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A new methed is presented that allows the recovery of an image from those coordinates at which its power

spectrum is zero. The coordinates of these zeros are

points that are common to both the intensity data and the

complex amplitude. The imaging method is based on a spectral estimation technique known as the prior dis-
crete Fourier transform (PDFT, DFT using prior knowledge), which incorporates information about the image,
such as a support constraint. © 1997 Optical Society of America [50740-3232(97)02512-X]

1. INTRODUCTION

The Fourier transform of a one-dimensional signal or im-
age of compact support is well known to be an entire func-
tion of exponential type. It can be represented in terms
of its real and complex zero locations by means of an in-
finite product of factors (the Hadamard product), each fac-
tor encoding a zero’s coordinate in the complex spectral
plane.! Tt is also well known that if only power spectral
data are measured, the complex zeros of the spectrum and

its complex conjugate are located symmetrically about the

real axis, making it impossible to distinguish between
those belonging to the spectrum and those of its complex
conjugate, in the absence of any a priori knowledge. If
there are N complex zeros located, then one can generate
9N-1 distinet complex functions, consistent with the mea-
sured data, by zero flipping.

In more than one dimension, an entire function is gen-
erally not factorizable into an infinite product of terms
but is irreducible.’? From this, one expects a unique
complex spectrum to be associated with the power spec-
trum. This association has provided an incentive to find
methods that compute the missing phase values from the
measured intensity data. The irreducible function repre-
senting the complex spectrum encodes a zero structure
that occupies the associated two-dimensional (2D) com-
plex space, of which the real plane is the measurement
domain. Approximations to these irreducible zero factors
have been found by numerically estimating the analytic
continuation of the power spectral function off the real
plane (i.e., measured) data into the complex domain and
tracking where its modulus is zero. Attempting to locate
the zero contour of the spectrum, as distinct from its com-
plex conjugate,®® has proved difficult.

The approach adopted in this paper is based on earlier
work that recognized that the zero crossings of 2D band-
limited functions typically are at isolated points on the
real plane®? rather than on closed or open curves. A
practical approach to image recovery is therefore to try to
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estimate the 2D complex function from these point
zeros 510 provided that there is a sufficient number of
them to represent the function and that the representa-
tion adopted can be justified. Having found the zero lo-
cations, we use these to estimate the complex valued spec-
trum.

2. TWO-DIMENSIONAL BAND-LIMITED
FUNCTIONS

It is well known'! that in two dimensions there tend to be
a number of point zeros on the real plane approximately
equal to the number of Shannon samples required to rep-
resent the function. This has been observed under differ-
ent circumstances and reported over the years. An en-
tire function of exponential type on the 2D real plane is
the limit of a function analytic in the associated four-
dimensional space. The analyticity of the function allows
us to model the function as a simple polynomial, locally.
From solutions of the parabolic wave equatior], we expect
many points of the field F(a, &) to be zero, and we can
represent the field in the vicinity of these zeros' by a first-
order approximation. Thus in the immediate neighbor-
hood of a zero at a,, bo we can approximate the function
by the simple linear term: - :

Fla, b) = Ala — ag) + iB(b ~ bo), (1

where A and B carn be assumed to be complex constants
in a sufficiently small neighborhood. The increment or
decrement of phase moving around the zero is equal to 27
and is well represented locally by the phase of Eq. (1}.

