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In reconstructing an object function F�r� from finitely many noisy linear-functional values �F�r�Gn�r�dr we face
the problem that finite data, noisy or not, are insufficient to specify F�r� uniquely. Estimates based on the finite
data may succeed in recovering broad features of F�r�, but may fail to resolve important detail. Linear and
nonlinear, model-based data extrapolation procedures can be used to improve resolution, but at the cost of sen-
sitivity to noise. To estimate linear-functional values of F�r� that have not been measured from those that have
been, we need to employ prior information about the object F�r�, such as support information or, more gener-
ally, estimates of the overall profile of F�r�. One way to do this is through minimum-weighted-norm (MWN)
estimation, with the prior information used to determine the weights. The MWN approach extends the
Gerchberg–Papoulis band-limited extrapolation method and is closely related to matched-filter linear detec-
tion, the approximation of the Wiener filter, and to iterative Shannon-entropy-maximization algorithms. Non-
linear versions of the MWN method extend the noniterative, Burg, maximum-entropy spectral-estimation
procedure. © 2006 Optical Society of America

OCIS codes: 100.2980, 100.3020.
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. INTRODUCTION
he problem of object-function reconstruction from lim-

ted data is the following. We have noisy measurements of
he linear-functional values

dn =� F�r�Gn�r�dr, �1�

or n=1,2,… ,N. Gn�r� are known functions and the over-
ar denotes complex conjugate. On the basis of these data
alues, we wish to estimate the function F�r�. The vari-
ble r is allowed to be multivariate. The region over which
he integration is performed is, as yet, unspecified, but
ill be made explicit in special cases to be discussed later.
The data we have are generally insufficient to specify

�r� uniquely. Among all functions H�r� consistent with
he data, the minimum-norm (MN) solution, that is, the
ne having the smallest energy ��H�r��2dr, has the form

H�r� = FMN�r� = �
n=1

N

anGn�r�, �2�

here the coefficients an are determined by the data-
onsistency equations
1084-7529/06/020258-9/$15.00 © 2
dm = �
n=1

N

an� Gn�r�Gm�r�dr, �3�

or m=1,2,… ,N.
As an example, consider the problem of reconstructing

�r� from finitely many values of its Fourier transform. In
his example Gn�r�= �1/2��exp�ixnr� for some xn and n
1,2,… ,N. Then the data values are

dm =
1

2�
� F�r�exp�− ixmr�dr = f�xm�, �4�

here f�x� denotes the Fourier transform of F�r�,

f�x� =
1

2�
� F�r�exp�− ixr�dr, �5�

hen the MN solution is

FMN�r� = �
n=1

N

an exp�ixnr�, �6�

ith
006 Optical Society of America
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f�xm� = �
n=1

N

an� exp�i�xn − xm�r�
dr

2�
, �7�

or m=1,2,… ,N. In the particular one-dimensional case
n which F�r� is supported on the interval �−� ,�� and
m=m we find that an= f�xn�= f�n� and the MN estimate
ecomes

FDFT�r� = �
n=1

N

f�n�exp�inr�, �8�

hich we shall refer to as the discrete Fourier transform
DFT) of the finite data. Note that the term DFT is com-
only used to denote the finite-length vector obtained by

valuating the function in Eq. (8) at N equispaced points
ithin �−� ,��. Since it is also common practice first to

ero-pad, that is, to append zeros to the data vector, be-
ore calculating the vector DFT, there is ambiguity in the
se of DFT to describe finite vectors associated with the
ata. For that reason, we believe that the DFT defined to
e the function in Eq. (8) is the more fundamental notion.
As is well known, the ability of the DFT to resolve

losely spaced peaks in the function F�r� is limited by the
alue of N. This does not necessarily mean that informa-
ion about these peaks is unavailable in the data, just
hat the DFT has failed to make the best use of this in-
ormation. Indeed, high-resolution methods, such as
erchberg–Papoulis band-limited extrapolation1,2 and
urg’s maximum-entropy spectral-estimation
rocedure,3–5 illustrate this point by resolving peaks left
nresolved by the DFT. Resolution limits, properly under-
tood, must include degrees of freedom and signal-to-
oise ratio in the data.6 Such resolution enhancement is
ften achieved through the explicit or implicit use of mod-
ls for F�r�. These models incorporate prior information
bout the function F�r� to be reconstructed. Of particular
nterest here are those models derived through minimum-
eighted-norm (MWN) estimation; band-limited extrapo-

ation is one special case.

