal to one, then {zk} will converge to a solution of Sz = h, whenever
solutions exist.

In what follows we shall write an arbitrary square matrix S as

S = L + D + U,

where L is the strictly lower triangular part of S, D the diagonal part, and
U the strictly upper triangular part. When S is Hermitian, we have

S = L + D + L†.

We list now several examples of iterative algorithms obtained by the split-
ting method. In the remainder of the chapter we discuss these methods in
more detail.

11.3 Some Examples of Splitting Methods

As we shall now see, the Jacobi and Gauss-Seidel methods, as well as their
overrelaxed versions, JOR and SOR, are splitting methods.
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Jacobi’s Method: Jacobi’s method uses M = D and K = −L−U , under
the assumption that D is invertible. The matrix B is

B = M−1K = −D−1(L + U). (11.3)

The Gauss-Seidel Method: The Gauss-Seidel (GS) method uses the
splitting M = D + L, so that the matrix B is

B = I − (D + L)−1S. (11.4)

The Jacobi Overrelaxation Method (JOR): The JOR uses the split-
ting

M =
1

ω
D

and

K = M − S = (
1

ω
− 1)D − L − U.

The matrix B is

B = M−1K = (I − ωD−1S). (11.5)

The Successive Overrelaxation Method (SOR): The SOR uses the
splitting M = ( 1

ω D + L), so that

B = M−1K = (D + ωL)−1[(1 − ω)D − ωU ]

or
B = I − ω(D + ωL)−1S,

or

= (I + ωD−1L)−1[(1 − ω)I − ωD−1U ]. (11.6)

11.4 Jacobi’s Algorithm and JOR

The matrix B in Equation (11.3) is not generally av and the Jacobi iterative
scheme will not converge, in general. Additional conditions need to be
imposed on S in order to guarantee convergence. One such condition is
that S be strictly diagonally dominant. In that case, all the eigenvalues of
B = M−1K can be shown to lie inside the unit circle of the complex plane,
so that ρ(B) < 1. It follows from Lemma 35.1 that B is sc with respect to
some vector norm, and the Jacobi iteration converges. If, in addition, S is
Hermitian, the eigenvalues of B are in the interval (−1, 1), and so B is sc
with respect to the Euclidean norm.

Alternatively, one has the Jacobi overrelaxation (JOR) method, which
is essentially a special case of the Landweber algorithm and involves an
arbitrary parameter.
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For S an N by N matrix, Jacobi’s method can be written as

znew
m = S−1

mm[hm −
∑

j 6=m

Smjz
old
j ],

for m = 1, ..., N . With D the invertible diagonal matrix with entries
Dmm = Smm we can write one cycle of Jacobi’s method as

znew = zold + D−1(h − Szold).

The Jacobi overrelaxation (JOR) method has the following full-cycle iter-
ative step:

znew = zold + ωD−1(h − Szold);

choosing ω = 1 we get the Jacobi method. Convergence of the JOR itera-
tion will depend, of course, on properties of S and on the choice of ω. When
S is Hermitian, nonnegative-definite, for example, S = A†A or S = AA†,
we can say more.

11.4.1 The JOR in the Nonnegative-definite Case

When S is nonnegative-definite and the system Sz = h is consistent the
JOR converges to a solution for any ω ∈ (0, 2/ρ(D−1/2SD−1/2)), where
ρ(Q) denotes the largest eigenvalue of the nonnegative-definite matrix Q.
For nonnegative-definite S, the convergence of the JOR method is implied
by the KM theorem, since the JOR is equivalent to Landweber’s algorithm
in these cases.

The JOR method, as applied to Sz = AA†z = b, is equivalent to the
Landweber iterative method for Ax = b.

Exercise 11.2 Show that, if {zk} is the sequence obtained from the JOR,
then the sequence {A†zk} is the sequence obtained by applying the Landwe-
ber algorithm to the system D−1/2Ax = D−1/2b, where D is the diagonal
part of the matrix S = AA†.

If we select ω = 1/I we obtain the Cimmino method. Since the trace of
the matrix D−1/2SD−1/2 equals I we know that ω = 1/I is not greater
than the largest eigenvalue of the matrix D−1/2SD−1/2 and so this choice
of ω is acceptable and the Cimmino algorithm converges whenever there
are solutions of Ax = b. In fact, it can be shown that Cimmino’s method
converges to a least squares approximate solution generally.

Similarly, the JOR method applied to the system A†Ax = A†b is equiv-
alent to the Landweber algorithm, applied to the system Ax = b.

Exercise 11.3 Show that, if {zk} is the sequence obtained from the JOR,
then the sequence {D1/2zk} is the sequence obtained by applying the Landwe-
ber algorithm to the system AD−1/2x = b, where D is the diagonal part of
the matrix S = A†A.
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11.5 The Gauss-Seidel Algorithm and SOR

In general, the full-cycle iterative step of the Gauss-Seidel method is the
following:

znew = zold + (D + L)−1(h − Szold),

where S = D + L + U is the decomposition of the square matrix S into
its diagonal, lower triangular and upper triangular diagonal parts. The GS
method does not converge without restrictions on the matrix S. As with
the Jacobi method, strict diagonal dominance is a sufficient condition.

11.5.1 The Nonnegative-Definite Case

Now we consider the square system Sz = h, assuming that S = L+D+L†

is Hermitian and nonnegative-definite, so that x†Sx ≥ 0, for all x.

Exercise 11.4 Show that all the entries of D are nonnegative.

We assume that all the diagonal entries of D are positive, so that D + L is
invertible. The Gauss-Seidel iterative step is zk+1 = Tzk, where T is the
affine linear operator given by Tz = Bz + d, for B = −(D + L)−1L† and
d = (D + L)−1h.

Proposition 11.1 Let λ be an eigenvalue of B that is not equal to one.
Then |λ| < 1.

If B is diagonalizable, then there is a norm with respect to which T is
paracontractive, so, by the EKN Theorem, the GS iteration converges to a
solution of Sz = h, whenever solutions exist.

Proof of Proposition (11.1): Let Bv = λv, for v nonzero. Then −Bv =
(D + L)−1L†v = −λv, so that

L†v = −λ(D + L)v,

and
Lv = −λ(D + L)†v.

Therefore,
v†L†v = −λv†(D + L)v.

Adding v†(D + L)v to both sides, we get

v†Sv = (1 − λ)v†(D + L)v.

Since the left side of the equation is real, so is the right side. Therefore

(1 − λ)(D + L)†v = (1 − λ)v†(D + L)v
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= (1 − λ)v†Dv + (1 − λ)v†Lv

= (1 − λ)v†Dv − (1 − λ)λv†(D + L)†v.

So we have

[(1 − λ) + (1 − λ)λ]v†(D + L)†v = (1 − λ)v†Dv,

or
(1 − |λ|2)v†(D + L)†v = (1 − λ)v†Dv.

Multiplying by (1 − λ) on both sides, we get, on the left side,

(1 − |λ|2)v†(D + L)†v − (1 − |λ|2)λv†(D + L)†v,

which is equal to

(1 − |λ|2)v†(D + L)†v + (1 − |λ|2)v†Lv,

and, on the right side, we get

|1 − λ|2v†Dv.

Consequently, we have

(1 − |λ|2)v†Sv = |1 − λ|2v†Dv.

Since v†Sv ≥ 0 and v†Dv > 0, it follows that 1 − |λ|2 ≥ 0. If |λ| = 1, then
|1 − λ|2 = 0, so that λ = 1. This completes the proof.

Note that λ = 1 if and only if Sv = 0. Therefore, if S is invertible,
the affine linear operator T is a strict contraction, and the GS iteration
converges to the unique solution of Sz = h.

11.5.2 Successive Overrelaxation

The successive overrelaxation (SOR) method has the following full-cycle
iterative step:

znew = zold + (ω−1D + L)−1(h − Szold);

the choice of ω = 1 gives the GS method. Convergence of the SOR iteration
will depend, of course, on properties of S and on the choice of ω.

Exercise 11.5 Use the form

B = (D + ωL)−1[(1 − ω)D − ωU ]

to show that
|det(B)| = |1 − ω|N .

Conclude from this and the fact that the determinant of B is the product
of its eigenvalues that ρ(B) > 1 if ω < 0 or ω > 2.

When S is Hermitian, nonnegative-definite, as, for example, when we
take S = A†A or S = AA†, we can say more.
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11.5.3 The SOR for Nonnegative-Definite S

When S is nonnegative-definite and the system Sz = h is consistent the
SOR converges to a solution for any ω ∈ (0, 2). This follows from the
convergence of the ART algorithm, since, for such S, the SOR is equivalent
to the ART.

Now we consider the SOR method applied to the Björck-Elfving equa-
tions. Rather than count a full cycle as one iteration, we now count as a
single step the calculation of a single new entry. Therefore, for k = 0, 1, ...
the k + 1-st step replaces the value zk

i only, where i = k(mod I) + 1. We
have

zk+1
i = (1 − ω)zk

i + ωD−1
ii (bi −

i−1
∑

n=1

Sinzk
n −

I
∑

n=i+1

Sinzk
n)

and zk+1
n = zk

n for n 6= i. Now we calculate xk+1 = A†zk+1:

xk+1
j = xk

j + ωD−1
ii Aij(bi − (Axk)i).

This is one step of the relaxed algebraic reconstruction technique (ART)
applied to the original system of equations Ax = b. The relaxed ART
converges to a solution, when solutions exist, for any ω ∈ (0, 2).

When Ax = b is consistent, so is AA†z = b. We consider now the
case in which S = AA† is invertible. Since the relaxed ART sequence
{xk = A†zk} converges to a solution x∞, for any ω ∈ (0, 2), the sequence
{AA†zk} converges to b. Since S = AA† is invertible, the SOR sequence
{zk} then converges to S−1b.



Chapter 12

Conjugate-Direction
Methods in Optimization

Finding the least-squares solution of a possibly inconsistent system of linear
equations Ax = b is equivalent to minimizing the quadratic function f(x) =
1
2 ||Ax − b||22 and so can be viewed within the framework of optimization.
Iterative optimization methods can then be used to provide, or at least
suggest, algorithms for obtaining the least-squares solution. The conjugate
gradient method is one such method.

12.1 Iterative Minimization

Iterative methods for minimizing a real-valued function f(x) over the vector
variable x usually take the following form: having obtained xk−1, a new
direction vector dk is selected, an appropriate scalar αk > 0 is determined
and the next member of the iterative sequence is given by

xk = xk−1 + αkdk. (12.1)

Ideally, one would choose the αk to be the value of α for which the function
f(xk−1+αdk) is minimized. It is assumed that the direction dk is a descent
direction; that is, for small positive α the function f(xk−1 +αdk) is strictly
decreasing. Finding the optimal value of α at each step of the iteration is
difficult, if not impossible, in most cases, and approximate methods, using
line searches, are commonly used.

Exercise 12.1 Differentiate the function f(xk−1+αdk) with respect to the
variable α to show that

∇f(xk) · dk = 0. (12.2)
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Since the gradient ∇f(xk) is orthogonal to the previous direction vector
dk and also because −∇f(x) is the direction of greatest decrease of f(x),
the choice of dk+1 = −∇f(xk) as the next direction vector is a reasonable
one. With this choice we obtain Cauchy’s steepest descent method [99]:

xk+1 = xk − αk+1∇f(xk).

The steepest descent method need not converge in general and even when
it does, it can do so slowly, suggesting that there may be better choices
for the direction vectors. For example, the Newton-Raphson method [106]
employs the following iteration:

xk+1 = xk − ∇2f(xk)−1∇f(xk),

where ∇2f(x) is the Hessian matrix for f(x) at x. To investigate further
the issues associated with the selection of the direction vectors, we consider
the more tractable special case of quadratic optimization.

12.2 Quadratic Optimization

Let A be an arbitrary real I by J matrix. The linear system of equations
Ax = b need not have any solutions, and we may wish to find a least-squares
solution x = x̂ that minimizes

f(x) =
1

2
||b − Ax||22. (12.3)

The vector b can be written

b = Ax̂ + ŵ,

where AT ŵ = 0 and a least squares solution is an exact solution of the
linear system Qx = c, with Q = AT A and c = AT b. We shall assume
that Q is invertible and there is a unique least squares solution; this is the
typical case.

We consider now the iterative scheme described by Equation (12.1) for
f(x) as in Equation (12.3). For this f(x) the gradient becomes

∇f(x) = Qx − c.

The optimal αk for the iteration can be obtained in closed form.

Exercise 12.2 Show that the optimal αk is

αk =
rk · dk

dk · Qdk
, (12.4)

where rk = c − Qxk−1.
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Exercise 12.3 Let ||x||2Q = x · Qx denote the square of the Q-norm of x.
Show that

||x̂ − xk−1||2Q − ||x̂ − xk||2Q = (rk · dk)2/dk · Qdk ≥ 0

for any direction vectors dk.

If the sequence of direction vectors {dk} is completely general, the iter-
ative sequence need not converge. However, if the set of direction vectors
is finite and spans RJ and we employ them cyclically, convergence follows.

Theorem 12.1 Let {d1, ..., dJ} be any finite set whose span is all of RJ .
Let αk be chosen according to Equation (12.4). Then, for k = 0, 1, ...,
j = k(modJ), and any x0, the sequence defined by

xk = xk−1 + αkdj

converges to the least squares solution.

Proof: The sequence {||x̂ − xk||2Q} is decreasing and, therefore, the se-

quence {(rk · dk)2/dk · Qdk must converge to zero. Therefore, the vectors
xk are bounded, and for each j = 1, ..., J , the subsequences {xmJ+j , m =
0, 1, ...} have cluster points, say x∗,j with

x∗,j = x∗,j−1 +
(c − Qx∗,j−1) · dj

dj · Qdj
dj .

Since
rmJ+j · dj → 0,

it follows that, for each j = 1, ..., J ,

(c − Qx∗,j) · dj = 0.

Therefore,
x∗,1 = ... = x∗,J = x∗

with Qx∗ = c. Consequently, x∗ is the least squares solution and the
sequence {||x∗ −xk||Q} is decreasing. But a subsequence converges to zero;
therefore, {||x∗ − xk||Q} → 0. This completes the proof.

There is an interesting corollary to this theorem that pertains to a mod-
ified version of the ART algorithm. For k = 0, 1, ... and i = k(modM) + 1
and with the rows of A normalized to have length one, the ART iterative
step is

xk+1 = xk + (bi − (Axk)i)a
i,
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where ai is the ith column of AT . When Ax = b has no solutions, the
ART algorithm does not converge to the least-squares solution; rather,
it exhibits subsequential convergence to a limit cycle. However, using the
previous theorem, we can show that the following modification of the ART,
which we shall call the least squares ART (LS-ART), converges to the least-
squares solution for every x0:

xk+1 = xk +
rk+1 · ai

ai · Qai
ai.

In the quadratic case the steepest descent iteration has the form

xk = xk−1 +
rk · rk

rk · Qrk
rk.

We have the following result.

Theorem 12.2 The steepest descent method converges to the least-squares
solution.

Proof: As in the proof of the previous theorem, we have

||x̂ − xk−1||2Q − ||x̂ − xk||2Q = (rk · dk)2/dk · Qdk ≥ 0,

where now the direction vectors are dk = rk. So, the sequence {||x̂−xk||2Q}
is decreasing, and therefore the sequence {(rk ·rk)2/rk ·Qrk} must converge
to zero. The sequence {xk} is bounded; let x∗ be a cluster point. It follows
that c − Qx∗ = 0, so that x∗ is the least-squares solution x̂. The rest of
the proof follows as in the proof of the previous theorem.

12.3 Conjugate Bases for RJ

If the set {v1, ..., vJ} is a basis for RJ , then any vector x in RJ can be
expressed as a linear combination of the basis vectors; that is, there are
real numbers a1, ..., aJ for which

x = a1v
1 + a2v

2 + ... + aJvJ .

For each x the coefficients aj are unique. To determine the aj we write

x · vm = a1v
1 · vm + a2v

2 · vm + ... + aJvJ · vm,

for m = 1, ..., M . Having calculated the quantities x · vm and vj · vm, we
solve the resulting system of linear equations for the aj .

If, in addition, the set {u1, ..., uM} is an orthogonal basis, then uj ·um =
0, unless j = m. The system of linear equations is now trivial to solve; the
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solution is aj = x ·uj/uj ·uj , for each j. Of course, we still need to compute
the quantities x · uj .

The least-squares solution of the linear system of equations Ax = b is

x̂ = (AT A)−1AT b = Q−1c.

To express x̂ as a linear combination of the members of an orthogonal basis
{u1, ..., uJ} we need the quantities x̂ ·uj , which usually means that we need
to know x̂ first. For a special kind of basis, a Q-conjugate basis, knowing x̂
ahead of time is not necessary; we need only know Q and c. Therefore, we
can use such a basis to find x̂. This is the essence of the conjugate gradient
method (CGM), in which we calculate a conjugate basis and, in the process,
determine x̂.

12.3.1 Conjugate Directions

From Equation (12.2) we have

(c − Qxk+1) · dk = 0,

which can be expressed as

(x̂ − xk+1) · Qdk = (x̂ − xk+1)T Qdk = 0.

Two vectors x and y are said to be Q-orthogonal (or Q-conjugate, or just
conjugate), if x · Qy = 0. So, the least-squares solution that we seek lies
in a direction from xk+1 that is Q-orthogonal to dk. This suggests that
we can do better than steepest descent if we take the next direction to be
Q-orthogonal to the previous one, rather than just orthogonal. This leads
us to conjugate direction methods.

Exercise 12.4 Say that the set {p1, ..., pn} is a conjugate set for RJ if
pi · Qpj = 0 for i 6= j. Prove that a conjugate set that does not contain
zero is linearly independent. Show that if pn 6= 0 for n = 1, ..., J , then the
least-squares vector x̂ can be written as

x̂ = a1p
1 + ... + aJpJ ,

with aj = c · pj/pj · Qpj for each j.

Therefore, once we have a conjugate basis, computing the least squares
solution is trivial. Generating a conjugate basis can obviously be done
using the standard Gram-Schmidt approach.
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12.3.2 The Gram-Schmidt Method

Let {v1, ..., vJ} be an arbitrary basis for RJ . The Gram-Schmidt method
uses the vj to create an orthogonal basis {u1, ..., uJ} for RJ . Begin by
taking u1 = v1. For j = 2, ..., J , let

uj = vj − u1 · vj

u1 · u1
u1 − ... − uj−1 · vj

uj−1 · uj−1
uj−1.

To apply this approach to obtain a conjugate basis, we would simply replace
the dot products uk · vj and uk · uk with the Q-inner products, that is,

pj = vj − p1 · Qvj

p1 · Qp1
p1 − ... − pj−1 · Qvj

pj−1 · Qpj−1
pj−1. (12.5)

Even though the Q-inner products can always be written as x·Qy = Ax·Ay,
so that we need not compute the matrix Q, calculating a conjugate basis
using Gram-Schmidt is not practical for large J . There is a way out,
fortunately.

If we take p1 = v1 and vj = Qjp1, we have a much more efficient
mechanism for generating a conjugate basis, namely a three-term recursion
formula [99]. The set {v1, Qv1, ..., QJ−1v1} need not be a linearly indepen-
dent set, in general, but, if our goal is to find x̂, and not really to calculate
a full conjugate basis, this does not matter, as we shall see.

Theorem 12.3 Let p1 6= 0 be arbitrary. Let p2 be given by

p2 = Qp1 − Qp1 · Qp1

p1 · Qp1
p1,

so that p2 · Qp1 = 0. Then, for n ≥ 2, let pn+1 be given by

pn+1 = Qpn − Qpn · Qpn

pn · Qpn
pn − Qpn · Qpn−1

pn−1 · Qpn−1
pn−1. (12.6)

Then, the set {p1, ..., pJ} is a conjugate set for RJ . If pn 6= 0 for each n,
then the set is a conjugate basis for RJ .

Proof: We consider the induction step of the proof. Assume that {p1, ..., pn}
is a Q-orthogonal set of vectors; we then show that {p1, ..., pn+1} is also,
provided that n ≤ J − 1. It is clear that

pn+1 · Qpn = pn+1 · Qpn−1 = 0.

For j ≤ n − 1, we have

pn+1 · Qpj = pj · Qpn+1 = pj · Q2pn − apj · Qpn − bpj · Qpn−1,
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for constants a and b. The second and third terms on the right side are
then zero because of the induction hypothesis. The first term is also zero
since

pj · Q2pn = (Qpj) · Qpn = 0

because Qpj is in the span of {p1, ..., pj+1}, and so is Q-orthogonal to pn.

The calculations in the three-term recursion formula Equation (12.6)
also occur in the Gram-Schmidt approach in Equation (12.5); the point is
that Equation (12.6) uses only the first three terms, in every case.

12.4 The Conjugate Gradient Method

The conjugate gradient method (CGM) combines the use of the negative
gradient directions from the steepest descent method with the use of a
conjugate basis of directions. Since, in the quadratic case, we have

−∇f(xk) = rk = (c − Qxk),

the CGM constructs a conjugate basis of directions from the residuals rk.
The iterative step for the CGM is the following:

xn+1 = xn +
rn · pn

pn · Qpn
pn.

As before, there is an efficient recursion formula that provides the next
direction: let p1 = r1 = (c − Qx0) and

pn+1 = rn+1 − rn+1 · Qpn

pn · Qpn
pn. (12.7)

Since the αn is the optimal choice and

rn+1 = −∇f(xn+1),

we have, according to Equation (12.2),

rn+1 · pn = 0.

Consequently, if pn+1 = 0 then rn+1 = 0 also, which tells us that Qxn+1 =
c. In theory the CGM converges to the least squares solution in finitely
many steps. In practice, the CGM can be employed as a fully iterative
method by cycling back through the previously used directions.

An induction proof similar to the one used to prove Theorem 12.3 es-
tablishes that the set {p1, ..., pJ} is a conjugate set [99]. Assume that the
set {p1, ..., pn} is a conjugate set, for n < J and show that the same is true
for {p1, ..., pn+1}. The key steps in the proof are contained in the following
exercises.
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Exercise 12.5 Use the fact that

rj+1 = rj − αjQpj ,

to show that Qpj is in the span of the vectors rj and rj+1.

Exercise 12.6 Use Equation (12.7) and p1 = r1 to show that the spans of
the sets {p1, ..., pj} and {r1, ..., rj} are the same.

Exercise 12.7 Show that, for 1 ≤ j ≤ n, pj · rn+1 = 0. Hints: recall that
pj · rj+1 = 0 because of the optimality of αj. Then

pj · rn+1 = pj · rn − αnpj · Qpn

= ... = pj · rj+1 − αj+1p
j · Qpj+1 − ... − αnpj · Qpn.

We know that the first term on the right side is zero. Now use the induction
hypothesis.

Exercise 12.8 Show that rj · rn+1 = 0, for j = 1, ..., n. Hint: use the fact
that pj · rn+1 = 0 for j = 1, ..., n.

Exercise 12.9 Use the fact that Qpj is in the span of rj and rj+1 to show
that rn+1 · Qpj = 0, for j = 1, ..., n − 1.

For j = 1, ..., n − 1 we have

pn+1 · Qpj = rn+1 · Qpj − rn+1 · Qpn

pn · Qpn
pn · Qpj .

Both terms on the right side are zero, so pn+1 · Qpj = 0. This concludes
the induction proof.

The convergence rate of the CGM depends on the condition number of
the matrix Q, which is the ratio of its largest to its smallest eigenvalues.
When the condition number is much greater than one convergence can be
accelerated by preconditioning the matrix Q; this means replacing Q with
P−1/2QP−1/2, for some positive-definite approximation P of Q (see [4]).

There are versions of the CGM for the minimization of nonquadratic
functions. In the quadratic case the next conjugate direction pn+1 is built
from the residual rn+1 and pn. Since, in that case, rn+1 = −∇f(xn), this
suggests that in the nonquadratic case we build pn+1 from −∇f(xn) and
pn. This leads to the Fletcher-Reeves method. Other similar algorithms,
such as the Polak-Ribiere and the Hestenes-Stiefel methods, perform better
on certain problems [106].



Part IV

Positivity in Linear
Systems
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Chapter 13

The Multiplicative ART
(MART)

The multiplicative ART (MART) [74] is an iterative algorithm closely re-
lated to the ART. It applies to systems of linear equations Ax = b for which
the bi are positive and the Aij are nonnegative; the solution x we seek will
have nonnegative entries. It is not so easy to see the relation between ART
and MART if we look at the most general formulation of MART. For that
reason, we begin with a simpler case, in which the relation is most clearly
visible.

13.1 A Special Case of ART and MART

We begin by considering the application of ART to the transmission to-
mography problem. For i = 1, ..., I, let Li be the set of pixel indices j for
which the j-th pixel intersects the i-th line segment, and let |Li| be the
cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xk

j +
1

|Li|
(bi − (Axk)i),

for j in Li, and
xk+1

j = xk
j ,

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

Suppose, now, that each bi is positive, and we know in advance that the
desired image we wish to reconstruct must be nonnegative. We can begin
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with x0 > 0, but as we compute the ART steps, we may lose nonnegativity.
One way to avoid this loss is to correct the current xk multiplicatively,
rather than additively, as in ART. This leads to the multiplicative ART
(MART).

The MART, in this case, has the iterative step

xk+1
j = xk

j

( bi

(Axk)i

)

,

for those j in Li, and
xk+1

j = xk
j ,

otherwise. Therefore, we can write the iterative step as

xk+1
j = xk

j

( bi

(Axk)i

)Aij

.

13.2 MART in the General Case

Taking the entries of the matrix A to be either one or zero, depending on
whether or not the j-th pixel is in the set Li, is too crude. The line Li

may just clip a corner of one pixel, but pass through the center of another.
Surely, it makes more sense to let Aij be the length of the intersection of
line Li with the j-th pixel, or, perhaps, this length divided by the length of
the diagonal of the pixel. It may also be more realistic to consider a strip,
instead of a line. Other modifications to Aij may made made, in order to
better describe the physics of the situation. Finally, all we can be sure of
is that Aij will be nonnegative, for each i and j. In such cases, what is the
proper form for the MART?

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration. The MART begins with a positive vector x0. Having found
xk for nonnegative integer k, we let i = k(mod I) + 1 and define xk+1 by

xk+1
j = xk

j

( bi

(Axk)i

)m−1
i

Aij

, (13.1)

where mi = max {Aij |j = 1, 2, ..., J}. Some treatments of MART leave
out the mi, but require only that the entries of A have been rescaled so
that Aij ≤ 1 for all i and j. The mi is important, however, in accelerating
the convergence of MART.

The MART can be accelerated by relaxation, as well. The relaxed
MART has the iterative step

xk+1
j = xk

j

( bi

(Axk)i

)γim
−1
i

Aij

, (13.2)
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where γi is in the interval (0, 1). As with ART, finding the best relaxation
parameters is a bit of an art.

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART.

Theorem 13.1 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 KL(xj , x

0
j ) is

minimized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =

J
∑

j=1

xj log xj − xj .

As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of
a limit cycle for MART.

13.3 ART and MART as Sequential Projec-
tion Methods

We know from our discussion of the ART that the iterative ART step can
be viewed as the orthogonal projection of the current vector, xk, onto Hi,
the hyperplane associated with the i-th equation. Can we view MART in a
similar way? Yes, but we need to consider a different measure of closeness
between nonnegative vectors.

13.3.1 Cross-Entropy or the Kullback-Leibler Distance

For positive numbers u and v, the Kullback-Leibler distance [91] from u to
v is

KL(u, v) = u log
u

v
+ v − u. (13.3)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL
distance is extended to nonnegative vectors component-wise, so that for
nonnegative vectors x and z we have

KL(x, z) =

J
∑

j=1

KL(xj , zj). (13.4)
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Exercise 13.1 One of the most useful facts about the KL distance is that,
for all nonnegative vectors x and z, with z+ =

∑J
j=1 zj > 0, we have

KL(x, z) = KL(x+, z+) + KL(x,
x+

z+
z). (13.5)

Prove this.

Given the vector xk, we find the vector z in Hi for which the KL distance
f(z) = KL(xk, z) is minimized; this z will be the KL projection of xk onto
Hi. Using a Lagrange multiplier, we find that

0 =
∂f

∂zj
(z) − λiAij ,

for some constant λi, so that

0 = −
xk

j

zj
+ 1 − λiAij ,

for each j. Multiplying by zj , we get

zj − xj = zjAijλi. (13.6)

For the special case in which the entries of Aij are zero or one, we can
solve Equation (13.6) for zj . We have

zj − xk
j = zjAijλi,

for each j ∈ Li, and zj = xk
j , otherwise. Multiply both sides by Aij and

sum on j to get
bi(1 − λi) = (Axk)i.

Therefore,

zj = xk
j

bi

(Axk)i
,

which is clearly xk+1
j . So, at least in the special case we have been dis-

cussing, MART consists of projecting, in the KL sense, onto each of the
hyperplanes in succession.

13.3.2 Weighted KL Projections

For the more general case in which the entries Aij are arbitrary nonnegative
numbers, we cannot directly solve for zj in Equation (13.6). There is an
alternative, though. Instead of minimizing KL(x, z), subject to (Az)i = bi,
we minimize the weighted KL distance

J
∑

j=1

AijKL(xj , zj),
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subject to the same constraint on z. We shall denote the optimal z by Qix.
Again using a Lagrange multiplier approach, we find that

0 = −Aij(
xj

zj
+ 1) − Aijλi,

for some constant λi. Multiplying by zj , we have

Aijzj − Aijxj = Aijzjλi. (13.7)

Summing over the index j, we get

bi − (Ax)i = biλi,

from which it follows that

1 − λi = (Ax)i/bi.

Substituting for λi in equation (13.7), we obtain

zj = (Qix)j = xj
bi

(Ax)i
, (13.8)

for all j for which Aij 6= 0.
Note that the MART step does not define xk+1 to be this weighted KL

projection of xk onto the hyperplane Hi; that is,

xk+1
j 6= (Qix

k)j ,

except for those j for which
Aij

mi
= 1. What is true is that the MART step

involves relaxation. Writing

xk+1
j = (xk

j )1−m−1
i

Aij

(

xk
j

bi

(Axk)i

)m−1
i

Aij

,

we see that xk+1
j is a weighted geometric mean of xk

j and (Qix
k)j .

13.4 Proof of Convergence for MART

We assume throughout this proof that x is a nonnegative solution of Ax = b.
For i = 1, 2, ..., I, let

Gi(x, z) = KL(x, z) + m−1
i KL((Ax)i, bi) − m−1

i KL((Ax)i, (Az)i).

Exercise 13.2 Use Equation (13.5) to prove that Gi(x, z) ≥ 0 for all x
and z.
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Exercise 13.3 Show that Gi(x, z), viewed as a function of z, is minimized
by z = x, by showing that

Gi(x, z) = Gi(x, x) + KL(x, z) − m−1
i KL((Ax)i, (Az)i). (13.9)

Exercise 13.4 Show that Gi(x, z), viewed as a function of x, is minimized
by x = z′, where

z′
j = zj

( bi

(Az)i

)m−1
i

Aij

,

by showing that

Gi(x, z) = Gi(z
′, z) + KL(x, z′). (13.10)

We note that xk+1 = (xk)′.
Now we calculate Gi(x, xk) in two ways, using, first, the definition, and,

second, Equation (13.10). From the definition, we have

Gi(x, xk) = KL(x, xk) − m−1
i KL(bi, (Axk)i).

From Equation (13.10), we have

Gi(x, xk) = Gi(x
k+1, xk) + KL(x, xk+1).

Therefore,

KL(x, xk) − KL(x, xk+1) = Gi(x
k+1, xk) + m−1

i KL(bi, (Axk)i). (13.11)

From Equation (13.11) we can conclude several things:

1) the sequence {KL(x, xk)} is decreasing;

2) the sequence {xk} is bounded, and therefore has a cluster point, x∗; and
3) the sequences {Gi(x

k+1, xk)} and {m−1
i KL(bi, (Axk)i)} converge de-

creasingly to zero, and so bi = (Ax∗)i for all i.
Since b = Ax∗, we can use x∗ in place of the arbitrary solution x to

conclude that the sequence {KL(x∗, xk)} is decreasing. But, a subsequence
converges to zero, so the entire sequence must converge to zero, and there-
fore {xk} converges to x∗. Finally, since the right side of Equation (13.11) is
independent of which solution x we have used, so is the left side. Summing
over k on the left side, we find that

KL(x, x0) − KL(x, x∗)

is independent of which x we use. We can conclude then that minimizing
KL(x, x0) over all solutions x has the same answer as minimizing KL(x, x∗)
over all such x; but the solution to the latter problem is obviously x = x∗.
This concludes the proof.
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13.5 Comments on the Rate of Convergence
of MART

We can see from Equation (13.11),

KL(x, xk) − KL(x, xk+1) = Gi(x
k+1, xk) + m−1

i KL(bi, (Axk)i),

that the decrease in distance to a solution that occurs with each step of
MART depends on m−1

i and on KL(bi, (Axk)i); the latter measures the
extent to which the current vector xk solves the current equation. We see
then that it is reasonable to select mi as we have done, namely, as the
smallest positive number ci for which Aij/ci ≤ 1 for all j. We also see that
it is helpful if the equations are ordered in such a way that KL(bi, (Axk)i)
is fairly large, for each k. It is not usually necessary to determine an
optimal ordering of the equations; the important thing is to avoid ordering
the equations so that successive hyperplanes have nearly parallel normal
vectors.
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Chapter 14

The Simultaneous MART
(SMART)

There is a simultaneous version of MART, called the SMART [44, 56, 113].
As with MART, the SMART applies only to nonnegative systems. Unlike
MART, SMART uses all equations in each step of the iteration.

14.1 The SMART Iteration

It begins with a positive vector x0; having calculated xk, we calculate xk+1

using

log xk+1
j = log xk

j + s−1
j

I
∑

i=1

Aij log
bi

(Axk)i
, (14.1)

where sj =
∑I

i=1 Aij > 0.
The following theorem describes what we know concerning the SMART.

Theorem 14.1 In the consistent case the SMART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Ax, b) for which

∑J
j=1 sjKL(xj , x

0
j ) is

minimized; if A and every matrix derived from A by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Ax, b) and
at most I − 1 of its entries are nonzero.

When there are nonnegative solutions of Ax = b, both MART and
SMART converge to the nonnegative solution minimizing the Kullback-
Leibler distance KL(x, x0); if x0 is the vector whose entries are all one,

101



102 CHAPTER 14. THE SIMULTANEOUS MART (SMART)

then the solution minimizes the Shannon entropy, SE(x), given by

SE(x) =

J
∑

j=1

xj log xj − xj . (14.2)

One advantage that SMART has over MART is that, if the nonnegative
system Ax = b has no nonnegative solutions, the SMART converges to the
nonnegative minimizer of the function KL(Ax, b) for which KL(x, x0) is
minimized. One disadvantage of SMART, compared to MART, is that it
is slow.

14.2 The SMART as a Generalized Projec-
tion Method

As we saw previously, the MART algorithm can be viewed as a sequen-
tial, relaxed generalized projection method that involves the weighted KL
projections Qi. In this section we show that the SMART iteration can be
viewed in this way also.

Recall that, for any nonnegative vector x, the nonnegative vector z =
Qix given by

zj = (Qix)j = xj
bi

(Ax)i

minimizes the weighted KL distance

J
∑

j=1

AijKL(xj , zj),

over all nonnegative z with (Az)i = bi. Given xk, we take as xk+1 the
vector whose entries xk+1

j are weighted geometric means of the (Qix
k)j ;

that is,

log xk+1
j =

I
∑

i=1

s−1
j Aij log(Qix

k)j ,

with sj =
∑I

i=1 Aij > 0. We then have

xk+1
j = xk

j exp(

I
∑

i=1

s−1
j Aij log

bi

(Axk)i
),

or

xk+1
j = xk

j

I
∏

i=1

(
bi

(Axk)i
)s−1

j
Aij .

This is the SMART iterative step.
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14.3 Proof of Convergence of the SMART

For the consistent case, in which there are nonnegative solutions of A = b,
the proof of convergence of SMART is almost the same as that for MART
given previously. To simplify the notation, we shall assume that we have
normalize the problem so that the sums of the entries in each column of
A is one. That means we replace each Aij with s−1

j Aij and each xj with
sjxj . Instead of Gi(x, z), use

G(x, z) = KL(x, z) − KL(Ax, Az) + KL(Ax, b).

It follows from our assumption about normalization and Equation (13.5)
that

KL(x, z) − KL(Ax, Az) ≥ 0,

so G(x, z) ≥ 0 for all nonnegative x and z. Notice that

G(x, x) = KL(Ax, b), (14.3)

so that
G(x, z) = G(x, x) + KL(x, z) − KL(Ax, Az),

and G(x, z) is minimized, as a function of z, by the choice z = x. Mini-
mizing G(x, z) with respect to x, for fixed z, as we did for MART, we find
that

G(x, z) = G(z′, z) + KL(x, z′), (14.4)

for z′ given by

z′
j = zj

I
∏

i=1

(
bi

(Az)i
)Aij .

Notice that the SMART iteration, in the normalized case, is

xk+1 = (xk)′.

We complete the convergence proof through several exercises. In complet-
ing these exercises, it will be helpful to study the related results used in
the convergence proof of MART.

Exercise 14.1 Show that the sequence {KL(Axk, b)} is decreasing and the
sequence {KL(xk, xk+1)} converges to zero. Hint: use Equations (14.3)
and (14.4).

Exercise 14.2 Show that the sequence {xk} is bounded, by showing that

J
∑

j=1

xk
j ≤

I
∑

i=1

bi.
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Exercise 14.3 From the previous exercise, we know that the sequence {xk}
has cluster points; let x∗ be one of them. Show that (x∗)′ = x∗. Hint: use
the fact that {KL(xk, xk+1)} converges to zero.

Exercise 14.4 Let x = x̂ ≥ 0 minimize KL(Ax, b), over all nonnegative
vectors x. Show that (x̂)′ = x̂.

Exercise 14.5 Show that, for the SMART sequence {xk} with cluster point
x∗ and x̂ as defined previously, we have

KL(x̂, xk) − KL(x̂, xk+1) = KL(Axk+1, b) − KL(Ax̂, b)+

KL(Ax̂, Axk) + KL(xk+1, xk) − KL(Axk+1, Axk), (14.5)

and so KL(Ax̂, Ax∗) = 0, the sequence {KL(x̂, xk)} is decreasing and
KL(x̂, x∗) < +∞.

Exercise 14.6 Show that, for any cluster point x∗ of the sequence {xk},
we have

KL(Ax̂, b) = KL(Ax∗, b),

so that x∗ is a nonnegative minimizer of KL(Ax, b). Consequently, the
sequence {KL(x∗, xk)} converges to zero, the sequence {xk} converges to
x∗, and

KL(x̂, x0) ≥ KL(x∗, x0).

14.4 Remarks on the Rate of Convergence of
the SMART

In the consistent case, the progress we make toward a solution, using the
SMART, is described by Equation (14.5), which now says

KL(x̂, xk) − KL(x̂, xk+1)

= KL(Axk+1, b) + KL(b, Axk) + KL(xk+1, xk) − KL(Axk+1, Axk).

It follows that

KL(x̂, xk) − KL(x̂, xk+1) ≥ KL(b, Axk).

While this is not an equality, it suggests that the improvement we make
with each step is on the order of KL(Ax̂, Axk). In the MART case, the
improvement we make with each step is

KL(x̂, xk) − KL(x̂, xk+1) ≥ m−1
i KL(bi, (Axk)i).
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Since we are assuming that the columns of A sum to one, the individual
entries will be on the order of 1

I , if all the entries are roughly the same size,
so that mi is then on the order of 1

I . This indicates that the MART makes
about as much progress toward a solution in one step (which means using
a single equation), as SMART makes using one step (which means using all
the equations). Said another way, the progress made in one pass through
all the data using MART is about I times better than in one iteration of
SMART, and yet involves about the same amount of calculation. Of course,
this is a rough estimate, but it does correspond to what we typically observe
in practice. If, however, the matrix A is sparse and has, say, only about√

I non-zero entries per column, then each entry is roughly 1√
I
, and m−1

i

is on the order of
√

I. In such cases, the progress made in one pass through
all the data using MART is about

√
I times better than in one iteration of

SMART, and yet involves about the same amount of calculation.

14.5 Block-Iterative SMART

As we just argued, there is good empirical, as well as theoretical, justifica-
tion for the claim that MART converges, in the consistent case, significantly
faster than SMART. On the other hand, the SMART can be implemented
in parallel, which will accelerate the computation time. Because the MART
uses only a single equation at each step, it does not take advantage of the
computer architecture. A compromise between being purely sequential and
being purely simultaneous might provide the best solution. Such a method
is a block-iterative method.

Block-iterative methods involve a partition of the index set {i = 1, ..., I}
into nonempty subsets Bn, n = 1, 2, ..., N . For k = 0, 1, 2, ..., and n(k) =
k(modN)+1, only the equations corresponding to i in the set Bn are used
to calculate xk+1 from xk. The ART and MART are extreme examples of
block-iterative algorithms, in which N = I and Bn = Bi = {i}, for each i.

The SMART algorithm involves a summation over i = 1, ..., I at each
step. Block-iterative SMART algorithms replace this sum with a sum only
over those i in the current block.

14.5.1 The Rescaled Block-Iterative SMART

Both the MART and SMART involve weighted geometric means of the gen-
eralized projections Qi; MART involves relaxation, as well, while SMART
does not. The block-iterative SMART algorithms can also be written
in terms of such relaxed weighted geometric means. The rescaled block-
iterative SMART (RBI-SMART) also uses a particular choice of a param-
eter designed to accelerate the convergence in the consistent case.
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The vector xk+1 determined by the RBI-SMART is the following:

xk+1
j = (xk

j )1−m−1
n s−1

j
snj

∏

i∈Bn

[xk
j

bi

(Axk)i
]m

−1
n s−1

j
Aij ,

where
snj =

∑

i∈Bn

Aij ,

and
mn = max{snjs

−1
j | j = 1, ..., J}.

Consequently, xk+1
j is a weighted geometric mean of xk

j and the (Qix
k)j

for i in the block Bn.
The RBI-SMART converges, in the consistent case, to the same solution

as MART and SMART, for all choices of blocks. The proof is similar to
that for MART and SMART and we leave it as an exercise for the reader.
There are variants of the RBI-SMART that involve other parameters [33].

As with ART and MART, the RBI-SMART does not converge to a
single vector in the inconsistent case. What is always observed is that
RBI-SMART exhibits subsequential convergence to a limit cycle. There is
no proof of this, however.



Chapter 15

Expectation
Maximization Maximum
Likelihood (EMML)

For nonnegative systems Ax = b in which the column sums of A and the
entries of b are positive, the expectation maximization maximum likelihood
(EMML) method produces a nonnegative solution of Ax = b, whenever one
exists [20, 21, 33, 53, 101, 115, 93, 120, 94] . If not, the EMML converges to
a nonnegative approximate solution that minimizes the function KL(b, Ax)
[20, 22, 33, 53, 120].

15.1 The EMML Iteration

As we saw previously, the iterative step in the SMART involves a weighted
geometric mean of the weighted KL projections Qix

k: for the SMART we
have

log xk+1
j = s−1

j

I
∑

i=1

Aij log(Qix
k)j .

It would be nice if we could avoid the exponentiation required in the
SMART iterative step. This suggests the algorithm in which the entries
xk+1

j are weighted arithmetic means of the (Qix
k)j ; that is, the iterative

step should be

xk+1
j = s−1

j

I
∑

i=1

Aij(Qix
k)j ,
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which can be written as

xk+1
j = xk

j s−1
j

I
∑

i=1

Aij
bi

(Axk)i
. (15.1)

This is the iterative step of the EMML algorithm.
The EMML algorithm was not originally derived from the SMART algo-

rithm, but from a general method for likelihood maximization in statistics,
the expectation maximization (EM) approach [58]. The EMML algorithm
we study here is the EM method, as it applies to the case in which the
data bi are instances of independent Poisson random variables with mean
values (Ax)i; here the entries of x are the parameters to be estimated.

For the EMML algorithm the main results are the following.

Theorem 15.1 In the consistent case the EMML algorithm converges to
nonnegative solution of Ax = b. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(b, Ax); if A and every matrix
derived from A by deleting columns has full rank then there is a unique
nonnegative minimizer of KL(b, Ax) and at most I − 1 of its entries are
nonzero.

An open question about the EMML algorithm is the following:

Open Question: How does the EMML limit depend on the starting vector
x0? In particular, when there are nonnegative exact solutions of Ax = b,
which one does the EMML produce and how does it depend on x0?

15.2 Proof of Convergence of the EMML Al-
gorithm

Let A be an I by J matrix with entries Aij ≥ 0, such that, for each

j = 1, ..., J , we have sj =
∑I

i=1 Aij > 0. Let b = (b1, ..., bI)
T with bi > 0

for each i. We shall assume throughout this section that sj = 1 for each
j. If this is not the case initially, we replace xj with xjsj and Aij with
Aij/sj ; the quantities (Ax)i are unchanged.

For each nonnegative vector x for which (Ax)i =
∑J

j=1 Aijxj > 0, let
r(x) = {r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjAij
bi

(Ax)i

and

q(x)ij = xjAij .
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The KL distance

KL(r(x), q(z)) =

I
∑

i=1

J
∑

j=1

KL(r(x)ij , q(z)ij)

will play an important role in the proof that follows. Note that if there is
nonnegative x with r(x) = q(x) then b = Ax.

15.2.1 Some Pythagorean Identities Involving the KL
Distance

The EMML iterative algorithm is derived using the principle of alternating
minimization, according to which the distance KL(r(x), q(z)) is minimized,
first with respect to the variable x and then with respect to the variable
z. Although the KL distance is not Euclidean, and, in particular, not even
symmetric, there are analogues of Pythagoras’ theorem that play important
roles in the convergence proofs.

Exercise 15.1 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) + KL(r(x), r(z)); (15.2)

KL(r(x), q(z)) = KL(r(x), q(x′)) + KL(x′, z), (15.3)

for

x′
j = xj

I
∑

i=1

Aij
bi

(Ax)i
. (15.4)

Note that it follows from normalization and Equation (13.5) that KL(x, z)−
KL(Ax, Az) ≥ 0.

Exercise 15.2 Show that, for {xk} given by Equation (15.1), {KL(b, Axk)}
is decreasing and {KL(xk+1, xk)} → 0. Hint: Use KL(r(x), q(x)) =
KL(b, Ax), and the Pythagorean identities.

