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Abstract

Let C ⊆ X be a nonempty subset of an arbitrary set X and f : X → R.
The problem is to minimize f over C. In auxiliary-function (AF) minimization
we minimize Gk(x) = f(x)+gk(x) over x in C to get xk, where gk(x) ≥ 0 for all
x and gk(x

k−1) = 0. Then the sequence {f(xk)} is nonincreasing and converges
to some β∗ ≥ −∞. A wide variety of iterative optimization methods are either
in the AF class or can be reformulated to be in that class, including forward-
backward splitting, barrier-function and penalty-function methods, alternating
minimization, majorization minimization (MM) (or optimality transfer), cross-
entropy minimization, and proximal minimization algorithms (PMA). The MM
class and the PMA class are equivalent.

In order to have the sequence {f(xk)} converge to β, the infimum of f(x)
over x in C, we need to impose additional restrictions. An AF algorithm is said
to be in the SUMMA class if, for all x, we have the SUMMA Inequality: Gk(x)−
Gk(x

k) ≥ gk+1(x). Then {f(xk)} ↓ β. Proximal minimization algorithms using
Bregman distances (PMAB) form a large subclass of SUMMA. Not all PMA are
PMAB, and so not all PMA are SUMMA. The PMA discussed by Auslender
and Teboulle does have β∗ = β, but appears not to be in the SUMMA class.

Here we generalize the SUMMA Inequality to obtain a wider class of algo-
rithms that also contains the PMA of Auslender and Teboulle. Algorithms are
said to be in the SUMMA2 class if, for each sequence {xk} of iterates, there
are functions hk : X → R+ with

hk(x)− hk+1(x) ≥ f(xk)− f(x),

for all x and k. The algorithms of Auslender and Teboulle are in SUMMA2
and for all algorithms in SUMMA2 we have {f(xk)} ↓ β.

∗Charles Byrne@uml.edu, Department of Mathematical Sciences, University of Massachusetts
Lowell, Lowell, MA 01854
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1 Background

I began studying iterative algorithms around 1990, working with colleagues in the

Department of Nuclear Medicine, University of Massachusetts Medical School. They

introduced me to the EM algorithm, which they were starting to use for SPECT

image reconstruction. Eventually, I noticed that the EM algorithm is closely related

to the simultaneous MART (SMART) algorithm, and both are best studied using the

Kullback–Leibler, or cross-entropy, distance measure.

1.1 The Kullback–Leibler Distance

For a > 0 and b > 0, let

KL(a, b) = a log
a

b
+ b− a,

KL(a, 0) = +∞, and KL(0, b) = b. Then extend the KL distance component-wise to

nonnegative vectors x and z, obtaining

KL(x, z) =
J∑
j=1

KL(xj, zj).

Then KL(x, z) ≥ 0 and KL(x, z) = 0 if and only if x = z.

1.2 The EM and SMART Algorithms

Let y ∈ RI be a positive vector, and P an I by J matrix with nonnegative en-

tries, whose columns sum to one. The EM algorithm minimizes the function g(x) =

KL(y, Px) over x ≥ 0, while the SMART algorithm minimizes f(x) = KL(Px, y).

In [10] I developed the EM and SMART algorithms in tandem, to reveal both their

similarities and subtle differences. The main tool that I used there was the alternat-

ing minimization (AM) method of Csiszár and Tusnády [28]. As the authors of [41]

remark, the geometric argument in [28] is “deep, though hard to follow”.

Shortly thereafter, I discovered that the iterative step of the SMART algorithm

could be formulated as follows: for k = 1, 2, ..., minimize

Gk(x) = f(x) +KL(x, xk−1)−KL(Px, Pxk−1)

to get

xkj = xk−1j exp
( I∑
i=1

Pi,j log
yi

(Pxk−1)i

)
,

for j = 1, ..., J . This reminded me of the sequential unconstrained minimization

(SUM) method of Fiacco and McCormick [29]. The SUM is used to minimize a
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function f : H → R over a subset C. At each step of the SUM we minimize f(x) +

gk(x) to get xk. In SUM the gk(x) are selected to incorporate the constraint that x

lie in C; barrier-function and penalty-function methods are the best known examples.

In the case of SMART, the function

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)

not only forces x to be nonnegative, but it also makes it possible to obtain the next

iterate xk in closed form.

