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A method is proposed to reconstruct signals from incomplete data. The method, which can be interpreted both
as a discrete implementation of the so-called prior discrete Fourier transform (PDFT) spectral estimation tech-
nique and as a variant of the algebraic reconstruction technique, allows one to incorporate prior information
about the reconstructed signal to improve the resolution of the signal estimated. The context of diffraction
tomography and image reconstruction from samples of the far-field scattering amplitude are used to explore
the performance of the method. On the basis of numerical computations, the optimum choice of parameters is
determined empirically by comparing image reconstructions of the noniterative PDFT algorithm and the pro-
posed iterative scheme. © 2006 Optical Society of America
OCIS codes: 100.3010, 100.3020, 100.3190, 100.6640, 100.6950.
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. INTRODUCTION
large number of inverse problems can be described as

omputing the image of an object from samples of its
ourier transformation. This includes computerized to-
ography, diffraction tomography, many variants of

adar-imaging applications, and the estimate of spectra
rom a finite time series.

A significant problem in reconstructing an image f�r�
rom finitely many projections is the limited nature of the
ata, allowing for nonunique solutions. The prior discrete
ourier transform (PDFT) method1–6 incorporates prior

nformation about the image, such as support information
r profile information, through the use of a weight func-
ion p�r��0. The image obtained with the PDFT is a
ata-consistent member of a finite-parameter family of
unctions of a continuous variable r. There are as many
arameters as there are data values, and the parameters
re determined from the data when a system of linear
quations is solved. The matrix involved in this system
omes from the weight function p�r�. The term PDFT de-
otes the PDFT estimator in the case of Fourier trans-
orm data, where the image is computed as a product of
he prior p�r� and a discrete Fourier transformation.
owever, we emphasize that the PDFT is not limited to

his problem but can be applied to any data set that can
1084-7529/06/061292-9/$15.00 © 2
e interpreted as projections in a Hilbert space that de-
cribes the experimental geometry.

Suppose gm�r�, for m=1,2, . . . ,M, are known functions
nd the data vector d has the entries

dm =� f�r�gm�r�dr. �1�

or n=1,2, . . . ,M, let P be the square matrix with entries

Pmn =� p�r�gn�r�gm�r�dr, �2�

nd let the vector a satisfy the system d=Pa. Then the
DFT estimate of the image function f�r� is

f̂PDFT�r� = p�r��
n=1

M

angn�r�. �3�

he cumbersome part of using the PDFT is usually the
ormation of the matrix P, particularly when M is large.
ur purpose, in this paper, is to illustrate how to avoid

he use of this matrix. The following fact about the PDFT
s the basis for our new method.
006 Optical Society of America
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The PDFT estimate of f�r� is the function consistent
ith the data whose weighted norm is minimized, where

he squared weighted norm of a function h�r� is defined to
e

�h�2 =� �h�r��2p−1�r�dr. �4�

It follows from the theory of Hilbert space that the
DFT estimate must have the form of Eq. (3).
The discrete PDFT (DPDFT) uses discrete representa-

ions of f�r� and p�r� represented by finite N by 1 vectors
and p�0, with N�M. The integration in Eq. (1) is re-
laced by a summation. We have

dm = �
n=1

N

Amnfn, �5�

ith m=1, . . . ,M.
Vector f is the discrete image estimate, which satisfies

=Af, and for which the squared weighted norm reads as

�f�p
2 = �

n=1

N

�fn�2/pn. �6�

n closed form the minimum weighted norm solution is
iven by

f̂DPDFT = W−1A†�AW−1A†�−1d, �7�

here W is the diagonal matrix having the entries 1/pn
n the diagonal. Using the closed form to calculate the so-
ution is not efficient for large data sets. Instead, we cal-
ulate the DPDFT solution using the algebraic recon-
truction technique7–12 (ART). For the remainder of this
aper we shall be concerned with the case of Fourier
ransform data.

The main contribution of this paper is to demonstrate
hat the cumbersome aspects of the PDFT can be avoided
hrough the DPDFT, without degrading the image resolu-
ion. It is true that, in certain cases, the matrix P may
xhibit a special structure, such as being Toeplitz or block
oeplitz, and this structure can be exploited to obtain fast
nversion schemes. Nevertheless, it is the actual compu-
ation of P that we wish to avoid.