Exercise 15.3 Show that the EMML sequence {xk} is bounded by showing

J
∑

j=1

xk
j =

I
∑

i=1

bi.

Exercise 15.4 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML
sequence {xk}. Hint: Use the fact that {KL(xk+1, xk)} → 0.
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Exercise 15.5 Let x̂ minimize KL(b, Ax) over all x ≥ 0. Then, (x̂)′ = x̂.
Hint: Apply Pythagorean identities to KL(r(x̂), q(x̂)).

Note that, because of convexity properties of the KL distance, even if
the minimizer x̂ is not unique, the vector Ax̂ is unique.

Exercise 15.6 Show that, for the EMML sequence {xk} with cluster point
x∗ and x̂ as defined previously, we have the double inequality

KL(x̂, xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂, xk+1), (15.5)

from which we conclude that the sequence {KL(x̂, xk)} is decreasing and
KL(x̂, x∗) < +∞. Hints: For the first inequality calculate KL(r(x̂), q(xk))

in two ways. For the second one, use (x)′
j =

∑I
i=1 r(x)ij and Exercise

13.1.

Exercise 15.7 For x∗ a cluster point of the EMML sequence {xk} we
have KL(b, Ax∗) = KL(b, P x̂). Therefore, x∗ is a nonnegative minimizer
of KL(b, Ax). Consequently, the sequence {KL(x∗, xk)} converges to zero,
and so {xk} → x∗. Hint: Use the double inequality of Equation (15.5) and
KL(r(x̂), q(x∗)).

Both the EMML and the SMART algorithms are slow to converge. For
that reason attention has shifted, in recent years, to block-iterative versions
of these algorithms.

15.3 Block-Iterative EMML Iteration

Block-iterative versions of ART and SMART have been known for decades.
In contrast, the first block-iterative variant of the EMML algorithm, the
ordered-subset EM (OSEM) [85], was discovered in 1994. The main idea in
the OSEM is simply to replace all the sums over all the indices i with sums
only over those i in the current block. This is not quite right; it ignores the
relaxation that we have seen in the MART and RBI-SMART. The OSEM
was shown to converge, in the consistent case, only when the matrix A
satisfies a quite restrictive condition, subset balance. This means that the
sums

snj =
∑

i∈Bn

Aij

depend only on n, and not on j.
The rescaled block-iterative EMML (RBI-EMML) corrects this omission.

It has the iterative step

xk+1
j = (1 − m−1

n s−1
j snj)x

k
j + m−1

n s−1
j xk

j

∑

i∈Bn

Aij
bi

(Axk)i
. (15.6)
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The RBI-EMML converges, in the consistent case, for any choice of blocks.

Open Question: When there are multiple nonnegative solutions of Ax =
b, the RBI-EMML solution will depend on the starting vector, x0, but
precisely how is unknown. Simulations seem to show that the solution may
also vary with the choice of blocks, as well as with their ordering. How?

15.3.1 A Row-Action Variant of EMML

The MART is the row-action, or sequential, variant of RBI-SMART. There
is also a row-action variant of EMML, obtained by selecting N = I and
taking Bn = Bi = {i} as the blocks. This row-action variant has been
called the EM-MART [33]. The EM-MART has the iterative step

xk+1
j = (1 − m−1

i s−1
j Aij)x

k
j + m−1

i s−1
j xk

j Aij
bi

(Axk)i
,

for mi = max{Aijs
−1
j }. Note that another version of EM-MART has the

iterative step

xk+1
j = (1 − m−1

i Aij)x
k
j + m−1

i xk
j Aij

bi

(Axk)i
,

for mi = max{Aij}. The second convergent version looks more like MART,
while the first follows directly from the RBI-EMML formula.
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Chapter 16

Rescaled Block-Iterative
(RBI) Methods

Image reconstruction problems in tomography are often formulated as sta-
tistical likelihood maximization problems in which the pixel values of the
desired image play the role of parameters. Iterative algorithms based on
cross-entropy minimization, such as the expectation maximization maxi-
mum likelihood (EMML) method and the simultaneous multiplicative alge-
braic reconstruction technique (SMART) can be used to solve such prob-
lems. Because the EMML and SMART are slow to converge for large
amounts of data typical in imaging problems acceleration of the algorithms
using blocks of data or ordered subsets has become popular. There are
a number of different ways to formulate these block-iterative versions of
EMML and SMART, involving the choice of certain normalization and
regularization parameters. These methods are not faster merely because
they are block-iterative; the correct choice of the parameters is crucial. The
purpose of this chapter is to discuss these different formulations in detail
sufficient to reveal the precise roles played by the parameters and to guide
the user in choosing them.

16.1 Block-Iterative Methods

Methods based on cross-entropy, such as the multiplicative ART (MART),
its simultaneous version, SMART, the expectation maximization maximum
likelihood method (EMML) and all block-iterative versions of these algo-
rithms apply to nonnegative systems that we denote by Ax = b, where b
is a vector of positive entries, A is a matrix with entries Aij ≥ 0 such that

for each j the sum sj =
∑I

i=1 Aij is positive and we seek a solution x with
nonnegative entries. If no nonnegative x satisfies b = Ax we say the system

113
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is inconsistent.

Simultaneous iterative algorithms employ all of the equations at each
step of the iteration; block-iterative methods do not. For the latter methods
we assume that the index set {i = 1, ..., I} is the (not necessarily disjoint)
union of the N sets or blocks Bn, n = 1, ..., N . We shall require that
snj =

∑

i∈Bn
Aij > 0 for each n and each j. Block-iterative methods like

ART and MART for which each block consists of precisely one element are
called row-action or sequential methods.

We begin our discussion with the SMART and the EMML method.

16.2 The SMART and the EMML method

Both the SMART and the EMML method provide a solution of b = Ax
when such exist and (distinct) approximate solutions in the inconsistent
case. Both begin with an arbitrary positive vector x0. Having found xk

the iterative step for the SMART is

SMART:

xk+1
j = xk

j exp
(

s−1
j

I
∑

i=1

Aij log
bi

(Axk)i

)

(16.1)

while that for the EMML method is

EMML:

xk+1
j = xk

j s−1
j

I
∑

i=1

Aij
bi

(Axk)i
. (16.2)

The main results concerning the SMART is given by the following theorem.

Theorem 16.1 In the consistent case the SMART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Ax, y) for which

∑J
j=1 sjKL(xj , x

0
j ) is

minimized; if A and every matrix derived from A by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Ax, y) and
at most I − 1 of its entries are nonzero.

For the EMML method the main results are the following.



16.2. THE SMART AND THE EMML METHOD 115

Theorem 16.2 In the consistent case the EMML algorithm converges to
nonnegative solution of b = Ax. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(y, Ax); if A and every matrix
derived from A by deleting columns has full rank then there is a unique
nonnegative minimizer of KL(y, Ax) and at most I − 1 of its entries are
nonzero.

In the consistent case there may be multiple nonnegative solutions and the
one obtained by the EMML algorithm will depend on the starting vector
x0; how it depends on x0 is an open question.

These theorems are special cases of more general results on block-
iterative methods that we shall prove later in this chapter.

Both the EMML and SMART are related to likelihood maximization.
Minimizing the function KL(y, Ax) is equivalent to maximizing the like-
lihood when the bi are taken to be measurements of independent Poisson
random variables having means (Ax)i. The entries of x are the parameters
to be determined. This situation arises in emission tomography. So the
EMML is a likelihood maximizer, as its name suggests.

The connection between SMART and likelihood maximization is a bit
more convoluted. Suppose that sj = 1 for each j. The solution of b = Ax
for which KL(x, x0) is minimized necessarily has the form

xj = x0
j exp

(

I
∑

i=1

Aijλi

)

(16.3)

for some vector λ with entries λi. This log linear form also arises in trans-
mission tomography, where it is natural to assume that sj = 1 for each j
and λi ≤ 0 for each i. We have the following lemma that helps to connect
the SMART algorithm with the transmission tomography problem:

Lemma 16.1 Minimizing KL(d, x) over x as in Equation (16.3) is equiv-
alent to minimizing KL(x, x0), subject to Ax = Pd.

The solution to the latter problem can be obtained using the SMART.
With x+ =

∑J
j=1 xj the vector A with entries pj = xj/x+ is a probabil-

ity vector. Let d = (d1, ..., dJ)T be a vector whose entries are nonnegative

integers, with K =
∑J

j=1 dj . Suppose that, for each j, pj is the probability
of index j and dj is the number of times index j was chosen in K trials.
The likelihood function of the parameters λi is

L(λ) =

J
∏

j=1

p
dj

j (16.4)

so that the log-likelihood function is

LL(λ) =

J
∑

j=1

dj log pj . (16.5)



116CHAPTER 16. RESCALED BLOCK-ITERATIVE (RBI) METHODS

Since A is a probability vector, maximizing L(λ) is equivalent to minimizing
KL(d, p) with respect to λ, which, according to the lemma above, can
be solved using SMART. In fact, since all of the block-iterative versions
of SMART have the same limit whenever they have the same starting
vector, any of these methods can be used to solve this maximum likelihood
problem. In the case of transmission tomography the λi must be non-
positive, so if SMART is to be used, some modification is needed to obtain
such a solution.

Those who have used the SMART or the EMML on sizable problems
have certainly noticed that they are both slow to converge. An important
issue, therefore, is how to accelerate convergence. One popular method is
through the use of block-iterative (or ordered subset) methods.

16.3 Ordered-Subset Versions

To illustrate block-iterative methods and to motivate our subsequent dis-
cussion we consider now the ordered subset EM algorithm (OSEM), which is
a popular technique in some areas of medical imaging, as well as an anal-
ogous version of SMART, which we shall call here the OSSMART. The
OSEM is now used quite frequently in tomographic image reconstruction,
where it is acknowledged to produce usable images significantly faster then
EMML. From a theoretical perspective both OSEM and OSSMART are
incorrect. How to correct them is the subject of much that follows here.

The idea behind the OSEM (OSSMART) is simple: the iteration looks
very much like the EMML (SMART), but at each step of the iteration
the summations are taken only over the current block. The blocks are
processed cyclically.

The OSEM iteration is the following: for k = 0, 1, ... and n = k(modN)+
1, having found xk let

OSEM:

xk+1
j = xk

j s−1
nj

∑

i∈Bn

Aij
bi

(Axk)i
. (16.6)

The OSSMART has the following iterative step:

OSSMART

xk+1
j = xk

j exp
(

s−1
nj

∑

i∈Bn

Aij log
bi

(Axk)i

)

. (16.7)

In general we do not expect block-iterative algorithms to converge in the
inconsistent case, but to exhibit subsequential convergence to a limit cycle,
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as we shall discuss later. We do, however, want them to converge to a
solution in the consistent case; the OSEM and OSSMART fail to do this
except when the matrix A and the set of blocks {Bn, n = 1, ..., N} satisfy
the condition known as subset balance, which means that the sums snj

depend only on j and not on n. While this may be approximately valid in
some special cases, it is overly restrictive, eliminating, for example, almost
every set of blocks whose cardinalities are not all the same. When the
OSEM does well in practice in medical imaging it is probably because the
N is not large and only a few iterations are carried out.

The experience with the OSEM was encouraging, however, and strongly
suggested that an equally fast, but mathematically correct, block-iterative
version of EMML was to be had; this is the rescaled block-iterative EMML
(RBI-EMML). Both RBI-EMML and an analogous corrected version of
OSSMART, the RBI-SMART, provide fast convergence to a solution in
the consistent case, for any choice of blocks.

16.4 The RBI-SMART

We turn next to the block-iterative versions of the SMART, which we shall
denote BI-SMART. These methods were known prior to the discovery of
RBI-EMML and played an important role in that discovery; the importance
of rescaling for acceleration was apparently not appreciated, however. The
SMART was discovered in 1972, independently, by Darroch and Ratcliff,
working in statistics, [56] and by Schmidlin [113] in medical imaging. Block-
iterative versions of SMART are also treated in [56], but they also insist
on subset balance. The inconsistent case was not considered.

We start by considering a formulation of BI-SMART that is general
enough to include all of the variants we wish to discuss. As we shall see,
this formulation is too general and will need to be restricted in certain ways
to obtain convergence. Let the iterative step be

xk+1
j = xk

j exp
(

βnj

∑

i∈Bn

αniAij log
( bi

(Axk)i

))

, (16.8)

for j = 1, 2, ..., J , n = k(modN) + 1 and βnj and αni positive. As we shall
see, our convergence proof will require that βnj be separable, that is,

bnj = γjδn

for each j and n and that

γjδnσnj ≤ 1, (16.9)

for σnj =
∑

i∈Bn
αniAij . With these conditions satisfied we have the fol-

lowing result.
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Theorem 16.3 Let x be a nonnegative solution of b = Ax. For any posi-
tive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the sequence
{xk} given by equation (16.8) converges to the unique solution of b = Ax

for which the weighted cross-entropy
∑J

j=1 γ−1
j KL(xj , x

0
j ) is minimized.

The inequality in the following lemma is the basis for the convergence proof.

Lemma 16.2 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (16.8) we have

J
∑

j=1

γ−1
j KL(xj , x

k
j ) −

J
∑

j=1

γ−1
j KL(xj , x

k+1
j ) ≥

δn

∑

i∈Bn

αniKL(bi, (Axk)i). (16.10)

Proof: First note that

xk+1
j = xk

j exp
(

γjδn

∑

i∈Bn

αniAij log
( bi

(Axk)i

))

, (16.11)

and

exp
(

γjδn

∑

i∈Bn

αniAij log
( bi

(Axk)i

))

can be written as

exp
(

(1 − γjδnσnj) log 1 + γjδn

∑

i∈Bn

αniAij log
( bi

(Axk)i

))

,

which, by the convexity of the exponential function, is not greater than

(1 − γjδnσnj) + γjδn

∑

i∈Bn

αniAij
bi

(Axk)i
.

It follows that

J
∑

j=1

γ−1
j (xk

j − xk+1
j ) ≥ δn

∑

i∈Bn

αni((Axk)i − bi).

We also have

log(xk+1
j /xk

j ) = γjδn

∑

i∈Bn

αniAij log
bi

(Axk)i
.
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Therefore
J
∑

j=1

γ−1
j KL(xj , x

k
j ) −

J
∑

j=1

γ−1
j KL(xj , x

k+1
j )

=

J
∑

j=1

γ−1
j (xj log(xk+1

j /xk
j ) + xk

j − xk+1
j )

=

J
∑

j=1

xjδn

∑

i∈Bn

αniAij log
bi

(Axk)i
+

J
∑

j=1

γ−1
j (xk

j − xk+1
j )

= δn

∑

i∈Bn

αni(

J
∑

j=1

xjAij) log
bi

(Axk)i
+

J
∑

j=1

γ−1
j (xk

j − xk+1
j )

≥ δn

(

∑

i∈Bn

αni(bi log
bi

(Axk)i
+ (Axk)i − bi) = δn

∑

i∈Bn

αniKL(bi, (Axk)i).

This completes the proof of the lemma.

From the inequality (16.10) we conclude that the sequence

{
J
∑

j=1

γ−1
j KL(xj , x

k
j )}

is decreasing, that {xk} is therefore bounded and the sequence

{
∑

i∈Bn

αniKL(bi, (Axk)i)}

is converging to zero. Let x∗ be any cluster point of the sequence {xk}.
Then it is not difficult to show that b = Ax∗. Replacing x with x∗ we
have that the sequence {∑J

j=1 γ−1
j KL(x∗

j , x
k
j )} is decreasing; since a sub-

sequence converges to zero, so does the whole sequence. Therefore x∗ is
the limit of the sequence {xk}. This proves that the algorithm produces
a solution of b = Ax. To conclude further that the solution is the one
for which the quantity

∑J
j=1 γ−1

j KL(xj , x
0
j ) is minimized requires further

work to replace the inequality (16.10) with an equation in which the right
side is independent of the particular solution x chosen; see the final section
of this chapter for the details.

We see from the theorem that how we select the γj is determined by

how we wish to weight the terms in the sum
∑J

j=1 γ−1
j KL(xj , x

0
j ). In

some cases we want to minimize the cross-entropy KL(x, x0) subject to
b = Ax; in this case we would select γj = 1. In other cases we may
have some prior knowledge as to the relative sizes of the xj and wish to
emphasize the smaller values more; then we may choose γj proportional to
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our prior estimate of the size of xj . Having selected the γj , we see from
the inequality (16.10) that convergence will be accelerated if we select δn

as large as permitted by the condition γjδnσnj ≤ 1. This suggests that we
take

δn = 1/ min{σnjγj , j = 1, ..., J}. (16.12)

The rescaled BI-SMART (RBI-SMART) as presented in [22, 24, 25] uses
this choice, but with αni = 1 for each n and i. Let’s look now at some
of the other choices for these parameters that have been considered in the
literature.

First, we notice that the OSSMART does not generally satisfy the re-
quirements, since in (16.7) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSSMART.

In [44] Censor and Segman make the choices βnj = 1 and αni > 0 such
that σnj ≤ 1 for all n and j. In those cases in which σnj is much less than
1 for each n and j their iterative scheme is probably excessively relaxed; it
is hard to see how one might improve the rate of convergence by altering
only the weights αni, however. Limiting the choice to γjδn = 1 reduces our
ability to accelerate this algorithm.

The original SMART in equation (16.1) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (16.9) is satisfied; in fact it becomes
an equality now.

For the row-action version of SMART, the multiplicative ART (MART),
due to Gordon, Bender and Herman [74], we take N = I and Bn = Bi = {i}
for i = 1, ..., I. The MART begins with a strictly positive vector x0 and
has the iterative step

The MART:

xk+1
j = xk

j

( bi

(Axk)i

)m−1
i

Aij

, (16.13)

for j = 1, 2, ..., J , i = k(mod I) + 1 and mi > 0 chosen so that m−1
i Aij ≤ 1

for all j. The smaller mi is the faster the convergence, so a good choice
is mi = max{Aij |, j = 1, ..., J}. Although this particular choice for mi is
not explicitly mentioned in the various discussions of MART I have seen,
it was used in implementations of MART from the beginning [82].

Darroch and Ratcliff included a discussion of a block-iterative version of
SMART in their 1972 paper [56]. Close inspection of their version reveals
that they require that snj =

∑

i∈Bn
Aij = 1 for all j. Since this is unlikely

to be the case initially, we might try to rescale the equations or unknowns
to obtain this condition. However, unless snj =

∑

i∈Bn
Aij depends only
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on j and not on n, which is the subset balance property used in [85], we
cannot redefine the unknowns in a way that is independent of n.

The MART fails to converge in the inconsistent case. What is always
observed, but for which no proof exists, is that, for each fixed i = 1, 2, ..., I,
as m → +∞, the MART subsequences {xmI+i} converge to separate limit
vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to a
single vector whenever there is a nonnegative solution of b = Ax. The
greater the minimum value of KL(Ax, y) the more distinct from one an-
other the vectors of the limit cycle are. An analogous result is observed for
BI-SMART.

16.5 The RBI-EMML

As we did with SMART, we consider now a formulation of BI-EMML that
is general enough to include all of the variants we wish to discuss. Once
again, the formulation is too general and will need to be restricted in certain
ways to obtain convergence. Let the iterative step be

xk+1
j = xk

j (1 − βnjσnj) + xk
j βnj

∑

i∈Bn

αniAij
bi

(Axk)i
, (16.14)

for j = 1, 2, ..., J , n = k(modN)+1 and βnj and αni positive. As in the case
of BI-SMART, our convergence proof will require that βnj be separable,
that is,

bnj = γjδn

for each j and n and that the inequality (16.9) hold. With these conditions
satisfied we have the following result.

Theorem 16.4 Let x be a nonnegative solution of b = Ax. For any
positive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the se-
quence {xk} given by Equation (16.8) converges to a nonnegative solution
of b = Ax.

When there are multiple nonnegative solutions of b = Ax the solution
obtained by BI-EMML will depend on the starting point x0, but precisely
how it depends on x0 is an open question. Also, in contrast to the case of
BI-SMART, the solution can depend on the particular choice of the blocks.
The inequality in the following lemma is the basis for the convergence proof.

Lemma 16.3 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (16.14) we have

J
∑

j=1

γ−1
j KL(xj , x

k
j ) −

J
∑

j=1

γ−1
j KL(xj , x

k+1
j ) ≥
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δn

∑

i∈Bn

αniKL(bi, (Axk)i). (16.15)

Proof: From the iterative step

xk+1
j = xk

j (1 − γjδnσnj) + xk
j γjδn

∑

i∈Bn

αniAij
bi

(Axk)i

we have

log(xk+1
j /xk

j ) = log
(

(1 − γjδnσnj) + γjδn

∑

i∈Bn

αniAij
bi

(Axk)i

)

.

By the concavity of the logarithm we obtain the inequality

log(xk+1
j /xk

j ) ≥
(

(1 − γjδnσnj) log 1 + γjδn

∑

i∈Bn

αniAij log
bi

(Axk)i

)

,

or

log(xk+1
j /xk

j ) ≥ γjδn

∑

i∈Bn

αniAij log
bi

(Axk)i
.

Therefore

J
∑

j=1

γ−1
j xj log(xk+1

j /xk
j ) ≥ δn

∑

i∈Bn

αni(

J
∑

j=1

xjAij) log
bi

(Axk)i
.

Note that it is at this step that we used the separability of the βnj . Also

J
∑

j=1

γ−1
j (xk+1

j − xk
j ) = δn

∑

i∈Bn

((Axk)i − bi).

This concludes the proof of the lemma.

From the inequality (16.15) we conclude, as we did in the BI-SMART

case, that the sequence {∑J
j=1 γ−1

j KL(xj , x
k
j )} is decreasing, that {xk}

is therefore bounded and the sequence {∑i∈Bn
αniKL(bi, (Axk)i)} is con-

verging to zero. Let x∗ be any cluster point of the sequence {x}. Then it is
not difficult to show that b = Ax∗. Replacing x with x∗ we have that the
sequence {∑J

j=1 γ−1
j KL(x∗

j , x
k
j )} is decreasing; since a subsequence con-

verges to zero, so does the whole sequence. Therefore x∗ is the limit of
the sequence {xk}. This proves that the algorithm produces a nonnegative
solution of b = Ax. We are now unable to replace the inequality (16.15)
with an equation in which the right side is independent of the particular
solution x chosen.



16.5. THE RBI-EMML 123

Having selected the γj , we see from the inequality (16.15) that con-
vergence will be accelerated if we select δn as large as permitted by the
condition γjδnσnj ≤ 1. This suggests that once again we take

δn = 1/ min{σnjγj , j = 1, ..., J}. (16.16)

The rescaled BI-EMML (RBI-EMML) as presented in [22, 24, 25] uses this
choice, but with αni = 1 for each n and i. Let’s look now at some of
the other choices for these parameters that have been considered in the
literature.

First, we notice that the OSEM does not generally satisfy the require-
ments, since in (16.6) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSEM.

The original EMML in equation (16.2) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (16.9) is satisfied; in fact it becomes
an equality now.

Notice that the calculations required to perform the BI-SMART are
somewhat more complicated than those needed in BI-EMML. Because the
MART converges rapidly in most cases there is considerable interest in the
row-action version of EMML. It was clear from the outset that using the
OSEM in a row-action mode does not work. We see from the formula for
BI-EMML that the proper row-action version of EMML, which we call the
EM-MART, has the iterative step

EM-MART:

xk+1
j = (1 − δiγjαiiAij)x

k
j + δiγjαiiAij

bi

(Axk)i
, (16.17)

with

γjδiαiiAij ≤ 1

for all i and j. The optimal choice would seem to be to take δiαii as large
as possible; that is, to select δiαii = 1/ max{γjAij , j = 1, ..., J}. With this
choice the EM-MART is called the rescaled EM-MART (REM-MART).

The EM-MART fails to converge in the inconsistent case. What is
always observed, but for which no proof exists, is that, for each fixed i =
1, 2, ..., I, as m → +∞, the EM-MART subsequences {xmI+i} converge to
separate limit vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I}
reduces to a single vector whenever there is a nonnegative solution of b =
Ax. The greater the minimum value of KL(y, Ax) the more distinct from
one another the vectors of the limit cycle are. An analogous result is
observed for BI-EMML.
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We must mention a method that closely resembles the REM-MART, the
row-action maximum likelihood algorithm (RAMLA), which was discovered
independently by Browne and De Pierro [19]. The RAMLA avoids the limit
cycle in the inconsistent case by using strong underrelaxation involving a
decreasing sequence of relaxation parameters λk. The RAMLA has the
following iterative step:
RAMLA:

xk+1
j = (1 − λk

∑n
Aij)x

k
j + λkxk

j

∑n
Aij

( bi

(Axk)i

)

, (16.18)

where the positive relaxation parameters λk are chosen to converge to zero
and

∑+∞
k=0 λk = +∞.

16.6 RBI-SMART and Entropy Maximization

As we stated earlier, in the consistent case the sequence {xk} generated by
the BI-SMART algorithm and given by equation (16.11) converges to the

unique solution of b = Ax for which the distance
∑J

j=1 γ−1
j KL(xj , x

0
j ) is

minimized. In this section we sketch the proof of this result as a sequence
of lemmas, each of which is easily established.

Lemma 16.4 For any nonnegative vectors a and b with a+ =
∑M

m=1 am

and b+ =
∑M

m=1 bm > 0 we have

KL(a, b) = KL(a+, b+) + KL(a+,
a+

b+
b). (16.19)

For nonnegative vectors x and z let

Gn(x, z) =

J
∑

j=1

γ−1
j KL(xj , zj)

+δn

∑

iıBn

αni[KL((Ax)i, bi) − KL((Ax)i, (Pz)i)]. (16.20)

It follows from Lemma 16.19 and the inequality

γ−1
j − δnσnj ≥ 1

that Gn(x, z) ≥ 0 in all cases.

Lemma 16.5 For every x we have

Gn(x, x) = δn

∑

i∈Bn

αniKL((Ax)i, bi) (16.21)
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so that

Gn(x, z) = Gn(x, x) +

J
∑

j=1

γ−1
j KL(xj , zj)

−δn

∑

i∈Bn

αniKL((Ax)i, (Pz)i). (16.22)

Therefore the distance Gn(x, z) is minimized, as a function of z, by z = x.
Now we minimize Gn(x, z) as a function of x. The following lemma shows
that the answer is

xj = z′
j = zj exp

(

γjδn

∑

i∈Bn

αniAij log
bi

(Pz)i

)

. (16.23)

Lemma 16.6 For each x and z we have

Gn(x, z) = Gn(z′, z) +

J
∑

j=1

γ−1
j KL(xj , z

′
j). (16.24)

It is clear that (xk)′ = xk+1 for all k.
Now let b = Pu for some nonnegative vector u. We calculate Gn(u, xk)

in two ways: using the definition we have

Gn(u, xk) =

J
∑

j=1

γ−1
j KL(uj , x

k
j ) − δn

∑

i∈Bn

αniKL(bi, (Axk)i),

while using Lemma 16.24 we find that

Gn(u, xk) = Gn(xk+1, xk) +

J
∑

j=1

γ−1
j KL(uj , x

k+1
j ).

Therefore
J
∑

j=1

γ−1
j KL(uj , x

k
j ) −

J
∑

j=1

γ−1
j KL(uj , x

k+1
j )

= Gn(xk+1, xk) + δn

∑

i∈Bn

αniKL(bi, (Axk)i). (16.25)

We conclude several things from this.
First, the sequence {∑J

j=1 γ−1
j KL(uj , x

k
j )} is decreasing, so that the

sequences {Gn(xk+1, xk)} and {δn

∑

i∈Bn
αniKL(bi, (Axk)i)} converge to

zero. Therefore the sequence {xk} is bounded and we may select an arbi-
trary cluster point x∗. It follows that b = Ax∗. We may therefore replace
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the generic solution u with x∗ to find that {∑J
j=1 γ−1

j KL(x∗
j , x

k
j )} is a de-

creasing sequence; but since a subsequence converges to zero, the entire
sequence must converge to zero. Therefore {xk} converges to the solution
x∗.

Finally, since the right side of equation (16.25) does not depend on
the particular choice of solution we made, neither does the left side. By
telescoping we conclude that

J
∑

j=1

γ−1
j KL(uj , x

0
j ) −

J
∑

j=1

γ−1
j KL(uj , x

∗
j )

is also independent of the choice of u. Consequently, minimizing the func-
tion

∑J
j=1 γ−1

j KL(uj , x
0
j ) over all solutions u is equivalent to minimizing

∑J
j=1 γ−1

j KL(uj , x
∗
j ) over all solutions u; but the solution to the latter

problem is obviously u = x∗. This completes the proof.
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Chapter 17

Sensitivity to Noise

When we use an iterative algorithm, we want it to solve our problem.
We also want the solution in a reasonable amount of time, and we want
slight errors in the measurements to cause only slight perturbations in the
calculated answer. We have already discussed the use of block-iterative
methods to accelerate convergence. Now we turn to regularization as a
means of reducing sensitivity to noise. Because a number of regularization
methods can be derived using a Bayesian maximum a posteriori approach,
regularization is sometimes treated under the heading of MAP methods
(see, for example, [34]).

17.1 Where Does Sensitivity Come From?

We illustrate the sensitivity problem that can arise when the inconsistent
system Ax = b has more equations than unknowns and we calculate the
least-squares solution,

xLS = (A†A)−1A†b,

assuming that the Hermitian, nonnegative-definite matrix Q = (A†A) is
invertible, and therefore positive-definite.

The matrix Q has the eigenvalue/eigenvector decomposition

Q = λ1u1u
†
1 + · · · + λIuIu

†
I ,

where the (necessarily positive) eigenvalues of Q are

λ1 ≥ λ2 ≥ · · · ≥ λI > 0,

and the vectors ui are the corresponding orthogonal eigenvectors.

129
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17.1.1 The Singular-Value Decomposition of A

The square roots
√

λi are called the singular values of A. The singular-
value decomposition (SVD) of A is similar to the eigenvalue/eigenvector
decomposition of Q: we have

A =
√

λ1u1v
†
1 + · · · +

√

λIuIv
†
I ,

where the vi are particular eigenvectors of AA†. We see from the SVD that
the quantitites

√
λi determine the relative importance of each term uiv

†
i .

The SVD is commonly used for compressing transmitted or stored im-
ages. In such cases, the rectangular matrix A is a discretized image. It
is not uncommon for many of the lowest singular values of A to be nearly
zero, and to be essentially insignificant in the reconstruction of A. Only
those terms in the SVD for which the singular values are significant need
to be transmitted or stored. The resulting images may be slightly blurred,
but can be restored later, as needed.

When the matrix A is a finite model of a linear imaging system, there
will necessarily be model error in th selection of A. Getting the dominant
terms in the SVD nearly correct is much more important (and usually much
easier) than getting the smaller ones correct. The problems arise when we
try to invert the system, to solve Ax = b for x.

17.1.2 The Inverse of Q = A†A

The inverse of Q can then be written

Q−1 = λ−1
1 u1u

†
1 + · · · + λ−1

I uIu
†
I ,

so that, with A†b = c, we have

xLS = λ−1
1 (u†

1c)u1 + · · · + λ−1
I (u†

Ic)uI .

Because the eigenvectors are orthogonal, we can express ||A†b||22 = ||c||22 as

||c||22 = |u†
1c|2 + · · · + |u†

Ic|2,

and ||xLS ||22 as

||xLS ||22 = λ−1
1 |u†

1c|2 + · · · + λ−1
I |u†

Ic|2.

It is not uncommon for the eigenvalues of Q to be quite distinct, with some
of them much larger than the others. When this is the case, we see that
||xLS ||2 can be much larger than ||c||2, because of the presence of the terms
involving the reciprocals of the small eigenvalues. When the measurements
b are essentially noise-free, we may have |u†

i c| relatively small, for the indices
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near I, keeping the product λ−1
i |u†

i c|2 reasonable in size, but when the b
becomes noisy, this may no longer be the case. The result is that those
terms corresponding to the reciprocals of the smallest eigenvalues dominate
the sum for xLS and the norm of xLS becomes quite large. The least-
squares solution we have computed is essentially all noise and useless.

In our discussion of the ART, we saw that when we impose a non-
negativity constraint on the solution, noise in the data can manifest itself
in a different way. When A has more columns than rows, but Ax = b has
no non-negative solution, then, at least for those A having the full-rank
property, the non-negatively constrained least-squares solution has at most
I − 1 non-zero entries. This happens also with the EMML and SMART
solutions. As with the ART, regularization can eliminate the problem.

17.1.3 Reducing the Sensitivity to Noise

As we just saw, the presence of small eigenvalues for Q and noise in b can
cause ||xLS ||2 to be much larger than ||A†b||2, with the result that xLS is
useless. In this case, even though xLS minimizes ||Ax − b||2, it does so by
overfitting to the noisy b. To reduce the sensitivity to noise and thereby
obtain a more useful approximate solution, we can regularize the problem.

It often happens in applications that, even when there is an exact so-
lution of Ax = b, noise in the vector b makes such as exact solution unde-
sirable; in such cases a regularized solution is usually used instead. Select
ε > 0 and a vector p that is a prior estimate of the desired solution. Define

Fε(x) = (1 − ε)‖Ax − b‖2
2 + ε‖x − p‖2

2. (17.1)

Exercise 17.1 Show that Fε always has a unique minimizer x̂ε, given by

x̂ε = ((1 − ε)A†A + εI)−1((1 − ε)A†b + εp);

this is a regularized solution of Ax = b. Here, A is a prior estimate of the
desired solution. Note that the inverse above always exists.

Note that, if p = 0, then

x̂ε = (A†A + γ2I)−1A†b, (17.2)

for γ2 = ε
1−ε . The regularized solution has been obtained by modifying

the formula for xLS , replacing the inverse of the matrix Q = A†A with
the inverse of Q + γ2I. When ε is near zero, so is γ2, and the matrices
Q and Q + γ2I are nearly equal. What is different is that the eigenvalues
of Q + γ2I are λi + γ2, so that, when the eigenvalues are inverted, the
reciprocal eigenvalues are no larger than 1/γ2, which prevents the norm of
xε from being too large, and decreases the sensitivity to noise.
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Exercise 17.2 Let ε be in (0, 1), and let I be the identity matrix whose
dimensions are understood from the context. Show that

((1 − ε)AA† + εI)−1A = A((1 − ε)A†A + εI)−1,

and, taking conjugate transposes,

A†((1 − ε)AA† + εI)−1 = ((1 − ε)A†A + εI)−1A†.

Hint: use the identity

A((1 − ε)A†A + εI) = ((1 − ε)AA† + εI)A.

Exercise 17.3 Show that any vector A in RJ can be written as A = A†q+
r, where Ar = 0.

What happens to x̂ε as ε goes to zero? This will depend on which case
we are in:

Case 1: N ≤ M, A†A is invertible; or

Case 2: N > M, AA† is invertible.

Exercise 17.4 Show that, in Case 1, taking limits as ε → 0 on both sides
of the expression for x̂ε gives x̂ε → (A†A)−1A†b, the least squares solution
of Ax = b.

We consider Case 2 now. Write A = A†q + r, with Ar = 0. Then

x̂ε = A†((1 − ε)AA† + εI)−1((1 − ε)b + εq) + ((1 − ε)A†A + εI)−1(εr).

Exercise 17.5 (a) Show that

((1 − ε)A†A + εI)−1(εr) = r,

for all ε ∈ (0, 1). (b) Now take the limit of x̂ε, as ε → 0, to get x̂ε →
A†(AA†)−1b + r. Show that this is the solution of Ax = b closest to A.
Hints: For part (a) let

tε = ((1 − ε)A†A + εI)−1(εr).

Then, multiplying by A gives

Atε = A((1 − ε)A†A + εI)−1(εr).

Now show that Atε = 0. For part (b) draw a diagram for the case of one
equation in two unknowns.
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17.2 Iterative Regularization in ART

It is often the case that the entries of the vector b in the system Ax = b
come from measurements, so are usually noisy. If the entries of b are noisy
but the system Ax = b remains consistent (which can easily happen in the
underdetermined case, with J > I), the ART begun at x0 = 0 converges
to the solution having minimum norm, but this norm can be quite large.
The resulting solution is probably useless. Instead of solving Ax = b, we
regularize by minimizing, for example, the function Fε(x) given in Equation
(17.1). For the case of p = 0, the solution to this problem is the vector x̂ε

in Equation (17.2). However, we do not want to calculate A†A + γ2I, in
order to solve

(A†A + γ2I)x = A†b,

when the matrix A is large. Fortunately, there are ways to find x̂ε, using
only the matrix A and the ART algorithm.

We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is presented in [34], while the second one is due
to Eggermont, Herman, and Lent [66].

In our first method we use ART to solve the system of equations given
in matrix form by

[A† γI ]

[

u
v

]

= 0.

We begin with u0 = b and v0 = 0.

Exercise 17.6 Show that the lower component of the limit vector is v∞ =
−γx̂ε.

The method of Eggermont et al. is similar. In their method we use
ART to solve the system of equations given in matrix form by

[A γI ]

[

x
v

]

= b.

We begin at x0 = 0 and v0 = 0.

Exercise 17.7 Show that the limit vector has for its upper component
x∞ = x̂ε as before, and that γv∞ = b − Ax̂ε.

17.3 A Bayesian View of Reconstruction

The EMML iterative algorithm maximizes the likelihood function for the
case in which the entries of the data vector b = (b1, ..., bI)

T are assumed
to be samples of independent Poisson random variables with mean val-
ues (Ax)i; here, A is an I by J matrix with nonnegative entries and
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x = (x1, ..., xJ)T is the vector of nonnegative parameters to be estimated.
Equivalently, it minimizes the Kullback-Leibler distance KL(b, Ax). This
situation arises in single photon emission tomography, where the bi are the
number of photons counted at each detector i, x is the vectorized image
to be reconstructed and its entries xj are (proportional to) the radionu-
clide intensity levels at each voxel j. When the signal-to-noise ratio is low,
which is almost always the case in medical applications, maximizing like-
lihood can lead to unacceptably noisy reconstructions, particularly when
J is larger than I. One way to remedy this problem is simply to halt the
EMML algorithm after a few iterations, to avoid over-fitting the x to the
noisy data. A more mathematically sophisticated remedy is to employ a
Bayesian approach and seek a maximum a posteriori (MAP) estimate of x.

In the Bayesian approach we view x as an instance of a random vector
having a probability density function f(x). Instead of maximizing the like-
lihood given the data, we now maximize the posterior likelihood, given both
the data and the prior distribution for x. This is equivalent to minimizing

F (x) = KL(b, Ax) − log f(x). (17.3)

The EMML algorithm is an example of an optimization method based on
alternating minimization of a function H(x, z) > 0 of two vector variables.
The alternating minimization works this way: let x and z be vector vari-
ables and H(x, z) > 0. If we fix z and minimize H(x, z) with respect to x,
we find that the solution is x = z, the vector we fixed; that is,

H(x, z) ≥ H(z, z)

always. If we fix x and minimize H(x, z) with respect to z, we get something
new; call it Tx. The EMML algorithm has the iterative step xk+1 = Txk.

Obviously, we can’t use an arbitrary function H; it must be related to
the function KL(b, Ax) that we wish to minimize, and we must be able to
obtain each intermediate optimizer in closed form. The clever step is to
select H(x, z) so that H(x, x) = KL(b, Ax), for any x. Now see what we
have so far:

KL(b, Axk) = H(xk, xk) ≥ H(xk, xk+1)

≥ H(xk+1, xk+1) = KL(b, Axk+1).

That tells us that the algorithm makes KL(b, Axk) decrease with each
iteration. The proof doesn’t stop here, but at least it is now plausible that
the EMML iteration could minimize KL(b, Ax).

The function H(x, z) used in the EMML case is the KL distance

H(x, z) = KL(r(x), q(z)) =

I
∑

i=1

J
∑

j=i

KL(r(x)ij , q(z)ij); (17.4)
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we define, for each nonnegative vector x for which (Ax)i =
∑J

j=1 Aijxj > 0,
the arrays r(x) = {r(x)ij} and q(x) = {q(x)ij} with entries

r(x)ij = xjAij
bi

(Ax)i

and
q(x)ij = xjAij .

With x = xk fixed, we minimize with respect to z to obtain the next
EMML iterate xk+1. Having selected the prior pdf f(x), we want an itera-
tive algorithm to minimize the function F (x) in Equation (17.3). It would
be a great help if we could mimic the alternating minimization formulation
and obtain xk+1 by minimizing

KL(r(xk), q(z)) − log f(z) (17.5)

with respect to z. Unfortunately, to be able to express each new xk+1 in
closed form, we need to choose f(x) carefully.

17.4 The Gamma Prior Distribution for x

In [94] Lange et al. suggest viewing the entries xj as samples of indepen-
dent gamma-distributed random variables. A gamma-distributed random
variable x takes positive values and has for its pdf the gamma distribution
defined for positive x by

γ(x) =
1

Γ(α)
(
α

β
)αxα−1e−αx/β ,

where α and β are positive parameters and Γ denotes the gamma function.
The mean of such a gamma-distributed random variable is then µ = β and
the variance is σ2 = β2/α.

Exercise 17.8 Show that if the entries zj of z are viewed as independent
and gamma-distributed with means µj and variances σ2

j , then minimizing
the function in line (17.5) with respect to z is equivalent to minimizing the
function

KL(r(xk), q(z)) +

J
∑

j=1

δjKL(γj , zj), (17.6)

for

δj =
µj

σ2
j

, γj =
µ2

j − σ2
j

µj
,
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under the assumption that the latter term is positive. Show further that the
resulting xk+1 has entries given in closed form by

xk+1
j =

δj

δj + sj
γj +

1

δj + sj
xk

j

I
∑

i=1

Aijbi/(Axk)i, (17.7)

where sj =
∑I

i=1 Aij.

We see from Equation (17.7) that the MAP iteration using the gamma
priors generates a sequence of estimates each entry of which is a convex
combination or weighted arithmetic mean of the result of one EMML step
and the prior estimate γj . Convergence of the resulting iterative sequence
is established in [94]; see also [20].

17.5 The One-Step-Late Alternative

It may well happen that we do not wish to use the gamma priors model
and prefer some other f(x). Because we will not be able to find a closed
form expression for the z minimizing the function in line (17.5), we need
some other way to proceed with the alternating minimization. Green [75]
has offered the one-step-late (OSL) alternative.

When we try to minimize the function in line (17.5) by setting the
gradient to zero we replace the variable z that occurs in the gradient of the
term − log f(z) with xk, the previously calculated iterate. Then, we can
solve for z in closed form to obtain the new xk+1. Unfortunately, negative
entries can result and convergence is not guaranteed. There is a sizable
literature on the use of MAP methods for this problem. In [29] an interior
point algorithm (IPA) is presented that avoids the OSL issue. In [105] the
IPA is used to regularize transmission tomographic images.

17.6 Regularizing the SMART

The SMART algorithm is not derived as a maximum likelihood method, so
regularized versions do not take the form of MAP algorithms. Neverthe-
less, in the presence of noisy data, the SMART algorithm suffers from the
same problem that afflicts the EMML, overfitting to noisy data resulting
in an unacceptably noisy image. As we saw earlier, there is a close con-
nection between the EMML and SMART algorithms. This suggests that a
regularization method for SMART can be developed along the lines of the
MAP with gamma priors used for EMML. Since the SMART is obtained by
minimizing the function KL(q(z), r(xk)) with respect to z to obtain xk+1,
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it seems reasonable to attempt to derive a regularized SMART iterative
scheme by minimizing

KL(q(z), r(xk)) +

J
∑

j=1

δjKL(zj , γj), (17.8)

for selected positive parameters δj and γj .

Exercise 17.9 Show that the zj minimizing the function in line (17.8)
can be expressed in closed form and that the resulting xk+1 has entries that
satisfy

log xk+1
j =

δj

δj + sj
log γj +

1

δj + sj
xk

j

I
∑

i=1

Aij log[bi/(Axk)i]. (17.9)

In [20] it was shown that this iterative sequence converges to a minimizer
of the function

KL(Ax, y) +

J
∑

j=1

δjKL(xj , γj).

It is useful to note that, although it may be possible to rederive this min-
imization problem within the framework of Bayesian MAP estimation by
carefully selecting a prior pdf for the vector x, we have not done so. The
MAP approach is a special case of regularization through the use of penalty
functions. These penalty functions need not arise through a Bayesian for-
mulation of the parameter-estimation problem.

17.7 De Pierro’s Surrogate-Function Method

In [59] De Pierro presents a modified EMML algorithm that includes reg-
ularization in the form of a penalty function. His objective is the same as
ours was in the case of regularized SMART: to embed the penalty term
in the alternating minimization framework in such a way as to make it
possible to obtain the next iterate in closed form. Because his surrogate
function method has been used subsequently by others to obtain penalized
likelihood algorithms [46], we consider his approach in some detail.

Let x and z be vector variables and H(x, z) > 0. Mimicking the be-
havior of the function H(x, z) used in Equation (17.4), we require that if
we fix z and minimize H(x, z) with respect to x, the solution should be
x = z, the vector we fixed; that is, H(x, z) ≥ H(z, z) always. If we fix
x and minimize H(x, z) with respect to z, we should get something new;
call it Tx. As with the EMML, the algorithm will have the iterative step
xk+1 = Txk.
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Summarizing, we see that we need a function H(x, z) with the properties
(1) H(x, z) ≥ H(z, z) for all x and z; (2) H(x, x) is the function F (x) we
wish to minimize; and (3) minimizing H(x, z) with respect to z for fixed x
is easy.

The function to be minimized is

F (x) = KL(b, Ax) + g(x),

where g(x) ≥ 0 is some penalty function. De Pierro uses penalty functions
g(x) of the form

g(x) =

p
∑

l=1

fl(〈sl, x〉 ).

Let us define the matrix S to have for its lth row the vector sT
l . Then

〈sl, x〉 = (Sx)l, the lth entry of the vector Sx. Therefore,

g(x) =

p
∑

l=1

fl((Sx)l).

Let λlj > 0 with
∑J

j=1 λlj = 1, for each l.
Assume that the functions fl are convex. Therefore, for each l, we have

fl((Sx)l) = fl(

J
∑

j=1

Sljxj) = fl(

J
∑

j=1

λlj(Slj/λlj)xj)

≤
J
∑

j=1

λljfl((Slj/λlj)xj).

Therefore,

g(x) ≤
p
∑

l=1

J
∑

j=1

λljfl((Slj/λlj)xj).

So we have replaced g(x) with a related function in which the xj occur
separately, rather than just in the combinations (Sx)l. But we aren’t quite
done yet.

