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Avoiding the Baillon–Haddad Theorem
I first became interested in iterative algorithms as applied to medical image recon-

struction, where the vectors involved are nonnegative and the cross-entropy distance
plays an important role. I became aware of the BH Theorem only about ten years ago.
Until this year there was no elementary proof of the Baillon–Haddad Theorem in the
published literature. For these reasons, my investigation of convergence of certain it-
erative optimization algorithms involved methods that do not rely on the BH Theorem.
The results of this investigation provide the subject matter of this talk.

The Basic Problem
The basic problem is to minimize f : X → R, over x in C ⊆ X , where, initially,

X is an arbitrary nonempty set. Initially, X has no structure for two reasons:

1. we can do quite a bit without structure, and

2. we want to consider several different structures.

Barrier- and Penalty-Function Methods
Barrier-function and penalty-function methods are the best known of the sequen-

tial unconstrained minimization techniques discussed by Fiacco and McCormack. In
barrier-function methods the barrier function b(x) is chosen to be positive for x in C
and infinite for x outside C. We then minimize

Bk(x) = f(x) +
1

k
b(x)

to get xk. In penalty-function methods we select the penalty function p(x) > 0 for x
not in C and p(x) = 0 for x in C. Then we minimize

Pk(x) = f(x) + kp(x)

1



to get xk. For penalty-function methods we need topology on X and f and p continu-
ous.

An Example of Barrier-Function Methods
Minimize f(x) = x21 + x22, subject to x1 + x2 ≥ 1. Let

b(x) = − log(x1 + x2 − 1),

for x1 + x2 > 1, and b(x) = +∞, otherwise. For each k we minimize

Bk(x) = f(x) +
1

k
b(x)

to get

xk1 = xk2 =
1

4
+

1

4

√
1 +

4

k
.

As k → +∞, {xk} → ( 1
2 ,

1
2 ).

An Example of Penalty-Function Methods
We want to minimize the function f(x) = (x+1)2, subject to x ≥ 0. Let p(x) = 0,

for x ≥ 0, and p(x) = x2, for x < 0. Then we minimize

Pk(x) = f(x) + kp(x)

to get xk = −1
k+1 . As k → +∞, {xk} → 0. Note that the sequence {f(xk) = k

k+1} is
increasing; but each xk is outside C.

Penalty Methods as Barrier Methods
Let f be bounded below, so that, without loss of generality, we may assume f :

RJ → R+, p : RJ → [0,+∞), and C = {x|p(x) = 0}. For each k we minimize

Pk(x) = f(x) + kp(x)

to get xk. Equivalently, we can minimize

p(x) +
1

k
f(x),

which has the form of a barrier-function method.

{f(xk)} ↓ infx∈C f(x) for Barrier-Function Methods
From Bk(xk−1) ≥ Bk(xk) and Bk−1(xk) ≥ Bk−1(xk−1), for k = 2, 3, ..., it

follows easily that

1

k − 1
(b(xk)− b(xk−1)) ≥ f(xk−1)− f(xk) ≥ 1

k
(b(xk)− b(xk−1)).
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Suppose that {f(xk)} ↓ β∗ > β = infx∈C f(x). Then there is z ∈ C with

f(xk) ≥ β∗ > f(z) ≥ β,

for all k. Then

1

k
(b(z)− b(xk)) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0,

for all k. But the sequence { 1k (b(z)− b(xk))} converges to zero, which contradicts the
assumption that β∗ > β.

Applying the Penalty-as-Barrier Method
For each k we minimize

Pk(x) = f(x) + kp(x)

to get xk. Since penalty-function methods can be reformulated as barrier-function
methods, we can show that

{Pk(xk)} ↑ γ ≤ β = inf
x∈C

f(x),

{p(xk)} ↓ 0,

and
{f(xk)} ↑ γ∗ ≤ γ ≤ β.

For more we need X to be a complete metric space, f and p to be continuous, and f to
have compact level sets.

