
A Note on Iterative Optimization

Charles L. Byrne
Department of Mathematical Sciences

University of Massachusetts Lowell
Lowell, MA 01854

March 18, 2012

Abstract

An elementary proof is given for the following theorem.

Theorem: Let f : RJ → R be convex and differentiable, with ∇f L-Lipschitz.
Let C be any closed, convex subset of RJ . For 0 < γ < 1

L , let T = PC(I−γ∇f).
If T has fixed points, then the sequence {xk} given by xk = Txk−1 converges
to a fixed point of T .

Any fixed point of T minimizes the function f(x) over the set C. It is a
consequence of the Krasnoselskii-Mann Theorem for averaged operators that
convergence holds for 0 < γ < 2

L . The proof given here employs sequential un-
constrained minimization and avoids using the non-trivial results that, because
the operator 1

L∇f is non-expansive, it is firmly non-expansive, and that the
product of averaged operators is averaged.

Several applications of the theorem are given, including the proof of conver-
gence of two interior-point algorithms for minimizing f(x) over x with Ax = b.

1 The Convergence Theorem

We provide an elementary proof of the following theorem:

Theorem 1.1 Let f : RJ → R be convex and differentiable, with ∇f L-Lipschitz.

Let C be any closed, convex subset of RJ . For 0 < γ < 1
L
, let T = PC(I − γ∇f). If

T has fixed points, then the sequence {xk} given by xk = Txk−1 converges to a fixed

point of T .

The iterative step is given by

xk = PC(xk−1 − γ∇f(xk−1)). (1.1)

1



It is a consequence of the Krasnoselskii-Mann Theorem for averaged operators that

convergence holds for 0 < γ < 2
L
. The proof given here employs sequential un-

constrained minimization and avoids using the non-trivial results that, because the

operator 1
L
∇f is non-expansive, it is firmly non-expansive [8], and that the product

of averaged operators is again averaged [1].

2 Sequential Unconstrained Optimization

Sequential unconstrained optimization algorithms can be used to minimize a function

f : RJ → (−∞,∞] over a (not necessarily proper) subset C of RJ [7]. At the kth

step of a sequential unconstrained minimization method we obtain xk by minimizing

the function

Gk(x) = f(x) + gk(x), (2.1)

where the auxiliary function gk(x) is appropriately chosen. If C is a proper subset

of RJ we may force gk(x) = +∞ for x not in C, as in the barrier-function methods;

then each xk will lie in C. The objective is then to select the gk(x) so that the

sequence {xk} converges to a solution of the problem, or failing that, at least to have

the sequence {f(xk)} converging to the infimum of f(x) over x in C.

Our main focus in this paper is the use of sequential unconstrained optimiza-

tion algorithms to obtain iterative methods in which each iterate can be obtained in

closed form. Now the gk(x) are selected not to impose a constraint, but to facilitate

computation.

3 SUMMA

In [5] we presented a particular class of sequential unconstrained minimization meth-

ods called SUMMA. As we showed in that paper, this class is broad enough to contain

barrier-function methods, proximal minimization methods, and the simultaneous mul-

tiplicative algebraic reconstruction technique (SMART). By reformulating the prob-

lem, the penalty-function methods can also be shown to be members of the SUMMA

class. Any alternating minimization (AM) problem with the five-point property [6]

can be reformulated as a SUMMA problem; therefore the expectation maximization

maximum likelihood (EMML) algorithm for Poisson data, which is such an AM algo-

rithm, must also be a SUMMA algorithm.

2



For a method to be in the SUMMA class we require that xk ∈ C for each k and

that each auxiliary function gk(x) satisfy the inequality

0 ≤ gk(x) ≤ Gk−1(x)−Gk−1(x
k−1), (3.1)

for all x. Note that it follows that gk(x
k−1) = 0, for all k. For this note we require that

f(x) be convex and differentiable, and that the gradient operator, ∇f , be L-Lipschitz.

We assume, throughout this section, that the inequality in (3.1) holds for each k.

We also assume that infx∈C f(x) = b > −∞. The next two results are taken from [5].

Proposition 3.1 The sequence {f(xk)} is non-increasing and the sequence {gk(x
k)}

converges to zero.

Proof: We have

f(xk+1) + gk+1(x
k+1) = Gk+1(x

k+1) ≤ Gk+1(x
k) = f(xk). (3.2)

Theorem 3.1 The sequence {f(xk)} converges to b.

Proof: Suppose that there is δ > 0 such that f(xk) ≥ b + 2δ, for all k. Then there

is z ∈ C such that f(xk) ≥ f(z) + δ, for all k. From the inequality in (3.1) we have

gk(z)− gk+1(z) ≥ f(xk) + gk(x
k)− f(z) ≥ f(xk)− f(z) ≥ δ, (3.3)

for all k. But this cannot happen; the successive differences of a non-increasing

sequence of non-negative terms must converge to zero.

