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Abstract: We present a new filtering algorithm, the SMART filter (simul-
taneous multiplicative algebraic reconstruction technique) and provide a con-
vergence result. We test it to solve the inverse problem of reconstructing a
dynamic medical image where the signal strength changes substantially over
the time required for data acquisition. Our test choice is the time-dependent
single photon emission computed tomography (SPECT) which is an ill-posed
inverse problem. Based on a linear state-space model of the problem, we provide
numerical results to corroborate the effectiveness of our reconstruction method.
The SMART filter guarantees a nonnegative and temporally regularized solu-
tion, filters out errors from modeling the dynamical system as well as the noise
from the data, and outputs an optimal recursive estimate. The SMART fil-
ter proves itself to be also computationally time efficient which makes it very
suitable for large scale systems such as the ones in medical imaging. In addi-
tion, it could be used in any discipline which has used, for instance Kalman
filter, or in any one that is interested in time-varying variables such as financial
risk assesment/evaluation and forecasting, tracking, or control. Tests in both
cases, underdetermined and overdetermined, confirm the convergence result.
Getting much better results in the latter case supports the fact that the more
information we feed the SMART filter the better it behaves.
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1. Introduction

We introduce a new filtering algorithm to find a nonnegative estimate x̂k, k =
1, . . . , S, to the nonnegative unknown xk of the problem given by the two linear
space-state equations,

xk = Akxk−1 + µk

zk = Hkxk + νk

µk is the error vector, E(µk) = 0 and E(µkµ
⊤
k ) = Qk is the covariance of the

error in modeling the transition from xk−1 to xk. E(νk) = 0 and E(νkν
⊤
k ) = Rk

are the mean and covariance respectively of the noise vector νk. Entries of the
vector zk and of both matrices Ak and Hk are nonnegative. We know also that
we deal with white error and noise so that,

Qk = σ2
kI

Rk = diag(zk)

where I is the identity matrix of order N, diag(a) denotes the square matrix
that has the ai in its main diagonal and 0 otherwise. Our new algorithm that we
refer as the SMART filter is then numerically tested to solve a reconstruction
problem arising in medical imaging, namely dynamic/time-varying SPECT.

Standard SPECT imaging assumes that the distribution of the radioactive
tracer is stationary or remains constant during the whole time required for
data acquisition. However, nuclear medicine is also interested in investigations
of the dynamics of the human body’s physiological processes and biochemical
function. In this case, the distribution of the radiopharmaceutical (such as
for example 99mTc-Teboroxime which may be used for cardiac imaging) will
change over time. In any standard rotating SPECT camera, the projections
required for reconstruction of a single image are collected sequentially. But if the
concentration of radiotracer changes, then these projections, taken at different
times during camera rotation, correspond to different distributions of tracer.
Fast changes of activity occurring during SPECT acquisition create so-called
“inconsistent” projections which, when processed with standard reconstruction
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methods, result in serious image artifacts. Subsequently, different approaches
for reconstruction of such non-static images are required.

Time-varying or dynamic SPECT reconstruction is an ill-posed problem
that involves a huge number of variables. This ill-posedness of the reconstruc-
tion problem is further amplified by physical degradation of the acquired data
caused by camera blurring, photon scattering, or attenuation. As a way to di-
minish sensitivity to noise and other modeling errors, we call on regularization,
since it assists in curing an ill-posed problem. Additionally, the reconstructed
image has to be a tradeoff between accuracy and damping of the noise within
it. Thus arises the need for fast and robust algorithms and regularization can
assist to make the solution less sensitive to noise and modeling errors.

Analytical reconstruction techniques such as filtered back projection (FBP)
and iterative ones such as ordered subsets expectation maximization (OSEM)
can be used in the static case of emission tomography. Classical EM method,
works fine for a static image as well, but breaks down to solve a dynamic SPECT
problem. So Bauschke et. al. [1] have introduced what they refer to as a “dy-
namic EM” approach by using the activity dynamics as linear constraints. Some
authors assume prior knowledge about the time activity curve (TAC) dynam-
ics [2]. Based on compartmental modeling [3], early works on dynamic SPECT
reconstruction use nonlinear least squares techniques to fit the exponential form
of the solution; see [4, 5, 6, 7, 8] and references therein. Fitting strategy us-
ing the exponential formulation is known as Prony’s method [9] and it is less
stable because oscillatory solution may occur. Estimation of the radioactive
tracer kinetic parameter is very challenging particularly when the number of
compartments is greater than two. In this paper we adopt a stochastic hidden
Markov model (HMM) to describe the dynamic SPECT imaging problem. That
gives rise to a Bayesian filtering problem. Our model does not assume any prior
knowledge about the dynamics of the activity and is best suited to treat the
general case of two compartments or more.

In 1960, Kalman has proposed in his pioneering work [10] to solve the noise
filtering problem using what was subsequently referred to as the Kalman filter
(KF). The most powerful feature is that the Kalman filtering technique is an on-
line recursive form in place of an off-line batch form. Therefore, there is no need
to store the past measurements in the computer RAM to estimate the present
state. The KF behaves extremely well when the object to be reconstructed
is constraint free. In medical imaging we require the activity intensity to be
nonnegative. Recently, Qranfal et. al. [11, 12] introduced a novel projected
Kalman to solve the dynamic SPECT problem using a proximal algorithm
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to enforce this nonnegativity constraint into the KF solution. However, it
remains computationally time consuming as KF involves many matrix-matrix
multiplications and matrix inversions.

The purpose of this paper is to present a new filtering method, the SMART
filter, that we apply to solve the problem for dynamic SPECT image reconstruc-
tion based on a stochastic model. While keeping the KF temporal regularization
feature, our approach remedies mainly to KF drawbacks of time consuming and
not embedding the nonnegativity constraint. In addition, SMART filter is an
iterative algorithm and only requires matrix-vector multiplication and does not
necessitate any matrix inversion.