1.3 The Landweber Algorithm

The Landweber (LW) algorithm minimizes the function

f(x) =
1

2
‖Ax− b‖2,

over all x in RJ . The LW algorithm has the form of a gradient-descent method:

xk = xk−1 − γAT (Axk−1 − b),

for appropriate γ > 0. The iterative step can be obtained by minimizing

f(x) +
1

2γ
‖x− xk−1‖2 − 1

2
‖Ax− Axk−1‖2.

This is in the form of SUM, although there is no constraint to be imposed. The

function

gk(x) =
1

2γ
‖x− xk−1‖2 − 1

2
‖Ax− Axk−1‖2

serves here only to provide a closed-form expression for the xk.

1.4 The Projected Landweber Algorithm

The Projected Landweber (PLW) algorithm minimizes f(x) = 1
2
‖Ax− b‖2 over x in

C, where C is a nonempty, closed , convex subset of RJ . We can obtain the iterative

step of the PLW by minimizing

f(x) +
1

2γ
‖x− xk−1‖2 − 1

2
‖Ax− Axk−1‖2

over x in C, to get

xk = PC(xk−1 − γAT (Axk−1 − b)).

Note that the SUM approach is used here only to obtain a closed-form expression for

xk, not to impose the constraint.
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1.5 What This Suggested

These three examples of the use of the SUM formalism suggested to me that it would

be helpful to consider iterative methods in which, at each step, we minimize

Gk(x) = f(x) + gk(x)

to get xk. If there are constraints, the gk(x) need not involve the constraints, and

the Gk(x) would still be minimized over C. The functions gk(x) would be selected to

control the behavior of the sequences {f(xk)} and {xk}.
The convergence of both the LW and PLW can be established using the Baillon–

Haddad Theorem and the Krasnosel’skii–Mann Theorem for averaged operators. In

the absence of an elementary proof of the BH Theorem, however, there was some

advantage to exploring the SUM approach.

2 Overview

The Baillon–Haddad (BH) Theorem asserts that, if the gradient operator of a differ-

entiable convex function on a Hilbert space is nonexpansive, then it is firmly non-

expansive. This theorem provides an important link between iterative fixed-point

algorithms and convex optimization. Until last year [18, 19, 20], all the published

proofs of the BH Theorem were non-elementary. For this reason, we investigate

proofs of convergence of certain iterative optimization algorithms that do not rely on

the BH Theorem and the Krasnosel’skii–Mann Theorem for averaged operators.

The basic problem we consider in this note is to minimize a function f : X → R
over x in C ⊆ X, where X is an arbitrary nonempty set. Until it is absolutely

necessary, we shall not impose any structure on X or on f . One reason for avoiding

structure on X and f is that we can actually achieve something interesting without

it. The second reason is that when we do introduce structure, it will not necessarily

be that of a metric space; for instance, cross-entropy and other Bregman distances

play an important role in some of the iterative optimization algorithms I discuss in

this note.

We begin by describing auxiliary-function (AF) methods for iterative optimization,

and then focus on those AF algorithms that are in the SUMMA class. When the

sequence {xk} is generated by an algorithm in the SUMMA class, we know that

{f(xk)} converges to β = infx∈C f(x). As we shall see, a wide variety of iterative

algorithms are in the SUMMA class, including proximal minimization algorithms
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using Bregman distances (PMAB). A particular case of the PMAB is the forward-

backward splitting (FBS) method. Convergence of the FBS algorithm is shown using

the formalism of the PMAB, and without using the BH Theorem.

3 Auxiliary-Function Methods

For k = 1, 2, ... we minimize the function

Gk(x) = f(x) + gk(x) (3.1)

over x in X to get xk. We shall say that the functions gk(x) are auxiliary functions

if they have the properties gk(x) ≥ 0 for all x ∈ X, and gk(x
k−1) = 0. We then say

that the sequence {xk} has been generated by an auxiliary-function (AF) method.

We then have the following result.

Proposition 3.1 If the sequence {xk} is generated by an AF method, then the se-

quence {f(xk)} is nonincreasing.

Proof: We have

Gk(x
k−1) = f(xk−1) + gk(x

k−1) = f(xk−1)

≥ Gk(x
k) = f(xk) + gk(x

k) ≥ f(xk),

so f(xk−1) ≥ f(xk).