We would like to take for De Pierro’s H(x, z) the function used in the
EMML algorithm, plus the function

p
∑

l=1

J
∑

j=1

λljfl((Slj/λlj)zj).

But there is one slight problem: we need H(z, z) = F (z), which we don’t
have yet. De Pierro’s clever trick is to replace fl((Slj/λlj)zj) with

fl((Slj/λlj)zj − (Slj/λlj)xj + (Sx)l).
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So, De Pierro’s function H(x, z) is the sum of the H(x, z) used in the
EMML case and the function

p
∑

l=1

J
∑

j=1

λljfl((Slj/λlj)zj − (Slj/λlj)xj + (Sx)l).

Now he has the three properties he needs. Once he has computed xk, he
minimizes H(xk, z) by taking the gradient and solving the equations for
the correct z = Txk = xk+1. For the choices of fl he discusses, these
intermediate calculations can either be done in closed form (the quadratic
case) or with a simple Newton-Raphson iteration (the logcosh case).

17.8 Block-Iterative Regularization

We saw previously that it is possible to obtain a regularized least-squares
solution x̂ε, and thereby avoid the limit cycle, using only the matrix A and
the ART algorithm. This prompts us to ask if it is possible to find regular-
ized SMART solutions using block-iterative variants of SMART. Similarly,
we wonder if it is possible to do the same for EMML.

Open Question: Can we use the MART to find the minimizer of the
function

KL(Ax, b) + εKL(x, p)?

More generally, can we obtain the minimizer using RBI-SMART?

Open Question: Can we use the RBI-EMML methods to obtain the
minimizer of the function

KL(b, Ax) + εKL(p, x)?

There have been various attempts to include regularization in block-
iterative methods, to reduce noise sensitivity and avoid limit cycles, but all
of these approaches have been ad hoc, with little or no theoretical basis.
Typically, they simply modify each iterative step by including an additional
term that appears to be related to the regularizing penalty function. The
case of the ART is instructive, however. In that case, we obtained the
desired iterative algorithm by using an augmented set of variables, not
simply by modifying each step of the original ART algorithm. How to do
this for the MART and the other block-iterative algorithms is not obvious.

Recall that the RAMLA method in Equation (16.18) is similar to the
RBI-EMML algorithm, but employs a sequence of decreasing relaxation
parameters, which, if properly chosen, will cause the iterates to converge
to the minimizer of KL(b, Ax), thereby avoiding the limit cycle. In [61]
RAMLA is extended to a regularized version, but with no guarantee of
convergence.
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Chapter 18

Feedback in
Block-Iterative
Reconstruction

When the nonnegative system of linear equations Ax = b has no nonnega-
tive solutions we say that we are in the inconsistent case. In this case the
SMART and EMML algorithms still converge, to a nonnegative minimizer
of KL(Ax, b) and KL(b, Ax), respectively. On the other hand, the rescaled
block-iterative versions of these algorithms, RBI-SMART and RBI-EMML,
do not converge. Instead they exhibit cyclic subsequential convergence; for
each fixed n = 1, ..., N , with N the number of blocks, the subsequence
{xmN+n} converges to their own limits. These limit vectors then consti-
tute the limit cycle (LC). The LC for RBI-SMART is not the same as for
RBI-EMML, generally, and the LC varies with the choice of blocks. Our
problem is to find a way to calculate the SMART and EMML limit vec-
tors using the RBI methods. More specifically, how can we calculate the
SMART and EMML limit vectors from their associated RBI limit cycles?

As is often the case with the algorithms based on the KL distance, we
can turn to the ART algorithm for guidance. What happens with the ART
algorithm in the inconsistent case is often closely related to what happens
with RBI-SMART and RBI-EMML, although proofs for the latter methods
are more difficult to obtain. For example, when the system Ax = b has no
solution we can prove that ART exhibits cyclic subsequential convergence
to a limit cycle. The same behavior is seen with the RBI methods, but no
one knows how to prove this. When the system Ax = b has no solution
we usually want to calculate the least squares (LS) approximate solution.
The problem then is to use the ART to find the LS solution. There are
several ways to do this, as discussed in [24, 34]. We would like to be able
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to borrow some of these methods and apply them to the RBI problem. In
this section we focus on one specific method that works for ART and we
try to make it work for RBI; it is the feedback approach.

18.1 Feedback in ART

Suppose that the system Ax = b has no solution. We apply the ART and
get the limit cycle {z1, z2, ..., zI}, where I is the number of equations and
z0 = zI . We assume that the rows of A have been normalized so that their
lengths are equal to one. Then the ART iterative step gives

zi
j = zi−1

j + Aij(bi − (Azi−1)j)

or
zi
j − zi−1

j = Aij(bi − (Azi−1)j).

Summing over the index i and using z0 = zI we obtain zero on the left
side, for each j. Consequently A†b = A†c, where c is the vector with entries
ci = (Azi−1)i. It follows that the systems Ax = b and Ax = c have the
same LS solutions and that it may help to use both b and c to find the LS
solution from the limit cycle. The article [24] contains several results along
these lines. One approach is to apply the ART again to the system Ax = c,
obtaining a new LC and a new candidate for the right side of the system
of equations. If we repeat this feedback procedure, each time using the
LC to define a new right side vector, does it help us find the LS solution?
Yes, as Theorem 4 of [24] shows. Our goal in this section is to explore the
possibility of using the same sort of feedback in the RBI methods. Some
results in this direction are in [24]; we review those now.

18.2 Feedback in RBI methods

One issue that makes the KL methods more complicated than the ART is
the support of the limit vectors, meaning the set of indices j for which the
entries of the vector are positive. In [20] it was shown that when the system
Ax = b has no nonnegative solutions and A has the full rank property there
is a subset S of {j = 1, ..., J} with cardinality at most I−1, such that every
nonnegative minimizer of KL(Ax, b) has zero for its j-th entry whenever j
is not in S. It follows that the minimizer is unique. The same result holds
for the EMML, although it has not been proven that the set S is the same
set as in the SMART case. The same result holds for the vectors of the LC
for both RBI-SMART and RBI-EMML.

A simple, yet helpful, example to refer to as we proceed is the following.

A =

[

1 .5
0 .5

]

, b =

[

.5
1

]

.
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There is no nonnegative solution to this system of equations and the sup-
port set S for SMART, EMML and the RBI methods is S = {j = 2}.

18.2.1 The RBI-SMART

Our analysis of the SMART and EMML methods has shown that the the-
ory for SMART is somewhat nicer than that for EMML and the resulting
theorems for SMART are a bit stronger. The same is true for RBI-SMART,
compared to RBI-EMML. For that reason we begin with RBI-SMART.

Recall that the iterative step for RBI-SMART is

xk+1
j = xk

j exp(m−1
n s−1

j

∑

i∈Bn

Aij log(bi/(Axk)i)),

where n = k(modN) + 1, sj =
∑I

i=1 Aij , snj =
∑

i∈Bn
Aij and mn =

max{snj/sj , j = 1, ..., J}.
For each n let

Gn(x, z) =

J
∑

j=1

sjKL(xj , zj) − m−1
n

∑

i∈Bn

KL((Ax)i, (Az)i) + m−1
n

∑

i∈Bn

KL((Ax)i, bi).

Exercise 18.1 Show that

J
∑

j=1

sjKL(xj , zj) − m−1
n

∑

i∈Bn

KL((Ax)i, (Az)i) ≥ 0,

so that Gn(x, z) ≥ 0.

Exercise 18.2 Show that

Gn(x, z) = Gn(z′, z) +

J
∑

j=1

sjKL(xj , z
′
j),

where
z′
j = zj exp(m−1

n s−1
j

∑

i∈Bn

Aij log(bi/(Az)i).

We assume that there are no nonnegative solutions to the nonnegative sys-
tem Ax = b. We apply the RBI-SMART and get the limit cycle {z1, ..., zN},
where N is the number of blocks. We also let z0 = zN and for each i let
ci = (Azn−1)i where i ∈ Bn, the n-th block. Prompted by what we learned
concerning the ART, we ask if the nonnegative minimizers of KL(Ax, b)
and KL(Ax, c) are the same. This would be the correct question to ask if
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we were using the slower unrescaled block-iterative SMART, in which the
mn are replaced by one. For the rescaled case it turns out that the proper
question to ask is: Are the nonnegative minimizers of the functions

N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, bi)

and
N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, ci)

the same? The answer is ”Yes, probably.” The difficulty has to do with
the support of these minimizers; specifically: Are the supports of both
minimizers the same as the support of the LC vectors? If so, then we can
prove that the two minimizers are identical. This is our motivation for the
feedback approach.

The feedback approach is the following: beginning with b0 = b we apply
the RBI-SMART and obtain the LC, from which we extract the vector c,
which we also call c0. We then let b1 = c0 and apply the RBI-SMART to
the system b1 = Ax. From the resulting LC we extract c1 = b2, and so on.
In this way we obtain an infinite sequence of data vectors {bk}. We denote
by {zk,1, ..., zk,N} the LC we obtain from the system bk = Ax, so that

bk+1
i = (Azk,n)i, for i ∈ Bn.

One issue we must confront is how we use the support sets. At the first step
of feedback we apply RBI-SMART to the system b = b0 = Ax, beginning
with a positive vector x0. The resulting limit cycle vectors are supported
on a set S0 with cardinality less than I. At the next step we apply the
RBI-SMART to the system b1 = Ax. Should we begin with a positive
vector (not necessarily the same x0 as before) or should our starting vector
be supported on S0?

Exercise 18.3 Show that the RBI-SMART sequence {xk} is bounded. Hints:
For each j let Mj = max{bi/Aij , |Aij > 0} and let Cj = max{x0

j , Mj}.
Show that xk

j ≤ Cj for all k.

Exercise 18.4 Let S be the support of the LC vectors. Show that

N
∑

n=1

m−1
n

∑

i∈Bn

Aij log(bi/ci) ≤ 0 (18.1)

for all j, with equality for those j ∈ S. Conclude from this that

N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, bi) −
N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, ci) ≥
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N
∑

n=1

m−1
n

∑

i∈Bn

(bi − ci),

with equality if the support of the vector x lies within the set S. Hints: For
j ∈ S consider log(zn

j /zn−1
j ) and sum over the index n, using the fact that

zN = z0. For general j assume there is a j for which the inequality does
not hold. Show that there is M and ε > 0 such that for m ≥ M

log(x
(m+1)N
j /xmN

j ) ≥ ε.

Conclude that the sequence {xmN
j } is unbounded.

Exercise 18.5 Show that

N
∑

n=1

Gn(zk,n, zk,n−1) =

N
∑

n=1

m−1
n

∑

i∈Bn

(bk
i − bk+1

i ),

and conclude that the sequence {∑N
n=1 m−1

n (
∑

i∈Bn
bk
i )} is decreasing and

that the sequence {∑N
n=1 Gn(zk,n, zk,n−1)} → 0 as k → ∞. Hints: Calcu-

late Gn(zk,n, zk,n−1) using Exercise (18.2).

Exercise 18.6 Show that for all vectors x ≥ 0 the sequence

{
N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, b
k
i )}

is decreasing and the sequence

N
∑

n=1

m−1
n

∑

i∈Bn

(bk
i − bk+1

i ) → 0,

as k → ∞. Hints: Calculate

{
N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, b
k
i )} − {

N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, b
k+1
i )}

and use the previous exercise.

Exercise 18.7 Extend the boundedness result obtained earlier to conclude
that for each fixed n the sequence {zk,n} is bounded.

Since the sequence {zk,0} is bounded there is a subsequence {zkt,0}
converging to a limit vector z∗,0. Since the sequence {zkt,1} is bounded
there is subsequence converging to some vector z∗,1. Proceeding in this
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way we find subsequences {zkm,n} converging to z∗,n for each fixed n. Our
goal is to show that, with certain restrictions on A, z∗,n = z∗ for each
n. We then show that the sequence {bk} converges to Az∗ and that z∗

minimizes
N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, bi).

It follows from Exercise (18.5) that

{
N
∑

n=1

Gn(z∗,n, z∗,n−1)} = 0.

Exercise 18.8 Find suitable restrictions on the matrix A that permit us
to conclude from above that z∗,n = z∗,n−1 = z∗ for each n.

Exercise 18.9 Show that the sequence {bk} converges to Az∗. Hints:

Since the sequence {∑N
n=1 m−1

n

∑

i∈Bn
KL((Az∗)i, b

k
i )} is decreasing and a

subsequence converges to zero, it follows that the whole sequence converges
to zero.

Exercise 18.10 Use Exercise (18.4) to obtain conditions that permit us
to conclude that the vector z∗ is a nonnegative minimizer of the function

N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, bi).

18.2.2 The RBI-EMML

We turn now to the RBI-EMML method, having the iterative step

xk+1
j = (1 − m−1

n s−1
j snj)x

k
j + m−1

n s−1
j xk

j

∑

i∈Bn

Aijbi/(Axk)i,

with n = k(modN) + 1. As we warned earlier, developing the theory for
feedback with respect to the RBI-EMML algorithm appears to be more
difficult than in the RBI-SMART case.

Applying the RBI-EMML algorithm to the system of equations Ax = b
having no nonnegative solution, we obtain the LC {z1, ..., zN}. As before,
for each i we let ci = (Azn−1)i where i ∈ Bn. There is a subset S of
{j = 1, ..., J} with cardinality less than I such that for all n we have
zn
j = 0 if j is not in S.

The first question that we ask is: Are the nonnegative minimizers of
the functions

N
∑

n=1

m−1
n

∑

i∈Bn

KL(bi, (Ax)i)
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and
N
∑

n=1

m−1
n

∑

i∈Bn

KL(ci, (Ax)i)

the same?
As before, the feedback approach involves setting b0 = b, c0 = c = b1

and for each k defining bk+1 = ck, where ck is extracted from the limit
cycle

LC(k) = {zk,1, ..., zk,N = zk,0}
obtained from the system bk = Ax as ck

i = (Azk,n−1)i where n is such
that i ∈ Bn. Again, we must confront the issue of how we use the support
sets. At the first step of feedback we apply RBI-EMML to the system
b = b0 = Ax, beginning with a positive vector x0. The resulting limit cycle
vectors are supported on a set S0 with cardinality less than I. At the next
step we apply the RBI-EMML to the system b1 = Ax. Should we begin
with a positive vector (not necessarily the same x0 as before) or should our
starting vector be supported on S0? One approach could be to assume first
that J < I and that S = {j = 1, ..., J} always and then see what can be
discovered.

Our conjectures, subject to restrictions involving the support sets, are
as follows:
1: The sequence {bk} converges to a limit vector b∞;
2: The system b∞ = Ax has a nonnegative solution, say x∞;
3: The LC obtained for each k converge to the singleton x∞;
4: The vector x∞ minimizes the function

N
∑

n=1

m−1
n

∑

i∈Bn

KL(bi, (Ax)i)

over nonnegative x.
Some results concerning feedback for RBI-EMML were presented in

[24]. We sketch those results now.

Exercise 18.11 Show that the quantity

N
∑

n=1

m−1
n

∑

i∈Bn

bk
i

is the same for k = 0, 1, .... Hints: Show that

J
∑

j=1

sj

N
∑

n=1

(zk,n
j − zk,n−1

j ) = 0

and rewrite it in terms of bk and bk+1.
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Exercise 18.12 Show that there is a constant B > 0 such that zk,n
j ≤ B

for all k, n and j.

Exercise 18.13 Show that

sj log(zk,n−1
j /zk,n

j ) ≤ m−1
n

∑

i∈Bn

Aij log(bk+1
i /bk

i ).

Hints: Use the convexity of the log function and the fact that the terms
1 − m−1

n snj and m−1
n Aij , i ∈ Bn sum to one.

Exercise 18.14 Use the previous exercise to prove that the sequence

{
N
∑

n=1

m−1
n

∑

i∈Bn

KL((Ax)i, b
k
i )}

is decreasing for each nonnegative vector x and the sequence

{
N
∑

n=1

m−1
n

∑

i∈Bn

Aij log(bk
i )}

is increasing.
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Chapter 19

Iterative Optimization

Optimization means finding a maximum or minimum value of a real-valued
function of one or several variables. Constrained optimization means that
the acceptable solutions must satisfy some additional restrictions, such as
being nonnegative. Even if we know equations that optimal points must
satisfy, solving these equations is often difficult and usually cannot be done
algebraically. In this chapter we sketch the conditions that must hold in
order for a point to be an optimum point, and then use those conditions
to motivate iterative algorithms for finding the optimum points. We shall
consider only minimization problems, since any maximization problem can
be converted into a minimization problem by changing the sign of the
function involved.

19.1 Functions of a Single Real Variable

If f(x) is a continuous, real-valued function of a real variable x and we
want to find an x for which the function takes on its minimum value, then
we need only examine those places where the derivative, f ′(x), is zero,
and those places where f ′(x) does not exist; of course, without further
assumptions, there is no guarantee that a minimum exists. Therefore, if
f(x) is differentiable at all x, and if its minimum value occurs at x∗, then
f ′(x∗) = 0. If the problem is a constrained minimization, that is, if the
allowable x lie within some interval, say, [a, b], then we must also examine
the end-points, x = a and x = b. If the constrained minimum occurs at
x∗ = a and f ′(a) exists, then f ′(a) need not be zero; however, we must
have f ′(a) ≥ 0, since, if f ′(a) < 0, we could select x = c slightly to the
right of x = a with f(c) < f(a). Similarly, if the minimum occurs at
x = b, and f ′(b) exists, we must have f ′(b) ≤ 0. We can combine these
end-point conditions by saying that if the minimum occurs at one of the
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two end-points, moving away from the minimizing point into the interval
[a, b] cannot result in the function growing smaller. For functions of several
variables similar conditions hold, involving the partial derivatives of the
function.

19.2 Functions of Several Real Variables

Suppose, from now on, that f(x) = f(x1, ..., xN ) is a continuous, real-
valued function of the N real variables x1, ..., xN and that x = (x1, ..., xN )T

is the column vector of unknowns, lying in the N -dimensional space RN .
When the problem is to find a minimum (or a maximum) of f(x), we call
f(x) the objective function. As in the case of one variable, without addi-
tional assumptions, there is no guarantee that a minimum (or a maximum)
exists.

19.2.1 Cauchy’s Inequality for the Dot Product

For any two vectors v and w in RN the dot product is defined to be

v · w =

N
∑

n=1

vnwn.

Cauchy’s inequality tells us that |v · w| ≤ ||v||2||w||2, with equality if and
only if w = αv for some real number α. In the multi-variable case we speak
of the derivative of a function at a point, in the direction of a given vector;
these are the directional derivatives and their definition involves the dot
product.

19.2.2 Directional Derivatives

If ∂f
∂xn

(z), the partial derivative of f , with respect to the variable xn, at

the point z, is defined for all z, and u = (u1, ..., uN )T is a vector of length
one, that is, its norm,

||u||2 =
√

u2
1 + ... + u2

N ,

equals one, then the derivative of f(x), at a point x = z, in the direction
of u, is

∂f

∂x1
(z)u1 + ... +

∂f

∂xN
(z)uN .

Notice that this directional derivative is the dot product of u with the
gradient of f(x) at x = z, defined by

∇f(z) = (
∂f

∂x1
(z), ...,

∂f

∂xN
(z))T .
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According to Cauchy’s inequality, the dot product ∇f(z) · u will take on
its maximum value when u is a positive multiple of ∇f(z), and therefore,
its minimum value when u is a negative multiple of ∇f(z). Consequently,
the gradient of f(x) at x = z points in the direction, from x = z, of
the greatest increase in the function f(x). This suggests that, if we are
trying to minimize f(x), and we are currently at x = z, we should consider
moving in the direction of −∇f(z); this leads to Cauchy’s iterative method
of steepest descent, which we shall discuss in more detail later.

If the minimum value of f(x) occurs at x = x∗, then either all the
directional derivatives are zero at x = x∗, in which case ∇f(z) = 0, or at
least one directional derivative does not exist. But, what happens when
the problem is a constrained minimization?

19.2.3 Constrained Minimization

Unlike the single-variable case, in which constraining the variable simply
meant requiring that it lie within some interval, in the multi-variable case
constraints can take many forms. For example, we can require that each
of the entries xn be nonnegative, or that each xn lie within an interval
[an, bn] that depends on n, or that the norm of x, defined by ||x||2 =
√

x2
1 + ... + x2

N , which measures the distance from x to the origin, does
not exceed some bound. In fact, for any set C in N -dimensional space, we
can pose the problem of minimizing f(x), subject to the restriction that x
be a member of the set C. In place of end-points, we have what are called
�boundary-points of C, which are those points in C that are not entirely
surrounded by other points in C. For example, in the one-dimensional
case, the points x = a and x = b are the boundary-points of the set
C = [a, b]. If C = RN

+ is the subset of N -dimensional space consisting of
all the vectors x whose entries are nonnegative, then the boundary-points
of C are all nonnegative vectors x having at least one zero entry.

Suppose that C is arbitrary in RN and the point x = x∗ is the solution
to the problem of minimizing f(x) over all x in the set C. Assume also
that all the directional derivatives of f(x) exist at each x. If x∗ is not a
boundary-point of C, then all the directional derivatives of f(x), at the
point x = x∗, must be nonnegative, in which case they must all be zero,
so that we must have ∇f(z) = 0. On the other hand, speaking somewhat
loosely, if x∗ is a boundary-point of C, then it is necessary only that the
directional derivatives of f(x), at the point x = x∗, in directions that point
back into the set C, be nonnegative.

19.2.4 An Example

To illustrate these concepts, consider the problem of minimizing the func-
tion of two variables, f(x1, x2) = x1 + 3x2, subject to the constraint that
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x = (x1, x2) lie within the unit ball C = {x = (x1, x2)|x2
1 + x2

2 ≤ 1}.
With the help of simple diagrams we discover that the minimizing point
x∗ = (x∗

1, x
∗
2) is a boundary-point of C, and that the line x1+3x2 = x∗

1+3x∗
2

is tangent to the unit circle at x∗. The gradient of f(x), at x = z, is
∇f(z) = (1, 3)T , for all z, and is perpendicular to this tangent line. But,
since the point x∗ lies on the unit circle, the vector (x∗

1, x
∗
2)

T is also per-
pendicular to the line tangent to the circle at x∗. Consequently, we know
that (x∗

1, x
∗
2)

T = α(1, 3)T , for some real α. From x2
1 + x2

2 = 1, it follows
that |α| =

√
10. This gives us two choices for x∗: either x∗ = (

√
10, 3

√
10),

or x∗ = (−
√

10,−3
√

10). Evaluating f(x) at both points reveals that f(x)
attains its maximum at the first, and its minimum at the second.

Every direction vector u can be written in the form u = β(1, 3)T +
γ(−3, 1)T , for some β and γ. The directional derivative of f(x), at x = x∗,
in any direction that points from x = x∗ back into C, must be nonnega-
tive. Such directions must have a nonnegative dot product with the vector
(−x∗

1,−x∗
2)

T , which tells us that

0 ≤ β(1, 3)T · (−x∗
1,−x∗

2)
T + γ(−3, 1)T · (−x∗

1, x
∗
2)

T ,

or

0 ≤ (3γ − β)x∗
1 + (−3β − γ)x∗

2.

Consequently, the gradient (1, 3)T must have a nonnegative dot product
with every direction vector u that has a nonnegative dot product with
(−x∗

1,−x∗
2)

T . For the dot product of (1, 3)T with any u to be nonnegative
we need β ≥ 0. So we conclude that β ≥ 0 for all β and γ for which

0 ≤ (3γ − β)x∗
1 + (−3β − γ)x∗

2.

Saying this another way, if β < 0 then

(3γ − β)x∗
1 + (−3β − γ)x∗

2 < 0,

for all γ. Taking the limit, as β → 0 from the left, it follows that

3γx∗
1 − γx∗

2 ≤ 0,

for all γ. The only way this can happen is if 3x∗
1 − x∗

2 = 0. Therefore,
our optimum point must satisfy the equation x∗

2 = 3x∗
1, which is what we

found previously.

We have just seen the conditions necessary for x∗ to minimize f(x),
subject to constraints, be used to determine the point x∗ algebraically.
In more complicated problems we will not be able to solve for x∗ merely
by performing simple algebra. But we may still be able to find x∗ using
iterative optimization methods.
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19.3 Gradient Descent Optimization

Suppose that we want to minimize f(x), over all x, without constraints.
Begin with an arbitrary initial guess, x = x0. Having proceeded to xk, we
show how to move to xk+1. At the point x = xk, the direction of greatest
rate of decrease of f(x) is u = −∇f(xk). Therefore, it makes sense to move
from xk in the direction of −∇f(xk), and to continue in that direction until
the function stops decreasing. In other words, we let

xk+1 = xk − αk∇f(xk),

where αk ≥ 0 is the step size, determined by the condition

f(xk − αk∇f(xk)) ≤ f(xk − α∇f(xk)),

for all α ≥ 0. This iterative procedure is Cauchy’s steepest descent method.
To establish the convergence of this algorithm to a solution requires ad-
ditional restrictions on the function f ; we shall not consider these issues
further. Our purpose here is merely to illustrate an iterative minimization
philosophy that we shall recall in various contexts.

If the problem is a constrained minimization, then we must proceed
more carefully. One method, known as interior-point iteration, begins with
x0 within the constraint set C and each subsequent step is designed to pro-
duce another member of C; if the algorithm converges, the limit is then
guaranteed to be in C. For example, if C = RN

+ , the nonnegative cone
in RN , we could modify the steepest descent method so that, first, x0 is
a nonnegative vector, and second, the step from xk in C is restricted so
that we stop before xk+1 ceases to be nonnegative. A somewhat different
modification of the steepest descent method would be to take the full step
from xk to xk+1, but then to take as the true xk+1 that vector in C nearest
to what would have been xk+1, according to the original steepest descent
algorithm; this new iterative scheme is the projected steepest descent al-
gorithm. It is not necessary, of course, that every intermediate vector xk

be in C; all we want is that the limit be in C. However, in applications,
iterative methods must always be stopped before reaching their limit point,
so, if we must have a member of C for our (approximate) answer, then we
would need xk in C when we stop the iteration.

19.4 The Newton-Raphson Approach

The Newton-Raphson approach to minimizing a real-valued function f :
RJ → R involves finding x∗ such that ∇f(x∗) = 0.
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19.4.1 Functions of a Single Variable

We begin with the problem of finding a root of a function g : R → R. If x0

is not a root, compute the line tangent to the graph of g at x = x0 and let
x1 be the point at which this line intersects the horizontal axis; that is,

x1 = x0 − g(x0)/g′(x0).

Continuing in this fashion, we have

xk+1 = xk − g(xk)/g′(xk).

This is the Newton-Raphson algorithm for finding roots. Convergence,
when it occurs, is more rapid than gradient descent, but requires that
x0 be sufficiently close to the solution.

Now suppose that f : R → R is a real-valued function that we wish
to minimize by solving f ′(x) = 0. Letting g(x) = f ′(x) and applying the
Newton-Raphson algorithm to g(x) gives the iterative step

xk+1 = xk − f ′(xk)/f ′′(xk).

This is the Newton-Raphson optimization algorithm. Now we extend these
results to functions of several variables.

19.4.2 Functions of Several Variables

The Newton-Raphson algorithm for finding roots of functions g : RJ → RJ

has the iterative step

xk+1 = xk − [J (g)(xk)]−1g(xk),

where J (g)(x) is the Jacobian matrix of first partial derivatives, ∂gm

∂xj
(xk),

for g(x) = (g1(x), ..., gJ(x))T .
To minimize a function f : RJ → R, we let g(x) = ∇f(x) and find a

root of g. Then the Newton-Raphson iterative step becomes

xk+1 = xk − [∇2f(xk)]−1∇f(xk),

where ∇2f(x) = J (g)(x) is the Hessian matrix of second partial derivatives
of f .

19.5 Other Approaches

Choosing the negative of the gradient as the next direction makes good
sense in minimization problems, but it is not the only, or even the best, way
to proceed. For least squares problems the method of conjugate directions
is a popular choice (see [34]). Other modifications of the gradient can also
be used, as, for example, in the EMML algorithm.



Chapter 20

Convex Sets and Convex
Functions

In this chapter we consider several algorithms pertaining to convex sets and
convex functions, whose convergence is a consequence of the KM theorem.

20.1 Optimizing Functions of a Single Real
Variable

Let f : R → R be a differentiable function. From the Mean-Value Theorem
we know that

f(b) = f(a) + f ′(c)(b − a),

for some c between a and b. If there is a constant L with |f ′(x)| ≤ L for
all x, that is, the derivative is bounded, then we have

|f(b) − f(a)| ≤ L|b − a|, (20.1)

for all a and b; functions that satisfy Equation (20.1) are said to be L-
Lipschitz.

Suppose g : R → R is differentiable and attains its minimum value. We
want to minimize the function g(x). Solving g′(x) = 0 to find the optimal
x = x∗ may not be easy, so we may turn to an iterative algorithm for
finding roots of g′(x), or one that minimizes g(x) directly. In the latter
case, we may consider a steepest descent algorithm of the form

xk+1 = xk − γg′(xk),

for some γ > 0. We denote by T the operator

Tx = x − γg′(x).

157
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Then, using g′(x∗) = 0, we find that

|x∗ − xk+1| = |Tx∗ − Txk|.

We would like to know if there are choices for γ that make T an av operator.
For functions g(x) that are convex, the answer is yes.

20.1.1 The Convex Case

The function g(x) is said to be convex if, for each pair of distinct real
numbers a and b and for every α in the interval (0, 1), we have

g((1 − α)a + αb) ≤ (1 − α)g(a) + αg(b).

If g(x) is a differentiable function, then convexity can be expressed in terms
of properties of the derivative, g′(x).

Theorem 20.1 For the differentiable function g(x), the following are equiv-
alent:
1) g(x) is convex;
2) for all a and b we have

g(b) ≥ g(a) + g′(a)(b − a); (20.2)

3) the derivative, g′(x), is an increasing function, or, equivalently,

(g′(b) − g′(a))(b − a) ≥ 0, (20.3)

for all a and b.

Proof of the Theorem: Assume that g(x) is convex. Then, for any a
and b and α in (0, 1), we have

g(a + α(b − a)) = g((1 − α)a + αb) ≤ (1 − α)g(a) + αg(b).

Then,

[g(a + α(b − a)) − g(a)]/[α(b − a)] ≤ [g(b) − g(a)]/[b − a].

The limit on the left, as α → 0, is g′(a). It follows that

g′(a) ≤ [g(b) − g(a)]/[b − a],

which is Inequality (20.2).
Assume now that Inequality (20.2) holds, for all a and b. Therefore, we

also have
g(a) − g(b) ≥ g′(b)(a − b),
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or

g(a) − g(b) ≥ −g′(b)(b − a). (20.4)

Adding Inequalities (20.3) and (20.4), we obtain

0 ≥ (g′(a) − g′(b))(b − a),

from which we easily conclude that g′(x) is increasing.
Finally, assume that g′(x) is an increasing function, so that Inequality

(20.3) holds. We show that g(x) is convex. Let a < b and let f(α) be
defined by

f(α) = [(1 − α)g(a) + αg(b)] − g((1 − α)a + αb).

Then f(0) = f(1) = 0, and

f ′(α) = g(b) − g(a) − g′((1 − α)a + αb)(b − a). (20.5)

If f(α) < 0 for some α, then there must be a minimum at α = α̂ with
f ′(α̂) = 0. But, if f(α) had a relative minimum, then f ′(α) would be
increasing nearby. We conclude by showing that the function

g′((1 − α)a + αb)(b − a)

is an increasing function of α. To see this, note that, for β > α,

(β − α)[g′((1 − β)a + βb) − g′((1 − α)a + αb)(b − a)

= [g′((1 − β)a + βb) − g′((1 − α)a + αb)][((1 − β)a + βb) − ((1 − α)a + αb)],

which is non-negative, according to Inequality (20.3). It follows that f ′(α)
is a decreasing function of α, so cannot have a relative minimum. This
concludes the proof.

Theorem 20.2 If g(x) is twice differentiable and g′′(x) ≥ 0 for all x, then
g(x) is convex.

Proof: We have g′′(x) ≥ 0 for all x, so that

f ′′(α) = −g′′((1 − α)a + αb)(b − a)2 ≤ 0,

where f(α) is as in the proof of the previous theorem. Therefore f(α)
cannot have a relative minimum. This completes the proof.

Suppose that g(x) is convex and the function f(x) = g′(x) is L-Lipschitz.
If g(x) is twice differentiable, this would be the case if

0 ≤ g′′(x) ≤ L,

for all x. As we shall see, if γ is in the interval (0, 2
L ), then T is an av

operator and the iterative sequence converges to a minimizer of g(x). In
this regard, we have the following result.
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Theorem 20.3 Let h(x) be convex and differentiable and h′(x) non-expansive,
that is,

|h′(b) − h′(a)| ≤ |b − a|,
for all a and b. Then h′(x) is firmly non-expansive, which means that

(h′(b) − h′(a))(b − a) ≥ (h′(b) − h′(a))2.

Proof: Since h(x) is convex and differentiable, the derivative, h′(x), must
be increasing. Therefore, if b > a, then |b − a| = b − a and

|h′(b) − h(a)| = h′(b) − h′(a).

If g(x) is convex and f(x) = g′(x) is L-Lipschitz, then 1
Lg′(x) is ne, so

that 1
Lg′(x) is fne and g′(x) is 1

L -ism. Then, for γ > 0, γg′(x) is 1
γL -ism,

which tells us that the operator

Tx = x − γg′(x)

is av whenever 0 < γ < 2
L . It follows from the KM Theorem that the

iterative sequence xk+1 = Txk = xk − γg′(xk) converges to a minimizer of
g(x).

In the next section we extend these results to functions of several vari-
ables.

20.2 Optimizing Functions of Several Real Vari-
ables

Let f : RJ → R be a real-valued function of J real variables. The function
f(x) is said to be differentiable at the point x0 if the partial derivatives,
∂f
∂xj

(x0), exist for j = 1, ..., J and

lim
h→0

1

||h||2
[f(x0 + h) − f(x0) − 〈∇f(x0), h〉] = 0.

It can be shown that, if f is differentiable at x = x0, then f is continuous
there as well [70].

Let f : RJ → R be a differentiable function. From the Mean-Value
Theorem ([70], p. 41) we know that, for any two points a and b, there is α
in (0, 1) such that

f(b) = f(a) + 〈∇f((1 − α)a + αb), b − a〉.
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If there is a constant L with ||∇f(x)||2 ≤ L for all x, that is, the gradient
is bounded in norm, then we have

|f(b) − f(a)| ≤ L||b − a||2, (20.6)

for all a and b; functions that satisfy Equation (20.6) are said to be L-
Lipschitz.

In addition to real-valued functions f : RJ → R, we shall also be
interested in functions F : RJ → RJ , such as F (x) = ∇f(x), whose range
is RJ , not R. We say that F : RJ → RJ is L-Lipschitz if there is L > 0
such that

||F (b) − F (a)||2 ≤ L||b − a||2,
for all a and b.

Suppose g : RJ → R is differentiable and attains its minimum value.
We want to minimize the function g(x). Solving ∇g(x) = 0 to find the
optimal x = x∗ may not be easy, so we may turn to an iterative algorithm
for finding roots of ∇g(x), or one that minimizes g(x) directly. In the latter
case, we may again consider a steepest descent algorithm of the form

xk+1 = xk − γ∇g(xk),

for some γ > 0. We denote by T the operator

Tx = x − γ∇g(x).

Then, using ∇g(x∗) = 0, we find that

||x∗ − xk+1||2 = ||Tx∗ − Txk||2.

We would like to know if there are choices for γ that make T an av operator.
As in the case of functions of a single variable, for functions g(x) that are
convex, the answer is yes.

20.2.1 The Convex Case

The function g(x) : RJ → R is said to be convex if, for each pair of distinct
vectors a and b and for every α in the interval (0, 1) we have

g((1 − α)a + αb) ≤ (1 − α)g(a) + αg(b).

If g(x) is a differentiable function, then convexity can be expressed in terms
of properties of the derivative, ∇g(x).

Theorem 20.4 For the differentiable function g(x), the following are equiv-
alent:
1) g(x) is convex;
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2) for all a and b we have

g(b) ≥ g(a) + 〈∇g(a), b − a〉 ; (20.7)

3) for all a and b we have

〈∇g(b) − ∇g(a), b − a〉 ≥ 0. (20.8)

Proof: Assume that g(x) is convex. Then, for any a and b and α in (0, 1),
we have

g(a + α(b − a)) = g((1 − α)a + αb) ≤ (1 − α)g(a) + αg(b).

Then,

g(a + α(b − a)) − g(a) ≤ g(b) − g(a).

The limit on the left, as α → 0, is

〈∇g(a), b − a〉.

It follows that

〈∇g(a), b − a〉 ≤ g(b) − g(a).

which is Inequality (20.7).
Assume now that Inequality (20.7) holds, for all a and b. Therefore, we

also have

g(a) − g(b) ≥ 〈∇g(b), a − b〉,
or

g(a) − g(b) ≥ −〈∇g(b), b − a〉. (20.9)

Adding Inequalities (20.7) and (20.9), we obtain Inequality (20.8).
Finally, assume that Inequality (20.8) holds. We show that g(x) is

convex. Let a < b and let f(α) be defined by

f(α) = [(1 − α)g(a) + αg(b)] − g((1 − α)a + αb).

Then f(0) = f(1) = 0, and

f ′(α) = g(b) − g(a) − 〈∇g((1 − α)a + αb), b − a〉. (20.10)

If f(α) < 0 for some α, then there must be a minimum at α = α̂ with
f ′(α̂) = 0. But, if f(α) had a relative minimum, then f ′(α) would be
increasing nearby. We conclude by showing that the function

〈∇g((1 − α)a + αb), b − a〉
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is an increasing function of α. To see this, note that, for β > α,

(β − α)[〈∇g((1 − β)a + βb) − ∇g((1 − α)a + αb), b − a〉]

= 〈∇g((1−β)a+βb)−∇g((1−α)a+αb), ((1−β)a+βb)−((1−α)a+αb)〉,

which is non-negative, according to Inequality (20.3). It follows that f ′(α)
is a decreasing function of α, so cannot have a relative minimum. This
concludes the proof.

As in the case of functions of a single variable, we can say more when
the function g(x) is twice differentiable.

Theorem 20.5 If g(x) is twice differentiable and the second derivative
matrix is non-negative definite, that is, ∇2g(x) ≥ 0 for all x, then g(x) is
convex.

Proof: Now we have

f ′′(α) = −(b − a)T ∇2g((1 − α)a + αb)(b − a) ≤ 0,

where f(α) is as in the proof of the previous theorem. Therefore f(α)
cannot have a relative minimum. This completes the proof.

Suppose that g(x) : RJ → R is convex and the function F (x) = ∇g(x)
is L-Lipschitz. As we shall see, if γ is in the interval (0, 2

L ), then the
operator T = I − γF defined by

Tx = x − γ∇g(x),

is an av operator and the iterative sequence converges to a minimizer of
g(x). In this regard, we have the following analog of Theorem 20.3.

Theorem 20.6 Let h(x) be convex and differentiable and its derivative,
∇h(x), non-expansive, that is,

||∇h(b) − ∇h(a)||2 ≤ ||b − a||2,

for all a and b. Then ∇h(x) is firmly non-expansive, which means that

〈∇h(b) − ∇h(a), b − a〉 ≥ ||∇h(b) − ∇h(a)||22.

Unlike the proof of Theorem 20.3, the proof of this theorem is not
trivial. In [73] Golshtein and Tretyakov prove the following theorem, from
which Theorem 20.6 follows immediately.
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Theorem 20.7 Let g : RJ → R be convex and differentiable. The follow-
ing are equivalent:

||∇g(x) − ∇g(y)||2 ≤ ||x − y||2; (20.11)

g(x) ≥ g(y) + 〈∇g(y), x − y〉 +
1

2
||∇g(x) − ∇g(y)||22; (20.12)

and

〈∇g(x) − ∇g(y), x − y〉 ≥ ||∇g(x) − ∇g(y)||22. (20.13)

Proof: The only difficult step in the proof is showing that Inequality
(20.11) implies Inequality (20.12). To prove this part, let x(t) = (1−t)y+tx,
for 0 ≤ t ≤ 1. Then

g′(x(t)) = 〈∇g(x(t)), x − y〉,

so that

∫ 1

0

〈∇g(x(t)) − ∇g(y), x − y〉dt = g(x) − g(y) − 〈∇g(y), x − y〉.

Therefore,

g(x) − g(y) − 〈∇g(y), x − y〉 ≤
∫ 1

0

||∇g(x(t)) − ∇g(y)||2||x(t) − y||2dt

≤
∫ 1

0

||x(t) − y||22dt =

∫ 1

0

||t(x − y)||22dt =
1

2
||x − y||22,

according to Inequality (20.11). Therefore,

g(x) ≤ g(y) + 〈∇g(y), x − y〉 +
1

2
||x − y||22.

Now let x = y − ∇g(y), so that

g(y − ∇g(y)) ≤ g(y) + 〈∇g(y),∇g(y)〉 +
1

2
||∇g(y)||22.

Consequently,

g(y − ∇g(y)) ≤ g(y) − 1

2
||∇g(y)||22.

Therefore,

inf g(x) ≤ g(y) − 1

2
||∇g(y)||22,



20.3. CONVEX FEASIBILITY 165

or

g(y) ≥ inf g(x) +
1

2
||∇g(y)||22. (20.14)

Now fix y and define the function f(x) by

h(x) = g(x) − g(y) − 〈∇g(y), x − y〉.

Then h(x) is convex, differentiable, and non-negative,

∇h(x) = ∇g(x) − ∇g(y),

and h(y) = 0, so that h(x) attains its minimum at x = y. Applying
Inequality (20.14) to the function h(x), with z in the role of x and x in the
role of y, we find that

inf h(z) = 0 ≤ h(x) − 1

2
||∇h(x)||22.

From the definition of h(x), it follows that

0 ≤ g(x) − g(y) − 〈∇g(y), x − y〉 − 1

2
||∇g(x) − ∇g(y)||22.

This completes the proof of the implication.

If g(x) is convex and f(x) = ∇g(x) is L-Lipschitz, then 1
L∇g(x) is ne,

so that 1
L∇g(x) is fne and ∇g(x) is 1

L -ism. Then for γ > 0, γ∇g(x) is
1

γL -ism, which tells us that the operator

Tx = x − γ∇g(x)

is av whenever 0 < γ < 2
L . It follows from the KM Theorem that the

iterative sequence xk+1 = Txk = xk − γ∇g(xk) converges to a minimizer
of g(x), whenever minimizers exist.

20.3 Convex Feasibility

The convex feasibility problem (CFP) is to find a point in the non-empty
intersection C of finitely many closed, convex sets Ci in RJ . The successive
orthogonal projections (SOP) method [76] is the following. Begin with an
arbitrary x0. For k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1 = Pix
k,

where Pix denotes the orthogonal projection of x onto the set Ci. Since
each of the operators Pi is firmly non-expansive, the product

T = PIPI−1 · · · P2P1
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is averaged. Since C is not empty, T has fixed points. By the KM Theorem,
the sequence {xk} converges to a member of C. It is useful to note that
the limit of this sequence will not generally be the point in C closest to x0;
it is if the Ci are hyperplanes, however.

20.3.1 The SOP for Hyperplanes

For any x, Pix, the orthogonal projection of x onto the closed, convex set
Ci, is the unique member of Ci for which

〈Pix − x, y − Pix〉 ≥ 0,

for every y in Ci.

Exercise 20.1 Show that

||y − Pix||22 + ||Pix − x||22 ≤ ||y − x||22,

for all x and for all y in Ci.

When the Ci are hyperplanes, we can say more.

Exercise 20.2 Show that, if Ci is a hyperplane, then

〈Pix − x, y − Pix〉 = 0,

for all y in Ci. Use this result to show that

||y − Pix||22 + ||Pix − x||22 = ||y − x||22,

for every y in the hyperplane Ci. Hint: since both Pix and y are in Ci, so
is Pix + t(y − Pix), for every real t.

Let the Ci be hyperplanes with C their non-empty intersection. Let ĉ
be in C.

Exercise 20.3 Show that, for xk+1 = Pix
k, where i = k(mod I) + 1,

||ĉ − xk||22 − ||ĉ − xk+1||22 = ||xk − xk+1||22. (20.15)

It follows from this exercise that the sequence {||ĉ − xk||2} is decreasing
and that the sequence {||xk − xk+1||22} converges to zero. Therefore, the
sequence {xk} is bounded, so has a cluster point, x∗, and the cluster point
must be in C. Therefore, replacing ĉ with x∗, we find that the sequence
{||x∗ − xk||22} converges to zero, which means that {xk} converges to x∗.
Summing over k on both sides of Equation (20.15), we get

||ĉ − x∗||22 − ||ĉ − x0||22
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on the left side, while on the right side we get a quantity that does not de-
pend on which ĉ in C we have selected. It follows that minimizing ||ĉ−x0||22
over ĉ in C is equivalent to minimizing ||ĉ−x∗||22 over ĉ in C; the minimizer
of the latter problem is clearly ĉ = x∗. So, when the Ci are hyperplanes,
the SOP algorithm does converge to the member of the intersection that
is closest to x0. Note that the SOP is the ART algorithm, for the case of
hyperplanes.

20.3.2 The SOP for Half-Spaces

If the Ci are half-spaces, that is, there is some I by J matrix A and vector
b so that

Ci = {x|(Ax)i ≥ bi},

then the SOP becomes the Agmon-Motzkin-Schoenberg algorithm. When
the intersection is non-empty, the algorithm converges, by the KM Theo-
rem, to a member of that intersection. When the intersection is empty, we
get subsequential convergence to a limit cycle.

20.3.3 The SOP when C is empty

When the intersection C of the sets Ci, i = 1, ..., I is empty, the SOP cannot
converge. Drawing on our experience with two special cases of the SOP,
the ART and the AMS algorithms, we conjecture that, for each i = 1, ..., I,
the subsequences {xnI+i} converge to c∗,i in Ci, with Pic

∗,i−1 = c∗,i for
i = 2, 3, ..., I, and P1c

∗,I = c∗,1. The set {c∗,i} is then a limit cycle. For
the special case of I = 2 we can prove this.

Theorem 20.8 Let C1 and C2 be nonempty, closed convex sets in X , with
C1 ∩ C2 = ∅. Assume that there is a unique ĉ2 in C2 minimizing the
function f(x) = ||c2 − P1c2||2, over all c2 in C2. Let ĉ1 = P1ĉ2. Then
P2ĉ1 = ĉ2. Let z0 be arbitrary and, for n = 0, 1, ..., let

z2n+1 = P1z
2n,

and

z2n+2 = P2z
2n+1.

