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Abstract. Let C be a nonempty subset of an arbitrary set X and
f : X → R. The objective is to minimize f(x) over x ∈ C. We get xk,
for k = 1, 2, ..., by minimizing Gk(x) = f(x) + gk(x) over all x ∈ X.
We call this approach an auxiliary-function (AF) method if gk : X →
[0,+∞], gk(xk−1) = 0, and gk(x) < +∞ if and only if x ∈ C. Then
{f(xk)} ↓ β∗ ≥ −∞. We consider conditions on the auxiliary functions
gk that guarantee that β∗ = β

.
= infx∈C f(x).

An AF algorithm is said to be in the SUMMA class if the SUMMA
Inequality, Gk(x) − Gk(xk) ≥ gk+1(x), for all x ∈ X, holds for all k,
in which case it follows that β∗ = β. We consider a variety of AF
algorithms that either are in the SUMMA class or can be reformulated
to be such. We also study some AF algorithms that are not in the
SUMMA class, but for which β∗ = β. This leads to a larger class, the
SUMMA2 class of AF algorithms.

An AF algorithm is a proximal minimization algorithm (PMA) if
gk(x) = d(x, xk−1), where d : X × X → [0,+∞] is a distance, so that
d(x, y) = 0 if and only if x = y. Optimization transfer (OT) algo-
rithms in statistics can be reformulated as PMA algorithms, as can the
alternating-minimization (AM) algorithms of Csiszár and Tusnády. The
“five-point property”(5PP) in AM, used by Csiszár and Tusnády to get
β∗ = β, is equivalent to the SUMMA Inequality, while the “weak”5PP
(w5PP) implies membership in the SUMMA2 class.

1. Introduction

Let C be a nonempty subset of an arbitrary set X and f : X → R. We
begin by considering the general problem of minimizing f(x) over x ∈ C.
Later in our discussion we shall let C ⊆ X

.
= RN be a nonempty closed

convex set. To enforce the restriction to the subset C we select auxiliary
functions gk : X → [0,+∞] with gk(x) finite if and only if x ∈ C. We
say that an iterative algorithm for minimizing f(x) over x ∈ C ⊆ X is an
auxiliary-function (AF) method if xk ∈ C minimizes Gk(x) = f(x) + gk(x),
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2 C. BYRNE

where gk(x
k−1) = 0. We can see easily that the sequence {f(xk)} is decreas-

ing and converges to some β∗ ≥ −∞. There need not be an x ∈ C that
minimizes f(x); therefore we shall focus on conditions on the auxiliary func-
tions gk(x) that guarantee that β∗ = β

.
= infx∈C f(x). Auxiliary-function

methods are similar to, but more general than, the sequential unconstrained
minimization techniques treated in the classic text of Fiacco and McCormick
[58]. In addition to enforcing restriction to a subset, as with barrier-function
methods, auxiliary functions can be introduced to stabilize an ill-conditioned
problem through regularization, to accelerate convergence to a solution, as
sometimes happens with relaxation methods, or to simplify calculations.

1.1. An Ill-conditioned Problem. Let A be a real M by N matrix, with
M ≥ N and ATA invertible. If the ratio of the largest eigenvalue of ATA to
the smallest is much greater than one the problem of minimizing the function
f(x) = 1

2‖Ax − b‖
2 will be ill-conditioned. In that case, small changes in b

can lead to large changes in the computed solution. Sometimes the norm of
the computed solution will be unreasonably large. This happens in band-
limited extrapolation [36], but, somewhat surprisingly, the instability can
be helpful in solving the optical phase retrieval problem [15]. To regularize
the problem and control the growth of the norm we can minimize f(x) +
1
k‖x‖

2 to obtain the approximate solution xk. As k → +∞ the sequence

{f(xk)} ↓ inf f(x). With additional conditions we can have convergence
of {xk} to a minimizer of f(x). However, as pointed out in [46], as k →
+∞ the constrained problem becomes increasingly as ill-conditioned as the
unconstrained problem.

1.2. Barrier-function Methods. The barrier-function approach is a good
illustration of the use of AF algorithms for constrained minimization. Sup-
pose that X is an arbitrary set, C ⊆ X a nonempty subset, f : X → R, and
we want to minimize f(x) over x ∈ C. Using the barrier-function approach,
we select a function b : X → (0,+∞], with b(x) < +∞ if and only if x ∈ C,
and minimize Bk(x) = f(x) + 1

k b(x) to get xk ∈ C. If C = X, then this is
regularization. We have the following theorem.

Theorem 1.1. The sequence {f(xk)} is decreasing to a limit β∗ ≥ β
.
=

infx∈C f(x), the sequence {b(xk)} is increasing, and β∗ = β.

Proof. Since Bk(x
k) ≤ Bk(xk−1) and Bk−1(xk−1) ≤ Bk−1(xk), we have

1

k − 1
[b(xk−1)− b(xk)] ≥ f(xk−1)− f(xk) ≥ 1

k
[b(xk−1)− b(xk)],

establishing the first two claims in the theorem. Now suppose that β∗ > β.
Then there must be z ∈ C with f(xk) ≥ β∗ > f(z) ≥ β, for all k. From
Bk(z) ≥ Bk(xk) we get

1

k
(b(z)− b(xk)) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0.