In order to have the sequence {f(xk} converging to β = inf{f(x)|x ∈ C} we need

to impose an additional property on the gk(x). We shall return to this issue in the

next section.

3.1 Barrier- and Penalty-Function Algorithms

Perhaps the best known examples of AF methods are the sequential unconstrained

minimization (SUM) methods discussed by Fiacco and McCormick in their classic

book [29]. They focus on barrier-function and penalty-function algorithms, in which

the auxiliary functions are introduced to incorporate the constraint that f is to be

minimized over C. In [29] barrier-function methods are called interior-point methods,

while penalty-function methods are called exterior-point methods.

In both the barrier- and penalty-function methods the auxiliary functions involve

the subset C. In AF methods generally, however, this need not be the case, As we

shall see, the auxiliary functions can sometimes be unrelated to C and selected to

provide a closed-form expression for xk.
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3.2 Proximal Minimization Algorithms

The proximal minimization algorithms (PMA) form a large subclass of AF methods.

In PMA we minimize f(x)+d(x, xk−1) to get xk, where d(x, y) ≥ 0, and d(x, x) = 0 for

all x. The majorization minimization (MM) method in statistics [33, 26], also called

optimization transfer, is not typically formulated as an AF method, but it is one.

The MM method is the following. Assume that there is a function g(x|y) ≥ f(x),

for all x and y, with g(y|y) = f(y). Then, for each k, minimize g(x|xk−1) to get

xk. The MM methods and the PMA methods are equivalent; given g(x|y), define

d(x, y)
.
= g(x|y)− f(x) and given d(x, y), define g(x|y)

.
= f(x) + d(x, y).

4 The SUMMA Class

An AF method is said to be in the SUMMA class if the SUMMA Inequality holds:

Gk(x)−Gk(x
k) ≥ gk+1(x), (4.1)

for all x ∈ X. This may seem to be a quite restricted class of methods, but, as we

shall see, that is far from the case. Many well known iterative methods, including

barrier-function methods, fall into the SUMMA class [15, 19].

We have the following theorem.

Theorem 4.1 For k = 1, 2, ... let xk minimize Gk(x) = f(x) + gk(x) over x ∈ C,

where the gk(x) satisfy the SUMMA inequality (4.1). Then the sequence {f(xk)}
converges to β = infx∈C f(x).

Proof: We know that the sequence {f(xk)} is decreasing, and therefore must converge

to some β∗. Suppose that β∗ > β. Then there is z ∈ C such that

f(xk) ≥ β∗ > f(z) ≥ β.

From

gk(z)− gk+1(z) ≥ gk(z)−Gk(z) +Gk(x
k) = f(xk) + gk(x

k)− f(z) ≥ β∗ − f(z) > 0,

it follows that {gk(z)} is a decreasing sequence of nonnegative terms whose successive

differences remain bounded away from zero, which is a contradiction.
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5 The PMAB Class

Proximal minimization algorithms using Bregman distances (PMAB) form an impor-

tant subclass of the SUMMA class. We assume here that the function f is convex,

but not necessarily differentiable. For general convex f we need the subdifferential of

f at x, given by

∂f(x) = {u|f(y)− f(x) ≥ 〈u, y − x〉, for all y},

and the fact that, if x = z minimizes a convex function f , then 0 ∈ ∂f(z). A function

f : RN → R is convex if and only if ∂f(x) is not empty, for all x.

5.1 The PMAB

Let f : RN → (−∞,+∞] be a convex function. Let h be another convex function,

with effective domain D = {x|h(x) < +∞}, that is differentiable on the nonempty

open convex set int D. Assume that f(x) is finite on C = D and attains its minimum

value on C at x̂. Our objective is to minimize f(x) over x in C = D.

A function f : RN → (−∞,+∞] is proper if its essential domain dom(f) =

{x|f(x) < +∞} is nonempty. If f is convex, then f is continuous on the interior of

D. Therefore, if f : RN → R is convex, it is continuous.

At the kth step of a PMAB algorithm [22, 23], we minimize the function

Gk(x) = f(x) +Dh(x, x
k−1), (5.1)

to get xk. The Bregman distance Dh is sometimes called a proximity function. The

function

gk(x) = Dh(x, x
k−1) (5.2)

is nonnegative and gk(x
k−1) = 0. We assume that each xk lies in int D. As we shall

see,

Gk(x)−Gk(x
k) ≥ Dh(x, x

k) = gk+1(x) ≥ 0, (5.3)

so the PMAB is in the SUMMA class.