Then

{z2n+1} → ĉ1,

and

{z2n} → ĉ2.
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Proof: We apply the CQ algorithm, with the iterative step given by Equa-
tion (??), with C = C2, Q = C1, and the matrix A = I, the identity matrix.
The CQ iterative step is now

xk+1 = P2(x
k + γ(P1 − I)xk).

Using the acceptable choice of γ = 1, we have

xk+1 = P2P1x
k.

This CQ iterative sequence then converges to ĉ2, the minimizer of the
function f(x). Since z2n = xn, we have {z2n} → ĉ2. Because

||P2ĉ1 − ĉ1||2 ≤ ||ĉ2 − ĉ1||2,
it follows from the uniqueness of ĉ2 that P2ĉ1 = ĉ2. This completes the
proof.

20.4 Optimization over a Convex Set

Suppose now that g : RJ → R is a convex, differentiable function and
we want to find a minimizer of g(x) over a closed, convex set C, if such
minimizers exists. We saw earlier that, if ∇g(x) is L-Lipschitz, and γ is
in the interval (0, 2/L), then the operator Tx = x − γ∇g(x) is averaged.
Since PC , the orthogonal projection onto C, is also averaged, their product,
S = PCT , is averaged. Therefore, by the KM Theorem, the sequence
{xk+1 = Sxk} converges to a fixed point of S, whenever such fixed points
exist.

Exercise 20.4 Show that x̂ is a fixed point of S if and only if x̂ minimizes
g(x) over x in C.

20.4.1 Linear Optimization over a Convex Set

Suppose we take g(x) = dT x, for some fixed vector d. Then ∇g(x) = d for
all x, and ∇g(x) is L-Lipschitz for every L > 0. Therefore, the operator
Tx − x − γd is averaged, for any positive γ. Since PC is also averaged,
the product, S = PCT is averaged and the iterative sequence xk+1 = Sxk

converges to a minimizer of g(x) = dT x over C, whenever minimizers exist.
For example, suppose that C is the closed, convex region in the plane

bounded by the coordinate axes and the line x + y = 1. Let dT = (1,−1).
The problem then is to minimize the function g(x, y) = x − y over C.
Let γ = 1 and begin with x0 = (1, 1)T . Then x0 − d = (0, 2)T and
x1 = PC(0, 2)T = (0, 1)T , which is the solution.

For this algorithm to be practical, PCx must be easy to calculate. In
those cases in which the set C is more complicated than in the example,
other algorithms, such as the simplex algorithm, will be preferred. We con-
sider these ideas further, when we discuss the linear programming problem.
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20.5 Geometry of Convex Sets

A point x in a convex set C is said to be an extreme point of C if the
set obtained by removing x from C remains convex. Said another way, x
cannot be written as

x = (1 − α)y + αz,

for y, z 6= x and α ∈ (0, 1). For example, the point x = 1 is an extreme
point of the convex set C = [0, 1]. Every point on the boundary of a sphere
in RJ is an extreme point of the sphere. The set of all extreme points of a
convex set is denoted Ext(C).

A non-zero vector d is said to be a direction of unboundedness of a
convex set C if, for all x in C and all γ ≥ 0, the vector x + γd is in C.
For example, if C is the non-negative orthant in RJ , then any non-negative
vector d is a direction of unboundedness.

The fundamental problem in linear programming is to minimize the
function

f(x) = cT x,

over the feasible set F , that is, the convex set of all x ≥ 0 withAx = b. In
the next chapter we present an algebraic description of the extreme points
of the feasible set F , in terms of basic feasible solutions, show that there
are at most finitely many extreme points of F and that every member of
F can be written as a convex combination of the extreme points, plus a
direction of unboundedness. These results will be used to prove the basic
theorems about the primal and dual linear programming problems and to
describe the simplex algorithm.

20.6 Projecting onto Convex Level Sets

Suppose that f : RJ → R is a convex function and C = {x|f(x) ≤ 0}.
Then C is a convex set. A vector t is said to be a subgradient of f at x if,
for all z, we have

f(z) − f(x) ≥ 〈t, z − x〉.
Such subgradients always exist, for convex functions. If f is differentiable
at x, then f has a unique subgradient, namely, its gradient, t = ∇f(x).

Unless f is a linear function, calculating the orthogonal projection,
PCz, of z onto C requires the solution of an optimization problem. For
that reason, closed-form approximations of PCz are often used. One such
approximation occurs in the cyclic subgradient projection (CSP) method.
Given x not in C, let

ΠCx = x − αt,

where t is any subgradient of f at x and α = f(x)
||t||2 > 0.
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Proposition 20.1 For any c in C, ||c − ΠCx||22 < ||c − x||22.
Proof: Since x is not in C, we know that f(x) > 0. Then,

||c − ΠCx||22 = ||c − x + αt||22
= ||c − x||22 + 2α〈c − x, t〉 + αf(x).

Since t is a subgradient, we know that

〈c − x, t〉 ≤ f(c) − f(x),

so that

||c − ΠCx||22 − ||c − x||22 ≤ 2α(f(c) − f(x)) + αf(x) < 0.

The CSP method is a variant of the SOP method, in which PCi
is replaced

with ΠCi
.

20.7 Projecting onto the Intersection of Con-
vex Sets

As we saw previously, the SOP algorithm need not converge to the point in
the intersection closest to the starting point. To obtain the point closest to
x0 in the intersection of the convex sets Ci, we can use Dykstra’s algorithm,
a modification of the SOP method [65]. For simplicity, we shall discuss only
the case of C = A ∩ B, the intersection of two closed, convex sets.

20.7.1 A Motivating Lemma

The following lemma will help to motivate Dykstra’s algorithm.

Lemma 20.1 If x = c + p + q, where c = PA(c + p) and c = PB(c + q),
then c = PCx.

Proof: Let d be arbitrary in C. Then

〈c − (c + p), d − c〉 ≥ 0,

since d is in A, and
〈c − (c + q), d − c〉 ≥ 0,

since d is in B. Adding the two inequalities, we get

〈−p − q, d − c〉 ≥ 0.

But
−p − q = c − x,

so
〈c − x, d − c〉 ≥ 0,

for all d in C. Therefore, c = PCx.
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20.7.2 Dykstra’s Algorithm

Dykstra’s algorithm begins with b0 = x, p0 = q0 = 0. It involves the
construction of two sequences, {an} and {bn}, both converging to c = PCx,
along with two other sequences, {pn} and {qn} designed so that

an = PA(bn−1 + pn−1),

bn = PB(an + qn−1),

and
x = an + pn + qn−1 = bn + pn + qn.

Both {an} and {bn} converge to c = PCx. Usually, but not always, {pn}
converges to p and {qn} converges to q, so that

x = c + p + q,

with
c = PA(c + p) = PB(c + q).

Generally, however, {pn + qn} converges to x − c.
In [16], Bregman considers the problem of minimizing a convex function

f : RJ → R over the intersection of half-spaces, that is, over the set of
points x for which Ax =≥ b. His approach is a primal-dual algorithm
involving the notion of projecting onto a convex set, with respect to a
generalized distance constructed from f . Such generalized projections have
come to be called Bregman projections. In [43], Censor and Reich extend
Dykstra’s algorithm to Bregman projections, and, in [17], the three show
that the extended Dykstra algorithm of [43] is the natural extension of
Bregman’s primal-dual algorithm to the case of intersecting convex sets.
We shall consider these results in more detail in a subsequent chapter.

20.7.3 The Halpern-Lions-Wittmann-Bauschke Algo-
rithm

There is yet another approach to finding the orthogonal projection of the
vector x onto the nonempty intersection C of finitely many closed, convex
sets Ci, i = 1, ..., I. The algorithm has the following iterative step:

xk+1 = tkx + (1 − tk)PCi
xk,

where PCi
denotes the orthogonal projection onto Ci, tk is in the interval

(0, 1), and i = k(mod I) + 1. Several authors have proved convergence
of the sequence {xk} to PCx, with various conditions imposed on the pa-
rameters {tk}. As a result, the algorithm is known as the Halpern-Lions-
Wittmann-Bauschke (HLWB) algorithm, after the names of several who
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have contributed to the evolution of the theorem. The conditions imposed
by Bauschke [6] are {tk} → 0,

∑

tk = ∞, and
∑ |tk − tk+I | < +∞. The

HLWB algorithm has been extended by Deutsch and Yamada [62] to min-
imize certain (possibly non-quadratic) functions over the intersection of
fixed point sets of operators more general than PCi

.



Chapter 21

Generalized Projections
onto Convex Sets

The convex feasibility problem (CFP) is to find a member of the nonempty

set C =
⋂I

i=1 Ci, where the Ci are closed convex subsets of RJ . In most
applications the sets Ci are more easily described than the set C and al-
gorithms are sought whereby a member of C is obtained as the limit of an
iterative procedure involving (exact or approximate) orthogonal or gener-
alized projections onto the individual sets Ci.

In his often cited paper [16] Bregman generalizes the SOP algorithm
for the convex feasibility problem to include projections with respect to a
generalized distance, and uses this successive generalized projections (SGP)
method to obtain a primal-dual algorithm to minimize a convex function
f : RJ → R over the intersection of half-spaces, that is, over x with Ax ≥ b.
The generalized distance is built from the function f , which then must
exhibit additional properties, beyond convexity, to guarantee convergence
of the algorithm

21.1 Bregman Functions and Bregman Dis-
tances

The class of functions f that are used to define the generalized distance
have come to be called Bregman functions; the associated generalized dis-
tances are then Bregman distances, which are used to define generalized
projections onto closed convex sets (see the book by Censor and Zenios
[45] for details). In [9] Bauschke and Borwein introduce the related class
of Bregman-Legendre functions and show that these functions provide an
appropriate setting in which to study Bregman distances and generalized
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projections associated with such distances. For further details concerning
Bregman and Bregman-Legendre functions, see the appendix.

Bregman’s successive generalized projection (SGP) method uses pro-
jections with respect to Bregman distances to solve the convex feasibility
problem. Let f : RJ → (−∞,+∞] be a closed, proper convex function,
with essential domain D = domf = {x|f(x) < +∞} and ∅ 6= intD. Denote
by Df (·, ·) : D × intD → [0,+∞) the Bregman distance, given by

Df (x, z) = f(x) − f(z) − 〈∇f(z), x − z〉 (21.1)

and by P f
Ci

the Bregman projection operator associated with the convex
function f and the convex set Ci; that is

P f
Ci

z = arg minx∈Ci∩DDf (x, z). (21.2)

The Bregman projection of x onto C is characterized by Bregman’s Inequal-
ity:

〈∇f(P f
Cx) − ∇f(x), c − P f

C〉 ≥ 0, (21.3)

for all c in C.

21.2 The Successive Generalized Projections
Algorithm

Bregman considers the following generalization of the SOP algorithm:

Algorithm 21.1 Bregman’s method of Successive Generalized Pro-
jections (SGP): Beginning with x0 ∈ int domf , for k = 0, 1, ..., let i =
i(k) := k(mod I) + 1 and

xk+1 = P f
Ci(k)

(xk). (21.4)

He proves that the sequence {xk} given by (21.4) converges to a member
of C ∩ domf , whenever this set is nonempty and the function f is what
came to be called a Bregman function ([16]). Bauschke and Borwein [9]
prove that Bregman’s SGP method converges to a member of C provided
that one of the following holds: 1) f is Bregman-Legendre; 2) C ∩ intD 6= ∅
and dom f∗ is open; or 3) dom f and dom f∗ are both open, with f∗ the
function conjugate to f .

In [16] Bregman goes on to use the SGP to find a minimizer of a Breg-
man function f(x) over the set of x such that Ax = b. Each hyperplane
associated with a single equation is a closed, convex set. The SGP finds
the Bregman projection of the starting vector onto the intersection of the
hyperplanes. If the starting vector has the form x0 = AT d, for some vector
d, then this Bregman projection also minimizes f(x) over x in the inter-
section.
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21.3 Bregman’s Primal-Dual Algorithm

The problem is to minimize f : RJ → R over the set of all x for which
Ax ≥ b. Begin with x0 such that x0 = AT u0, for some u0 ≥ 0. For
k = 0, 1, ..., let i = k(mod I) + 1. Having calculated xk, there are three
possibilities:

a) if (Axk)i < bi, then let xk+1 be the Bregman projection onto the hyper-
plane Hi = {x|(Ax)i = bi}, so that

∇f(xk+1) = ∇f(xk) + λkai,

where ai is the ith column of AT . With ∇f(xk) = AT uk, for uk ≥ 0,
update uk by

uk+1
i = uk

i + λk,

and

uk+1
m = uk

m,

for m 6= i.

b) if (Axk)i = bi, or (Axk)i > bi and uk
i = 0, then xk+1 = xk, and

uk+1 = uk.

c) if (Axk)i > bi and uk
i > 0, then let µk be the smaller of the numbers µ′

k

and µ′′
k , where

∇f(y) = ∇f(xk) − µ′
kai

puts y in Hi, and

µ′′
k = uk

i .

Then take xk+1 with

∇f(xk+1) = ∇f(xk) − µkai.

With appropriate assumptions made about the function f , the sequence
{xk} so defined converges to a minimizer of f(x) over the set of x with
Ax ≥ b. For a detailed proof of this result, see [45].

Bregman also suggests that this primal-dual algorithm be used to find
approximate solutions for linear programming problems, where the problem
is to minimize a linear function cT x, subject to constraints. His idea is to
replace the function cT x with h(x) = cT x + εf(x), and then apply his
primal-dual method to h(x).
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21.4 Dykstra’s Algorithm for Bregman Pro-
jections

We are concerned now with finding the Bregman projection of x onto the
intersection C of finitely many closed convex sets, Ci. The problem can be
solved by extending Dykstra’s algorithm to include Bregman projections.

21.4.1 A Helpful Lemma

The following lemma helps to motivate the extension of Dykstra’s algo-
rithm.

Lemma 21.1 Suppose that

∇f(c) − ∇f(x) = ∇f(c) − ∇f(c + p) + ∇f(c) − ∇f(c + q),

with c = P f
A(c + p) and c = P f

B(c + q). Then c = P f
Cx.

Proof: Let d be arbitrary in C. We have

〈∇f(c) − ∇f(c + p), d − c〉 ≥ 0,

and
〈∇f(c) − ∇f(c + q), d − c〉 ≥ 0.

Adding, we obtain
〈∇f(c) − ∇f(x), d − c〉 ≥ 0.

This suggests the following algorithm for finding c = P f
Cx, which turns

out to be the extension of Dykstra’s algorithm to Bregman projections.
Begin with b0 = x, p0 = q0 = 0. Define

bn−1 + pn−1 = ∇f−1(∇f(bn−1) + rn−1),

an = P f
A(bn−1 + pn−1),

rn = ∇f(bn−1) + rn−1 − ∇f(an),

∇f(an + qn−1) = ∇f(an) + sn−1,

bn = P f
B(an + qn−1),

and
sn = ∇f(an) + sn−1 − ∇f(bn).

In place of
∇f(c + p) − ∇f(c) + ∇f(c + q) − ∇f(c),
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we have

[∇f(bn−1)+ rn−1]−∇f(bn−1)+ [∇f(an)+ sn−1]−∇f(an) = rn−1 + sn−1,

and also

[∇f(an) + sn−1] − ∇f(an) + [∇f(bn) + rn] − ∇f(bn) = rn + sn−1.

But we also have

rn−1 + sn−1 = ∇f(x) − ∇f(bn−1),

and
rn + sn−1 = ∇f(x) − ∇f(an).

Then the sequences {an} and {bn} converge to c. For further details, see
[43] and [11].

In [17] the authors show that the extension of Dykstra’s algorithm to
Bregman projections can be viewed as an extension of Bregman’s primal-
dual algorithm to the case in which the intersection of half-spaces is re-
placed by the intersection of closed convex sets.
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Chapter 22

An Interior-Point
Optimization Method

Investigations in [23] into several well known iterative algorithms, includ-
ing the ‘expectation maximization maximum likelihood’ (EMML) method,
the ‘multiplicative algebraic reconstruction technique’ (MART) as well as
block-iterative and simultaneous versions of MART, revealed that the it-
erative step of each algorithm involved weighted arithmetic or geometric
means of Bregman projections onto hyperplanes; interestingly, the projec-
tions involved were associated with Bregman distances that differed from
one hyperplane to the next. This representation of the EMML algorithm as
a weighted arithmetic mean of Bregman projections provided the key step
in obtaining block-iterative and row-action versions of EMML. Because it
is well known that convergence is not guaranteed if one simply extends
Bregman’s algorithm to multiple distances by replacing the single distance
Df in (21.4) with multiple distances Dfi

, the appearance of distinct dis-
tances in these algorithms suggested that a somewhat more sophisticated
algorithm employing multiple Bregman distances might be possible.

22.1 The Multiprojection Successive Gener-
alized Projection Method

In [27] such an iterative multiprojection method for solving the CFP,
called the multidistance successive generalized projection method (MSGP),
was presented in the context of Bregman functions, and subsequently,
in the framework of Bregman-Legendre functions [29]; see the Appendix
on Bregman functions for definitions and details concerning these func-
tions. The MSGP extends Bregman’s SGP method by allowing the Breg-

179



180CHAPTER 22. AN INTERIOR-POINT OPTIMIZATION METHOD

man projection onto each set Ci to be performed with respect to a Breg-
man distance Dfi

derived from a Bregman-Legendre function fi. The
MSGP method depends on the selection of a super-coercive Bregman-
Legendre function h whose Bregman distance Dh satisfies the inequality
Dh(x, z) ≥ Dfi

(x, z) for all x ∈ dom h ⊆ ⋂I
i=1 dom fi and all z ∈ int domh,

where dom h = {x|h(x) < +∞}. By using different Bregman distances for
different convex sets, we found that we can sometimes calculate the desired
Bregman projections in closed form, thereby obtaining computationally
tractable iterative algorithms (see [23]).

22.2 An Interior-Point Algorithm (IPA)

Consideration of a special case of the MSGP, involving only a single convex
set C1, leads us to an interior point optimization method. If I = 1 and
f := f1 has a unique minimizer x̂ in int domh, then the MSGP iteration
using C1 = {x̂} is

∇h(xk+1) = ∇h(xk) − ∇f(xk). (22.1)

This suggests an interior-point algorithm (IPA) that could be applied more
broadly to minimize a convex function f over the closure of domh.

First, we present the MSGP method and prove convergence, in the
context of Bregman-Legendre functions. Then we investigate the IPA sug-
gested by the MSGP algorithm.

22.3 The MSGP Algorithm

We begin by setting out the assumptions we shall make and the notation
we shall use in this section.

22.3.1 Assumptions and Notation

We make the following assumptions throughout this section. Let C =
∩I

i=1Ci be the nonempty intersection of closed convex sets Ci. The func-
tion h is super-coercive and Bregman-Legendre with essential domain D =
dom h and C ∩ dom h 6= ∅. For i = 1, 2, ..., I the function fi is also
Bregman-Legendre, with D ⊆ dom fi, so that intD ⊆ int dom fi; also
Ci ∩ int dom fi 6= ∅. For all x ∈ dom h and z ∈ int domh we have
Dh(x, z) ≥ Dfi

(x, z), for each i.
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22.3.2 The MSGP Algorithm

Algorithm 22.1 The MSGP algorithm: Let x0 ∈ int domh be arbi-
trary. For k = 0, 1, ... and i(k) := k(mod I) + 1 let

xk+1 = ∇h−1
(

∇h(xk) − ∇fi(k)(x
k) + ∇fi(k)(P

fi(k)

Ci(k)
(xk))

)

. (22.2)

22.3.3 A Preliminary Result

For each k = 0, 1, ... define the function Gk(·) : domh → [0,+∞) by

Gk(x) = Dh(x, xk) − Dfi(k)
(x, xk) + Dfi(k)

(x, P
fi(k)

Ci(k)
(xk)). (22.3)

The next proposition provides a useful identity, which can be viewed as an
analogue of Pythagoras’ theorem. The proof is not difficult and we omit
it.

Proposition 22.1 For each x ∈ dom h, each k = 0, 1, ..., and xk+1 given
by (22.2) we have

Gk(x) = Gk(xk+1) + Dh(x, xk+1). (22.4)

Consequently, xk+1 is the unique minimizer of the function Gk(·).

This identity (22.4) is the key ingredient in the convergence proof for the
MSGP algorithm.

22.3.4 The MSGP Convergence Theorem

We shall prove the following convergence theorem:

Theorem 22.1 Let x0 ∈ int domh be arbitrary. Any sequence xk obtained
from the iterative scheme given by Algorithm 22.1 converges to x∞ ∈ C ∩
dom h. If the sets Ci are hyperplanes, then x∞ minimizes the function
Dh(x, x0) over all x ∈ C ∩dom h; if, in addition, x0 is the global minimizer
of h, then x∞ minimizes h(x) over all x ∈ C ∩ dom h.

Proof: All details concerning Bregman functions are in the Appendix.
Let c be a member of C ∩ dom h. From the Pythagorean identity (22.4) it
follows that

Gk(c) = Gk(xk+1) + Dh(c, xk+1). (22.5)

Using the definition of Gk(·), we write

Gk(c) = Dh(c, xk) − Dfi(k)
(c, xk) + Dfi(k)

(c, P
fi(k)

Ci(k)
(xk)). (22.6)
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From Bregman’s Inequality (21.3) we have that

Dfi(k)
(c, xk) − Dfi(k)

(c, P
fi(k)

Ci(k)
(xk)) ≥ Dfi(k)

(P
fi(k)

Ci(k)
(xk), xk). (22.7)

Consequently, we know that

Dh(c, xk) − Dh(c, xk+1) ≥ Gk(xk+1) + Dfi(k)
(P

fi(k)

Ci(k)
(xk), xk) ≥ 0. (22.8)

It follows that {Dh(c, xk)} is decreasing and finite and the sequence {xk}
is bounded. Therefore, {Dfi(k)

(P
fi(k)

Ci(k)
(xk), xk)} → 0 and {Gk(xk+1)} → 0;

from the definition of Gk(x) it follows that {Dfi(k)
(xk+1, P

fi(k)

Ci(k)
(xk))} → 0

as well. Using the Bregman inequality we obtain the inequality

Dh(c, xk) ≥ Dfi(k)
(c, xk) ≥ Dfi(k)

(c, P
fi(k)

Ci(k)
(xk)), (22.9)

which tells us that the sequence {P
fi(k)

Ci(k)
(xk)} is also bounded. Let x∗ be an

arbitrary cluster point of the sequence {xk} and let {xkn} be a subsequence
of the sequence {xk} converging to x∗.

We first show that x∗ ∈ dom h and {Dh(x∗, xk)} → 0. If x∗ is in
int domh then our claim is verified, so suppose that x∗ is in bdry domh. If
c is in domh but not in int domh, then, applying B2 of the Appendix on
Bregman functions, we conclude that x∗ ∈ dom h and {Dh(x∗, xk)} → 0.
If, on the other hand, c is in int domh then by R2 x∗ would have to be in
int domh also. It follows that x∗ ∈ dom h and {Dh(x∗, xk)} → 0. Now we
show that x∗ is in C.

Label x∗ = x∗
0. Since there must be at least one index i that occurs

infinitely often as i(k), we assume, without loss of generality, that the subse-
quence {xkn} has been selected so that i(k) = 1 for all n = 1, 2, .... Passing
to subsequences as needed, we assume that, for each m = 0, 1, 2, ..., I − 1,
the subsequence {xkn+m} converges to a cluster point x∗

m, which is in
dom h, according to the same argument we used in the previous paragraph.
For each m the sequence {Dfm

(c, P fm

Cm
(xkn+m−1))} is bounded, so, again,

by passing to subsequences as needed, we assume that the subsequence
{P fm

Cm
(xkn+m−1)} converges to c∗

m ∈ Cm ∩ dom fm.

Since the sequence {Dfm
(c, P fm

Cm
(xkn+m−1)} is bounded and c ∈ dom fm,

it follows, from either B2 or R2, that c∗
m ∈ dom fm. We know that

{Dfm
(P fm

Cm
(xkn+m−1), xkn+m−1)} → 0 (22.10)

and both P fm

Cm
(xkn+m−1) and xkn+m−1 are in int dom fm. Applying R1, B3

or R3, depending on the assumed locations of c∗
m and x∗

m−1, we conclude
that c∗

m = x∗
m−1.
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We also know that

{Dfm
(xkn+m, P fm

Cm
(xkn+m−1))} → 0, (22.11)

from which it follows, using the same arguments, that x∗
m = c∗

m. Therefore,
we have x∗ = x∗

m = c∗
m for all m; so x∗ ∈ C.

Since x∗ ∈ C ∩ dom h, we may now use x∗ in place of the generic c,
to obtain that the sequence {Dh(x∗, xk)} is decreasing. However, we also
know that the sequence {Dh(x∗, xkn)} → 0. So we have {Dh(x∗, xk)} → 0.
Applying R5, we conclude that {xk} → x∗.

If the sets Ci are hyperplanes, then we get equality in Bregman’s in-
equality (21.3)and so

Dh(c, xk) − Dh(c, xk+1) = Gk(xk+1) + Dfi(k)
(P

fi(k)

Ci(k)
(xk), xk). (22.12)

Since the right side of this equation is independent of which c we have
chosen in the set C∩ dom h, the left side is also independent of this choice.
This implies that

Dh(c, x0) − Dh(c, xM ) = Dh(x∗, x0) − Dh(x∗, xM ), (22.13)

for any positive integer M and any c ∈ C ∩ dom h. Therefore

Dh(c, x0) − Dh(x∗, x0) = Dh(c, xM ) − Dh(x∗, xM ). (22.14)

Since {Dh(x∗, xM )} → 0 as M → +∞ and {Dh(c, xM )} → α ≥ 0, we have
that Dh(c, x0) − Dh(x∗, x0) ≥ 0. This completes the proof.

22.4 An Interior-Point Algorithm for Itera-
tive Optimization

We consider now an interior point algorithm (IPA) for iterative optimiza-
tion. This algorithm was first presented in [28] and applied to transmission
tomography in [105]. The IPA is suggested by a special case of the MSGP,
involving functions h and f := f1.

22.4.1 Assumptions

We assume, for the remainder of this section, that h is a super-coercive
Legendre function with essential domain D = domh. We also assume that
f is continuous on the set D, takes the value +∞ outside this set and
is differentiable in intD. Thus, f is a closed, proper convex function on
RJ . We assume also that x̂ = argminx∈D f(x) exists, but not that it is
unique. As in the previous section, we assume that Dh(x, z) ≥ Df (x, z) for
all x ∈ dom h and z ∈ int domh. As before, we denote by h∗ the function
conjugate to h.
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22.4.2 The IPA

The IPA is an iterative procedure that, under conditions to be described
shortly, minimizes the function f over the closure of the essential domain
of h, provided that such a minimizer exists.

Algorithm 22.2 Let x0 be chosen arbitrarily in intD. For k = 0, 1, ... let
xk+1 be the unique solution of the equation

∇h(xk+1) = ∇h(xk) − ∇f(xk). (22.15)

Note that equation (22.15) can also be written as

xk+1 = ∇h−1(∇h(xk) − ∇f(xk)) = ∇h∗(∇h(xk) − ∇f(xk)). (22.16)

22.4.3 Motivating the IPA

As already noted, the IPA was originally suggested by consideration of a
special case of the MSGP. Suppose that x ∈ dom h is the unique global
minimizer of the function f , and that ∇f(x) = 0. Take I = 1 and C =

C1 = {x}. Then P f
C1

(xk) = x always and the iterative MSGP step becomes
that of the IPA. Since we are assuming that x is in dom h, the convergence
theorem for the MSGP tells us that the iterative sequence {xk} converges
to x.

In most cases, the global minimizer of f will not lie within the essential
domain of the function h and we are interested in the minimum value of
f on the set D, where D = domh; that is, we want x̂ = argminx∈D f(x),
whenever such a minimum exists. As we shall see, the IPA can be used to
advantage even when the specific conditions of the MSGP do not hold.

22.4.4 Preliminary results for the IPA

Two aspects of the IPA suggest strongly that it may converge under more
general conditions than those required for convergence of the MSGP. The
sequence {xk} defined by (22.15) is entirely within the interior of domh. In
addition, as we now show, the sequence {f(xk)} is decreasing. Adding both
sides of the inequalities Dh(xk+1, xk)−Df (xk+1, xk) ≥ 0 and Dh(xk, xk+1)−
Df (xk, xk+1) ≥ 0 gives

〈∇h(xk) − ∇h(xk+1) − ∇f(xk) + ∇f(xk+1), xk − xk+1〉 ≥ 0. (22.17)

Substituting according to equation (22.15) and using the convexity of the
function f , we obtain

f(xk) − f(xk+1) ≥ 〈∇f(xk+1), xk − xk+1〉 ≥ 0. (22.18)
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Therefore, the sequence {f(xk)} is decreasing; since it is bounded below

by f(x̂), it has a limit, f̂ ≥ f(x̂). We have the following result (see [28],
Prop. 3.1).

Lemma 22.1 f̂ = f(x̂).

Proof: Suppose, to the contrary, that 0 < δ = f̂ − f(x̂). Select z ∈ D
with f(z) ≤ f(x̂) + δ/2. Then f(xk) − f(z) ≥ δ/2 for all k. Writing
Hk = Dh(z, xk) − Df (z, xk) for each k, we have

Hk − Hk+1 = Dh(xk+1, xk) − Df (xk+1, xk) + 〈∇f(xk+1), xk+1 − z〉 .(22.19)

Since 〈∇f(xk+1), xk+1−z〉 ≥ f(xk+1)−f(z) ≥ δ/2 > 0 and Dh(xk+1, xk)−
Df (xk+1, xk) ≥ 0, it follows that {Hk} is a decreasing sequence of positive
numbers, so that the successive differences converge to zero. This is a
contradiction; we conclude that f̂ = f(x̂).

Convergence of the IPA

We prove the following convergence result for the IPA (see also [28]).

Theorem 22.2 If x̂ = argminx∈D f(x) is unique, then the sequence {xk}
generated by the IPA according to equation (22.15) converges to x̂. If x̂
is not unique, but can be chosen in D, then the sequence {Dh(x̂, xk)} is
decreasing. If, in addition, the function Dh(x̂, ·) has bounded level sets,
then the sequence {xk} is bounded and so has cluster points x∗ ∈ D with
f(x∗) = f(x̂). Finally, if h is a Bregman-Legendre function, then x∗ ∈ D
and the sequence {xk} converges to x∗.

Proof: According to Corollary 8.7.1 of [111], if G is a closed, proper convex
function on RJ and if the level set Lα = {x|G(x) ≤ α} is nonempty and
bounded for at least one value of α, then Lα is bounded for all values of
α. If the constrained minimizer x̂ is unique, then, by the continuity of f
on D and Rockafellar’s corollary, we can conclude that the sequence {xk}
converges to x̂. If x̂ is not unique, but can be chosen in D, then, with
additional assumptions, convergence can still be established.

Suppose now that x̂ is not necessarily unique, but can be chosen in D.
Assuming x̂ ∈ D, we show that the sequence {Dh(x̂, xk)} is decreasing.
Using Equation (22.15) we have

Dh(x̂, xk)−Dh(x̂, xk+1) = Dh(xk+1, xk)+ 〈∇h(xk+1)−∇h(xk), x̂−xk+1〉

= Dh(xk+1, xk) − Df (xk+1, xk) + Df (xk+1, xk) + 〈∇f(xk), xk+1 − x̂〉
= Dh(xk+1, xk) − Df (xk+1, xk) + f(xk+1) − f(xk) − 〈∇f(xk), x̂ − xk〉

≥ Dh(xk+1, xk) − Df (xk+1, xk) + f(xk+1) − f(xk) + f(xk) − f(x̂);
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the final inequality follows from the convexity of f . Since Dh(xk+1, xk) −
Df (xk+1, xk) ≥ 0 and f(xk+1) − f(x̂) ≥ 0, it follows that the sequence
{Dh(x̂, xk)} is decreasing.

If h has bounded level sets, then the sequence {xk} is bounded and we
can extract a subsequence {xkn} converging to some x∗ in the closure of
D.

Finally, assume that h is a Bregman-Legendre function. If x̂ is in D
but not in intD, then, by B2, x∗ ∈ bdry D implies that x∗ is in D and
{Dh(x∗, xkn)} → 0. If x̂ is in intD, then we conclude, from R2, that x∗

is also in intD. Then, by R1, we have {Dh(x∗, xkn)} → 0. We can then
replace the generic x̂ with x∗, to conclude that {Dh(x∗, xk)} is decreas-
ing. But, {Dh(x∗, xkn)} converges to zero; therefore, the entire sequence
{Dh(x∗, xk)} converges to zero. Applying R5, we conclude that {xk} con-
verges to x∗. This completes the proof.



Chapter 23

Linear and Convex
Programming

The term linear programming (LP) refers to the problem of optimizing a
linear function of several variables over linear equality or inequality con-
straints. In this chapter we present the problem and establish the basic
facts. For a much more detailed discussion, consult [106].

23.1 Primal and Dual Problems

Associated with the basic problem in LP, called the primary problem, there
is a second problem, the dual problem. Both of these problems can be
written in two equivalent ways, the canonical form and the standard form.

23.1.1 Canonical and Standard Forms

Let b and c be fixed vectors and A a fixed matrix. The problem

minimize z = cT x, subject toAx ≥ b, x ≥ 0 (PC) (23.1)

is the so-called primary problem of LP, in canonical form. The dual problem
in canonical form is

maximize w = bT y, subject toAT y ≤ c, y ≥ 0. (DC) (23.2)

The primary problem, in standard form, is

minimize z = cT x, subject toAx = b, x ≥ 0 (PS) (23.3)

with the dual problem in standard form given by

maximize w = bT y, subject toAT y ≤ c. (DS) (23.4)

187
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Notice that the dual problem in standard form does not require that y be
nonnegative. Note also that the standard problems make sense only if the
system Ax = b is underdetermined and has infinitely many solutions. For
that reason, we shall assume, for the standard problems, that the I by J
matrix A has more columns than rows, so J > I, and has full row rank.

If we are given the primary problem in canonical form, we can convert
it to standard form by augmenting the variables, that is, by defining

ui = (Ax)i − bi,

for i = 1, ..., I, and rewriting Ax ≥ b as

Ãx̃ = b,

for Ã = [A −I ] and x̃ = [xT uT ]T .

23.1.2 Weak Duality

Consider the problems (PS) and (DS). Say that x is feasible if x ≥ 0 and
Ax = b. Let F be the set of feasible x. Say that y is feasible if AT y ≤ c.
The Weak Duality Theorem is the following:

Theorem 23.1 Let x and y be feasible vectors. Then

z = cT x ≥ bT y = w.

Corollary 23.1 If z is not bounded below, then there are no feasible y.

Corollary 23.2 If x and y are both feasible, and z = w, then both x and
y are optimal for their respective problems.

Exercise 23.1 Prove the theorem and its corollaries.

The nonnegative quantity cT x− bT y is called the duality gap. The comple-
mentary slackness condition says that, for optimal x and y, we have

xj(cj − (AT y)j) = 0,

for each j, which says that the duality gap is zero. Primal-dual algorithms
for solving linear programming problems are based on finding sequences
{xk} and {yk} that drive the duality gap down to zero [106].

23.1.3 Strong Duality

The Strong Duality Theorem makes a stronger statement.

Theorem 23.2 If one of the problems (PS) or (DS) has an optimal solu-
tion, then so does the other and z = w for the optimal vectors.
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Before we consider the proof of the theorem, we need a few preliminary
results.

A point x in F is said to be a basic feasible solution if the columns of
A corresponding to positive entries of x are linearly independent; denote
by B an invertible matrix obtained by deleting from A columns associated
with zero entries of x. The entries of an arbitrary x corresponding to the
columns not deleted are called the basic variables. Then, assuming that
the columns of B are the first I columns of A, we write xT = (xT

B , xT
N ),

and

A = [B N ] ,

so that Ax = BxB = b, and xB = B−1b. The following theorems are taken
from [106].

Theorem 23.3 A point x is in Ext(F ) if and only if x is a basic feasible
solution.

Proof: Suppose that x is a basic feasible solution, and we write xT =
(xT

B , 0T ), A = [B N ]. If x is not an extreme point of F , then there are
y 6= x and z 6= x in F , and α in (0, 1), with

x = (1 − α)y + αz.

Then yT = (yT
B , yT

N ), zT = (zT
B , zT

N ), and yN ≥ 0, zN ≥ 0. From

0 = xN = (1 − α)yN + (α)zN

it follows that

yN = zN = 0,

and b = ByB = BzB = BxB . But, since B is invertible, we have xB =
yB = zB . This is a contradiction, so x must be in Ext(F ).

Conversely, suppose that x is in Ext(F ). Since it is in F , we know that
Ax = b and x ≥ 0. By reordering the variables if necessary, we may assume
that xT = (xT

B , xT
N ), with xB > 0 and xN = 0; we do not know that xB is

a vector of length I, however, so when we write A = [B N ], we do not
know that B is square. If B is invertible, then x is a basic feasible solution.
If not, we shall construct y 6= x and z 6= x in F , such that

x =
1

2
y +

1

2
z.

If {B1, B2, ..., BK} are the columns of B and are linearly dependent,
then there are constants p1, p2, ..., pK , not all zero, with

p1B1 + ... + pKBK = 0.
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With pT = (p1, ..., pK), we have

B(xB + αp) = B(xB − αp) = BxB = b,

for all α ∈ (0, 1). We then select α so small that both xB + αp > 0 and
xB − αp > 0. Let

yT = (xT
B + αpT , xT

N )

and

zT = (xT
B − αpT , xT

N ).

This completes the proof.

Exercise 23.2 Show that there are at most finitely many basic feasible
solutions, so there are at most finitely many members of Ext(F ).

Theorem 23.4 If F is not empty, then Ext(F ) is not empty. In that case,
let {v1, ..., vK} be the members of Ext(F ). Every x in F can be written as

x = d + α1v
1 + ... + αKvK ,

for some αk ≥ 0, with
∑K

k=1 αk = 1, and some direction of unboundedness,
d.

Proof: We consider only the case in which F is bounded, so there is no
direction of unboundedness; the unbounded case is similar. Let x be a
feasible point. If x is an extreme point, fine. If not, then x is not a basic
feasible solution. The columns of A that correspond to the positive entries
of x are not linearly independent. Then we can find a vector p such that
Ap = 0 and pj = 0 if xj = 0. If |ε| is small, x + εp ≥ 0 and (x + εp)j = 0 if
xj = 0, then x + εp is in F . We can alter ε in such a way that eventually
y = x + εp has one more zero entry than x has, and so does z = x − εp.
Both y and z are in F and x is the average of these points. If y and z are
not basic, repeat the argument on y and z, each time reducing the number
of positive entries. Eventually, we will arrive at the case where the number
of non-zero entries is I, and so will have a basic feasible solution.

Proof of the Strong Duality Theorem: Suppose now that x∗ is a
solution of the problem (PS) and z∗ = cT x∗. Without loss of generality,
we may assume that x∗ is a basic feasible solution, hence an extreme point
of F . Then we can write

xT
∗ = ((B−1b)T , 0T ),

cT = (cT
B , cT

N ),
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and A = [B N ]. Every feasible solution has the form

xT = ((B−1b)T , 0T ) + ((B−1Nv)T , vT ),

for some v ≥ 0. From cT x ≥ cT x∗ we find that

(cT
N − cT

BB−1N)(v) ≥ 0,

for all v ≥ 0. It follows that

cT
N − cT

BB−1N = 0.

Nw let y∗ = (B−1)T cB , or yT
∗ = cT

BB−1. We show that y∗ is feasible for
(DS); that is, we show that

AT y∗ ≤ cT .

Since
yT

∗ A = (yT
∗ B, yT

∗ N) = (cT
B , yT

∗ N) = (cT
B , cT

BB−1N)

and
cT
N ≥ cT

BB−1N,

we have
yT

∗ A ≤ cT ,

so y∗ is feasible for (DS). Finally, we show that

cT x∗ = yT
∗ b.

We have
yT

∗ b = cT
BB−1b = cT x∗.

This completes the proof.

23.2 The Simplex Method

In this section we sketch the main ideas of the simplex method. For further
details see [106].

Begin with a basic feasible solution of (PS), say

xT = (b̂T , 0T ) = ((B−1b)T , 0T ).

Compute the vector yT = cT
BB−1. If

ĉT
N = cT

N − yT N ≥ 0,

then x is optimal. Otherwise, select a entering varable xj such that

(ĉN )j < 0.
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Compute âj = B−1aj , where aj is the jth column of A. Find an index s
such that

b̂s

(âj)s
= min

1≤i≤I
{ b̂i

(âj)i
: (âj)i > 0}.

If there are no such positive denominators, the problem is unbounded.
Then xs is the leaving variable, replacing xj . Redefine B and the basic
variables xB accordingly.

23.3 Convex Programming

Let f and gi, i = 1, ..., I, be convex functions defined on C, a non-empty
closed, convex subset of RJ . The primal problem in convex programming is
the following:

minimize f(x), subject togi(x) ≤ 0, for i = 1, ..., I. (P) (23.5)

The Lagrangian is

L(x, λ) = f(x) +

I
∑

i=1

λigi(x).

The corresponding dual problem is

maximize h(λ) = inf
x∈C

L(x, λ), forλ ≥ 0. (23.6)

23.3.1 An Example

Let f(x) = 1
2 ||x||22. The primary problem is to minimize f(x) over all x for

which Ax ≥ b. Then gi = bi − (Ax)i, for i = 1, ..., I, and the set C is all of
RJ . The Lagrangian is then

L(x, λ) =
1

2
||x||22 − λT Ax + λT b.

The infimum over x occurs when x = AT λ and so

h(λ) = λT b − 1

2
||AT λ||22.

For any x satisfying Ax ≥ b and any λ ≥ 0 we have h(λ) ≤ f(x). If x∗ is
the unique solution of the primal problem and λ∗ any solution of the dual
problem, we have f(x∗) = h(λ∗). The point here is that the constraints
in the dual problem are easier to implement in an iterative algorithm, so
solving the dual problem is the simpler task.
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23.3.2 An Iterative Algorithm for the Dual Problem

In [97] Lent and Censor present the following sequential iterative algorithm
for solving the dual problem above. At each step only one entry of the
current λ is altered. Let ai denote the i-th row of the matrix A. Having
calculated xk and λk > 0, let i = k(mod I) + 1. Then let

θ = (bi − (ai)
T xk)/aT

i ai,

δ = max{−λk
i , ωθ},

and set
λk+1

i = λk
i + δ,

and
xk+1 = xk + δai.
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Chapter 24

Systems of Linear
Inequalities

Designing linear discriminants for pattern classification involves the prob-
lem of solving a system of linear inequalities Ax ≥ b. In this chapter we
discuss the iterative Agmon-Motzkin-Schoenberg (AMS) algorithm [1, 104]
for solving such problems. We prove convergence of the AMS algorithm,
for both the consistent and inconsistent cases, by mimicking the proof for
the ART algorithm. Both algorithms are examples of the method of pro-
jection onto convex sets. The AMS algorithm is a special case of the cyclic
subgradient projection (CSP) method, so that convergence of the AMS,
in the consistent case, follows from the convergence theorem for the CSP
algorithm.

24.1 Projection onto Convex Sets

In [125] Youla suggests that problems in image restoration might be viewed
geometrically and the method of projection onto convex sets (POCS) em-
ployed to solve such inverse problems. In the survey paper [124] he ex-
amines the POCS method as a particular case of iterative algorithms for
finding fixed points of nonexpansive mappings. This point of view is in-
creasingly important in applications such as medical imaging and a number
of recent papers have addressed the theoretical and practical issues involved
[8], [10], [7], [27], [31], [37], [49], [50], [51].

In this geometric approach the restored image is a solution of the convex
feasibility problem (CFP), that is, it lies within the intersection of finitely
many closed nonempty convex sets Ci, i = 1, ..., I, in RJ (or sometimes, in
infinite dimensional Hilbert space). For any nonempty closed convex set
C, the metric projection of x onto C, denoted PCx, is the unique member

195



196 CHAPTER 24. SYSTEMS OF LINEAR INEQUALITIES

of C closest to x. The iterative methods used to solve the CFP employ
these metric projections. Algorithms for solving the CFP are discussed in
the papers cited above, as well as in the books by Censor and Zenios [45],
Stark and Yang [117] and Borwein and Lewis [14].

The simplest example of the CFP is the solving of a system of linear
equations Ax = b. Let A be an I by J real matrix and for i = 1, ..., I let
Bi = {x|(Ax)i = bi}, where bi denotes the i-th entry of the vector b. Now
let Ci = Bi. Any solution of Ax = b lies in the intersection of the Ci; if
the system is inconsistent then the intersection is empty. The Kaczmarz
algorithm [88] for solving the system of linear equations Ax = b has the
iterative step

xk+1
j = xk

j + Ai(k)j(bi(k) − (Axk)i(k)), (24.1)

for j = 1, ..., J , k = 0, 1, ... and i(k) = k(mod I) + 1. This algorithm
was rediscovered by Gordon, Bender and Herman [74], who called it the
algebraic reconstruction technique (ART). This algorithm is an example
of the method of successive orthogonal projections (SOP) [76] whereby we
generate the sequence {xk} by taking xk+1 to be the point in Ci(k) closest to

xk. Kaczmarz’s algorithm can also be viewed as a method for constrained
optimization: whenever Ax = b has solutions, the limit of the sequence
generated by equation (24.1) minimizes the function ||x − x0||2 over all
solutions of Ax = b.

In the example just discussed the sets Ci are hyperplanes in RJ ; suppose
now that we take the Ci to be half-spaces and consider the problem of
finding x such that Ax ≥ b. For each i let Hi be the half-space Hi =
{x|(Ax)i ≥ bi}. Then x will be in the intersection of the sets Ci = Hi if and
only if Ax ≥ b. Methods for solving this CFP, such as Hildreth’s algorithm,
are discussed in [45]. Of particular interest for us here is the behavior of the
Agmon-Motzkin-Schoenberg (AMS) algorithm (AMS) algorithm [1] [104]
for solving such systems of inequalities Ax ≥ b. The AMS algorithm has
the iterative step

xk+1
j = xk

j + Ai(k)j(bi(k) − (Axk)i(k))+. (24.2)

The AMS algorithm converges to a solution of Ax ≥ b, if there are solutions.
If there are no solutions the AMS algorithm converges cyclically, that is,
subsequences associated with the same m converge [60],[10]. We present
an elementary proof of this result in this chapter.

