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1. Introduction

We introduce a new filtering algorithm to find a nonnegative estimate x̂k, k =
1, . . . , S, to the nonnegative unknown xk of the problem given by the two linear
space-state equations,

xk = Akxk−1 + µk

zk = Hkxk + νk

µk is the error vector, E(µk) = 0 and E(µkµ
⊤
k ) = Qk is the covariance of the

error in modeling the transition from xk−1 to xk. E(νk) = 0 and E(νkν
⊤
k ) = Rk

are the mean and covariance respectively of the noise vector νk. Entries of the
vector zk and of both matrices Ak and Hk are nonnegative. We know also that
we deal with white error and noise so that,

Qk = σ2
kI

Rk = diag(zk)

where I is the identity matrix of order N, diag(a) denotes the square matrix
that has the ai in its main diagonal and 0 otherwise. Our new algorithm that we
refer as the SMART filter is then numerically tested to solve a reconstruction
problem arising in medical imaging, namely dynamic/time-varying SPECT.

Recent advances in high speed computing and image processing have con-
tributed significantly to the progress of treatment planning including radiation
therapy, hyperthermia, surgical procedure, and cryosurgery. Emission tomogra-
phy, as in nuclear medicine, is a medical imaging modality which uses detection
of electromagnetic radiation for diagnostic purposes. In case of SPECT or PET
(positron emission tomography), a judiciously designed chemical radiopharma-
ceutical tagged with a radioactive isotope is administered to the patient, usually
by intravenous injection. It is chosen to amass in a targeted organ or region
of the body, the heart or the brain for instance. The radioactive isotope emits
photons which are detected by an external device, the gamma camera, at sev-
eral angular positions around the patient body. Data from these 2D angular
views/projections are reconstructed into a 3D image. This reconstructed ra-
dionuclide distribution from measured data is a useful tool to clinically interpret
and diagnose unhealthy tissue. Nuclear medicine is concerned in investigations
of the dynamics of the human body’s physiological processes and biochemical
function, thus the interest in the dynamic SPECT.

The image reconstruction of the dynamic SPECT is an ill-posed inverse
problem. This ill-posedness is further amplified by physical degradation of the
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acquired data caused by camera blurring, photon scattering, or attenuation.
Most of the reconstruction algorithms presented so far have mainly focused on
the case where the activity of the object is time-invariant within the time taken
to acquire a full set of independent measurement data. Noniterative approaches,
such as FBP (filtered back-projection) approach, and iterative ones, such as EM
algorithm, provide acceptable results in the static case when the activity is time
independent. However, they will break down when the activity is dynamic.

In the static case, the EM algorithm has been extensively applied to medical
image reconstruction since its introduction by Dempster et al [1] in 1977. The
first application in emission tomography began with Shepp and Vardi [2] in
1982. Its efficiency is well established; it converges to an optimal solution.
A variant, called OSEM (ordered subsets EM), converges faster and is due
to Hudson and Larkin [3] in 1994. The EM algorithm and its variants are
easy to implement and perform very well to reconstruct a static/time-invariant
emission tomography when a nonnegative solution is needed. An extension to
a convex constraint set was studied by Bauschke et al [4] for the dynamic/time-
varying SPECT problem. The authors describe the expectation step (E step)
and the minimization step (M step) as a KL projection onto a convex set and
they emphasized that there is no explicit formula for the M step. The M
step, indeed, requires solving a nonlinear optimization problem. This does not
provide an explicit formula as in the static case. As we shall see, by using a
temporal regularization through a cross-entropy minimization, we are able to
derive an explicit EM like formula for the dynamic SPECT problem.

The remainder of the paper is organized as follows. First, we describe in
Section 2 the stochastic modeling of the state evolution and projection in space.
The state evolution and space models are the basis of the HMM (hidden Markov
model) to apply our method. Then Section 3 reviews the EM and Kalman
filter algorithms. Section 4 introduces the EM filter which is derived through a
weighted Kullback-Leibler (KL) distance. The application of EM filter to time-
varying SPECT is covered in Section 5. Section 6 details the simulations of
dynamic SPECT as numerical experiments; these corroborate the effectiveness
of our algorithm in terms of convergence and cpu time. Section 7 concludes the
paper in summing up the findings.
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2. Problem Formulation

2.1. Stochastic Modeling of Dynamic SPECT

We consider a physiological process where the distribution of the radioactive
tracer in an organ or a specific region is time dependent. This region is divided
into small parts called dynamic voxels in 3D or doxels and dynamic pixels in 2D
or dixels. A SPECT camera, that could have one, two or three heads, is used
to register the number of photons emitted by the patient. Let tk, k = 1, . . . , S
be an index of a sequence of acquisition times, N the total number of voxels
and M the total number of bins, we denote by xk ∈ R

N and zk ∈ R
M the

spatial distribution of the activity and the measured data during the k∆t time.
The observations z1, z2 . . . , zS are random vectors. The ith entry in the vector
zk measures the number of photons registered at the ith bin during the time
tk. The jth entry in the vector xk measures the number of photons emitted
from the jth dixel/voxel during the time tk. Furthermore, each observation zk
depends on xk only. The nonnegative activities sequence x1, x2 . . . , xS satisfy
Markov property with unknown time varying transition matrix Ak ∈ R

N×N .
That is

xk = Akxk−1 + µk (1)

where, µk is the error random vector in modeling the transition from xk−1

to xk with E(µk) zero and covariance matrix E(µkµ
⊤
k ) = Qk. The random

variable µk does not have to be a Gaussian process. In many applications the
unknown transition matrix is approximated by a random walk or a discrete
diffusion-transport operator.