. BAND-LIMITED EXTRAPOLATION
e assume throughout this section that F�r� is defined for

eal r and is nonzero only for �r���, where 0����. In
ddition, we assume that our data are f�m� ,m=
M ,… ,M, that is, we have (possibly noisy) measurements
f its Fourier transform f�x�. Because ���, the data are
ver-sampled; the Nyquist rate is �=� /��1. The
inimum-norm estimate FDFT in Eq. (8) does not involve

he value � and estimates F�r� over the interval �−� ,��
ssociated with the actual sampling rate of unity. As
imulations readily illustrated in Fig. 1, this DFT esti-

Fig. 1. DFT estimation from noiseless data.
ate can do a poor job of recovering the finer detail of F�r�
ithin its true support �−� ,�� because it wastes its lim-

ted degrees of freedom describing the values F�r�=0 that
ccur for r outside �−� ,��. In addition, if we simply re-
trict the DFT to variables r within �−� ,�� and set our
stimate of F�r� to zero outside, we have an estimate that
s no longer consistent with the data. The goal of band-
imited extrapolation is to find a function that is both con-
istent with the measured Fourier-transform data and
upported on the interval �−� ,��.

Because F�r� is zero outside the interval �−� ,�� it has a
ourier-series representation within �−� ,��:

F�r� = �
m=−�

�

f�m�exp�imr�. �9�

he Gerchberg–Papoulis (GP) band-limited extrapolation
ethod1,2 is an iterative procedure for estimating those
�m� for �m��M. The procedure begins with zeros in place
f all the f�m� for �m��M and the data for the others. By
se of those Fourier coefficients the resulting Fourier se-
ies is the DFT. The DFT is then truncated outside �
� ,�� and the Fourier coefficients of this new function
re computed. These new coefficients no longer match the
easured data for �m��M and so are replaced by the
easured data; the other coefficients are left unchanged

nd the new Fourier series is formed. The resulting func-
ion of r is no longer zero outside �−� ,�� and so is trun-
ated, as before. Repeating this, we obtain an iterative al-
orithm that converges to a function H�r� that is both
onsistent with the measured data and supported on the
nterval �−� ,��. Its Fourier series has coefficients that
xtrapolate the measured data, hence the name of the
rocedure.
The GP algorithm as just described is not a practical
ethod; it requires that we calculate an infinite set of
ourier coefficients at each step. One way around this is

o discretize the problem and represent F�r� as a finite
ector. The iteration can then be performed using the fast
ourier transform; this is the actual GP algorithm as
sed in practice. There is a second way around the prac-
ical problem, however. As pointed out in Ref. 7 (see also
ef. 8, p. 209), the function H�r� to which the theoretical
P method converges has the form

H�r� = ���r� �
n=−M

M

an exp�inr�, �10�

here ���r�=1 for �r��� and is zero otherwise, and the
m are such as to make H�r� consistent with the measured
ata. This means that the an satisfy the equations

f�m� = �
n=−M

M

an

sin���m − n��
��m − n�

, �11�

or n=−M ,… ,M; note that the value of the function
in�x� /x is defined by continuity to be one at x=0.

The Fourier transform of F �r� is
MDFT
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fMDFT�x� = �
n=−M

M

an

sin���x − n��
��x − n�

, �12�

e can use the Fourier transform of the MDFT estimate
s a data-extrapolation procedure, whereby f�x� is esti-
ated by fMDFT�x�. The behavior of this reconstruction
ethod depends heavily on properties of the matrix B
ith entries Bmn=sin���m−n�� / ���m−n��, as we shall

ee.
This noniterative implementation of the theoretical GP

lgorithm, called the modified DFT (MDFT) in Ref. 7, can
e viewed as a MWN solution to the reconstruction prob-
em. The H�r�=FMDFT�r� described by Eqs. (10) and (11) is
he function consistent with the data that minimizes the
nergy over the interval �−� ,��, given by ��

−��H�r��2dr.
t is also the optimal approximation of F�r� of its form, in
he sense that the coefficients an obtained using Eq. (11)
inimize

ig. 2. MDFT estimate with �=1.8 from noiseless data (a) in
patial domain, (b) in spectrum domain.

ig. 3. MDFT estimate with �=0.9 from noiseless data (a) in
patial domain, (b) in spectrum domain.
��

−��F�r� − �
n=−M

M

an exp�inr��2dr.