The Basic Approach
We study iterative algorithms in which, having found xk−1, we minimize

Gk(x) = f(x) + gk(x)

over x in C to get xk. We are particularly interested in how to restrict the gk to impose
desirable properties on the sequence {xk}, such as

1. the sequence {f(xk)} ↓ β∗ ≥ −∞ is nonincreasing;

2. the sequence {f(xk)} converges to β = infx∈C f(x), so β∗ = β; and

3. the sequence {xk} converges to x∗ ∈ C with f(x∗) ≤ f(x), for all x ∈ C.
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Auxiliary-Function Methods

Definition 1. The functions gk(x) are auxiliary functions (AF) if they have the prop-
erties gk(x) ≥ 0 for all x ∈ C, and gk(xk−1) = 0.

Lemma 2. If the sequence {xk} is generated by an AF method, then the sequence
{f(xk)} is nonincreasing.

Proof: We have

Gk(xk−1) = f(xk−1) + gk(xk−1) = f(xk−1)

≥ Gk(xk) = f(xk) + gk(xk) ≥ f(xk).

Barrier-Function Methods as AF Methods
The iterative step in barrier-function methods is to minimize

f(x) +
1

k
b(x)

to get xk. Equivalently, we can minimize

kf(x) + b(x) = f(x) + (k − 1)f(x) + b(x),

or even
f(x) + [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)]

= f(x) + gk(x) = Gk(x).

It is easy to show thatGk(x)−Gk(xk) = gk+1(x), so barrier-function methods satisfy
the SUMMA Inequality, to be defined later.

Generalized Proximal Minimization
A large subclass of AF methods is the class of generalized proximal minimization

algorithms. For each k let dk : X ×X → R+ be a “distance”, so that dk(x, x) = 0.
Then minimize

Gk(x) = f(x) + dk(x, xk−1)

to get xk.

Proximal minimization algorithms (PMA) require that dk = d for all k, so for
PMA we minimize

Gk(x) = f(x) + d(x, xk−1)

to get xk.
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Proximal Minimization Algorithms
There are a variety of PMA algorithms. For example,

• the EM algorithm and cross-entropy minimization;

• the CQ algorithm for the split feasibility problem;

• projected gradient descent algorithms;

• majorization minimization (MM) in statistics (K. Lange, et al.);

• the optimization method of Auslender and Teboulle;

• proximal minimization with Bregman distances (PMAB) (Censor and Zenios);

• forward-backward splitting (FBS) (Combettes and Wajs).

MM=PMA
The majorization minimization (MM) method in statistics, also called optimization

transfer, is the following. Assume that there is a function g(x|y) ≥ f(x), for all x and
y, with g(y|y) = f(y). Then, for each k, minimize g(x|xk−1) to get xk.

The MM methods and the PMA methods are equivalent; given g(x|y), define
d(x, y)

.
= g(x|y)− f(x) and given d(x, y), define g(x|y)

.
= f(x) + d(x, y).

The SUMMA Inequality
In order to have the AF sequence {f(xk)} converge to β = inf{f(x)|x ∈ C} we

need to impose an additional property on the gk(x).

Definition 3. An AF method is in the SUMMA class if the SUMMA Inequality holds:

Gk(x)−Gk(xk) ≥ gk+1(x),

for all x ∈ C.

So barrier-function methods are in the SUMMA class.

The SUMMA Class
The SUMMA class of algorithms may seem to be quite limited, but, as we shall

see, that is far from the case. Many well known iterative methods, including barrier-
function methods, proximal minimization using Bregman distances, the SMART for
cross-entropy minimization, and alternating minimization with the five-point property,
are in the SUMMA class or can be reformulated to be in this class (CB, 2008).
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The SUMMA Theorem
We have the following theorem.

Theorem 4. If the auxiliary functions gk satisfy the SUMMA Inequality, then the se-
quence {f(xk)} converges to β = infx∈C f(x).

Proof: If not, then there is z ∈ C and β∗ such that

f(xk) ≥ β∗ > f(z) ≥ β.