Let (hk)ij be the conditional probability that an emission from voxel j
during the acquisition time k∆t will be detected in bin i. We call projection
or observation matrix the time varying matrix defined by Hk = [(hk)ij ]. It
is assumed to be known from the geometry of the detector array and may
include attenuation correction. We shall assume throughout that the matrix
Hk ∈ R

M×N has been constructed so that Hk, as well as any submatrix C
obtained from Hk by deleting columns, has full rank. In particular, if C is
M ×L and L ≥ M , then C has rank M . This is not an unrealistic assumption.
The columns of Hk are vectors in the nonnegative orthant of M -dimensional
space. When attenuation, detector response, and scattering are omitted from
the design of the projection matrix Hk, it can sometimes happen that Hk or
some submatrices C can fail to be full rank. However, the slightest perturbation
of the entries of such a Hk will almost surely produce a new Hk having the
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desired full-rank properties. The observation and activity vectors are related
by the following

zk = Hkxk + νk (2)

where E(νk) = 0 and E(νkν
⊤
k ) = Rk are the mean and covariance respectively

of the noise vector νk. The random variable νk does not have to be a Gaussian
process or Poisson distributed. We only need to know its mean and covariance
matrix. The observation noise is not additive to the measurements in a strict
physical sense. However, feasible solutions can also be obtained using this
approximate noise model. Multiplicative noise is generally more difficult to
remove than additive noise [5], because the intensity of the noise varies with
the signal intensity, thus violating the linearity of the observation model. The
linear model we choose requires then the noise to be additive. Otherwise we
would not have an unbiased estimator, as in the Kalman filter (KF) case for
instance.

The operation that concerns itself in the extraction of information about a
quantity of interest at time k by using noisy data measured up to and including
k is called filtering. In our setting, the determination of the activity xk from the
noisy data zk is a filtering problem. Stochastic filtering is an inverse problem:
One needs to find the optimal x̂k, given the data zk, the evolution matrixAk

and the observation system matrix Hk at each time step k. Equations (1)
and (2) are the state-space form of a particular case of a more general filtering
problem [6, 7]. The actual model is a linear dynamic system for which the
analytic filtering solution is given by the KF [8]. The KF can be viewed as a
temporal regularization technique for solving dynamic inverse problems.

We presume that covariance matrices Qk and Rk are diagonal in the case
of time-varying SPECT. We deal then with white error and noise respectively.
We also presume that we have a system that has nonnegative entries. Diagonal
covariance matrices, white noise and error, and nonnegative system matrices
are three more assumptions that we shall adopt throughout this paper. In case
one or more of these three is violated, refer to [9, 10] in how we could bring a
general setting to an equivalent one presented here in this paper.
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3. Filtering and Nonnegative Reconstruction

3.1. The Expectation Maximization Algorithm

The EM algorithm, when the activity is assumed to be static, has been exten-
sively applied to medical image reconstruction since its introduction by Demp-
ster et al [1] in 1977. The first application in emission tomography began with
Shepp and Vardi [2] in 1982. Its efficiency is well established; it converges
to an optimal solution. A variant, called OSEM (ordered subsets EM), con-
verges faster and is due to Hudson and Larkin [3] in 1994. The EM algorithm
and its variants are easy to implement and perform very well to reconstruct
a static/time-invariant emission tomography when a nonnegative solution is
needed. An extension to a convex constraint set was studied by Bauschke et
al [4] for the dynamic/time-varying SPECT problem. The authors describe the
expectation step (E step) and the minimization step (M step) as a KL projec-
tion onto a convex set and they emphasized that there is no explicit formula
for the M step. The M step, indeed, requires solving a nonlinear optimization
problem. This does not provide an explicit formula as in the static case. As we
shall see, by using a temporal regularization through a cross-entropy minimiza-
tion, we are able to derive an explicit EM like formula for the dynamic SPECT
problem.