5.2 Some Computational Difficulties

The PMAB can present some computational difficulties. When we minimize Gk(x)

to get xk we find that we must solve the equation

∇h(xk−1)−∇h(xk) ∈ ∂f(xk), (5.4)
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where the set

∂f(x) = {u|〈u, y − x〉 ≤ f(y)− f(x), for all y}

is the subdifferential of f at x. When f(x) is differentiable, we must solve

∇f(xk) +∇h(xk) = ∇h(xk−1). (5.5)

A modification of the PMAB, called the IPA for interior-point algorithm [11, 15],

is designed to overcome these computational obstacles. We discuss the IPA later in

this chapter. Another modification of the PMAB that is similar to the IPA is the

forward-backward splitting (FBS) method to be discussed in a later section.

5.3 All PMAB are SUMMA

We show now that all PMAB are in the SUMMA class. We remind the reader that

f(x) is now assumed to be convex.

Lemma 5.1 For each k we have

Gk(x)−Gk(x
k) ≥ Dh(x, x

k) = gk+1(x). (5.6)

Proof: Since xk minimizes Gk(x) within the set D, we have

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1), (5.7)

so that

∇h(xk−1) = uk +∇h(xk), (5.8)

for some uk in ∂f(xk). Then

Gk(x)−Gk(x
k) = f(x)− f(xk) + h(x)− h(xk)− 〈∇h(xk−1), x− xk〉.

Now substitute, using Equation (5.8), to get

Gk(x)−Gk(x
k) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, x

k). (5.9)

Therefore,

Gk(x)−Gk(x
k) ≥ Dh(x, x

k),

since uk is in ∂f(xk).

Convergence of the PMAB can be established, with some restrictions placed on

the functions f and h (see [19]).
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5.4 The IPA

The IPA is a modification of the PMAB designed to overcome some of the computa-

tional obstacles encountered in the PMAB [11, 15]. At the kth step of the PMAB we

must solve the equation

∇f(xk) +∇h(xk) = ∇h(xk−1) (5.10)

for xk, where, for notational convenience, we assume that both f and h are differen-

tiable. Solving Equation (5.10) is probably not a simple matter, however. In the IPA

approach we begin not with h(x), but with a convex differentiable function a(x) such

that h(x) = a(x)− f(x) is convex. Equation (5.10) now reads

∇a(xk) = ∇a(xk−1)−∇f(xk−1), (5.11)

and we choose a(x) so that Equation (5.11) is easily solved. We turn now to several

examples of the IPA.

5.5 Projected Gradient Descent

The problem now is to minimize f : RN → R, over the closed, nonempty convex set

C, where f is convex and differentiable on RN . We assume now that the gradient

operator ∇f is L-Lipschitz continuous; that is, for all x and y, we have

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2. (5.12)

To employ the IPA approach, we let 0 < γ < 1
L

and select the function

a(x) =
1

2γ
‖x‖22; (5.13)

the upper bound on γ guarantees that the function h(x) = a(x)− f(x) is convex. At

the kth step we obtain xk by minimizing

Gk(x) = f(x) +Dh(x, x
k−1) =

f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, x

k−1), (5.14)

over x ∈ C.

For xk to be the minimizer of Gk(x) over x ∈ C, xk must satisfy the inequalities

〈∇Gk(x
k), c− xk〉 ≥ 0,
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for all c in C. Therefore, the solution xk is in C and satisfies the inequality

〈xk − (xk−1 − γ∇f(xk−1)), c− xk〉 ≥ 0, (5.15)

for all c ∈ C. It follows then that

xk = PC(xk−1 − γ∇f(xk−1)); (5.16)

here PC denotes the orthogonal projection onto C. This is the projected gradient

descent algorithm. We obtain convergence of the projected gradient descent algorithm

as a particular case of the forward-backward splitting method, to be proved in a later

section. Note that the auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, x

k−1) (5.17)

is unrelated to the set C, so is not used here to incorporate the constraint; it is used

to provide a closed-form iterative scheme.

When C = RN we have no constraint and the problem is simply to minimize f .

Then the iterative algorithm becomes

xk = xk−1 − γ∇f(xk−1); (5.18)

this is the gradient descent algorithm.

