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Abstract

The problem is to minimize a function f : X → (−∞,∞], over a non-empty
subset C of X, where X is an arbitrary set.

At the kth step of a sequential unconstrained minimization algorithm we
minimize a function Gk(x) = f(x)+gk(x) to get xk. The auxiliary functions gk
are typically selected to impose the constraint that x be in C, or to penalize any
violation of that constraint. The gk may also be employed to permit the xk to
be calculated in closed form. Barrier-function and penalty-function algorithms
are the most well known sequential unconstrained minimization methods. Our
main objective is to find gk(x) so that the infinite sequence {xk} generated by
our algorithm converges to a solution of the problem; this, of course, requires
some topology on the set X. Failing that, we want the sequence {f(xk)} to
converge to d, where

d = inf{f(x)|x ∈ C} ≥ −∞,

or, at the very least, for the sequence {f(xk)} to be non-increasing.
A sequential unconstrained minimization algorithm is in the SUMMA class

if, for all x ∈ X,
Gk(x)−Gk(x

k) ≥ gk+1(x) ≥ 0.

If {xk} is generated by an algorithm in the SUMMA class, then the sequence
{f(xk)} converges to d.

A wide variety of iterative methods, including barrier-function and penalty-
function methods, can be shown to be members of the SUMMA class. Other
members of the SUMMA class include proximal minimization algorithms using
Bregman distances, forward-backward splitting methods, the CQ algorithm for
the split feasibility problem, the simultaneous MART algorithm, alternating
minimization methods, and the expectation maximization maximum likelihood
(EM) algorithms.

∗The latest version is available at http://faculty.uml.edu/cbyrne/cbyrne.html
†Charles Byrne@uml.edu, Department of Mathematical Sciences, University of Massachusetts

Lowell, Lowell, MA 01854
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1 Introduction

Minimizing a real-valued function subject to constraints on the independent vari-

able can be a difficult problem to solve; typically, iterative algorithms are required.

Sequential unconstrained minimization techniques replace the single constrained opti-

mization problem with an infinite sequence of unconstrained minimization problems,

each one easier to solve than the original problem. In the best of cases, the sequence of

minimizers will converge to a solution of the original constrained minimization prob-

lem, or, failing that, their function values will converge to the constrained minimum,

or, at least, will be non-decreasing.

Even when there are no constraints, the problem of minimizing a real-valued func-

tion may require iteration; the formalism of sequential unconstrained minimization

techniques can be useful in deriving such iterative algorithms, as well as in proving

convergence.

2 Preliminaries

In this section we look briefly at several of the topics to be discussed in more detail

later.

2.1 The Basic Problem

Let X be an arbitrary non-empty set. We are concerned here with the minimization

of a real-valued function f : X → R, possibly subject to constraints on the indepen-

dent variable, and with the use of iterative sequential unconstrained minimization

algorithms to solve such problems.

The primary problem in convex programming is to minimize a convex function

f : RJ → R, subject to the constraints hi(x) ≤ 0, where, for i = 1, 2, ..., I, hi is

convex. If the problem is super-consistent, that is, there are points x with hi(x) < 0,

for all i, then the Karush-Kuhn-Tucker necessary and sufficient conditions for x∗ to

solve the problem are that there are λ∗i ≥ 0, with λ∗ihi(x
∗) = 0, for all i, and x∗

minimizes

f(x) +
I∑
i=1

λ∗ihi(x). (2.1)

Of course, finding the λ∗i is part of the problem, since we are not given the λ∗i initially.

Some terms in Equation (2.1) are non-negative whenever x fails to satisfy all the
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constraints, so the summation acts as a kind of penalty function, penalizing violation

of the constraints. Penalty-function methods for constrained minimization exploit

this idea.

2.2 Penalty-Function Methods

Suppose that our goal is to minimize a function f : RJ → R, subject to the constraint

that x ∈ C, where C is a non-empty closed subset of RJ . We select a non-negative

function p : RJ → R with the property that p(x) = 0 if and only if x is in C and

then, for each positive integer k, we minimize

Gk(x) = f(x) + kp(x), (2.2)

to get xk. We then want the sequence {xk} to converge to some x∗ ∈ C that solves

the original problem. In order for this iterative algorithm to be useful, each xk should

be relatively easy to calculate.

If, for example, we should select p(x) = +∞ for x not in C and p(x) = 0 for x in

C, then minimizing Gk(x) is equivalent to the original problem and we have achieved

nothing.

Suppose that we want to minimize the function f(x) = (x+ 1)2, subject to x ≥ 0.

Let us select p(x) = x2, for x ≤ 0, and p(x) = 0 otherwise. Then xk = −1
k+1

, which

converges to the right answer, x∗ = 0, as k →∞.

2.3 Barrier-Function Methods

Suppose now that b : C → R is a barrier function for C, that is, b has the property

that b(x)→ +∞ as x approaches the boundary of C. At the kth step of the iteration

we minimize

Gk(x) = f(x) +
1

k
b(x) (2.3)

to get xk. Then each xk is in C. We want the sequence {xk} to converge to some x∗

in C that solves the original problem.

Suppose that we want to minimize the function f(x) = f(x1, x2) = x21 + x22,

subject to the constraint that x1 +x2 ≥ 1. The constraint is then written g(x1, x2) =

1− (x1 + x2) ≤ 0. We use the logarithmic barrier function b(x) = − log(x1 + x2− 1).

For each positive integer k, the vector xk = (xk1, x
k
2) minimizing the function

Gk(x) = x21 + x22 −
1

k
log(x1 + x2 − 1) = f(x) +

1

k
b(x)
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has entries

xk1 = xk2 =
1

4
+

1

4

√
1 +

4

k
.

Notice that xk1 +xk2 > 1, so each xk satisfies the constraint. As k → +∞, xk converges

to (1
2
, 1
2
), which is the solution to the original problem. The use of the logarithmic

barrier function forces x1 + x2− 1 to be positive, thereby enforcing the constraint on

x = (x1, x2).

Penalty-function methods are called exterior-point methods since, typically, none

of the xk satisfies the constraints. Barrier-function methods are called interior-point

methods because each xk satisfies the constraints.

2.4 Sequential Unconstrained Minimization

Penalty-function and barrier-function methods are the most well known of sequential

unconstrained minimization techniques. At the kth step of a sequential unconstrained

minimization algorithm we minimize

Gk(x) = f(x) + gk(x) (2.4)

to obtain xk, where the added function gk(x) is chosen by us. The goal is to have

the sequence {xk} converge to a solution x∗ of the original problem. Failing that, we

want the function values f(xk) to converge to the constrained minimum.

As is clear with penalty-function and barrier-function methods, the added func-

tions gk(x) may serve to incorporate the constraints. There may also be other reasons

for selecting the gk, however.

2.5 Projected Gradient Descent

The problem now is to minimize f : RJ → R, over the closed, non-empty convex set

C, where f is convex and differentiable on RJ . In most cases there is no closed-form

algebraic solution and we need an iterative method. We can use the idea of sequential

unconstrained minimization to derive an iterative algorithm to solve this problem. As

we shall see, although we still call it a sequential unconstrained minimization method,

it is not unconstrained; our goal here is to derive a closed-form iterative method, not

to incorporate the constraint in the objective function being minimized.

The Bregman distance Df (x, y) associated with the function f is

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉. (2.5)

Since f is convex, we know that Df (x, y) is non-negative, for all x and y.
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At the kth step we minimize

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, x

k−1), (2.6)

over x ∈ C, obtaining

xk = PC(xk−1 − γ∇f(xk−1)); (2.7)

here PC denotes the orthogonal projection onto C. This is the projected gradient

descent algorithm. For convergence we must require that f have certain additional

properties to be discussed later. Note that the added function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, x

k−1) (2.8)

is unrelated to the set C, so is not used here to incorporate the constraint; it is used

to provide a closed-form iterative scheme.

When C = RJ we have no constraint and the problem is simply to minimize f .

Then the iterative algorithm becomes

xk = xk−1 − γ∇f(xk−1); (2.9)

this is the gradient descent algorithm.

2.6 Relaxed Gradient Descent

In the gradient descent method we move away from the current xk−1 by the vector

γ∇f(xk−1). In relaxed gradient descent, the magnitude of the movement is reduced

by α, where α ∈ (0, 1). Such relaxation methods are sometimes used to acceler-

ate convergence. The relaxed gradient descent method can also be formulated as a

sequential unconstrained minimization method.

At the kth step we minimize

Gk(x) = α[f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, x

k−1)] +
1− α

2γ
‖x− xk−1‖2, (2.10)

obtaining

xk = (xk−1 − αγ∇f(xk−1)). (2.11)
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2.7 Regularized Gradient Descent

In many applications the function to be minimized involves measured data, which is

typically noisy, as well as some less than perfect model of how the measured data was

obtained. In such cases, we may not want to minimize f(x) exactly. In regularization

methods we add to f(x) another function that is designed to reduce sensitivity to

noise and model error.

For example, suppose that we want to minimize

αf(x) +
1− α

2
‖x− p‖2, (2.12)

where p is chosen a priori. The regularized gradient descent algorithm for this problem

can be put in the framework of a sequential unconstrained minimization problem.

At the kth step we minimize

Gk(x) = α[f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, x

k−1)] +
1− α

2γ
‖x− p‖2, (2.13)

obtaining

xk = α(xk−1 − γ∇f(xk−1)) + (1− α)p. (2.14)

If we select p = 0 the iterative step becomes

xk = α(xk−1 − γ∇f(xk−1)). (2.15)

2.8 Proximal Minimization

Let f : RJ → (−∞,+∞] be a closed, proper, and convex function. Let h be a

closed proper convex function, with effective domain D, that is differentiable on the

nonempty open convex set int D. Assume that f(x) is finite on C = D and attains its

minimum value on C at x̂. The corresponding Bregman distance Dh(x, z) is defined

for x in D and z in int D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (2.16)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then Dh(x, z) = 0

implies that x = z. Our objective is to minimize f(x) over x in C = D.

