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Abstract

An elementary proof is given for the following theorem.

Theorem: Let f : RJ → R be convex and differentiable, with ∇f L-Lipschitz.
Let C be any closed, convex subset of RJ . For 0 < γ < 1

L , let T = PC(I−γ∇f).
If T has fixed points, then the sequence {xk} given by xk = Txk−1 converges
to a fixed point of T .

Any fixed point of T minimizes the function f(x) over the set C. It is a
consequence of the Krasnoselskii-Mann Theorem for averaged operators that
convergence holds for 0 < γ < 2

L . The proof given here employs sequential un-
constrained minimization and avoids using the non-trivial results that, because
the operator 1

L∇f is non-expansive, it is firmly non-expansive, and that the
product of averaged operators is averaged.

Several applications of the theorem are given, including the proof of conver-
gence of two interior-point algorithms for minimizing f(x) over x with Ax = b.

1 The Convergence Theorem

We provide an elementary proof of the following theorem:

Theorem 1.1 Let f : RJ → R be convex and differentiable, with ∇f L-Lipschitz.

Let C be any closed, convex subset of RJ . For 0 < γ < 1
L
, let T = PC(I − γ∇f). If

T has fixed points, then the sequence {xk} given by xk = Txk−1 converges to a fixed

point of T .

The iterative step is given by

xk = PC(xk−1 − γ∇f(xk−1)). (1.1)
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It is a consequence of the Krasnoselskii-Mann Theorem for averaged operators that

convergence holds for 0 < γ < 2
L
. The proof given here employs sequential un-

constrained minimization and avoids using the non-trivial results that, because the

operator 1
L
∇f is non-expansive, it is firmly non-expansive [8], and that the product

of averaged operators is again averaged [1].

2 Sequential Unconstrained Optimization

Sequential unconstrained optimization algorithms can be used to minimize a function

f : RJ → (−∞,∞] over a (not necessarily proper) subset C of RJ [7]. At the kth

step of a sequential unconstrained minimization method we obtain xk by minimizing

the function

Gk(x) = f(x) + gk(x), (2.1)

where the auxiliary function gk(x) is appropriately chosen. If C is a proper subset

of RJ we may force gk(x) = +∞ for x not in C, as in the barrier-function methods;

then each xk will lie in C. The objective is then to select the gk(x) so that the

sequence {xk} converges to a solution of the problem, or failing that, at least to have

the sequence {f(xk)} converging to the infimum of f(x) over x in C.

Our main focus in this paper is the use of sequential unconstrained optimiza-

tion algorithms to obtain iterative methods in which each iterate can be obtained in

closed form. Now the gk(x) are selected not to impose a constraint, but to facilitate

computation.

3 SUMMA

In [5] we presented a particular class of sequential unconstrained minimization meth-

ods called SUMMA. As we showed in that paper, this class is broad enough to contain

barrier-function methods, proximal minimization methods, and the simultaneous mul-

tiplicative algebraic reconstruction technique (SMART). By reformulating the prob-

lem, the penalty-function methods can also be shown to be members of the SUMMA

class. Any alternating minimization (AM) problem with the five-point property [6]

can be reformulated as a SUMMA problem; therefore the expectation maximization

maximum likelihood (EMML) algorithm for Poisson data, which is such an AM algo-

rithm, must also be a SUMMA algorithm.
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For a method to be in the SUMMA class we require that xk ∈ C for each k and

that each auxiliary function gk(x) satisfy the inequality

0 ≤ gk(x) ≤ Gk−1(x)−Gk−1(x
k−1), (3.1)

for all x. Note that it follows that gk(x
k−1) = 0, for all k. For this note we require that

f(x) be convex and differentiable, and that the gradient operator, ∇f , be L-Lipschitz.

We assume, throughout this section, that the inequality in (3.1) holds for each k.

We also assume that infx∈C f(x) = b > −∞. The next two results are taken from [5].

Proposition 3.1 The sequence {f(xk)} is non-increasing and the sequence {gk(x
k)}

converges to zero.

Proof: We have

f(xk+1) + gk+1(x
k+1) = Gk+1(x

k+1) ≤ Gk+1(x
k) = f(xk). (3.2)

Theorem 3.1 The sequence {f(xk)} converges to b.