The static emission tomography problem amounts to finding x ∈ R
N solu-

tion of the linear equation

z = Hx+ ν (3)

where, z ∈ R
M , H ∈ R

M×N are the observation data vector and the observation
system matrix respectively. The vector ν ∈ R

M represents the additive noise
in recording the data z. We assume the entries of the vector z are nonnegative,
the entries of the matrix H are nonnegative such as each one of its columns
sums up to one; that is the system is normalized. We denote by support(x) the
set of indexes j of the vector x for which xj > 0. Central to our discussion is the
notion of cross-entropy or Kullback-Leibler [11] distance between vectors with
nonnegative entries. Recall that the KL distance between nonnegative numbers
α and β is

KL(α, β) = α log
α

β
+ β − α

We also define KL(α, 0) = +∞, KL(0, β) = β, and KL(0, 0) = 0. Extending
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to nonnegative vectors a = (a1, · · · , aN )⊤ and b = (b1, · · · , bN )⊤ , we have

KL(a, b) =
N
∑

j=1

KL(aj, bj) =
N
∑

j=1

(aj log
aj
bj

+ bj − aj)

We have KL(a, b) = ∞ unless support(a) is contained in support(b). Note how
the KL distance is not symmetric that is KL(a, b) 6= KL(b, a).

The EM algorithm is an iterative procedure for computing a nonnegative
solution of the linear system (3) when we discard the additive noise ν. Using the
cross-entropy/Kullback-Leibler (KL) distance, Titterington [12] noted in 1987
that maximizing the likelihood function is equivalent to minimizing KL(z,Hx)
distance. Later on in 1993, Byrne [13] showed that by minimizing KL(Hx, z)
we obtain the simultaneous version SMART of MART (multiplicative algebraic
reconstruction technique) considered earlier by Gordon et al. [14] and others.
Both algorithms are meant for the static state. Starting with an arbitrary
x0 > 0, for ℓ = 0, 1, . . . , an iteration of EM Algorithm is given by

xℓ+1
j = xℓj

M
∑

i=1

Hijzi
(Hxℓ)i

(4)

When using EM or least squares techniques for dynamic emission tomog-
raphy, the challenge is how to take into account the activity’s dynamics. Some
authors assume that the time activity curves (TACs) or the the activity tempo-
ral behavior in different regions of interest (ROI) are assumed to be known [15].
In this particular case, constrained least squares method can be effective. How-
ever such extra information is not usually available. An alternative approach is
to assume nothing about the dynamics of the activity and just use a temporal
regularization that would penalize high variations of the activity’s changes over
time. This has been done in [16] in 2008, where the authors present a Kalman
based regularization technique. Recently, Qranfal and Byrne [9] developed a
temporal regularization method based on cross-entropy minimization and an-
alyzed a recursive reconstruction method called SMART filter. We introduce
here, by the same token, a new method that we refer to as the EM filter. But
first, let us review the KF.

3.2. Kalman Filter

Consider the problem of finding an estimator x̂ as a linear function of the
noisy data vector z that satisfies (3), that is z = Hx + ν. The best linear
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unbiased estimator (BLUE) for x from z is the vector x̂, which minimizes the
cost function

J(x) = ‖z −Hx‖2R−1

where ‖x‖2B denotes x⊤Bx, the weighted Euclidian norm. If H have full rank
then x̂ = V ⊤z, where V = R−1H(H⊤R−1H)−1. Now suppose that, in addition
to the data vector z, we have y = x+ µ. The vector y is a prior estimate of x,
where µ is the mean-zero error of this estimate and Q is the known covariance
matrix of µ. We want to estimate x as a linear function of both z and y.
Applying the BLUE to the augmented system of equations, that is minimizing
the cost function

F (x) = ‖z −Hx‖2R−1 + ‖y − x‖2Q−1

we find the solution to be

x̂ = y +W (z −Hy)

where
W = QH⊤(R+HQH⊤)−1

We see that to obtain the estimate x̂ of x, we first check to see how well y,
the prior estimate of x, performs as a potential solution of the system z = Hx
and correct the estimate y, using the error z − Hy, to get the new estimate
x̂. If z = Hy, then x̂ = y. The KF involves the repeated application of this
extension of the BLUE.

The KF is a recursive algorithm to estimate the state vector xk during the
time k∆t as a linear combination of the vectors zk and yk. In this case x̂k is
the unique minimizer of the functional

F (xk) = ‖zk −Hkxk‖2R−1

k

+ ‖yk − xk‖2Q−1

k

(5)

The KF update is the following: Given an unbiased estimate x̂k−1 of the state
vector xk−1, our prior estimate of xk based solely on the activity dynamics is

yk = Akx̂k−1 (6)

The estimate x̂k will have the form, refer for instance to [17],

x̂k = yk +Kk(zk −Hkyk) (7)

where

Pk = AkPk−1A
⊤
k +Qk (8)
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Kk = PkH
⊤
k (HkPkH

⊤
k +Rk)

−1 (9)

Pk and Pk−1 in (8) are the covariances of the estimated activity x̂ at time k and
k − 1 respectively. Since the Kalman estimate is an unconstrained minimizer
of F (xk), we will most likely end up with some negative entries in the vector
solution x̂k. This is not a desirable solution in medical imaging. This has been
remedied, for instance in [16, 17], where projection into the set of nonnega-
tive vectors was used to cope with this situation. Another drawback of KF is
the matrix-matrix multiplications involved in (8) and (9) and matrix inversion
involved in (9). Attempts have been made to rectify these two shortcomings;
see for instance [6, 7] for more details. Furthermore, KF needs to calculate,
update, and store covariance matrices. Our goal is manyfold. We intent to find
a substitute algorithm to KF that

1. filters out errors from modeling the dynamical system,

2. filters out the noise from the data,

3. insures temporal regularization,

4. is an optimal recursive estimate,

5. does not require the storage of past measurement data,

6. guarantees nonnegativity of the solution,

7. does not use matrix-matrix multiplications

8. does not necessitate any matrix inversion, and

9. does not need to calculate, update, or store any covariance matrix.