The remainder of the paper is organized as follows. First we describe in
Section 2 the problem and the stochastic model of the state evolution and pro-
jection in space that models it. We show also how we could bring a general
setting, such as when we do not have white noise or nonnegative system matri-
ces or data, to a desired one. In Section 3, we review the optimal filtering in the
linear case. Our proposed algorithm aims to give an alternative to KF and is the
SMART algorithm [13] when the activity is static. We review then the BLUE
(best linear unbiased estimator) and introduce the KF, as the BLUE, and its
drawbacks that we set ourselves to remedy. Our goal is to introduce an alterna-
tive to KF that keeps its advantages, such as filtering the noise and errors, while
remedying its drawbacks, especially its known computational time consuming.
We thus revisit KF in more details. ART, a precursor algorithm to SMART,
and SMART algorithms are reviewed as well. Then Section 4 introduces the
weighted KL distance. This latter distance is used to derive the SMART filter
algorithm with its convergence results. Section 5 covers this in detail as well as
an application to dynamic SPECT. Section 6 on numerical experiment, based
on simulations of dynamic SPECT, corroborates the effectiveness of our algo-
rithm in terms of convergence and cpu time in both cases, underdetermined and
overdetermined. We finally conclude in Section 7 summing up our findings.

2. Problem Formulation

We start off by stating the problem and how we choose to model it in Section 2.1.
White noise is a very important assumption in our approach, to use the weighted
KL described in Section 4.1, but is not a restrictive one. Section 2.2 shows what
should be done first when we have a colored noise instead. System matrices,
data, and variables must be nonnegative to apply our method. However, these
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conditions are not restrictive neither. Section 2.3 shows what should be done
first if any of these three conditions is not met.

2.1. Stochastic Modeling of Dynamic SPECT

We consider a physiological process where the distribution of the radioactive
tracer in an organ or a specific region is time dependent. This region is divided
into small parts called dynamic voxels in 3D or doxels and dynamic pixels in 2D
or dixels. A SPECT camera, that could have one, two or three heads, is used
to register the number of photons emitted by the patient. Let tk, k = 1, . . . , S
be an index of a sequence of acquisition times, N the total number of voxels
and M the total number of camera heads’ bins, we denote by xk ∈ R

N and
zk ∈ R

M the spatial distribution of the activity and the measured data during
the ∆tk time. The time frames ∆tk may not be equally spaced. The entry
(zk)i holds the number of photons registered during the time ∆tk at bin i. The
observations z1, z2 . . . , zS are random vectors. Furthermore, each observation
zk depends on xk only. The nonnegative activities sequence x1, x2 . . . , xS satisfy
Markov property with unknown time varying transition matrix Ak ∈ R

N×N .
That is

xk = Akxk−1 + µk (1)

where, µk is the error vector, E(µk) = 0 and E(µkµ
⊤
k ) = Qk is the covariance of

the error in modeling the transition from xk−1 to xk. The random variable µk

does not have to be a Gaussian or Poisson distributed. In many applications
the unknown transition matrix Ak is approximated by a random walk or a
discrete diffusion-transport operator. The authors of [14, 15] show convincingly
that the first-order Markov model covers a wide range of dynamic models that
are applicable for modeling tracer kinetics including the diffusion and one-
compartment model used in [8].

Let (hk)ij be the conditional probability that an emission from dixel/doxel
j during the acquisition time ∆tk will be detected in bin i. We call projection
or observation matrix the time varying matrix defined by Hk = [(hk)ij ]. It is
assumed to be known from the geometry of the detector array and may include
attenuation correction. It is also organ/region dependent, thus time-dependent
as well, since the camera “sees” different views of the organ/region at each
acquisition time ∆tk. We shall assume throughout that the matrix Hk ∈ R

M×N

has been constructed so that Hk, as well as any submatrix O obtained from Hk

by deleting columns, has full rank. In particular, if O is M × L and L ≥ M ,
then O has rank M . This is not an unrealistic assumption, which is presumed
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in KF as well, to obtain the convergence theorem 3. The columns of Hk are
vectors in the nonnegative orthant of M -dimensional space. When attenuation,
detector response, and scattering are omitted from the design of the projection
matrix Hk, it can sometimes happen that Hk or some submatrices O can fail
to be full rank. However, the slightest perturbation of the entries of such a Hk

will almost surely produce a new Hk having the desired full-rank properties.
The observation and activity vectors are related by the following

zk = Hkxk + νk (2)

where E(νk) = 0 and E(νkν
⊤
k ) = Rk are the mean and covariance respectively of

the noise vector νk. The random variable νk does not have to be a Gaussian or
Poisson distributed. We only need to know its mean and covariance matrix. The
observation noise is not additive to the measurements in a strict physical sense.
However, feasible solutions can also be obtained using this approximate noise
model. Multiplicative noise is generally more difficult to remove than additive
noise [16], because the intensity of the noise varies with the signal intensity,
thus violating the linearity of the observation model. The linear model we
choose requires then the noise to be additive. Otherwise we would not have,
for instance, an unbiased estimator.

Filtering is an operation that involves the extraction of information about
a quantity of interest at time k by using data measured up to and including
k. More precisely the determination of the activity xk from the measurement
data zk is a filtering problem. Stochastic filtering is an inverse problem. Given
collected zk at discrete time steps and provided Ak and Hk are known, one
needs to find the optimal x̂k. Equations (1) and (2) are the state-space form of
a particular case of a more general filtering problem [17, 18]. The actual model
is a linear dynamic system for which the analytic filtering solution is given by
the KF [10]. This can be seen as a temporal regularization technique for solving
dynamic inverse problems.

In dynamic SPECT, we assume that covariance matrices Qk and Rk are
diagonal; that is we deal with white error, µk, and noise, νk, respectively. In
addition, it is usually assumed that we have at hand systems with nonnegative
entries. Diagonal covariance matrices, white noise and error, and nonnegative
system matrices are three more assumptions that we shall adopt throughout this
paper. In case one or more of these three is violated, the next two subsections
show how we could bring a general setting to an equivalent one presented in
this paper.
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2.2. Pre-whitening Process

White light contains all frequencies. In a similar manner, a random noise signal
or process is called white when it is composed of a flat power spectral density
of all frequencies. In mathematical terms, a random vector v is a white random
vector if and only if its mean vector is zero and its covariance matrix is a
multiple of the identity; that is

E(v) = 0

E(vvT ) = σ2I

where I is the identity matrix. There are times when the noise or error vector
is not white; we say it is colored. We then whiten it by a simple linear change
of variable. For instance, assume that we have an error or noise vector w that
is colored. It means that E(w) = µw 6= 0 or E

[
(w − µw)(w − µw)