These iterative and noniterative methods are usually
alled superresolution techniques in the signal-processing
iterature. Similar methods applied in sonar and radar ar-
ay processing are called superdirective methods.9

In Figs. 1–3 we see the improvement, both in resolution
chieved by the MDFT, compared with the DFT, and in
he accuracy of the extrapolated Fourier-transform val-
es. The vertical dashed line in each spectrum figure in-
icates the boundary of the data support.
In particular, the form of the estimator in Eq. (10) is

uggestive and leads to a more general MWN estimation
rocedure, called the prior DFT (PDFT) method (see be-
ow).

. PRIOR DISCRETE FOURIER TRANSFORM
rior information about the support of the function F�r� is

ncorporated in the FMDFT�r� estimator in Eq. (10)
hrough the multiplicative factor ���r�. If we have prior
nformation about the shape of the function �F�r�� we can
ncorporate this information in a function P�r�	0 and re-
lace ���r� with P�r� as the first factor in the estimator.
ecause the second factor has the algebraic form of the
FT we call this new estimator the PDFT.10,11 The PDFT

stimate of F�r� is then

FPDFT�r� = P�r� �
n=−M

M

bn exp�inr�, �13�

ith the bn satisfying the equations

f�m� = �
n=−M

M

bnp�m − n�, �14�

or n=−M ,… ,M, and

p�x� =
1

2�
�

−�

�

P�r�exp�− ixr�dr. �15�

ote that, if P�r�=���r�, then p�x�=sin��x� / ��x�.
As in the case of the MDFT, the PDFT can be viewed as
data-extrapolation procedure. With the coefficients bn

etermined by Eq. (14), the Fourier transform of FPDFT�r�
s

fPDFT�x� = �
n=−M

M

bnp�x − n�. �16�

he data extrapolation is achieved here through the use
f a model of f�x� as a sum of translations of a positive-
efinite kernel function. In a recent paper12 Poggio and
male discuss the use of positive-definite kernels for in-
erpolation, in the context of artificial intelligence and su-
ervised learning.
The weighted energy of FPDFT�r�, given by

�FPDFT�r��2P�r�−1dr, is the smallest among all functions
efined on the support of P�r� and consistent with the
ata; therefore, the PDFT estimate is a MWN estimate.
n addition, the coefficients bn found using Eq. (14) mini-
ize
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�
−�

�

�F�r� − P�r� �
n=−M

M

bn exp�inr��2P�r�−1dr, �17�

o the PDFT estimate is the function of its form closest to
�r�, in the weighted-distance sense. Once again, the be-
avior of the estimation procedure will depend heavily on
he properties of the matrix P whose entries are Pmn
p�m−n�.
Although we have discussed the MDFT and PDFT

ithin the context of reconstructing F�r� from Fourier-
ransform values, both procedures extend in an obvious
anner to any linear-functional data and to multivariate

.
Of particular interest is the reconstruction of nonnega-

ive functions F�r� from finitely many Fourier-transform
alues. The PDFT cannot include a nonnegativity con-
traint. However, the PDFT can be viewed as a linearized
pproximation of the minimum cross-entropy solution,
hich does impose nonnegativity. If we minimize the

ross-entropy

� H�r�log
H�r�

P�r�
+ P�r� − H�r�dr

ver all nonnegative H�r� consistent with the Fourier-
ransform data, the solution is

FMCE�r� = P�r�exp	 �
n=−M

M

cn exp�inr�
 ,

ith the cn chosen for consistency with the data.13–15

hen we replace the exponential factor with a first-order
inear approximation we get the PDFT.