We aim then to keep the same first five properties of KF while improving
it by requesting four more. Each recursive step in the new approach is an
iterative reconstruction that involves only matrix-vector multiplication. These
should then handle the problems of huge number of variables, such is the case
in medical imaging, and would guarantee positive solutions. We mentioned
earlier that the SMART filter [9] satisfies these properties. The main goal of
this paper is to provide, yet another alternative, based on an extension of the
EM algorithm to solve our filtering problem for the dynamic state.
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4. EM Filtering

4.1. Towards a Nonnegative Filter

The problem we are trying to solve can be summarized as follows. From
one/two/three tomographic projections entire image needs to be estimated for
each time frame. This is usually, if not always, a highly underdetermined prob-
lem in SPECT and some constraints need to be used in order to get a reasonable
estimate. In this paper, we impose few constraints, namely, filtering out errors
from modeling the dynamical system and the noise from the data, imposing
temporal regularization, and enforcing the nonnegativity of the solution.

A nonnegative approach, applicable to nonnegative vectors and matrices,
might need to minimize a distance that applies only to nonnegative quantities;
the Kullback-Leibler distance satisfies this constraint. Suppose now that, in
addition to the data vector z as in the static situation, we have y = x+ µ. We
find a new estimate x̂ by minimizing the following cost function:

F (x) = KL(z,Hx) +KL(y, x)

where it is clear that if the prior estimate y of x satisfies z = Hy, then the
new estimate is y. So the nonnegative filter would use a repeated application
of the solution to the minimization problem. However, the covariances do not
seem to play a role now, since this is not a least-squares or Gaussian theory.
Nevertheless, the two covariance matrices R and Q play crucial roles in KF
to filter out the noise from the data and the errors from our modeling of the
dynamic system. We would like then to keep this filtering property by utilizing
these two matrices. We introduce then a weighted KL distance that will handle
the noise and error filtering part; this is covered in the next subsection.

4.2. Weighted Kullback-Leibler Distance

R and Q, being covariance matrices, are symmetric positive definite, so are
their inverses R−1 and Q−1. Therefore, the Cholesky decomposition implies
that there exist upper triangular matrices D1, and D2 with strictly positive
diagonal entries such that

R−1 = D⊤
1 D1 (10)

Q−1 = D⊤
2 D2 (11)

with these decompositions, we have ‖x‖2R−1 = ‖D1x‖2 and ‖x‖2Q−1 = ‖D2x‖2.
By the same token, we define the weighted KL distance w.r.t. to, for instance
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R−1, as follows,

KLR−1(a, b) = KL(D1a,D1b)) (12)

A nonnegative approach, applicable to nonnegative vectors and nonnegative
matrix H, might be to minimize the following weighted cross-entropy/KL sum

KL(D1z,D1Hx) +KL(D2y,D2x) (13)

It goes without saying that first we should make sure that the four vectors
D1z, D1Hx, D2y, and D2x have nonnegative entries. For our application,
the matrix H is any of the observation matrices Hk and the vector z is any
of the observation vectors zk; k = 1, · · · , S. Recall that we assume that we
have diagonal covariance matrices, white noise and error, nonnegative z, and
normalized system matrixH with nonnegative entries. On one hand, the matrix
H and vectors z, y, and x have nonnegative values. On the other hand, matrices
D1 in (10) and D2 in (11) could have off-diagonal negative entries to the extent
that it is not ensured that the four vectors are all nonnegative coordinate-
wise. Nonetheless, when we deal with white noise and error, D1 and D2 will
be diagonal matrices with nonnegative values. This is exactly the case of most
applications including dynamic SPECT where these four vectors D1z, D1Hx,
D2y, and D2x are nonnegative. Otherwise, we should first convert a general
system to a nonnegative one and then pre-whiten it, refer to [9]. Diagonal
covariance matrices, white noise and error, nonnegative detected photons zk,
and normalized system matrices Hk (k = 1, · · · , S) with nonnegative entries
are assumptions that we are adopting throughout this paper. We also assume
that the matrix Hk ∈ R

M×N has been constructed so that Hk, as well as any
submatrix C obtained fromHk by deleting columns, has full rank. In particular,
if C is M × L and L ≥ M , then C has rank M .