5.6 The Projected Landweber Algorithm

The Landweber (LW) and projected Landweber (PLW) algorithms are special cases

of projected gradient descent. The objective now is to minimize the function

f(x) =
1

2
‖Ax− b‖22, (5.19)

over x ∈ RN or x ∈ C, where A is a real I by J matrix. The gradient of f(x) is

∇f(x) = AT (Ax− b) (5.20)

and is L-Lipschitz continuous for L = ρ(ATA), the largest eiqenvalue of ATA. The

Bregman distance associated with f(x) is

Df (x, z) =
1

2
‖Ax− Az‖22. (5.21)

We let

a(x) =
1

2γ
‖x‖22, (5.22)
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where 0 < γ < 1
L

, so that the function h(x) = a(x)− f(x) is convex.

At the kth step of the PLW we minimize

Gk(x) = f(x) +Dh(x, x
k−1) (5.23)

over x ∈ C to get

xk = PC(xk−1 − γAT (Axk−1 − b)); (5.24)

in the case of C = RN we get the Landweber algorithm.

6 Forward-Backward Splitting Algorithms

The forward-backward splitting (FBS) methods [27, 17] form a broad class of SUMMA

algorithms closely related the IPA. Note that minimizing Gk(x) in Equation (5.1) over

x ∈ C is equivalent to minimizing

Gk(x) = ιC(x) + f(x) +Dh(x, x
k−1) (6.1)

over all x ∈ RN , where ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise. This suggests

a more general iterative algorithm, the FBS.

6.1 The FBS Algorithm

Suppose that we want to minimize the function f1(x) + f2(x), where both functions

are convex and f2(x) is differentiable with its gradient L-Lipschitz continuous in the

Euclidean norm, by which we mean that

‖∇f2(x)−∇f2(y)‖2 ≤ L‖x− y‖2, (6.2)

for all x and y. At the kth step of the FBS algorithm we obtain xk by minimizing

Gk(x) = f1(x) + f2(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, x

k−1), (6.3)

over all x ∈ RN , where 0 < γ < 1
2γ

.

6.2 Moreau’s Proximity Operators

Following Combettes and Wajs [27], we say that the Moreau envelope of index γ > 0

of the convex function f : RN → R is the convex function

g(x) = inf{f(y) +
1

2γ
||x− y||22}, (6.4)
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with the infimum taken over all y in RN [36, 37, 38]. In Rockafellar’s book [39] and

elsewhere, it is shown that the infimum is attained at a unique y, usually denoted

proxγf (x). The proximity operators proxγf (·) are firmly nonexpansive [27]; indeed,

the proximity operator proxf is the resolvent of the maximal monotone operator

B(x) = ∂f(x) and all such resolvent operators are firmly nonexpansive [8]. Proximity

operators also generalize the orthogonal projections onto closed, convex sets: consider

the function f(x) = ιC(x), the indicator function of the closed, convex set C, taking

the value zero for x in C, and +∞ otherwise. Then proxγf (x) = PC(x), the orthogonal

projection of x onto C. The following characterization of x = proxf (z) is quite useful:

x = proxf (z) if and only if z − x ∈ ∂f(x).

Our objective here is to provide an elementary proof of convergence for the

forward-backward splitting (FBS) algorithm; a detailed discussion of this algorithm

and its history is given by Combettes and Wajs in [27].

Let f : RN → R be convex, with f = f1 + f2, both convex, f2 differentiable, and

∇f2 L-Lipschitz continuous. The iterative step of the FBS algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
. (6.5)

As we shall show, convergence of the sequence {xk} to a solution can be established,

if γ is chosen to lie within the interval (0, 1/L].

6.3 Convergence of the FBS algorithm

Let f : RN → R be convex, with f = f1 + f2, both convex, f2 differentiable, and ∇f2
L-Lipschitz continuous. Let {xk} be defined by Equation (6.5) and let 0 < γ ≤ 1/L.

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, x

k−1), (6.6)

where

Df2(x, x
k−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (6.7)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman distance

formed from the function f2.

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df2(x, x

k−1) (6.8)
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can be rewritten as

gk(x) = Dh(x, x
k−1), (6.9)

where

h(x) =
1

2γ
‖x‖22 − f2(x). (6.10)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.

We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (6.11)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (6.12)

Since ∇f2 is L-Lipschitz, the inequality (6.12) holds for 0 < γ ≤ 1/L.