T
]
= Σww 6=

σ2I. Let
v = Λ−1/2E⊤(w − µw)

where E is the orthonormal matrix of eigenvectors and Λ is the diagonal matrix
of positive eigenvalues of the spectral decomposition of the definite positive
covariance matrix Σww. It follows that v is a random white noise vector because,

E(v) = Λ−1/2E⊤(E(w) − µw) = Λ−1/2E⊤(µw − µw) = 0

and

E(vv⊤) = E
(
Λ−1/2E⊤(w − µw)(w − µw)

⊤EΛ−1/2
)

= Λ−1/2E⊤
E
(
(w − µw)(w − µw)

⊤
)
EΛ−1/2

= Λ−1/2E⊤ΣwwEΛ−1/2

= Λ−1/2 E⊤EΛE⊤EΛ−1/2

= Λ−1/2IΛIΛ−1/2

= I (3)

Thus even though when we might have a colored random noise or error
w, we remedy to it by a simple change of variable to obtain v as a white
noise or error. Our algorithm is not restricted to only nonnegative matrices
or vectors as it is the case here of its application to dynamic SPECT. Our
approach is applicable to any optimal filtering problem, especially where KF
had been applied before, even when the system matrices or the data vectors
are not necessary nonnegative. We show in the next subsection how we convert
general linear systems to equivalent systems having the desired form in order
to use our algorithm.
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2.3. From General Systems to Nonnegative Systems

On one hand, we assume that there is no column with 0 in all the entries of
the system matrix G. If that is the case, it suffices to delete this column, say
column j, work with the remaining ones; then set its corresponding (x̂k)j to 0,
delete it, and work with the remaining unknown variables. On the other hand,
we also assume that d ∈ R

M has nonnegative entries. In case an entry di < 0,
it suffices to multiply di by −1 as well as the row entries Gij ∀j = 1, · · · , N .

We follow four steps to convert a general system to a nonnegative one [13].
Suppose that Gc = d is an arbitrary system of linear equations, such that
G ∈ R

M×N .

1. If a column j has its sum equal zero, we rescale the equations to make
the sum different than zero. If by rescaling one equation of a particular
column makes another column sum turn to zero, we just choose a different
rescaling. The number of columns is finite so we can always reach a system
with nonzero column sums in finite steps.

2. Redefine B and y as follows; replace gij with bij =
gij∑

i′=1
gi′j

and cj with

yj = cj
∑

i

gij . Observe that the new matrix B has column sums equal to

one and that the product Gc is equal to By; so that we retain the same

system By = d. Note also that
∑

i

di = d+ =
∑

j

yj = y+ > 0.

3. If U is the matrix whose entries are all 1, we let t ≥ 0 be large enough
so that P = B + tU has all nonnegative entries. If 1 is the vector whose
entries are all one, then Py = By + (ty+)1. Consequently the new system
of equations to solve is Py = d + (td+)1 = z. The entries of the “new”
data z are still nonnegative as it is the case with the original data d. We
introduce an algorithm that assumes the column sums of the system are
all one, the system is said to be normalized. To achieve this goal, we make
one additional renormalization. So

4. Substitute pij with hij =
pij∑
i′ pi′j

and yj with xj = yj
∑

i′ pi′j. We have

Hx = Py = z and the new matrix H and vector z are nonnegative and
all the matrix H columns sums are one.

The assumption of the normality of Hk, that is
∑

i(hk)ij = 1, is for conve-
nience. In emission tomography not all emitted particles are detected, so some
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rescaling of the original probabilities (hk)ij and redefinition of what is meant
by xk is required to achieve this simplification.

To sum up, diagonal covariance matrices, white noise and error, nonnegative
zk, and normalized and full rank system matrices Hk (k = 1, · · · , S) with
nonnegative entries are assumptions that we shall adopt throughout this paper.
The solution we seek belongs to the optimal filtering topic; this is covered next.

3. Optimal Filtering

In this section, we review the optimal filtering in the linear case. Our proposed
algorithm aims to give an alternative to KF and is the SMART algorithm [13]
when the activity is static. Section 3.1 reviews then the BLUE and section 3.2
introduces the KF, as the BLUE, and its drawbacks that we set ourselves to
remedy. Our goal is to introduce an alternative to KF that keeps its advantages,
such as filtering the noise and errors, while remedying its drawbacks, mainly
its known computational time consuming in addition to insuring a nonnega-
tive solution. We revisit KF in section 4. The ART (algebraic reconstruction
technique), a precursor algorithm to SMART, and SMART are reviewed in
section 3.3.

3.1. Best Linear Unbiased Estimation

Consider the problem of finding an estimator x̂ as a linear function of the data
vector z ∈ R

M , such that z = Hx+ν, where H ∈ R
M×N is known and ν ∈ R

M

represents zero-mean noise with known covariance matrix R. The BLUE of x
from z is the vector x̂, which minimizes

J(x) = ‖z −Hx‖2R−1

where ‖v‖2B denotes the weighted Euclidian norm v⊤Bv. If H has full rank,
then x̂ = V ⊤z, where V = R−1H(H⊤R−1H)−1 [13]. Now suppose that, in
addition to the data vector z, we have y = x+ µ, a prior estimate of x, where
µ is the zero-mean error in this estimate, and the known covariance matrix of
µ is Q. We want to estimate x as a linear function of both z and y. Applying
the BLUE to the augmented system of equations, that is minimizing the cost
function

F (x) = ‖z −Hx‖2R−1 + ‖y − x‖2Q−1
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we find the solution to be

x̂ = y +W (z −Hy)

where

W = QH⊤(R+HQH⊤)−1

We see that to obtain the estimate x̂ of x, we first check to see how well y,
the prior estimate of x, performs as a potential solution of the system z = Hx
and correct the estimate y, using the error z − Hy, to get the new estimate
x̂. If z = Hy, then x̂ = y. The KF involves the repeated application of this
extension of the BLUE [13].