4.3. Cross-Entropy Minimization

Byrne [13] considers the following regularization problem,

min
x≥0

F (x) = αKL(d, Px) + (1− α)KL(y, x) (14)

His alternating projections algorithm goes something like this. Let x0 be a
starting nonnegative point. Then having got the ℓth iterate xℓ, we obtain

rℓ+1
ij =

Pijx
ℓ
jdi

(Pxℓ)i
(15)
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xℓ+1
j = α

M
∑

i=1

rℓ+1
ij + (1− α)yj (16)

In this article, we also offer an alternative update formula by gathering both
steps (15) and (16) into a compact convex combination form as follows,

xℓ+1
j = αxℓj

M
∑

i=1

Pijdi
(Pxℓ)i

+ (1− α)yj (17)

For α = 1, we obtain the well known EM/ML (expectation maximization/maxi-
mum likelihood) iteration (4). He states the following convergence lemma and
proves it using the orthogonality conditions of a Pythagorean type.

Lemma 1. The sequence {xℓ} converges to a limit x∞ for all M and N,

for all staring x0 > 0, for all y > 0, and for all 0 ≤ α ≤ 1. For 0 ≤ α < 1,
x∞ is the unique minimizer of F (x). For α = 1, x∞ is the unique nonnegative

minimizer of KL(d, Px) if there is no nonnegative solution of d = Px. If there
are nonnegative solutions, then d = Px∞ and x♯ = x∞ is the only solution for

which the inequalities KL(x, x♯) ≤ KL(x, xℓ) hold for all x ≥ 0 with d = Px
and all ℓ; it follows that support(x) is contained in support(x∞) for all such x.

Note that the term KL(y, x) forces temporal smoothness with α as a tem-
poral smoothing parameter. When recursively minimizing this function over
xk, there will be a trade off between fidelity to the data and to smoothness of
the TAC. The positive parameter α is a smoothing parameter that controls the
relative importance of the two criteria. A crucial step in regularization is the
selection of the regularization parameter α.

5. Application to Dynamic SPECT

Our error and noise covariance matrices in the dynamic SPECT problem are
usually modeled as diagonal matrices with nonnegative entries, refer to sec-
tion 2.1.

Qk = σ2
kI (18)

Rk = diag(zk) (19)

where diag(a) is the square matrix that has the ai in its main diagonal and
0 otherwise. Our measurements zk are modeled as Poisson random variables,
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thus the choice of diag(zk) as their covariance matrices. Let

D1 = diag(
1√
zk

) (20)

D2 =
1

σk
I (21)

where the vector
√
zk is the one having

√

(zk)i in its entry i. In this case, we
are sure that D1z ≥ 0, D1Hx ≥ 0, D2y ≥ 0, and D2x ≥ 0. For ease of notation,
we drop for a while the subscript k. The weighted KL cost function is then

KL(
√
z, (

1√
z
).Hx) +KL(

1

σ
y,

1

σ
x) (22)

or
σ − 1

σ
KL(

σ

σ − 1

√
z,

σ

(σ − 1)
√
z
.Hx) +

1

σ
KL(y, x) (23)

where a.b and a/b designate the multiplication and division respectively of the
vectors a and b component wise. We can obtain the same functional (23) by
using a pre-whitening [9].

Recall that we aim to find a nonnegative estimate x̂k, k = 1, . . . , S, to the
nonnegative unknown xk of the problem given by the two linear space-state
equations (1) and (2),

xk = Akxk−1 + µk

zk = Hkxk + νk

µk is the error vector, E(µk) = 0 and E(µkµ
⊤
k ) = Qk is the covariance of the

error in modeling the transition from xk−1 to xk. E(νk) = 0 and E(νkν
⊤
k ) = Rk

are the mean and covariance respectively of the noise vector νk. Entries of the
vector zk and of both matrices Ak and Hk are nonnegative. We know also from
equations (18) and (19) that,

Qk = σ2
kI

Rk = diag(zk)

Minimizing the functional (23) at each recursion step k is the same as solving
the functional F (x) in (14). It suffices to use the change of variables given in
step 2 of the EM filter algorithm that follows and to recall that the predicted
activity state yk is Akxk−1. We apply the iterative method based on alternating
projections and given by the formulas (15) and (16) at each time step k. The



392 J. Qranfal, C. Byrne

clustering point x∞ will be the estimate state x̂k we are solving for using equa-
tions (1) and (2). The matrix Hk is assumed to be a normalized system matrix

(

M
∑

i=1

(hk)ij = 1, ∀j = 1, · · · , N ) with nonnegative entries. Thus we obtain the

following EM filter algorithm,

Algorithm 2. EM Filter Algorithm

1. Start with x̂0 > 0. For k = 1, · · · , S execute the following steps

2. Assume we have done the recursive step up to time k − 1, do the change

of variables

α =
σk − 1

σk

P =
1

α
R

−1/2
k Hk =

1

α
diag

(

1√
zk

)

Hk

d =
1

α
R

−1/2
k zk =

1

α

√
zk

3. To get x̂k, start with s0 = x̂k−1

4. Make yk = Akx̂k−1

5. Do rℓ+1
ij =

Pijsℓjdi

(Psℓ)i

6. Compute sℓ+1
j = α

∑M
i=1 r

ℓ+1
ij + (1− α)(yk)j , ℓ = 0, 1, . . .