From
gk(z)− gk+1(z) ≥ gk(z)−Gk(z) +Gk(xk)

= f(xk) + gk(xk)− f(z) ≥ β∗ − f(z) > 0,

it follows that {gk(z)} is a decreasing sequence of nonnegative terms whose successive
differences remain bounded away from zero, which is a contradiction.

The PMAB
Proximal minimization algorithms using Bregman distances, called here PMAB,

form an important subclass of the SUMMA class. Let f : RJ → R be a convex
differentiable function. Once again, our objective is to minimize f(x) over x in the
nonempty closed convex set C. Assume that f(x) attains its minimum value on C at
x̂ ∈ C.

Let h be another convex differentiable function, which may or may not involve C.
If it does, then its effective domain is C = {x|h(x) < +∞}, and h is differentiable on
the nonempty open convex set int(C). If not, we redefine f(x) by f(x) = +∞, for x
outside C. Then the minimization is automatically over x ∈ C.

The PMAB Iteration
At the kth step of a PMAB we minimize

Gk(x) = f(x) +Dh(x, xk−1),

to get xk. The Bregman distance

Dh(z, x)
.
= h(z)− h(x)− 〈∇h(x), z − x〉

is sometimes called a proximity function. The function gk(x) = Dh(x, xk−1) is
nonnegative for x ∈ C and gk(xk−1) = 0. Then

Gk(x)−Gk(xk) = Df (x, xk) +Dh(x, xk) ≥ Dh(x, xk) = gk+1(x) ≥ 0,

so all PMAB are in the SUMMA class.
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PMAB: The Non-differentiable Case
In the PMAB we can remove the requirement that h be differentiable, and just

assume that h is convex. Then, to show that PMAB is in the SUMMA class we need
the subdifferential of h at x,

∂h(x) = {u|h(y)− h(x) ≥ 〈u, y − x〉 , for all y}.

A function h : RJ → R is convex if and only if ∂h(x) is not empty, for every x.
Note that x = z minimizes h(x) if and only if 0 ∈ ∂h(z). If f and h are convex and
f + h = a is differentiable, then both f and h are differentiable.

Computational Difficulty with PMAB
To minimize Gk(x) = f(x) +Dh(x, xk−1) we must solve

∇f(xk) +∇h(xk)−∇h(xk−1) = 0

for xk. This can be difficult. Suppose we select a(x) so that

h(x)
.
= a(x)− f(x)

is convex and differentiable, and

∇f(xk) +∇h(xk)−∇h(xk−1) =

∇a(xk)−∇a(xk−1) +∇f(xk−1) = 0

is easily solved. The projected gradient descent (PGD) algorithm is a good example of
this modified PMAB method.

Orthogonal Projection
Let C ⊆ H be a nonempty, closed, convex set. For every x in H there is a unique

member of C closest to x, called the orthogonal projection of x onto C and denoted
PCx.

Theorem 5. A vector z in C is PCx if and only if

〈z − x, c− z〉 ≥ 0,

for all c in C.

Minimizing f(x) over x ∈ C

Theorem 6. Let f : H → R be convex and differentiable. A vector z ∈ C minimizes
f(x) over x ∈ C if and only if

〈∇f(z), c− z〉 ≥ 0,

for all c ∈ C
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Then, for all γ > 0,
〈γ∇f(z), c− z〉 ≥ 0,

〈z − (z − γ∇f(z)), c− z〉 ≥ 0,

so that
z = PC(z − γ∇f(z)).

Projected Gradient Descent (PGD) Algorithms
The problem now is to minimize f : RJ → R, over the closed, nonempty convex

set C, where f is convex and differentiable on RJ and∇f is L-Lipschitz continuous;

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

For 0 < γ < 1
L let

a(x) =
1

2γ
‖x‖22;

then the function h(x) = a(x) − f(x) is convex. At the kth step we use the modified
PMAB approach to obtain xk by minimizing

Gk(x) = f(x) +Dh(x, xk−1) = f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, xk−1),

over x ∈ C.

