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Avoiding the Baillon–Haddad Theorem

I first became interested in iterative algorithms as applied to
medical image reconstruction, where the vectors involved are
nonnegative and the cross-entropy distance plays an important
role. I became aware of the BH Theorem only about ten years
ago. Until this year there was no elementary proof of the
Baillon–Haddad Theorem in the published literature. For these
reasons, my investigation of convergence of certain iterative
optimization algorithms involved methods that do not rely on
the BH Theorem. The results of this investigation provide the
subject matter of this talk.



The Basic Problem

The basic problem is to minimize f : X → R, over x in C ⊆ X ,
where, initially, X is an arbitrary nonempty set. Initially, X has
no structure for two reasons:

1 we can do quite a bit without structure, and
2 we want to consider several different structures.



Barrier- and Penalty-Function Methods

Barrier-function and penalty-function methods are the best
known of the sequential unconstrained minimization techniques
discussed by Fiacco and McCormack. In barrier-function
methods the barrier function b(x) is chosen to be positive for
x in C and infinite for x outside C. We then minimize

Bk (x) = f (x) +
1
k

b(x)

to get xk . In penalty-function methods we select the penalty
function p(x) > 0 for x not in C and p(x) = 0 for x in C. Then
we minimize

Pk (x) = f (x) + kp(x)

to get xk . For penalty-function methods we need topology on X
and f and p continuous.



An Example of Barrier-Function Methods

Minimize f (x) = x2
1 + x2

2 , subject to x1 + x2 ≥ 1. Let

b(x) = − log(x1 + x2 − 1),

for x1 + x2 > 1, and b(x) = +∞, otherwise. For each k we
minimize

Bk (x) = f (x) +
1
k

b(x)

to get

xk
1 = xk

2 =
1
4

+
1
4

√
1 +

4
k
.

As k → +∞, {xk} → (1
2 ,

1
2).



An Example of Penalty-Function Methods

We want to minimize the function f (x) = (x + 1)2, subject to
x ≥ 0. Let p(x) = 0, for x ≥ 0, and p(x) = x2, for x < 0. Then
we minimize

Pk (x) = f (x) + kp(x)

to get xk = −1
k+1 . As k → +∞, {xk} → 0. Note that the

sequence {f (xk ) = k
k+1} is increasing; but each xk is outside

C.



Penalty Methods as Barrier Methods

Let f be bounded below, so that, without loss of generality, we
may assume f : RJ → R+, p : RJ → [0,+∞), and
C = {x |p(x) = 0}. For each k we minimize

Pk (x) = f (x) + kp(x)

to get xk . Equivalently, we can minimize

p(x) +
1
k

f (x),

which has the form of a barrier-function method.



{f (xk)} ↓ infx∈C f (x) for Barrier-Function Methods

From Bk (xk−1) ≥ Bk (xk ) and Bk−1(xk ) ≥ Bk−1(xk−1), for
k = 2,3, ..., it follows easily that

1
k − 1

(b(xk )−b(xk−1)) ≥ f (xk−1)−f (xk ) ≥ 1
k

(b(xk )−b(xk−1)).

Suppose that {f (xk )} ↓ β∗ > β = infx∈C f (x). Then there is
z ∈ C with

f (xk ) ≥ β∗ > f (z) ≥ β,

for all k . Then

1
k

(b(z)− b(xk )) ≥ f (xk )− f (z) ≥ β∗ − f (z) > 0,

for all k . But the sequence { 1
k (b(z)− b(xk ))} converges to

zero, which contradicts the assumption that β∗ > β.



Applying the Penalty-as-Barrier Method

For each k we minimize

Pk (x) = f (x) + kp(x)

to get xk . Since penalty-function methods can be reformulated
as barrier-function methods, we can show that

{Pk (xk )} ↑ γ ≤ β = inf
x∈C

f (x),

{p(xk )} ↓ 0,

and
{f (xk )} ↑ γ∗ ≤ γ ≤ β.

For more we need X to be a complete metric space, f and p to
be continuous, and f to have compact level sets.