Lemma 6.1 The xk that minimizes Gk(x) over x is given by Equation (6.5).

Proof: We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(x

k),

or, equivalently, (
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(x

k).

Consequently,

xk = proxγf1(x
k−1 − γ∇f2(xk−1)).

Theorem 6.1 The sequence {xk} converges to a minimizer of the function f(x),

whenever minimizers exist.

Proof: A relatively simple calculation shows that

Gk(x)−Gk(x
k) =

1

2γ
‖x− xk‖22 +

(
f1(x)− f1(xk)−

1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
. (6.13)
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Since

(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(x
k),

it follows that(
f1(x)− f1(xk)−

1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(x
k) ≥ 1

2γ
‖x− xk‖22 ≥ gk+1(x). (6.14)

Therefore, the inequality in (4.1) holds and the iteration fits into the SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(x
k) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(x
k−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(x

k−1)
)
−
(
Gk(x̂)−Gk(x

k)
)
≥ f(xk)− f(x̂) + gk(x

k) ≥ 0.

Therefore, the sequence {Gk(x̂) − Gk(x
k)} is decreasing and the sequences {gk(xk)}

and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(x
k) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we may select a subsequence

{xkn} converging to some x∗∗, with {xkn−1} converging to some x∗, and therefore

f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x
∗∗) − Gk(x

k)} is decreasing

to zero. From the inequality in (6.14), we conclude that the sequence {‖x∗ − xk‖22}
converges to zero, and so {xk} converges to x∗. This completes the proof of the

theorem.

7 Some Examples of the FBS Algorithms

We present some examples to illustrate the application of the convergence theorem.
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7.1 Projected Gradient Descent

Let C be a nonempty, closed convex subset of RN and f1(x) = ιC(x), the function that

is +∞ for x not in C and zero for x in C. Then ιC(x) is convex, but not differentiable.

We have proxγf1 = PC , the orthogonal projection onto C. The iteration in Equation

(6.5) becomes

xk = PC

(
xk−1 − γ∇f2(xk−1)

)
. (7.1)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever such mini-

mizers exist, for 0 < γ ≤ 1/L.

7.2 The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RN , and Q ⊆ RI , both closed convex sets. The

split feasibility problem (SFP) is to find x in C such that Ax is in Q. The function

f2(x) =
1

2
‖PQAx− Ax‖22 (7.2)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spectral radius

of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (7.3)

We want to minimize the function f2(x) over x in C, or, equivalently, to minimize

the function f(x) = ιC(x) + f2(x). The projected gradient descent algorithm has the

iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
; (7.4)

this iterative method was called the CQ-algorithm in [12, 13]. The sequence {xk}
converges to a solution whenever f2 has a minimum on the set C, for 0 < γ ≤ 1/L.

In [25, 24] the CQ algorithm was extended to a multiple-sets algorithm and applied

to the design of protocols for intensity-modulated radiation therapy.

7.3 The Projected Landweber Algorithm

The problem is to minimize the function

f2(x) =
1

2
‖Ax− b‖22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-algorithm, with

Q = {b}. The resulting iteration is the projected Landweber algorithm [7]; when

C = RN it becomes the Landweber algorithm [32].
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8 Alternating Minimization

The main reference for alternating minimization is the paper [28] of Csiszár and

Tusnády. As the authors of [41] remark, the geometric argument in [28] is “deep,

though hard to follow”. The main reason for the difficulty, I feel, is that the key to

their convergence theorem, what they call the five-point property, appears to be quite

ad hoc and the only good reason for using it that they give is that it works. As we

shall see, all AM algorithms can be reformulated as AF methods. When this is done,

the five-point property converts precisely into the SUMMA inequality; therefore, all

AM methods for which the five-point property of [28] holds fall into the SUMMA

class (see [16]).

8.1 The AM Framework

Suppose that P and Q are arbitrary non-empty sets and the function Θ(p, q) satisfies

−∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We assume that, for each p ∈ P ,

there is q ∈ Q with Θ(p, q) < +∞. Therefore, β = infp∈P, q∈Q Θ(p, q) < +∞. We

assume also that β > −∞; in many applications, the function Θ(p, q) is nonnegative,

so this additional assumption is unnecessary. We do not always assume there are

p̂ ∈ P and q̂ ∈ Q such that Θ(p̂, q̂) = β; when we do assume that such a p̂ and q̂

exist, we will not assume that p̂ and q̂ are unique with that property. The objective

is to generate a sequence {(pn, qn)} such that Θ(pn, qn) ↓ β.