. DISCRETE PRIOR DISCRETE FOURIER
RANSFORM
e consider the problem of estimating f�r� from finitely
any Fourier transform values, F�km� for m=1,2, . . . ,M.
he PDFT estimator is given by

f̂PDFT�r� = p�r��
m=1

M

am exp� jr · km�, �8�

here p�r��0 is the prior function. The coefficients am for
=1,2, . . . ,M satisfy the matrix equation

d = Pa, �9�

here d= �F�k1� ,F�k2� , . . . ,F�kM��T and a
�a1 ,a2 , . . . ,aM�T are the data and coefficient column vec-

ors, respectively, and P is the M by M square matrix with
ntries P�ki−kj�. Here the function P�k� is the Fourier
ransform of the prior weighting function p�r�.

In many applications, calculating the matrix P is chal-
enging, in particular if p�r� is not available in closed form
nd the matrix elements cannot be computed from ana-
ytic expression. In addition, solving the system of Eq. (9)
s costly, if not impractical, for large data sets. In contrast,
he DPDFT does not require the matrix P, and it is suffi-
ient to provide p as a set of discrete numerical values.

For specificity we consider the two-dimensional prob-
em in which f�r�= f�x ,y� and finitely many Fourier trans-
orm values of f are

F��m,�m� =�� f�x,y�exp�− j�x�m + y�m��dxdy, �10�

or m=1,2, . . . ,M. We approximate the two-dimensional
ntegral in Eq. (10) using Riemann sums with dx

�x ,dy	�y for �x ,�y being small enough,

F��m,�m� 	 �
u=−U

U

�
v=−V

V

f�u�x,v�y�exp�− j�u�x�m

+ v�y�m���x�y. �11�

he object function f�x ,y� is assumed to reside entirely
ithin the reconstructed image area, i.e., f�x ,y�=0 for

x � �U�x , �y � �V�y. With the vectorization of the double
um in expression (11), it obtains a matrix equation d
Af. The vector f contains the values f�u�x ,v�y�, and the
atrix A has �x�y times the complex exponentials in the

ouble sum for its entries.
To incorporate prior knowledge, we write

Af = AW−1/2W1/2f = Bg. �12�
nstead of solving it in closed form, we calculate the mini-
um norm solution ĝ of d=Bg using the ART. Beginning
ith the initial vector g0, the ART iterative step we set up

o solve for ĝ in equation d=Bg is given by

gn
k+1 = gn

k +
B̄mn�dm − �i=1

N
Bmi gi

k�

�i=1

N
�Bmi�2

, �13�

ig. 1. Illustration of the Fourier space mapping of the simu-
ated data.
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here m=mod�k ,M�+1. The ART algorithm in Eq. (13)
onverges to g� for which �g− ĝ� is minimized if there ex-
st solutions for the system of equations d=Bg. Our esti-

ate of f is then f̂=W−1/2ĝ,

fn
k+1 = fn

k + pn

Āmn�dm − �i=1

N
Amifi

k�

�i=1

N
pi�Ami�2

. �14�

he estimator of Eq. (14) is the so-called DPDFT.

ig. 2. Reconstruction of an object of compact support: (a) the
sed as the prior function, (d) the PDFT estimate, (e) the DPDFT
. CONVERGENCE OF THE ALGEBRAIC
ECONSTRUCTION TECHNIQUE
he DPDFT requires finding the minimum weighted
orm solution of an underdetermined system of linear
quations. There are many ways to do this. In our simu-
ations we have chosen to use the ART. We make no
laims here about the best algorithm to use but merely
ish to point out the improvements in ART that can be
chieved through the use of relaxation, regularization,
nd attention to the ordering of the equations. It is impor-
ant to note that in many applications of iterative meth-
ds in image reconstruction in which time is important,

(b) the discrete Fourier transform estimate, (c) circular flat top
te after six iterations, (f) the DPDFT estimate after 15 iterations.
object,
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nly a few iterations of an iterative algorithm may be
sed. Therefore, how long it takes an algorithm to con-
erge may be less significant than how good a job it does
n the first few iterative steps.