The goal of estimating F�r� from finite linear-functional
ata is somewhat paradoxical. The finite data we have
ell us nothing, by themselves, about the values f�n� we
ave not measured. Using the MDFT, we can define f�M
1� any way we wish and still construct an FMDFT�r� sup-
orted on the interval �−� ,��, and consistent with the
riginal data and with this chosen value of f�M+1�. In a

ig. 4. MDFT estimate with �=0.9 from noiseless data (the
rue support is between −7� /8 and −3� /8 (a) in spatial domain,
b) in spectrum domain.
imilar sense our finite data also tell us nothing about the
alue of �; we can select any interval �a ,b� and find a
unction H�r� supported on �a ,b� whose h�x� is consistent
ith the data.
But this is not quite the whole story; finite data cannot

ule out anything, but they can suggest strongly that cer-
ain things are false. For example, let us select an inter-
al �a ,b� disjoint from �−� ,��, and find the function H�r�
onsistent with the data, that is, with

f�m� =�
a

b

H�r�exp�− imr�
dr

2�
,

or m=−M ,… ,M, for which the energy over
a ,b� ,�a

b�H�r��2dr, is minimum. Then this function H�r�
ill probably have large energy compared with that of the
DFT; that is, the integral �a

b�H�r��2dr will be much
arger than �−�

� �FMDFT�r��2dr, as clearly shown in Fig. 4.
e can use this fact to help us decide if we have chosen a

ood value for �. In Ref. 16 this same idea was used to
btain an iterative algorithm for solving the phase-
etrieval problem.

. SENSITIVITY TO NOISE AND MODEL
RROR
o use the MDFT we need the data to be oversampled and
e need a decent estimate of the true support of the func-

ion F�r�. The more oversampled the data and the more
ccurately we know the true support, the greater the im-
rovement in resolution, but also the greater the sensitiv-
ty to noise and model error. Our goal in this section is to
ee why this is the case.

The matrix B used in the MDFT has the entries Bmn
sin���m−n�� / ���m−n��, with Bmm=� /�. Loosely speak-

ng, B has �� /���2M+1� eigenvalues near one and the re-
aining eigenvalues near zero, as shown in Fig. 5. Solv-

ng Eqs. (11) is therefore an ill-conditioned problem, as �
rows smaller. For the remainder of this section we de-
ote by 
1�
2� ¯ �
2M+1�0 the eigenvalues of B, with
ssociated orthonormal eigenvectors un= �u−M

n ,… ,uM
n �T,

or n=1,… ,2M+1. The matrix B then has the form

ig. 5. Eigenvalues of the matrix B (a) corresponding to �
1.8, (b) corresponding to �=0.9.
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B = �
n=1

2M+1


nun�un�†, �18�

o that

B−1 = �
n=1

2M+1


n
−1un�un�†. �19�

e also denote by Un�r� the functions

Un�r� = �
m=−M

M

um
n exp�imr�.

ince the eigenvectors are orthonormal we have

�
−�

�

Uk�r�Un�r�dr = 0,

or k�n and

�
−�

�

Un�r�Un�r�dr =�
−�

�

�Un�r��2dr = 1.

lso

�
−�

�

�Un�r��2dr = �un�†Qun = 
n.

herefore, 
n is the proportion of the energy of Un�r� for r
n the interval �−� ,��. The function U1�r� is the most
oncentrated in that interval, while U2M+1�r� is the least.
n Fig. 6 the typical behaviors of Un�r� for an example
ith 15 data are demonstrated.
The function U1�r� has a single large main lobe and no

eros within �−� ,��. The function U2�r�, being orthogonal
o U1�r�, but still largely concentrated within �−� ,��, has

single zero in that interval. Each succeeding function
as one more zero within �−� ,�� and is somewhat less
oncentrated there than its predecessors. At the other ex-
reme, the function U2M+1�r� has 2M zeros in �−� ,��, is
ear zero throughout that interval, and is concentrated
ainly outside the interval.
Because the eigenvectors are orthonormal the DFT es-

imate in Eq. (8) can be written in terms of these Un�r�:

FDFT�r� = �
n=1

2M+1

��un�†d�Un�r�. �20�

imilarly, using Eq. (19), the MDFT estimate in Eq. (10)
an be written as

FMDFT�r� = �
n=1

2M+1


n
−1��un�†d�Un�r�. �21�

omparing Eqs. (20) and (21) we see that the MDFT
laces greater emphasis on those Un�r� corresponding to
arger values of n. These are the functions least concen-
rated within the interval �−� ,��, but they are also those
ith the greatest number of zeros within that interval.
hat means that these functions are much more oscilla-
ory within �−� ,�� and better suited to resolve closely
paced peaks in F�r�. Because the inner product �un�†d
an be written as
�un�†d =
1

2�
�

−�

�

F�r�Un�r�dr,

his term will be relatively small for the larger values of n
nd so the product 
n

−1��un�†d� will not be excessively
arge, provided that we have selected � properly. If � is
oo small and the support of F�r� extends beyond the in-
erval �� ,��, then the term �un�†d will not be as small
nd the product 
n

−1��un�†d� will be too large. This is what
appens when there is noise in the data; the object func-
ion corresponding to the noisy data is not simply F�r� but
ontains a component that can be viewed as extending
hroughout the interval �−� ,��, as shown in Fig. 7.