At the kth step of the proximal minimization algorithm (PMA) [13], we minimize

the function

Gk(x) = f(x) +Dh(x, x
k−1), (2.17)
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to get xk. The function

gk(x) = Dh(x, x
k−1) (2.18)

is nonnegative and gk(x
k−1) = 0. We assume that each xk lies in int D.

We note that the proximal minimization framework has already been used several

times in the previous discussion, when we added

gk(x) =
1

2γ
‖x− xk−1‖2 −Df (x, x

k−1) = Dh(x, x
k−1),

for

h(x) =
1

2γ
‖x‖2 − f(x).

As we shall see, in the proximal minimization approach we have the inequality

Gk(x)−Gk(x
k) ≥ gk+1(x) ≥ 0, (2.19)

for all x. The SUMMA class of sequential unconstrained minimization approaches

are those for which this inequality holds. All of the methods discussed so far fall into

the SUMMA class.

2.9 Majorization Minimization

Majorization minimization (MM) is a technique for converting a hard optimization

problem into a sequence of simpler ones [45, 6, 37]. The MM method requires that

we majorize the objective function f(x) with g(x|y), such that g(x|y) ≥ f(x), for all

x, and g(y|y) = f(y). At the kth step of the iterative algorithm we minimize the

function g(x|xk−1) to get xk. Said another way, we minimize

f(x) + [g(x|xk−1)− f(x)] = f(x) + h(x|xk−1), (2.20)

where, for each y, h(x|y) ≥ 0 for all x, and h(y|y) = 0. The MM method fits into the

sequential unconstrained minimization format when we set Gk(x) = g(x|xk−1). Now

we have gk(x) = h(x|xk−1), so that gk(x) ≥ 0 and gk(x
k−1) = 0; it then follows that

the sequence {f(xk)} is non-increasing.

2.10 A Convergence Theorem

So far, we haven’t discussed the restrictions necessary to prove convergence of these

iterative algorithms. The framework of sequential unconstrained minimization can

be helpful in this regard, as we illustrate now.
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We say that the gradient operator ∇f is L-Lipschitz continuous if, for all x and

y, we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, (2.21)

The following theorem concerns convergence of the gradient descent algorithm with

iterative step given by Equation (2.9).

Theorem 2.1 Let f : RJ → R be differentiable, with L-Lipschitz continuous gradi-

ent. For γ in the interval (0, 1
L

) the sequence {xk} given by Equation (2.9) converges

to a minimizer of f , whenever minimizers exist.

Proof:

The added function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, x

k−1) (2.22)

can be rewritten as

gk(x) = Dh(x, x
k−1), (2.23)

where

h(x) =
1

2γ
‖x‖22 − f(x). (2.24)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.

We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (2.25)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f(x)−∇f(y), x− y〉 ≥ 0. (2.26)

Since ∇f is L-Lipschitz, the inequality (2.26) holds whenever 0 < γ < 1
L

.

A relatively simple calculation shows that

Gk(x)−Gk(x
k) =

1

2γ
‖x− xk‖22 +

1

γ
〈xk − (xk−1 − γ∇f(xk−1)), x− xk〉. (2.27)

From Equation (2.9) it follows that

Gk(x)−Gk(x
k) ≥ 1

2γ
‖x− xk‖22, (2.28)
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for all x ∈ C, so that

Gk(x)−Gk(x
k) ≥ 1

2γ
‖x− xk‖22 −Df (x, x

k) = gk+1(x). (2.29)

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(x
k) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(x
k−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(x

k−1)
)
−
(
Gk(x̂)−Gk(x

k)
)
≥ f(xk)− f(x̂) + gk(x

k) ≥ 0.

Therefore, the sequence {Gk(x̂) − Gk(x
k)} is decreasing and the sequences {gk(xk)}

and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(x
k) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Let {xkn} converge to x∗ ∈ C with

{xkn+1} converging to x∗∗ ∈ C; we then have f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gkn+1(x
∗∗) − Gkn+1(x

kn+1)} is

decreasing. By Equation (2.27), this subsequence converges to zero; therefore, the

entire sequence {Gk(x
∗∗)−Gk(x

k)} converges to zero. From the inequality in (2.28),

we conclude that the sequence {‖x∗∗−xk‖22} converges to zero, and so {xk} converges

to x∗∗. This completes the proof of the theorem.

3 The SUMMA Class

The problem is to minimize a function f : X → (−∞,∞], over a subset P of X,

where X is an arbitrary non-empty set. As we mentioned previously, a sequential un-

constrained minimization technique is in the SUMMA class if each xk in the iterative

sequence can be obtained by minimizing

Gk(x) = f(x) + gk(x) (3.1)

over x ∈ P , where the gk(x) can be chosen so that the inequality in (2.19) is satisfied.

In practice, of course, this minimization may need to be performed iteratively; we

shall not address this issue here, and shall assume that xk can be computed. We

make the following additional assumptions.
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Assumption 1: The functions gk(x) are finite-valued on the subset P .

Assumption 2: The functions gk(x) satisfy the inequality in (2.19), for k = 1, 2, ...

and all x ∈ P . Consequently,

gk+1(x
k) = 0.

Assumption 3: There is a real number α with

α ≤ f(x),

for all x in X.

Assumption 4: Each xk is in P .

Using these assumptions, we can conclude several things about the sequence {xk}.

Proposition 3.1 The sequence {f(xk)} is decreasing, and the sequence {gk(xk)} con-

verges to zero.

Proof: We have

f(xk+1) + gk+1(x
k+1) = Gk+1(x

k+1) ≤ Gk+1(x
k) = f(xk) + gk+1(x

k) = f(xk).

Therefore,

f(xk)− f(xk+1) ≥ gk+1(x
k+1) ≥ 0.

Since the sequence {f(xk)} is decreasing and bounded below by d, the difference

sequence must converge to zero. Therefore, the sequence {gk(xk)} converges to zero.

Let

d = inf{f(x)|x ∈ P} ≥ −∞.

Then we have the following theorem.

Theorem 3.1 The sequence {f(xk)} converges to d.

Proof: Suppose that there is d∗ > d with

f(xk) ≥ d∗,

for all k. Then there is z in P with

f(xk) ≥ d∗ > f(z) ≥ d,
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for all k. From

gk+1(z) ≤ Gk(z)−Gk(x
k),

we have

gk(z)− gk+1(z) ≥ f(xk) + gk(x
k)− f(z) ≥ f(xk)− f(z) ≥ d∗ − f(z) > 0,

for all k. This says that the nonnegative sequence {gk(z)} is decreasing, but that

successive differences remain bounded away from zero, which cannot happen.

Definition 3.1 Let X be a complete metric space. A real-valued function p(x) on X

has compact level sets if, for all real γ, the level set {x|p(x) ≤ γ} is compact.

Theorem 3.2 Let X be a complete metric space, f(x) be a continuous function,

d > −∞, and the restriction of f(x) to x in P have compact level sets. Then the

sequence {xk} is bounded and has convergent subsequences. Furthermore, f(x∗) = d,

for any subsequential limit point x∗ ∈ X. If x̂ is the unique minimizer of f(x) for

x ∈ P , then x∗ = x̂ and {xk} → x̂.

Proof: From the previous theorem we have f(x∗) = d, for all subsequential limit

points x∗. But, by uniqueness, x∗ = x̂, and so {xk} → x̂.

Corollary 3.1 Let C ⊆ RJ be closed and convex. Let f(x) : RJ → R be closed,

proper and convex. If x̂ is the unique minimizer of f(x) over x ∈ C, the sequence

{xk} converges to x̂.

Proof: Let ιC(x) be the indicator function of the set C, that is, ιC(x) = 0, for all x

in C, and ιC(x) = +∞, otherwise. Then the function g(x) = f(x) + ιC(x) is closed,

proper and convex. If x̂ is unique, then we have

{x|f(x) + ιC(x) ≤ f(x̂)} = {x̂}.

Therefore, one of the level sets of g(x) is bounded and nonempty. It follows from

Corollary 8.7.1 of [47] that every level set of g(x) is bounded, so that the sequence

{xk} is bounded.

If x̂ is not unique, we may still be able to prove convergence of the sequence {xk},
for particular cases of SUMMA, as we shall see shortly.
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4 Barrier-function Methods

Let b(x) : RJ → (−∞,+∞] be continuous, with effective domain the set

D = {x| b(x) < +∞}.

The goal is to minimize the objective function f(x), over x in C, the closure of D.

We assume that there is x̂ ∈ C with f(x̂) ≤ f(x), for all x in C.

In the barrier-function method, we minimize

f(x) +
1

k
b(x) (4.1)

over x in D to get xk. Each xk lies within D, so the method is an interior-point

algorithm. If the sequence {xk} converges, the limit vector x∗ will be in C and

f(x∗) = f(x̂).

Barrier functions typically have the property that b(x) → +∞ as x approaches

the boundary of D, so not only is xk prevented from leaving D, it is discouraged from

approaching the boundary.

4.1 Examples of Barrier Functions

Consider the convex programming (CP) problem of minimizing the convex function

f : RJ → R, subject to gi(x) ≤ 0, where each gi : RJ → R is convex, for i = 1, ..., I.

Let D = {x|gi(x) < 0, i = 1, ..., I}; then D is open. We consider two barrier functions

appropriate for this problem.

4.1.1 The Logarithmic Barrier Function

A suitable barrier function is the logarithmic barrier function

b(x) =
(
−

I∑
i=1

log(−gi(x))
)
. (4.2)

The function − log(−gi(x)) is defined only for those x in D, and is positive for gi(x) >

−1. If gi(x) is near zero, then so is −gi(x) and b(x) will be large.

4.1.2 The Inverse Barrier Function

Another suitable barrier function is the inverse barrier function

b(x) =
I∑
i=1

−1

gi(x)
, (4.3)

12



defined for those x in D.

In both examples, when k is small, the minimization pays more attention to b(x),

and less to f(x), forcing the gi(x) to be large negative numbers. But, as k grows

larger, more attention is paid to minimizing f(x) and the gi(x) are allowed to be

smaller negative numbers. By letting k → ∞, we obtain an iterative method for

solving the constrained minimization problem.