Algorithms for solving the CFP fall into two classes: those that employ
all the sets Ci at each step of the iteration (the so-called simultaneous meth-
ods) and those that do not (the row-action algorithms or, more generally,
block-iterative methods).

In the consistent case, in which the intersection of the convex sets Ci

is nonempty, all reasonable algorithms are expected to converge to a mem-
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ber of that intersection; the limit may or may not be the member of the
intersection closest to the starting vector x0.

In the inconsistent case, in which the intersection of the Ci is empty,
simultaneous methods typically converge to a minimizer of a proximity
function [37], such as

f(x) =
∑I

i=1
||x − PCi

x||22,

if a minimizer exists.
Methods that are not simultaneous cannot converge in the inconsistent

case, since the limit would then be a member of the (empty) intersection.
Such methods often exhibit what is called cyclic convergence; that is, sub-
sequences converge to finitely many distinct limits comprising a limit cycle.
Once a member of this limit cycle is reached, further application of the al-
gorithm results in passing from one member of the limit cycle to the next.
Proving the existence of these limit cycles seems to be a difficult problem.

Tanabe [118] showed the existence of a limit cycle for Kaczmarz’s algo-
rithm (see also [57]), in which the convex sets are hyperplanes. The SOP
method may fail to have a limit cycle for certain choices of the convex
sets. For example, if, in R2, we take C1 to be the lower half-plane and
C2 = {(x, y)|x > 0, y ≥ 1/x}, then the SOP algorithm fails to produce a
limit cycle. However, Gubin, Polyak and Riak [76] prove weak convergence
to a limit cycle for the method of SOP in Hilbert space, under the assump-
tion that at least one of the Ci is bounded, hence weakly compact. In [10]
Bauschke, Borwein and Lewis present a wide variety of results on the ex-
istence of limit cycles. In particular, they prove that if each of the convex
sets Ci in Hilbert space is a convex polyhedron, that is, the intersection of
finitely many half-spaces, then there is a limit cycle and the subsequential
convergence is in norm. This result includes the case in which each Ci is a
half-space, so implies the existence of a limit cycle for the AMS algorithm.
In this paper we give a proof of existence of a limit cycle for the AMS
algorithm using a modification of our proof for the ART.

In the next section we consider the behavior of the ART for solving Ax =
b. The proofs given by Tanabe and Dax of the existence of a limit cycle for
this algorithm rely heavily on aspects of the theory of linear algebra, as did
the proof given in an earlier chapter here. Our goal now is to obtain a more
direct proof that can be easily modified to apply to the AMS algorithm.

We assume throughout this chapter that the real I by J matrix A has
full rank and its rows have Euclidean length one.

24.2 Solving Ax = b

For i = 1, 2, ..., I let Ki = {x|(Ax)i = 0}, Bi = {x|(Ax)i = bi} and
pi be the metric projection of x = 0 onto Bi. Let vr

i = (AxrI+i−1)i
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and vr = (vr
1, ..., v

r
I )T , for r = 0, 1, .... We begin with some basic facts

concerning the ART.
Fact 1:

||xk||22 − ||xk+1||22 = (A(xk)i(k))
2 − (bi(k))

2.

Fact 2:
||xrI ||22 − ||x(r+1)I ||22 = ||vr||22 − ||b||22.

Fact 3:
||xk − xk+1||22 = ((Axk)i(k) − bi(k))

2.

Fact 4: There exists B > 0 such that, for all r = 0, 1, ..., if ||vr||2 ≤ ||b||2
then ||xrI ||2 ≥ ||x(r+1)I ||2 − B.

Fact 5: Let x0 and y0 be arbitrary and {xk} and {yk} the sequences gen-
erated by applying the ART. Then

||x0 − y0||22 − ||xI − yI ||22 =
∑I

i=1
((Axi−1)i − (Ayi−1)i)

2.

24.2.1 When the System Ax = b is Consistent

In this subsection we give a proof of the following result.

Theorem 24.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (24.1). Then the sequence {||x̂−xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

Proof: Let Ax̂ = b. It follows from Fact 5 that the sequence {||x̂ − xrI ||2}
is decreasing and the sequence {vr − b} → 0. So {xrI} is bounded; let x∗,0

be a cluster point. Then, for i = 1, 2, ..., I let x∗,i be the successor of x∗,i−1

using the ART. It follows that (Ax∗,i−1)i = bi for each i, from which we
conclude that x∗,0 = x∗,i for all i and that Ax∗,0 = b. Using x∗,0 in place of
x̂, we have that {||x∗,0 −xk||2} is decreasing. But a subsequence converges
to zero, so {xk} converges to x∗,0. By Fact 5 the difference ||x̂ − xk||22 −
||x̂ − xk+1||22 is independent of which solution x̂ we pick; consequently, so
is ||x̂−x0||22 − ||x̂−x∗,0||22. It follows that x∗,0 is the solution closest to x0.
This completes the proof.

24.2.2 When the System Ax = b is Inconsistent

In the inconsistent case the sequence {xk} will not converge, since any
limit would be a solution. However, for each fixed i ∈ {1, 2, ..., I}, the
subsequence {xrI+i} converges [118], [57]; in this subsection we prove this
result and then, in the next section, we extend the proof to get cyclic
convergence for the AMS algorithm. We start by showing that the sequence
{xrI} is bounded. We assume that I > J and A has full rank.
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Proposition 24.1 The sequence {xrI} is bounded.

Proof: Assume that the sequence {xrI} is unbounded. We first show that
we can select a subsequence {xrtI} with the properties ||xrtI ||2 ≥ t and
||vrt ||2 < ||b||2, for t = 1, 2, ....

Assume that we have selected xrtI , with the properties ||xrtI ||2 ≥ t and
||vrt ||2 < ||b||2; we show how to select xrt+1I . Pick integer s > 0 such that

||xsI ||2 ≥ ||xrtI ||2 + B + 1,

where B > 0 is as in Fact 4. With n + rt = s let m ≥ 0 be the smallest
integer for which

||x(rt+n−m−1)I ||2 < ||xsI ||2 ≤ ||x(rt+n−i)I ||2.
Then ||vrt+n−m−1||2 < ||b||2. Let xrt+1I = x(rt+n−m−1)I . Then we have

||xrt+1I ||2 ≥ ||x(rt+n−m)I ||2−B ≥ ||xsI ||2−B ≥ ||xrtI ||2+B+1−B ≥ t+1.

This gives us the desired subsequence.
For every k = 0, 1, ... let zk+1 = xk+1 − pi(k). Then zk+1 ∈ Ki(k).

For zk+1 6= 0 let uk+1 = zk+1/||zk+1||2. Since the subsequence {xrtI}
is unbounded, so is {zrtI}, so for sufficiently large t the vectors urtI are
defined and on the unit sphere. Let u∗,0 be a cluster point of {urtI};
replacing {xrtI} with a subsequence if necessary, assume that the sequence
{urtI} converges to u∗,0. Then let u∗,1 be a subsequence of urtI+1}; again,
assume the sequence {urtI+1} converges to u∗,1. Continuing in this manner,
we have {urtI+τ} converging to u∗,τ for τ = 0, 1, 2, .... We know that {zrtI}
is unbounded and since ||vrt ||2 < ||b||2, we have, by Fact 3, that {zrtI+i−1−
zrtI+i} is bounded for each i. Consequently {zrtI+i} is unbounded for each
i.

Now we have

||zrtI+i−1 − zrtI+i||2 ≥ ||zrtI+i−1||2 ||urtI+i−1 − 〈urtI+i−1, urtI+i〉urtI+i||2.
Since the left side is bounded and ||zrtI+i−1||2 has no infinite bounded
subsequence, we conclude that

||urtI+i−1 − 〈urtI+i−1, urj+I+i〉urtI+i||2 → 0.

It follows that u∗,0 = u∗,i or u∗,0 = −u∗,i for each i = 1, 2, ..., I. Therefore
u∗,0 is in Ki for each i; but, since the null space of A contains only zero,
this is a contradiction. This completes the proof of the proposition.

Now we give a proof of the following result.

Theorem 24.2 Let A be I by J , with I > J and A with full rank. If
Ax = b has no solutions, then, for any x0 and each fixed i ∈ {0, 1, ..., I},
the subsequence {xrI+i} converges to a limit x∗,i. Beginning the iteration
in Equation (24.1) at x∗,0, we generate the x∗,i in turn, with x∗,I = x∗,0.
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Proof: Let x∗,0 be a cluster point of {xrI}. Beginning the ART at x∗,0 we
obtain x∗,n, for n = 0, 1, 2, .... It is easily seen that

||x(r−1)I−xrI ||22−||xrI−x(r+1)I ||22 =
∑I

i=1
((Ax(r−1)I+i−1)i−(AxrI+i−1)i)

2.

Therefore the sequence {||x(r−1)I − xrI ||2} is decreasing and

{
∑I

i=1
((Ax(r−1)I+i−1)i − (AxrI+i−1)i)

2} → 0.

Therefore (Ax∗,i−1)i = (Ax∗,I+i−1)i for each i.
For arbitrary x we have

||x−x∗,0||2−||x−x∗,I ||22 =
∑I

i=1
((Ax)i−(Ax∗,i−1)i)

2−
∑I

i=1
((Ax)i−bi)

2,

so that

||x − x∗,0||22 − ||x − x∗,I ||22 = ||x − x∗,I ||22 − ||x − x∗,2I ||22.

Using x = x∗,I we have

||x∗,I − x∗,0||2 = −||x∗,I − x∗,2I ||2,

from which we conclude that x∗,0 = x∗,I . From Fact 5 it follows that the
sequence {||x∗,0 − xrI ||2} is decreasing; but a subsequence converges to
zero, so the entire sequence converges to zero and {xrI} converges to x∗,0.
This completes the proof.

Now we turn to the problem Ax ≥ b.

24.3 The Agmon-Motzkin-Schoenberg algo-
rithm

In this section we are concerned with the behavior of the AMS algorithm
for finding x such that Ax ≥ b, if such x exist. We begin with some basic
facts concerning the AMS algorithm.

Let wr
i = min{(AxrI+i−1)i, bi} and wr = (wr

1, ..., w
r
I)

T , for r = 0, 1, ....
The following facts are easily established.
Fact 1a:

||xrI+i−1||22 − ||xrI+i||22 = (wr
i )

2 − (bi)
2.

Fact 2a:
||xrI ||22 − ||x(r+1)I ||22 = ||wr||22 − ||b||22.

Fact 3a:
||xrI+i−1 − xrI+i||22 = (wr

i − bi)
2.
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Fact 4a: There exists B > 0 such that, for all r = 0, 1, ..., if ||wr||2 ≤ ||b||2
then ||xrI ||2 ≥ ||x(r+1)I ||2 − B.

Fact 5a: Let x0 and y0 be arbitrary and {xk} and {yk} the sequences
generated by applying the AMS algorithm. Then
||x0 − y0||22 − ||xI − yI ||22 =

∑I

i=1
((Axi−1)i − (Ayi−1)i)

2−

∑I

i=1
(((Axi−1)i − bi)+ − ((Ayi−1)i − bi)+)2 ≥ 0.

Consider for a moment the elements of the second sum in the inequality
above. There are four possibilities:
1) both (Axi−1)i − bi and (Ayi−1)i − bi are nonnegative, in which case this
term becomes ((Axi−1)i − (Ayi−1)i)

2 and cancels with the same term in
the previous sum;
2) neither (Axi−1)i − bi nor (Ayi−1)i − bi is nonnegative, in which case this
term is zero;
3) precisely one of (Axi−1)i − bi and (Ayi−1)i − bi is nonnegative; say it is
(Axi−1)i − bi, in which case the term becomes ((Axi−1)i − bi)

2.
Since we then have

(Ayi−1)i ≤ bi < (Axi−1)i

it follows that

((Axi−1)i − (Ayi−1)i)
2 ≥ ((Axi−1)i − bi)

2.

We conclude that the right side of the equation in Fact 5a is nonnegative,
as claimed.

It will be important in subsequent discussions to know under what
conditions the right side of this equation is zero, so we consider that now.
We then have

((Axi−1)i − (Ayi−1)i)
2 − (((Axi−1)i − bi)+ − ((Ayi−1)i − bi)+)2 = 0

for each m separately, since each of these terms is nonnegative, as we have
just seen.

In case 1) above this difference is already zero, as we just saw. In case
2) this difference reduces to ((Axi−1)i − (Ayi−1)i)

2, which then is zero
precisely when (Axi−1)i = (Ayi−1)i. In case 3) the difference becomes

((Axi−1)i − (Ayi−1)i)
2 − ((Axi−1)i − bi)

2,

which equals

((Axi−1)i − (Ayi−1)i + (Axi−1)i − bi)(bi − (Ayi−1)i).
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Since this is zero, it follows that (Ayi−1)i = bi, which contradicts our
assumptions in this case. We conclude therefore that the difference of
sums in Fact 5a is zero if and only if, for all i, either both (Axi−1)i ≥ bi

and (Ayi−1)i ≥ bi or (Axi−1)i = (Ayi−1)i < bi.

24.3.1 When Ax ≥ b is Consistent

We now prove the following result.

Theorem 24.3 Let Ax̂ ≥ b. Let x0 be arbitrary and let {xk} be generated
by equation (24.2). Then the sequence {||x̂ − xk||2} is decreasing and the
sequence {xk} converges to a solution of Ax ≥ b.

Proof: Let Ax̂ ≥ b. When we apply the AMS algorithm beginning at x̂
we obtain x̂ again at each step. Therefore, by Fact 5a and the discussion
that followed, with y0 = x̂, we have
||xk − x̂||22 − ||xk+1 − x̂||22 =

((Axk)i − (Ax̂)i)
2 − (((Axk)i − bi)+ − (Ax̂)i + bi)

2 ≥ 0. (24.3)

Therefore the sequence {||xk − x̂||2} is decreasing and so {xk} is bounded;
let x∗,0 be a cluster point.

The sequence defined by the right side of Equation (24.3) above con-
verges to zero. It follows from the discussion following Fact 5a that Ax∗,0 ≥
b. Continuing as in the case of Ax = b, we have that the sequence {xk}
converges to x∗,0. In general it is not the case that x∗,0 is the solution of
Ax ≥ b closest to x0.

Now we turn to the inconsistent case.

24.3.2 When Ax ≥ b is Inconsistent

In the inconsistent case the sequence {xk} will not converge, since any limit
would be a solution. However, we do have the following result.

Theorem 24.4 Let A be I by J , with I > J and A with full rank. Let
x0 be arbitrary. The sequence {xrI} converges to a limit x∗,0. Beginning
the AMS algorithm at x∗,0 we obtain x∗,k, for k = 1, 2, ... . For each fixed
i ∈ {0, 1, 2, ..., I}, the subsequence {xrI+i} converges to x∗,i and x∗,I = x∗,0.

We start by showing that the sequence {xrI} is bounded.

Proposition 24.2 The sequence {xrI} is bounded.

Proof: Assume that the sequence {xrI} is unbounded. We first show that
we can select a subsequence {xrtI} with the properties ||xrtI ||2 ≥ t and
||wrt ||2 < ||b||2, for t = 1, 2, ....
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Assume that we have selected xrtI , with the properties ||xrtI ||2 ≥ t and
||wrt ||2 < ||b||2; we show how to select xrt+1I . Pick integer s > 0 such that

||xsI ||2 ≥ ||xrtI ||2 + B + 1,

where B > 0 is as in Fact 4a. With n + rt = s let m ≥ 0 be the smallest
integer for which

||x(rt+n−m−1)I ||2 < ||xsI ||2 ≤ ||x(rt+n−m)I ||2.

Then ||wrt+n−m−1||2 < ||b||2. Let xrt+1I = x(rt+n−m−1)I . Then we have

||xrt+1I ||2 ≥ ||x(rt+n−m)I ||2−B ≥ ||xsI ||2−B ≥ ||xrtI ||2+B+1−B ≥ t+1.

This gives us the desired subsequence.
For every k = 0, 1, ... let zk+1 be the metric projection of xk+1 onto

the hyperplane Ki(k). Then zk+1 = xk+1 − pi(k) if (Axk)i ≤ bi and

zk+1 = xk+1 − (Axk)iA
i if not; here Ai is the i-th column of AT . Then

zk+1 ∈ Ki(k). For zk+1 6= 0 let uk+1 = zk+1/||zk+1||2. Let u∗,0 be a cluster
point of {urtI}; replacing {xrtI} with a subsequence if necessary, assume
that the sequence {urtI} converges to u∗,0. Then let u∗,1 be a subsequence
of {urtI+1}; again, assume the sequence {urtI+1} converges to u∗,1. Contin-
uing in this manner, we have {urtI+m} converging to u∗,m for m = 0, 1, 2, ....
Since ||wrt ||2 < ||b||2, we have, by Fact 3a, that {zrtI+i−1 − zrtI+i} is
bounded for each i. Now we have

||zrtI+i−1−zrtI+i||2 ≥ ||zrtI+i−1||2 ||urtI+i−1−〈urtI+i−1, urt+I+i〉urtI+i||2.

The left side is bounded. We consider the sequence ||zrtI+i−1||2 in two
cases: 1) the sequence is unbounded; 2) the sequence is bounded.

In the first case, it follows, as in the case of Ax = b, that u∗,i−1 = u∗,i

or u∗,i−1 = −u∗,i. In the second case we must have (AxrtI+i−1)i > bi for t
sufficiently large, so that, from some point on, we have xrtI+i−1 = xrtI+i,
in which case we have u∗,i−1 = u∗,i. So we conclude that u∗,0 is in the
null space of A, which is a contradiction. This concludes the proof of the
proposition.

Proof of Theorem 24.4: Let x∗,0 be a cluster point of {xrI}. Beginning
the AMS iteration (24.2) at x∗,0 we obtain x∗,m, for m = 0, 1, 2, .... From
Fact 5a it is easily seen that the sequence {||xrI − x(r+1)I ||2} is decreasing
and that the sequence

{
∑I

i=1
((Ax(r−1)I+i−1)i − (AxrI+i−1)i)

2−

∑I

i=1
(((Ax(r−1)I+i−1)i − bi)+ − ((AxrI+i−1)i − bi)+)2} → 0.
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Again, by the discussion following Fact 5a, we conclude one of two things:
either Case (1): (Ax∗,i−1)i = (Ax∗,jI+i−1)i for each j = 1, 2, ... or Case
(2): (Ax∗,i−1)i > bi and, for each j = 1, 2, ..., (Ax∗,jI+i−1)i > bi. Let
Ai denote the i-th column of AT . As the AMS iteration proceeds from
x∗,0 to x∗,I , from x∗,I to x∗,2I and, in general, from x∗,jI to x∗,(j+1)I we
have either x∗,i−1 − x∗,i = 0 and x∗,jI+i−1 − x∗,jI+i = 0, for each j =
1, 2, ..., which happens in Case (2), or x∗,i−1 − x∗,i = x∗,jI+i−1 − x∗,jI+i =
(bi − (Ax∗,i−1)i)A

i, for j = 1, 2, ..., which happens in Case (1). It follows,
therefore, that

x∗,0 − x∗,I = x∗,jI − x∗,(j+1)I

for j = 1, 2, ... . Since the original sequence {xrI} is bounded, we have

||x∗,0 − x∗,jI ||2 ≤ ||x∗,0||2 + ||x∗,jI ||2 ≤ K

for some K and all j = 1, 2, ... . But we also have

||x∗,0 − x∗,jI ||2 = j||x∗,0 − x∗,I ||2.

We conclude that ||x∗,0 − x∗,I ||2 = 0 or x∗,0 = x∗,I .
From Fact 5a, using y0 = x∗,0, it follows that the sequence {||x∗,0 −

xrI ||2} is decreasing; but a subsequence converges to zero, so the entire
sequence converges to zero and {xrI} converges to x∗,0. This completes
the proof of Theorem 24.4.



Chapter 25

The Split Feasibility
Problem

The split feasibility problem (SFP) [40] is to find c ∈ C with Ac ∈ Q, if such
points exist, where A is a real I by J matrix and C and Q are nonempty,
closed convex sets in RJ and RI , respectively. In this chapter we discuss
the CQ algorithm for solving the SFP, as well as recent extensions and
applications.

25.1 The CQ Algorithm

In [31] the CQ algorithm for solving the SFP was presented, for the real
case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (25.1)

where I is the identity operator and γ ∈ (0, 2/ρ(AT A)), for ρ(AT A) the
spectral radius of the matrix AT A, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (25.2)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1

2
||PQAx − Ax||22

205
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over the set C, provided such constrained minimizers exist. Therefore the
CQ algorithm is an iterative constrained optimization method. As shown
in [32], convergence of the CQ algorithm is a consequence of Theorem 4.1.

The function f(x) is convex and differentiable on RJ and its derivative
is the operator

∇f(x) = AT (I − PQ)Ax;

see [3].

Lemma 25.1 The derivative operator ∇f is λ-Lipschitz continuous for
λ = ρ(AT A), therefore it is ν-ism for ν = 1

λ .

Proof: We have

||∇f(x) − ∇f(y)||22 = ||AT (I − PQ)Ax − AT (I − PQ)Ay||22
≤ λ||(I − PQ)Ax − (I − PQ)Ay||22.

Also
||(I − PQ)Ax − (I − PQ)Ay||22 = ||Ax − Ay||22

+||PQAx − PQAy||22 − 2〈PQAx − PQAy, Ax − Ay〉
and, since PQ is fne,

〈PQAx − PQAy, Ax − Ay〉 ≥ ||PQAx − PQAy||22.
Therefore,

||∇f(x) − ∇f(y)||22 ≤ λ(||Ax − Ay||22 − ||PQAx − PQAy||22)
≤ λ||Ax − Ay||22 ≤ λ2||x − y||22.

This completes the proof.

If γ ∈ (0, 2/λ) then B = PC(I − γAT (I −PQ)A) is av and, by Theorem
4.1, the orbit sequence {Bkx} converges to a fixed point of B, whenever
such points exist. If z is a fixed point of B, then z = PC(z − γAT (I −
PQ)Az). Therefore, for any c in C we have

〈c − z, z − (z − γAT (I − PQ)Az)〉 ≥ 0.

This tells us that
〈c − z, AT (I − PQ)Az〉 ≥ 0,

which means that z minimizes f(x) relative to the set C.
The CQ algorithm employs the relaxation parameter γ in the interval

(0, 2/L), where L is the largest eigenvalue of the matrix AT A. Choosing
the best relaxation parameter in any algorithm is a nontrivial procedure.
Generally speaking, we want to select γ near to 1/L. We saw a simple
estimate for L in our discussion of singular values of sparse matrices: if
A is normalized so that each row has length one, then the spectral radius
of AT A does not exceed the maximum number of nonzero elements in any
column of A. A similar upper bound on ρ(AT A) was obtained for non-
normalized, ε-sparse A.
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25.2 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C ⊆ RJ and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RJ , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. Generally,
we cannot solve the SFP in closed form and iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber
[92] and projected Landweber methods (see [12]), are particular cases of
the CQ algorithm.

25.2.1 The Landweber algorithm

With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b − Axk). (25.1)

This is the Landweber algorithm.

25.2.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ..., the
projected Landweber method for finding a solution of Ax = b in C has the
iterative step

xk+1 = PC(xk + γAT (b − Axk)). (25.2)

25.2.3 Convergence of the Landweber Algorithms

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever
such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution
of Ax = b, while the projected Landweber algorithm will converge to a
minimizer, over the set C, of the function ||b − Ax||2, whenever such a
minimizer exists.

25.2.4 The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous algebraic recon-
struction technique (SART) [2] for solving Ax = b, for nonnegative matrix
A. Let A be an I by J matrix with nonnegative entries. Let Ai+ > 0 be
the sum of the entries in the ith row of A and A+j > 0 be the sum of the
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entries in the jth column of A. Consider the (possibly inconsistent) system
Ax = b. The SART algorithm has the following iterative step:

xk+1
j = xk

j +
1

A+j

∑I

i=1
Aij(bi − (Axk)i)/Ai+.

We make the following changes of variables:

Bij = Aij/(Ai+)1/2(A+j)
1/2,

zj = xj(A+j)
1/2,

and
ci = bi/(Ai+)1/2.

Then the SART iterative step can be written as

zk+1 = zk + BT (c − Bzk).

This is a particular case of the Landweber algorithm, with γ = 1. The
convergence of SART follows from Theorem 4.1, once we know that the
largest eigenvalue of BT B is less than two; in fact, we show that it is one
[31].

If BT B had an eigenvalue greater than one and some of the entries of A
are zero, then, replacing these zero entries with very small positive entries,
we could obtain a new A whose associated BT B also had an eigenvalue
greater than one. Therefore, we assume, without loss of generality, that A
has all positive entries. Since the new BT B also has only positive entries,
this matrix is irreducible and the Perron-Frobenius theorem applies. We
shall use this to complete the proof.

Let u = (u1, ..., uJ)T with uj = (A+j)
1/2 and v = (v1, ..., vI)

T , with vi =
(Ai+)1/2. Then we have Bu = v and BT v = u; that is, u is an eigenvector
of BT B with associated eigenvalue equal to one, and all the entries of u
are positive, by assumption. The Perron-Frobenius theorem applies and
tells us that the eigenvector associated with the largest eigenvalue has all
positive entries. Since the matrix BT B is symmetric its eigenvectors are
orthogonal; therefore u itself must be an eigenvector associated with the
largest eigenvalue of BT B. The convergence of SART follows.

25.2.5 Application of the CQ Algorithm in Dynamic
ET

To illustrate how an image reconstruction problem can be formulated as
a SFP, we consider briefly emission computed tomography (ET) image re-
construction. The objective in ET is to reconstruct the internal spatial
distribution of intensity of a radionuclide from counts of photons detected
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outside the patient. In static ET the intensity distribution is assumed con-
stant over the scanning time. Our data are photon counts at the detectors,
forming the positive vector b and we have a matrix A of detection proba-
bilities; our model is Ax = b, for x a nonnegative vector. We could then
take Q = {b} and C = RN

+ , the nonnegative cone in RN .
In dynamic ET [68] the intensity levels at each voxel may vary with

time. The observation time is subdivided into, say, T intervals and one
static image, call it xt, is associated with the time interval denoted by t,
for t = 1, ..., T . The vector x is the concatenation of these T image vectors
xt. The discrete time interval at which each data value is collected is also
recorded and the problem is to reconstruct this succession of images.

Because the data associated with a single time interval is insufficient, by
itself, to generate a useful image, one often uses prior information concern-
ing the time history at each fixed voxel to devise a model of the behavior
of the intensity levels at each voxel, as functions of time. One may, for
example, assume that the radionuclide intensities at a fixed voxel are in-
creasing with time, or are concave (or convex) with time. The problem
then is to find x ≥ 0 with Ax = b and Dx ≥ 0, where D is a matrix chosen
to describe this additional prior information. For example, we may wish to
require that, for each fixed voxel, the intensity is an increasing function of
(discrete) time; then we want

xt+1
j − xt

j ≥ 0,

for each t and each voxel index j. Or, we may wish to require that the
intensity at each voxel describes a concave function of time, in which case
nonnegative second differences would be imposed:

(xt+1
j − xt

j) − (xt+2
j − xt+1

j ) ≥ 0.

In either case, the matrix D can be selected to include the left sides of
these inequalities, while the set Q can include the nonnegative cone as one
factor.

25.2.6 More on the CQ Algorithm

One of the obvious drawbacks to the use of the CQ algorithm is that we
would need the projections PC and PQ to be easily calculated. Several
authors have offered remedies for that problem, using approximations of the
convex sets by the intersection of hyperplanes and orthogonal projections
onto those hyperplanes [123].

In a recent paper [41] Censor et al discuss the application of the CQ al-
gorithm to the problem of intensity-modulated radiation therapy treatment
planning. Details concerning this application are in a later chapter.
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Chapter 26

Constrained Iteration
Methods

The ART and its simultaneous and block-iterative versions are designed to
solve general systems of linear equations Ax = b. The SMART, EMML
and RBI methods require that the entries of A be nonnegative, those of b
positive and produce nonnegative x. In this chapter we present variations
of the SMART and EMML that impose the constraints uj ≤ xj ≤ vj ,
where the uj and vj are selected lower and upper bounds on the individual
entries xj .

26.1 Modifying the KL distance

The SMART, EMML and RBI methods are based on the Kullback-Leibler
distance between nonnegative vectors. To impose more general constraints
on the entries of x we derive algorithms based on shifted KL distances, also
called Fermi-Dirac generalized entropies .

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x − u, z − u) + KL(v − x, v − z)

is restricted to those xand z whose entries xj and zj lie in the interval
[uj , vj ]. Our objective is to mimic the derivation of the SMART, EMML
and RBI methods, replacing KL distances with shifted KL distances, to
obtain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each j.
The algorithms that result are the ABMART and ABEMML block-iterative
methods. These algorithms were originally presented in [26], in which the
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vectors u and v were called a and b, hence the names of the algorithms.
Throughout this chapter we shall assume that the entries of the matrix A
are nonnegative. We shall denote by Bn, n = 1, ..., N a partition of the
index set {i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN)+1.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.

26.2 The ABMART Algorithm

We assume that (Au)i ≤ bi ≤ (Av)i and seek a solution of Ax = b with
uj ≤ xj ≤ vj , for each j. The algorithm begins with an initial vector x0

satisfying uj ≤ x0
j ≤ vj , for each j. Having calculated xk, we take

xk+1
j = αk

j vj + (1 − αk
j )uj , (26.1)

with n = n(k),

αk
j =

ck
j

∏n
(dk

i )Aij

1 + ck
j

∏n
(dk

i )Aij
, (26.2)

ck
j =

(xk
j − uj)

(vj − xk
j )

, (26.3)

and

dk
j =

(bi − (Au)i)((Av)i − (Axk)i)

((Av)i − bi)((Axk)i − (Au)i)
, (26.4)

where
∏n

denotes the product over those indices i in Bn(k). Notice that,

at each step of the iteration, xk
j is a convex combination of the endpoints

uj and vj , so that xk
j lies in the interval [uj , vj ].

We have the following theorem concerning the convergence of the AB-
MART algorithm:

Theorem 26.1 If there is a soluton of the system Ax = b that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
blocks Bn, the ABMART sequence converges to that constrained solution
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of Ax = b for which the Fermi-Dirac generalized entropic distance from x
to x0,

KL(x − u, x0 − u) + KL(v − x, v − x0),

is minimized. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to the minimizer of

KL(Ax − Au, b − Au) + KL(Av − Ax, Av − b)

for which
KL(x − u, x0 − u) + KL(v − x, v − x0)

is minimized.

The proof is similar to that for RBI-SMART and is found in [26].

26.3 The ABEMML Algorithm

We make the same assumptions as in the previous section. The iterative
step of the ABEMML algorithm is

xk+1
j = αk

j vj + (1 − αk
j )uj , (26.5)

where

αk
j = γk

j /dk
j , (26.6)

γk
j = (xk

j − uj)e
k
j , (26.7)

βk
j = (vj − xk

j )fk
j , (26.8)

dk
j = γk

j + βk
j , (26.9)

ek
j =

(

1 −
∑

i∈Bn

Aij

)

+
∑

i∈Bn

Aij

(

bi − (Au)i

(Axk)i − (Au)i

)

, (26.10)

and

fk
j =

(

1 −
∑

i∈Bn

Aij

)

+
∑

i∈Bn

Aij

(

(Av)i − bi

(Av)i − (Axk)i

)

. (26.11)

We have the following theorem concerning the convergence of the ABE-
MML algorithm:



214 CHAPTER 26. CONSTRAINED ITERATION METHODS

Theorem 26.2 If there is a soluton of the system Ax = b that satisfies
the constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice
of the blocks Bn, the ABEMML sequence converges to such a constrained
solution of Ax = b. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to a constrained minimizer of

KL(Ax − Au, b − Au) + KL(Av − Ax, Av − b).

The proof is similar to that for RBI-EMML and is to be found in [26]. In
contrast to the ABMART theorem, this is all we can say about the limits
of the ABEMML sequences.

Open Question: How does the limit of the ABEMML iterative sequence
depend, in the consistent case, on the choice of blocks, and, in general, on
the choice of x0?



Chapter 27

Fourier Transform
Estimation

In many remote-sensing problems, the measured data is related to the func-
tion to be imaged by Fourier transformation. In the Fourier approach to
tomography, the data are often viewed as line integrals through the object
of interest. These line integrals can then be converted into values of the
Fourier transform of the object function. In magnetic-resonance imaging
(MRI), adjustments to the external magnetic field cause the measured data
to be Fourier-related to the desired proton-density function. In such appli-
cations, the imaging problem becomes a problem of estimating a function
from finitely many noisy values of its Fourier transform. To overcome these
limitations, one can use iterative and non-iterative methods for incorporat-
ing prior knowledge and regularization; data-extrapolation algorithms form
one class of such methods.

We focus on the use of iterative algorithms for improving resolution
through extrapolation of Fourier-transform data. The reader should con-
sult the appendices for brief discussion of some of the applications of these
methods.

27.1 The Limited-Fourier-Data Problem

For notational convenience, we shall discuss only the one-dimensional case,
involving the estimation of the (possibly complex-valued) function f(x) of
the real variable x, from finitely many values F (ωn), n = 1, ..., N of its
Fourier transform. Here we adopt the definitions

F (ω) =

∫

f(x)eixωdx,
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and

f(x) =
1

2π

∫

F (ω)e−ixωdω.

Because it is the case in the applications of interest to us here, we shall
assume that the object function has bounded support, that is, there is
A > 0, such that f(x) = 0 for |x| > A.

The values ω = ωn at which we have measured the function F (ω) may
be structured in some way; they may be equi-spaced along a line, or, in the
higher-dimensional case, arranged in a cartesian grid pattern, as in MRI.
According to the Central Slice Theorem, the Fourier data in tomography
lie along rays through the origin. Nevertheless, in what follows, we shall
not assume any special arrangement of these data points.

Because the data are finite, there are infinitely many functions f(x)
consistent with the data. We need some guidelines to follow in selecting
a best estimate of the true f(x). First, we must remember that the data
values are noisy, so we want to avoid overfitting the estimate to noisy
data. This means that we should include regularization in whatever method
we adopt. Second, the limited data is often insufficient to provide the
desired resolution, so we need to incorporate additional prior knowledge
about f(x), such as non-negativity, upper and lower bounds on its values,
its support, its overall shape, and so on. Third, once we have selected
prior information to include, we should be conservative in choosing an
estimate consistent with that information. This may involve the use of
constrained minimum-norm solutions. Fourth, we should not expect our
prior information to be perfectly accurate, so our estimate should not be
overly sensitive to slight changes in the prior information. Finally, the
estimate we use will be one for which there are good algorithms for its
calculation.

27.2 Minimum-Norm Estimation

To illustrate the notion of minimum-norm estimation, we begin with the
finite-dimensional problem of solving an underdetermined system of linear
equations, Ax = b, where A is a rea I by J matrix with J > I and AAT is
invertible.

27.2.1 The Minimum-Norm Solution of Ax = b

Each equation can be written as

bi = (ai)T x = 〈x, ai〉,

where the vector ai is the ith column of the matrix AT and 〈u, v〉 denoted
the inner, or dot product of the vectors u and v.
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Exercise 27.1 Show that every vector x in RJ can be written as

x = AT z + w, (27.1)

with Aw = 0 and

||x||22 = ||AT z||22 + ||w||22.
Consequently, Ax = b if and only if A(AT z) = b and AT z is the solution
having the smallest norm. This minimum-norm solution x̂ = AT z can be
found explicitly; it is

x̂ = AT z = AT (AAT )−1b. (27.2)

Hint: multiply both sides of Equation (27.1) by A and solve for z.

It follows from this exercise that the minimum-norm solution x̂ of Ax = b
has the form x̂ = AT z, which means that x̂ is a linear combination of the
ai:

x̂ =

I
∑

i=1

zia
i.

27.2.2 Minimum-Weighted-Norm Solution of Ax = b

As we shall see later, it is sometimes convenient to introduce a new norm
for the vectors. Let Q be a J by J symmetric positive-definite matrix and
define

||x||2Q = xT Qx.

With Q = CT C, where C is the positive-definite symmetric square-root of
Q, we can write

||x||2Q = ||y||22,
for y = Cx. Now suppose that we want to find the solution of Ax = b for
which ||x||2Q is minimum. We write

Ax = b

as

AC−1y = b,

so that, from Equation (27.2), we find that the solution y with minimum
norm is

ŷ = (AC−1)T (AC−1(AC−1)T )−1b,

or

ŷ = (AC−1)T (AQ−1AT )−1b,
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so that the x̂Q with minimum weighted norm is

x̂Q = C−1ŷ = Q−1AT (AQ−1AT )−1b, (27.3)

Notice that, writing

〈u, v〉Q = uT Qv,

we find that

bi = 〈Q−1ai, x̂Q〉Q,

and the minimum-weighted-norm solution of Ax = b is a linear combination
of the columns gi of Q−1AT , that is,

x̂Q =

I
∑

i=1

dig
i,

where

di = ((AQ−1AT )−1b)i,

for each i = 1, ..., I.

27.3 Fourier-Transform Data

Returning now to the case in which we have finitely many values of the
Fourier transform of f(x), we write

F (ω) =

∫

f(x)eixωdx = 〈eω, f〉 ,

where eω(x) = e−ixω and

〈g, h〉 =

∫

g(x)h(x)dx.

The norm of a function f(x) is then

||f ||2 =
√

〈f, f〉 =

√

∫

|f(x)|2dx.

27.3.1 The Minimum-Norm Estimate

Arguing as we did in the finite-dimensional case, we conclude that the
minimum-norm solution of the data-consistency equations

F (ωn) = 〈eωn
, f〉 , n = 1, ..., N,
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has the form

f̂(x) =

N
∑

n=1

ane−ixωn .

If the integration assumed to extend over the whole real line, the functions
eω(x) are mutually orthogonal and so

an =
1

2π
F (ωn). (27.4)

In most applications, however, the function f(x) is known to have finite
support.

Exercise 27.2 Show that, if f(x) = 0 for x outside the interval [a, b], then
the coefficients an satisfy the system of linear equations

F (ωn) =

N
∑

m=1

Gnmam,

with

Gnm =

∫ b

a

eix(ωn−ωm)dx.

For example, suppose that [a, b] = [−π, π] and

ωn = −π +
2π

N
n,

for n = 1, ..., N

Exercise 27.3 Show that, in this example, Gnn = 2π and Gnm = 0, for
n 6= m. Therefore, for this special case, we again have

an =
1

2π
F (ωn).

27.3.2 Minimum-Weighted-Norm Estimates

Let p(x) ≥ 0 be a weight function. Let

〈g, h〉p =

∫

g(x)h(x)p(x)−1dx,

with the understanding that p(x)−1 = 0 outside of the support of p(x).
The associated weighted norm is then

||f ||p =

√

∫

|f(x)|2p(x)−1dx.
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We can then write

F (ωn) = 〈peω, f〉p =

∫

(p(x)e−ixω)f(x)p(x)−1dx.

It follows that the function consistent with the data and having the mini-
mum weighted norm has the form

f̂p(x) = p(x)

N
∑

n=1

bne−ixωn . (27.5)

Exercise 27.4 Show that the coefficients bn satisfy the system of linear
equations

F (ωn) =

N
∑

m=1

bmPnm, (27.6)

with

Pnm =

∫

p(x)eix(ωn−ωm)dx,

for m, n = 1, ..., N .

Whenever we have prior information about the support of f(x), or about
the shape of |f(x)|, we can incorporate this information through our choice
of the weight function p(x). In this way, the prior information becomes
part of the estimate, through the first factor in Equation (27.5), with the
second factor providing information gathered from the measurement data.
This minimum-weighted-norm estimate of f(x) is called the PDFT, and is
discussed in more detail in [34].

Once we have f̂p(x), we can take its Fourier transform, F̂p(ω), which
is then an estimate of F (ω). Because the coefficients bn satisfy Equations
(27.6), we know that

F̂p(ωn) = F (ωn),

for n = 1, ..., N . For other values of ω, the estimate F̂p(ω) provides an
extrapolation of the data. For this reason, methods such as the PDFT are
sometimes called data-extrapolation methods. If f(x) is supported on an
interval [a, b], then the function F (ω) is said to be band-limited. If [c, d] is
an interval containing [a, b] and p(x) = 1, for x in [c, d], and p(x) = 0 other-
wise, then the PDFT estimate is a non-iterative version of the Gerchberg-
Papoulis band-limited extrapolation estimate of f(x) (see [34]).

27.3.3 Implementing the PDFT

The PDFT can be extended easily to the estimation of functions of several
variables. However, there are several difficult steps that can be avoided
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by iterative implementation. Even in the one-dimensional case, when the
values ωn are not equispaced, the calculation of the matrix P can be messy.
In the case of higher dimensions, both calculating P and solving for the
coefficients can be expensive. In the next section we consider an iterative
implementation that solves both of these problems.

27.4 The Discrete PDFT (DPDFT)

The derivation of the PDFT assumes a function f(x) of one or more con-
tinuous real variables, with the data obtained from f(x) by integration.
The discrete PDFT (DPDFT) begins with f(x) replaced by a finite vector
f = (f1, ..., fJ)T that is a discretization of f(x); say that fj = f(xj) for
some point xj . The integrals that describe the Fourier transform data can
be replaced by finite sums,

F (ωn) =

J
∑

j=1

fjEnj ,

where Enj = eixjωn . We have used a Riemann-sum approximation of the
integrals here, but other choices are also available. The problem then is to
solve this system of equations for the fj .

Since the N is fixed, but the J is under our control, we select J > N ,
so that the system becomes under-determined. Now we can use minimum-
norm and minimum-weighted-norms solutions of the finite-dimensional prob-
lem to obtain an approximate, discretized PDFT solution.

Since the PDFT is a minimum-weighted norm solution in the continous-
variable formulation, it is reasonable to let the DPDFT be the correspond-
ing minimum-weighted-norm solution obtained by letting the positive-definite
matrix Q be the diagonal matrix having for its jth diagonal entry

Qjj = 1/p(xj),

if p(xj) > 0, and zero, otherwise.

27.4.1 Calculating the DPDFT

The DPDFT is a minimum-weighted-norm solution, which can be calcu-
lated using, say, the ART algorithm. We know that, in the underdeter-
mined case, the ART provides the the solution closest to the starting vector,
in the sense of the Eucliean distance. We therefore reformulate the system,
so that the minimum-weighted norm solution becomes a minimum-norm
solution, as we did earlier, and then begin the ART iteration with zero.
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27.4.2 Regularization

We noted earlier that one of the principles guiding the estimation of f(x)
from Fourier transform data should be that we do not want to overfit the
estimate to noisy data. In the PDFT, this can be avoided by adding a small
positive quantity to the main diagonal of the matrix P . In the DPDFT,
implemented using ART, we regularize the ART algorthm, as we discussed
earlier.
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Applications
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Chapter 28

Detection and
Classification

In some applications of remote sensing, our goal is simply to see what is
“out there”; in sonar mapping of the sea floor, the data are the acoustic
signals as reflected from the bottom, from which the changes in depth can
be inferred. Such problems are estimation problems.

In other applications, such as sonar target detection or medical diag-
nostic imaging, we are looking for certain things, evidence of a surface
vessel or submarine, in the sonar case, or a tumor or other abnormality
in the medical case. These are detection problems. In the sonar case, the
data may be used directly in the detection task, or may be processed in
some way, perhaps frequency-filtered, prior to being used for detection. In
the medical case, or in synthetic-aperture radar (SAR), the data is usually
used to construct an image, which is then used for the detection task. In
estimation, the goal can be to determine how much of something is present;
detection is then a special case, in which we want to decide if the amount
present is zero or not.

The detection problem is also a special case of discrimination, in which
the goal is to decide which of two possibilities is true; in detection the
possibilities are simply the presence or absence of the sought-for signal.

More generally, in classification or identification, the objective is to
decide, on the basis of measured data, which of several possibilities is true.
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28.1 Estimation

We consider only estimates that are linear in the data, that is, estimates
of the form

γ̂ = b†x =

N
∑

n=1

bnxn, (28.1)

where b† denotes the conjugate transpose of the vector b = (b1, ..., bN )T .
The vector b that we use will be the best linear unbiased estimator (BLUE)
[34] for the particular estimation problem.

28.1.1 The simplest case: a constant in noise

We begin with the simplest case, estimating the value of a constant, given
several instances of the constant in additive noise. Our data are xn = γ+qn,
for n = 1, ..., N , where γ is the constant to be estimated, and the qn are
noises. For convenience, we write

x = γu + q, (28.2)

where x = (x1, ..., xN )T , q = (q1, ..., qN )T , u = (1, ..., 1)T , the expected
value of the random vector q is E(q) = 0, and the covariance matrix of q
is E(qqT ) = Q. The BLUE employs the vector

b =
1

u†Q−1u
Q−1u. (28.3)

The BLUE estimate of γ is

γ̂ =
1

u†Q−1u
u†Q−1x. (28.4)

If Q = σ2I, for some σ > 0, with I the identity matrix, then the noise
q is said to be white. In this case, the BLUE estimate of γ is simply the
average of the xn.

28.1.2 A known signal vector in noise

Generalizing somewhat, we consider the case in which the data vector x
has the form

x = γs + q, (28.5)

where s = (s1, ..., sN )T is a known signal vector. The BLUE estimator is

b =
1

s†Q−1s
Q−1s (28.6)
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and the BLUE estimate of γ is now

γ̂ =
1

s†Q−1s
s†Q−1x. (28.7)

In numerous applications of signal processing, the signal vectors take the
form of sampled sinusoids; that is, s = eθ, with

eθ =
1√
N

(e−iθ, e−2iθ, ..., e−Niθ)T , (28.8)

where θ is a frequency in the interval [0, 2π). If the noise is white, then the
BLUE estimate of γ is

γ̂ =
1√
N

N
∑

n=1

xneinθ, (28.9)

which is the discrete Fourier transform (DFT) of the data, evaluated at
the frequency θ.

28.1.3 Multiple signals in noise

Suppose now that the data values are

xn =

M
∑

m=1

γmsm
n + qn, (28.10)

where the signal vectors sm = (sm
1 , ..., sm

N )T are known and we want to
estimate the γm. We write this in matrix-vector notation as

x = Sc + q, (28.11)

where S is the matrix with entries Snm = sm
n , and our goal is to find

c = (γ1, ..., γM )T , the vector of coefficients. The BLUE estimate of the
vector c is

ĉ = (S†Q−1S)−1S†Q−1x, (28.12)

assuming that the matrix S†Q−1S is invertible, in which case we must have
M ≤ N .