To reduce the sensitivity to noise while not sacrificing
esolution, we regularize. The simplest way to do this is to
dd a small positive quantity, ��0, to each of the diagonal
lements of the matrix B. This is equivalent to modifying
he MDFT to a PDFT in which the prior P�r� consists of
wo components, one the original ���r�, the second a small
ositive multiple of ���r�. The effect of this regularization
s to increase each of the 
n by � without altering the
igenvectors or the Un�r�. Since we now have 1/ �
n+�� in-
tead of the (potentially) much larger 1/
n in Eq. (21), the
ensitivity to noise and to poor selection of the � is re-
uced, as shown in Fig. 8. At the same time, however, we
ave reduced the importance for the MDFT of the Un�r�
or larger values of n; this will lead to a loss of resolution
nd an MDFT that behaves like the DFT if � is too large,
s shown in Fig. 9. Selecting the proper � is a bit of an art;

ig. 6. Example showing the absolute values of Un�r� for n=1,
,…,15, where their corresponding eigenvalues are (a) 1.00, (b)
.99�10−1, (c) 9.82�10−1, (d) 8.29�10−1, (e) 4.02�10−1, (f) 7.82
10−2, (g) 6.83�10−3, (h) 3.52�10−4, (i) 1.21�10−5, (j) 2.91
10−7, (k) 4.85�10−9, (l) 5.53�10−11, (m) 4.12�10−13, (n) 1.72
10−15, (o) 4.28�10−18. Two vertical dashed lines indicate the

oundaries of the prior support.
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t will certainly depend on what the eigenvalues are and
n the signal-to-noise ratio. The eigenvalues, in turn, will
epend on the ratio � /�.
We have focused here on a particular case in which the

ariable r is one-dimensional and the prior P�r�=���r� de-
cribes only the support of the object function F�r�. For
ther choices of P�r�, the eigenvalues of the corresponding
atrix P are similarly behaved and ill conditioning is still

n important issue, although the distribution of the ei-
envalues may be somewhat different. For two-
imensional r the support of F�r� can be described using a
rior P�r� that is nonzero on a rectangle, on a circle, on an
llipse, or on a more general region. For each of those
hoices, the corresponding matrix will have eigenvalues
hat decay toward zero, but perhaps at different rates.

. PHASE PROBLEM
n optical image processing and elsewhere we find that we
re unable to measure the complex values of the Fourier

ig. 7. PDFT estimate with �=0.7 (smaller than the true sup-
ort) from noiseless data (a) in spatial domain, (b) in spectrum
omain.

ig. 8. PDFT estimate with �=0.9 from noisy data ��=0.001�
a) in spatial domain, (b) in spectrum domain.
ransform f�xm�, only the magnitudes �f�xm��. Estimating
�r� from these magnitude-only values is called the phase
roblem.17–21 Such problems can arise in optical imaging
hrough turbulent atmosphere.22 One solution to the
hase problem in crystallography led to a Nobel Prize in
985 for Jerome Karle.
Assume now that F�r�=0 for �r���. We can select an

rbitrary collection of phases m to combine with the mag-
itudes, to form the complex pseudodata �f�xm��eim. If we
ave some idea of the proper choice of �, we calculate the
stimate FMDFT�r� corresponding to the pseudodata and
gain monitor the energy integral. For good choices of the
hases, the energy should not be too large, while, for in-
ppropriate choices, the energy should be much larger,
articularly if the data are oversampled. The reconstruc-
ion process can be implemented as an iterative optimiza-
ion procedure, in which we select a new collection of
hases at each step in such a way as to reduce the energy
n the band-limited extrapolation that results. In Ref. 16
e show how to do this in an efficient manner. When the
xtrapolation energy is sufficiently small, the resulting
stimate is typically acceptable, particularly when the
ata are oversampled.
When we have only magnitude measurements, we can

t least be sure that if �f�xm��=0 then f�xm�=0. This sug-
ests that we might try to estimate the function F�r� from
he zeros of its Fourier transform. In Ref. 23 we showed
hat this approach has some promise for solving the phase
roblem.