Barrier-function methods are particular cases of the SUMMA. The iterative step

of the barrier-function method can be formulated as follows: minimize

f(x) + [(k − 1)f(x) + b(x)] (4.4)

to get xk. Since, for k = 2, 3, ..., the function

(k − 1)f(x) + b(x) (4.5)

is minimized by xk−1, the function

gk(x) = (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1) (4.6)

is nonnegative, and xk minimizes the function

Gk(x) = f(x) + gk(x). (4.7)

From

Gk(x) = f(x) + (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1),

it follows that

Gk(x)−Gk(x
k) = kf(x) + b(x)− kf(xk)− b(xk) = gk+1(x),

so that gk+1(x) satisfies the condition in (2.19). This shows that the barrier-function

method is a particular case of SUMMA.

From the properties of SUMMA algorithms, we conclude that {f(xk)} is decreas-

ing to f(x̂), and that {gk(xk)} converges to zero. From the nonnegativity of gk(x
k)

we have that

(k − 1)(f(xk)− f(xk−1)) ≥ b(xk−1)− b(xk).

Since the sequence {f(xk)} is decreasing, the sequence {b(xk)} must be increasing,

but might not be bounded above.

If x̂ is unique, and f(x) has bounded level sets, then it follows, from our discussion

of SUMMA, that {xk} → x̂. Suppose now that x̂ is not known to be unique, but can

be chosen in D, so that Gk(x̂) is finite for each k. From

f(x̂) +
1

k
b(x̂) ≥ f(xk) +

1

k
b(xk)
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we have
1

k

(
b(x̂)− b(xk)

)
≥ f(xk)− f(x̂) ≥ 0,

so that

b(x̂)− b(xk) ≥ 0,

for all k. If either f or b has bounded level sets, then the sequence {xk} is bounded

and has a cluster point, x∗ in C. It follows that b(x∗) ≤ b(x̂) < +∞, so that x∗ is in

D. If we assume that f(x) is convex and b(x) is strictly convex on D, then we can

show that x∗ is unique in D, so that x∗ = x̂ and {xk} → x̂.

To see this, assume, to the contrary, that there are two distinct cluster points x∗

and x∗∗ in D, with

{xkn} → x∗,

and

{xjn} → x∗∗.

Without loss of generality, we assume that

0 < kn < jn < kn+1,

for all n, so that

b(xkn) ≤ b(xjn) ≤ b(xkn+1).

Therefore,

b(x∗) = b(x∗∗) ≤ b(x̂).

From the strict convexity of b(x) on the set D, and the convexity of f(x), we conclude

that, for 0 < λ < 1 and y = (1−λ)x∗+λx∗∗, we have b(y) < b(x∗) and f(y) ≤ f(x∗).

But, we must then have f(y) = f(x∗). There must then be some kn such that

Gkn(y) = f(y) +
1

kn
b(y) < f(xkn) +

1

kn
b(xkn) = Gkn(xkn).

But, this is a contradiction.

The following theorem summarizes what we have shown with regard to the barrier-

function method.

Theorem 4.1 Let f : RJ → (−∞,+∞] be a continuous function. Let b(x) : RJ →
(0,+∞] be a continuous function, with effective domain the nonempty set D. Let x̂

minimize f(x) over all x in C = D. For each positive integer k, let xk minimize

the function f(x) + 1
k
b(x). Then the sequence {f(xk)} is monotonically decreasing to

the limit f(x̂), and the sequence {b(xk)} is increasing. If x̂ is unique, and f(x) has
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bounded level sets, then the sequence {xk} converges to x̂. In particular, if x̂ can be

chosen in D, if either f(x) or b(x) has bounded level sets, if f(x) is convex and if

b(x) is strictly convex on D, then x̂ is unique in D and {xk} converges to x̂.

At the kth step of the barrier method we must minimize the function f(x) +
1
k
b(x). In practice, this must also be performed iteratively, with, say, the Newton-

Raphson algorithm. It is important, therefore, that barrier functions be selected so

that relatively few Newton-Raphson steps are needed to produce acceptable solutions

to the main problem. For more on these issues see Renegar [46] and Nesterov and

Nemirovski [44].

5 Penalty-function Methods

When we add a barrier function to f(x) we restrict the domain. When the barrier

function is used in a sequential unconstrained minimization algorithm, the vector xk

that minimizes the function f(x) + 1
k
b(x) lies in the effective domain D of b(x), and

we proved that, under certain conditions, the sequence {xk} converges to a minimizer

of the function f(x) over the closure of D. The constraint of lying within the set D

is satisfied at every step of the algorithm; for that reason such algorithms are called

interior-point methods. Constraints may also be imposed using a penalty function.

In this case, violations of the constraints are discouraged, but not forbidden. When

a penalty function is used in a sequential unconstrained minimization algorithm, the

xk need not satisfy the constraints; only the limit vector need be feasible.

5.1 Examples of Penalty Functions

Consider the convex programming problem. We wish to minimize the convex function

f(x) over all x for which the convex functions gi(x) ≤ 0, for i = 1, ..., I.

5.1.1 The Absolute-Value Penalty Function

We let g+i (x) = max{gi(x), 0}, and

p(x) =
I∑
i=1

g+i (x). (5.1)

This is the Absolute-Value penalty function; it penalizes violations of the constraints

gi(x) ≤ 0, but does not forbid such violations. Then, for k = 1, 2, ..., we minimize

f(x) + kp(x), (5.2)

15



to get xk. As k → +∞, the penalty function becomes more heavily weighted, so that,

in the limit, the constraints gi(x) ≤ 0 should hold. Because only the limit vector

satisfies the constraints, and the xk are allowed to violate them, such a method is

called an exterior-point method.

5.1.2 The Courant-Beltrami Penalty Function

The Courant-Beltrami penalty-function method is similar, but uses

p(x) =
I∑
i=1

[g+i (x)]2. (5.3)

5.1.3 The Quadratic-Loss Penalty Function

Penalty methods can also be used with equality constraints. Consider the problem of

minimizing the convex function f(x), subject to the constraints gi(x) = 0, i = 1, ..., I.

The quadratic-loss penalty function is

p(x) =
1

2

I∑
i=1

(gi(x))2. (5.4)

The inclusion of a penalty term can serve purposes other than to impose con-

straints on the location of the limit vector. In image processing, it is often desirable

to obtain a reconstructed image that is locally smooth, but with well defined edges.

Penalty functions that favor such images can then be used in the iterative reconstruc-

tion [29]. We survey several instances in which we would want to use a penalized

objective function.

5.1.4 Regularized Least-Squares

Suppose we want to solve the system of equations Ax = b. The problem may have

no exact solution, precisely one solution, or there may be infinitely many solutions.

If we minimize the function

f(x) =
1

2
‖Ax− b‖22,

we get a least-squares solution, generally, and an exact solution, whenever exact

solutions exist. When the matrix A is ill-conditioned, small changes in the vector b

can lead to large changes in the solution. When the vector b comes from measured

data, the entries of b may include measurement errors, so that an exact solution of

Ax = b may be undesirable, even when such exact solutions exist; exact solutions
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may correspond to x with unacceptably large norm, for example. In such cases, we

may, instead, wish to minimize a function such as

1

2
‖Ax− b‖22 +

ε

2
‖x− z‖22, (5.5)

for some vector z. If z = 0, the minimizing vector xε is then a norm-constrained least-

squares solution. We then say that the least-squares problem has been regularized.

In the limit, as ε → 0, these regularized solutions xε converge to the least-squares

solution closest to z.

Suppose the system Ax = b has infinitely many exact solutions. Our problem is

to select one. Let us select z that incorporates features of the desired solution, to the

extent that we know them a priori. Then, as ε → 0, the vectors xε converge to the

exact solution closest to z. For example, taking z = 0 leads to the minimum-norm

solution.

5.1.5 Minimizing Cross-Entropy

In image processing, it is common to encounter systems Px = y in which all the terms

are non-negative. In such cases, it may be desirable to solve the system Px = y,

approximately, perhaps, by minimizing the cross-entropy or Kullback-Leibler distance

KL(y, Px) =
I∑
i=1

(
yi log

yi
(Px)i

+ (Px)i − yi
)
, (5.6)

over vectors x ≥ 0. When the vector y is noisy, the resulting solution, viewed as

an image, can be unacceptable. It is wise, therefore, to add a penalty term, such as

p(x) = εKL(z, x), where z > 0 is a prior estimate of the desired x [35, 49, 36, 11].

A similar problem involves minimizing the function KL(Px, y). Once again, noisy

results can be avoided by including a penalty term, such as p(x) = εKL(x, z) [11].

5.1.6 The Lagrangian in Convex Programming

When there is a sensitivity vector λ for the CP problem, minimizing f(x) is equivalent

to minimizing the Lagrangian,

f(x) +
I∑
i=1

λigi(x) = f(x) + p(x); (5.7)

in this case, the addition of the second term, p(x), serves to incorporate the con-

straints gi(x) ≤ 0 in the function to be minimized, turning a constrained minimization

problem into an unconstrained one. The problem of minimizing the Lagrangian still

remains, though. We may have to solve that problem using an iterative algorithm.
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5.1.7 Infimal Convolution

The infimal convolution of the functions f and g is defined as

(f ⊕ g)(z) = inf
x

{
f(x) + g(z − x)

}
.

The infimal deconvolution of f and g is defined as

(f 	 g)(z) = sup
x

{
f(z − x)− g(x)

}
.

5.1.8 Moreau’s Proximity-Function Method

The Moreau envelope of the function f is the function

mf (z) = inf
x

{
f(x) +

1

2
‖x− z‖22

}
, (5.8)

which is also the infimal convolution of the functions f(x) and 1
2
‖x‖22. It can be shown

that the infimum is uniquely attained at the point denoted x = proxfz (see [47]). In

similar fashion, we can define mf∗z and proxf∗z, where f ∗(z) denotes the function

conjugate to f .

Proposition 5.1 The infimum of mf (z), over all z, is the same as the infimum of

f(x), over all x.

Proof: We have

inf
z
mf (z) = inf

z
inf
x
{f(x) +

1

2
‖x− z‖22}

= inf
x

inf
z
{f(x) +

1

2
‖x− z‖22} = inf

x
{f(x) +

1

2
inf
z
‖x− z‖22} = inf

x
f(x).

