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Editorial

Recent Developments in Iterative Image
Reconstruction for PET and SPECT

HREE articles that begin this issue of TMI describe dis-

tinct regularized approaches to iterative image reconstruc-
tion from emission tomography data [24], [27], [39]. Their pub-
lication in this issue provides us with the opportunity to explain
the background to this work and speculate on the future of such
methods.

Model-based iterative approaches to image reconstruction in
PET and SPECT allow optimal noise handling [37] and accurate
system response modeling [38], [34]. Research in model-based
image reconstruction methods addresses two key issues: how
Lo select a cost function that produces images with the desired
properties and how to find these images quickly. In the first cate-
gory we include work addressing statistical and physical models
for the data, selection of image smoothing terms or priors that
regularize the solution and the choice of cost function to be op-
timized over the image space [30]. The second area addresses
the issue of rapidly finding a solution once a cost function has
been selected. In principle, the solutions to the concave maxi-
mization problems typically encountered in image reconstruc-
tion are independent of the numerical algorithm selected to find
them. In practice however, fast algorithms are often terminated
before convergence so that the solution becomes a function of
the algorithm. Nevertheless, it is useful to maintain the distinc-
tion between classes of algorithms that compute, ostensibly, the
same solution and those that optimize different cost criteria and,
hence, result in different solutions. Here we are primarily con-
cerned with the choice of iterative algorithm rather than issues
relating to cost function selection.

The early iterative algorithms for image reconstruction,
which form the broad class of algebraic reconstruction
techniques (ART’s), solve sets of simultaneous, possibly
under-determined, linear equaﬁons [4], [17], [21]. While the
ART methods have much in common with more recently
developed statistically-based iterative methods, they do not
themselves directly model noise in the data. Shepp and Vardi’s
maximum likelihood (ML) algorithm, based on the EM (ex-
pectation maximization) methods of Dempster, Laird, and
Rubin, was among the first to explicitly model the Poisson
distribution of noise in photon limited imaging systems such
as PET and SPECT [37]. The EM formalism for this problem
gives rise to an elegant update equation reminiscent of the
earlier multiplicative ART algorithms.

The improvements in image quality the EMML produced in-
spired a tremendous amount of subsequent research. Much of
this work has addressed the problem of speeding up EMML’s
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slow convergence, ¢.g., [25]. A more fundamental problem with
the EMML algorithm is that it exhibits instabilities, manifested
in high variance in the estimated voxel intensities. These can be
controlled in practice by early termination of the algorithm or
by smoothing of the images after reconstruction. A more formal
approach to controlling instabilities is to regularize the solution
using maximum a posteriori (MAP) Bayesian (or equivalently
penalized-ML) methods in which some measure of smoothness
is appended to the log-likelihood to penalize excessively noisy
images. The MAP solution can be computed using generaliza-
tions of the EMML algorithm [107, [18], [20].

While the EMML algorithm and its MAP generalizations can
be used to compute, respectively, ML and MAP solutions, con-
vergence of these methods is very slow. The first three papers in
this issue all describe MAP algorithms that exhibit much faster
convergence. The key differences among them lie in the path
taken to the solution. We will attempt to place these methods in
the broader context of fast iterative methods for iterative image
reconstruction.

The classical approach to the numerical solution of nonlinear
optimization problems is to update all pixels simultaneously
using some function of the gradient [31]. The EMML algorithm
itself can be viewed as a preconditioned form of stecpest as-
cent [25]. While both steepest ascent and EMML are rather slow
to converge, modifications using conjugate gradient or quasi-
Newton methods, in combination with preconditioners, can pro-
duce rapidly convergent algorithms. A complication in these
gradient-based methods is that of ensuring that the solution is
nonnegative. This can be achieved using active set methods and
bent line searches [26], [33]. An alternative is to convert the
constrained problem into an unconstrained one using penalty or
barrier function methods [31]. The paper in the current issue
by Johnson et al. [24] describes a pair of gradient-based algo-
rithms for MAP estimation, one of which uses a barrier func-
tion, the other an alternative interior point methodology. Fast
convergence is achieved using, respectively, a truncated Newton
method and a preconditioned conjugate gradient method.

An alternative approach to speeding up convergence is to use
algorithms that involve only a subset of either the data or the
solution space at each iteration. We consider first the class of
block-iterative (or ordered-subset) methods that are based on
partitioning of the data into disjoint subsets, or blocks. At each
iteration only the data in one of the blocks are used. The use
of blocks arises naturally in tomography, where a single family
of parallel or fan rays contributes an obvious block of data. Al-
gorithms that Censor called row-action methods in [4], such as
ART and multiplicative ART [17], employ blocks that contain
only a single data value. These methods can be faster to converge
than simultaneous methods that use all the data at each step,
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but if the time required to access the current estimated image
is significant, forward and backward projection for a single ray
can be wasteful. A compromise, involving the use of blocks and
the calculation of the forward and backward projection for sev-
eral rays at a time, can be a reasonable course of action [12],
[7]. It should be noted that, apart from the efficiencies just men-
tioned, block-iterative methods are not automatically faster than
their simultaneous counterparts. However, the use of blocks pro-
vides an opportunity to access the data in an advantageous or-
dering and to over relax in a way that is impossible if all the data
were used at each step, both leading to accelerated convergence.
Block-iterative versions of ART and MART were discussed by
several authors, e.g., [8]. A good source for details concerning
these and other related algorithms is the book by Censor and
Zenios [9].