3.2. Kalman Filter

Both equations (1) and (2) form the state-space model that are suited to be
solved using KF, based on the HMM. The KF solution is the BLUE [13, 18].
The HMM is a statistical model where the activity distributions are assumed
to be a Markov process with unknown parameters. Based on this assumption,
the challenge is then to determine these hidden parameters from the observable
projections. However, KF might produce a negative activity (an activity vector
where at least one of its components is negative); this is meaningless in medical
imaging. Recall the KF approach. Given an unbiased estimate x̂k−1 of the
state vector xk−1, our prior estimate of xk based solely on the physics is

yk = Akx̂k−1 (4)

The KF is a recursive algorithm to estimate the state vector xk during the time
∆tk as a linear combination of the vectors zk and yk. The estimate x̂k will have
the form, refer for instance to [11]

x̂k = yk +Kk(zk −Hkyk) (5)

where

Pk = AkPk−1A
⊤
k +Qk (6)

Kk = PkH
⊤
k (HkPkH

⊤
k +Rk)

−1 (7)

Pk and Pk−1 in (6) are the covariances of the estimated activity x̂ at time k and
k−1 respectively. On one hand, entries of these two matrices are not guaranteed
to be positive; the ones of Kk in (7) are neither since Kk involves an inversion of
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a matrix that has positive entries. On the other hand, even though (5) involves
yk, zk, and Hk which have all nonnegative values, the fact that Kk has some
nonnegative entries and that we necessitate a subtraction to update x̂k, we will
most likely end up with some negative entries in the vector solution x̂k. This
solution has no physical meaning in medical imaging. Setting negative values of
the reconstructed activity x̂ to zero or taking their absolute value did not give
an acceptable solution. This has been remedied, for instance, in [11, 12]. The
authors use KF to solve for the unknown activity in dynamic SPECT. Since
they end up with negative activity, they use a proximal based minimization
approach to project the KF output solution into the positive orthant in order
to render the activity feasible.

Since KF does not ensure the nonnegativity of the solution, we like to
produce a substitute to KF that does so. Another drawback of KF is the
matrix-matrix multiplications involved in (6) and (7) and the matrix inversion
required in (7). Attempts have been made to rectify these two shortcomings;
please refer to [17, 18] for more details. Furthermore, KF needs to calculate,
update, and store covariance matrices. Our goal is manyfold. We intent to find
a substitute algorithm to KF that

1. filters out errors from modeling the dynamical system,

2. filters out the noise from the data,

3. insures temporal regularization,

4. is an optimal recursive estimate,

5. does not require the storage of past measurement data in computer RAM,

6. guarantees nonnegativity of the solution,

7. does not use matrix-matrix multiplications

8. does not necessitate any matrix inversion, and

9. does not need to calculate, update, or store any covariance matrix.

We aim then to keep the same first five properties of KF while improving
it by requesting four more. Each recursive step in the new approach is an
iterative reconstruction that involves only matrix-vector multiplication. These
should then handle the problems of huge number of variables, such is the case
in medical imaging, and would guarantee positive solutions. But first, let us
review the algebraic reconstruction techniques that were applied, for instance,
in medical imaging; this is the subject of the next section.
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3.3. Algebraic Reconstruction Algorithms

The static emission tomography problem amounts to finding x ∈ R
N solution

of the linear equation

z = Hx+ ν

where, z ∈ R
M , H ∈ R

M×N are the observation data vector and the observa-
tion matrix respectively. The vector ν ∈ R

M represents the additive noise in
recording z. We assume the entries of the vector z and of the matrix H are
nonnegative and the columns of H each sums to one. We denote by support(x)
the set of indexes j of the vector x for which xj > 0.

The ART [19], an instance of the Kaczmarz method, was the first iterative
algorithm used in Computerized Tomography. The ART algorithm goes as fol-
low. Begin with an arbitrary vector x0. Having found xℓ, for each nonnegative
integer ℓ, let i = i(ℓ) = (ℓ mod M) + 1;xℓ+1 is then obtained as

xℓ+1

j = xℓj + hij
zi −

∑N
n=1

hinx
ℓ
n∑N

n=1
h2in

(8)

In observing (8), we notice that the new estimate xℓ+1

j is determined by adding
a correction term to the current estimate and then it is compared by subtracting
the estimated projections from the measured ones. This subtraction operation
might induce negative xℓ+1

j ; which is not desirable in application fields such
as medical imaging. Closely related to the ART is the multiplicative ART
(MART) [19]. The MART, which can be applied only to nonnegative systems,
starts with a positive vector x0. Having found xℓ for nonnegative integer ℓ, we
let i = i(ℓ) = (ℓ mod M) + 1 and define xℓ+1 by

xℓ+1

j = xℓj

(
zi

(Hxℓ)i

)Hij

(9)

The advantage of MART over ART is that the former guarantees a nonnegative
solution over the latter. Byrne [13] showed that by minimizing the Kullback-
Leibler [20] distance, we obtain the simultaneous version SMART of MART
considered earlier by Gordon et. al. [19] and others. The SMART begins with
a strictly positive vector x0 and has the iterative step

xℓ+1

j = xℓj

M∏

i=1

(
zi

(Hxℓ)i

)Hij

, j = 1, 2, . . . N (10)
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The SMART is but a particular case of our algorithm 2. Recall that the
Kullback-Leibler/cross-entropy distance between nonnegative numbers α and
β is

KL(α, β) = α log
α

β
+ β − α

We also define KL(α, 0) = +∞, KL(0, β) = β, and KL(0, 0) = 0. Extending
to nonnegative vectors a = (a1, · · · , aN )⊤ and b = (b1, · · · , bN )⊤ , we have

KL(a, b) =

N∑

j=1

KL(aj, bj) =

N∑

j=1

(aj log
aj
bj

+ bj − aj)

We have KL(a, b) = ∞ unless support(a) is contained in support(b). Note how
the KL distance is not symmetric; we have in general KL(a, b) 6= KL(b, a).

In the consistent case, that is when there are vectors x ≥ 0 with z = Hx,
then both MART and SMART converge to the non-negative solution that mini-
mizesKL(x, x0). When there are no such nonnegative vectors, the SMART con-
verges to the unique nonnegative minimizer of KL(Hx, z) for which KL(x, x0)
is minimized. We are now ready to derive our algorithm; this is the topic of
the next two sections.