The minimizers of mf (z) and f(x) are the same, as well. Therefore, one way to use

Moreau’s method is to replace the original problem of minimizing the possibly non-

smooth function f(x) with the problem of minimizing the smooth function mf (z).

Another way is to convert Moreau’s method into a sequential minimization algorithm,

replacing z with xk−1 and minimizing with respect to x to get xk. As we shall see,

this leads to the proximal minimization algorithm.

5.2 The Roles Penalty Functions Play

From the examples just surveyed, we can distinguish several distinct roles that penalty

functions can play.
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5.2.1 Impose Constraints

The first role is to penalize violations of constraints, as part of sequential minimiza-

tion, or even to turn a constrained minimization into an equivalent unconstrained

one: the Absolute-Value and Courant-Beltrami penalty functions penalize violations

of the constraints gi(x) ≤ 0, while Quadratic-Loss penalty function penalizes viola-

tions of the constraints gi(x) = 0. The augmented objective functions f(x) + kp(x)

now become part of a sequential unconstrained minimization method. It is sometimes

possible for f(x) and f(x)+p(x) to have the same minimizers, or for constrained min-

imizers of f(x) to be the same as unconstrained minimizers of f(x)+p(x), as happens

with the Lagrangian in the CP problem.

5.2.2 Regularization

The second role is regularization: in the least-squares problem, the main purpose for

adding the norm-squared penalty function in Equation (5.5) is to reduce sensitivity

to noise in the entries of the vector b. Also, regularization will usually turn a problem

with multiple solutions into one with a unique solution.

5.2.3 Incorporate Prior Information

The third role is to incorporate prior information: when Ax = b is under-determined,

using the penalty function ε‖x− z‖22 and letting ε→ 0 encourages the solution to be

close to the prior estimate z.

5.2.4 Simplify Calculations

A fourth role that penalty functions can play is to simplify calculation: in the case

of cross-entropy minimization, adding the penalty functions KL(z, x) and KL(x, z)

to the objective functions KL(y, Px) and KL(Px, y), respectively, regularizes the

minimization problem. But, as we shall see later, the SMART algorithm minimizes

KL(Px, y) by using a sequential approach, in which each minimizer xk can be calcu-

lated in closed form.

5.2.5 Sequential Unconstrained Minimization

More generally, a fifth role for penalty functions is as part of sequential minimization.

Here the goal is to replace one computationally difficult minimization with a sequence

of simpler ones. Clearly, one reason for the difficulty can be that the original problem
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is constrained, and the sequential approach uses a series of unconstrained minimiza-

tions, penalizing violations of the constraints through the penalty function. However,

there are other instances in which the sequential approach serves to simplify the cal-

culations, not to remove constraints, but, perhaps, to replace a non-differentiable

objective function with a differentiable one, or a sequence of differentiable ones, as in

Moreau’s method.

Once again, our objective is to find a sequence {xk} such that {f(xk)} → d. We

select a penalty function p(x) with p(x) ≥ 0 and p(x) = 0 if and only if x is in P .

For k = 1, 2, ..., let xk be a minimizer of the function f(x) + kp(x). As we shall see,

we can formulate this penalty-function algorithm as a barrier-function iteration.

In order to relate penalty-function methods to barrier-function methods, we note

that minimizing Tk(x) = f(x)+kp(x) is equivalent to minimizing p(x)+ 1
k
f(x). This is

the form of the barrier-function iteration, with p(x) now in the role previously played

by f(x), and f(x) now in the role previously played by b(x). We are not concerned

here with the effective domain of f(x). Therefore, we can now mimic most, but not

all, of what we did for barrier-function methods.

5.3 Basic Facts

Lemma 5.1 The sequence {Tk(xk)} is increasing, bounded above by d and converges

to some γ ≤ d.

Proof: We have

Tk(x
k) ≤ Tk(x

k+1) ≤ Tk(x
k+1) + p(xk+1) = Tk+1(x

k+1).

Also, for any z ∈ P , and for each k, we have

f(z) = f(z) + kp(z) = Tk(z) ≥ Tk(x
k);

therefore d ≥ γ.

Lemma 5.2 The sequence {p(xk)} is decreasing to zero, the sequence {f(xk)} is

increasing and converging to some β ≤ d.

Proof: Since xk minimizes Tk(x) and xk+1 minimizes Tk+1(x), we have

f(xk) + kp(xk) ≤ f(xk+1) + kp(xk+1),

and

f(xk+1) + (k + 1)p(xk+1) ≤ f(xk) + (k + 1)p(xk).
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Consequently, we have

(k + 1)[p(xk)− p(xk+1)] ≥ f(xk+1)− f(xk) ≥ k[p(xk)− p(xk+1)].

Therefore,

p(xk)− p(xk+1) ≥ 0,

and

f(xk+1)− f(xk) ≥ 0.

From

f(xk) ≤ f(xk) + kp(xk) = Tk(x
k) ≤ γ ≤ d,

it follows that the sequence {f(xk)} is increasing and converges to some β ≤ γ. Since

α + kp(xk) ≤ f(xk) + kp(xk) = Tk(x
k) ≤ γ

for all k, we have 0 ≤ kp(xk) ≤ γ − α. Therefore, the sequence {p(xk)} converges to

zero.

We want β = d. To obtain this result, it appears that we need to make more

assumptions: we assume, therefore, that X is a complete metric space, P is closed in

X, the functions f and p are continuous and f has compact level sets. From these

assumptions, we are able to assert that the sequence {xk} is bounded, so that there

is a convergent subsequence; let {xkn} → x∗. It follows that p(x∗) = 0, so that x∗ is

in P . Then

f(x∗) = f(x∗) + p(x∗) = lim
n→+∞

(f(xkn) + p(xkn)) ≤ lim
n→+∞

Tkn(xkn) = γ ≤ d.

But x∗ ∈ P , so f(x∗) ≥ d. Therefore, f(x∗) = d.

It may seem odd that we are trying to minimize f(x) over the set P using a

sequence {xk} with {f(xk)} increasing, but remember that these xk are not in P .

6 Proximity-function Minimization

Let f : RJ → (−∞,+∞] be a closed, proper, and convex function. Let h be a

closed proper convex function, with effective domain D, that is differentiable on the

nonempty open convex set int D. Assume that f(x) is finite on C = D and attains its

minimum value on C at x̂. The corresponding Bregman distance Dh(x, z) is defined

for x in D and z in int D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (6.1)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then Dh(x, z) = 0

implies that x = z. Our objective is to minimize f(x) over x in C = D.
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6.1 Proximal Minimization Algorithms

At the kth step of the proximal minimization algorithm (PMA) [13], we minimize the

function

Gk(x) = f(x) +Dh(x, x
k−1), (6.2)

to get xk. The function

gk(x) = Dh(x, x
k−1) (6.3)

is nonnegative and gk(x
k−1) = 0. We assume that each xk lies in int D.

We show now that the PMA is a particular case of the SUMMA. We remind the

reader that f(x) is now assumed to be convex.

Lemma 6.1 For each k we have

Gk(x)−Gk(x
k) ≥ Dh(x, x

k) = gk+1(x). (6.4)

Proof: Since xk minimizes Gk(x) within the set D, we have

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1), (6.5)

so that

∇h(xk−1) = uk +∇h(xk), (6.6)

for some uk in ∂f(xk). Then

Gk(x)−Gk(x
k) = f(x)− f(xk) + h(x)− h(xk)− 〈∇h(xk−1), x− xk〉.

Now substitute, using Equation (6.6), to get

Gk(x)−Gk(x
k) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, x

k). (6.7)

Therefore,

Gk(x)−Gk(x
k) ≥ Dh(x, x

k),

since uk is in ∂f(xk).

From the discussion of the SUMMA we know that {f(xk)} is monotonically de-

creasing to f(x̂). As we noted previously, if the sequence {xk} is bounded, and x̂ is

unique, we can conclude that {xk} → x̂.
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Suppose that x̂ is not known to be unique, but can be chosen in D; this will be

the case, of course, whenever D is closed. Then Gk(x̂) is finite for each k. From the

definition of Gk(x) we have

Gk(x̂) = f(x̂) +Dh(x̂, x
k−1). (6.8)

From Equation (6.7) we have

Gk(x̂) = Gk(x
k) + f(x̂)− f(xk)− 〈uk, x̂− xk〉+Dh(x̂, x

k), (6.9)

so that

Gk(x̂) = f(xk) +Dh(x
k, xk−1) + f(x̂)− f(xk)− 〈uk, x̂− xk〉+Dh(x̂, x

k). (6.10)

Therefore,

Dh(x̂, x
k−1)−Dh(x̂, x

k) =

f(xk)− f(x̂) +Dh(x
k, xk−1) + f(x̂)− f(xk)− 〈uk, x̂− xk〉. (6.11)

It follows that the sequence {Dh(x̂, x
k)} is decreasing and that {f(xk)} converges to

f(x̂). If either the function f(x) or the function Dh(x̂, ·) has bounded level sets, then

the sequence {xk} is bounded, has cluster points x∗ in C, and f(x∗) = f(x̂), for every

x∗. We now show that x̂ in D implies that x∗ is also in D, whenever h is a Bregman

-Legendre function.

Let x∗ be an arbitrary cluster point, with {xkn} → x∗. If x̂ is not in the interior

of D, then, by Property B2 of Bregman-Legendre functions, we know that

Dh(x
∗, xkn)→ 0,

so x∗ is in D. Then the sequence {Dh(x
∗, xk)} is decreasing. Since a subsequence

converges to zero, we have {Dh(x
∗, xk)} → 0. From Property R5, we conclude that

{xk} → x∗.

If x̂ is in int D, but x∗ is not, then {Dh(x̂, x
k)} → +∞, by Property R2. But, this

is a contradiction; therefore x∗ is in D. Once again, we conclude that {xk} → x∗.

Now we summarize our results for the PMA. Let f : RJ → (−∞,+∞] be closed,

proper, convex and differentiable. Let h be a closed proper convex function, with

effective domain D, that is differentiable on the nonempty open convex set int D.