. CALCULATING THE PRIOR DISCRETE
OURIER TRANSFORM
hen the data set is large, as usually happens in multi-

imensional problems such as image reconstruction, solv-
ng Eqs. (11) and (14) is sometimes done iteratively. Nev-
rtheless, these algorithms still differ from the GP
ethod based on a discretized model in that we are still

xtrapolating infinitely many values of f�n� and obtaining
continuous-function estimate; we are just doing it using
finite parameter model.

ig. 9. PDFT estimate with �=0.9 from noisy data ��=0.1� (a)
n spatial domain, (b) in spectrum domain.
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Constructing the matrix P used in Eq. (14) can be dif-
cult when the data sets are large. In such cases we can
mploy an iterative discrete implementation of the PDFT,
he DPDFT, which allows us to avoid having to form this
arge matrix.24 The DPDFT reconstructs a finite-vector
pproximation of the function F�r�. The linear-functional
ata are represented as inner products of this vector with
nitely many known vectors. The number of data points
e have is smaller than the dimension of the discretized
bject, so the reconstruction problem, which is now a sys-
em of linear equations to be solved, is still underdeter-
ined. We use a discretized version of the reciprocal of

he prior function P�r� to determine the weights and then
alculate a MWN solution to the underdetermined system
f equations. This is done using the algebraic reconstruc-
ion technique.13

. PRIOR DISCRETE FOURIER TRANSFORM
ND OPTIMAL LINEAR DETECTION

he problem of detecting a signal in additive noise uses
he following model. The data vector z= �z1 ,… ,zN�T is as-
umed to be the sum

z = �s + q

f a signal component �s, where s= �s1 ,… ,sN�T and ��0,
nd a noise component q= �q1 ,… ,qN�T with mean E�q�
0 and covariance matrix E�qq†�=Q.25 The estimation
roblem is to estimate �, given s and Q. The detection
roblem is to decide if � is zero or not.
In certain applications s is not known exactly, but is as-

umed to be a member of a parametrized family. For ex-
mple, in the problem of detecting a sinusoidal compo-
ent at an unknown frequency � we take e��� to be the
olumn vector with entries e���m=exp�imw�. For fixed �
he optimal linear filter for estimating � is

b =
1

e���†Q−1e���
Q−1e���,

nd the optimal estimate of � is

�̂ = b†z =
1

e���†Q−1e���
e���†Q−1z.

he factor 1/e���†Q−1e��� can be viewed as an estimate of
he power spectrum associated with the covariances in
,25 while the factor e���†Q−1z has the form of a DFT.
omparing this estimate of � with the PDFT estimate of
�r� we see that the first factor, 1/e���†Q−1e���, is playing
role analogous to that played by P�r�, the matrix Q is

nalogous to the matrix P, and the factor e���†Q−1z corre-
ponds to the sum that appears as the second factor in the
DFT. Although the matrix Q need not be Toeplitz, as P
lways is, the correspondence is interesting.

. PRIOR DISCRETE FOURIER TRANSFORM
ND WIENER FILTER APPROXIMATION

uppose now that the discrete stationary random process
o be filtered is the doubly infinite sequence �zn=sn
q �� , where �s � is the signal component with autocor-
n n=−� n
elation function rs�k�=E�sn+ksn� and power spectrum
s��� defined for � in the interval �−� ,��, and �qn� is the
oise component with autocorrelation function rq�k� and
ower spectrum Rq��� defined for � in �−� ,��. We assume
hat for each n the random variables sn and qn have mean
ero and that the signal and noise are independent of one
nother. Then the autocorrelation function for the signal-
lus-noise sequence �zn� is

rz�n� = rs�n� + rq�n�

or all n, and

Rz��� = Rs��� + Rq���

s the signal-plus-noise power spectrum.
Let h= �hk�k=−�

� be a linear filter with transfer function

H��� = �
k=−�

�

hkeik�,

or � in �−� ,��. Given the sequence �zn� as input to this
lter, the output is the sequence

yn = �
k=−�

�

hkzn−k. �22�

he goal of Wiener filtering is to select the filter h so that
he output sequence �yn� approximates the signal se-
uence �sn� as well as possible. Specifically, we seek h so
s to minimize the expected squared error, E��yn−sn�2�,
hich, because of stationarity, is independent of n. Mini-
izing E��yn−sn�2� with respect to the function H��� leads

o the equation

Rz���H��� = Rs���,

o that the transfer function of the optimal filter is

H��� = Rs���/Rz���.

he Wiener filter is then the sequence �hk� of the Fourier
oefficients of this function H���.