Proof: Suppose that there is δ > 0 such that f(xk) ≥ b + 2δ, for all k. Then there

is z ∈ C such that f(xk) ≥ f(z) + δ, for all k. From the inequality in (3.1) we have

gk(z)− gk+1(z) ≥ f(xk) + gk(x
k)− f(z) ≥ f(xk)− f(z) ≥ δ, (3.3)

for all k. But this cannot happen; the successive differences of a non-increasing

sequence of non-negative terms must converge to zero.

4 Using Sequential Unconstrained Optimization

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖2

2 −Df (x, xk−1), (4.1)

where

Df (x, xk−1) = f(x)− f(xk−1)− 〈∇f(xk−1), x− xk−1〉. (4.2)

Since f(x) is convex, Df (x, y) ≥ 0 for all x and y and is the Bregman distance formed

from the function f [2].
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Lemma 4.1 The ck that minimizes Gk(x) over x ∈ C is given by Equation (1.1).

Proof: We know that

〈∇Gk(c
k), c− ck〉 ≥ 0,

for all c ∈ C. With

∇Gk(c
k) =

1

γ
(ck − ck−1) +∇f(ck−1),

we have

〈ck − (ck−1 − γ∇f(ck−1)), c− ck〉 ≥ 0,

for all c ∈ C. We then conclude that

ck = PC(ck−1 − γ∇f(ck−1)).

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖2

2 −Df (x, xk−1) (4.3)

can be rewritten as

gk(x) = Dh(x, xk−1), (4.4)

where

h(x) =
1

2γ
‖x‖2

2 − f(x). (4.5)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.

We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (4.6)

for all x and y. This is equivalent to

1

γ
‖x− y‖2

2 − 〈∇f(x)−∇f(y), x− y〉 ≥ 0. (4.7)

Since ∇f is L-Lipschitz, the inequality (4.7) holds whenever 0 < γ < 1
L
.

A relatively simple calculation shows that

Gk(c)−Gk(c
k) =

1

2γ
‖c− ck‖2

2 +
1

γ
〈ck − (ck−1 − γ∇f(ck−1)), c− ck〉. (4.8)
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From Equation (1.1) it follows that

Gk(c)−Gk(c
k) ≥ 1

2γ
‖c− ck‖2

2, (4.9)

for all c ∈ C, so that

Gk(c)−Gk(c
k) ≥ 1

2γ
‖c− ck‖2

2 −Df (c, c
k) = gk+1(c). (4.10)

Now let ĉ minimize f(x) over all x ∈ C. Then

Gk(ĉ)−Gk(c
k) = f(ĉ) + gk(ĉ)− f(ck)− gk(c

k)

≤ f(ĉ) + Gk−1(ĉ)−Gk−1(c
k−1)− f(ck)− gk(c

k),

so that(
Gk−1(ĉ)−Gk−1(c

k−1)
)
−

(
Gk(ĉ)−Gk(c

k)
)
≥ f(ck)− f(ĉ) + gk(c

k) ≥ 0.

Therefore, the sequence {Gk(ĉ) − Gk(c
k)} is decreasing and the sequences {gk(c

k)}
and {f(ck)− f(ĉ)} converge to zero.

From

Gk(ĉ)−Gk(c
k) ≥ 1

2γ
‖ĉ− ck‖2

2,

it follows that the sequence {ck} is bounded and that a subsequence converges to

some c∗ ∈ C with f(c∗) = f(ĉ).

Replacing the generic ĉ with c∗, we find that {Gk(c
∗)−Gk(c

k)} is decreasing. By

Equation (4.8), it therefore converges to the limit

1

2γ
‖c∗−PC(c∗−γ∇f(c∗))‖2

2 +
1

γ
〈(PC − I)(c∗−γ∇f(c∗)), c∗−PC(c∗−γ∇f(c∗))〉 = 0.

From the inequality in (4.9), we conclude that the sequence {‖c∗ − ck‖2
2} converges

to zero, and so {ck} converges to c∗. This completes the proof of the theorem.

5 Some Examples

We present two examples to illustrate the application of the main theorem.