We shall assume throughout that the object function to
be yeconstructed is the real-valued function flx, ¥) pos-
sessing nonzero values only within the compact support
region |xi=s, [y] =s. The two-dimensional Fourier
transform of flx,v) is the complex-valued function
F(e, b) given by
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i
Fla, b) = Jf flx, yiexp[—i(xa 4 yb)]d.xd_}’féwg.
(2)

From the Fourier inversion theorem we have

[(x, y) = fj F(a, b)expli(xa + yb)]dadb. (3)

Since f(x, y) is compactly supported, it can be repre-
sented by Fourier series in an infinite number of terms.
For any A > 0 such that #/A = s, we can write

flx,y) = 622 E F(mA, nA)exp[i(xmA + ynd)],
| )

for all |x| < /A and |y| = #/A.  So, in particular, repre-
sentation (4) holds for all (x, y} within the support-of the
object. If the square |x| <s, |y| <s is the smallest
square containing the support of f, then A = /s is called
the Nyquist sampling rate. From Eq. (4) we see that for
any A < w/s the object function f can be completely recov-
ered from the (infinitely many) samples of F' on the lattice
{tmA, nA)}. In practice we usually do not know s ex-
actly, so we choose A sufficiently small that s is almost
certainly less than #/A; indeed, there is sometimes good
reason to oversample, that is, to take A even smaller than
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our estimate of #/s. In any situation involving actual
measurements, we can have only finitely many values of
F . so the representation given by Eq. (4) must be replaced
by something we can compute from the finite data.

The basic problem that we address in this paper is the
reconstruction of the real object function f{x, y) from fi-
nitely many samples {|F(mA, nA)|}, with A significantly
less that our estimate of w/s; here |F(mA, nA)| denotes
the magnitude of the complex quantity F(mA, nA).
This problem is often called the phase-retrieval problem,
although even if we had the phases as well, there would
still be the problem of reconstructing from finite data.
Our solution to this phase-retrieval problem will make
use of a method called the prior discrete Fourier
transform'®'® (PDFT) for reconstructing f from finitely
many oversampled values of the complex function F, us-
ing an estimate of s. We discuss first the PDFT and then
the application of the PDFT to the solution of the phase-
retrieval problem.

3. PRIOR DISCRETE FOURIER TRANSFORM
FOR RECONSTRUCTION FROM FINITE
DATA

Let us assume now that we have finitely many complex
data values {F(mA, nA),|m| < M,|rn| = N}. Since [ is

e
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Fio. 1. (a) Object, (h) correct and wrapped phase function; {¢) power spectrum: (d} real point zero locations.



Liao et al.

taken to be real valued, the function F is conjugate sym-
metric, so that F(—=mA, —nA) = F(mA, nA)¥*, where *
denotes complex conjugate. It is natural, therefore, to
take our sampling points within a rectangle centered at
the origin. Let us also assume that we have an estimate
of s and that A has been chosen so that s < /A, so the
data is oversampled.

By the discrete Fourier transform (DFT) estimate of
f(x, y) we mean the function of continuous x and y given
by the truncated version of Eq. (4):

DFT(x, y) = A2>, >, F(mA, nA)
M N

»® exp[i{xma + ynd)],

for |xl,ly[ = s

= 0 otherwise, 5)

where 2, indicates summation over |m| =M. Ifsis
significantly less than #/A, this estimate may not be ac-
curate. One reason for that is the following: we have
made use of our knowledge about the support s when we
set the DFT equal to zero for |x|, |y| > s, but one effect of
this is that the DFT estimator so defined is no longer con-
sistent with the measured data. In other words, if we
take the Fourier transform of this estimator and evaluate
it at the lattice points where we had data, we do not get
back the values F(mA, nA); to get back the data we must
let the DET exist all the way out to |x|, [yl < #/A. A
way out of this dilemma is to seek an estimator similar in
form to the DFT but adjusted so as to be consistent with
both the support and the data constraints; this is the
PDFT.1%3

Let p(x, y) = 1 for |x|, |y] =s, and p(x, y) = 0 oth-
erwise. The PDFT estimator of f(x, y) is given by the
function

PDFT(x, y) = p(x, ¥) 2, 2 a(m, n)
M N

X expli(xmA + ynd)], (6)

where the coefficients a(m, n) are determined by requir-
ing that the Fourier transform of the PDFT(x, y) take on
the values F(mA, nA) for |m| < M, [n| = N.