The Basic Approach

We study iterative algorithms in which, having found xk−1, we
minimize

Gk (x) = f (x) + gk (x)

over x in C to get xk . We are particularly interested in how to
restrict the gk to impose desirable properties on the sequence
{xk}, such as

1 the sequence {f (xk )} ↓ β∗ ≥ −∞ is nonincreasing;
2 the sequence {f (xk )} converges to β = infx∈C f (x), so
β∗ = β; and

3 the sequence {xk} converges to x∗ ∈ C with f (x∗) ≤ f (x),
for all x ∈ C.



Auxiliary-Function Methods

Definition
The functions gk (x) are auxiliary functions (AF) if they have
the properties gk (x) ≥ 0 for all x ∈ C, and gk (xk−1) = 0.

Lemma

If the sequence {xk} is generated by an AF method, then the
sequence {f (xk )} is nonincreasing.

Proof: We have

Gk (xk−1) = f (xk−1) + gk (xk−1) = f (xk−1)

≥ Gk (xk ) = f (xk ) + gk (xk ) ≥ f (xk ).



Barrier-Function Methods as AF Methods

The iterative step in barrier-function methods is to minimize

f (x) +
1
k

b(x)

to get xk . Equivalently, we can minimize

kf (x) + b(x) = f (x) + (k − 1)f (x) + b(x),

or even

f (x) + [(k − 1)f (x) + b(x)]− [(k − 1)f (xk−1) + b(xk−1)]

= f (x) + gk (x) = Gk (x).

It is easy to show that Gk (x)−Gk (xk ) = gk+1(x), so
barrier-function methods satisfy the SUMMA Inequality, to be
defined later.



Generalized Proximal Minimization

A large subclass of AF methods is the class of generalized
proximal minimization algorithms. For each k let
dk : X × X → R+ be a “distance”, so that dk (x , x) = 0. Then
minimize

Gk (x) = f (x) + dk (x , xk−1)

to get xk .

Proximal minimization algorithms (PMA) require that dk = d
for all k , so for PMA we minimize

Gk (x) = f (x) + d(x , xk−1)

to get xk .



Proximal Minimization Algorithms

There are a variety of PMA algorithms. For example,
the EM algorithm and cross-entropy minimization;
the CQ algorithm for the split feasibility problem;
projected gradient descent algorithms;
majorization minimization (MM) in statistics (K. Lange, et
al.);
the optimization method of Auslender and Teboulle;
proximal minimization with Bregman distances (PMAB)
(Censor and Zenios);
forward-backward splitting (FBS) (Combettes and Wajs).



MM=PMA

The majorization minimization (MM) method in statistics, also
called optimization transfer, is the following. Assume that there
is a function g(x |y) ≥ f (x), for all x and y , with g(y |y) = f (y).
Then, for each k , minimize g(x |xk−1) to get xk .

The MM methods and the PMA methods are equivalent; given
g(x |y), define d(x , y)

.
= g(x |y)− f (x) and given d(x , y), define

g(x |y)
.

= f (x) + d(x , y).



The SUMMA Inequality

In order to have the AF sequence {f (xk )} converge to
β = inf{f (x)|x ∈ C} we need to impose an additional property
on the gk (x).

Definition
An AF method is in the SUMMA class if the SUMMA
Inequality holds:

Gk (x)−Gk (xk ) ≥ gk+1(x),

for all x ∈ C.

So barrier-function methods are in the SUMMA class.



The SUMMA Class

The SUMMA class of algorithms may seem to be quite limited,
but, as we shall see, that is far from the case. Many well known
iterative methods, including barrier-function methods, proximal
minimization using Bregman distances, the SMART for
cross-entropy minimization, and alternating minimization with
the five-point property, are in the SUMMA class or can be
reformulated to be in this class (CB, 2008).



The SUMMA Theorem

We have the following theorem.

Theorem
If the auxiliary functions gk satisfy the SUMMA Inequality, then
the sequence {f (xk )} converges to β = infx∈C f (x).

Proof: If not, then there is z ∈ C and β∗ such that

f (xk ) ≥ β∗ > f (z) ≥ β.

From
gk (z)− gk+1(z) ≥ gk (z)−Gk (z) + Gk (xk )

= f (xk ) + gk (xk )− f (z) ≥ β∗ − f (z) > 0,

it follows that {gk (z)} is a decreasing sequence of nonnegative
terms whose successive differences remain bounded away
from zero, which is a contradiction.