The slow convergence of EMML and its resemblance to the
multiplicative ART algorithm leads naturally to the following
questions. Does EMML have block-iterative versions? If so, are
they faster than EMML? Hudson, Hutton and Larkin provided
the first answer to these questions with their ordered-subset EM
(OSEM) algorithm [22], [23]. The OSEM algorithm does not
apply to the case of singleton blocks, nor does it converge for ar-
bitrarily chosen blocks (and noise-free data) but, in many cases
of practical interest, OSEM has been shown to perform as well
as EMML, with an order-of-magnitude fewer iterations. Man-
glos et al. noted, however, that noisy reconstructions can result
if too many subsets are used in OSEM [32]. With OSEM, as
with ART, the careful selection of subset ordering can greatly
accelerate convergence (see [21] and [19]). However, as with
the earlier block-iterative methods, limit cycles appear in the
noisy case. The lack of convergence of OSEM algorithms is to
some degree of theoretical importance since, in practice, the al-
gorithm is terminated after only a few iterations.

To remove limit cycles from OSEM, Browne and De Pierro
introduced their row-action maximum likelihood algorithm
(RAMLA), which is a modification of OSEM that uses strong
under relaxation [2]. The rescaled block-iterative version of
EMML, called RBI-EMML [3], differs from RAMLA only
in the nature of the rescaling involved. In RBI-EMML the
rescaling is larger, for acceleration, while in RAMLA it is
going to zero, to remove the limit cycles, The RBI-EMML is
OSEM for certain special cases but converges, in the noise-free
case, for any choice of blocks. When there is only one data
value per block the RBI-EMML becomes a row-action version
of EMML. The use of variable-sized blocks has also been
suggested by Censor [5]. Guan and Gordon [19] consider
block-ART with the number of blocks, decreasing as the
iteration proceeds, as a way Lo avoid the limit cycle.

As noled above, unregularized reconstruction methods, such
as ART, EMML and OSEM, can have high variance when ap-
plied to noisy data. Just as the EM algorithm can be extended to
solve MAP estimation problems, so the block-iterative methods
can be extended to the MAP problem. The regularization of
block-iterative methods is the theme of [27]. Lalush et al. extend
the RBI-EMML approach to compute a MAP solution using
their RBI-MAP algorithm. Also of interest in this paper is the in-
tegration of an automated procedure for selecting the smoothing
parameter. De Pierro and Yamagishi [11] describe a MAP exten-
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sion of the RAMLA approach and investigate its convergence
properties. This work may appear in a future issue of IEEE
TRANSACTIONS ON MEDICAL IMAGING.

A second type of block-iterative method, which groups the
pixels rather than data, has been used by a number of authors
([36], [13]). When blocks consist of a single pixel this method
reduces to coordinate ascent [36], [14] which has been shown
to exhibit very rapid convergence. As with the other block-iter-
ative approaches, the ordering can have a major impact on con-
vergence rates. As well as exhibiting rapid convergence, han-
dling the nonnegativity constraint in coordinate ascent is trivial.
The primary potential drawback of coordinate ascent is that pix-
elwise updates may be computationally inefficient; this can be
remedied using block-based methods.

The space-alternating generalized EM (SAGE) algorithm, in-
troduced by Fessler and Hero [16], is a general formalism for
constructing pixel-based block-iterative methods for ML and
MAP estimation. As with the EM algorithm, the methods use
unobserved data spaces to effectively modify the function to be
optimized at each iteration so as to simplify the update equa-
tions. The hidden data spaces are chosen to ensure that the se-
quence generated is monotonically increasing in the original
cost function. Convergence of SAGE algorithms under certain
restrictions is shown in [15].

The EM and SAGE algorithms are, in turn, special cases of
a very general class of algorithms, which have been termed
functional substitution methods in which, at each iteration, a
modified or surrogate cost function is introduced that is easier
to maximize than the original function and whose maximiza-
tion guarantees monotonic increase in the original function.
Other examples of functional substitution methods include
De Pierro’s MAP-EM algorithm [10], the coordinate ascent
method of Saquib et al. [35], and the grouped coordinate ascent
method of Fessler et al. [13].

Preconditioned gradient-based optimization and block-itera-
tive methods can produce high-quality reconstructions in only
a few iterations. Improvements in the choice of preconditioners
or block iterative methods that involve both sets of indexes may
lead to further improvements in convergence rates. Other ad-
vances in iterative methods will undoubtedly include improve-
ments in the modeling of the systems, development of priors op-
timized for clinical and research applications (including integra-
tion of anatomical information) and the further development of
analytical tools for investigating the resolution and noise prop-
erties of these nonlinear algorithms.

We close by noting that, recently, the OSEM approach has
been adopted by the manufacturers ol a number of nuclear
medicine imaging systems. Now that the door has been cpened
to the use of iterative approaches in a clinical setting, it will be
interesting to see how the relative merits of OSEM and other
block-iterative approaches, as well as coordinatewise and gra-
dient-based schemes, play out in terms of both computational
cost and clinically relevant measures of image quality.
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