4. Towards a Nonnegative Constrained Filter

In Kalman filtering we estimate the state xk based on all the measurements
taken up to the time k. The required estimate is obtained by minimizing the
following cost function

F (xk) =
1

2
‖zk −Hkxk‖2R−1

k

+
1

2
‖yk − xk‖2Q−1

k

(11)

with respect to xk. Qranfal et. al. [12] implemented a proximal based algorithm
to find a nonnegative solution of F (xk). A nonnegative constraint approach,
applicable to nonnegative vectors and matrices, might need to minimize a dis-
tance that applies only to nonnegative quantities; the Kullback-Leibler (KL)
does the trick. The cost function becomes

F (xk) = KL(Hkxk, zk) +KL(xk, yk)

It is clear that if the prior estimate yk of xk satisfies zk = Hkyk, then the new
estimate is yk again, just as in the classical Kalman filtering. Then the nonneg-
ative filter would use repeated application of the solution to the minimization
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problem. However, the covariances do not seem to play a role now, since this
is not a least-squares or Gaussian theory. Nevertheless, the two covariance ma-
trices Rk and Qk play crucial roles in KF to filter out the noise from the data
and the errors from our modeling of the dynamic system. We would like then
to keep this filtering property by utilizing these two matrices. We introduce
then a weighted KL distance that will handle the filtering part; this is covered
in the next section.

4.1. Weighted Kullback-Leibler Approach

In this section, the matrix H is any of the observation matrices Hk and the
vector z is any of the observation vectors zk. Similarly, R and Q are any of
the covariance matrices Rk and Qk respectively. Since R and Q are symmetric
positive definite, so are their inverses R−1 and Q−1. Therefore, there exist
nonnegative diagonal matrices L1, L2, U1, and U2 such that

R−1 = L1L
⊤
1 = U⊤

1 U1 (12)

Q−1 = L2L
⊤
2 = U⊤

2 U2 (13)

with these decompositions, we have ‖x‖2R−1 = ‖U1x‖2 and ‖x‖2Q−1 = ‖U2x‖2.
By the same token, we define the weighted KL distance w.r.t., for instance R−1,
as follows,

KLR−1(a, b) = KL(U1a, U1b) (14)

The cost function is now a sum of weighted Kullback-Leibler distances

F̃ (x) = KLR−1(Hx, z) +KLQ−1(x, y) (15)

It goes without saying that first we should make sure that the four vectors
U1Hx, U1z, U2x, and U2y have nonnegative entries. Recall that we assume
that we have diagonal covariance matrices, white noise and error, nonnegative
z, and normalized system matrix H with nonnegative entries. On one hand, the
matrix H and vectors z, y, and x have nonnegative values. On the other hand,
matrices U1 in (12) and U2 in (13) will have, in the general case, negative entries
to the extend that it is not ensured that the four vectors are all nonnegative
coordinate-wise. Nonetheless, when we deal with white noise and error, U1

and U2 will be diagonal matrices with nonnegative values. This is exactly the
case of most applications including dynamic SPECT where these four vectors
are nonnegative. Otherwise, we should first convert a general system to a
nonnegative one and then pre-whiten it, as described earlier in sections 2.3
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and 2.2. The cost function (15) is used in a recursion to derive our filtering
approach; this follows next.

5. SMART Filter Algorithm

In [21] Byrne considers the (possibly inconsistent) linear system of equations
d = Px; where the entries of d, P , and x are nonnegative. He solves it by
considering the regularization problem

min
x≥0

G(x) = αKL(Px, d) + (1 − α)KL(x, y) (16)

where 0 ≤ α ≤ 1 is a regularization parameter. Recall the alternating projec-
tions algorithm [21]. Let x0 be a starting nonnegative point. Then having got
the ℓth iterate xℓ, we obtain for all j = 1, 2, . . . , N

rℓ+1

ij = Pij log
di

(Pxℓ)i
(17)

xℓ+1

j = (xℓj)
α(yj)

1−α exp

(
α

M∑

i=1

rℓ+1

ij

)
(18)

In this article, we give also an alternative to Byrne’s steps (17) and (18) by
gathering both in a convex combination compact form as,

xℓ+1

j = (yj)
1−α

[
xℓj

M∏

i=1

(
di

(Pxℓ)i

)Pij

]α
(19)

For α = 1, we obtain the SMART iteration (10). The following convergence
lemma can be found in [21].

Lemma 1. The sequence {xℓ} converges to a limit x∞ for all M and N,

for all staring x0 > 0, for all y > 0, and for all 0 ≤ α ≤ 1. For 0 ≤ α < 1,
x∞ is the unique minimizer of G(x). For α = 1, x∞ is the unique nonnegative

minimizer of KL(Px, d) if there is no nonnegative solution of d = Px. If there
are nonnegative solutions, then the limit may depend on the starting value; we

have d = Px∞, x∞ is the unique solution minimizing KL(x, x0), and support(x)
is contained within support(x∞) for all x ≥ 0 with d = Px.

Not only it is not obvious how problem (16) can be used to ensure temporal
regularization in dynamic SPECT, but it does not bear any resemblance to
a filtering process. In addition, problem (16) was not thought of to solve a
dynamic problem neither. How it is done for the first time is detailed next,
illustrated through an example.
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5.1. Application to Dynamic SPECT

The error and noise covariance matrices in the dynamic SPECT problem are
usually modeled as diagonal matrices with nonnegative entries, refer to sec-
tion 2.1.

Qk = σ2
kI (20)

Rk = diag(zk) (21)

where I is the identity matrix of order N, diag(a) denotes the square matrix
that has the ai in its main diagonal and 0 otherwise. Our measurements zk
are modeled as Poisson random variables, thus the choice of diag(zk) as their
covariance matrices. Let

U1 = diag(
1√
zk

) (22)

U2 =
1

σk
I (23)

where the vector
√
zk is the one having

√
(zk)i in its entry i. In this case, we

are sure that U1z ≥ 0, U1Hx ≥ 0, U2y ≥ 0, and U2x ≥ 0. For ease of notation,
we drop for a while the subscript k, the weighted KL cost function is then

KL((
1√
z
).Hx,

√
z) +KL(

1

σ
x,

1

σ
y) (24)

or

G̃(x) =
σ − 1

σ
KL(

σ

(σ − 1)
√
z
.Hx,

σ

σ − 1

√
z) +

1

σ
KL(x, y) (25)

where a.b and a/b designate the multiplication and division respectively of the
vectors a and b component wise. We can obtain the same functional (25) by
using a pre-whitening. Recall

z = Hx+ ν (26)

where E(ν) = 0 and E(νν⊤) = R = diag(z). Now multiply both sides with
R−1/2 in order to pre-whiten ν,

R−1/2z = (R−1/2H)x+ (R−1/2ν) (27)

Take z1 = R−1/2z, H1 = R−1/2H, and ν1 = R−1/2ν, we then have

z1 = H1x+ ν1 (28)
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Notice that E(ν1) = 0 but E(νν⊤) = I. We still have z1 and H1 being nonnega-
tive; we do have nonnegative “observations” and “projection” matrices. Hence
we do not need a weighted distance in the first KL since the covariance matrix
is just I. As per the second KL portion, we do not need to do the same trick
with the evolution equation because the covariance matrix Q is just σ2I. Recall

x = y + µ (29)

where the predicted state y = Akxk−1, E(µ) = 0, and E(µµ⊤) = σ2I.