The PMAB

Proximal minimization algorithms using Bregman distances,
called here PMAB, form an important subclass of the SUMMA
class. Let f : RJ → R be a convex differentiable function. Once
again, our objective is to minimize f (x) over x in the nonempty
closed convex set C. Assume that f (x) attains its minimum
value on C at x̂ ∈ C.

Let h be another convex differentiable function, which may or
may not involve C. If it does, then its effective domain is
C = {x |h(x) < +∞}, and h is differentiable on the nonempty
open convex set int(C). If not, we redefine f (x) by f (x) = +∞,
for x outside C. Then the minimization is automatically over
x ∈ C.



The PMAB Iteration

At the k th step of a PMAB we minimize

Gk (x) = f (x) + Dh(x , xk−1),

to get xk . The Bregman distance

Dh(z, x)
.

= h(z)− h(x)− 〈∇h(x), z − x〉

is sometimes called a proximity function. The function
gk (x) = Dh(x , xk−1) is nonnegative for x ∈ C and gk (xk−1) = 0.
Then

Gk (x)−Gk (xk ) = Df (x , xk )+Dh(x , xk ) ≥ Dh(x , xk ) = gk+1(x) ≥ 0,

so all PMAB are in the SUMMA class.



PMAB: The Non-differentiable Case

In the PMAB we can remove the requirement that h be
differentiable, and just assume that h is convex. Then, to show
that PMAB is in the SUMMA class we need the subdifferential
of h at x ,

∂h(x) = {u|h(y)− h(x) ≥ 〈u, y − x〉 , for all y}.

A function h : RJ → R is convex if and only if ∂h(x) is not
empty, for every x . Note that x = z minimizes h(x) if and only if
0 ∈ ∂h(z). If f and h are convex and f + h = a is differentiable,
then both f and h are differentiable.



Computational Difficulty with PMAB

To minimize Gk (x) = f (x) + Dh(x , xk−1) we must solve

∇f (xk ) +∇h(xk )−∇h(xk−1) = 0

for xk . This can be difficult. Suppose we select a(x) so that

h(x)
.

= a(x)− f (x)

is convex and differentiable, and

∇f (xk ) +∇h(xk )−∇h(xk−1) =

∇a(xk )−∇a(xk−1) +∇f (xk−1) = 0

is easily solved. The projected gradient descent (PGD)
algorithm is a good example of this modified PMAB method.



Orthogonal Projection

Let C ⊆ H be a nonempty, closed, convex set. For every x in H
there is a unique member of C closest to x , called the
orthogonal projection of x onto C and denoted PCx .

Theorem
A vector z in C is PCx if and only if

〈z − x , c − z〉 ≥ 0,

for all c in C.



Minimizing f (x) over x ∈ C

Theorem
Let f : H → R be convex and differentiable. A vector z ∈ C
minimizes f (x) over x ∈ C if and only if

〈∇f (z), c − z〉 ≥ 0,

for all c ∈ C

Then, for all γ > 0,

〈γ∇f (z), c − z〉 ≥ 0,

〈z − (z − γ∇f (z)), c − z〉 ≥ 0,

so that
z = PC(z − γ∇f (z)).



Projected Gradient Descent (PGD) Algorithms

The problem now is to minimize f : RJ → R, over the closed,
nonempty convex set C, where f is convex and differentiable on
RJ and ∇f is L-Lipschitz continuous;

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖.

For 0 < γ < 1
L let

a(x) =
1

2γ
‖x‖22;

then the function h(x) = a(x)− f (x) is convex. At the k th step
we use the modified PMAB approach to obtain xk by minimizing

Gk (x) = f (x)+Dh(x , xk−1) = f (x)+
1

2γ
‖x−xk−1‖22−Df (x , xk−1),

over x ∈ C.



The PGD Continued

To be the minimizer of Gk (x) over x ∈ C, the vector xk must
satisfy the inequalities

〈∇Gk (xk ), c − xk 〉 ≥ 0,

for all c in C. Therefore, the solution xk is in C and satisfies the
inequality

〈xk − (xk−1 − γ∇f (xk−1)), c − xk 〉 ≥ 0,

for all c ∈ C. It follows then that

xk = PC(xk−1 − γ∇f (xk−1)).