The PGD Continued
To be the minimizer of Gk(x) over x ∈ C, the vector xk must satisfy the inequali-

ties
〈∇Gk(xk), c− xk〉 ≥ 0,

for all c in C. Therefore, the solution xk is in C and satisfies the inequality

〈xk − (xk−1 − γ∇f(xk−1)), c− xk〉 ≥ 0,

for all c ∈ C. It follows then that

xk = PC(xk−1 − γ∇f(xk−1)).

Comments on the Modified PMAB
Note that the auxiliary function for the PGD,

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, xk−1) = Dh(x, xk−1),

is unrelated to the set C, so is used here not to incorporate the constraint, but to provide
a closed-form iterative scheme. When C = RJ we have no constraint and the problem
is simply to minimize f . Then the iterative algorithm becomes

xk = xk−1 − γ∇f(xk−1);

this is the gradient descent algorithm.
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The Projected Landweber Algorithm
The Landweber (LW) and projected Landweber (PLW) algorithms are special

cases of PGD. The objective now is to minimize the function

f(x) =
1

2
‖Ax− b‖22,

over x ∈ RJ or x ∈ C, where A is a real matrix. Then

∇f(x) = AT (Ax− b)

is L-Lipschitz continuous for L = ρ(ATA) and

Df (x, z) =
1

2
‖Ax−Az‖22.

The PLW Iteration
We let

a(x) =
1

2γ
‖x‖22,

where 0 < γ < 1
L , so that the function h(x) = a(x)− f(x) is convex. At the kth step

of the PLW we minimize

Gk(x) = f(x) +Dh(x, xk−1)

over x ∈ C to get the projected Landweber iteration

xk = PC(xk−1 − γAT (Axk−1 − b));

in the case of C = RJ we get the Landweber algorithm.

Minimize f(x) = 1
2‖Ax− b‖

2 over C
For all c ∈ C we have

〈∇Gk(xk), c− xk〉 ≥ 0,

where
∇Gk(xk) = xk − (xk−1 − γAT (Axk−1 − b)).

Therefore,
〈xk − (xk−1 − γAT (Axk−1 − b)), c− xk〉 ≥ 0,

or
xk = PC(xk−1 − γAT (Axk−1 − b)).
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Minimize f(x) = 1
2‖Ax− b‖

2

For each k = 1, 2, ..., minimize

Gk(x) = f(x) +
( 1

2γ
‖x− xk−1‖2 − 1

2
‖Ax−Axk−1‖2

)
to get the Landweber iteration

xk = xk−1 − γAT (Axk−1 − b).

We select 0 < γ < 1
ρ(ATA)

. The added function

gk(x) =
1

2γ
‖x− xk−1‖2 − 1

2
‖Ax−Axk−1‖2

serves to give xk in closed form.

The Kullback-Leibler Distance
For a > 0 and b > 0 define

KL(a, b) = a log
a

b
+ b− a,

with KL(0, b) = b and KL(a, 0) = +∞. Extend component-wise to KL(x, z), for
any nonnegative vectors x and z. Then

KL(x, z) =

J∑
j=1

xj log
xj
zj

+ zj − xj ≥ 0,

and KL(x, z) = 0 if and only if x = z.

Minimize f(x) = KL(Px, y) over x ≥ 0
Now y is a positive vector, P an I by J matrix with nonnegative entries, whose

columns sum to one. For k = 1, 2, ..., we minimize

Gk(x) = f(x) +KL(x, xk−1)−KL(Px, Pxk−1),

to get

xkj = xk−1j exp
( I∑
i=1

Pi,j log
yi

(Pxk−1)i

)
.

Then {xk} converges to the minimizer of KL(Px, y) for which KL(x, x0) is mini-
mized.

Proximal Minimization of Auslender and Teboulle
Auslender and Teboulle take C to be a closed, nonempty, convex subset of RJ ,

with interior U . At the kth step of this AT method one minimizes a function

Gk(x) = f(x) + d(x, xk−1)

to get xk. Their distance d(x, y) is defined for x and y in U , and the gradient with re-
spect to the first variable, denoted∇1d(x, y), is assumed to exist. The distance d(x, y)
is not assumed to be a Bregman distance.
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Associated Induced Proximal Distance
Instead, they assume that the distance d has an associated induced proximal dis-

tance H(a, b) ≥ 0, finite for a and b in U , with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b),

for all c in U . For such algorithms we have β∗ = β, although this method is not in the
SUMMA class. We want to extend the SUMMA class to include the AT algorithms of
Auslender and Teboulle.