If the signals sm are mutually orthogonal and have length one, then
S†S = I; if, in addition, the noise is white, the BLUE estimate of c is
ĉ = S†x, so that

ĉm =

N
∑

n=1

xnsm
n . (28.13)
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This case arises when the signals are sm = eθm
, for θm = 2πm/M , for

m = 1, ..., M , in which case the BLUE estimate of cm is

ĉm =
1√
N

N
∑

n=1

xne2πimn/M , (28.14)

the DFT of the data, evaluated at the frequency θm. Note that when
the frequencies θm are not these, the matrix S†S is not I, and the BLUE
estimate is not obtained from the DFT of the data.

28.2 Detection

As we noted previously, the detection problem is a special case of esti-
mation. Detecting the known signal s in noise is equivalent to deciding
if the coefficient γ is zero or not. The procedure is to calculate γ̂, the
BLUE estimate of γ, and say that s has been detected if |γ̂| exceeds a cer-
tain threshold. In the case of multiple known signals, we calculate ĉ, the
BLUE estimate of the coefficient vector c, and base our decisions on the
magnitudes of each entry of ĉ.

28.2.1 Parametrized signal

It is sometimes the case that we know that the signal s we seek to detect is
a member of a parametrized family, {sθ|θ ∈ Θ}, of potential signal vectors,
but we do not know the value of the parameter θ. For example, we may
be trying to detect a sinusoidal signal, s = eθ, where θ is an unknown
frequency in the interval [0, 2π). In sonar direction-of-arrival estimation,
we seek to detect a farfield point source of acoustic energy, but do not know
the direction of the source. The BLUE estimator can be extended to these
cases, as well [34]. For each fixed value of the parameter θ, we estimate γ
using the BLUE, obtaining the estimate

γ̂(θ) =
1

s†
θQ

−1sθ

s†
θQ

−1x, (28.15)

which is then a function of θ. If the maximum of the magnitude of this
function exceeds a specified threshold, then we may say that there is a
signal present corresponding to that value of θ.

Another approach would be to extend the model of multiple signals
to include a continuum of possibilities, replacing the finite sum with an
integral. Then the model of the data becomes

x =

∫

θ∈Θ

γ(θ)sθdθ + q. (28.16)
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Let S now denote the integral operator

S(γ) =

∫

θ∈Θ

γ(θ)sθdθ (28.17)

that transforms a function γ of the variable θ into a vector. The adjoint
operator, S†, transforms any N -vector v into a function of θ, according to

S†(v)(θ) =

N
∑

n=1

vn(sθ)n = s†
θv . (28.18)

Consequently, S†Q−1S is the function of θ given by

g(θ) = (S†Q−1S)(θ) =

N
∑

n=1

N
∑

j=1

Q−1
nj (sθ)j(sθ)n, (28.19)

so

g(θ) = s†
θQ

−1sθ. (28.20)

The generalized BLUE estimate of γ(θ) is then

γ̂(θ) =
1

g(θ)

N
∑

j=1

aj(sθ)j =
1

g(θ)
s†

θa , (28.21)

where x = Qa or

xn =

N
∑

j=1

ajQnj , (28.22)

for j = 1, ..., N , and so a = Q−1x. This is the same estimate we obtained
in the previous paragraph. The only difference is that, in the first case, we
assume that there is only one signal active, and apply the BLUE for each
fixed θ, looking for the one most likely to be active. In the second case,
we choose to view the data as a noisy superposition of a continuum of the
sθ, not just one. The resulting estimate of γ(θ) describes how each of the
individual signal vectors sθ contribute to the data vector x. Nevertheless,
the calculations we perform are the same.

If the noise is white, we have aj = xj for each j. The function g(θ)
becomes

g(θ) =

N
∑

n=1

|(sθ)n|2, (28.23)
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which is simply the square of the length of the vector sθ. If, in addition,
the signal vectors all have length one, then the estimate of the function
γ(θ) becomes

γ̂(θ) =

N
∑

n=1

xn(sθ)n = s†
θx. (28.24)

Finally, if the signals are sinusoids sθ = eθ, then

γ̂(θ) =
1√
N

N
∑

n=1

xneinθ, (28.25)

again, the DFT of the data vector.

28.3 Discrimination

The problem now is to decide if the data is x = s1 + q or x = s2 + q,
where s1 and s2 are known vectors. This problem can be converted into a
detection problem: Do we have x − s1 = q or x − s1 = s2 − s1 + q? Then
the BLUE involves the vector Q−1(s2 − s1) and the discrimination is made
based on the quantity (s2 − s1)†Q−1x. If this quantity is near enough to
zero we say that the signal is s1; otherwise, we say that it is s2. The BLUE
in this case is sometimes called the Hotelling linear discriminant, and a
procedure that uses this method to perform medical diagnostics is called a
Hotelling observer.

More generally, suppose we want to decide if a given vector x comes
from class C1 or from class C2. If we can find a vector b such that bT x > a
for every x that comes from C1, and bT x < a for every x that comes from
C2, then the vector b is a linear discriminant for deciding between the
classes C1 and C2.

28.3.1 Channelized Observers

The N by N matrix Q can be quite large, particularly when x and q are
vectorizations of two-dimensional images. If, in additional, the matrix Q
is obtained from K observed instances of the random vector q, then for Q
to be invertible, we need K ≥ N . To avoid these and other difficulties, the
channelized Hotelling linear discriminant is often used. The idea here is
to replace the data vector x with Ux for an appropriately chosen J by N
matrix U , with J much smaller than N ; the value J = 3 is used in [72], with
the channels chosen to capture image information within selected frequency
bands.



28.4. CLASSIFICATION 231

28.3.2 An Example of Discrimination

Suppose that there are two groups of students, the first group denoted G1,
the second G2. The math SAT score for the students in G1 is always above
500, while their verbal scores are always below 500. For the students in G2

the opposite is true; the math scores are below 500, the verbal above. For
each student we create the two-dimensional vector x = (x1, x2)

T of SAT
scores, with x1 the math score, x2 the verbal score. Let b = (1,−1)T . Then
for every student in G1 we have bT x > 0, while for those in G2, we have
bT x < 0. Therefore, the vector b provides a linear discriminant.

Suppose we have a third group, G3, whose math scores and verbal scores
are both below 500. To discriminate between members of G1 and G3 we
can use the vector b = (1, 0)T and a = 500. To discriminate between the
groups G2 and G3, we can use the vector b = (0, 1)T and a = 500.

Now suppose that we want to decide from which of the three groups
the vector x comes; this is classification.

28.4 Classification

The classification problem is to determine to which of several classes of
vectors a given vector x belongs. For simplicity, we assume all vectors
are real. The simplest approach to solving this problem is to seek linear
discriminant functions; that is, for each class we want to have a vector b
with the property that bT x > 0 if and only if x is in the class. If the vectors
x are randomly distributed according to one of the parametrized family of
probability density functions (pdf) p(x;ω) and the ith class corresponds
to the parameter value ωi then we can often determine the discriminant
vectors bi from these pdf. In many cases, however, we do not have the pdf
and the bi must be estimated through a learning or training step before
they are used on as yet unclassified data vectors. In the discussion that
follows we focus on obtaining b for one class, suppressing the index i.

28.4.1 The Training Stage

In the training stage a candidate for b is tested on vectors whose class
membership is known, say {x1, ..., xM}. First, we replace each vector xm

that is not in the class with its negative. Then we seek b such that bT xm > 0
for all m. With A the matrix whose mth row is (xm)T we can write the
problem as Ab > 0. If the b we obtain has some entries very close to zero
it might not work well enough on actual data; it is often better, then, to
take a vector ε with small positive entries and require Ab ≥ ε. When we
have found b for each class we then have the machinery to perform the
classification task.
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There are several problems to be overcome, obviously. The main one is
that there may not be a vector b for each class; the problem Ab ≥ ε need
not have a solution. In classification this is described by saying that the
vectors xm are not linearly separable [63]. The second problem is finding
the b for each class; we need an algorithm to solve Ab ≥ ε.

One approach to designing an algorithm for finding b is the following: for
arbitrary b let f(b) be the number of the xm misclassified by vector b. Then
minimize f(b) with respect to b. Alternatively, we can minimize the func-
tion g(b) defined to be the sum of the values −bT xm, taken over all the xm

that are misclassified; the g(b) has the advantage of being continuously val-
ued. The batch Perceptron algorithm [63] uses gradient descent methods to
minimize g(b). Another approach is to use the Agmon-Motzkin-Schoenberg
(AMS) algorithm to solve the system of linear inequalities Ab ≥ ε [34].

When the training set of vectors is linearly separable, the batch Percep-
tron and the AMS algorithms converge to a solution, for each class. When
the training vectors are not linearly separable there will be a class for which
the problem Ab ≥ ε will have no solution. Iterative algorithms in this case
cannot converge to a solution. Instead, they may converge to an approxi-
mate solution or, as with the AMS algorithm, converge subsequentially to
a limit cycle of more than one vector.

28.4.2 Our Example Again

We return to the example given earlier, involving the three groups of stu-
dents and their SAT scores. To be consistent with the conventions of this
section, we define x = (x1, x2)

T differently now. Let x1 be the math SAT
score, minus 500, and x2 be the verbal SAT score, minus 500. The vector
b = (1, 0)T has the property that bT x > 0 for each x coming from G1, but
bT x < 0 for each x not coming from G1. Similarly, the vector b = (0, 1)T

has the property that bT x > 0 for all x coming from G2, while bT x < 0 for
all x not coming from G2. However, there is no vector b with the property
that bT x > 0 for x coming from G3, but bT x < 0 for all x not coming
from G3; the group G3 is not linearly separable from the others. Notice,
however, that if we perform our classification sequentially, we can employ
linear classifiers. First, we use the vector b = (1, 0)T to decide if the vector
x comes from G1 or not. If it does, fine; if not, then use vector b = (0, 1)T

to decide if it comes from G2 or G3.

28.5 More realistic models

In many important estimation and detection problems, the signal vector s
is not known precisely. In medical diagnostics, we may be trying to detect
a lesion, and may know it when we see it, but may not be able to describe it
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using a single vector s, which now would be a vectorized image. Similarly,
in discrimination or classification problems, we may have several examples
of each type we wish to identify, but will be unable to reduce these types to
single representative vectors. We now have to derive an analog of the BLUE
that is optimal with respect to the examples that have been presented for
training. The linear procedure we seek will be one that has performed best,
with respect to a training set of examples. The Fisher linear discriminant
is an example of such a procedure.

28.5.1 The Fisher linear discriminant

Suppose that we have available for training K vectors x1, ..., xK in RN ,
with vectors x1, ..., xJ in the class A, and the remaining K − J vectors in
the class B. Let w be an arbitrary vector of length one, and for each k let
yk = wT xk be the projected data. The numbers yk, k = 1, ..., J , form the
set YA, the remaining ones the set YB . Let

µA =
1

J

J
∑

k=1

xk, (28.26)

µB =
1

K − J

K
∑

k=J+1

xk, (28.27)

mA =
1

J

J
∑

k=1

yk = wT µA, (28.28)

and

mB =
1

K − J

K
∑

k=J+1

yk = wT µB . (28.29)

Let

σ2
A =

J
∑

k=1

(yk − mA)2, (28.30)

and

σ2
B =

K
∑

k=J+1

(yk − mB)2. (28.31)
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The quantity σ2 = σ2
A +σ2

B is the total within-class scatter of the projected
data. Define the function F (w) to be

F (w) =
(mA − mB)2

σ2
. (28.32)

The Fisher linear discriminant is the vector w for which F (w) achieves its
maximum.

Define the scatter matrices SA and SB as follows:

SA =

J
∑

k=1

(xk − µA)(xk − µA)T , (28.33)

and

SB =

K
∑

k=J+1

(xk − µB)(xk − µB)T . (28.34)

Then

Swithin = SA + SB (28.35)

is the within-class scatter matrix and

Sbetween = (µA − µB)(µA − µB)T (28.36)

is the between-class scatter matrix. The function F (w) can then be written
as

F (w) = wT Sbetweenw/wT Swithinw. (28.37)

The w for which F (w) achieves its maximum value is then

w = S−1
within(µA − µB). (28.38)

This vector w is the Fisher linear discriminant. When a new data vector x
is obtained, we decide to which of the two classes it belongs by calculating
wT x.
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Tomography

In this chapter we present a brief overview of transmission and emission
tomography. These days, the term tomography is used by lay people and
practitioners alike to describe any sort of scan, from ultrasound to magnetic
resonance. It has apparently lost its association with the idea of slicing, as
in the expression three-dimensional tomography. In this chapter we focus on
two important modalities, transmission tomography and emission tomog-
raphy. An x-ray CAT scan is an example of the first, a positron-emission
(PET) scan is an example of the second.

29.1 X-ray Transmission Tomography

Computer-assisted tomography (CAT) scans have revolutionized medical
practice. One example of CAT is x-ray transmission tomography. The
goal here is to image the spatial distribution of various matter within the
body, by estimating the distribution of x-ray attenuation. In the continuous
formulation, the data are line integrals of the function of interest.

When an x-ray beam travels along a line segment through the body it
becomes progressively weakened by the material it encounters. By com-
paring the initial strength of the beam as it enters the body with its final
strength as it exits the body, we can estimate the integral of the attenuation
function, along that line segment. The data in transmission tomography
are these line integrals, corresponding to thousands of lines along which
the beams have been sent. The image reconstruction problem is to cre-
ate a discrete approximation of the attenuation function. The inherently
three-dimensional problem is usually solved one two-dimensional plane, or
slice, at a time, hence the name tomography [78].

The beam attenuation at a given point in the body will depend on the
material present at that point; estimating and imaging the attenuation as a
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function of spatial location will give us a picture of the material within the
body. A bone fracture will show up as a place where significant attenuation
should be present, but is not.

29.1.1 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types of
matter, such as soft tissue, bone, ligaments, air, each weakening the beam
to a greater or lesser extent. If the intensity of the beam upon entry is Iin

and Iout is its lower intensity after passing through the body, then

Iout = Iine
−
∫

L
f
,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being scanned
and

∫

L
f is the integral of the function f over the line L along which the

x-ray beam has passed. To see why this is the case, imagine the line L
parameterized by the variable s and consider the intensity function I(s)
as a function of s. For small ∆s > 0, the drop in intensity from the start
to the end of the interval [s, s + ∆s] is approximately proportional to the
intensity I(s), to the attenuation f(s) and to ∆s, the length of the interval;
that is,

I(s) − I(s + ∆s) ≈ f(s)I(s)∆s.

Dividing by ∆s and letting ∆s approach zero, we get

dI

ds
= −f(s)I(s).

Exercise 29.1 Show that the solution to this differential equation is

I(s) = I(0) exp(−
∫ u=s

u=0

f(u)du).

Hint: Use an integrating factor.

From knowledge of Iin and Iout, we can determine
∫

L
f . If we know

∫

L
f

for every line in the x, y-plane we can reconstruct the attenuation function
f . In the real world we know line integrals only approximately and only
for finitely many lines. The goal in x-ray transmission tomography is to
estimate the attenuation function f(x, y) in the slice, from finitely many
noisy measurements of the line integrals. We usually have prior informa-
tion about the values that f(x, y) can take on. We also expect to find
sharp boundaries separating regions where the function f(x, y) varies only
slightly. Therefore, we need algorithms capable of providing such images.
As we shall see, the line-integral data can be viewed as values of the Fourier
transform of the attenuation function.
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29.1.2 Reconstruction from Line Integrals

We turn now to the underlying problem of reconstructing such functions
from line-integral data. Our goal is to reconstruct the function f(x, y) from
line-integral data. Let θ be a fixed angle in the interval [0, π), and consider
the rotation of the x, y -coordinate axes to produce the t, s-axis system,
where

t = x cos θ + y sin θ,

and
s = −x sin θ + y cos θ.

We can then write the function f as a function of the variables t and s.
For each fixed value of t, we compute the integral

∫

f(x, y)ds, obtaining
the integral of f(x, y) = f(t cos θ − s sin θ, t sin θ + s cos θ) along the single
line L corresponding to the fixed values of θ and t. We repeat this process
for every value of t and then change the angle θ and repeat again. In this
way we obtain the integrals of f over every line L in the plane. We denote
by rf (θ, t) the integral

rf (θ, t) =

∫

L

f(x, y)ds.

The function rf (θ, t) is called the Radon transform of f .
For fixed θ the function rf (θ, t) is a function of the single real variable

t; let Rf (θ, ω) be its Fourier transform. Then,

Rf (θ, ω) =

∫

(

∫

f(x, y)ds)eiωtdt,

which we can write as

Rf (θ, ω) =

∫ ∫

f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the Central Slice Theorem. For fixed θ, as we change the value
of ω, we obtain the values of the function F along the points of the line
making the angle θ with the horizontal axis. As θ varies in [0, π), we get all
the values of the function F . Once we have F , we can obtain f using the
formula for the two-dimensional inverse Fourier transform. We conclude
that we are able to determine f from its line integrals.

The Fourier-transform inversion formula for two-dimensional functions
tells us that the function f(x, y) can be obtained as

f(x, y) =
1

4π2

∫ ∫

F (u, v)e−i(xu+yv)dudv. (29.1)

The filtered backprojection methods commonly used in the clinic are derived
from different ways of calculating the double integral in Equation (29.1).
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29.1.3 The Algebraic Approach

Although there is some flexibility in the mathematical description of the
image reconstruction problem in transmission tomography, one popular
approach is the algebraic formulation of the problem. In this formulation,
the problem is to solve, at least approximately, a large system of linear
equations, Ax = b.

The attenuation function is discretized, in the two-dimensional case, by
imagining the body to consist of finitely many squares, or pixels, within
which the function has a constant, but unknown, value. This value at
the j-th pixel is denoted xj . In the three-dimensional formulation, the
body is viewed as consisting of finitely many cubes, or voxels. The beam
is sent through the body along various lines and both initial and final
beam strength is measured. From that data we can calculate a discrete
line integral along each line. For i = 1, ..., I we denote by Li the i-th line
segment through the body and by bi its associated line integral. Denote by
Aij the length of the intersection of the j-th pixel with Li; therefore, Aij

is nonnegative. Most of the pixels do not intersect line Li, so A is quite
sparse. Then the data value bi can be described, at least approximately, as

bi =

J
∑

j=1

Aijxj . (29.2)

Both I, the number of lines, and J , the number of pixels or voxels, are
quite large, although they certainly need not be equal, and are typically
unrelated.

The matrix A is large and rectangular. The system Ax = b may or may
not have exact solutions. We are always free to select J , the number of
pixels, as large as we wish, limited only by computation costs. We may also
have some choice as to the number I of lines, but within the constraints
posed by the scanning machine and the desired duration and dosage of
the scan. When the system is underdetermined (J > I), there may be
infinitely many exact solutions; in such cases we usually impose constraints
and prior knowledge to select an appropriate solution. As we mentioned
earlier, noise in the data, as well as error in our model of the physics of
the scanning procedure, may make an exact solution undesirable, anyway.
When the system is overdetermined (J < I), we may seek a least-squares
approximate solution, or some other approximate solution. We may have
prior knowledge about the physics of the materials present in the body
that can provide us with upper bounds for xj , as well as information about
body shape and structure that may tell where xj = 0. Incorporating such
information in the reconstruction algorithms can often lead to improved
images [105].
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29.2 Emission Tomography

In single-photon emission tomography (SPECT) and positron emission to-
mography (PET) the patient is injected with, or inhales, a chemical to
which a radioactive substance has been attached [121]. The chemical is de-
signed to become concentrated in the particular region of the body under
study. Once there, the radioactivity results in photons that travel through
the body and, at least some of the time, are detected by the scanner. The
function of interest is the actual concentration of the radioactive material at
each spatial location within the region of interest. Learning what the con-
centrations are will tell us about the functioning of the body at the various
spatial locations. Tumors may take up the chemical (and its radioactive
passenger) more avidly than normal tissue, or less avidly, perhaps. Mal-
functioning portions of the brain may not receive the normal amount of the
chemical and will, therefore, exhibit an abnormal amount of radioactivity.

As in the transmission tomography case, this nonnegative function is
discretized and represented as the vector x. The quantity bi, the i-th entry
of the vector b, is the photon count at the i-th detector; in coincidence-
detection PET a detection is actually a nearly simultaneous detection of
a photon at two different detectors. The entry Aij of the matrix A is the
probability that a photon emitted at the j-th pixel or voxel will be detected
at the i-th detector.

In the emission tomography case it is common to take a statistical view
[94, 93, 112, 115, 120], in which the quantity xj is the expected number of
emissions at the j-th pixel during the scanning time, so that the expected
count at the i-th detector is

E(bi) =

J
∑

j=1

Aijxj . (29.3)

The system of equations Ax = b is obtained by replacing the expected
count, E(bi), with the actual count, bi; obviously, an exact solution of the
system is not needed in this case. As in the transmission case, we seek an
approximate, and nonnegative, solution of Ax = b, where, once again, all
the entries of the system are nonnegative.

29.2.1 Maximum-Likelihood Parameter Estimation

The measured data in tomography are values of random variables. The
probabilities associated with these random variables are used in formulating
the image reconstruction problem as one of solving a large system of linear
equations. We can also use the stochastic model of the data to formulate
the problem as a statistical parameter-estimation problem, which suggests
the image be estimated using likelihood maximization. When formulated
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that way, the problem becomes a constrained optimization problem. The
desired image can then be calculated using general-purpose iterative opti-
mization algorithms, or iterative algorithms designed specifically to solve
the particular problem.

29.3 Image Reconstruction in Tomography

Image reconstruction from tomographic data is an increasingly important
area of applied numerical linear algebra, particularly for medical diagnosis
[74, 78, 89, 107, 108, 120, 121] . In the algebraic approach, the problem is
to solve, at least approximately, a large system of linear equations, Ax = b.
The vector x is large because it is usually a vectorization of a discrete
approximation of a function of two or three continuous spatial variables.
The size of the system necessitates the use of iterative solution methods
[95]. Because the entries of x usually represent intensity levels, of beam
attenuation in transmission tomography, and of radionuclide concentration
in emission tomography, we require x to be nonnegative; the physics of the
situation may impose additional constraints on the entries of x. In practice,
we often have prior knowledge about the function represented, in discrete
form, by the vector x and we may wish to include this knowledge in the
reconstruction. In tomography the entries of A and b are also nonnegative.
Iterative algorithms tailored to find solutions to these special, constrained
problems may out-perform general iterative solution methods [105]. To be
medically useful in the clinic, the algorithms need to produce acceptable
reconstructions early in the iterative process.

The Fourier approach to tomographic image reconstruction maintains,
at least initially, the continuous model for the attenuation function. The
data are taken to be line integrals through the attenuator, that is, val-
ues of its so-called x-ray transform, which, in the two-dimensional case, is
the Radon transform. The Central Slice Theorem then relates the Radon-
transform values to values of the Fourier transform of the attenuation func-
tion. Image reconstruction then becomes estimation of the (inverse) Fourier
transform. In magnetic-resonance imaging (MRI), we again have the mea-
sured data related to the function we wish to image, the proton density
function, by a Fourier relation.

In the transmission and emission tomography, the data are photon
counts, so it is natural to adopt a statistical model and to convert the
image reconstruction problem into a statistical parameter-estimation prob-
lem. The estimation can be done using maximum likelihood (ML) or max-
imum a posteriori (MAP) Bayesian methods, which then require iterative
optimization algorithms.



Chapter 30

Intensity-Modulated
Radiation Therapy

In [41] Censor et al. extend the CQ algorithm to solve what they call
the multiple-set split feasibility problem (MSSFP) . In the sequel [42] this
extended CQ algorithm is used to determine dose intensities for intensity-
modulated radiation therapy (IMRT) that satisfy both dose constraints and
radiation-source constraints.

30.1 The Extended CQ Algorithm

For n = 1, ..., N , let Cn be a nonempty, closed convex subset of RJ . For
m = 1, ..., M , let Qm be a nonempty, closed convex subset of RI . Let D be
a real I by J matrix. The MSSFP is to find a member x of C = ∩N

n=1Cn

for which h = Dx is a member of Q = ∩M
m=1Qm. A somewhat more general

problem is to find a minimizer of the proximity function

p(x) =
1

2

N
∑

n=1

αn||PCn
x − x||22 +

1

2

M
∑

m=1

βm||PQm
Dx − Dx||22, (30.1)

with respect to the nonempty, closed convex set Ω ⊆ RN , where αn and
βm are positive and

N
∑

n=1

αn +

M
∑

m=1

βm = 1.

They show that ∇p(x) is L-Lipschitz, for

L =

N
∑

n=1

αn + ρ(DT D)

M
∑

m=1

βm.
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The algorithm given in [41] has the iterative step

xk+1 = PΩ

(

xk + s
(

N
∑

n=1

αn(PCn
xk − xk) +

M
∑

m=1

βmDT (PQm
Dxk − Dxk)

)

)

,(30.2)

for 0 < s < 2/L. This algorithm converges to a minimizer of p(x) over
Ω, whenever such a minimizer exists, and to a solution, within Ω, of the
MSSFP, whenever such solutions exist.

30.2 Intensity-Modulated Radiation Therapy

For i = 1, ..., I, and j = 1, ..., J , let hi ≥ 0 be the dose absorbed by the i-th
voxel of the patient’s body, xj ≥ 0 be the intensity of the j-th beamlet of
radiation, and Dij ≥ 0 be the dose absorbed at the i-th voxel due to a unit
intensity of radiation at the j-th beamlet. In intensity space, we have the
obvious constraints that xj ≥ 0. In addition, there are implementation con-
straints; the available treatment machine will impose its own requirements,
such as a limit on the difference in intensities between adjacent beamlets.
In dosage space, there will be a lower bound on the dosage delivered to
those regions designated as planned target volumes (PTV), and an upper
bound on the dosage delivered to those regions designated as organs at risk
(OAR).

30.3 Equivalent Uniform Dosage Functions

Suppose that St is either a PTV or a OAR, and suppose that St contains
Nt voxels. For each dosage vector h = (h1, ..., hI)

T define the equivalent
uniform dosage (EUD) function et(h) by

et(h) = (
1

Nt

∑

i∈St

(hi)
α)1/α, (30.3)

where 0 < α < 1 if St is a PTV, and α > 1 if St is an OAR. The function
et(h) is convex, for h nonnegative, when St is an OAR, and −et(h) is
convex, when St is a PTV. The constraints in dosage space take the form

et(h) ≤ at,

when St is an OAR, and

−et(h) ≤ bt,

when St is a PTV. Therefore, we require that h = Dx lie within the
intersection of these convex sets.
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30.4 The Algorithm

The constraint sets are convex sets of the form {x|f(x) ≤ 0}, for particular
convex functions f . Therefore, the cyclic subgradient projection (CSP)
method is used to find the solution to the MSSFP.
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Chapter 31

Magnetic-Resonance
Imaging

Fourier-transform estimation and extrapolation techniques play a major
role in the rapidly expanding field of magnetic-resonance imaging (MRI).

31.1 An Overview of MRI

Protons have spin, which, for our purposes here, can be viewed as a charge
distribution in the nucleus revolving around an axis. Associated with the
resulting current is a magnetic dipole moment collinear with the axis of
the spin. Within a single volume element of the body, there will be many
protons. In elements with an odd number of protons, the nucleus itself
will have a net magnetic moment. In much of magnetic-resonance imaging
(MRI), it is the distribution of hydrogen in water molecules that is the
object of interest, although the imaging of phosphorus to study energy
transfer in biological processing is also important. There is ongoing work
using tracers containing fluorine, to target specific areas of the body and
avoid background resonance.

In the absence of an external magnetic field, the axes of these magnetic
dipole moments have random orientation, dictated mainly by thermal ef-
fects. When a magnetic field is introduced, it induces a small fraction of
the dipole moments to begin to align their axes with that of the magnetic
field. Only because the number of protons per unit of volume is so large
do we get a significant number of moments aligned in this way.

The axes of the magnetic dipole moments precess around the axis of the
external magnetic field at the Larmor frequency, which is proportional to
the intensity of the external magnetic field. If the magnetic field intensity
varies spatially, then so does the Larmor frequency. When the body is
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probed with an electromagnetic field at a given frequency, a resonance
signal is produced by those protons whose spin axes are precessing at that
frequency. The strength of the signal is proportional to the proton density
within the targeted volume. The received signal is then processed to obtain
information about that proton density.

As we shall see, when the external magnetic field is appropriately cho-
sen, a Fourier relationship is established between the information extracted
from the received signal and the proton density.

31.2 The External Magnetic Field

The external magnetic field generated in the MRI scanner is

H(r, t) = (H0 + G(t) · r)k + H1(t)(cos(ω0t)i + sin(ω0t)j), (31.1)

where r = (x, y, z) is the spatial position vector, and ω0 is the Larmor
frequency associated with the static field intensity H0, that is,

ω0 = γH0,

with γ the gyromagnetic ratio. The vectors i, j, and k are the unit vectors
along the coordinate axes. The vector-valued function G(t) produces the
gradient field

G(t) · r.
The magnetic field component in the x−y plane is the radio frequency (rf)
field.

If G(t) = 0, then the Larmor frequency is ω0 everywhere. If G(t) = θ,
for some direction vector θ, then the Larmor frequency is constant on planes
normal to θ. In that case, when the body is probed with an electromagnetic
field of frequency

ω = γ(H0 + s),

there is a resonance signal received from the locations r lying in the plane
θ ·r = s. The strength of the received signal is proportional to the integral,
over that plane, of the proton density function. Therefore, the measured
data will be values of the three-dimensional Radon transform of the proton
density function, which is related to its three-dimensional Fourier transform
by the Central Slice Theorem. Later, we shall consider two more widely
used examples of G(t).

31.3 The Received Signal

We assume now that the function H1(t) is a short π
2 -pulse, that is, it has

constant value over a short time interval [0, τ ] and has integral π
2γ . The
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signal produced by the probed precessing magnetic dipole moments is ap-
proximately

S(t) =

∫

R3

M0(r) exp(−iγ(

∫ t

0

G(s)ds) · r) exp(−t/T2)dr, (31.2)

where M0(r) is the local magnetization, which is proportional to the proton
density function, and T2 is the transverse or spin-spin relaxation time.

31.3.1 An Example of G(t)

Suppose now that g > 0 and θ is an arbitrary direction vector. Let

G(t) = gθ, for τ ≤ t, (31.3)

and G(t) = 0 otherwise. Then the received signal S(t) is

S(t) =

∫

R3

M0(r) exp(−iγg(t − τ)θ · r)dr

= (2π)3/2M̂0(γg(t − τ)θ), (31.4)

for τ ≤ t << T2, where M̂0 denotes the three-dimensional Fourier trans-
form of the function M0(r).

From Equation (31.4) we see that, by selecting different direction vec-
tors and by sampling the received signal S(t) at various times, we can
obtain values of the Fourier transform of M0 along lines through the origin
in the Fourier domain, called k-space. If we had these values for all θ and
for all t we would be able to determine M0(r) exactly. Instead, we have
much the same problem as in transmission tomography; only finitely many
θ and only finitely many samples of S(t). Noise is also a problem, because
the resonance signal is not strong, even though the external magnetic field
is.

We may wish to avoid having to estimate the function M0(r) from
finitely many noisy values of its Fourier transform. We can do this by
selecting the gradient field G(t) differently.

31.3.2 Another Example of G(t)

The vector-valued function G(t) can be written as

G(t) = (G1(t), G2(t), G3(t)).

Now we let
G2(t) = g2,
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and
G3(t) = g3,

for 0 ≤ t ≤ τ , and zero otherwise, and

G1(t) = g1,

for τ ≤ t, and zero otherwise. This means that only H0k and the rf field
are present up to time τ , and then the rf field is shut off and the gradient
field is turned on. Then, for t ≥ τ , we have

S(t) = (2π)3/2M̂0(γ(t − τ)g1, γτg2, γτg3).

By selecting
tn = n∆t + τ, forn = 1, ..., N,

g2k = k∆g,

and
g3i = i∆g,

for i, k = −m, ..., m we have values of the Fourier transform, M̂0, on a
Cartesian grid in three-dimensional k-space. The local magnetization func-
tion, M0, can then be approximated using the fast Fourier transform.



Chapter 32

Hyperspectral Imaging

Hyperspectral image processing provides an excellent example of the need
for estimating Fourier transform values from limited data. In this chapter
we describe one novel approach, due to Mooney et al. [103]; the presenta-
tion here follows [18].

32.1 Spectral Component Dispersion

In this hyperspectral-imaging problem the electromagnetic energy reflected
or emitted by a point, such as light reflected from a location on the earth’s
surface, is passed through a prism to separate the components as to their
wavelengths. Due to the dispersion of the different frequency components
caused by the prism, these components are recorded in the image plane
not at a single spatial location, but at distinct points along a line. Since
the received energy comes from a region of points, not a single point, what
is received in the image plane is a superposition of different wavelength
components associated with different points within the object. The first
task is to reorganize the data so that each location in the image plane is
associated with all the components of a single point of the object being
imaged; this is a Fourier-transform estimation problem, which we can solve
using band-limited extrapolation.

The points of the image plane are in one-to-one correspondence with
points of the object. These spatial locations in the image plane and in
the object are discretized into finite two-dimensional grids. Once we have
reorganized the data we have, for each grid point in the image plane, a
function of wavelength, describing the intensity of each component of the
energy from the corresponding grid point on the object. Practical con-
siderations limit the fineness of the grid in the image plane; the resulting
discretization of the object is into pixels. In some applications, such as
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satellite imaging, a single pixel may cover an area several meters on a
side. Achieving subpixel resolution is one goal of hyperspectral imaging;
capturing other subtleties of the scene is another.

Within a single pixel of the object, there may well be a variety of ob-
ject types, each reflecting or emitting energy differently. The data we now
have corresponding to a single pixel are therefore a mixture of the ener-
gies associated with each of the subobjects within the pixel. With prior
knowledge of the possible types and their reflective or emissive properties,
we can separate the mixture to determine which object types are present
within the pixel and to what extent. This mixture problem can be solved
using the RBI-EMML method.

32.2 A Single Point Source

From an abstract perspective the problem is the following: F and f are a
Fourier-transform pair, as are G and g; F and G have finite support. We
measure G and want F ; g determines some, but not all, of the values of
f . We will have, of course, only finitely many measurements of G from
which to estimate values of g. Having estimated finitely many values of g,
we have the corresponding estimates of f . We apply band-limited extrap-
olation of these finitely many values of f to estimate F . In fact, once we
have estimated values of F , we may not be finished; each value of F is a
mixture whose individual components may be what we really want. For
this unmixing step we use the RBI-EMML algorithm.

The region of the object that we wish to image is described by the two-
dimensional spatial coordinate x = (x1, x2). For simplicity, we take these
coordinates to be continuous, leaving until the end the issue of discretiza-
tion. We shall also denote by x the point in the image plane corresponding
to the point x on the object; the units of distance between two such points
in one plane and their corresponding points in the other plane may, of
course, be quite different. For each x we let F (x, λ) denote the intensity
of the component at wavelength λ of the electromagnetic energy that is
reflected from or emitted by location x. We shall assume that F (x, λ) = 0
for (x, λ) outside some bounded portion of three-dimensional space.

Consider, for a moment, the case in which the energy sensed by the
imaging system comes from a single point x. If the dispersion axis of the
prism is oriented according to the unit vector pθ, for some θ ∈ [0, 2π),
then the component at wavelength λ of the energy from x on the object
is recorded not at x in the image plane but at the point x + µ(λ − λ0)pθ.
Here, µ > 0 is a constant and λ0 is the wavelength for which the component
from point x of the object is recorded at x in the image plane.
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32.3 Multiple Point Sources

Now imagine energy coming to the imaging system for all the points within
the imaged region of the object. Let G(x, θ) be the intensity of the energy
received at location x in the image plane when the prism orientation is θ.
It follows from the description of the sensing that

G(x, θ) =

∫ +∞

−∞
F (x − µ(λ − λ0)pθ, λ)dλ. (32.1)

The limits of integration are not really infinite due to the finiteness of the
aperture and the focal plane of the imaging system. Our data will consist
of finitely many values of G(x, θ), as x varies over the grid points of the
image plane and θ varies over some finite discretized set of angles.

We begin the image processing by taking the two-dimensional inverse
Fourier transform of G(x, θ) with respect to the spatial variable x to get

g(y, θ) =
1

(2π)2

∫

G(x, θ) exp(−ix · y)dx. (32.2)

Inserting the expression for G in Equation (32.1) into Equation (32.2), we
obtain

g(y, θ) = exp(iµλ0pθ · y)

∫

exp(−iµλpθ · y)f(y, λ)dλ, (32.3)

where f(y, λ) is the two-dimensional inverse Fourier transform of F (x, λ)
with respect to the spatial variable x. Therefore,

g(y, θ) = exp(iµλ0pθ · y)F(y, γθ), (32.4)

where F(y, γ) denotes the three-dimensional inverse Fourier transform of
F (x, λ) and γθ = µpθ · y. We see then that each value of g(y, θ) that we
estimate from our measurements provides us with a single estimated value
of F .

We use the measured values of G(x, θ) to estimate values of g(y, θ)
guided by the discussion in our earlier chapter on discretization. Having
obtained finitely many estimated values of F , we use the support of the
function F (x, λ) in three-dimensional space to perform a band-limited ex-
trapolation estimate of the function F .

Alternatively, for each fixed y for which we have values of g(y, θ) we
use the PDFT or MDFT to solve Equation (32.3), obtaining an estimate
of f(y, λ) as a function of the continuous variable λ. Then, for each fixed
λ, we again use the PDFT or MDFT to estimate F (x, λ) from the values
of f(y, λ) previously obtained.
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32.4 Solving the Mixture Problem

Once we have the estimated function F (x, λ) on a finite grid in three-
dimensional space, we can use the RBI-EMML method, as in [102], to solve
the mixture problem and identify the individual object types contained
within the single pixel denoted x. For each fixed x corresponding to a pixel,
denote by b = (b1, ..., bI)

T the column vector with entries bi = F (x, λi),
where λi, i = 1, ..., I constitute a discretization of the wavelength space
of those λ for which F (x, λ) > 0. We assume that this energy intensity
distribution vector b is a superposition of those vectors corresponding to a
number of different object types; that is, we assume that

b =

J
∑

j=1

ajqj , (32.5)

for some aj ≥ 0 and intensity distribution vectors qj , j = 1, ..., J . Each
column vector qj is a model for what b would be if there had been only
one object type filling the entire pixel. These qj are assumed to be known
a priori. Our objective is to find the aj .

With Q the I by J matrix whose jth column is qj and a the column
vector with entries aj we write Equation (32.5) as b = Qa. Since the
entries of Q are nonnegative, the entries of b are positive, and we seek
a nonnegative solution a, we can use any of the entropy-based iterative
algorithms discussed earlier. Because of its simplicity of form and speed
of convergence our preference is the RBI-EMML algorithm. The recent
master’s thesis of E. Meidunas [102] discusses just such an application.



Chapter 33

Planewave Propagation

In this chapter we demonstrate how the Fourier transform arises naturally
as we study the signals received in the farfield from an array of tranmitters
or reflectors. We restrict our attention to single-frequency, or narrowband,
signals.

33.1 Transmission and Remote-Sensing

For pedagogical reasons, we shall discuss separately what we shall call the
transmission and the remote-sensing problems, although the two problems
are opposite sides of the same coin, in a sense. In the one-dimensional
transmission problem, it is convenient to imagine the transmitters located
at points (x, 0) within a bounded interval [−A, A] of the x-axis, and the
measurements taken at points P lying on a circle of radius D, centered
at the origin. The radius D is large, with respect to A. It may well be
the case that no actual sensing is to be performed, but rather, we are
simply interested in what the received signal pattern is at points P distant
from the transmitters. Such would be the case, for example, if we were
analyzing or constructing a transmission pattern of radio broadcasts. In the
remote-sensing problem, in contrast, we imagine, in the one-dimensional
case, that our sensors occupy a bounded interval of the x-axis, and the
transmitters or reflectors are points of a circle whose radius is large, with
respect to the size of the bounded interval. The actual size of the radius
does not matter and we are interested in determining the amplitudes of the
transmitted or reflected signals, as a function of angle only. Such is the case
in astronomy, farfield sonar or radar, and the like. Both the transmission
and remote-sensing problems illustrate the important role played by the
Fourier transform.
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33.2 The Transmission Problem

We identify two distinct transmission problems: the direct problem and
the inverse problem. In the direct transmission problem, we wish to deter-
mine the farfield pattern, given the complex amplitudes of the transmitted
signals. In the inverse transmission problem, the array of transmitters or
reflectors is the object of interest; we are given, or we measure, the farfield
pattern and wish to determine the amplitudes. For simplicity, we consider
only single-frequency signals.

We suppose that each point x in the interval [−A, A] transmits the
signal f(x)eiωt, where f(x) is the complex amplitude of the signal and
ω > 0 is the common fixed frequency of the signals. Let D > 0 be large,
with respect to A, and consider the signal received at each point P given
in polar coordinates by P = (D, θ). The distance from (x, 0) to P is
approximately D − x cos θ, so that, at time t, the point P receives from
(x, 0) the signal f(x)eiω(t−(D−x cos θ)/c), where c is the propagation speed.
Therefore, the combined signal received at P is

B(P, t) = eiωte−iωD/c

∫ A

−A

f(x)eix ω cos θ
c dx.

The integral term, which gives the farfield pattern of the tranmission, is

F (
ω cos θ

c
) =

∫ A

−A

f(x)eix ω cos θ
c dx,

where F (γ) is the Fourier transform of f(x), given by

F (γ) =

∫ A

−A

f(x)eixγdx.

How F (ω cos θ
c ) behaves, as a function of θ, as we change A and ω, is dis-

cussed in some detail in Chapter 12 of [34].

Consider, for example, the function f(x) = 1, for |x| ≤ A, and f(x) = 0,
otherwise. The Fourier transform of f(x) is

F (γ) = 2A
sin(Aγ)

Aγ
,

for γ 6= 0, and F (0) = 2A. Then F (ω cos θ
c ) = 2A when cos θ = 0, so when

θ = π
2 and θ = 3π

2 . We will have F (ω cos θ
c ) = 0 when Aω cos θ

c = π, or
cos θ = πc

Aω . Therefore, the transmission pattern has no nulls if πc
Aω > 1.

In order for the transmission pattern to have nulls, we need A > λ
2 , where

λ = 2πc
ω is the wavelength.
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33.3 Reciprocity

For certain remote-sensing applications, such as sonar and radar array pro-
cessing and astronomy, it is convenient to switch the roles of sender and
receiver. Imagine that superimposed planewave fields are sensed at points
within some bounded region of the interior of the sphere, having been
transmitted or reflected from the points P on the surface of a sphere whose
radius D is large with respect to the bounded region. The reciprocity prin-
ciple tells us that the same mathematical relation holds between points P
and (x, 0), regardless of which is the sender and which the receiver. Con-
sequently, the data obtained at the points (x, 0) are then values of the
inverse Fourier transform of the function describing the amplitude of the
signal sent from each point P .

33.4 Remote Sensing

A basic problem in remote sensing is to determine the nature of a distant
object by measuring signals transmitted by or reflected from that object.
If the object of interest is sufficiently remote, that is, is in the farfield, the
data we obtain by sampling the propagating spatio-temporal field is related,
approximately, to what we want by Fourier transformation. The problem
is then to estimate a function from finitely many (usually noisy) values
of its Fourier transform. The application we consider here is a common
one of remote-sensing of transmitted or reflected waves propagating from
distant sources. Examples include optical imaging of planets and asteroids
using reflected sunlight, radio-astronomy imaging of distant sources of radio
waves, active and passive sonar, and radar imaging.

33.5 The Wave Equation

In many areas of remote sensing, what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u,

where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More
complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.
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We use the method of separation of variables at this point, to get some
idea about the nature of solutions of the wave equation. Assume, for the
moment, that the solution u(t, x, y, z) has the simple form

u(t, x, y, z) = f(t)g(x, y, z).

Inserting this separated form into the wave equation, we get

f ′′(t)g(x, y, z) = c2f(t)∇2g(x, y, z)

or
f ′′(t)/f(t) = c2∇2g(x, y, z)/g(x, y, z).

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

f ′′(t) + ω2f(t) = 0, (33.1)

and

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0. (33.2)

Equation (33.2) is the Helmholtz equation.
Equation (33.1) has for its solutions the functions f(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions f(t) = eiωt

and f(t) = e−iωt. Functions u(t, x, y, z) = f(t)g(x, y, z) with such time
dependence are called time-harmonic solutions.

33.6 Planewave Solutions

Suppose that, beginning at time t = 0, there is a localized disturbance.
As time passes, that disturbance spreads out spherically. When the radius
of the sphere is very large, the surface of the sphere appears planar, to
an observer on that surface, who is said then to be in the far field. This
motivates the study of solutions of the wave equation that are constant on
planes; the so-called planewave solutions.

Exercise 33.1 Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Show
that u satisfies the wave equation utt = c2∇2u for any real vector k, so long
as ||k||2 = ω2/c2. This solution is a planewave associated with frequency ω
and wavevector k; at any fixed time the function u(s, t) is constant on any
plane in three-dimensional space having k as a normal vector.
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In radar and sonar, the field u(s, t) being sampled is usually viewed as a
discrete or continuous superposition of planewave solutions with various
amplitudes, frequencies, and wavevectors. We sample the field at various
spatial locations s, for various times t. Here we simplify the situation a
bit by assuming that all the planewave solutions are associated with the
same frequency, ω. If not, we can perform an FFT on the functions of time
received at each sensor location s and keep only the value associated with
the desired frequency ω.

33.7 Superposition and the Fourier Transform

In the continuous superposition model, the field is

u(s, t) = eiωt

∫

F (k)eik·sdk.

Our measurements at the sensor locations s give us the values

f(s) =

∫

F (k)eik·sdk. (33.3)

The data are then inverse Fourier transform values of the complex function
F (k); F (k) is defined for all three-dimensional real vectors k, but is zero,
in theory, at least, for those k whose squared length ||k||2 is not equal
to ω2/c2. Our goal is then to estimate F (k) from measured values of its
inverse Fourier transform. Since each k is a normal vector for its planewave
field component, determining the value of F (k) will tell us the strength of
the planewave component coming from the direction k.