Recall that we aim to find a nonnegative estimate x̂k, k = 1, . . . , S, to the
nonnegative unknown xk of the problem given by the two linear space-state
equations (1) and (2),

xk = Akxk−1 + µk

zk = Hkxk + νk

µk is the error vector, E(µk) = 0 and E(µkµ
⊤
k ) = Qk is the covariance of the

error in modeling the transition from xk−1 to xk. E(νk) = 0 and E(νkν
⊤
k ) = Rk

are the mean and covariance respectively of the noise vector νk. Entries of the
vector zk and of both matrices Ak and Hk are nonnegative. We know also from
equations (20) and (21) that,

Qk = σ2
kI

Rk = diag(zk)

Minimizing the functional (25) at each recursion step k is the same as solving
problem (16). It suffices to use the change of variables given in step 2 of the
SMART filter algorithm 2, that follows, and to recall that the predicted activity
state yk is Akxk−1. We apply, recursively at each time step k, the iterative pro-
cedure given by the formulas (17) and (18). The clustering point x∞ will be the
estimate x̂k we are solving for. Thus we obtain the following algorithm 2 that
we refer to as SMART filter. We remind the reader that diagonal covariance
matrices, white noise and error, nonnegative zk, and normalized and full rank
system matrices Hk (k = 1, · · · , S) with nonnegative entries are presumed in
order to apply the SMART filter.

Algorithm 2. SMART Filter Algorithm

1. Start with x̂0 > 0. For k = 1, · · · , S execute the following steps
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2. Assume we have done the recursive step up to time k − 1, do the change

of variables

α =
σk − 1

σk

P = R
−1/2
k Hk

d = R
−1/2
k zk =

√
zk

3. To get x̂k, start with x0 = x̂k−1

4. Make yk = Akx̂k−1

5. Alternate between the next two sub-steps, ℓ = 0, 1, . . .

rℓ+1

ij = Pij log
di

(Pxℓ)i

xℓ+1

j = (xℓj)
α((yk)j)

1−α exp

(
α

M∑

i=1

rℓ+1

ij

)

6. The update formula for the next estimate is x̂k = x∞, where x∞ is the

cluster point of the sequence (xℓ)ℓ∈N.

Observe that we could combine the two sub-steps of step 5 into one step as
we have offered before in (19)

xℓ+1

j =


xℓj

M∏

i=1

(√
(zk)i

(Pxℓ)i

)Pij



α

((yk)j)
1−α (30)

Note how the next iterate xℓ+1

j in (30) is formed as a product of a convex combi-
nation of the calculated SMART iterate, in a similar form as in (10), associated
with the same coefficient α as in problem (16) relying only on the observation
model and of the predicted (yk)j , associated with the same coefficient 1 − α
as in problem (16), relying only on the evolution model. In step 2 the ma-
trix Rk is diagonal, thus the SMART filter does not involve any matrix-matrix
multiplication or any matrix inversion. It involves only matrix-vector multi-
plication. This algorithm does not need any matrix update or storage neither.
The temporal regularization parameter α is well defined and takes values be-
tween 0 and 1 when σk varies between 1 and ∞. If α = 0, that is σk = 1 and
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x̂k = Akx̂k−1, then we are discarding completely the observations to the extend
that we rely only on our evolution model. This defeats the purpose of the ex-
periment. When α = 1, the predicted yk in step 4 is not needed in step 6 and

we get xℓ+1

j = xℓj

M∏

i=1

(di/(Pxℓ)i)
Pij . Hence we retrieve the SMART iteration as

mentioned before, which is only valid for the static case. Indeed, choosing α = 1

means that
σk − 1

σk
= 1 or simply σk = ∞. That is the covariance matrix in the

transition equation (1) is very huge; which implies we have no confidence at all
in our evolution model. In other words, we discard the evolutionary state of
the variable. Only the observations zk are meaningful in finding the x̂k; which
is then a stationary state as it should be.

We have the following convergence result; this is a direct consequence of
lemma 1

Theorem 3. For all k = 1, · · · , S, the sequence {xℓ} converges to a limit

x̂k = x∞ for all M and N, for all staring x̂0 > 0, and for all 1 ≤ σk ≤ ∞. For

1 ≤ σk < ∞, x̂k is the unique minimizer of the functional G̃(x) given by (25).
For σk = ∞, x̂k is the unique static nonnegative minimizer of KL(Hkxk, zk) if
there is no nonnegative solution of zk = Hxk. If there are nonnegative solutions,
then the limit may depend on the starting value; we have zk = Hkx̂k, x̂k is the

unique solution minimizing KL(xk, x
0), and support(xk) is contained within

support(x̂k) for all xk ≥ 0 with zk = Hkxk.

Remark 4. In considering these particular mixture of KL distances
in (25), we unified approaches commonly taken in the underdetermined and
overdetermined cases, and we developed an iterative solution method in a recur-
sion within a single framework of alternating projections as well as establishing
a convergence result.

Next, we put the SMART filter to test in both cases, underdetermined and
overdetermined.

6. Numerical Experiment

6.1. Simulation

Our phantom is composed of six regions of interest (ROI) or segments. Each
ROI has a different TAC, see figure 1. The example investigated in this work
is based on the teboroxime dynamics in the body during the first hour post
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Figure 1: Simulated annulus with its different ROI and their TACs.
Upper left: simulated activity at time 3, upper right: simulated activity
at time 15, and lower left: TACs of the 6 different ROI.

injection. The choice of the TACs is motivated by the behavior of liver, healthy
myocardium, muscles, stenotic myocardium, and lungs. Only one slice is mod-
eled; that is we simulate a 2D object. The star-like shape placed on the left
ensures that the phantom is not entirely symmetrical. We simulate 120 projec-
tions over 360◦, one projection for every 3◦, with attenuation and a 2D Gaussian
detector response.