Assume that f(x) is finite on C = D and attains its minimum value on C at x̂. For

each positive integer k, let xk minimize the function f(x)+Dh(x, x
k−1). Assume that

each xk is in the interior of D.
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Theorem 6.1 If the restriction of f(x) to x in C has bounded level sets and x̂ is

unique, and then the sequence {xk} converges to x̂.

Theorem 6.2 If h(x) is a Bregman-Legendre function and x̂ can be chosen in D,

then {xk} → x∗, x∗ in D, with f(x∗) = f(x̂).

7 The Forward-Backward Splitting Algorithm

The forward-backward splitting methods form a quite large subclass of the SUMMA

algorithms.

7.1 Moreau’s Proximity Operators

Let f : RJ → R be convex. For each z ∈ RJ the function

mf (z) := min
x
{f(x) +

1

2
‖x− z‖22} (7.1)

is minimized by a unique x [47]. The operator that associates with each z the min-

imizing x is Moreau’s proximity operator, and we write x = proxf (z). The operator

proxf extends the notion of orthogonal projection onto a closed convex set [40, 41, 42].

We have x = proxf (z) if and only if z − x ∈ ∂f(x), where the set ∂f(x) is the sub-

differential of f at x, given by

∂f(x) := {u|〈u, y − x〉 ≤ f(y)− f(x), for all y}. (7.2)

Proximity operators are also firmly non-expansive [25]; indeed, the proximity operator

proxf is the resolvent of the maximal monotone operator B(x) = ∂f(x) and all such

resolvent operators are firmly non-expansive [9].

7.2 The Forward-Backward Splitting Algorithm

Our objective here is to provide an elementary proof of convergence for the forward-

backward splitting (FBS) algorithm; a detailed discussion of this algorithm and its

history is given by Combettes and Wajs in [25].

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differentiable, and

∇f2 L-Lipschitz continuous. The iterative step of the FBS algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
. (7.3)

As we shall show, convergence of the sequence {xk} to a solution can be established,

if γ is chosen to lie within the interval (0, 1/L].
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7.3 Convergence of the FBS algorithm

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differentiable, and ∇f2
L-Lipschitz continuous. Let {xk} be defined by Equation (7.3) and let 0 < γ ≤ 1/L.

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, x

k−1), (7.4)

where

Df2(x, x
k−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (7.5)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman distance

formed from the function f2 [8].

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df2(x, x

k−1) (7.6)

can be rewritten as

gk(x) = Dh(x, x
k−1), (7.7)

where

h(x) =
1

2γ
‖x‖22 − f2(x). (7.8)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.

We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (7.9)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (7.10)

Since ∇f2 is L-Lipschitz, the inequality (7.10) holds for 0 < γ ≤ 1/L.

Lemma 7.1 The xk that minimizes Gk(x) over x is given by Equation (7.3).

Proof: We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(x

k),

25



or, equivalently, (
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(x

k).

Consequently,

xk = proxγf1(x
k−1 − γ∇f2(xk−1)).

Theorem 7.1 The sequence {xk} converges to a minimizer of the function f(x),

whenever minimizers exist.

Proof: A relatively simple calculation shows that

Gk(x)−Gk(x
k) =

1

2γ
‖x− xk‖22 +

(
f1(x)− f1(xk)−

1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
. (7.11)

Since

(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(x
k),

it follows that(
f1(x)− f1(xk)−

1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(x
k) ≥ 1

2γ
‖x− xk‖22 ≥ gk+1(x). (7.12)

Therefore, the inequality in (2.19) holds and the iteration fits into the SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(x
k) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(x
k−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(x

k−1)
)
−
(
Gk(x̂)−Gk(x

k)
)
≥ f(xk)− f(x̂) + gk(x

k) ≥ 0.

Therefore, the sequence {Gk(x̂) − Gk(x
k)} is decreasing and the sequences {gk(xk)}

and {f(xk)− f(x̂)} converge to zero.
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From

Gk(x̂)−Gk(x
k) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we may select a subsequence

{xkn} converging to some x∗∗, with {xkn−1} converging to some x∗, and therefore

f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x
∗∗) − Gk(x

k)} is decreasing

to zero. From the inequality in (7.12), we conclude that the sequence {‖x∗ − xk‖22}
converges to zero, and so {xk} converges to x∗. This completes the proof of the

theorem.

7.4 Some Examples

We present some examples to illustrate the application of the convergence theorem.

7.4.1 Projected Gradient Descent

Let C be a non-empty, closed convex subset of RJ and f1(x) = ιC(x), the function that

is +∞ for x not in C and zero for x in C. Then ιC(x) is convex, but not differentiable.

We have proxγf1 = PC , the orthogonal projection onto C. The iteration in Equation

(7.3) becomes

xk = PC

(
xk−1 − γ∇f2(xk−1)

)
. (7.13)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever such mini-

mizers exist, for 0 < γ ≤ 1/L.

7.4.2 The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex sets. The

split feasibility problem (SFP) is to find x in C such that Ax is in Q. The function

f2(x) =
1

2
‖PQAx− Ax‖22 (7.14)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spectral radius

of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (7.15)

We want to minimize the function f2(x) over x in C, or, equivalently, to minimize

the function f(x) = ιC(x) + f2(x). The projected gradient descent algorithm has the
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iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
; (7.16)

this iterative method was called the CQ-algorithm in [14, 15]. The sequence {xk}
converges to a solution whenever f2 has a minimum on the set C, for 0 < γ ≤ 1/L.

In [23, 22] the CQ algorithm was extended to a multiple-sets algorithm and applied

to the design of protocols for intensity-modulated radiation therapy.

7.4.3 The Projected Landweber Algorithm

The problem is to minimize the function

f2(x) =
1

2
‖Ax− b‖22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-algorithm, with

Q = {b}. The resulting iteration is the projected Landweber algorithm [7]; when

C = RJ it becomes the Landweber algorithm [34].

7.5 Minimizing f2 over a Linear Manifold

Suppose that we want to minimize f2 over x in the linear manifold M = S+p, where

S is a subspace of RJ of dimension I < J and p is a fixed vector. Let A be an I by

J matrix such that the I columns of AT form a basis for S. For each z ∈ RI let

d(z) = f2(A
T z + p),

so that d is convex, differentiable, and its gradient,

∇d(z) = A∇f2(AT z + p),

is K-Lipschitz continuous, for K = ρ(ATA)L. The sequence {zk} defined by

zk = zk−1 − γ∇d(zk−1) (7.17)

converges to a minimizer of d over all z in RI , whenever minimizers exist, for 0 < γ ≤
1/K.

From Equation (7.17) we get

xk = xk−1 − γATA∇f2(xk−1), (7.18)

with xk = AT zk + p. The sequence {xk} converges to a minimizer of f2 over all x in

M .
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Suppose now that we begin with an algorithm having the iterative step

xk = xk−1 − γATA∇f2(xk−1), (7.19)

where A is any real I by J matrix having rank I. Let x0 be in the range of AT , so

that x0 = AT z0, for some z0 ∈ RI . Then each xk = AT zk is again in the range of AT ,

and we have

AT zk = AT zk−1 − γATA∇f2(AT zk−1). (7.20)

With d(z) = f2(A
T z), we can write Equation (7.20) as

AT
(
zk − (zk−1 − γ∇d(zk−1))

)
= 0. (7.21)

Since A has rank I, AT is one-to-one, so that

zk − zk−1 − γ∇d(zk−1) = 0. (7.22)

The sequence {zk} converges to a minimizer of d, over all z ∈ RI , whenever such

minimizers exist, for 0 < γ ≤ 1/K. Therefore, the sequence {xk} converges to a

minimizer of f2 over all x in the range of AT .

7.6 Feasible-Point Algorithms

Suppose that we want to minimize a convex differentiable function f(x) over x such

that Ax = b, where A is an I by J full-rank matrix, with I < J . If Axk = b for each

of the vectors {xk} generated by the iterative algorithm, we say that the algorithm

is a feasible-point method.

7.6.1 The Projected Gradient Algorithm

Let C be the feasible set of all x in RJ such that Ax = b. For every z in RJ , we have

PCz = PNS(A)z + AT (AAT )−1b, (7.23)

where NS(A) is the null space of A. Using

PNS(A)z = z − AT (AAT )−1Az, (7.24)

we have

PCz = z + AT (AAT )−1(b− Az). (7.25)

Using Equation (7.3), we get the iteration step for the projected gradient algorithm:

xk = xk−1 − γPNS(A)∇f(xk−1), (7.26)

which converges to a solution for 0 < γ ≤ 1/L, whenever solutions exist.

Next we present a somewhat simpler approach.
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7.6.2 The Reduced Gradient Algorithm

Let x0 be a feasible point, that is, Ax0 = b. Then x = x0 + p is also feasible if p is in

the null space of A, that is, Ap = 0. Let Z be a J by J − I matrix whose columns

form a basis for the null space of A. We want p = Zv for some v. The best v will be

the one for which the function

φ(v) = f(x0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent method, or the

Newton-Raphson method, or any other minimization technique.

The steepest descent method, applied to φ(v), is called the reduced steepest de-

scent algorithm [43]. The gradient of φ(v), also called the reduced gradient, is

∇φ(v) = ZT∇f(x),

where x = x0 +Zv; the gradient operator ∇φ is then K-Lipschitz, for K = ρ(ATA)L.

Let x0 be feasible. The iteration in Equation (7.3) now becomes

vk = vk−1 − γ∇φ(vk−1), (7.27)

so that the iteration for xk = x0 + Zvk is

xk = xk−1 − γZZT∇f(xk−1). (7.28)

The vectors xk are feasible and the sequence {xk} converges to a solution, whenever

solutions exist, for any 0 < γ < 1
K

.