33.7.1 The Spherical Model

We can imagine that the sources of the planewave fields are the points P
that lie on the surface of a large sphere centered at the origin. For each
P , the ray from the origin to P is parallel to some wavevector k. The
function F (k) can then be viewed as a function F (P ) of the points P . Our
measurements will be taken at points s inside this sphere. The radius of
the sphere is assumed to be orders of magnitude larger than the distance
between sensors. The situation is that of astronomical observation of the
heavens using ground-based antennas. The sources of the optical or electro-
magnetic signals reaching the antennas are viewed as lying on a large sphere
surrounding the earth. Distance to the sources is not considered now, and
all we are interested in are the amplitudes F (k) of the fields associated
with each direction k.
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33.8 Sensor Arrays

In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays.

33.8.1 The Two-Dimensional Array

Suppose now that the sensors are in locations s = (x, y, 0), for various x
and y; then we have a planar array of sensors. Then the dot product s · k
that occurs in Equation (33.3) is

s · k = xk1 + yk2;

we cannot see the third component, k3. However, since we know the size
of the vector k, we can determine |k3|. The only ambiguity that remains
is that we cannot distinguish sources on the upper hemisphere from those
on the lower one. In most cases, such as astronomy, it is obvious in which
hemisphere the sources lie, so the ambiguity is resolved.

The function F (k) can then be viewed as F (k1, k2), a function of the
two variables k1 and k2. Our measurements give us values of f(x, y), the
two-dimensional inverse Fourier transform of F (k1, k2). Because of the
limitation ||k|| = ω

c , the function F (k1, k2) has bounded support. Conse-
quently, its inverse Fourier transform cannot have bounded support. As a
result, we can never have all the values of f(x, y), and so cannot hope to
reconstruct F (k1, k2) exactly, even for noise-free data.

33.8.2 The One-Dimensional Array

If the sensors are located at points s having the form s = (x, 0, 0), then we
have a line array of sensors. The dot product in Equation (33.3) becomes

s · k = xk1.

Now the ambiguity is greater than in the planar array case. Once we have
k1, we know that

k2
2 + k2

3 = (
ω

c
)2 − k2

1,

which describes points P lying on a circle on the surface of the distant
sphere, with the vector (k1, 0, 0) pointing at the center of the circle. It
is said then that we have a cone of ambiguity. One way to resolve the
situation is to assume k3 = 0; then |k2| can be determined and we have
remaining only the ambiguity involving the sign of k2. Once again, in many
applications, this remaining ambiguity can be resolved by other means.

Once we have resolved any ambiguity, we can view the function F (k) as
F (k1), a function of the single variable k1. Our measurements give us values
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of f(x), the inverse Fourier transform of F (k1). As in the two-dimensional
case, the restriction on the size of the vectors k means that the function
F (k1) has bounded support. Consequently, its inverse Fourier transform,
f(x), cannot have bounded support. Therefore, we shall never have all of
f(x), and so cannot hope to reconstruct F (k1) exactly, even for noise-free
data.

33.8.3 Limited Aperture

In both the one- and two-dimensional problems, the sensors will be placed
within some bounded region, such as |x| ≤ A, |y| ≤ B for the two-
dimensional problem, or |x| ≤ A for the one-dimensional case. These
bounded regions are the apertures of the arrays. The larger these apertures
are, in units of the wavelength, the better the resolution of the reconstruc-
tions.

In digital array processing there are only finitely many sensors, which
then places added limitations on our ability to reconstruction the field
amplitude function F (k).

33.9 The Remote-Sensing Problem

We shall begin our discussion of the remote-sensing problem by consid-
ering an extended object transmitting or reflecting a single-frequency, or
narrowband, signal. The narrowband, extended-object case is a good place
to begin, since a point object is simply a limiting case of an extended ob-
ject, and broadband received signals can always be filtered to reduce their
frequency band.

33.9.1 The Solar-Emission Problem

In [15] Bracewell discusses the solar-emission problem. In 1942, it was
observed that radio-wave emissions in the one-meter wavelength range were
arriving from the sun. Were they coming from the entire disk of the sun
or were the sources more localized, in sunspots, for example? The problem
then was to view each location on the sun’s surface as a potential source of
these radio waves and to determine the intensity of emission corresponding
to each location. The sun has an angular diameter of 30 min. of arc, or
one-half of a degree, when viewed from earth, but the needed resolution
was more like 3 min. of arc. As we shall see shortly, such resolution requires
a radio telescope 1000 wavelengths across, which means a diameter of 1km
at a wavelength of 1 meter; in 1942 the largest military radar antennas
were less than 5 meters across. A solution was found, using the method of
reconstructing an object from line-integral data, a technique that surfaced
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again in tomography. The problem here is inherently two-dimensional, but,
for simplicity, we shall begin with the one-dimensional case.

33.10 Sampling

In the one-dimensional case, the signal received at the point (x, 0, 0) is
essentially the inverse Fourier transform f(x) of the function F (k1); for
notational simpicity, we write k = k1. The F (k) supported on a bounded
interval |k| ≤ ω

c , so f(x) cannot have bounded support. As we noted
earlier, to determine F (k) exactly, we would need measurements of f(x)
on an unbounded set. But, which unbounded set?

Because the function F (k) is zero outside the interval [−ω
c , ω

c ], the func-
tion f(x) is band-limited. The Nyquist spacing in the variable x is therefore

∆x =
πc

ω
.

The wavelength λ associated with the frequency ω is defined to be

λ =
2πc

ω
,

so that

∆x =
λ

2
.

The significance of the Nyquist spacing comes from Shannon’s Sampling
Theorem, which says that if we have the values f(m∆x), for all integers m,
then we have enough information to recover F (k) exactly. In practice, of
course, this is never the case.

33.11 The Limited-Aperture Problem

In the remote-sensing problem, our measurements at points (x, 0) in the
farfield give us the values f(x). Suppose now that we are able to take
measurements only for limited values of x, say for |x| ≤ A; then 2A is the
aperture of our antenna or array of sensors. We describe this by saying that
we have available measurements of f(x)h(x), where h(x) = χA(x) = 1, for
|x| ≤ A, and zero otherwise. So, in addition to describing blurring and
low-pass filtering, the convolution-filter model can also be used to model
the limited-aperture problem. As in the low-pass case, the limited-aperture
problem can be attacked using extrapolation, but with the same sort of risks
described for the low-pass case. A much different approach is to increase
the aperture by physically moving the array of sensors, as in synthetic
aperture radar (SAR).
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Returning to the farfield remote-sensing model, if we have inverse Fourier
transform data only for |x| ≤ A, then we have f(x) for |x| ≤ A. Using
h(x) = χA(x) to describe the limited aperture of the system, the point-
spread function is H(γ) = 2AsincγA, the Fourier transform of h(x). The
first zeros of the numerator occur at |γ| = π

A , so the main lobe of the
point-spread function has width 2π

A . For this reason, the resolution of such
a limited-aperture imaging system is said to be on the order of 1

A . Since
|k| ≤ ω

c , we can write k = ω
c cos θ, where θ denotes the angle between

the positive x-axis and the vector k = (k1, k2, 0); that is, θ points in the
direction of the point P associated with the wavevector k. The resolution,
as measured by the width of the main lobe of the point-spread function
H(γ), in units of k, is 2π

A , but, the angular resolution will depend also on
the frequency ω. Since k = 2π

λ cos θ, a distance of one unit in k may corre-
spond to a large change in θ when ω is small, but only to a relatively small
change in θ when ω is large. For this reason, the aperture of the array is
usually measured in units of the wavelength; an aperture of A = 5 meters
may be acceptable if the frequency is high, so that the wavelength is small,
but not if the radiation is in the one-meter-wavelength range.

33.12 Resolution

If F (k) = δ(k) and h(x) = χA(x) describes the aperture-limitation of the
imaging system, then the point-spread function is H(γ) = 2A sin Aγ

πγ . The

maximum of H(γ) still occurs at γ = 0, but the main lobe of H(γ) extends
from − π

A to π
A ; the point source has been spread out. If the point-source

object shifts, so that F (k) = δ(k − a), then the reconstructed image of the
object is H(k − a), so the peak is still in the proper place. If we know
a priori that the object is a single point source, but we do not know its
location, the spreading of the point poses no problem; we simply look for
the maximum in the reconstructed image. Problems arise when the object
contains several point sources, or when we do not know a priori what we
are looking at, or when the object contains no point sources, but is just a
continuous distribution.

Suppose that F (k) = δ(k − a) + δ(k − b); that is, the object consists
of two point sources. Then Fourier transformation of the aperture-limited
data leads to the reconstructed image

R(k) = 2A
sinA(k − a)

π(k − a)
+

sinA(k − b)

π(x − b)
.

If |b − a| is large enough, R(k) will have two distinct maxima, at approx-
imately k = a and k = b, respectively. For this to happen, we need π/A,
the width of the main lobe of the function sinc(Ak), to be less than |b−a|.
In other words, to resolve the two point sources a distance |b−a| apart, we
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need A ≥ π/|b − a|. However, if |b − a| is too small, the distinct maxima
merge into one, at k = a+b

2 and resolution will be lost. How small is too
small will depend on both A and ω.

Suppose now that F (k) = δ(k − a), but we do not know a priori that
the object is a single point source. We calculate

R(k) = H(k − a) =
sinA(k − a)

π(k − a)

and use this function as our reconstructed image of the object, for all k.
What we see when we look at R(k) for some k = b 6= a is R(b), which is
the same thing we see when the point source is at k = b and we look at
k = a. Point-spreading is, therefore, more than a cosmetic problem. When
the object is a point source at k = a, but we do not know a priori that it
is a point source, the spreading of the point causes us to believe that the
object function F (k) is nonzero at values of k other than k = a. When we
look at, say, k = b, we see a nonzero value that is caused by the presence
of the point source at k = a.

Suppose now that the object function F (k) contains no point sources,
but is simply an ordinary function of k. If the aperture A is very small, then
the function H(k) is nearly constant over the entire extent of the object.
The convolution of F (k) and H(k) is essentially the integral of F (k), so
the reconstructed object is R(k) =

∫

F (k)dk, for all k.
Let’s see what this means for the solar-emission problem discussed ear-

lier.

33.12.1 The Solar-Emission Problem Revisited

The wavelength of the radiation is λ = 1 meter. Therefore, ω
c = 2π, and

k in the interval [−2π, 2π] corresponds to the angle θ in [0, π]. The sun
has an angular diameter of 30 minutes of arc, which is about 10−2 radians.
Therefore, the sun subtends the angles θ in [π

2 −(0.5)·10−2, π
2 +(0.5)·10−2],

which corresponds roughly to the variable k in the interval [−3 · 10−2, 3 ·
10−2]. Resolution of 3 minutes of arc means resolution in the variable k of
3 · 10−3. If the aperture is 2A, then to achieve this resolution, we need

π

A
≤ 3 · 10−3,

or
A ≥ π

3
· 103

meters, or A not less than about 1000 meters.
The radio-wave signals emitted by the sun are focused, using a parabolic

radio-telescope. The telescope is pointed at the center of the sun. Because
the sun is a great distance from the earth and the subtended arc is small
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(30 min.), the signals from each point on the sun’s surface arrive at the
parabola nearly head-on, that is, parallel to the line from the vertex to the
focal point, and are reflected to the receiver located at the focal point of
the parabola. The effect of the parabolic antenna is not to discriminate
against signals coming from other directions, since there are none, but to
effect a summation of the signals received at points (x, 0), for |x| ≤ A,
where 2A is the diameter of the parabola. When the aperture is large, the
function h(x) is nearly one for all x and the signal received at the focal
point is essentially

∫

f(x)dx = F (0);

we are now able to distinguish between F (0) and other values F (k). When
the aperture is small, h(x) is essentially δ(x) and the signal received at the
focal point is essentially

∫

f(x)δ(x)dx = f(0) =

∫

F (k)dk;

now all we get is the contribution from all the k, superimposed, and all
resolution is lost.

Since the solar emission problem is clearly two-dimensional, and we need
3 min. resolution in both dimensions, it would seem that we would need a
circular antenna with a diameter of about one kilometer, or a rectangular
antenna roughly one kilometer on a side. We shall return to this problem
later, once when we discuss multi-dimensional Fourier transforms, and then
again when we consider tomographic reconstruction of images from line
integrals.

33.13 Discrete Data

A familiar topic in signal processing is the passage from functions of con-
tinuous variables to discrete sequences. This transition is achieved by sam-
pling, that is, extracting values of the continuous-variable function at dis-
crete points in its domain. Our example of farfield propagation can be used
to explore some of the issues involved in sampling.

Imagine an infinite uniform line array of sensors formed by placing
receivers at the points (n∆, 0), for some ∆ > 0 and all integers n. Then
our data are the values f(n∆). Because we defined k = ω

c cos θ, it is clear
that the function F (k) is zero for k outside the interval [−ω

c , ω
c ].

Exercise 33.2 Show that our discrete array of sensors cannot distinguish
between the signal arriving from θ and a signal with the same amplitude,
coming from an angle α with

ω

c
cos α =

ω

c
cos θ +

2π

∆
m,
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where m is an integer.

To avoid the ambiguity described in Exercise 33.2, we must select ∆ > 0
so that

−ω

c
+

2π

∆
≥ ω

c
,

or

∆ ≤ πc

ω
=

λ

2
.

The sensor spacing ∆s = λ
2 is the Nyquist spacing.

In the sunspot example, the object function F (k) is zero for k outside
of an interval much smaller than [−ω

c , ω
c ]. Knowing that F (k) = 0 for

|k| > K, for some 0 < K < ω
c , we can accept ambiguities that confuse

θ with another angle that lies outside the angular diameter of the object.
Consequently, we can redefine the Nyquist spacing to be

∆s =
π

K
.

This tells us that when we are imaging a distant object with a small angular
diameter, the Nyquist spacing is greater than λ

2 . If our sensor spacing has

been chosen to be λ
2 , then we have oversampled. In the oversampled case,

band-limited extrapolation methods can be used to improve resolution (see
[34]).

33.13.1 Reconstruction from Samples

From the data gathered at our infinite array we have extracted the Fourier
transform values f(n∆), for all integers n. The obvious question is whether
or not the data is sufficient to reconstruct F (k). We know that, to avoid
ambiguity, we must have ∆ ≤ πc

ω . The good news is that, provided this
condition holds, F (k) is uniquely determined by this data and formulas
exist for reconstructing F (k) from the data; this is the content of the
Shannon Sampling Theorem. Of course, this is only of theoretical interest,
since we never have infinite data. Nevertheless, a considerable amount of
traditional signal-processing exposition makes use of this infinite-sequence
model. The real problem, of course, is that our data is always finite.

33.14 The Finite-Data Problem

Suppose that we build a uniform line array of sensors by placing receivers
at the points (n∆, 0), for some ∆ > 0 and n = −N, ..., N . Then our data
are the values f(n∆), for n = −N, ..., N . Suppose, as previously, that the
object of interest, the function F (k), is nonzero only for values of k in the
interval [−K, K], for some 0 < K < ω

c . Once again, we must have ∆ ≤ πc
ω
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to avoid ambiguity; but this is not enough, now. The finite Fourier data
is no longer sufficient to determine a unique F (k). The best we can hope
to do is to estimate the true F (k), using both our measured Fourier data
and whatever prior knowledge we may have about the function F (k), such
as where it is nonzero, if it consists of Dirac delta point sources, or if it is
nonnegative. The data is also noisy, and that must be accounted for in the
reconstruction process.

In certain applications, such as sonar array processing, the sensors are
not necessarily arrayed at equal intervals along a line, or even at the grid
points of a rectangle, but in an essentially arbitrary pattern in two, or even
three, dimensions. In such cases, we have values of the Fourier transform
of the object function, but at essentially arbitrary values of the variable.
How best to reconstruct the object function in such cases is not obvious.

33.15 Functions of Several Variables

Fourier transformation applies, as well, to functions of several variables. As
in the one-dimensional case, we can motivate the multi-dimensional Fourier
transform using the farfield propagation model. As we noted earlier, the
solar emission problem is inherently a two-dimensional problem.

33.15.1 Two-Dimensional Farfield Object

Assume that our sensors are located at points s = (x, y, 0) in the x,y-plane.
As discussed previously, we assume that the function F (k) can be viewed
as a function F (k1, k2). Since, in most applications, the distant object has
a small angular diameter when viewed from a great distance - the sun’s is
only 30 minutes of arc - the function F (k1, k2) will be supported on a small
subset of vectors (k1, k2).

33.15.2 Limited Apertures in Two Dimensions

Suppose we have the values of the inverse Fourier transform, f(x, y), for
|x| ≤ A and |y| ≤ A. We describe this limited-data problem using the
function h(x, y) that is one for |x| ≤ A, and |y| ≤ A, and zero, otherwise.
Then the point-spread function is the Fourier transform of this h(x, y),
given by

H(α, β) = 4AB
sinAα

πα

sinBβ

πβ
.

The resolution in the horizontal (x) direction is on the order of 1
A , and

1
B in the vertical, where, as in the one-dimensional case, aperture is best
measured in units of wavelength.
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Suppose our aperture is circular, with radius A. Then we have inverse
Fourier transform values f(x, y) for

√

x2 + y2 ≤ A. Let h(x, y) equal one,

for
√

x2 + y2 ≤ A, and zero, otherwise. Then the point-spread function of
this limited-aperture system is the Fourier transform of h(x, y), given by

H(α, β) = A
2πr J1(rA), with r =

√

α2 + β2. The resolution of this system is
roughly the distance from the origin to the first null of the function J1(rA),
which means that rA = 4, roughly.

For the solar emission problem, this says that we would need a circular
aperture with radius approximately one kilometer to achieve 3 minutes of
arc resolution. But this holds only if the antenna is stationary; a moving
antenna is different! The solar emission problem was solved by using a
rectangular antenna with a large A, but a small B, and exploiting the
rotation of the earth. The resolution is then good in the horizontal, but bad
in the vertical, so that the imaging system discriminates well between two
distinct vertical lines, but cannot resolve sources within the same vertical
line. Because B is small, what we end up with is essentially the integral
of the function f(x, z) along each vertical line. By tilting the antenna, and
waiting for the earth to rotate enough, we can get these integrals along
any set of parallel lines. The problem then is to reconstruct F (k1, k2) from
such line integrals. This is also the main problem in tomography.

33.16 Broadband Signals

We have spent considerable time discussing the case of a distant point
source or an extended object transmitting or reflecting a single-frequency
signal. If the signal consists of many frequencies, the so-called broadband
case, we can still analyze the received signals at the sensors in terms of
time delays, but we cannot easily convert the delays to phase differences,
and thereby make good use of the Fourier transform. One approach is
to filter each received signal, to remove components at all but a single
frequency, and then to proceed as previously discussed. In this way we can
process one frequency at a time. The object now is described in terms of a
function of both k and ω, with F (k, ω) the complex amplitude associated
with the wave vector k and the frequency ω. In the case of radar, the
function F (k, ω) tells us how the material at P reflects the radio waves at
the various frequencies ω, and thereby gives information about the nature
of the material making up the object near the point P .

There are times, of course, when we do not want to decompose a broad-
band signal into single-frequency components. A satellite reflecting a TV
signal is a broadband point source. All we are interested in is receiving the
broadband signal clearly, free of any other interfering sources. The direc-
tion of the satellite is known and the antenna is turned to face the satellite.
Each location on the parabolic dish reflects the same signal. Because of its
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parabolic shape, the signals reflected off the dish and picked up at the focal
point have exactly the same travel time from the satellite, so they combine
coherently, to give us the desired TV signal.

33.17 The Laplace Transform and the Ozone
Layer

In the farfield propagation examples just considered, we found the measured
data to be related to the desired object function by a Fourier transforma-
tion. The image reconstruction problem then became one of estimating
a function fro finitely many noisy values of its Fourier transform. In this
section we consider an inverse problem involving the Laplace transform.
The example is taken from Twomey’s book [119].

33.17.1 The Laplace Transform

The Laplace transform of the function f(x) defined for 0 ≤ x < +∞ is the
function

F (s) =

∫ +∞

0

f(x)e−sxdx.

33.17.2 Scattering of Ultraviolet Radiation

The sun emits ultraviolet (UV) radiation that enters the Earth’s atmo-
sphere at an angle θ0 that depends on the sun’s position, and with intensity
I(0). Let the x-axis be vertical, with x = 0 at the top of the atmosphere
and x increasing as we move down to the Earth’s surface, at x = X. The
intensity at x is given by

I(x) = I(0)e−kx/ cos θ0 .

Within the ozone layer, the amount of UV radiation scattered in the direc-
tion θ is given by

S(θ, θ0)I(0)ekx/ cos θ0∆p,

where S(θ, θ0) is a known parameter, and ∆p is the change in the pressure
of the ozone within the infinitesimal layer [x, x+∆x], and so is proportional
to the concentration of ozone within that layer.

33.17.3 Measuring the Scattered Intensity

The radiation scattered at the angle θ then travels to the ground, a distance
of X − x, weakened along the way, and reaches the ground with intensity

S(θ, θ0)I(0)e−kx/ cos θ0e−k(X−x)/ cos θ∆p.
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The total scattered intensity at angle θ is then a superposition of the in-
tensities due to scattering at each of the thin layers, and is then

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβdp,

where

β = k[
1

cos θ0
− 1

cos θ
].

This superposition of intensity can then be written as

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβp′(x)dx.

33.17.4 The Laplace Transform Data

Using integration by parts, we get

∫ X

0

e−xβp′(x)dx = p(X)e−βX − p(0) + β

∫ X

0

e−βxp(x)dx.

Since p(0) = 0 and p(X) can be measured, our data is then the Laplace
transform value

∫ +∞

0

e−βxp(x)dx;

note that we can replace the upper limit X with +∞ if we extend p(x) as
zero beyond x = X.

The variable β depends on the two angles θ and θ0. We can alter θ as
we measure and θ0 changes as the sun moves relative to the earth. In this
way we get values of the Laplace transform of p(x) for various values of β.
The problem then is to recover p(x) from these values. Because the Laplace
transform involves a smoothing of the function p(x), recovering p(x) from
its Laplace transform is more ill-conditioned than is the Fourier transform
inversion problem.
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Chapter 34

Basic Concepts

In iterative methods, we begin with an initial vector, say x0, and, for
each nonnegative integer k, we calculate the next vector, xk+1, from the
current vector xk. The limit of such a sequence of vectors {xk}, when the
limit exists, is the desired solution to our problem. The fundamental tools
we need to understand iterative algorithms are the geometric concepts of
distance between vectors and mutual orthogonality of vectors, the algebraic
concept of transformation or operator on vectors, and the vector-space
notions of subspaces and convex sets.

34.1 The Geometry of Euclidean Space

We denote by RJ the real Euclidean space consisting of all J-dimensional
column vectors x = (x1, ..., xJ)T with real entries xj ; here the superscript
T denotes the transpose of the 1 by J matrix (or, row vector) (x1, ..., xJ).
We denote by CJ the collection of all J-dimensional column vectors x =
(x1, ..., xJ)† with complex entries xj ; here the superscript † denotes the
conjugate transpose of the 1 by J matrix (or, row vector) (x1, ..., xJ). When
discussing matters that apply to both RJ and CJ we denote the underlying
space simply as X .

34.1.1 Inner Products

For x = (x1, ..., xJ)T and y = (y1, ..., yJ)T in RJ , the dot product x · y is
defined to be

x · y =

J
∑

j=1

xjyj .

271
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Note that we can write

x · y = yT x = xT y,

where juxtaposition indicates matrix multiplication. The 2-norm, or Eu-
clidean norm, or Euclidean length, of x is

||x||2 =
√

x · x =
√

xT x.

The Euclidean distance between two vectors x and y in RJ is ||x− y||2. As
we discuss in the appendix on metric spaces, there are other norms on X ;
nevertheless, in this chapter we focus on the 2-norm of x.

For x = (x1, ..., xJ)T and y = (y1, ..., yJ)T in CJ , the dot product x · y
is defined to be

x · y =

J
∑

j=1

xjyj .

Note that we can write
x · y = y†x.

The norm, or Euclidean length, of x is

||x||2 =
√

x · x =
√

x†x.

As in the real case, the distance between vectors x and y is ||x − y||2.
Both of the spaces RJ and CJ , along with their dot products, are

examples of finite-dimensional Hilbert space. Much of what follows in these
notes applies to both RJ and CJ . In such cases, we shall simply refer to
the underlying space as X and refer to the associated dot product using
the inner product notation 〈x, y〉.

34.1.2 Cauchy’s Inequality

Cauchy’s Inequality, also called the Cauchy-Schwarz Inequality, tells us
that

|〈x, y〉| ≤ ||x||2||y||2,
with equality if and only if y = αx, for some scalar α.

Proof of Cauchy’s inequality: To prove Cauchy’s inequality for the
complex vector dot product, we write x · y = |x · y|eiθ. Let t be a real
variable and consider

0 ≤ ||e−iθx − ty||22 = (e−iθx − ty) · (e−iθx − ty)

= ||x||22 − t[(e−iθx) · y + y · (e−iθx)] + t2||y||22
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= ||x||22 − t[(e−iθx) · y + (e−iθx) · y] + t2||y||22
= ||x||22 − 2Re(te−iθ(x · y)) + t2||y||22

= ||x||22 − 2Re(t|x · y|) + t2||y||22 = ||x||22 − 2t|x · y| + t2||y||22.

This is a nonnegative quadratic polynomial in the variable t, so it can-
not have two distinct real roots. Therefore, the discriminant 4|x · y|2 −
4||y||22||x||22 must be nonpositive; that is, |x · y|2 ≤ ||x||22||y||22. This is
Cauchy’s inequality.

Exercise 34.1 Use Cauchy’s inequality to show that

||x + y||2 ≤ ||x||2 + ||y||2;

this is called the triangle inequality.

We say that the vectors x and y are mutually orthogonal if 〈x, y〉 = 0.

Exercise 34.2 Prove the Parallelogram Law:

||x + y||22 + ||x − y||22 = 2||x||22 + 2||y||22.

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law hold only for the 2-norm.

34.2 Hyperplanes in Euclidean Space

For a fixed column vector a with Euclidean length one and a fixed scalar γ
the hyperplane determined by a and γ is the set H(a, γ) = {z|〈a, z〉 = γ}.

Exercise 34.3 Show that the vector a is orthogonal to the hyperplane H =
H(a, γ); that is, if u and v are in H, then a is orthogonal to u − v.

For an arbitrary vector x in X and arbitrary hyperplane H = H(a, γ),
the orthogonal projection of x onto H is the member z = PHx of H that is
closest to x.

Exercise 34.4 Show that, for H = H(a, γ), z = PHx is the vector

z = PHx = x + (γ − 〈a, x〉)a. (34.1)

For γ = 0, the hyperplane H = H(a, 0) is also a subspace of X , meaning
that, for every x and y in H and scalars α and β, the linear combination
αx + βy is again in H; in particular, the zero vector 0 is in H(a, 0).
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34.3 Convex Sets in Euclidean Space

A subset C of X is said to be convex if, for every pair of members x and y
of C, and for every α in the open interval (0, 1), the vector αx + (1 − α)y
is also in C.

Exercise 34.5 Show that the unit ball U in X , consisting of all x with
||x||2 ≤ 1, is convex, while the surface of the ball, the set of all x with
||x||2 = 1, is not convex.

A convex set C is said to be closed if it contains all the vectors that lie
on its boundary. We say that d ≥ 0 is the distance from the point x to the
set C if, for every ε > 0, there is cε in C, with ||x − cε||2 < d + ε, and no c
in C with ||x − c||2 < d.

Exercise 34.6 Show that, if C is closed and d = 0, then x is in C.

Proposition 34.1 Given any nonempty closed convex set C and an arbi-
trary vector x in X , there is a unique member of C closest to x, denoted
PCx, the orthogonal (or metric) projection of x onto C.

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n , and ||x− cn||2 < ||x− cn−1||2. Then
the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x − (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

For example, if C = U , the unit ball, then PCx = x/||x||2, for all x such
that ||x||2 > 1, and PCx = x otherwise. If C is RJ

+, the nonnegative cone
of RJ , consisting of all vectors x with xj ≥ 0, for each j, then PCx = x+,
the vector whose entries are max (xj , 0).

34.4 Basic Linear Algebra

In this section we discuss systems of linear equations, Gaussian elimination,
basic and non-basic variables, the fundamental subspaces of linear algebra
and eigenvalues and norms of square matrices.

34.4.1 Bases

A subset S of X is a subspace if, for every x and y in S, and every scalars α
and β, the vector αx+βy is again in S. A collection of vectors {u1, ..., uN}
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in X is linearly independent if there is no collection of scalars α1, ..., αN ,
not all zero, such that

0 = α1u
1 + ... + αnuN .

The span of a collection of vectors {u1, ..., uN} in X is the set of all vectors
x that can be written as linear combinations of the un; that is, there are
scalars c1, ..., cN , such that

x = c1u
1 + ... + cNuN .

A collection of vectors {u1, ..., uN} in X is called a basis for a subspace S
if the collection is linearly independent and S is their span. A collection
{u1, ..., uN} is called orthonormal if ||un||2 = 1, for all n, and (um)†un = 0,
for m 6= n.

34.4.2 Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 +2x2 +2x4 +x5 = 0
−x1 −x2 +x3 +x4 = 0
x1 +2x2 −3x3 −x4 −2x5 = 0

.

This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =





1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2



 ,

and x = (x1, x2, x3, x4, x5)
T . Applying Gaussian elimination to this sys-

tem, we obtain a second, simpler, system with the same solutions:

x1 −2x4 +x5 = 0
x2 +2x4 = 0

x3 +x4 +x5 = 0
.

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others de-
pendent. The variables x1, x2 and x3 are then called basic variables. To
obtain a basis of solutions we can let x4 = 1 and x5 = 0, obtaining the
solution x = (2,−2,−1, 1, 0)T , and then choose x4 = 0 and x5 = 1 to get
the solution x = (−1, 0,−1, 0, 1)T . Every solution to Ax = 0 is then a
linear combination of these two solutions. Notice that which variables are
basic and which are non-basic is somewhat arbitrary, in that we could have
chosen as the non-basic variables any two whose columns are independent.
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Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A as A = [B N ], where B is the square invertible
matrix

B =





1 2 0
−1 −1 1
1 2 −3



 ,

and N is the matrix

N =





2 1
1 0

−1 −2



 .

With xB = (x1, x2, x3)
T and xN = (x4, x5)

T we can write

Ax = BxB + NxN = 0,

so that

xB = −B−1NxN . (34.2)

34.4.3 Real and Complex Systems

A system Ax = b of linear equations is called a complex system, or a real
system if the entries of A, x and b are complex, or real, respectively. Any
complex system can be converted to a real system in the following way. A
complex matrix A can be written as A = A1 + iA2, where A1 and A2 are
real matrices. Similarly, x = x1 + ix2 and b = b1 + ib2, where x1, x2, b1 and
b2 are real vectors. Denote by Ã the real matrix

Ã =

[

A1 −A2

A2 A1

]

,

by x̃ the real vector

x̃ =

[

x1

x2

]

,

and by b̃ the real vector

b̃ =

[

b1

b2

]

.

Exercise 34.7 Show that x satisfies the system Ax = b if and only if x̃
satisfies the system Ãx̃ = b̃.

Exercise 34.8 Show that the eigenvalues of the Hermitian matrix

B =

[

1 2 + i
2 − i 1

]
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are λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding eigenvectors u =
(
√

5, 2 − i)T and v = (
√

5, i − 2)T , respectively. Then, show that B̃ has
the same eigenvalues, but both with multiplicity two. Finally, show that the
associated eigenvectors are

[

u1

u2

]

,

and
[

−u2

u1

]

,

for λ = 1 +
√

5, and
[

v1

v2

]

,

and
[

−v2

v1

]

,

for λ = 1 −
√

5.

Exercise 34.9 Show that B is Hermitian if and only if the real matrix B̃
is symmetric.

Exercise 34.10 Let B be Hermitian. For any x = x1 + ix2, let x̃′ =
(−x2, x1)T . Show that the following are equivalent: 1) Bx = λx; 2) B̃x̃ =
λx̃; 3) B̃x̃′ = λx̃′.

Exercise 34.11 Show that B†Bx = c if and only if B̃T B̃x̃ = c̃.

Exercise 34.12 Say that the complex square matrix N is non-expansive
(with respect to the Euclidean norm) if ||Nx||2 ≤ ||x||2, for all x. Show
that N is non-expansive if and only if Ñ is non-expansive.

Exercise 34.13 Say that the complex square matrix A is averaged if there
is a non-expansive N and scalar α in the interval (0, 1), with A = (1 −
α)I + αN , where I is the identity matrix. Show that A is averaged if and
only if Ã is averaged.

34.4.4 The Fundamental Subspaces

We begin with some definitions. Let S be a subspace of finite-dimensional
Euclidean space CJ . We denote by S⊥ the set of vectors u that are or-
thogonal to every member of S; that is,

S⊥ = {u|u†s = 0, for every s ∈ S}.

Let A be an I by J matrix. Then CS(A), the column space of A, is the
subspace of RI consisting of all the linear combinations of the columns
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of A; we also say that CS(A) is the range of A. The null space of A†,
denoted NS(A†), is the subspace of CI containing all the vectors w for
which A†w = 0.

Exercise 34.14 Show that CS(A)⊥ = NS(A†). Hint: If v ∈ CS(A)⊥,
then v†Ax = 0 for all x, including x = A†v.

Exercise 34.15 Show that CS(A) ∩ NS(A†) = {0}. Hint: If y = Ax ∈
NS(A†) consider ||y||22 = y†y.

The four fundamental subspaces of linear algebra are CS(A), NS(A†), CS(A†)
and NS(A).

Exercise 34.16 Show that Ax = b has solutions if and only if the associ-
ated Björck-Elfving equations AA†z = b has solutions.

Let Q be a I by I matrix. We denote by Q(S) the set

Q(S) = {t|there exists s ∈ S with t = Qs}
and by Q−1(S) the set

Q−1(S) = {u|Qu ∈ S}.

Note that the set Q−1(S) is defined whether or not Q is invertible.

Exercise 34.17 Let S be any subspace of CI . Show that if Q is invertible
and Q(S) = S then Q−1(S) = S. Hint: If Qt = Qs then t = s.

Exercise 34.18 Let Q be Hermitian. Show that Q(S)⊥ = Q−1(S⊥) for
every subspace S. If Q is also invertible then Q−1(S)⊥ = Q(S⊥). Find an
example of a non-invertible Hermitian Q for which Q−1(S)⊥ and Q(S⊥)
are different.

We assume, now, that Q is Hermitian and invertible and that the matrix
A†A is invertible. Note that the matrix A†Q−1A need not be invertible
under these assumptions. We shall denote by S an arbitrary subspace of
RJ .

Exercise 34.19 Show that Q(S) = S if and only if Q(S⊥) = S⊥. Hint:
Use Exercise 34.18.

Exercise 34.20 Show that if Q(CS(A)) = CS(A) then A†Q−1A is in-
vertible. Hint: Show that A†Q−1Ax = 0 if and only if x = 0. Recall that
Q−1Ax ∈ CS(A), by Exercise 34.17. Then use Exercise 34.15.
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34.5 Linear and Nonlinear Operators

In our study of iterative algorithms we shall be concerned with sequences
of vectors {xk|k = 0, 1, ...}. The core of an iterative algorithm is the tran-
sition from the current vector xk to the next one xk+1. To understand the
algorithm, we must understand the operation (or operator) T by which xk

is transformed into xk+1 = Txk. An operator is any function T defined on
X with values again in X .

Exercise 34.21 Prove the following identity relating an arbitrary operator
T on X to its complement G = I − T :

||x − y||22 − ||Tx − Ty||22 = 2Re(〈Gx − Gy, x − y〉) − ||Gx − Gy||22. (34.3)

Exercise 34.22 Use the previous exercise to prove that

Re(〈Tx−Ty, x− y〉)−||Tx−Ty||22 = Re(〈Gx−Gy, x− y〉)−||Gx−Gy||22.

(34.4)

34.5.1 Linear and Affine Linear Operators

For example, if X = CJ and A is a J by J complex matrix, then we can
define an operator T by setting Tx = Ax, for each x in CJ ; here Ax denotes
the multiplicaton of the matrix A and the column vector x. Such operators
are linear operators:

T (αx + βy) = αTx + βTy,

for each pair of vectors x and y and each pair of scalars α and β.

Exercise 34.23 Show that, for H = H(a, γ), H0 = H(a, 0), and any x
and y in X ,

PH(x + y) = PHx + PHy − PH0,

so that

PH0(x + y) = PH0x + PH0y,

that is, the operator PH0 is an additive operator. Also, show that

PH0(αx) = αPH0x,

so that PH0 is a linear operator. Show that we can write PH0 as a matrix
multiplication:

PH0x = (I − aa†)x.
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If d is a fixed nonzero vector in CJ , the operator defined by Tx = Ax+d
is not a linear operator; it is called an affine linear operator.

Exercise 34.24 Show that, for any hyperplane H = H(a, γ) and H0 =
H(a, 0),

PHx = PH0x + PH0,

so PH is an affine linear operator.

Exercise 34.25 For i = 1, ..., I let Hi be the hyperplane Hi = H(ai, γi),
Hi0 = H(ai, 0), and Pi and Pi0 the orthogonal projections onto Hi and
Hi0, respectively. Let T be the operator T = PIPI−1 · · · P2P1. Show that T
is an affine linear operator, that is, T has the form

Tx = Bx + d,

for some matrix B and some vector d. Hint: Use the previous exercise and
the fact that Pi0 is linear to show that

B = (I − aI(aI)†) · · · (I − a1(a1)†).

34.5.2 Orthogonal Projection onto Convex Sets

For an arbitrary nonempty closed convex set C in X , the orthogonal pro-
jection T = PC is a nonlinear operator, unless, of course, C = H(a, 0) for
some vector a. We may not be able to describe PCx explicitly, but we do
know a useful property of PCx.

Proposition 34.2 For a given x, a vector z in C is PCx if and only if

Re(〈c − z, z − x〉) ≥ 0,

for all c in the set C.

Proof: For simplicity, we consider only the real case, X = RJ . Let c be
arbitrary in C and α in (0, 1). Then

||x − PCx||22 ≤ ||x − (1 − α)PCx − αc||22 = ||x − PCx + α(PCx − c)||22

= ||x − PCx||22 − 2α〈x − PCx, c − PCx〉 + α2||PCx − c||22.
Therefore,

−2α〈x − PCx, c − PCx〉 + α2||PCx − c||22 ≥ 0,

so that

2〈x − PCx, c − PCx〉 ≤ α||PCx − c||22.
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Taking the limit, as α → 0, we conclude that

〈c − PCx, PCx − x〉 ≥ 0.

If z is a member of C that also has the property

〈c − z, z − x〉 ≥ 0,

for all c in C, then we have both

〈z − PCx, PCx − x〉 ≥ 0,

and
〈z − PCx, x − z〉 ≥ 0.

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx − z〉 ≥ 0.

But,
〈z − PCx, PCx − z〉 = −||z − PCx||22,

so it must be the case that z = PCx. This completes the proof.

Corollary 34.1 Let S be any subspace of X . Then, for any x in X and s
in S, we have

〈PSx − x, s〉 = 0.

Exercise 34.26 Prove Corollary 34.1. Hints: since S is a subspace, s +
PSx is again in S, for all s, as is cs, for every scalar c.

Corollary 34.2 Let S be any subspace of X , d a fixed vector, and V the
affine subspace V = S + d = {v = s + d|s ∈ S}, obtained by translating the
members of S by the vector d. Then, for every x in X and every v in V ,
we have

〈PV x − x, v − PV x〉 = 0.

Exercise 34.27 Prove Corollary 34.2. Hints: since v and PV x are in V ,
they have the form v = s + d, and PV x = ŝ + d, for some s and ŝ in S.
Then v − PV x = s − ŝ.

Corollary 34.3 Let H be the hyperplane H(a, γ). Then, for every x, and
every h in H, we have

〈PHx − x, h − PHx〉 = 0.
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Corollary 34.4 Let S be a subspace of X . Then, every x in X can be
written as x = s + u, for a unique s in S and a unique u in S⊥.

Exercise 34.28 Prove Corollary 34.4. Hint: the vector PSx−x is in S⊥.

Corollary 34.5 Let S be a subspace of X . Then (S⊥)⊥ = S.

Exercise 34.29 Prove Corollary 34.5. Hint: every x in X has the form
x = s + u, with s in S and u in S⊥. Suppose x is in (S⊥)⊥. Show u = 0.

34.5.3 Gradient Operators

Another important example of a nonlinear operator is the gradient of a
real-valued function of several variables. Let f(x) = f(xi, ..., xJ) be a real
number for each vector x in RJ . The gradient of f at the point x is the
vector whose entries are the partial derivatives of f ; that is,

∇f(x) = (
∂f

∂x1
(x), ...,

∂f

∂xJ
(x))T .

The operator Tx = ∇f(x) is linear only if the function f(x) is quadratic;
that is, f(x) = xT Ax for some square matrix x, in which case the gradient
of f is ∇f(x) = 1

2 (A + AT )x.
If u is any vector in X with ||u||2 = 1, then u is said to be a direction

vector. The directional derivative of f(x), at the point x, in the direction
of u, written Duf(x), is

Duf(x) = u1
∂f

∂x1
(x) + ... + uJ

∂f

∂xJ
(x).

It follows from the Cauchy Inequality that |Duf(x)| ≤ ||∇f(x)||2, with
equality if and only if u is parallel to the gradient vector, ∇f(x). The
gradient points in the direction of the greatest increase in f(x).
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Metric Spaces and Norms

As we have seen, the inner product on X = RJ or X = CJ can be used to
define the Euclidean norm ||x||2 of a vector x, which, in turn, provides a
metric, or a measure of distance between two vectors, d(x, y) = ||x − y||2.
The notions of metric and norm are actually more general notions, with no
necessary connection to the inner product.

35.1 Metric Spaces

Let S be a non-empty set. We say that the function d : S × S → [0,+∞)
is a metric if the following hold:

d(s, t) ≥ 0, (35.1)

for all s and t in S;

d(s, t) = 0 (35.2)

if and only if s = t;

d(s, t) = d(t, s), (35.3)

for all s and t in S; and, for all s, t, and u in S,

d(s, t) ≤ d(s, u) + d(u, t) (35.4)

The last inequality is the triangle inequality.

35.2 Analysis in Metric Space

A sequence {sk} in the metric space (S, d) is said to have limit s∗ if

lim
k→+∞

d(sk, s∗) = 0.

283
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Any sequence with a limit is said to be convergent.

Exercise 35.1 Show that a sequence can have at most one limit.

The sequence {sk} is said to be a Cauchy sequence if, for any ε > 0, there
is positive integer m, such that, for any nonnegative integer n,

d(sm, sm+n) ≤ ε.

Exercise 35.2 Show that every convergent sequence is a Cauchy sequence.

The metric space (S, d) is said to be complete if every Cauchy sequence is
a convergent sequence. The finite-dimensional Euclidean spaces RJand CJ

are complete.

Exercise 35.3 Let S be the set of rational numbers, with d(s, t) = |s − t|.
Show that (S, d) is a metric space, but not a complete metric space.

An infinite sequence {sk} is said to be bounded if there is an element a and
a positive constant b > 0 such that d(a, sk) ≤ b, for all k.

Exercise 35.4 Show that any convergent sequence in a metric space is
bounded. Find a bounded sequence of real numbers that is not convergent.

Exercise 35.5 Show that, if {sk} is bounded, then, for any element c in
the metric space, there is a constant r > 0, with d(c, sk) ≤ r, for all k.

A subset K of the metric space is said to be closed if, for every conver-
gent sequence {sk} of elements in K, the limit point is again in K. For
example, in X = R, the set K = (0, 1] is not closed, because it does not
contain the point s = 0, which is the limit of the sequence {sk = 1

k}; the
set K = [0, 1] is closed and is the closure of the set (0, 1], that is, it is the
smallest closed set containing (0, 1].

For any bounded sequence {xk} in X , there is at least one subsequence,
often denoted {xkn}, that is convergent; the notation implies that the pos-
itive integers kn are ordered, so that k1 < k2 < .... The limit of such
a subsequence is then said to be a cluster point of the original sequence.
When we investigate iterative algorithms, we will want to know if the se-
quence {xk} generated by the algorithm converges. As a first step, we will
usually ask if the sequence is bounded? If it is bounded, then it will have
at least one cluster point. We then try to discover if that cluster point is
really the limit of the sequence.

Exercise 35.6 Show that your bounded, but not convergent, sequence found
in Exercise 35.4 has a cluster point.

Exercise 35.7 Show that, if x is a cluster point of the sequence {xk}, and
if d(x, xk) ≥ d(x, xk+1), for all k, then x is the limit of the sequence.

We turn now to metrics that come from norms.
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35.3 Norms

Let X denote either RJ or CJ . We say that ||x|| defines a norm on X if

||x|| ≥ 0, (35.5)

for all x,

||x|| = 0 (35.6)

if and only if x = 0,

||γx|| = |γ| ||x||, (35.7)

for all x and scalars γ, and

||x + y|| ≤ ||x|| + ||y||, (35.8)

for all vectors x and y.

Exercise 35.8 Show that d(x, y) = ||x − y|| defines a metric on X .

It can be shown that RJ and CJ are complete for any metric arising from
a norm.

35.3.1 The 1-norm

The 1-norm on X is defined by

||x||1 =

J
∑

j=1

|xj |.

Exercise 35.9 Show that the 1-norm is a norm.

35.3.2 The ∞-norm

The ∞-norm on X is defined by

||x||∞ = max{|xj | |j = 1, ..., J}.

Exercise 35.10 Show that the ∞-norm is a norm.

35.3.3 The 2-norm

The 2-norm, also called the Euclidean norm, is the most commonly used
norm on X . It is the one that comes from the inner product:

||x||2 =
√

〈x, x〉 =
√

x†x.

Exercise 35.11 Show that the 2-norm is a norm. Hint: for the triangle
inequality, use the Cauchy Inequality.

It is this close relationship between the 2-norm and the inner product that
makes the 2-norm so useful.
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35.3.4 Weighted 2-norms

Let Q be a positive-definite Hermitian matrix. Define

||x||Q =
√

x†Qx,

for all vectors x. If Q is the diagonal matrix with diagonal entries Qjj > 0,
then

||x||Q =

√

√

√

√

J
∑

j=1

Qjj |xj |2;

for that reason we speak of ||x||Q as the Q-weighted 2-norm of x.

Exercise 35.12 Show that the Q-weighted 2-norm is a norm.