5.1 The Projected Landweber Algorithm

The problem is to minimize the function

f(x) =
1

2
‖Ax− b‖2

2,
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over x ∈ C. The gradient of the function f(x),

∇f(x) = AT (Ax− b),

is L-Lipschitz for L = ρ(AT A), the largest eigenvalue of the matrix AT A. The iterative

step of the projected Landweber algorithm is

ck = PC(ck−1 − γAT (Ack−1 − b)), (5.1)

for 0 < γ < 1
L
. According to the theorem, the sequence {ck} converges to a minimizer

of f(x) over x in C, whenever such minimizers exist. A minimizer need not exist, in

general, though: let C be the closed, convex set in R2 defined by

C = {x = (x1, x2)
T |x1 > 0, x2 ≥

1

x1

},

A = [0 1], and b = 0, so we want to minimize x2, over x in C.

5.2 The CQ Algorithm

Let C and Q be non-empty, closed, convex subsets of RJ and RI , respectively, and

A a real I by J matrix. The split feasibility problem (SFP) is to find c ∈ C with

Ac ∈ Q. If the SFP has no exact solution, we try to minimize the function

f(x) =
1

2
‖PQAx− Ax‖2

2, (5.2)

over x ∈ C. The gradient of the function f(x) is

∇f(x) = AT (I − PQ)Ax, (5.3)

and is L-Lipschitz for L = ρ(AT A).

The iterative step of the CQ algorithm is

ck = PC(ck−1 − γAT (I − PQ)Ack−1), (5.4)

for 0 < γ < 1
L

[3, 4]. According to the theorem, the sequence {ck} converges to a

minimizer of f(x) over x ∈ C, whenever such minimizers exist. If we select Q = {b},
then the CQ algorithm reduces to the projected Landweber algorithm.

6 Feasible-Point Algorithms

Suppose that we want to minimize a convex differentiable function f(x) over x such

that Ax = b, where A is an I by J full-rank matrix, with I < J . If Axk = b for each

of the vectors {xk} generated by the iterative algorithm, we say that the algorithm

is a feasible-point method.
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6.1 The Projected Gradient Algorithm

Let C be the feasible set of all x in RJ such that Ax = b. For every z in RJ , we have

PCz = PNS(A)z + AT (AAT )−1b, (6.1)

where NS(A) is the null space of A. Using

PNS(A)z = z − AT (AAT )−1Az, (6.2)

we have

PCz = z + AT (AAT )−1(b− Az). (6.3)

For the projected gradient algorithm the iteration in Equation (1.1) becomes

ck = ck−1 − γPNS(A)∇f(ck−1), (6.4)

which converges to a solution for any γ in (0, 1
L
), whenever solutions exist.

In the next subsection we present a somewhat simpler approach.

6.2 The Reduced Gradient Algorithm

Let c0 be a feasible point, that is, Ac0 = b. Then c = c0 + p is also feasible if p is in

the null space of A, that is, Ap = 0. Let Z be a J by J − I matrix whose columns

form a basis for the null space of A. We want p = Zv for some v. The best v will be

the one for which the function

φ(v) = f(c0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent method, or the

Newton-Raphson method, or any other minimization technique.

The steepest descent method, applied to φ(v), is called the reduced steepest descent

algorithm [9]. The gradient of φ(v), also called the reduced gradient, is

∇φ(v) = ZT∇f(c),

where c = c0 + Zv; the gradient operator ∇φ is then K-Lipschitz, for K = ρ(AT A)L.

Let c0 be feasible. The iteration in Equation (1.1) now becomes

vk = vk−1 − γ∇φ(vk−1), (6.5)

so that the iteration for ck = c0 + Zvk is

ck = ck−1 − γZZT∇f(ck−1). (6.6)

The vectors ck are feasible and the sequence {ck} converges to a solution, whenever

solutions exist, for any 0 < γ < 1
K

.
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6.3 The Reduced Newton-Raphson Method

The same idea can be applied to the Newton-Raphson method. The Newton-Raphson

method, applied to φ(v), is called the reduced Newton-Raphson method [9]. The

Hessian matrix of φ(v), also called the reduced Hessian matrix, is

∇2φ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

ck = ck−1 − Z
(
ZT∇2f(ck−1)Z

)−1
ZT∇f(ck−1). (6.7)

Let c0 be feasible. Then each ck is feasible. The sequence {ck} is not guaranteed to

converge.
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