The linear equations that result are

F(A, kA) = 2, 2, a(m, n)
M N

X P[(j —m)A, (k- n)A],
lil< M|kl =N, (1

where

Pla, b) = JJ plx, y)expl —i(xa + yb)]dxdy /4=,
(8)
From our definition of p(x, v) it follows that
Pla, b) = simsa)sin(sb)f’r:’2ab, (9)

Therefore system (7) becomes
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Fig. 2. (a) Nine data points used to estimate r{x, y)'; (b
r(x, ¥)'; (¢) zero contours of R(a, b). )

F(A, kA) = >, 2 Blm, n)sinc((j — m)A]
M N .

X sinc[ (B — n)A]L,

=M, |kl = N, (10)
with  glm, = (s/m)2a(m, n) and sinc(?) = sinllVi,
sinetQ] 1.
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The PDFT method consists of solving Eq. (10) for the
{B(m, n)} and then using the resulting {a(m, n)} in Eq.
(6} as the estimate of f{x, y). If A is nearly equal to /s
then the PDFT and the DFT are not greatly different;
however, when A is half of /s or smaller we begin to see
a difference.

One note of caution: as the A becomes smaller, system
(10) becomes increasingly ill-conditioned and hence sensi-
tive to noise in the data. To combat this, we always mul-
tiply the values of P in Eq. (7) corresponding to m =7,
n = k by (for example) 1.001 or 1.0001 before solving Eq.
(10). This regularization minimizes the ill-conditioning™
by improving the condition number of the P matrix.

3. PRIOR DISCRETE FOURIER
TRANSFORM FOR PHASE RETRIEVAL.

We assume now that we have only the magnitude data
{IF(mA, nA)|,|m| = M,|n| < N}, where again we have
an estimate of the support limit s and have chosen A so
that /A is greater than our estimate of s. The complex-
valued function F{a, b) can be written in terms of its real
and imaginary parts as follows:

F(a, b) = R(a, b) + iQ(a, b), (11)
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where both R and @ are real-valued functions. Letting
r(x, ¥) and g(x, y) be the inverse Fourier transforms of
R and @, respectively, we have that

rx, y) = [, y) + f(=x, =912/ (12)
qlx, y) = [flx, ¥) — f{—x, —¥))/2. (13)

The function R(a, b) is real and symmetric; that is,
R(—a, —b) = R(a, b). Those data values |[F(mA, nA)|
that are (nearly) zero correspond to (nearly) zero values of
both R(mA, nA) and @(mA, nA). We begin by using
(some of) these point zeros, along with our support infor-
mation, to reconstruct (x, y) by means of the PDFT.

To reconstruct r(x, y) from zeros of R(a, b) by means
of the PDFT, we must also have at least one nonzero
value of R: otherwise, the PDFT estimate of r will be
identically zero. We know that since F(—a, —b)
= F(a, b), F(0,0) is real, therefore R(0, 0) = |F(0, 0)]
or R(0,0) = ~|F(0, 0)|; we take R(0,0) = |F(0, 0)], ar-
guing that f(x, y) is often nonnegative in practice. The
PDFT estimator of r(x, y) then takes the form

r(x, y)' = PDFT,(x, y) = p(x, ¥) 2 ¢(m, n)

X exp[i(xmA + ynA)], (14)
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Fig. 3. (a) Twelve locations at which values of @(a, b) are defined; (b) total number of complex data points available for PDFT esti-

mator: (¢ reconstruction of object; (d) estimated Fourler phase.
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Fig. 4. (a) Zero contours of the magnitude of the estimated imaginary part of the spectrum; (b) zero contours of both the real and the
imaginary parts, indicating the points at which they intersect; (¢} total complex data points available for PDFT; (d) object estimate.

where T, denotes summation over those pairs (m, n) for
which the lattice point (mA, nA) is one of the point zeros
being used to generate the function, as well as over the
pair (0, 0). Once again, we find the coefficients c(m, n)
by forcing the Fourier transform of Eq. (14) to agree with
|F(0, 0)] at the point (0, 0) and to be zero at the point zero
locations being used in the sum. Once we solve the re-
sulting system of linear equations for the c(m, n), we put
these values into Eq. (14); this is our estimate r(x, y)’ of
rix, y).