7.6.3 The Reduced Newton-Raphson Method

The same idea can be applied to the Newton-Raphson method. The Newton-Raphson

method, applied to φ(v), is called the reduced Newton-Raphson method [43]. The

Hessian matrix of φ(v), also called the reduced Hessian matrix, is

∇2φ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

xk = xk−1 − Z
(
ZT∇2f(xk−1)Z

)−1
ZT∇f(xk−1). (7.29)

Let c0 be feasible. Then each xk is feasible. The sequence {xk} is not guaranteed to

converge.
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8 The SMART and EMML Algorithms

Our next examples are the simultaneous multiplicative algebraic reconstruction tech-

nique (SMART) and the expectation maximization maximum likelihood (EMML)

algorithms. For a > 0 and b > 0, the Kullback-Leibler distance, KL(a, b), is defined

as

KL(a, b) = a log
a

b
+ b− a. (8.1)

In addition, KL(0, 0) = 0, KL(a, 0) = +∞ and KL(0, b) = b. The KL distance is

then extended to nonnegative vectors coordinate-wise.

8.1 The SMART Iteration

The SMART minimizes the function f(x) = KL(Px, y), over nonnegative vectors x.

Here y is a vector with positive entries, and P is a matrix with nonnegative entries,

such that sj =
∑I

i=1 Pij > 0. Denote by X the set of all nonnegative x for which the

vector Px has only positive entries.

Having found the vector xk−1, the next vector in the SMART sequence is xk, with

entries given by

xkj = xk−1j exp s−1j

( I∑
i=1

Pij log(yi/(Px
k−1)i)

)
. (8.2)

8.2 The EMML Iteration

The EMML algorithm minimizes the function f(x) = KL(y, Px), over nonnegative

vectors x. Having found the vector xk−1, the next vector in the EMML sequence is

xk, with entries given by

xkj = xk−1j s−1j

( I∑
i=1

Pij(yi/(Px
k−1)i)

)
. (8.3)

8.3 The EMML and the SMART as Alternating Minimiza-
tion

In [11] the SMART was derived using the following alternating minimization ap-

proach.

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (8.4)
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and

q(x)ij = xjPij. (8.5)

In the iterative step of the SMART we get xk by minimizing the function

KL(q(x), r(xk−1)) =
I∑
i=1

J∑
j=1

KL(q(x)ij, r(x
k−1)ij)

over x ≥ 0. Note that KL(Px, y) = KL(q(x), r(x)).

Similarly, the iterative step of the EMML is to minimize the functionKL(r(xk−1), q(x))

to get x = xk. Note that KL(y, Px) = KL(r(x), q(x)). It follows from the identities

established in [11] that the SMART can also be formulated as a particular case of the

SUMMA.

8.4 The SMART as a Case of SUMMA

We show now that the SMART is a particular case of the SUMMA. The following

lemma is helpful in that regard.

Lemma 8.1 For any non-negative vectors x and z, with z+ =
∑J

j=1 zj > 0, we have

KL(x, z) = KL(x+, z+) +KL(x,
x+
z+
z). (8.6)

For notational convenience, we assume, for the remainder of this chapter, that sj = 1

for all j. From the identities established for the SMART in [11], we know that the

iterative step of SMART can be expressed as follows: minimize the function

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (8.7)

to get xk. According to Lemma 8.1, the quantity

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)

is nonnegative, since sj = 1. The gk(x) are defined for all nonnegative x; that is, the

set D is the closed nonnegative orthant in RJ . Each xk is a positive vector.

It was shown in [11] that

Gk(x) = Gk(x
k) +KL(x, xk), (8.8)

from which it follows immediately that Assumption 2 holds for the SMART, so that

the SMART is in the SUMMA class.
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Because the SMART is a particular case of the SUMMA, we know that the se-

quence {f(xk)} is monotonically decreasing to f(x̂). It was shown in [11] that if

y = Px has no nonnegative solution and the matrix P and every submatrix obtained

from P by removing columns has full rank, then x̂ is unique; in that case, the se-

quence {xk} converges to x̂. As we shall see, the SMART sequence always converges

to a nonnegative minimizer of f(x). To establish this, we reformulate the SMART as

a particular case of the PMA.

8.5 The SMART as a Case of the PMA

We take F (x) to be the function

F (x) =
J∑
j=1

xj log xj. (8.9)

Then

DF (x, z) = KL(x, z). (8.10)

For nonnegative x and z in X , we have

Df (x, z) = KL(Px, Pz). (8.11)

Lemma 8.2 DF (x, z) ≥ Df (x, z).

Proof: We have

DF (x, z) ≥
J∑
j=1

KL(xj, zj) ≥
J∑
j=1

I∑
i=1

KL(Pijxj, Pijzj)

≥
I∑
i=1

KL((Px)i, (Pz)i) = KL(Px, Pz). (8.12)

We let h(x) = F (x)− f(x); then Dh(x, z) ≥ 0 for nonnegative x and z in X . The

iterative step of the SMART is to minimize the function

f(x) +Dh(x, x
k−1). (8.13)

So the SMART is a particular case of the PMA.

The function h(x) = F (x) − f(x) is finite on D the nonnegative orthant of RJ ,

and differentiable on the interior, so C = D is closed in this example. Consequently,

33



x̂ is necessarily in D. From our earlier discussion of the PMA, we can conclude that

the sequence {Dh(x̂, x
k)} is decreasing and the sequence {Df (x̂, x

k)} → 0. Since the

function KL(x̂, ·) has bounded level sets, the sequence {xk} is bounded, and f(x∗) =

f(x̂), for every cluster point. Therefore, the sequence {Dh(x
∗, xk)} is decreasing.

Since a subsequence converges to zero, the entire sequence converges to zero. The

convergence of {xk} to x∗ follows from basic properties of the KL distance.

From the fact that {Df (x̂, x
k)} → 0, we conclude that Px̂ = Px∗. Equation (6.11)

now tells us that the difference Dh(x̂, x
k−1)−Dh(x̂, x

k) depends on only on Px̂, and

not directly on x̂. Therefore, the difference Dh(x̂, x
0) −Dh(x̂, x

∗) also depends only

on Px̂ and not directly on x̂. Minimizing Dh(x̂, x
0) over nonnegative minimizers x̂

of f(x) is therefore equivalent to minimizing Dh(x̂, x
∗) over the same vectors. But

the solution to the latter problem is obviously x̂ = x∗. Thus we have shown that

the limit of the SMART is the nonnegative minimizer of KL(Px, y) for which the

distance KL(x, x0) is minimized.

The following theorem summarizes the situation with regard to the SMART.

Theorem 8.1 In the consistent case the SMART converges to the unique nonnegative

solution of y = Px for which the distance
∑J

j=1 sjKL(xj, x
0
j) is minimized. In the

inconsistent case it converges to the unique nonnegative minimizer of the distance

KL(Px, y) for which
∑J

j=1 sjKL(xj, x
0
j) is minimized; if P and every matrix derived

from P by deleting columns has full rank then there is a unique nonnegative minimizer

of KL(Px, y) and at most I − 1 of its entries are nonzero.

9 Alternating Minimization

As we have seen, the SMART is best derived as an alternating minimization (AM)

algorithm. The main reference for alternating minimization is the paper [26] of Csiszár

and Tusnády. As the authors of [49] remark, the geometric argument in [26] is “deep,

though hard to follow”. As we shall see, all AM methods for which the five-point

property of [26] holds fall into the SUMMA class (see [18]).

9.1 Alternating Minimization

The alternating minimization (AM) iteration of Csiszár and Tusnády [26] provides

a useful framework for the derivation of iterative optimization algorithms. In this

section we discuss their five-point property and use it to obtain a somewhat simpler

proof of convergence for their AM algorithm. We then show that all AM algorithms

with the five-point property are in the SUMMA class.
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9.1.1 The AM Framework

Suppose that P and Q are arbitrary non-empty sets and the function Θ(p, q) satisfies

−∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We assume that, for each p ∈ P ,

there is q ∈ Q with Θ(p, q) < +∞. Therefore, b = infp∈P, q∈Q Θ(p, q) < +∞. We

assume also that b > −∞; in many applications, the function Θ(p, q) is non-negative,

so this additional assumption is unnecessary. We do not always assume there are

p̂ ∈ P and q̂ ∈ Q such that Θ(p̂, q̂) = b; when we do assume that such a p̂ and q̂ exist,

we will not assume that p̂ and q̂ are unique with that property. The objective is to

generate a sequence {(pn, qn)} such that Θ(pn, qn)→ b.

9.1.2 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0, and, having

found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

In certain applications we consider the special case of alternating cross-entropy

minimization. In that case, the vectors p and q are non-negative, and the function

Θ(p, q) will have the value +∞ whenever there is an index j such that pj > 0, but

qj = 0. It is important for those particular applications that we select q0 with all

positive entries. We therefore assume, for the general case, that we have selected q0

so that Θ(p, q0) is finite for all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by b, since we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (9.1)

Therefore, the sequence {Θ(pn, qn)} converges to some B ≥ b. Without additional

assumptions, we can say little more.

We know two things:

Θ(pn+1, qn)−Θ(pn+1, qn+1) ≥ 0, (9.2)

and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (9.3)

Equation 9.3 can be strengthened to

Θ(p, qn)−Θ(pn+1, qn) ≥ 0. (9.4)

We need to make these inequalities more precise.
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9.1.3 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (9.5)

9.1.4 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to converge to b,

that is, for B = b. The following is the main result of [26].

Theorem 9.1 If the five-point property holds then B = b.

Proof: Suppose that B > b. Then there are p′ and q′ such that B > Θ(p′, q′) ≥ b.

From the five-point property we have

Θ(p′, qn−1)−Θ(pn, qn−1) ≥ Θ(p′, qn)−Θ(p′, q′), (9.6)

so that

Θ(p′, qn−1)−Θ(p′, qn) ≥ Θ(pn, qn−1)−Θ(p′, q′) ≥ 0. (9.7)

All the terms being subtracted can be shown to be finite. It follows that the sequence

{Θ(p′, qn−1)} is decreasing, bounded below, and therefore convergent. The right side

of Equation (9.7) must therefore converge to zero, which is a contradiction. We

conclude that B = b whenever the five-point property holds in AM.

9.1.5 The Three- and Four-Point Properties

In [26] the five-point property is related to two other properties, the three- and four-

point properties. This is a bit peculiar for two reasons: first, as we have just seen, the

five-point property is sufficient to prove the main theorem; and second, these other

properties involve a second function, ∆ : P × P → [0,+∞], with ∆(p, p) = 0 for all

p ∈ P . The three- and four-point properties jointly imply the five-point property,

but to get the converse, we need to use the five-point property to define this second

function; it can be done, however.