Comments on the Modified PMAB

Note that the auxiliary function for the PGD,

gk (x) =
1

2γ
‖x − xk−1‖22 − Df (x , xk−1) = Dh(x , xk−1),

is unrelated to the set C, so is used here not to incorporate the
constraint, but to provide a closed-form iterative scheme. When
C = RJ we have no constraint and the problem is simply to
minimize f . Then the iterative algorithm becomes

xk = xk−1 − γ∇f (xk−1);

this is the gradient descent algorithm.



The Projected Landweber Algorithm

The Landweber (LW) and projected Landweber (PLW)
algorithms are special cases of PGD. The objective now is to
minimize the function

f (x) =
1
2
‖Ax − b‖22,

over x ∈ RJ or x ∈ C, where A is a real matrix. Then

∇f (x) = AT (Ax − b)

is L-Lipschitz continuous for L = ρ(AT A) and

Df (x , z) =
1
2
‖Ax − Az‖22.



The PLW Iteration

We let
a(x) =

1
2γ
‖x‖22,

where 0 < γ < 1
L , so that the function h(x) = a(x)− f (x) is

convex. At the k th step of the PLW we minimize

Gk (x) = f (x) + Dh(x , xk−1)

over x ∈ C to get the projected Landweber iteration

xk = PC(xk−1 − γAT (Axk−1 − b));

in the case of C = RJ we get the Landweber algorithm.



Minimize f (x) = 1
2‖Ax − b‖2 over C

For all c ∈ C we have

〈∇Gk (xk ), c − xk 〉 ≥ 0,

where

∇Gk (xk ) = xk − (xk−1 − γAT (Axk−1 − b)).

Therefore,

〈xk − (xk−1 − γAT (Axk−1 − b)), c − xk 〉 ≥ 0,

or
xk = PC(xk−1 − γAT (Axk−1 − b)).



Minimize f (x) = 1
2‖Ax − b‖2

For each k = 1,2, ..., minimize

Gk (x) = f (x) +
( 1

2γ
‖x − xk−1‖2 − 1

2
‖Ax − Axk−1‖2

)
to get the Landweber iteration

xk = xk−1 − γAT (Axk−1 − b).

We select 0 < γ < 1
ρ(AT A) . The added function

gk (x) =
1

2γ
‖x − xk−1‖2 − 1

2
‖Ax − Axk−1‖2

serves to give xk in closed form.



The Kullback-Leibler Distance

For a > 0 and b > 0 define

KL(a,b) = a log
a
b

+ b − a,

with KL(0,b) = b and KL(a,0) = +∞. Extend component-wise
to KL(x , z), for any nonnegative vectors x and z. Then

KL(x , z) =
J∑

j=1

xj log
xj

zj
+ zj − xj ≥ 0,

and KL(x , z) = 0 if and only if x = z.



Minimize f (x) = KL(Px , y) over x ≥ 0

Now y is a positive vector, P an I by J matrix with nonnegative
entries, whose columns sum to one. For k = 1,2, ..., we
minimize

Gk (x) = f (x) + KL(x , xk−1)− KL(Px ,Pxk−1),

to get

xk
j = xk−1

j exp
( I∑

i=1

Pi,j log
yi

(Pxk−1)i

)
.

Then {xk} converges to the minimizer of KL(Px , y) for which
KL(x , x0) is minimized.



Proximal Minimization of Auslender and Teboulle

Auslender and Teboulle take C to be a closed, nonempty,
convex subset of RJ , with interior U. At the k th step of this AT
method one minimizes a function

Gk (x) = f (x) + d(x , xk−1)

to get xk . Their distance d(x , y) is defined for x and y in U, and
the gradient with respect to the first variable, denoted
∇1d(x , y), is assumed to exist. The distance d(x , y) is not
assumed to be a Bregman distance.



Associated Induced Proximal Distance

Instead, they assume that the distance d has an associated
induced proximal distance H(a,b) ≥ 0, finite for a and b in U,
with H(a,a) = 0 and

〈∇1d(b,a), c − b〉 ≤ H(c,a)− H(c,b),

for all c in U. For such algorithms we have β∗ = β, although
this method is not in the SUMMA class. We want to extend the
SUMMA class to include the AT algorithms of Auslender and
Teboulle.