There are three camera heads consisting of 64 square bins each measuring
0.625 cm in each side, see figure 2. The distance from the annulus to the camera
head rotation axis is 30 cm. We simulate S = 40 time instances for three heads;
that is we have 3× 40 = 120 projections for a camera rotating clock wise (CW)
in a circular orbit. Head 1 starts at −60◦, head 2 at 60◦, and head 3 at 180◦. A
low energy high resolution (LEHR) collimator is used with a full width at half
maximum (fwhm). We determine the blurred parallel strip/beam geometry
system matrices for all projections with resolution recovery and attenuation
correction [2].

We have 64 projection/measurement values for each head, which amounts
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Figure 2: Photon radiating from the region of interest: a) passes the
collimator and hits the camera, b) absorbed by the collimator, c) misses
the camera.
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Figure 3: Sinogram or 2D projections: y-axis has the bin number and
the x-axis has the 40 time instances of the 3 heads. Time instances
from 1 to 40 are for head 1, 41 to 80 for head 2, and 81 to 120 for head
3. A color intensity of a pixel is the number of detected photons by a
certain bin at a certain time.

to a total of M = 192 observations at each time frame, figure 3 shows the data
sinogram. Notice how the photons’ count in any detector’s bin varies between 0
and somewhere around 500; which is a realistic scenario for a 2D slice. The size
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of the image we aim to reconstruct at each time frame is N = 4096 = 64× 64
dixels. We have six kinds of TACs that are very representative for clinical
applications. The annulus has four arcs that we name “Left”, “Upper”, “Right”,
and “Lower” according to their location. The activity is decreasing in the Left
arc, increasing-decreasing in the Upper arc, constant in the Right arc, and
increasing in the Lower arc, see figure 1. The star-like shape has zero activity
within it and is called the “Star” region; we refer to it as “Background” too.
The annulus is immersed within a region that is called “Immersed” and has
a constant activity. We have six ROI in total. The SMART filter algorithm
should work in both underdetermined and overdetermined settings, refer to
remark 4. We aim then to test the algorithm 2 in the underdetermined and
overdetermined cases.

The undermined case happens when we reconstruct dixel by dixel; we pos-
sess M = 192 data for N = 4096 unknowns or a ratio of about 1:21 data
to unknowns. It is an ill-posed problem. Maltz [23] mentioned that Reutter
et. al. method [8] is effective in providing the desired estimates; however, the
amount of computation required is large for studies involving many dynamic
regions/compartments. Our approach deals with the general case regardless of
the number of compartments. It does not assume uniformity of the pixels and
should work if someone desires to use multiresolution, as done in [23], since
the system matrix Hk captures the information that links the pixel to the data
without assuming anything about the shape, size, or location of the pixels. The
more noise is introduced, the more Maltz’s multiresolution method [23] seems
to under-perform as shown in his article. Our approach, as in the case of KF,
filters out the noise while reconstructing the images and TACs. This is a real
advantage over his. The overdetermined case consists in reconstructing the
six ROI, when we assume full knowledge of their locations, so that we have
M = 192 data for N = 6 unknowns or a ratio of 32:1 data to unknowns. We
should of course get much better reconstructed images in the latter case than
in the former one; this, indeed, will be confirmed shortly.

We provide quantitative analysis of the reconstructed images in order to
compare the simulated activity with the reconstructed one. We define the
relative deviation error δ of the reconstructed activity v∗ from the truth x,
refer to formulas (31) through (33). Hence we compare the simulated count xi,k
with the corresponding reconstructed one v∗i,k at each time frame k for every
location i. We sum over a ROI containing J dixels normalized by the total
simulated/true counts in order to diminish the effect of statistical fluctuations.
We have a δROI,k for every sector. These indicators allow us to see how the
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method performs under different dynamic behaviors. We could compare, for
instance, sectors with fast washout with those with slow one. We calculate
similar δk over the total number of doxels (dynamic voxels) N then we average
them over the total number S of time acquisitions; so that we have δavg . This
is an objective comparison of the quality of reconstruction for different sets of
parameters such as iteration stopping criteria, noise levels, etc. The closer δavg
is to zero, the better the reconstructed images should be.

δ2ROI,k =

∑J
j=1

(v∗j,k − xj,k)
2

∑J
j=1

x2j,k
(31)

δ2k =

∑N
j=1

(v∗j,k − xj,k)
2

∑N
j=1

x2j,k
(32)

δavg =
1

S

S∑

k=1

δk (33)

6.2. Results

The SMART filter algorithm by its nature ensures the temporal continuity
of the reconstructed TACs since it imposes a temporal regularization in its
formulation stated in (25). We could have used, for instance, a diffusion model
to model the temporal evolution. The closer the model to reality, the better our
algorithm should perform. In our test case, we do not make any assumption
about the blood input and we assume that the system dynamics are unknown
to us as per (1); therefore we use a pure random walk. In practical terms, we
set Ak = I, for all k = 1, · · · , S. However, we do not have much confidence
in our transition model (1) so we compensate to that by choosing covariance
matrices to be pretty high, 103 ≤ σk ≤ 104. Recall that a random walk is a
special first-order autoregressive (AR(1)) process with a unit slope (i.e. unit
root) [24]. In its simplest form an AR(1) process is,

uk = a1uk−1 + εk

where the {εk} disturbance/error sequence is a white-noise process. A special
case is the pure random walk,

uk = uk−1 + εk

Random walk predicts that the value at time “k” will be equal to the last period
value plus a stochastic (non-systematic) component that is a white noise.
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For the state transition linear model, we proceeded as follows. We assume
that the system dynamics are unknown to us (1); therefore we use a random
walk. In practical terms, we set Ak = I, for all k = 1, · · · , S. For the state
transition linear model, we proceeded as follows. We are not interested in the
background and we assume that we know the locations of these zero activities;
this is a common practice [8, 14, 22]. We have run experiments without this
assumption and results are very comparable to when we have run them with this
assumption. One interesting way to deal with this assumption is as this. Set to
zero the values of the corresponding positions of the matrix Hk. The updating
equations (6) and (7) ensure that the updated activities will remain equal to
zero; thus the KF reconstructs perfectly the star/background region(s) [11, 12].
By having these values as zero while eliminating these columns and setting to
zero the corresponding entries of the estimated activity [13, 25], we guarantee
automatically that those entries stay at the value of zero when using our present
algorithm SMART filter.