The three-point property is the following:

The Three-Point Property

Θ(p, qn)−Θ(pn+1, qn) ≥ ∆(p, pn+1), (9.8)
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for all p. The four-point property is the following:

The Four-Point Property

∆(p, pn+1) + Θ(p, q) ≥ Θ(p, qn+1), (9.9)

for all p and q.

It is clear that the three- and four-point properties together imply the five-point

property. We show now that the three-point property and the four-point property

are implied by the five-point property. For that purpose we need to define a suitable

∆(p, p̃). For any p and p̃ in P define

∆(p, p̃) = Θ(p, q(p̃))−Θ(p, q(p)), (9.10)

where q(p) denotes a member of Q satisfying Θ(p, q(p)) ≤ Θ(p, q), for all q in Q.

Clearly, ∆(p, p̃) ≥ 0 and ∆(p, p) = 0. The four-point property holds automatically

from this definition, while the three-point property follows from the five-point prop-

erty. Therefore, it is sufficient to discuss only the five-point property when speaking

of the AM method.

9.2 Alternating Bregman Distance Minimization

The general problem of minimizing Θ(p, q) is simply a minimization of a real-valued

function of two variables, p ∈ P and q ∈ Q. In many cases the function Θ(p, q) is a

distance between p and q, either ‖p−q‖22 or KL(p, q). In the case of Θ(p, q) = ‖p−q‖22,
each step of the alternating minimization algorithm involves an orthogonal projection

onto a closed convex set; both projections are with respect to the same Euclidean

distance function. In the case of cross-entropy minimization, we first project qn onto

the set P by minimizing the distance KL(p, qn) over all p ∈ P , and then project pn+1

onto the set Q by minimizing the distance function KL(pn+1, q). This suggests the

possibility of using alternating minimization with respect to more general distance

functions. We shall focus on Bregman distances.

9.2.1 Bregman Distances

Let f : RN → R be a Bregman function [8, 24, 10], and so f(x) is convex on its

domain and differentiable in the interior of its domain. Then, for x in the domain

and z in the interior, we define the Bregman distance Df (x, z) by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (9.11)
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For example, the KL distance is a Bregman distance with associated Bregman func-

tion

f(x) =
J∑
j=1

xj log xj − xj. (9.12)

Suppose now that f(x) is a Bregman function and P and Q are closed convex subsets

of the interior of the domain of f(x). Let pn+1 minimize Df (p, q
n) over all p ∈ P . It

follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (9.13)

for all p ∈ P . Since

Df (p, q
n)−Df (p

n+1, qn) =

Df (p, p
n+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉, (9.14)

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q), (9.15)

and

∆(p, p̂) = Df (p, p̃). (9.16)

To get the four-point property we need to restrict Df somewhat; we assume from now

on that Df (p, q) is jointly convex, that is, it is convex in the combined vector variable

(p, q) (see [3]). Now we can invoke a lemma due to Eggermont and LaRiccia [27].

9.2.2 The Eggermont-LaRiccia Lemma

Lemma 9.1 Suppose that the Bregman distance Df (p, q) is jointly convex. Then it

has the four-point property.

Proof: By joint convexity we have

Df (p, q)−Df (p
n, qn) ≥

〈∇1Df (p
n, qn), p− pn〉+ 〈∇2Df (p

n, qn), q − qn〉,

where ∇1 denotes the gradient with respect to the first vector variable. Since qn

minimizes Df (p
n, q) over all q ∈ Q, we have

〈∇2Df (p
n, qn), q − qn〉 ≥ 0,
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for all q. Also,

〈∇1(p
n, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, q
n)−Df (p, p

n) = Df (p
n, qn) + 〈∇1(p

n, qn), p− pn〉

≤ Df (p, q)− 〈∇2Df (p
n, qn), q − qn〉 ≤ Df (p, q).

Therefore, we have

Df (p, p
n) +Df (p, q) ≥ Df (p, q

n).

This is the four-point property.

We now know that the alternating minimization method works for any Bregman

distance that is jointly convex. This includes the Euclidean and the KL distances.

9.3 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimization taken from

[19]. The problem is the convex feasibility problem (CFP), to find a member of the

intersection C ⊆ RJ of finitely many closed convex sets Ci, i = 1, ..., I, or, failing

that, to minimize the proximity function

F (x) =
I∑
i=1

Di(
←−
P ix, x), (9.17)

where fi are Bregman functions for which Di, the associated Bregman distance, is

jointly convex, and
←−
P ix are the left Bregman projection of x onto the set Ci, that

is,
←−
P ix ∈ Ci and Di(

←−
P ix, x) ≤ Di(z, x), for all z ∈ Ci. Because each Di is jointly

convex, the function F (x) is convex.

The problem can be formulated as an alternating minimization, where P ⊆ RIJ

is the product set P = C1 × C2 × ... × CI . A typical member of P has the form

p = (c1, c2, ..., cI), where ci ∈ Ci, and Q ⊆ RIJ is the diagonal subset, meaning

that the elements of Q are the I-fold product of a single x; that is Q = {d(x) =

(x, x, ..., x) ∈ RIJ}. We then take

Θ(p, q) =
I∑
i=1

Di(c
i, x), (9.18)

and ∆(p, p̃) = Θ(p, p̃).
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In [21] a similar iterative algorithm was developed for solving the CFP, using

the same sets P and Q, but using alternating projection, rather than alternating

minimization. Now it is not necessary that the Bregman distances be jointly convex.

Each iteration of their algorithm involves two steps:

• 1. minimize
∑I

i=1Di(c
i, xn) over ci ∈ Ci, obtaining ci =

←−
P ix

n, and then

• 2. minimize
∑I

i=1Di(x,
←−
P ix

n).

Because this method is an alternating projection approach, it converges only when the

CFP has a solution, whereas the previous alternating minimization method minimizes

F (x), even when the CFP has no solution.

9.4 Right and Left Projections

Because Bregman distances Df are not generally symmetric, we can speak of right

and left Bregman projections onto a closed convex set. For any allowable vector x,

the left Bregman projection of x onto C, if it exists, is the vector
←−
P Cx ∈ C satisfying

the inequality Df (
←−
P Cx, x) ≤ Df (c, x), for all c ∈ C. Similarly, the right Bregman

projection is the vector
−→
P Cx ∈ C satisfying the inequality Df (x,

−→
P Cx) ≤ Df (x, c),

for any c ∈ C.

The alternating minimization approach described above to minimize the proximity

function

F (x) =
I∑
i=1

Di(
←−
P ix, x) (9.19)

can be viewed as an alternating projection method, but employing both right and left

Bregman projections.

Consider the problem of finding a member of the intersection of two closed convex

sets C and D. We could proceed as follows: having found xn, minimize Df (x
n, d)

over all d ∈ D, obtaining d =
−→
P Dx

n, and then minimize Df (c,
−→
P Dx

n) over all c ∈ C,

obtaining c = xn+1 =
←−
P C
−→
P Dx

n. The objective of this algorithm is to minimize

Df (c, d) over all c ∈ C and d ∈ D; such a minimum may not exist, of course.

In [4] the authors note that the alternating minimization algorithm of [19] in-

volves right and left Bregman projections, which suggests to them iterative methods

involving a wider class of operators that they call “Bregman retractions”.
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9.5 More Proximity Function Minimization

Proximity function minimization and right and left Bregman projections play a role

in a variety of iterative algorithms. We survey several of them in this section.

9.5.1 Cimmino’s Algorithm

Our objective here is to find an exact or approximate solution of the system of I

linear equations in J unknowns, written Ax = b. For each i let

Ci = {z|(Az)i = bi}, (9.20)

and Pix be the orthogonal projection of x onto Ci. Then

(Pix)j = xj + αiAij(bi − (Ax)i), (9.21)

where

(αi)
−1 =

J∑
j=1

A2
ij. (9.22)

Let

F (x) =
I∑
i=1

‖Pix− x‖22. (9.23)

Using alternating minimization on this proximity function gives Cimmino’s algorithm,

with the iterative step

xn+1
j = xnj +

1

I

I∑
i=1

αiAij(bi − (Axn)i). (9.24)

9.5.2 Simultaneous Projection for Convex Feasibility

Now we let Ci be any closed convex subsets of RJ and define F (x) as in the previous

section. Again, we apply alternating minimization. The iterative step of the resulting

algorithm is

xn+1 =
1

I

I∑
i=1

Pix
n. (9.25)

The objective here is to minimize F (x), if there is a minimum.
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9.5.3 The Bauschke-Combettes-Noll Problem

In [5] Bauschke, Combettes and Noll consider the following problem: minimize the

function

Θ(p, q) = Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (9.26)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and P = Q is the

interior of the domain of f . They assume that

b = inf
(p,q)

Λ(p, q) > −∞, (9.27)

and seek a sequence {(pn, qn)} such that {Λ(pn, qn)} converges to b. The sequence is

obtained by the AM method, as in our previous discussion. They prove that, if the

Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ b. In this subsection we obtain

this result by showing that Λ(p, q) has the five-point property whenever D = Df is

jointly convex. Our proof is loosely based on the proof of the Eggermont-LaRiccia

lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (9.28)

A simple calculation shows that the inequality in (9.28) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥

D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (9.29)

By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥

〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉, (9.30)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, evaluated at

(pn, qn).

Since qn minimizes Λ(pn, q), it follows that

〈∇qΛ(pn, qn), q − qn〉 = 0, (9.31)
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for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (9.32)

We have

〈∇pΛ(pn, qn), p− pn〉 =

〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉. (9.33)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (9.34)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (9.35)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉 (9.36)

= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (9.37)

Using (9.32) we obtain the inequality in (9.29). This shows that Λ(p, q) has the

five-point property whenever the Bregman distance D = Df is jointly convex.

From our previous discussion of AM, we conclude that the sequence {Λ(pn, qn)}
converges to b; this is Corollary 4.3 of [5].