7. The update formula for the next estimate is x̂k = s∞, where s∞ is the

cluster point of the sequence (sℓ)ℓ∈N.

Observe that we could combine the two steps 5 and 6 into one step as we
did before in (17)

sℓ+1
j = αsℓj

M
∑

i=1

Pijdi
(Psℓ)i

+ (1− α)(yk)j , ℓ = 0, 1, . . . (24)

or in an even simplified form when we combine steps 2, 5, and 6

sℓ+1
j = sℓj

M
∑

i=1

(hk)ij

(R
−1/2
k Hksℓ)i

+ (1− α)(yk)j , ℓ = 0, 1, . . . (25)
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Note how the next iterate sℓ+1
j in (24) is formed as a sum of a convex combi-

nation of the predicted (yk)j, associated with the same coefficient 1 − α as in
problem (14), relying only on the evolution model and of the calculated EM
iterate, in a similar form as in (4), associated with the same coefficient α as in
problem (14) as well relying only on the observation model. The matrix Rk is
diagonal, thus the EM filter does not involve any matrix-matrix multiplication
or any matrix inversion. It involves only matrix-vector multiplication. The
temporal regularization parameter α is well defined and takes values between
0 and 1 when σk varies between 1 and ∞. If α = 0 at each time step k, that is
σk = 1 and x̂k = Akx̂k−1, then we are discarding completely the observations
to the extend we rely only on our evolution model. This defeats the purpose of
the experiment. When α = 1 at each time step k, the predicted yk in step 4 is
not needed in step 6. Thus we retrieve the EM/ML iteration as in (4), which
is only valid for the static case as mentioned before. Indeed, choosing α = 1
means that σk−1

σk
= 1 or simply σk = ∞. That is the covariance matrix in the

transition equation (1) is very huge; which implies we have no confidence at all
in our evolution model. In other words, we discard the evolutionary state of
the variable. Only the observations zk are meaningful in finding the x̂k = x̂;
which is then a stationary state as it should be.

We have the following convergence result; this is a direct consequence of
lemma 1

Theorem 3. For all k = 1, · · · , S, the sequence {sℓ} converges to a limit

x̂k = s∞ for all M and N, for all staring x̂0 > 0, and for all 1 ≤ σk ≤ ∞. For

1 ≤ σk < ∞, x̂k is the unique minimizer of the functional (23). For σk = ∞,

x̂ = x̂k is the unique static nonnegative minimizer of KL(z,Hx) if there is

no nonnegative solution of z = Hx. If there are nonnegative solutions, then

z = Hx̂ and x♯ = x̂ is the only solution for which the inequalities KL(x, x♯) ≤
KL(x, sℓ) hold for all x ≥ 0 with z = Hx and all ℓ; it follows that support(x)
is contained in support(x̂) for all such x.

Remark 4. In considering these particular mixture of KL distances
in (23), we unified approaches commonly taken in the underdetermined and
overdetermined cases, and we developed an iterative solution method within a
single framework of alternating projections as well as establishing a convergence
result.
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Figure 1: Simulated annulus with its different ROI and their TACs.
Upper left: simulated activity at time 3, upper right: simulated activity
at time 15, and lower left: TACs of the 6 different ROI.

6. Numerical Experiment

6.1. Simulation

Our phantom is composed of six regions of interest (ROI) or segments. A
segment represents a spatial region with similar temporal behavior. In the
present study we do not assume the segments to be known exactly. Different
approaches to determine the segmentation are described in literature. Each ROI
has a different time activity curve (TAC), see figure 1. The example investigated
in this work is based on the teboroxime dynamics in the body during first hour
post injection. The choice of the TACs is motivated by the behavior of liver,
healthy myocardium, muscles, stenotic myocardium, and lungs. Only one slice
is modeled; that is we simulate a 2D object. The star-like shape placed on the
left ensures that the phantom is not entirely symmetrical. We simulate 120
projections over 360◦, one projection for every 3◦, with attenuation and a 2D
Gaussian detector response.
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Figure 2: Noiseless sinogram or 2D projections without noise: y-axis
has the bin number and the x-axis has the 40 time instances of the 3
heads. Time instances from 1 to 40 are for head 1, 41 to 80 for head 2,
and 81 to 120 for head 3. A color intensity of a pixel is the number of
detected photons by a certain bin at a certain time.