The ART algorithm can be slow to converge when the
quations are ordered in an unfavorable sequence. To im-
rove it, there have been proposals for rearranging the or-
er in which data are accessed. By randomizing the order
n which data are accessed, or by optimizing the selection
rder in some sense, the convergence rate can be im-
roved dramatically.13–15 In addition, this slow conver-
ence can also be improved by using the relaxation
ethod,16,17 which provides flexibility for choosing the

ew estimate at each iteration during the iterative pro-
ess. To apply the relaxation in the ART, an adjustable pa-
ameter to the second term (projection) on the right-hand
ide of Eq. (13) is added. For the DPDFT, this step can be
ritten as

fn
k+1 = fn

k + �kpn

Āmn�dm − �i=1

N
Amifi

k�

�i=1

N
pi�Ami�2

, �15�

here �k is the relaxation parameter for the kth projec-
ion step.

To investigate the impact of rearranging and relaxation
n the convergence performance of the DPDFT algorithm,
e consider a two-dimensional problem of reconstructing
n object function from its Fourier transform values. This
emonstration particularly concentrates on one of our pri-
ary interests in developing the DPDFT algorithm for

pplications related to diffraction tomography. The data
ap in Fig. 1 is interpreted as the map of Fourier data

hat would be obtained from a bistatic radar experiment.
he sampling points are equivalent to a radar frequency
f 10 GHz, incident angles varying between 0° and 355°
nd scattered field angles ranging from 0° to 175°, both
ampled with an increment of 5°. We emphasize, however,
hat only computed Fourier transform data were used to
valuate the convergence performance of the DPDFT un-
er different environments; it was not necessary to take
mperfections of an experimental data acquisition step
nto account.

For the reconstruction we used a circular prior function
f a radius 5 cm [Fig. 2(c)]. The PDFT estimate in Fig.
(d) shows better resolution than the DFT estimate in
ig. 2(b). The DPDFT estimate improves gradually at
ach iteration in accordance with the convergence charac-
eristic of the ART.17,18 The DPDFT estimate after six
terations is shown in Fig. 2(e), which is better resolved
han the DFT estimate in Fig. 2(b); however, qualita-
ively the PDFT is superior. After 15 iterations the
PDFT estimate in Fig. 2(f) has improved significantly
nd shows similar quality as compared with the PDFT
stimate.

For a quantitative evaluation, we take the root-mean-
quare error (RMSE) between the object function and its
stimate as a measure of the accuracy of the image recon-
truction:
RMSE =
 1

N�
n=1

N

�on − rn�2, �16�

here N is the total number of pixels and on and rn each
epresent the pixel value of the object and the image, re-
pectively. For the example in Fig. 2, the RMSEs between
he object and the PDFT estimate and between the object
nd the DPDFT estimate are shown in Fig. 3(a). The
haracteristic of the DPDFT estimate (solid curve) con-
erges monotonically to the better solution as the number
f iterations increases. In terms of computational effi-
iency the DPDFT avoids the costly creation and inver-
ion of a 2521�2521 complex P matrix needed to com-
ute the PDFT, but the DPDFT cannot obtain a resolution
omparable to that of the PDFT estimate unless it com-
letes 15 iterations or more. The iterative process of the
PDFT is typically subject to the problem of the slow con-
ergence observed in Fig. 3(a), which may outweigh the

ig. 3. RMSEs between the original and the reconstructed im-
ge for simulated noiseless Fourier data: (a) the RMSEs for the
DFT and the DPDFT after 1–20 iterations, (b) same as in (a)
pplying the RPS reordering, (c) same as in (a) applying the
erman–Meyer reordering.
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ost in time and memory associated with the setup and
nversion of the P matrix.

For the same data used for the example in Fig. 2, we
omputed the image by implementing the random permu-
ation scheme (RPS) and the Herman–Meyer scheme14

HMS) to adjust the data access order for the DPDFT. It is
emarkable that the DPDFT estimate after one iteration
ith RPS reordering, in Fig. 4(a), and with HMS reorder-

ng, in Fig. 4(b), show resolution comparable to that of the
PDFT estimate after 15 iterations and without reorder-

ng, in Fig. 2(f). The quantitative improvement of the DP-
FT by using either the RPS or the HMS reordering is

llustrated in Figs. 3(b) and 3(c), respectively. As com-
ared with that in Fig. 3(a), in Figs. 3(b) and 3(c) the con-
ergence rate is improved dramatically, essentially ap-
roaching the final accuracy after about three iterations.
owever, in both cases the RMSE remains slightly above

he value for the PDFT estimate. Since our implementa-
ion of the PDFT algorithms incorporates a Miller–
ikhonov regularization19 step, the solution does not rep-
esent the minimum weighted norm approximation in a
igorous sense, and a small deviation between the recon-
tructions computed with DPDFT and PDFT is expected.