The SUMMA2 Class
The AT proximal minimization method of Auslender and Teboulle is not in the

SUMMA class, although β∗ = β. A consequence of the SUMMA Inequality is

gk(x)− gk+1(x) ≥ f(xk)− f(x), for allx ∈ C,

and for the AT methods we have

H(x, xk−1)−H(x, xk) ≥ f(xk)− f(x), for allx ∈ C,

We say that an AF algorithm is in the SUMMA2 class (CB, 2015) if, for any sequence
{xk} generated by the algorithm, with xk ∈ C, there are functions hk : X → [0,+∞],
finite-valued on C, such that

hk(x)− hk+1(x) ≥ f(xk)− f(x), for allx ∈ C.

With hk(x) = H(x, xk−1) the AT algorithms are in SUMMA2.

The SUMMA2 Theorem
We have the following theorem.

Theorem 7. If {xk} is generated by a SUMMA2 algorithm then β∗ = β.

Proof: If not, then there is z ∈ C such that

f(xk) ≥ β∗ > f(z) ≥ β.

From
hk(z)− hk+1(z) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0,

it follows that {hk(z)} is a decreasing sequence of nonnegative terms whose successive
differences remain bounded away from zero, which is a contradiction.

Auslender-Teboulle algorithms are in SUMMA2
Since xk minimizes f(x) + d(x, xk−1), it follows that

0 ∈ ∂f(xk) +∇1d(xk, xk−1),

so that
−∇1d(xk, xk−1) ∈ ∂f(xk).
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We then have
f(xk)− f(x) ≤ 〈∇1d(xk, xk−1), x− xk〉.

Using the associated induced proximal distance H , we obtain

H(x, xk−1)−H(x, xk) ≥ f(xk)− f(x).

So hk(x) = Hk(x, xk−1) works.

The Forward-Backward Splitting Algorithm
The forward-backward splitting (FBS) methods form a broad class of PMAB

algorithms. We want to minimize the function

f(x) = f1(x) + f2(x),

where both functions are convex and f2(x) is differentiable with L-Lipschitz continu-
ous gradient. At the kth step of the FBS algorithm we obtain xk by minimizing

Gk(x) = f1(x) + f2(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1),

over all x ∈ RJ , where 0 < γ ≤ 1
L .

Moreau’s Proximity Operators
The Moreau envelope of index γ > 0 of the convex function f : RJ → R is the

convex function
g(x) = inf{f(y) +

1

2γ
||x− y||22}.

The infimum is attained at a unique y =proxγf (x). The subdifferential of f at x is the
set

∂f(x) = {u|〈u, z − x〉 ≤ f(z)− f(x)}

for all z and x. Note that f(z) ≤ f(x), for all x, if and only if 0 ∈ ∂f(z).

Properties of proxγf
The proximity operators proxγf (·) has several useful properties.

• These operators are firmly nonexpansive.

• The vector x is proxf (z) if and only if z − x ∈ ∂f(x).

• For f(x) = ιC(x), which is zero for x ∈ C and infinity elsewhere, we have
proxιC (x) = PC(x).

Combettes and Wajs noticed that x minimizes f1(x) + f2(x) over x ∈ RJ if and only
if

x = proxγf1(x− γ∇f2(x)),

which suggested the FBS iteration. They did not consider the FBS as a PMAB algo-
rithm.

12



The FBS Iteration
Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differentiable, and

∇f2 L-Lipschitz continuous. The iterative step of the FBS algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
.

Convergence of the sequence {xk} to a solution can be established, if γ is chosen to lie
within the interval (0, 1/L].