8.2 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0, and, having

found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

The sequence {Θ(pn, qn)} is decreasing and bounded below by β, since we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (8.1)

Therefore, the sequence {Θ(pn, qn)} converges to some β∗ ≥ β. Without additional

assumptions, we can say little more.
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8.3 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (8.2)

9 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to converge to β,

that is, for β∗ = β. The following is the main result of [28].

Theorem 9.1 If the five-point property holds then β∗ = β.

9.1 AM as SUMMA

I have not come across any explanation for the five-point property other than it works.

I was quite surprised when I discovered that AM algorithms can be reformulated as

algorithms minimizing a function f : P → R and that the five-point property is

then the SUMMA condition in disguise. We show now that the SUMMA class of AF

methods includes all the AM algorithms for which the five-point property holds.

For each p in the set P , define q(p) in Q as a member of Q for which Θ(p, q(p)) ≤
Θ(p, q), for all q ∈ Q. Let f(p) = Θ(p, q(p)).

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(

Θ(p, qn−1)−Θ(p, q(p))
)

(9.3)

to get pn. With

gn(p) =
(

Θ(p, qn−1)−Θ(p, q(p))
)
≥ 0, (9.4)

we can write

Gn(p) = f(p) + gn(p). (9.5)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (9.6)

It follows that AM is a member of the SUMMA class, whenever the five-point property

holds, in which case the sequence {Θ(pn, qn)} converges to β.
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10 The SUMMA2 Class

A consequence of the SUMMA Inequality is that, for all x in C,

gk(x)− gk+1(x) ≥ f(xk)− f(x). (10.1)

This inequality is central to the proof that β∗ = β for algorithms in the SUMMA

class. However, not all PMA methods with β∗ = β are in the SUMMA class; those

discussed by Auslender and Teboulle in [1] appear not to be in SUMMA. We seek to

widen the SUMMA class to include the Auslender-Teboulle methods.

10.1 The SUMMA2 Inequality

An AF algorithm is said to be in the SUMMA2 class if, for each sequence {xk}
generated by the algorithm, each xk is in C and there are functions hk : X → R+

such that, for all x ∈ C, we have

hk(x)− hk+1(x) ≥ f(xk)− f(x). (10.2)

Any algorithm in the SUMMA class is in the SUMMA2 class; use hk = gk. In addition,

as we shall show, the proximal minimization method of Auslender and Teboulle [1]

is also in the SUMMA2 class. As in the SUMMA case, we must have β∗ = β, since

otherwise the successive differences of the sequence {hk(z)} would be bounded below

by β∗ − f(z) > 0. It is helpful to note that the functions hk need not be the gk, and

we do not require that hk(x
k−1) = 0.

10.2 The Auslender-Teboulle Class

In [1] Auslender and Teboulle take C to be a closed, nonempty, convex subset of RN ,

with interior U . At the kth step of their method one minimizes a function

Gk(x) = f(x) + d(x, xk−1) (10.3)

to get xk. Their distance d(x, y) is defined for x and y in U , and the gradient with

respect to the first variable, denoted ∇1d(x, y), is assumed to exist. The distance

d(x, y) is not assumed to be a Bregman distance. Instead, they assume that the

distance d has an associated induced proximal distance H(a, b) ≥ 0, finite for a and b

in U , with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (10.4)
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for all c in U .

If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (10.5)

we see that Dh has H = Dh for its associated induced proximal distance, so Dh is

self-proximal, in the terminology of [1]. The method of Auslender and Teboulle seems

not to be a particular case of SUMMA. However, it is in the SUMMA2 class, as we

now show.

Since xk minimizes f(x) + d(x, xk−1), it follows that

0 ∈ ∂f(xk) +∇1d(xk, xk−1),

so that

−∇1d(xk, xk−1) ∈ ∂f(xk).

We then have

f(xk)− f(x) ≤ 〈∇1d(xk, xk−1), x− xk〉.

Using the associated induced proximal distance H, we obtain

f(xk)− f(x) ≤ H(x, xk−1)−H(x, xk).

Therefore, this method is in the SUMMA2 class, with the choice of hk(x) = H(x, xk−1).

Consequently, we have β∗ = β for these algorithms.
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