From the image in Fig. 4(d), we see that by choosing a
elaxation parameter of 0.09 the DPDFT estimate re-
uires only three iterations to improve to a resolution
omparable to that of the DPDFT estimate after 15 itera-

ig. 4. Reconstruction of an object with compact support using
stimate with RPS reordering, (b) one-iteration DPDFT estimate
axation parameter 0.07, (d) three-iteration DPDFT estimate wit
ions, but with no reordering and no relaxation [Fig. 2(f)].
f we apply one of the schemes to change the data access
rder simultaneously with applying the relaxation pa-
ameter, we obtain a solution comparable to the ones in
ig. 2(f) and 4(d) after only one iteration. In addition, we

ound that the use of reordering schemes extends the
ange for the relaxation parameter for which we obtain
ptimum performance (Fig. 5). In practice, this yields sig-
ificantly higher stability, since the results obtained with
he DPDFT are less sensitive to choice of the regulariza-
ion parameter.

. REGULARIZATION OF THE DISCRETE
RIOR DISCRETE FOURIER TRANSFORM

f the measured data are noisy, the iterative process of the
PDFT will typically converge to a poor solution of very

arge energy. For an explanation, we consider the same
xample in Fig. 2 but using noisy Fourier data. The noise
ources considered here are simulated by Gaussian white
oise. Leaving all other parameters unchanged, we find
hat the PDFT estimate must be regularized to recover a
ood estimate. For the PDFT algorithm with a Miller–
ikhonov regularization, the diagonal of the P matrix is
ultiplied with a factor 	=1+
, with 
�1 typically.
mong all computed PDFT results we found the regular-

PDFT with reordering and relaxation: (a) one-iteration DPDFT
HMS reordering, (c) one-iteration DPDFT estimate with the re-
relaxation parameter 0.09.
the D
with

h the
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zation value 
=0.5 to yield the smallest RMSE. The cor-
esponding image estimate is shown in Fig. 6(a).

Likewise, in the case of noisy data the DPDFT cannot
ive a good estimate without regularization. The RMSEs
etween the object and the DPDFT estimates are shown
n Fig. 7(a). The resolution of the DPDFT estimates im-
roves gradually as the number of iterations increases.
or more than eight iterations, however, the RMSE again

ncreases. Both the DPDFT estimate after eight iterations
Fig. 6(b)] and the DPDFT estimate after 20 iterations
Fig. 6(c)] show poor resolution, which highlight the im-
act of noise on the performance of the DPDFT. The poor
onvergence due to noise can be addressed with suitable
egularization methods. We now summarize a method for
egularizing the DPDFT algorithm.

The underdetermined system of linear equations Bg
d always has multiple solutions, even with noiseless
ata. Usually, the minimum norm solution is used to se-
ect a unique solution. It was shown that the ART con-
erges to the minimum norm solution of the system of
quations if it is implemented with a sequence of relax-

ig. 5. Impact of the relaxation parameter on the RMSEs: (a)
he RMSEs for the PDFT and the DPDFT after three iterations
ith no reordering, (b) same for the DPDFT after one iteration
ith RPS reordering, (c) same for the DPDFT after one iteration
ith HMS reordering.
tion parameters �k� �0,2� converging to zero and the
nitial vector f0 is in S�AT�.17,18 Mathematically, S�AT� can
e represented as

S�AT� =�v�v = �
n=1

N

�n�AT�n−col,

for some arbitrary real numbers �n� , �17�

here �AT�n−col denotes the nth column vector of the ma-
rix AT. Typically, the origin is chosen as the initial vector,
.e., f0=0. However, in the presence of noisy data, even
his minimum norm solution can have a large norm and
oes not correspond to a useful reconstruction. Regulariz-
ng this scheme typically involves rejecting exact solu-
ions of Af=d and seeking instead a vector f̂, which mini-
izes the function �Af−d�2+	2 �f�2, with 	�0 being

mall.20 The method due to the regularization uses the
RT to solve the system of equations given in the matrix
quation by

�A 	I�
 f

v� = d. �18�

or the ART iterative process of Eq. (18), we begin at f0

0 and v0=0, then the limit for its upper component f �

f̂. The iterative step can be represented as

fn
k+1 = fn

k + pnĀmn�dm − �i=1

N
Amifi

k − 	vm
k

	2 + �i=1

N
pi�Ami�2 � , �19�

vm
k+1 = vm

k + 	�dm − �i=1

N
Amifi

k − 	vm
k

	2 + �i=1

N
pi�Ami�2 � , �20�

here

vj
k+1 = vj

k for j � mod�k,M� + 1. �21�

hen the reconstructed image is the limit of the sequence
f k�.