There are three camera heads consisting of 64 square bins each measuring
0.625 cm in each side. The distance from the annulus to the camera head
rotation axis is 30 cm. We simulate S = 40 time instances for three heads; that
is we have 3 × 40 = 120 projections for a camera rotating clock wise (CW) in
a circular orbit. Head 1 starts at −60◦, head 2 at 60◦, and head 3 at 180◦. A
low energy high resolution (LEHR) collimator is used with a full width at half
maximum (fwhm). We determine the blurred parallel strip/beam geometry
system matrices for all projections with resolution recovery and attenuation
correction [18].

We have 64 projection/measurement values for each head, which amounts
to a total of M = 192 observations at each time frame. We run tests where
we compare reconstructions without added noise to the data, see figure 2, and
with noise included into the data/observations, see figure 3. That is, instead
of working with the observation z as is in the case of noiseless data, we took
rather a Poisson random observation with mean z in the case of noisy data.
We noticed that there are very slight differences in the TACs and in the re-
constructed images with and without noisy data. We present here only the
results with the noise added to the observations. The size of the image we aim
to reconstruct is N = 4096 = 64× 64 dixels. We have six kinds of TACs that
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Figure 3: Noisy Sinogram: y-axis has the bin number and the x-axis
has the 40 time instances of the 3 heads. Time instances from 1 to 40
are for head 1, 41 to 80 for head 2, and 81 to 120 for head 3. A color
intensity of a pixel is the number of detected photons by a certain bin
at a certain time. Note: We use this noisy data for the experiment.

are very representative for clinical applications. The annulus has four arcs that
we name “Left”, “Upper”, “Right”, and “Lower” according to their location.
The activity is decreasing in the Left arc, increasing-decreasing in the Upper
arc, constant in the Right arc, and increasing in the Lower arc; see figure 1.
The star-like shape has zero activity within it and is called the “Star” region;
we refer to it as “Background” too. The annulus is immersed within a region,
called “Immersed”, that has a constant activity. We have six ROI in total. The
EM filter algorithm should work in both underdetermined and overdetermined
settings, refer to remark 4. We aim then to test the algorithm 2 in the un-
derdetermined and overdetermined cases. The undermined case happens when
we reconstruct dixel by dixel; we possess M = 192 noisy data for N = 4096
unknowns or a ratio of about 1:21 data to unknowns. It is an ill-posed problem.
The overdetermined consists in reconstructing the six ROI, when we assume full
knowledge of their locations, so that we have M = 192 noisy data for N = 6
unknowns or a ratio of 32:1 data to unknowns. We should of course get better
reconstructed images in the latter case than in the former one; this, indeed, will
be confirmed shortly.

We provide quantitative analysis of the reconstructed images in order to
compare the simulated activity with the reconstructed one. We define the rel-
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ative deviation error τ of the reconstructed activity v∗ from the truth x, refer
to (26) through (28). Hence we compare the simulated count xi,k with the
corresponding reconstructed one v∗i,k at each time frame k for every location i.
We sum over a ROI containing J dixels normalized by the total simulated/true
counts in order to diminish the effect of statistical fluctuations. We have a
τROI,k for every sector. These indicators allow us to see how the method per-
forms under different dynamic behaviors. We could compare, for instance,
sectors with fast washout with those with slow one [17]. We calculate similar
τk over the total number of doxels (dynamic voxels) N then we average them
over the total number S of time acquisitions; so that we have τavg. This is
an objective comparison of the quality of reconstruction for different sets of
parameters such as iteration stopping criteria, noise levels, etc. The closer τavg
is to zero, the better the reconstructed images should be.

τ2ROI,k =

∑J
j=1(v

∗
j,k − xj,k)

2

∑J
j=1 x

2
j,k

(26)

τ2k =

∑N
j=1(v

∗
j,k − xj,k)

2

∑N
j=1 x

2
j,k

(27)

τavg =
1

S

S
∑

k=1

τk (28)

6.2. Results

We assume that the system dynamics are unknown to us (1); therefore we use
a random walk. In practical terms, we set Ak = I, for all k = 1, · · · , S. For
the state transition linear model, we proceeded as follows. We are not inter-
ested in the background and we assume that we know the locations of these
zero activities; this is a common practice [19, 20, 21]. We have run experi-
ments without this assumption and results are very comparable to when we
have run them with this assumption. One interesting way to deal with this
assumption is as this. Set to zero the values of the corresponding positions
of the matrix Hk. The updating equations (8) and (9) ensure that the up-
dated activities will remain equal to zero; thus the KF reconstructs perfectly
the star/background region(s) [16, 17]. By having these values as zero while
eliminating these columns and setting to zero the corresponding entries of the
estimated activity [9, 10], we guarantee automatically that those entries stay
at the value of zero when using our present algorithm EM filter.
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We experiment with different initial guesses x̂0 such as (1, · · · , 1)⊤ and
(10−6, · · · , 10−6)⊤. We also start the algorithm with the static image given by
OSEM; we call this initial guess OSEM activtiy. The average of the deviation
error τavg combined with visual inspection show that there is no pronounced
advantage in favor of any. We do not have much confidence in our transition
model (1) so we choose covariance matrices to be pretty high, 103 ≤ σk ≤ 104.
In the underdetermined case, we do not assume the ROI to be known exactly.
However, we make use of these segments only to interpret the results. As a
consequence, there are some differences in intensity between pixels within the
same region. To assess the effectiveness of the method and of the convergence
result 3, we show the TACs averaged over the pixels within the same ROI and
this is also valid for the overdetermined case. Follow are the results of both
reconstruction cases, underdetermined and overdetermined, SMART filter [9]
and their comparison with results obtained using the projected Kalman algo-
rithm [17]. The projected Kalman is the classical KF followed by a projection
into the positive octant, using a proximal approach, to ensure the feasibility of
the activity. Recall that KF, see equations (8) and (9), necessitates inversion
of huge matrices which is computationally time consuming and RAM memory
hungry.