Now we take the Fourier transform of this estimate
r(x, y)' to get R(a, b)'. From the values R(mA, nA)’
for [m| =M, |n| = N, we obtain an estimate of the
curves along which R(a, ) = 0. Once we have esti-
mated where R(a, b) = 0, we have locations at which we
can claim to know |Q(a, b)| = |F(a, b)|. Along the zero
curves of R(a, b), the function @(a, b) can change sign
only when a zero of |[F(a, b)| is encountered. Therefore
we now know (estimates of) Q(a, b), except for the sign,
along a number of curves in the (a, b) plane.

The next step is to select a certain finite number of
these locations and to assign the signs in an arbitrary
way, consistent only with the antisymmetry of @; that is,
Ql-a, —b) = —Qla. b). With these real numbers as

data now, we again use the PDFT and the prior knowl-
edge of s to estimate the purely imaginary function
q(x, y). Once we have obtained our estimate g(x, y)' of
g(x, y), we Fourier transform back to get @(a, b)’, our
estimate of @(a, b). From Q(a, &)’ we now have (esti-
mates of) the zero curves of @(a, b), which must then be
locations at which we know the values of R(a, b), except
for. the sign. o .

We can continue indefinitely in this fashion, but -at
some point we stop and use some of the estimated values
of R(a, b) and Q(a, b), along with our value of s, todo a
final PDFT estimate of f(x, y). We choose to estimate
the symmetric r(x, y) first because we cannot estimate
an unsymmetric f(x, y) from symmetric point zeros and a
symmetric support function p(x, y); we always get what
looks like a twin image if we view it as an estimate of
itself. It is better to view the result of this first step as
an estimate only of r(x, ¥) and then to go back to (a, b)
space to estimate the full zero structure of R(a, b).

There are many opportunities for variation in what we
have just described, and the results we present in this pa-
per will illustrate some of these possibilities. What we
have outlined here is the main idea behind the use of the
PDFT for phase retrieval.
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4. NUMERICAL RESULTS

A simple binary object as shown in Fig. 1(a) was used in
these examples; it covers an area of only 4 x 4 pixels.
This object is well known to lead to an irreducible
Spo,cl.rum'{ with a readily seen set of real point zeros.
Figure 1(b) shows the correct and the wrapped phase
function for the spectrum of this object and Fig. 1{c) ils
power spectrum. Although there is evidence of some
point zeros being located toward the edges of the array,
we use only those that are surrounding the central region.
Those particular zeros are shown in Fig. 1{d). Knowing
that the object is real and assuming that it is more posi-
tive than negative, we can define the central square root
of the intensity value |F(0, 0)] to be equal to (0, 0), thus
giving nine data points from which to estimate rix, y)'
with the PDFT, as shown in Fig. 2(a) where the support
constraint used in the PDFT is a window of 5 X5 pixels.
This estimate is shown in Fig. 2(b) and the magnitude of
the Fourier transform of this, R(a, b) is shown in Fig.
9(c). Note that R(a, b) has zero contours, and at these
locations we can deduce values for @(a, b) from the in-
tensity data.

Figure 3(a) shows just 12 locations at which values of
Q{a, b) have been defined. The sign of these values is
chosen to reflect the known Hermitian character of the
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complex spectrum. Figure 3(b) shows the total number
of complex data points now available to use with the
PDFT; they include an estimate of the real part (when the
imaginary part is zero), the imaginary part (where the
real part is zero), and points where both the real and the
imaginary parts are zero. The PDFT reconstruction us-
ing all of these 21 points is shown in Fig. 3(c). The cor-
rect object shape is beginning to emerge in the 5 X 5 re-
construction window. The Fourier phase associated with
this estimate is still in error, however, as shown in Fig.
3(d).