35.4 Eigenvalues and Eigenvectors

Let S be a complex, square matrix. We say that λ is an eigenvalue of S if λ
is a root of the complex polynomial det (λI − S). Therefore, each S has as
many (possibly complex) eigenvalues as it has rows or columns, although
some of the eigenvalues may be repeated.

An equivalent definition is that λ is an eigenvalue of S if there is a
non-zero vector x with Sx = λx, in which case the vector x is called an
eigenvector of S. From this definition, we see that the matrix S is invertible
if and only if zero is not one of its eigenvalues. The spectral radius of S,
denoted ρ(S), is the maximum of |λ|, over all eigenvalues λ of S.

Exercise 35.13 Show that ρ(S2) = ρ(S)2.

Exercise 35.14 We say that S is Hermitian or self-adjoint if S† = S.
Show that, if S is Hermitian, then every eigenvalue of S is real. Hint:
suppose that Sx = λx. Then consider x†Sx.

If S is an I by I Hermitian matrix with (necessarily real) eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λI ,

and associated (column) eigenvectors {ui |i = 1, ..., I} (which we may as-
sume are mutually orthogonal), then S can be written as

S = λ1u1u
†
1 + · · · + λIuIu

†
I .

This is the eigenvalue/eigenvector decomposition of S. The Hermitian ma-
trix S is invertible if and only if all of its eigenvalues are non-zero, in which
case we can write the inverse of S as

S−1 = λ−1
1 u1u

†
1 + · · · + λ−1

I uIu
†
I .
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A Hermitian matrix S is positive-definite if each of its eigenvalues is
positive. It follows from the eigenvector decomposition of S that S = QQ†

for the Hermitian, positive-definite matrix

Q =
√

λ1u1u
†
1 + · · · +

√

λIuIu
†
I ;

Q is called the Hermitian square root of S.

35.4.1 The Singular-Value Decomposition

Let A be an I by J complex matrix, with I ≤ J . Let B = AA† and
C = A†A. Let λi ≥ 0, for i = 1, ..., I, be the eigenvalues of B, and
let {u1, ..., uI} be associated orthonormal eigenvectors of B. Assume that
λi > 0 for i = 1, ..., N ≤ I, and, if N < I, λi = 0, for i = N + 1, ..., I; if
N = I, then the matrix A is said to have full rank. For i = 1, ..., N , let

vi = λ
−1/2
i A†ui.

Exercise 35.15 Show that the collection {v1, ..., vN} is orthonormal.

Let {vN+1, ..., vJ} be selected so that {v1, ..., vJ} is orthonormal.

Exercise 35.16 Show that the sets {u1, ..., uN}, {uN+1, ..., uI}, {v1, ..., vN},
and {vN+1, ..., vJ} are orthonormal bases for the subspaces CS(A), NS(A†),
CS(A†), and NS(A), respectively.

Exercise 35.17 Show that

A =

N
∑

i=1

√

λiu
i(vi)†,

which is the singular-value decomposition (SVD) of the matrix A.

The SVD of the matrix A† is then

A† =

N
∑

i=1

√

λiv
i(ui)†.

Exercise 35.18 Use the SVD of A to obtain the eigenvalue/eigenvector
decompositions of B and C:

B =

N
∑

i=1

λiu
i(ui)†,

and

C =

N
∑

i=1

λiv
i(vi)†.
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Exercise 35.19 The pseudo-inverse of the matrix A is the J by I matrix

A] =

N
∑

i=1

λ
−1/2
i vi(ui)†.

Show that
(A†)] = (A])†.

Show that, if N = I ≤ J , then

A] = A†B−1,

and
(A†)] = B−1A.

Investigate other properties of the pseudo-inverse.

35.5 Matrix Norms

Any matrix can be turned into a vector by vectorization. Therefore, we can
define a norm for any matrix by simply vectorizing and taking a norm of
the resulting vector. Such norms for matrices may not take full advantage
of the matrix properties. An induced matrix norm or just a matrix norm
for matrices is a special type of norm that comes from a vector norm and
that respects the matrix properties. If A is a matrix and ||A|| denotes a
matrix norm of A, then we insist that ||Ax|| ≤ ||A||||x||, for all x. All
induced matrix norms have this compatibility property.

35.5.1 Induced Matrix Norms

Let ||x|| be any norm on CJ , not necessarily the Euclidean norm, |||b||| any
norm on CI , and A a rectangular I by J matrix. The induced matrix norm
of A, denoted ||A||, derived from these two vectors norms, is the smallest
positive constant c such that

|||Ax||| ≤ c||x||,

for all x in CJ . It can be written as

||A|| = max
x6=0

{|||Ax|||/||x||}.

We study induced matrix norms in order to measure the distance |||Ax−
Az|||, relative to the distance ||x − z||:

|||Ax − Az||| ≤ ||A||||x − z||,

for all vectors x and z and ||A|| is the smallest number for which this
statement can be made.
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35.5.2 Condition Number of a Square Matrix

Let S be a square, invertible matrix and z the solution to Sz = h. We
are concerned with the extent to which the solution changes as the right
side, h, changes. Denote by δh a small perturbation of h, and by δz the
solution of Sδz = δh. Then S(z+δz) = h+δh. Applying the compatiability
condition ||Ax|| ≤ ||A||||x||, we get

||δz|| ≤ ||S−1||||δh||,
and

||z|| ≥ ||h||/||S||.
Therefore

||δz||
||z|| ≤ ||S||||S−1|| ||δh||

||h|| . (35.9)

The quantity c = ||S||||S−1|| is the condition number of S, with respect to
the given matrix norm. Note that c ≥ 1: for any non-zero z, we have

||S−1|| ≥ ||S−1z||/||z|| = ||S−1z||/||SS−1z|| ≥ 1/||S||.
When S is Hermitian and positive-definite, the condition number of S, with
respect to the matrix norm induced by the Euclidean vector norm, is

c = λmax/λmin,

the ratio of the largest to the smallest eigenvalues of S.
If we choose the two vector norms carefully, then we can get an explicit

description of ||A||, but, in general, we cannot.
For example, let ||x|| = ||x||1 and |||Ax||| = ||Ax||1 be the 1-norms of

the vectors x and Ax, where

||x||1 =

J
∑

j=1

|xj |.

Exercise 35.20 Show that the 1-norm of A, induced by the 1-norms of
vectors in CJ and CI , is

||A||1 = max {
I
∑

i=1

|Aij | , j = 1, 2, ..., J}.

Hints: use basic properties of the absolute value to show that

||Ax||1 ≤
J
∑

j=1

(

I
∑

i=1

|Aij |)|xj |.

Then let j = m be the index for which the maximum column sum is reached
and select xj = 0, for j 6= m, and xm = 1.
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The infinity norm of the vector x is

||x||∞ = max {|xj | , j = 1, 2, ..., J}.

Exercise 35.21 Show that the infinity norm of the matrix A, induced by
the infinity norms of vectors in CJ and CI , is

||A||∞ = max {
J
∑

j=1

|Aij | , i = 1, 2, ..., I}.

Exercise 35.22 Let M be an invertible matrix and ||x|| any vector norm.
Define

||x||M = ||Mx||.
Show that, for any square matrix S, the matrix norm

||S||M = max
x6=0

{||Sx||M/||x||M}

is
||S||M = ||MSM−1||.

In [4] this result is used to prove the following lemma:

Lemma 35.1 Let S be any square matrix and let ε > 0 be given. Then
there is an invertible matrix M such that

||S||M ≤ ρ(S) + ε.

Exercise 35.23 Show that, for any square matrix S and any induced ma-
trix norm ||S||, we have ||S|| ≥ ρ(S). Consequently, for any induced matrix
norm ||S||,

||S|| ≥ |λ|,
for every eigenvalue λ of S.

So we know that
ρ(S) ≤ ||S||,

for every induced matrix norm, but, according to Lemma 35.1, we also have

||S||M ≤ ρ(S) + ε.

Exercise 35.24 Show that, if ρ(S) < 1, then there is a vector norm on
X for which the induced matrix norm of S is less than one, so that S is a
strict contraction with respect to this vector norm.
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35.6 The Euclidean Norm of a Square Matrix

We shall be particularly interested in the Euclidean norm (or 2-norm) of
the square matrix A, denoted by ||A||2, which is the induced matrix norm
derived from the Euclidean vector norms.

From the definition of the Euclidean norm of A, we know that

||A||2 = max{||Ax||2/||x||2},

with the maximum over all nonzero vectors x. Since

||Ax||22 = x†A†Ax,

we have

||A||2 =

√

max {x†A†Ax

x†x
}, (35.10)

over all nonzero vectors x.

Exercise 35.25 Show that

||A||2 =
√

ρ(A†A);

that is, the term inside the square-root in Equation (35.10) is the largest
eigenvalue of the matrix A†A. Hints: let

λ1 ≥ λ2 ≥ ... ≥ λJ ≥ 0

and let {uj , j = 1, ..., J} be mutually orthogonal eigenvectors of A†A with
||uj ||2 = 1. Then, for any x, we have

x =

J
∑

j=1

[(uj)†x]uj ,

while

A†Ax =

J
∑

j=1

[(uj)†x]A†Auj =

J
∑

j=1

λj [(u
j)†x]uj .

It follows that

||x||22 = x†x =

J
∑

j=1

|(uj)†x|2,

and

||Ax||22 = x†A†Ax =

J
∑

j=1

λj |(uj)†x|2. (35.11)
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Maximizing ||Ax||22/||x||22 over x 6= 0 is equivalent to maximizing ||Ax||22,
subject to ||x||22 = 1. The right side of Equation (35.11) is then a con-
vex combination of the λj, which will have its maximum when only the
coefficient of λ1 is non-zero.

Exercise 35.26 Show that, if S is Hermitian, then ||S||2 = ρ(S). Hint:
use Exercise (35.13).

If S is not Hermitian, then the Euclidean norm of S cannot be calculated
directly from the eigenvalues of S.

Exercise 35.27 Let S be the square, non-Hermitian matrix

S =

[

i 2
0 i

]

,

having eigenvalues λ = i and λ = i. Show that the eigenvalues of the
Hermitian matrix

S†S =

[

1 −2i
2i 5

]

are λ = 3 + 2
√

2 and λ = 3 − 2
√

2. Therefore, the Euclidean norm of S is

||S||2 =

√

3 + 2
√

2.

35.6.1 Diagonalizable Matrices

A square matrix S is diagonalizable if X has a basis of eigenvectors of S. In
that case, with V be a square matrix whose columns are linearly indepen-
dent eigenvectors of S and L the diagonal matrix having the eigenvalues of
S along its main diagonal, we have SV = V L, or V −1SV = L.

Exercise 35.28 Let T = V −1 and define ||x||T = ||Tx||2, the Euclidean
norm of Tx. Show that the induced matrix norm of S is ||S||T = ρ(S).

We see from this exercise that, for any diagonalizable matrix S, in par-
ticular, for any Hermitian matrix, there is a vector norm such that the
induced matrix norm of S is ρ(S). In the Hermitian case we know that, if
the eigenvector columns of V are scaled to have length one, then V −1 = V †

and ||Tx||2 = ||V †x||2 = ||x||2, so that the required vector norm is just the
Euclidean norm, and ||S||T is just ||S||2, which we know to be ρ(S).

35.6.2 Gerschgorin’s Theorem

Gerschgorin’s theorem gives us a way to estimate the eigenvalues of an
arbitrary square matrix A.
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Theorem 35.1 Let A be J by J . For j = 1, ..., J , let Cj be the circle
in the complex plane with center Ajj and radius rj =

∑

m6=j |Ajm|. Then
every eigenvalue of A lies within one of the Cj.

Proof: Let λ be an eigenvalue of A, with associated eigenvector u. Let
uj be the entry of the vector u having the largest absolute value. From
Au = λu, we have

(λ − Ajj)uj =
∑

m6=j

Ajmum,

so that
|λ − Ajj | ≤

∑

m6=j

|Ajm||um|/|uj | ≤ rj .

This completes the proof.

35.6.3 Strictly Diagonally Dominant Matrices

A square I by I matrix S is said to be strictly diagonally dominant if, for
each i = 1, ..., I,

|Sii| > ri =
∑

m6=i

|Sim|.

When the matrix S is strictly diagonally dominant, all the eigenvalues of S
lie within the union of the spheres with centers Sii and radii Sii. With D
the diagonal component of S, the matrix D−1S then has all its eigenvalues
within the circle of radius one, centered at (1, 0). Then ρ(I − D−1S) < 1.
We use this result in our discussion of the Jacobi splitting method.
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Chapter 36

The Fourier Transform

In this chapter we review the basic properties of the Fourier transform.

36.1 Fourier-Transform Pairs

Let f(x) be defined for the real variable x in (−∞,∞). The Fourier trans-
form of f(x) is the function of the real variable γ given by

F (γ) =

∫ ∞

−∞
f(x)eiγxdx. (36.1)

36.1.1 Reconstructing from Fourier-Transform Data

Our goal is often to reconstruct the function f(x) from measurements of
its Fourier transform F (γ). But, how?

If we have F (γ) for all real γ, then we can recover the function f(x)
using the Fourier Inversion Formula:

f(x) =
1

2π

∫

F (γ)e−iγxdγ. (36.2)

The functions f(x) and F (γ) are called a Fourier-transform pair.

36.1.2 An Example

Consider the function f(x) = 1
2A , for |x| ≤ A, and f(x) = 0, otherwise.

The Fourier transform of this f(x) is

F (γ) =
sin(Aγ)

Aγ
,

295
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for all real γ 6= 0, and F (0) = 1. Note that F (γ) is nonzero throughout the
real line, except for isolated zeros, but that it goes to zero as we go to the
infinities. This is typical behavior. Notice also that the smaller the A, the
slower F (γ) dies out; the first zeros of F (γ) are at |γ| = π

A , so the main
lobe widens as A goes to zero.

36.2 The Dirac Delta

Consider what happens in the limit, as A → 0. Then we have an infinitely
high point source at x = 0; we denote this by δ(x), the Dirac delta. The
Fourier transform approaches the constant function with value 1, for all γ;
the Fourier transform of f(x) = δ(x) is the constant function F (γ) = 1, for
all γ. The Dirac delta δ(x) has the sifting property:

∫

h(x)δ(x)dx = h(0),

for each function h(x) that is continuous at x = 0.
Because the Fourier transform of δ(x) is the function F (γ) = 1, the

Fourier inversion formula tells us that

δ(x) =
1

2π

∫ ∞

−∞
e−iωxdω. (36.3)

Obviously, this integral cannot be understood in the usual way. The inte-
gral in Equation (36.3) is a symbolic way of saying that

∫

h(x)(
1

2π

∫ ∞

−∞
e−iωxdω)dx =

∫

h(x)δ(x)dx = h(0), (36.4)

for all h(x) that are continuous at x = 0; that is, the integral in Equation
(36.3) has the sifting property, so it acts like δ(x). Interchanging the order
of integration in Equation (36.4), we obtain

∫

h(x)(
1

2π

∫ ∞

−∞
e−iωxdω)dx =

1

2π

∫ ∞

−∞
(

∫

h(x)e−iωxdx)dω

=
1

2π

∫ ∞

−∞
H(−ω)dω =

1

2π

∫ ∞

−∞
H(ω)dω = h(0).

We shall return to the Dirac delta when we consider farfield point sources.
It may seem paradoxical that when A is larger, its Fourier transform

dies off more quickly. The Fourier transform F (γ) goes to zero faster for
larger A because of destructive interference. Because of differences in their
complex phases, the magnitude of the sum of the signals received from
various parts of the object is much smaller than we might expect, especially
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when A is large. For smaller A the signals received at a sensor are much
more in phase with one another, and so the magnitude of the sum remains
large. A more quantitative statement of this phenomenon is provided by
the uncertainty principle (see [33]).

36.3 Practical Limitations

In actual remote-sensing problems, antennas cannot be of infinite extent.
In digital signal processing, moreover, there are only finitely many sensors.
We never measure the entire Fourier transform F (γ), but, at best, just part
of it; in the direct transmission problem we measure F (γ) only for γ = k,
with |k| ≤ ω

c . In fact, the data we are able to measure is almost never exact
values of F (γ), but rather, values of some distorted or blurred version. To
describe such situations, we usually resort to convolution-filter models.

36.3.1 Convolution Filtering

Imagine that what we measure are not values of F (γ), but of F (γ)H(γ),
where H(γ) is a function that describes the limitations and distorting effects
of the measuring process, including any blurring due to the medium through
which the signals have passed, such as refraction of light as it passes through
the atmosphere. If we apply the Fourier Inversion Formula to F (γ)H(γ),
instead of to F (γ), we get

g(x) =
1

2π

∫

F (γ)H(γ)e−iγxdx. (36.5)

The function g(x) that results is g(x) = (f ∗ h)(x), the convolution of the
functions f(x) and h(x), with the latter given by

h(x) =
1

2π

∫

H(γ)e−iγxdx.

Note that, if f(x) = δ(x), then g(x) = h(x); that is, our reconstruction of
the object from distorted data is the function h(x) itself. For that reason,
the function h(x) is called the point-spread function of the imaging system.

Convolution filtering refers to the process of converting any given func-
tion, say f(x), into a different function, say g(x), by convolving f(x) with a
fixed function h(x). Since this process can be achieved by multiplying F (γ)
by H(γ) and then inverse Fourier transforming, such convolution filters are
studied in terms of the properties of the function H(γ), known in this con-
text as the system transfer function, or the optical transfer function (OTF);
when γ is a frequency, rather than a spatial frequency, H(γ) is called the
frequency-response function of the filter. The magnitude of H(γ), |H(γ)|,
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is called the modulation transfer function (MTF). The study of convolu-
tion filters is a major part of signal processing. Such filters provide both
reasonable models for the degradation signals undergo, and useful tools for
reconstruction.

Let us rewrite Equation (36.5), replacing F (γ) and H(γ) with their
definitions, as given by Equation (36.1). Then we have

g(x) =

∫

(

∫

f(t)eiγtdt)(

∫

h(s)eiγsds)e−iγxdγ.

Interchanging the order of integration, we get

g(x) =

∫ ∫

f(t)h(s)(

∫

eiγ(t+s−x)dγ)dsdt.

Now using Equation (36.3) to replace the inner integral with δ(t + s − x),
the next integral becomes

∫

h(s)δ(t + s − x)ds = h(x − t).

Finally, we have

g(x) =

∫

f(t)h(x − t)dt; (36.6)

this is the definition of the convolution of the functions f and h.

36.3.2 Low-Pass Filtering

A major problem in image reconstruction is the removal of blurring, which
is often modelled using the notion of convolution filtering. In the one-
dimensional case, we describe blurring by saying that we have available
measurements not of F (γ), but of F (γ)H(γ), where H(γ) is the frequency-
response function describing the blurring. If we know the nature of the
blurring, then we know H(γ), at least to some degree of precision. We can
try to remove the blurring by taking measurements of F (γ)H(γ), dividing
these numbers by the value of H(γ), and then inverse Fourier transform-
ing. The problem is that our measurements are always noisy, and typical
functions H(γ) have many zeros and small values, making division by H(γ)
dangerous, except where the values of H(γ) are not too small. These values
of γ tend to be the smaller ones, centered around zero, so that we end up
with estimates of F (γ) itself only for the smaller values of γ. The result is
a low-pass filtering of the object f(x).

To investigate such low-pass filtering, we suppose that H(γ) = 1, for
|γ| ≤ Γ, and is zero, otherwise. Then the filter is called the ideal Γ-lowpass
filter. In the farfield propagation model, the variable x is spatial, and the
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variable γ is spatial frequency, related to how the function f(x) changes
spatially, as we move x. Rapid changes in f(x) are associated with values of
F (γ) for large γ. For the case in which the variable x is time, the variable γ
becomes frequency, and the effect of the low-pass filter on f(x) is to remove
its higher-frequency components.

One effect of low-pass filtering in image processing is to smooth out the
more rapidly changing features of an image. This can be useful if these
features are simply unwanted oscillations, but if they are important de-
tail, the smoothing presents a problem. Restoring such wanted detail is
often viewed as removing the unwanted effects of the low-pass filtering; in
other words, we try to recapture the missing high-spatial-frequency val-
ues that have been zeroed out. Such an approach to image restoration is
called frequency-domain extrapolation . How can we hope to recover these
missing spatial frequencies, when they could have been anything? To have
some chance of estimating these missing values we need to have some prior
information about the image being reconstructed.

36.4 Two-Dimensional Fourier Transforms

More generally, we consider a function f(x, z) of two real variables. Its
Fourier transformation is

F (α, β) =

∫ ∫

f(x, z)ei(xα+zβ)dxdz. (36.7)

For example, suppose that f(x, z) = 1 for
√

x2 + z2 ≤ R, and zero,
otherwise. Then we have

F (α, β) =

∫ π

−π

∫ R

0

e−i(αr cos θ+βr sin θ)rdrdθ.

In polar coordinates, with α = ρ cos φ and β = ρ sinφ, we have

F (ρ, φ) =

∫ R

0

∫ π

−π

eirρ cos(θ−φ)dθrdr.

The inner integral is well known;

∫ π

−π

eirρ cos(θ−φ)dθ = 2πJ0(rρ),

where J0 denotes the 0th order Bessel function. Using the identity

∫ z

0

tnJn−1(t)dt = znJn(z),
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we have

F (ρ, φ) =
2πR

ρ
J1(ρR).

Notice that, since f(x, z) is a radial function, that is, dependent only on
the distance from (0, 0) to (x, z), its Fourier transform is also radial.

The first positive zero of J1(t) is around t = 4, so when we measure
F at various locations and find F (ρ, φ) = 0 for a particular (ρ, φ), we can
estimate R ≈ 4/ρ. So, even when a distant spherical object, like a star,
is too far away to be imaged well, we can sometimes estimate its size by
finding where the intensity of the received signal is zero.

36.4.1 Two-Dimensional Fourier Inversion

Just as in the one-dimensional case, the Fourier transformation that pro-
duced F (α, β) can be inverted to recover the original f(x, y). The Fourier
Inversion Formula in this case is

f(x, y) =
1

4π2

∫ ∫

F (α, β)e−i(αx+βy)dαdβ. (36.8)

It is important to note that this procedure can be viewed as two one-
dimensional Fourier inversions: first, we invert F (α, β), as a function of,
say, β only, to get the function of α and y

g(α, y) =
1

2π

∫

F (α, β)e−iβydβ;

second, we invert g(α, y), as a function of α, to get

f(x, y) =
1

2π

∫

g(α, y)e−iαxdα.

If we write the functions f(x, y) and F (α, β) in polar coordinates, we obtain
alternative ways to implement the two-dimensional Fourier inversion. We
shall consider these other ways when we discuss the tomography problem
of reconstructing a function f(x, y) from line-integral data.



Chapter 37

Bregman-Legendre
Functions

In [9] Bauschke and Borwein show convincingly that the Bregman-Legendre
functions provide the proper context for the discussion of Bregman pro-
jections onto closed convex sets. The summary here follows closely the
discussion given in [9].

37.1 Essential smoothness and essential strict
convexity

A convex function f : RJ → [−∞,+∞] is proper if there is no x with
f(x) = −∞ and some x with f(x) < +∞. The essential domain of f
is D = {x|f(x) < +∞}. A proper convex function f is closed if it is
lower semi-continuous. The subdifferential of f at x is the set ∂f(x) =
{x∗|〈x∗, z − x〉 ≤ f(z) − f(x), for all z}. The domain of ∂f is the set dom
∂f = {x|∂f(x) 6= ∅}. The conjugate function associated with f is the
function f∗(x∗) = supz(〈x∗, z〉 − f(z)).

Following [111] we say that a closed proper convex function f is essen-
tially smooth if intD is not empty, f is differentiable on intD and xn ∈
intD, with xn → x ∈ bdD, implies that ||∇f(xn)|| → +∞. Here intD and
bdD denote the interior and boundary of the set D.

A closed proper convex function f is essentially strictly convex if f is
strictly convex on every convex subset of dom ∂f .

The closed proper convex function f is essentially smooth if and only if
the subdifferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD
(so f is differentiable on intD) if and only if the function f∗ is essentially
strictly convex.

301
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A closed proper convex function f is said to be a Legendre function if it
is both essentially smooth and essentialy strictly convex. So f is Legendre
if and only if its conjugate function is Legendre, in which case the gradient
operator ∇f is a topological isomorphism with ∇f∗ as its inverse. The
gradient operator ∇f maps int dom f onto int dom f∗. If int dom f∗ = RJ

then the range of ∇f is RJ and the equation ∇f(x) = y can be solved for
every y ∈ RJ . In order for int dom f∗ = RJ it is necessary and sufficient
that the Legendre function f be super-coercive, that is,

lim
||x||→+∞

f(x)

||x|| = +∞.

If the essential domain of f is bounded, then f is super-coercive and its
gradient operator is a mapping onto the space RJ .

37.2 Bregman Projections onto Closed Con-
vex Sets

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x) − f(z) − 〈∇f(z), x − z〉.
Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set with K ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto K, with respect to f , is

P f
K(z) = argminx∈K∩DDf (x, z).

If f is essentially strictly convex, then P f
K(z) exists. If f is strictly convex

on D then P f
K(z) is unique. If f is Legendre, then P f

K(z) is uniquely defined
and is in intD; this last condition is sometimes called zone consistency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the
norm squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be
the set K = {(x1, x2)|x1 + x2 = 1}. The Bregman projection of (2, 1) onto
K is (1, 0), which is not in intD. The function f is not essentially smooth,
although it is essentially strictly convex. Its conjugate is the function f∗

that is equal to one-half the norm squared on D and equal to zero elsewhere;
it is essentially smooth, but not essentially strictly convex.

If f is Legendre, then P f
K(z) is the unique member of K∩intD satisfying

the inequality

〈∇f(P f
K(z)) − ∇f(z), P f

K(z) − c〉 ≥ 0,
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for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c, P f
K(z)) + Df (P f

K(z), z), (37.1)

for all c ∈ K.

37.3 Bregman-Legendre Functions

Following Bauschke and Borwein [9], we say that a Legendre function f is
a Bregman-Legendre function if the following properties hold:

B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.
B2: if x is in D but not in intD, for each positive integer n, yn is in intD
with yn → y ∈ bdD and if {Df (x, yn)} remains bounded, then Df (y, yn) →
0, so that y ∈ D.
B3: if xn and yn are in intD, with xn → x and yn → y, where x and y
are in D but not in intD, and if Df (xn, yn) → 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges
to a member of K provided that one of the following holds: 1) f is Bregman-
Legendre; 2) K ∩ intD 6= ∅ and dom f∗ is open; or 3) dom f and dom f∗

are both open.

37.4 Useful Results about Bregman-Legendre
Functions

The following results are proved in somewhat more generality in [9].
R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, yn) → 0.
R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, yn) →
+∞.
R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅
and Df (xn, yn) → 0, then x = y and y ∈ int D.
R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and
Df (x, yn) → 0, then x = y.
As a consequence of these results we have the following.
R5: If {Df (x, yn)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, yn)} is eventually finite, we have x ∈ D. By
Property B1 above it follows that the sequence {yn} is bounded; without
loss of generality, we assume that {yn} → y, for some y ∈ D. If x is in int
D, then, by result R2 above, we know that y is also in int D. Applying
result R3, with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are



304 CHAPTER 37. BREGMAN-LEGENDRE FUNCTIONS

two cases to consider: 1) y is in int D; 2) y is not in int D. In case 1) we
have Df (x, yn) → Df (x, y) = 0, from which it follows that x = y. In case
2) we apply result R4 to conclude that x = y.



Chapter 38

The EM Algorithm

The so-called EM algorithm [58, 101] is a general framework for deriving
iterative methods for maximum-likelihood parameter estimation. There
is a problem with the way the EM algorithm is usually described in the
literature. That description is fine for the case of discrete random vectors,
but needs to be modified to apply to continuous ones. We begin with the
usual formulation of the EM algorithm, as it applies to the discrete case.

38.1 The Discrete Case

We denote by Z a random vector, taking values in RN , by h : RN → RI

a function from RN to RI , with N > I, and Y = h(Z) the corresponding
random vector taking values in RI . The random vector Z has probability
function f(z;x), where x is a parameter in the parameter space X . The
probability function associated with Y is then

g(y;x) =
∑

z∈h−1(y)

f(z;x) ≤ 1. (38.1)

The random vector Y is usually called the incomplete data, and Z the com-
plete data. The EM algorithm is typically used when maximizing f(z;x) is
easier than maximizing g(y;x), but we have only y, an instance of Y , and
not a value of Z.

The conditional probability function for Z, given Y = y and x, is

b(z; y, x) = f(z;x)/g(y;x), (38.2)

for z ∈ h−1(y), and b(z; y, x) = 0, otherwise. The E-step of the EM algo-
rithm is to calculate the conditional expected value of the random variable
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log f(Z;x), given y and the current estimate xk of x:

Q(x;xk) = E(log f(Z;x)|y, xk) =
∑

z∈h−1(y)

b(z; y, xk) log f(z;x). (38.3)

The M-step is to select xk+1 as a maximizer of Q(x;xk). Denote by H(x;xk)
the conditional expected value of the random variable log b(Z; y, x), given
y and xk:

H(x;xk) =
∑

z∈h−1(y)

b(z; y, xk) log b(z; y, x). (38.4)

Then, for all x ∈ X , we have

Q(x;xk) = H(x;xk) + L(x), (38.5)

for L(x) = log g(y;x).
For positive scalars a and b, let KL(a, b) denote the Kullback-Leibler

distance
KL(a, b) = a log

a

b
+ b − a.

Also let KL(a, 0) = +∞ and KL(0, b) = b. Extend the KL distance
component-wise to vectors with non-negative entries. It follows from the
inequality log t ≤ t − 1 that KL(a, b) ≥ 0 and KL(a, b) = 0 if and only if
a = b. Then we have

Q(x;xk) = −KL(b(·; y, xk), f(·;x)), (38.6)

and

H(xk;xk) = H(x;xk) + KL(b(·; y, xk), b(·; y, x)), (38.7)

where

KL(b(·; y, xk), b(·; y, x)) =
∑

z

KL(b(z; y, xk), b(z; y, x)) ≥ 0.

Therefore,

L(xk) = Q(xk;xk) − H(xk;xk) ≤ Q(xk+1;xk) − H(xk;xk)

= Q(xk+1;xk) − H(xk+1;xk) − KL(b(xk), b(xk+1))

= L(xk+1) − KL(b(xk), b(xk+1)).

The sequence {L(xk)} is increasing and non-positive, so convergent. The
sequence {KL(b(xk), b(xk+1))} converges to zero.

In the discrete case, the EM algorithm is an alternating minimization
method. The function KL(b(·; y, xk), f(·;x)) is minimized by the choice
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x = xk+1, and the function KL(b(·; y, x), f(·;xk+1)) is minimized by the
choice x = xk+1. Therefore, the EM algorithm can be viewed as the result
of alternately minimizing KL(b(·; y, u), f(·; v)), first with respect to the
variable u, and then with respect to the variable v.

Without further assumptions, we can say no more; see [122]. We would
like to conclude that the sequence {xk} converges to a maximizer of L(x),
but we have no metric on the parameter space X . We need an identity
that relates the nonnegative quantity

KL(b(·; y, xk), f(·;x)) − KL(b(·; y, xk), f(·;xk+1))

to the difference, in parameter space, between x and xk+1. For example,
for the EMML algorithm in the Poisson mixture case, we have

KL(b(·; y, xk), f(·;x)) − KL(b(·; y, xk), f(·;xk+1)) = KL(xk+1, x).

38.2 The continuous case

The usual approach to the EM algorithm in this case is to mimic the
discrete case. A problem arises when we try to define g(y;x) as

g(y;x) =

∫

z∈h−1(y)

f(z;x)dz;

the set h−1(y) typically has measure zero in RN . We need a different
approach.

Suppose that there is a second function c : RN → RN−I such that
the function G(z) = G(h(z), c(z)) = (y, w) has inverse H(y, w) = z. Then,
given y, let W (y) = {w = c(z)|y = h(z)}. Then, with J(y, w) the Jacobian,
the pdf of the random vector Y is

g(y;x) =

∫

W (y)

f(H(y, w);x)J(y, w)dw,

and the pdf for the random vector W = c(Z) is

b(H(y, w); y, x) = f(H(y, w);x)J(y, w)/g(y;x),

for w ∈ W (y). Given y, and having found xk, we minimize

KL(b(H(y, w);xk), f(H(y, w);x)),

with respect to x, to get xk+1.
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38.2.1 An Example

Suppose that Z1 and Z2 are independent and uniformly distributed on the
interval [0, x], where x > 0 is an unknown parameter. Let Y = Z1 + Z2.
Then

g(y;x) = y/x2,

for 0 ≤ y ≤ x, and
g(y;x) = (2x − y)/x2,

for x ≤ y ≤ 2x. Given y, the maximum likelihood estimate of x is y. The
pdf for the random vector Z = (Z1, Z2) is

f(z1, z2;x) =
1

x2
χ[0,x](z1)χ[0,x](z2).

The conditional pdf of Z, given y and xk, is

b(z1, z2; y, xk) =
1

y
χ[0,xk](z1)χ[0,xk](z2),

for 0 ≤ y ≤ xk, and for xk ≤ y ≤ 2xk it is

b(z1, z2; y, xk) =
1

2xk − y
χ[0,xk](z1)χ[0,xk](z2).

Suppose that c(z) = c(z1, z2) = z2 and W = c(Z). Then W (y) = [0, y] and
the conditional pdf of W , given y and xk is b(y − w, w; y, xk). If we choose
x0 ≥ y, then x1 = y, which is the ML estimator. But, if we choose x0 in
the interval [y

2 , y], then x1 = x0 and the EM iteration stagnates. Note that
the function L(x) = log g(y;x) is continuous, but not differentiable. It is
concave for x in the interval [y

2 , y] and convex for x ≥ y.



Chapter 39

Using Prior Knowledge in
Remote Sensing

The problem is to reconstruct a (possibly complex-valued) function f :
RD → C from finitely many measurements gn, n = 1, ..., N , pertaining
to f . The function f(r) represents the physical object of interest, such
as the spatial distribution of acoustic energy in sonar, the distribution of
x-ray-attenuating material in transmission tomography, the distribution of
radionuclide in emission tomography, the sources of reflected radio waves
in radar, and so on. Often the reconstruction, or estimate, of the function
f takes the form of an image in two or three dimensions; for that reason,
we also speak of the problem as one of image reconstruction. The data
are obtained through measurements. Because there are only finitely many
measurements, the problem is highly underdetermined and even noise-free
data are insufficient to specify a unique solution.

39.1 The Optimization Approach

One way to solve such underdetermined problems is to replace f(r) with a
vector in CN and to use the data to determine the N entries of this vector.
An alternatve method is to model f(r) as a member of a family of linear
combinations of N preselected basis functions of the multi-variable r. Then
the data is used to determine the coefficients. This approach offers the user
the opportunity to incorporate prior information about f(r) in the choice of
the basis functions. Such finite-parameter models for f(r) can be obtained
through the use of the minimum-norm estimation procedure, as we shall
see. More generally, we can associate a cost with each data-consistent
function of r, and then minimize the cost over all the potential solutons to
the problem. Using a norm as a cost function is one way to proceed, but
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there are others. These optimization problems can often be solved only
through the use of discretization and iterative algorithms.

39.2 Introduction to Hilbert Space

In many applications the data are related linearly to f . To model the op-
erator that transforms f into the data vector, we need to select an ambient
space containing f . Typically, we choose a Hilbert space. The selection of
the inner product provides an opportunity to incorporate prior knowledge
about f into the reconstructon. The inner product induces a norm and
our reconstruction is the function, consistent with the data, for which this
norm is minimized. We shall illustrate the method using Fourier-transform
data and prior knowledge about the support of f and about its overall
shape.

Our problem, then, is to estimate a (possibly complex-valued) function
f(r) of D real variables r = (r1, ..., rD) from finitely many measurements,
gn, n = 1, ..., N . We shall assume, in this chapter, that these measurements
take the form

gn =

∫

S

f(r)hn(r)dr, (39.1)

where S denotes the support of the function f(r), which, in most cases, is
a bounded set. For the purpose of estimating, or reconstructing, f(r), it is
convenient to view Equation (39.1) in the context of a Hilbert space, and
to write

gn = 〈f, hn〉, (39.2)

where the usual Hilbert space inner product is defined by

〈f, h〉2 =

∫

S

f(r)h(r)dr, (39.3)

for functions f(r) and h(r) supported on the set S. Of course, for these
integrals to be defined, the functions must satisfy certain additional prop-
erties, but a more complete discussion of these issues is outside the scope
of this chapter. The Hilbert space so defined, denoted L2(S), consists
(essentially) of all functions f(r) for which the norm

||f ||2 =

√

∫

S

|f(r)|2dr (39.4)

is finite.
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39.2.1 Minimum-Norm Solutions

Our estimation problem is highly underdetermined; there are infinitely
many functions in L2(S) that are consistent with the data and might be the
right answer. Such underdetermined problems are often solved by acting
conservatively, and selecting as the estimate that function consistent with
the data that has the smallest norm. At the same time, however, we often
have some prior information about f that we would like to incorporate in
the estimate. One way to achieve both of these goals is to select the norm
to incorporate prior information about f , and then to take as the estimate
of f the function consistent wth the data, for which the chosen norm is
minimized.

The data vector g = (g1, ..., gN )T is in CN and the linear operator H
from L2(S) to CN takes f to g; so we write g = Hf . Associated with the
mapping H is its adjoint operator, H†, going from CN to L2(S) and given,
for each vector a = (a1, ..., aN )T , by

H†a = a1h1(r) + ... + aNhN (r). (39.5)

The operator from CN to CN defined by HH† corresponds to an N by
N matrix, which we shall also denote by HH†. If the functions hn(r)
are linearly independent, then this matrix is positive-definite, therefore
invertible.

Given the data vector g, we can solve the system of linear equations

g = HH†a (39.6)

for the vector a. Then the function

f̂(r) = H†a (39.7)

is consistent with the measured data and is the function in L2(S) of least

norm for which this is true. The function w(r) = f(r) − f̂(r) has the
property Hw = 0.

Exercise 39.1 Show that ||f ||22 = ||f̂ ||22 + ||w||22
The estimate f̂(r) is the minimum-norm solution, with respect to the

norm defined in Equation (39.4). If we change the norm on L2(S), or, equiv-
alently, the inner product, then the minimum-norm solution will change.

For any continuous linear operator T on L2(S), the adjoint operator,
denoted T †, is defined by

〈T f, h〉2 = 〈f, T †h〉2.

The adjoint operator will change when we change the inner product.
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39.3 A Class of Inner Products

Let T be a continuous, linear and invertible operator on L2(S). Define the
T inner product to be

〈f, h〉T = 〈T −1f, T −1h〉2. (39.8)

We can then use this inner product to define the problem to be solved. We
now say that

gn = 〈f, tn〉T , (39.9)

for known functions tn(x). Using the definition of the T inner product, we
find that

gn = 〈f, hn〉2 = 〈T f, T hn〉T .

The adjoint operator for T , with respect to the T -norm, is denoted T ∗,
and is defined by

〈T f, h〉T = 〈f, T ∗h〉T .

Therefore,
gn = 〈f, T ∗T hn〉T .

Exercise 39.2 Show that T ∗T = T T †.

Consequently, we have

gn = 〈f, T T †hn〉T . (39.10)

39.4 Minimum-T -Norm Solutions

The function f̃ consistent with the data and having the smallest T -norm
has the algebraic form

f̂ =

N
∑

m=1

amT T †hm. (39.11)

Applying the T -inner product to both sides of Equation (39.11), we get

gn = 〈f̂ , T T †hn〉T

=

N
∑

m=1

am〈T T †hm, T T †hn〉T .

Therefore,

gn =

N
∑

m=1

am〈T †hm, T †hn〉2. (39.12)
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We solve this system for the am and insert them into Equation (39.11)
to get our reconstruction. The Gram matrix that appears in Equation
(39.12) is positive-definite, but is often ill-conditioned; increasing the main
diagonal by a percent or so usually is sufficient regularization.

39.5 The Case of Fourier-Transform Data

To illustrate these minimum-T -norm solutions, we consider the case in
which the data are values of the Fourier transform of f . Specifically, sup-
pose that

gn =

∫

S

f(x)e−iωnxdx,

for arbitrary values ωn.

39.5.1 The L2(−π, π) Case

Assume that f(x) = 0, for |x| > π. The minimum-2-norm solution has the
form

f̂(x) =

N
∑

m=1

ameiωmx, (39.13)

with

gn =

N
∑

m=1

am

∫ π

−π

ei(ωm−ωn)xdx.

For the equispaced values ωn = n we find that am = gm and the minimum-
norm solution is

f̂(x) =

N
∑

n=1

gneinx. (39.14)

39.5.2 The Over-Sampled Case

Suppose that f(x) = 0 for |x| > A, where 0 < A < π. Then we use
L2(−A, A) as the Hilbert space. For equispaced data at ωn = n, we have

gn =

∫ π

−π

f(x)χA(x)e−inxdx,

so that the minimum-norm solution has the form

f̂(x) = χA(x)

N
∑

m=1

ameimx,
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with

gn = 2

N
∑

m=1

am
sinA(m − n)

m − n
.

The minimum-norm solution is support-limited to [−A, A] and consistent
with the Fourier-transform data.

39.5.3 Using a Prior Estimate of f

Suppose that f(x) = 0 for |x| > π again, and that p(x) satisfies

0 < ε ≤ p(x) ≤ E < +∞

, for all x in [−π, π]. Define the operator T by (T f)(x) =
√

p(x)f(x). The
T -norm is then

〈f, h〉T =

∫ π

−π

f(x)h(x)p(x)−1dx.

It follows that

gn =

∫ π

−π

f(x)p(x)e−inxp(x)−1dx,

so that the minimum T -norm solution is

f̂(x) =

N
∑

m=1

amp(x)eimx = p(x)

N
∑

m=1

ameimx, (39.15)

where

gn =

N
∑

m=1

am

∫ π

−π

p(x)ei(m−n)xdx.

If we have prior knowledge about the support of f , or some idea of its shape,
we can incorporate that prior knowledge into the reconstruction through
the choice of p(x).

The reconstruction in Equation (39.15) was presented in [?], where it
was called the PDFT method. The PDFT was based on an earlier non-
iterative version of the Gerchberg-Papoulis bandlimited extrapolation pro-
cedure [?]. The PDFT was then applied to image reconstruction problems
in [?]. An application of the PDFT was presented in [?]. In [?] we extended
the PDFT to a nonlinear version, the indirect PDFT (IPDFT), that gener-
alizes Burg’s maximum entropy spectrum estimation method. The PDFT
was applied to the phase problem in [?] and in [?] both the PDFT and
IPDFT were examined in the context of Wiener filter approximation. More
recent work on these topics is discussed in the book [34].



Chapter 40

Optimization in Remote
Sensing

Once again, the basic problem is to reconstruct or estimate a (possibly
complex-valued) function f(r) of several real variables, from finitely many
measurements pertaining to f(r). As previously, we shall assume that the
measurements gn take the form

gn =

∫

S

f(r)hn(r)dr, (40.1)

for n = 1, ..., N . The problem is highly underdetermined; there are in-
finitely many functions consistent with the data. One approach to solving
such problems is to select a cost function C(f) ≥ 0 and minimize C(f) over
all functions f(r) consistent with the measured data. As we saw previously,
cost functions that are Hilbert-space norms are reasonable choices. How
we might select the cost function is the subject of this chapter.

40.1 The General Form of the Cost Function

We shall consider cost functions of the form

C(f) =

∫

S

F (f(r), p(r))dr, (40.2)

where p(r) is a fixed prior estimate of the true f(r) and F (y, z) ≥ 0 is
to be determined. Such cost functions are viewed as measures of distance
between the functions f(r) and p(r). Therefore, we also write

D(f, p) =

∫

S

F (f(r), p(r))dr, (40.3)
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Our goal is to impose reasonable conditions on these distances D(f, p)
sufficiently restrictive to eliminate all but a small class of suitable distances.

40.2 The Conditions

In order for D(f, p) to be viewed as a distance measure, we want D(f, f) = 0
for all appropriate f . Therefore, we require
Axiom 1: F (y, y) = 0, for all suitable y.

We also want D(f, p) ≥ D(p, p) for all appropriate f and p, so we
require
Axiom 2: Fy(y, y) = 0, for all suitable y.

To make D(f, p) strictly convex in f we impose
Axiom 3: Fy,y(y, z) > 0, for all suitable y and z.

Given p(r) and the data, we find our estimate by minimizing D(f, p)
over all appropriate f(r) consistent with the data. The Lagrangian is then

L(f, λ) = D(f, p) +

N
∑

n=1

λn(gn −
∫

S

f(r)hn(r)dr. (40.4)

Taking the first partial derivative of L(f, λ) with respect to f gives the
Euler equation

Fy(f(r), p(r)) =

N
∑

n=1

λnhn(r). (40.5)

Given the data, we must find the λn for which the resulting f(r) is consist
with the data.

As we vary the values of gn, the values of the λn will change also. The
functions t(r) satisfying

Fy(t(r), p(r)) =

N
∑

n=1

λnhn(r), (40.6)

for some choice of the λn will form the family denoted T . The functions
consistent with the data we denote by Q. We seek those functions F (y, z)
for which Axiom 4 holds:
Axiom 4: In all cases, the member of T that minimizes D(f, t) is the
function f(r) in Q that minimizes D(f, p).

In [87] it was shown that the functions F (y, z) that satisfy these four
axioms must also have the property

Fz,y,y(y, z) = 0,
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for all suitable y and z. It follows that there is a strictly convex function
H(y) such that

F (y, z) = H(y) − H(z) − H ′(z)(y − z). (40.7)

If f̂(r) is the member of Q that minimizes D(f, p), then

D(f, p) = D(f, f̂) + D(f̂ , p).

There are many F that fit this description. If we impose one more axiom,
we can reduce the choce significantly.
Axiom 5: Let f̂ minimize D(f, p) over f in Q. Then, for any suitable

constant c, f̂ also minimizes D(f, cp), over f in Q.

Axiom 5’: Let f̂ minimize D(f, p) over f in Q. Then, for any suitable

constant c, cf̂ minimizes D(f, p), over f consistent with the data cgn.
If the function F satisfies either of these two additional axioms, for all

appropriate choices of p, then F is a positive multiple of the Kullback-
Leibler distance, that is,

F (y, z) = c2[y log
y

z
+ z − y],

for y > 0 and z > 0.
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