In [20] it was shown that, in certain cases, the expectation maximization maximum

likelihood (EM) method involves alternating minimization of a function of the form

Λ(p, q).

If ψ = 0, then {Λ(pn, qn)} converges to b, even without the assumption that the

distance Df is jointly convex. In such cases, Λ(p, q) has the form of the objective

function in proximal minimization and therefore the problem falls into the SUMMA

class (see Lemma 6.1).

9.6 AM as SUMMA

We show now that the SUMMA class of sequential unconstrained minimization meth-

ods includes all the AM methods for which the five-point property holds.
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9.7 Reformulating AM as SUMMA

For each p in the set P , define q(p) in Q as a member of Q for which Θ(p, q(p)) ≤
Θ(p, q), for all q ∈ Q. Let f(p) = Θ(p, q(p)).

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(

Θ(p, qn−1)−Θ(p, q(p))
)

(9.38)

to get pn. With

gn(p) =
(

Θ(p, qn−1)−Θ(p, q(p))
)
≥ 0, (9.39)

we can write

Gn(p) = f(p) + gn(p). (9.40)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (9.41)

It follows that AM is a member of the SUMMA class.

10 Appendix One: Theorem 2.1 Revisited

10.1 Improving Theorem 2.1

The proof of Theorem 2.1 made use of the restriction that γ be in the interval (0, 1
L

).

For convergence, we need only that γ be in the interval (0, 2
L

), as the following theorem

asserts.

Theorem 10.1 Let f : RJ → R be differentiable, with L-Lipschitz continuous gradi-

ent. For γ in the interval (0, 2
L

) the sequence {xk} given by Equation (2.9) converges

to a minimizer of f , whenever minimizers exist.

10.2 Properties of the Gradient

Theorem 10.2 Let g : RJ → R be differentiable. The following are equivalent:

• 1) g(x) is convex;

• 2) for all a and b we have

g(b) ≥ g(a) + 〈∇g(a), b− a〉 ; (10.1)
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• 3) for all a and b we have

〈∇g(b)−∇g(a), b− a〉 ≥ 0. (10.2)

Because the operator ∇f is L-Lipschitz continuous, the gradient of the function

g(x) = 1
L
f(x) is non-expansive, that is,

‖∇g(x)−∇g(y)‖ ≤ ‖x− y‖, (10.3)

for all x and y.

10.3 Non-expansive gradients

In [31] Golshtein and Tretyakov prove the following theorem.

Theorem 10.3 Let g : RJ → R be convex and differentiable. The following are

equivalent:

• 1)

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (10.4)

• 2)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
1

2
||∇g(x)−∇g(y)||22; (10.5)

and

• 3)

〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22. (10.6)

Proof: The only non-trivial step in the proof is showing that Inequality (10.4) implies

Inequality (10.5). From Theorem 10.2 we see that Inequality (10.4) implies that the

function h(x) = 1
2
‖x‖2 − g(x) is convex, and that

1

2
‖x− y‖2 ≥ g(x)− g(y)− 〈∇g(y), x− y〉 ,

for all x and y. Now fix y and define

d(z) = Dg(z, y) = g(z)− g(y)− 〈∇g(y), z − y〉,
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for all z. Since the function g(z) is convex, so is d(z). Since

∇d(z) = ∇g(z)−∇g(y),

it follows from Inequality (10.4) that

‖∇d(z)−∇d(x)‖ ≤ ‖z − x‖,

for all x and z. Then, from our previous calculations, we may conclude that

1

2
‖z − x‖2 ≥ d(z)− d(x)− 〈∇d(x), z − x〉 ,

for all z and x.

Now let x be arbitrary and

z = x−∇g(x) +∇g(y).

Then

0 ≤ d(z) ≤ d(x)− 1

2
‖∇g(x)−∇g(y)‖2.

This completes the proof.

Now we can prove Theorem 10.1.

10.4 Proof of Theorem 10.1

Let f(z) ≤ f(x), for all x; then ∇f(z) = 0. Then

‖z − xk‖2 = ‖z − xk−1 + γ∇f(xk−1)‖2 =

‖z − xk−1‖2 − 2γ〈∇f(z)−∇f(xk−1), z − xk−1〉 + γ2‖∇f(z)−∇f(xk−1)‖2.

Therefore,

‖z−xk−1‖2−‖z−xk‖2 = 2γL〈∇g(z)−∇g(xk−1), z−xk−1〉−γ2L2‖∇g(z)−∇g(xk−1)‖2 ≥

(2γL− γ2L2)‖∇g(z)−∇g(xk−1)‖2.

Since 0 < γ < 2
L

, the sequence {‖z − xk‖} is decreasing and the sequence {‖∇f(z)−
∇f(xk)‖} converges to zero. There is then a subsequence of {xk} converging to some

x∗ with ∇f(x∗) = 0, so that x∗ is a minimizer of f . Replacing the generic z with x∗,

we find that the sequence {xk} converges to x∗. This completes the proof.

We can interpret Theorem 10.3 as saying that, if g is convex and differentiable,

and its gradient is non-expansive in the 2-norm, then the gradient of g is a firmly

non-expansive operator [15].
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If f : RJ → R is convex and differentiable, and its gradient is L-Lipschitz contin-

uous, that is,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2,

then the gradient of g(x) = 1
L
f(x) is a firmly non-expansive operator. It then follows

that the operator I − γ∇f is an averaged operator, for any γ in the interval (0, 2
L

)

[15].

11 Appendix Two: Bregman-Legendre Functions

In [2] Bauschke and Borwein show convincingly that the Bregman-Legendre functions

provide the proper context for the discussion of Bregman projections onto closed

convex sets. The summary here follows closely the discussion given in [2].

11.1 Essential Smoothness and Essential Strict Convexity

Following [47] we say that a closed proper convex function f is essentially smooth

if intD is not empty, f is differentiable on intD and xn ∈ intD, with xn → x ∈
bdD, implies that ||∇f(xn)||2 → +∞. Here intD and bdD denote the interior and

boundary of the set D. A closed proper convex function f is essentially strictly convex

if f is strictly convex on every convex subset of dom ∂f .

The closed proper convex function f is essentially smooth if and only if the subdif-

ferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD (so f is differentiable

on intD) if and only if the function f ∗ is essentially strictly convex.

Definition 11.1 A closed proper convex function f is said to be a Legendre function

if it is both essentially smooth and essentialy strictly convex.

So f is Legendre if and only if its conjugate function is Legendre, in which case

the gradient operator ∇f is a topological isomorphism with ∇f ∗ as its inverse. The

gradient operator ∇f maps int dom f onto int dom f ∗. If int dom f ∗ = RJ then the

range of ∇f is RJ and the equation ∇f(x) = y can be solved for every y ∈ RJ . In

order for int dom f ∗ = RJ it is necessary and sufficient that the Legendre function f

be super-coercive, that is,

lim
||x||2→+∞

f(x)

||x||2
= +∞. (11.1)

If the effective domain of f is bounded, then f is super-coercive and its gradient

operator is a mapping onto the space RJ .

47



11.2 Bregman Projections onto Closed Convex Sets

Let f be a closed proper convex function that is differentiable on the nonempty set

intD. The corresponding Bregman distance Df (x, z) is defined for x ∈ RJ and z ∈
intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (11.2)

Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is essentially

strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set with K ∩ intD 6= ∅. Pick z ∈ intD. The

Bregman projection of z onto K, with respect to f , is

P f
K(z) = argminx∈K∩DDf (x, z). (11.3)

If f is essentially strictly convex, then P f
K(z) exists. If f is strictly convex on D then

P f
K(z) is unique. If f is Legendre, then P f

K(z) is uniquely defined and is in intD; this

last condition is sometimes called zone consistency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the norm

squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be the set K =

{(x1, x2)|x1 +x2 = 1}. The Bregman projection of (2, 1) onto K is (1, 0), which is not

in intD. The function f is not essentially smooth, although it is essentially strictly

convex. Its conjugate is the function f ∗ that is equal to one-half the norm squared

on D and equal to zero elsewhere; it is essentially smooth, but not essentially strictly

convex.

If f is Legendre, then P f
K(z) is the unique member of K ∩ intD satisfying the

inequality

〈∇f(P f
K(z))−∇f(z), P f

K(z)− c〉 ≥ 0, (11.4)

for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c, P
f
K(z)) +Df (P

f
K(z), z), (11.5)

for all c ∈ K.

11.3 Bregman-Legendre Functions

Following Bauschke and Borwein [2], we say that a Legendre function f is a Bregman-

Legendre function if the following properties hold:
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B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.

B2: if x is in D but not in intD, for each positive integer n, yn is in intD with

yn → y ∈ bdD and if {Df (x, y
n)} remains bounded, then Df (y, y

n) → 0, so that

y ∈ D.

B3: if xn and yn are in intD, with xn → x and yn → y, where x and y are in D but

not in intD, and if Df (x
n, yn)→ 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges to a mem-

ber of K provided that one of the following holds: 1) f is Bregman-Legendre; 2)

K ∩ intD 6= ∅ and dom f ∗ is open; or 3) dom f and dom f ∗ are both open.

The Bregman functions form a class closely related to the Bregman-Legendre

functions. For details see [10].

11.4 Useful Results about Bregman-Legendre Functions

The following results are proved in somewhat more generality in [2].

R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, y
n)→ 0.

R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, y
n)→ +∞.

R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅ and

Df (x
n, yn)→ 0, then x = y and y ∈ int D.

R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and Df (x, y
n)→ 0,

then x = y.

As a consequence of these results we have the following.

R5: If {Df (x, y
n)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, y
n)} is eventually finite, we have x ∈ D. By Property

B1 above it follows that the sequence {yn} is bounded; without loss of generality, we

assume that {yn} → y, for some y ∈ D. If x is in int D, then, by result R2 above, we

know that y is also in int D. Applying result R3, with xn = x, for all n, we conclude

that x = y. If, on the other hand, x is in D, but not in int D, then y is in D, by

result R2. There are two cases to consider: 1) y is in int D; 2) y is not in int D. In

case 1) we have Df (x, y
n)→ Df (x, y) = 0, from which it follows that x = y. In case

2) we apply result R4 to conclude that x = y.
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