From this estimate of the object, one can calculate
q(x, y) and identify its zero contours. At these locations
new estimates for R(a, b) can be inferred from the mea-
sured intensity data. As the number of estimated com-
plex spectral values increases, the PDFT estimate using
them and the prior knowledge that the object is confined
toah ¥ 5 window improves. Indeed, from the overlap of
zero contours of the real and the imaginary parts, one can
more precisely sign the real and imaginary parts, since a
sign change of either the real or the imaginary part can
occur only when the part passes through a zero. Figure
4(a) shows the zero contours of the magnitude of the esti-
mated imaginary part of the spectrum and Fig. 4(b) the
zero contours of both the real and imaginary parts, indi-
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Fig. 5. {a) Local phase estimates with correct values for a and @ {b) object estimate; (¢) only ¢ values correct and a = 0 (d) object

estimate.
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cating the points at which they intersect. From this in-
formation, additional complex spectral values are de-
duced, shown in Fig. 4(c), leading to the object estimate in
IFig. 4(d}.

The success of this approach depends on the accuracy
with which one can lecate the zeros of the intensity func-
tion, and this might require some care when neisy data
are used. Also, the estimates for the real and the imagi-
nary parts will be dependent on the choice of the prior
function p(x, y); if this is poor or contains incorrect infor-
mation about the object, it will lead to errors in the final
estimate.

An interesting and complementary approach to using
this method is illustrated next. In previous publi-
cations,*!? an initial estimate for the phase of the spec-
trum was calculated with a product expansion incorporat-
ing the real zero locations as if they were the roots of a
factorizable polynomial. This procedure met with some
success but does not always provide a phase estimate
good enough that an iterative procedure such as the error
reduction technique can recover the true phase. In its
more general form, Eq. (1) can be written as

F(a, b) = exp(—ia){Al(a — ag)cos § + (b — by)sin 6]
+ iB[(a — ag)sin 8 + (b — bg)cos a1}, (15)

Around each of these real point zeros, we do know that
the phase of the function will behave very much like the
phase of this function with corrections to the phase, a, for
the offset of the zero from the x,v origin and with the ori-
entation ¢ of the phase wrap. With this model, the
phases, and hence the complex values, at the points im-
mediately surrounding each zero can be estimated. The
results are shown in Fig. 5(a). Based on these complex
data, totaling 64 points in this case, the PDFT estimate is
very good, as shown in Fig. 5(b). In Fig. 5(c) we assumed
that the phase offset values for each zero are all zero, and
so only #is known. Under these conditions, the object es-
timate is again excellent [Fig. 5(d)]. This suggests that if
one can make use of spectrum symmetries and if from the
intensity map one can infer the orientation of the linear
phase term around each zero, then the PDFT can provide
a good object estimate directly.

5. CONCLUSIONS

There are many situations in which only Fourier magni-
tude data or intensity data can be measured. We have

demonstrated a new and rigorous method for estimating a .

complex spectrum from its (finitely- many) intensity data
samples. The samples used are those locations at which
the intensity data are zero. The method provides an op-
timal estimate for the object function in the sense that the
PDFT is optimal. It also provides simultaneously an
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interpolated/extrapolated complex data set from which
improved image resolution results. Numerical examples
were shown indicating the success of the approach. A
modifieation to the basic method was also presented, in
which the phase behavior in the neighborhood of each in-
tensity zero is also estimated and incorporated into the
PDIT restoration procedure. This method can provide
an improved estimate with just the zero points and their
immediate (phased) neighbors, but only if the phase off-
sets and phase-wrap orientations can be reasonably well
estimated @ priori. Function symimetries can assist with
this.
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