The SUMMA2 Class

The AT proximal minimization method of Auslender and
Teboulle is not in the SUMMA class, although β∗ = β. A
consequence of the SUMMA Inequality is

gk (x)− gk+1(x) ≥ f (xk )− f (x), for all x ∈ C,

and for the AT methods we have

H(x , xk−1)− H(x , xk ) ≥ f (xk )− f (x), for all x ∈ C,

We say that an AF algorithm is in the SUMMA2 class (CB,
2015) if, for any sequence {xk} generated by the algorithm,
with xk ∈ C, there are functions hk : X → [0,+∞], finite-valued
on C, such that

hk (x)− hk+1(x) ≥ f (xk )− f (x), for all x ∈ C.

With hk (x) = H(x , xk−1) the AT algorithms are in SUMMA2.



The SUMMA2 Theorem

We have the following theorem.

Theorem

If {xk} is generated by a SUMMA2 algorithm then β∗ = β.

Proof: If not, then there is z ∈ C such that

f (xk ) ≥ β∗ > f (z) ≥ β.

From

hk (z)− hk+1(z) ≥ f (xk )− f (z) ≥ β∗ − f (z) > 0,

it follows that {hk (z)} is a decreasing sequence of nonnegative
terms whose successive differences remain bounded away
from zero, which is a contradiction.



Auslender-Teboulle algorithms are in SUMMA2

Since xk minimizes f (x) + d(x , xk−1), it follows that

0 ∈ ∂f (xk ) +∇1d(xk , xk−1),

so that
−∇1d(xk , xk−1) ∈ ∂f (xk ).

We then have

f (xk )− f (x) ≤ 〈∇1d(xk , xk−1), x − xk 〉.

Using the associated induced proximal distance H, we obtain

H(x , xk−1)− H(x , xk ) ≥ f (xk )− f (x).

So hk (x) = Hk (x , xk−1) works.



The Forward-Backward Splitting Algorithm

The forward-backward splitting (FBS) methods form a broad
class of PMAB algorithms. We want to minimize the function

f (x) = f1(x) + f2(x),

where both functions are convex and f2(x) is differentiable with
L-Lipschitz continuous gradient. At the k th step of the FBS
algorithm we obtain xk by minimizing

Gk (x) = f1(x) + f2(x) +
1

2γ
‖x − xk−1‖22 − Df2(x , xk−1),

over all x ∈ RJ , where 0 < γ ≤ 1
L .



Moreau’s Proximity Operators

The Moreau envelope of index γ > 0 of the convex function
f : RJ → R is the convex function

g(x) = inf{f (y) +
1

2γ
||x − y ||22}.

The infimum is attained at a unique y =proxγf (x). The
subdifferential of f at x is the set

∂f (x) = {u|〈u, z − x〉 ≤ f (z)− f (x)}

for all z and x . Note that f (z) ≤ f (x), for all x , if and only if
0 ∈ ∂f (z).



Properties of proxγf

The proximity operators proxγf (·) has several useful properties.
These operators are firmly nonexpansive.
The vector x is proxf (z) if and only if z − x ∈ ∂f (x).
For f (x) = ιC(x), which is zero for x ∈ C and infinity
elsewhere, we have proxιC (x) = PC(x).

Combettes and Wajs noticed that x minimizes f1(x) + f2(x) over
x ∈ RJ if and only if

x = proxγf1(x − γ∇f2(x)),

which suggested the FBS iteration. They did not consider the
FBS as a PMAB algorithm.



The FBS Iteration

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2
differentiable, and ∇f2 L-Lipschitz continuous. The iterative step
of the FBS algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
.

Convergence of the sequence {xk} to a solution can be
established, if γ is chosen to lie within the interval (0,1/L].



The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed
convex sets. The split feasibility problem (SFP) is to find x in
C such that Ax is in Q. The function

f2(x) =
1
2
‖PQAx − Ax‖22

is convex, differentiable and ∇f2 = AT (I − PQ)Ax is L-Lipschitz
for L = ρ(AT A). We want to minimize the function
f (x) = ιC(x) + f2(x). The CQ algorithm (CB,2002) has the
iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
.

The sequence converges to a solution whenever f2 has a
minimum on the set C, for 0 < γ ≤ 1/L.



Intensity Modulated Radiation Therapy

Yair Censor and colleagues modified the CQ algorithm to obtain
efficient algorithms for designing protocols for intensity
modulated radiation therapy (IMRT).

Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. “A
unified approach for inversion problems in
intensity-modulated radiation therapy.” Physics in Medicine
and Biology 51 (2006), 2353-2365.
Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2005)
“The multiple-sets split feasibility problem and its
application for inverse problems.” Inverse Problems, 21 ,
pp. 2071-2084.



Alternating Minimization (AM)

We turn now to the apparently unrelated alternating
minimization (AM) method of Csiszár and Tusnády.

Suppose that X and Y are arbitrary nonempty sets and the
function Θ(x , y) satisfies −∞ < Θ(x , y) ≤ +∞, for each x ∈ X
and y ∈ Y . The objective is to generate a sequence {(xk , yk )}
such that

Θ(xk , yk ) ↓ β = inf
x∈X ,y∈Y

Θ(x , y).



The AM Iteration

The general AM method of Csiszár and Tusnády proceeds in
two steps:

we begin with some y0, and, having found yk , we

1 minimize Θ(x , yk ) over x ∈ X to get x = xk+1, and then

2 minimize Θ(xk+1, y) over y ∈ Y to get y = yk+1.



The Five-Point Property for AM

The five-point property is the following: for all x ∈ X and
y ∈ Y and k = 1,2, ...

Θ(x , y) + Θ(x , yk−1) ≥ Θ(x , yk ) + Θ(xk , yk−1),

or
Θ(x , yk−1)−Θ(xk , yk−1) ≥ Θ(x , yk )−Θ(x , y).



The Main Theorem for AM

Theorem
If the five-point property holds then

Θ(xk , yk ) ↓ β = inf
x∈X ,y∈Y

Θ(x , y).



Reformulating AM as AF

For each x in the set X , define y(x) in Y as a member of Y for
which Θ(x , y(x)) ≤ Θ(x , y), for all y ∈ Y . Let

f (x) = Θ(x , y(x)).

Now we want
f (xk ) ↓ β = inf

x∈X
f (x).



AM as SUMMA

At the k th step of AM we minimize

Gk (x) = Θ(x , yk−1) = Θ(x , y(x)) +
(

Θ(x , yk−1)−Θ(x , y(x))
)

= f (x) + gk (x)

to get xk . Then the five-point property is precisely the SUMMA
Inequality:

Gk (x)−Gk (xk ) = Θ(x , yk−1)−Θ(xk , yk−1)

≥ Θ(x , yk )−Θ(x , y(x)) = gk+1(x).



Convergence of the PGD Algorithm

A relatively simple calculation shows that, for all x ∈ C,

Gk (x)−Gk (xk ) =
1

2γ
‖x − xk‖22+

1
γ
〈xk − (xk−1 − γ∇f (xk−1)), x − xk 〉 ≥ 1

2γ
‖x − xk‖22.

Therefore, for all x ∈ C, we have

Gk (x)−Gk (xk ) ≥ 1
2γ
‖x − xk‖22 − Df (x , xk ) = gk+1(x).



Convergence Proof Continued

Now let x̂ minimize f (x) over all x . Then

Gk (x̂)−Gk (xk ) = f (x̂) + gk (x̂)− f (xk )− gk (xk )

≤ f (x̂) + Gk−1(x̂)−Gk−1(xk−1)− f (xk )− gk (xk ),

so that (
Gk−1(x̂)−Gk−1(xk−1)

)
−
(

Gk (x̂)−Gk (xk )
)

≥ f (xk )− f (x̂) + gk (xk ) ≥ 0.

Therefore, the sequence {Gk (x̂)−Gk (xk )} is decreasing and
the sequences {gk (xk )} and {f (xk )− f (x̂)} converge to zero.



More Convergence Proof Continued

From
Gk (x̂)−Gk (xk ) ≥ 1

2γ
‖x̂ − xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we
may select a subsequence {xkn} converging to some x∗∗, with
{xkn−1} converging to some x∗, and therefore
f (x∗) = f (x∗∗) = f (x̂). Replacing the generic x̂ with x∗∗, we find
that {Gk (x∗∗)−Gk (xk )} is decreasing to zero. We conclude
that the sequence {‖x∗ − xk‖22} converges to zero, and so {xk}
converges to x∗.



The End

THE END
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