6.2.1. Underdetermined Case

We are solving the ill-posed inverse problem in reconstructing the dynamic im-
ages of the annulus, 192 noisy observations for 4096 unknowns. We use both
algorithms, EM algorithm 2 and SMART filter algorithm [9], on a P4 3.00 GHz
desktop. It takes less than 2 min to run the EM filter and about 8 mins, 4 times
slower, to run the SMART filter. In contrast to the projected Kalman algo-
rithm [17] which takes more that 2.5 hr, we witness improvements ranging from
about 18 to 75 times faster. The SMART filter takes longer than the EM filter
because of the many evaluations of the log and exp functions in its steps 5 and
6. It was mentioned in [9] that combining 2 steps of the SMART filter algorithm
into one to avoid the evaluation of log and exp functions, evaluating rather a
power function instead, might speed up the SMART filter algorithm. The τavg
of both methods is about 0.52 which is the same as with projected Kalman.
Images and TACs look fine with both, although the image with EM filter looks
slightly better and TACs are somewhat smoother, see figure 4. Images and
TACs of both methods are of the same quality as with projected Kalman [17].
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Figure 4: Reconstructed images at time 21 and TACs of 4096 dixels
using EM filter and SMART filter.

6.2.2. Overdetermined Case

In medical imaging, we are sometimes not interested in individual intensities
of each and every pixel/voxel but rather on some ROI intensities. We are
then more concerned with a segmented reconstruction [21]. A CT scan for
instance might give us an idea about the ROI. In this case we are solving
the inverse problem in reconstructing the dynamic images of the annulus, 192
noisy observations for 6 unknown ROI. We use both algorithms, EM filter 2
and SMART filter algorithm [9], on a P4 3.00 GHz desktop. It takes about
1.5 sec to run the EM filter and about 15 sec to run the SMART filter. In
contrast to the projected Kalman algorithm [17] which takes about 1.7 sec, we
do not witness any improvement in using EM filter. Again, the SMART filter
takes longer than the EM filter, 10 times slower but both times in the seconds,
because of the many evaluations of the log and exp functions in its steps 5 and
6. This shortcoming could be remedied, see section 6.2.1 above. The τavg of
both methods is about 0.03 which is half of the one with projected Kalman.
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Figure 5: Reconstructed images at time 21 and TACs of 6 ROI using
EM filter and SMART.

Hence we improve on convergence. As expected with this overdetermined case,
we get much better images and TACs, compare figure 4 to figures 5 and 6.
Images and TACs of both methods, EM filter and SMART filter, are of the
same quality as with projected Kalman [17].

7. Conclusion

We presented here a novel algorithm that we refer to as EM filter. It applies to
nonnegative normalized systems when a nonnegative solution is desired. Our
algorithm guarantees this as well as a temporal smoothness. We ran experi-
ments comparing EM filter with SMART filter and projected Kalman in both
cases, underdetermined and overdetermined. Quality of images and TACs is
about the same in the three reconstructed images, although EM filter performs
slightly better than SMART filter. EM filter is 4 to 10 times faster than the
SMART filter; still, both are 18 to 75 times faster than the projected Kalman
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Figure 6: Reconstructed images at various time instances: simulated
images in top row, SMART filter reconstructed images in middle row,
and EM filter reconstructed images in bottom row.

in the underdetermined case, minutes instead of hours. EM filter performs
about the same as projected Kalman time wise; nevertheless, it improves on
convergence in the overdetermined case. EM filter algorithm filters out errors
from modeling the dynamical system and the noise from the data. It insures
temporal regularization and outputs an optimal recursive estimate. It also does
not use any matrix-matrix multiplication and does not necessitate any matrix
inversion. These last two properties make it very suitable for large scale systems
such as the ones in medical imaging. EM filter could be used in any discipline
which has used, for instance KF, or in any one that is interested in time-varying
variables such as financial risk assesment/evaluation and forecasting or control,
especially when there is concern with nonnegative outputs. To confirm corol-
lary 3, we applied the algorithm to time-varying SPECT, a medical imaging
modality in nuclear medicine. Our results substantiate the efficiency of this
novel EM filter. Like two faces of the same coin, EM filter and SMART filter
are two algorithms deduced from the same weighted KL distance.
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