Since H��� is a nonnegative function of �, therefore
eal-valued, its Fourier coefficients hk will be conjugate
ymmetric; that is, h−k=hk. Therefore, the Wiener filter is
ot causal; this poses a problem when the random process
n is a discrete time series, with zn denoting the measure-
ent recorded at time n. To remedy this we can obtain the

est causal approximation of the Wiener filter h.
Even having a causal filter does not completely solve

he problem, since we would have to record and store the
nfinite past. Instead, we can decide to use a filter f
�fk�k=−�

� for which fk=0 unless −K�k�L for some posi-
ive integers K and L. This means we must store L values
nd wait until time n+K to obtain the output for time n.
uch a linear filter is a finite-memory–finite-delay filter,
lso called a finite-impulse-response (FIR) filter. Given
he input sequence �zn� the output of the FIR filter is

vn = �
k=−K

L

fkzn−k.

o obtain such an FIR filter f that best approximates the
iener filter, we find the coefficients fk that minimize the

uantity E��y −v �2�, or, equivalently,
n n
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�
−�

�

�H��� − �
k=−K

L

fkeik��2Rz���d�. �23�

he orthogonality principle tells us that the optimal coef-
cients must satisfy the equations

rs�m� = �
k=−K

L

fkrz�m − k�, for − K � m � L. �24�

In Ref. 26 it was pointed out that the minimization in
elation (23) is analogous to that in relation (17), with
z��� and Rs��� playing the roles of P�r� and F�r�, respec-

ively. In the PDFT we do not require that F�r� be
onnegative-valued, however. If we switch the roles, view-

ng Rz��� and Rs��� as F�r� and P�r�, respectively, we ob-
ain nonlinear reconstruction methods containing, as a
articular case, the Burg entropy-maximization estimator
or the case of nonnegative F�r�.27

. CONCLUSIONS
n summary, an important concern in image reconstruc-
ion is the validity and reliability of the resulting image.

hen one has only limited, sampled noisy data, it makes
o sense to consider image restoration or superresolution

n the absence of a model that incorporates prior knowl-
dge of the scene or target being imaged. The incorpora-
ion of prior knowledge has deep implications because it
mpacts how one might interpret the information capacity
f an optical imaging system while fixing the numbers of
egrees of freedom that the system possesses. Image re-
onstruction techniques also demand measures of image
uality; these are very difficult to agree upon and yet are
eeded and important. By offering a more complete view
f the methods for image restoration and data extrapola-
ion here, and in showing the relationships that exist be-
ween such methods, we are laying a foundation to ad-
ress the fundamental problem of assessing the
nformation content of data and of the resulting processed
mage.

We have shown that improved resolution in recon-
tructing an image from limited, noisy data can be
chieved through the use of minimum-weighted-norm
MWN) data extrapolation. The weighted norm is chosen
o incorporate prior knowledge of object support or overall
hape. The resulting object-function estimate is a data-
onsistent model that can be viewed as extrapolating the
ata, thereby improving resolution. To understand pre-
isely how improved resolution is achieved, why the re-
onstruction can be sensitive to noise in the data, and how
his sensitivity is reduced, we have examined the eigen-
ectors and eigenvalues of the Gramian matrix describing
he data-collection process. We found that the eigenvec-
ors associated with the smallest eigenvalues are respon-
ible both for the improved resolution and the greater
ensitivity. Regularization enables us to maintain higher
esolution while reducing sensitivity. The improvement in
econstruction is observed in object space, where the re-
onstruction is compared to the original object, as well as
n data space, where we can judge success in extrapolat-
ng beyond the data window. The MWN paradigm for re-
onstruction includes band-limited extrapolation of
ourier-transform data; is closely related to Wiener-filter
pproximation, which suggests a nonlinear reconstruc-
ion procedure leading to entropy-maximization tech-
iques; and provides a unifying model for resolution en-
ancement and data extrapolation.
Hsin M. Shieh’s e-mail address is hmshieh@fcu.edu.tw.
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