4 Using Sequential Unconstrained Optimization

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖2

2 −Df (x, xk−1), (4.1)

where

Df (x, xk−1) = f(x)− f(xk−1)− 〈∇f(xk−1), x− xk−1〉. (4.2)

Since f(x) is convex, Df (x, y) ≥ 0 for all x and y and is the Bregman distance formed

from the function f [2].

3



Lemma 4.1 The ck that minimizes Gk(x) over x ∈ C is given by Equation (1.1).

Proof: We know that

〈∇Gk(c
k), c− ck〉 ≥ 0,

for all c ∈ C. With

∇Gk(c
k) =

1

γ
(ck − ck−1) +∇f(ck−1),

we have

〈ck − (ck−1 − γ∇f(ck−1)), c− ck〉 ≥ 0,

for all c ∈ C. We then conclude that

ck = PC(ck−1 − γ∇f(ck−1)).

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖2

2 −Df (x, xk−1) (4.3)

can be rewritten as

gk(x) = Dh(x, xk−1), (4.4)

where

h(x) =
1

2γ
‖x‖2

2 − f(x). (4.5)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.

We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (4.6)

for all x and y. This is equivalent to

1

γ
‖x− y‖2

2 − 〈∇f(x)−∇f(y), x− y〉 ≥ 0. (4.7)

Since ∇f is L-Lipschitz, the inequality (4.7) holds whenever 0 < γ < 1
L
.

A relatively simple calculation shows that

Gk(c)−Gk(c
k) =

1

2γ
‖c− ck‖2

2 +
1

γ
〈ck − (ck−1 − γ∇f(ck−1)), c− ck〉. (4.8)

4



From Equation (1.1) it follows that

Gk(c)−Gk(c
k) ≥ 1

2γ
‖c− ck‖2

2, (4.9)

for all c ∈ C, so that

Gk(c)−Gk(c
k) ≥ 1

2γ
‖c− ck‖2

2 −Df (c, c
k) = gk+1(c). (4.10)

Now let ĉ minimize f(x) over all x ∈ C. Then

Gk(ĉ)−Gk(c
k) = f(ĉ) + gk(ĉ)− f(ck)− gk(c

k)

≤ f(ĉ) + Gk−1(ĉ)−Gk−1(c
k−1)− f(ck)− gk(c

k),

so that(
Gk−1(ĉ)−Gk−1(c

k−1)
)
−

(
Gk(ĉ)−Gk(c

k)
)
≥ f(ck)− f(ĉ) + gk(c

k) ≥ 0.

Therefore, the sequence {Gk(ĉ) − Gk(c
k)} is decreasing and the sequences {gk(c

k)}
and {f(ck)− f(ĉ)} converge to zero.

From

Gk(ĉ)−Gk(c
k) ≥ 1

2γ
‖ĉ− ck‖2

2,

it follows that the sequence {ck} is bounded and that a subsequence converges to

some c∗ ∈ C with f(c∗) = f(ĉ).

Replacing the generic ĉ with c∗, we find that {Gk(c
∗)−Gk(c

k)} is decreasing. By

Equation (4.8), it therefore converges to the limit

1

2γ
‖c∗−PC(c∗−γ∇f(c∗))‖2

2 +
1

γ
〈(PC − I)(c∗−γ∇f(c∗)), c∗−PC(c∗−γ∇f(c∗))〉 = 0.

From the inequality in (4.9), we conclude that the sequence {‖c∗ − ck‖2
2} converges

to zero, and so {ck} converges to c∗. This completes the proof of the theorem.

5 Some Examples

We present two examples to illustrate the application of the main theorem.

5.1 The Projected Landweber Algorithm

The problem is to minimize the function

f(x) =
1

2
‖Ax− b‖2

2,

5



over x ∈ C. The gradient of the function f(x),

∇f(x) = AT (Ax− b),

is L-Lipschitz for L = ρ(AT A), the largest eigenvalue of the matrix AT A. The iterative

step of the projected Landweber algorithm is

ck = PC(ck−1 − γAT (Ack−1 − b)), (5.1)

for 0 < γ < 1
L
. According to the theorem, the sequence {ck} converges to a minimizer

of f(x) over x in C, whenever such minimizers exist. A minimizer need not exist, in

general, though: let C be the closed, convex set in R2 defined by

C = {x = (x1, x2)
T |x1 > 0, x2 ≥

1

x1

},

A = [0 1], and b = 0, so we want to minimize x2, over x in C.

5.2 The CQ Algorithm

Let C and Q be non-empty, closed, convex subsets of RJ and RI , respectively, and

A a real I by J matrix. The split feasibility problem (SFP) is to find c ∈ C with

Ac ∈ Q. If the SFP has no exact solution, we try to minimize the function

f(x) =
1

2
‖PQAx− Ax‖2

2, (5.2)

over x ∈ C. The gradient of the function f(x) is

∇f(x) = AT (I − PQ)Ax, (5.3)

and is L-Lipschitz for L = ρ(AT A).