We experiment with different initial guesses x̂0 such as (1, · · · , 1)⊤ and
(10−6, · · · , 10−6)⊤. We also start the algorithm with the static image given by
OSEM; we call this initial guess OSEM activtiy. The average of the deviation
error δavg combined with visual inspection show that there is no pronounced
advantage in favor of any. In the underdetermined case, we do not assume
the ROI to be known exactly. However, we make use of these segments only
to interpret the results. As a consequence, there are some differences in in-
tensity between pixels within the same region. To assess the effectiveness of
the method and of the convergence result 3, we show the TACs averaged over
the pixels within the same ROI and this is also valid for the overdetermined
case. Follow are the results of both reconstruction cases, underdetermined and
overdetermined, obtained through SMART filter and their comparison with
results obtained using the projected Kalman algorithm [11]. The projected
Kalman is the classical KF followed by a projection into the positive octant,
using a proximal approach, to ensure the feasibility of the activity. Recall that
KF, see equations (6) and (7), necessitates multiplications and inversion of huge
matrices which is time consuming and memory hungry.

6.2.1. Underdetermined Case

We are solving the ill-posed inverse problem in reconstructing the dynamic
images of the annulus, 192 observations for 4096 unknowns. This is an un-
derdetermined case with a ratio of about 1:21 data to unknowns. We use the



SMART FILTER FOR... 429

algorithm 2 on a P4 3.00 GHz desktop. It takes about 8 min to run the SMART
filter. In contrast to the projected Kalman algorithm [11] which takes more that
2.5 hr, we witness an improvement of more than 18 times faster. We suspect
that using the formulation (30), instead of steps 5 and 6 in algorithm 2, could
even give us better speed. The δavg is about 0.52 which is the same as with pro-
jected Kalman. Images and TACs look fine and are about of the same quality
as with projected Kalman, refer to figure 4.
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Figure 4: Reconstructed images, pixel by pixel, at time 21 and the av-
eraged out TACs, over their corresponding region, using SMART filter
and Projected Kalman. The true phantom at time 21 is on upper left,
the reconstructed using the projected Kalman and SMART filter on up-
per centre and upper right respectively. TACs of three different regions,
Lower, Left, and Upper, are shown on bottom left, centre, and right re-
spectively. Blue TACs for simulated, red TACs for reconstructed using
projected Kalman, and black TACs for reconstructed using SMART
filter.
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Figure 5: Reconstructed images at time 21 and TACs of 6 ROI, region
by region, using SMART filter and Projected Kalman. The true phan-
tom at time 21 is on upper left, the reconstructed using the projected
Kalman and SMART filter on upper centre and upper right respectively.
TACs of three different regions, Lower, Left, and Upper, are shown on
bottom left, centre, and right respectively. Blue TACs for simulated,
red TACs for reconstructed using projected Kalman, and black TACs
for reconstructed using SMART filter.

6.2.2. Overdetermined Case

In medical imaging, we are sometimes not interested in individual intensities
of each and every pixel/voxel but rather on some ROI intensities. We are then
more concerned with a segmented reconstruction [8]. A CT scan for instance
might give us an idea about the ROI. In case we have this prior knowledge about
the selection of ROI before hand, we could include this constraint, reduce the
size of our problem, and have by the same token a better image. In our setting,
we are then solving the inverse problem in reconstructing the dynamic images
of the annulus, 192 observations for 6 unknown ROI. This is an overdetermined
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Figure 6: Reconstructed images at various time instances: simulated
images in top row, Projected Kalman filter reconstructed images in
middle row, and SMART filter reconstructed images in bottom row.

case with a ratio of 32:1 data to unknowns. We test the algorithm 2 on a
P4 3.00 GHz desktop. It takes about 15 sec to run the SMART filter. In
contrast to the projected Kalman algorithm [11] which takes about 1.7 sec,
SMART filter is 9 times slower due probably to the many log and exp functions
evaluations in steps 5 and 6 of the algorithm. Using the combined steps 5 and
6, as per equation (30), would most likely accelerate the algorithm. The δavg of
the SMART filter method is about 0.03 which is half of the one with projected
Kalman. We witness then a net improvement, convergence wise, with SMART
filter than with projected Kalman. As expected with this overdetermined case,
we get much better images and TACs than with the underdetermined case, see
figures 5 and 6 and compare them to figure 4. Images and TACs of SMART
filter method are of the same quality as with projected Kalman. However we
get better images with SMART filter; compare in figure 5 the Upper, Right,
and Lower arcs color wise of both reconstructions to the simulated ones.
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7. Conclusion

We presented here a novel algorithm that we refer to as the SMART filter. It ap-
plies to nonnegative normalized full rank systems when a nonnegative solution
is desired. Our algorithm guarantees this in addition to a temporal regulariza-
tion. We also proposed a systematic way in how someone could bring a general
system to a normalized nonnegative one in order to use our approach. We tested
SMART filter to reconstruct a dynamic image in SPECT while using a pure
random walk to model the activity evolution. The SMART filter reveals itself
to be about 18 times faster than the projected Kalman in the undetermined
case, minutes instead of hours. In the over determined case, SMART filter is
about 9 times slower than the projected Kalman, both cpu times in the seconds;
however, SMART filter shows better convergence result. We got much better
TACs and images in the overdetermined case; this suggests that the more info
we feed the algorithm the better it behaves. Thus we suspect that we could
improve the quality of the images and TACs, even in the underdetermined case,
by using a closer to reality evolution system matrix. The SMART filter algo-
rithm filters out errors from modeling the dynamical system and the noise from
the data. It insures temporal regularization and outputs an optimal recursive
estimate. It does not need any matrix update or storage. It also does not use
any matrix-matrix multiplication and does not necessitate any matrix inver-
sion. These last properties make it very suitable for large scale systems such as
the ones in medical imaging, PET (positron emission tomography) for instance,
or in electrical impedance tomography. The SMART filter algorithm could be
used in any discipline which has used, for instance, KF or in any one that is
interested in time-varying variables such as financial risk assesment/evaluation
and forecasting or control, especially if they are concerned with nonnegative
solutions. Application of our algorithm to time-varying SPECT, a medical
imaging modality in nuclear medicine, confirms our convergence theorem. Our
results substantiate the efficiency of this novel filtering technique, the SMART
filter.
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