The CQ Algorithm
Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex sets. The

split feasibility problem (SFP) is to find x in C such that Ax is in Q. The function

f2(x) =
1

2
‖PQAx−Ax‖22

is convex, differentiable and ∇f2 = AT (I − PQ)Ax is L-Lipschitz for L = ρ(ATA).
We want to minimize the function f(x) = ιC(x)+f2(x). The CQ algorithm (CB,2002)
has the iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
.

The sequence converges to a solution whenever f2 has a minimum on the set C, for
0 < γ ≤ 1/L.

Intensity Modulated Radiation Therapy
Yair Censor and colleagues modified the CQ algorithm to obtain efficient algo-

rithms for designing protocols for intensity modulated radiation therapy (IMRT).

• Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. “A unified approach for in-
version problems in intensity-modulated radiation therapy.” Physics in Medicine
and Biology 51 (2006), 2353-2365.

• Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2005) “The multiple-sets split
feasibility problem and its application for inverse problems.” Inverse Problems,
21 , pp. 2071-2084.

Alternating Minimization (AM)
We turn now to the apparently unrelated alternating minimization (AM) method of

Csiszár and Tusnády.

Suppose thatX and Y are arbitrary nonempty sets and the function Θ(x, y) satisfies
−∞ < Θ(x, y) ≤ +∞, for each x ∈ X and y ∈ Y . The objective is to generate a
sequence {(xk, yk)} such that

Θ(xk, yk) ↓ β = inf
x∈X,y∈Y

Θ(x, y).
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The AM Iteration
The general AM method of Csiszár and Tusnády proceeds in two steps:

we begin with some y0, and, having found yk, we

1. minimize Θ(x, yk) over x ∈ X to get x = xk+1, and then

2. minimize Θ(xk+1, y) over y ∈ Y to get y = yk+1.

The Five-Point Property for AM
The five-point property is the following: for all x ∈ X and y ∈ Y and k = 1, 2, ...

Θ(x, y) + Θ(x, yk−1) ≥ Θ(x, yk) + Θ(xk, yk−1),

or
Θ(x, yk−1)−Θ(xk, yk−1) ≥ Θ(x, yk)−Θ(x, y).

The Main Theorem for AM

Theorem 8. If the five-point property holds then

Θ(xk, yk) ↓ β = inf
x∈X,y∈Y

Θ(x, y).

Reformulating AM as AF
For each x in the setX , define y(x) in Y as a member of Y for which Θ(x, y(x)) ≤

Θ(x, y), for all y ∈ Y . Let
f(x) = Θ(x, y(x)).

Now we want
f(xk) ↓ β = inf

x∈X
f(x).

AM as SUMMA
At the kth step of AM we minimize

Gk(x) = Θ(x, yk−1) = Θ(x, y(x)) +
(

Θ(x, yk−1)−Θ(x, y(x))
)

= f(x) + gk(x)

to get xk. Then the five-point property is precisely the SUMMA Inequality:

Gk(x)−Gk(xk) = Θ(x, yk−1)−Θ(xk, yk−1)

≥ Θ(x, yk)−Θ(x, y(x)) = gk+1(x).
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Convergence of the PGD Algorithm
A relatively simple calculation shows that, for all x ∈ C,

Gk(x)−Gk(xk) =
1

2γ
‖x− xk‖22+

1

γ
〈xk − (xk−1 − γ∇f(xk−1)), x− xk〉 ≥ 1

2γ
‖x− xk‖22.

Therefore, for all x ∈ C, we have

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 −Df (x, xk) = gk+1(x).

Convergence Proof Continued
Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that (
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)− f(x̂) + gk(xk) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences {gk(xk)}
and {f(xk)− f(x̂)} converge to zero.

More Convergence Proof Continued
From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we may select a subsequence
{xkn} converging to some x∗∗, with {xkn−1} converging to some x∗, and therefore
f(x∗) = f(x∗∗) = f(x̂). Replacing the generic x̂ with x∗∗, we find that {Gk(x∗∗) −
Gk(xk)} is decreasing to zero. We conclude that the sequence {‖x∗−xk‖22} converges
to zero, and so {xk} converges to x∗.

The End
THE END
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