The iterative step of the CQ algorithm is

ck = PC(ck−1 − γAT (I − PQ)Ack−1), (5.4)

for 0 < γ < 1
L

[3, 4]. According to the theorem, the sequence {ck} converges to a

minimizer of f(x) over x ∈ C, whenever such minimizers exist. If we select Q = {b},
then the CQ algorithm reduces to the projected Landweber algorithm.

6 Feasible-Point Algorithms

Suppose that we want to minimize a convex differentiable function f(x) over x such

that Ax = b, where A is an I by J full-rank matrix, with I < J . If Axk = b for each

of the vectors {xk} generated by the iterative algorithm, we say that the algorithm

is a feasible-point method.

6



6.1 The Projected Gradient Algorithm

Let C be the feasible set of all x in RJ such that Ax = b. For every z in RJ , we have

PCz = PNS(A)z + AT (AAT )−1b, (6.1)

where NS(A) is the null space of A. Using

PNS(A)z = z − AT (AAT )−1Az, (6.2)

we have

PCz = z + AT (AAT )−1(b− Az). (6.3)

For the projected gradient algorithm the iteration in Equation (1.1) becomes

ck = ck−1 − γPNS(A)∇f(ck−1), (6.4)

which converges to a solution for any γ in (0, 1
L
), whenever solutions exist.

In the next subsection we present a somewhat simpler approach.

6.2 The Reduced Gradient Algorithm

Let c0 be a feasible point, that is, Ac0 = b. Then c = c0 + p is also feasible if p is in

the null space of A, that is, Ap = 0. Let Z be a J by J − I matrix whose columns

form a basis for the null space of A. We want p = Zv for some v. The best v will be

the one for which the function

φ(v) = f(c0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent method, or the

Newton-Raphson method, or any other minimization technique.

The steepest descent method, applied to φ(v), is called the reduced steepest descent

algorithm [9]. The gradient of φ(v), also called the reduced gradient, is

∇φ(v) = ZT∇f(c),

where c = c0 + Zv; the gradient operator ∇φ is then K-Lipschitz, for K = ρ(AT A)L.

Let c0 be feasible. The iteration in Equation (1.1) now becomes

vk = vk−1 − γ∇φ(vk−1), (6.5)

so that the iteration for ck = c0 + Zvk is

ck = ck−1 − γZZT∇f(ck−1). (6.6)

The vectors ck are feasible and the sequence {ck} converges to a solution, whenever

solutions exist, for any 0 < γ < 1
K

.

7



6.3 The Reduced Newton-Raphson Method

The same idea can be applied to the Newton-Raphson method. The Newton-Raphson

method, applied to φ(v), is called the reduced Newton-Raphson method [9]. The

Hessian matrix of φ(v), also called the reduced Hessian matrix, is

∇2φ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

ck = ck−1 − Z
(
ZT∇2f(ck−1)Z

)−1
ZT∇f(ck−1). (6.7)

Let c0 be feasible. Then each ck is feasible. The sequence {ck} is not guaranteed to

converge.

References

[1] Bauschke, H., and Borwein, J. (1996) “On projection algorithms for solving

convex feasibility problems.” SIAM Review, 38 (3), pp. 367–426.

[2] Bregman, L.M. (1967) “The relaxation method of finding the common point of

convex sets and its application to the solution of problems in convex program-

ming.” USSR Computational Mathematics and Mathematical Physics 7, pp.

200–217.

[3] Byrne, C. (2002) “Iterative oblique projection onto convex sets and the split

feasibility problem.”Inverse Problems 18, pp. 441–453.

[4] Byrne, C. (2004) “A unified treatment of some iterative algorithms in signal

processing and image reconstruction.”Inverse Problems 20, pp. 103–120.

[5] Byrne, C. (2008) “Sequential unconstrained minimization algorithms for con-

strained optimization.” Inverse Problems, 24(1), article no. 015013.

[6] Csiszár, I. and Tusnády, G. (1984) “Information geometry and alternating min-

imization procedures.” Statistics and Decisions Supp. 1, pp. 205–237.

[7] Fiacco, A., and McCormick, G. (1990) Nonlinear Programming: Sequential Un-

constrained Minimization Techniques. Philadelphia, PA: SIAM Classics in Math-

ematics (reissue).

8



[8] Golshtein, E., and Tretyakov, N. (1996) Modified Lagrangians and Monotone

Maps in Optimization. New York: John Wiley and Sons, Inc.

[9] Nash, S. and Sofer, A. (1996) Linear and Nonlinear Programming. New York:

McGraw-Hill.

9