To illustrate this, we again consider the same example
s used in Fig. 6, where the DPDFT did not converge sig-
ificantly during the first eight iterations but diverged as
he number of iterations increased. The result after eight
terations still looks poor as compared with the PDFT es-
imate in Fig. 6(a).

When we apply the regularization method [Fig. 6(d)],
he DPDFT clearly converges after ten iterations, and the
esulting image is comparable with the PDFT estimate in
ig. 6(e). The RMSEs as shown in Fig. 7(b) confirms the
uperior convergence of the DPDFT using regularization.

Further improvement is again observed by combining
he regularization method with a changed data access or-
er. The resulting RMSE values are plotted in Figs. 8(a)
nd 8(b). The convergence is significantly improved.
qually remarkable, the final RMSE value is slightly bet-

er than that of the PDFT estimate. The corresponding
mage estimates are shown in Figs. 6(e) and 6(f), which
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onfirm an image quality comparable with the PDFT es-
imate in Fig. 6(a) and the DPDFT estimate in Fig. 6(d).

. CONCLUSION
e described the discrete implementation of the PDFT al-

orithm. The PDFT algorithm and its discrete counter-
art, the DPDFT algorithm, are typically used to compute
mage estimates from projection data. Both algorithms al-
ow one to incorporate prior knowledge about the imaging
roblem to improve the reconstructed image.
The DPDFT algorithm was implemented primarily as a
ubstitute for the well-explored PDFT algorithm, since it
oes not require the inversion of the P matrix. If the op-
imum reconstruction can be obtained with a few itera-
ions of the DPDFT, this invariably provides a speedup as
ompared with the implementation of the PDFT algo-
ithm, which increases with the size of the data set. How-
ver, the more important application of the DPDFT is
ith respect to data sets that are too large to allow for the

nversion of the corresponding P matrix.
In addition, we emphasize that the DPDFT algorithm
ig. 6. Reconstruction of an object of compact support from the noisy data: (a) the PDFT estimate with regularization value of 
=0.5,
b) the DPDFT estimate after eight iterations, (c) the DPDFT estimate after 20 iterations, (d) the DPDFT estimate after ten iterations
ith regularization value of 	=0.7, (e) the DPDFT estimate after one iteration with regularization value of 	=0.7 and RPS reordering, (f)

he DPDFT estimate after one iteration with regularization value of 	=0.7 and HMS reordering.
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liminates the need to compute the Fourier transforma-
ion of the prior in order to obtain a reconstruction of the
bject. This property is particularly useful if the prior is
ot given in analytic form but is the result of a prepro-
essing step and is only available in discrete form. In this
ase the DPDFT algorithm is the method of choice to ob-

ig. 7. RMSEs between object and image computed from simu-
ated noisy data: (a) the DPDFT estimate without regularization,
b) the DPDFT estimate with regularization value of 	=0.7.

ig. 8. RMSEs between object and image for simulated noisy
ata: (a) RPS reordering and regularization value of 	=0.7, (b)
MS reordering and regularization value of 	=0.7.
ain a constraint image estimate of the object. It is noted,
owever, that even if the prior is available in analytic
orm the computation of the P matrix can contribute sig-
ificantly to the computational burden of the PDFT algo-
ithm, and the DPDFT provides a more efficient use of the
rior information.
In our examples, the DPDFT was implemented using

he ART algorithm, although this is not essential, and we
ake no assertions for or against the ART. We demon-

trated that the convergence speed can be improved by re-
rdering, which was successfully applied to ART-related
econstruction schemes in the past. In particular, we in-
estigated changing the access order of individual ele-
ents of the system of linear equations that needs to be

olved. Independently of the access order scheme chosen,
e found significant improvement of the convergence.
For noisy data it proved necessary to implement a suit-

ble regularization method. Again, the behavior of the
PDFT algorithm proved sufficiently similar to previ-
usly described variants of the ART to adapt a known
egularization scheme for use with the DPDFT algorithm.
ur results show that this allows us to address noise-

elated imaging problems effectively.
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