But 1
k

(
b(z)− b(xk)

)
→ 0, since 1

k b(z) ↓ 0. �
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It is helpful to note that minimizing Bk(x) is equivalent to minimizing

kf(x) + b(x) = f(x) + (k − 1)f(x) + b(x) = f(x) + (k − 1)Bk−1(x)

and therefore xk minimizes

Gk(x) = f(x) + (k − 1)Bk−1(x)− (k − 1)Bk−1(xk−1) = f(x) + dk(x, x
k−1),

with dk(x, x
k−1) ≥ 0 and dk(x

k−1, xk−1) = 0. This is something like a
proximal minimization algorithm to be discussed shortly, except that the
distances dk vary with k and depend on the function f(x). With gk(x) =
dk(x, x

k−1) above we have an AF algorithm and

Gk(x)−Gk(xk) = gk+1(x),(1.1)

which will serve to motivate our definition of the SUMMA class of AF al-
gorithms. A penalty-function method for minimizing f(x) over x ∈ C is to
minimize f(x)+kp(x) to get xk, where p : X → [0,+∞) and p(x) = 0 if and
only if x ∈ C. Writing f(x) + kp(x) as p(x) + 1

kf(x), we find that penalty-
function methods can be analyzed using the barrier-function approach [35].
For further discussion of barrier-function and penalty-function methods and
related ideas see [58].

1.3. Proximal Minimization Algorithms. Once again, however, the con-
strained problem of minimizing Bk(x) may grow increasingly ill-conditioned
as k increases. Censor and Zenios [46] suggest that we consider relaxation
methods to minimize f(x) over x ∈ C. General proximal minimization al-
gorithms (PMA) are a type of relaxation algorithms in which we minimize
f(x) + d(x, xk−1) to get xk, where f : X → R, d(x, y) ≥ 0 and d(x, y) = 0
if and only if x = y. Clearly the sequence {f(xk)} is decreasing to some
β∗ ≥ β

.
= infx∈C f(x). Again, we want β∗ = β. With additional conditions

placed on X, f and d we can say more, as we shall see.

1.4. Using Bregman Distances. The methods called proximal minimiza-
tion using D-functions (PMD) in [46], and called in this paper PMAB
methods, involve minimizing Gk(x)

.
= f(x) + Dh(x, xk−1) to get xk, where

X = RN , Dh(x, y) is a Bregman distance [10, 6, 46, 24, 13], with

Dh(x, y)
.
= h(x)− h(y)− 〈∇h(y), x− y〉(1.2)

and f : X → R is convex. The reader should note that we use the term
Bregman distance in a somewhat looser sense than in [46, 13] and elsewhere.
For us a generalized distance Dh(x, z) will be called a Bregman distance if
it has the form given in Equation (1.2), where h : C ⊆ RN → R is convex
on the closed convex set C and differentiable in the nonempty interior of
C. We will assume also that, for each k, xk is the unique minimizer of
f(x) +Dh(x, xk−1) and lies in the interior of C.

To prove convergence of the PMAB algorithm we will need additional as-
sumptions. As we shall see shortly, all PMAB algorithms are in the SUMMA
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class, since

Gk(x)−Gk(xk) ≥ Dh(x, xk)(1.3)

for all x. Therefore, the sequence {f(xk)} ↓ β = infx∈C f(x). From the
inequality in (1.3) we have

Dh(x, xk−1)−Dh(x, xk) ≥ f(xk)− f(x),(1.4)

for all x. If there is x̂ ∈ C such that f(x) ≥ f(x̂), for all x ∈ C, then

Dh(x̂, xk−1)−Dh(x̂, xk) ≥ f(xk)− f(x̂) ≥ 0,(1.5)

for all k. Therefore, the sequence {Dh(x̂, xk)} is decreasing. If the Bregman
distance Dh(z, ·) has bounded level sets, then the sequence {xk} is bounded,
there is a cluster point of the sequence, call it x∗, and f(x∗) = f(x̂). Replac-
ing x̂ with x∗, we find that the sequence {Dh(x∗, xk)} is decreasing. Under
reasonable assumptions on Dh [46, 35] it will follow that a subsequence con-
verges to zero, the entire sequence converges to zero, and the sequence {xk}
converges to x∗.

2. The SUMMA Class

An AF algorithm is said to belong to the SUMMA class if the following
SUMMA Inequality holds for all k and x ∈ X:

Gk(x)−Gk(xk) ≥ gk+1(x).(2.1)

We already know that {f(xk)} ↓ β∗ ≥ β
.
= infx∈C f(x). We have the

following theorem.

Theorem 2.1. If an AF algorithm is in the SUMMA class then β∗ = β.

Proof. From the inequality in (2.1) we have

f(x) + gk(x) ≥ f(xk) + gk(x
k) + gk+1(x).

If β∗ > β then there is z ∈ C with

β∗ > f(z) ≥ β,

so that

gk(z)− gk+1(z) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0.

But the decreasing sequence {gk(z)} cannot have successive increments bounded
away from zero. �

From Equation (1.1) we see that the barrier-function algorithms are in the
SUMMA class. Proximal minimization algorithms using Bregman distances
(PMAB) are also in the SUMMA class.

Theorem 2.2. Let f : RN → (−∞,+∞] be convex and, for each k, gk(x) =
Dh(x, xk−1). Then the AF algorithm is in the SUMMA class.
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Proof. Since xk minimizes f(x) + h(x)− h(xk−1)− 〈∇h(xk−1), x− xk−1) it
follows that

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1),

where ∂f(xk) denotes the subdifferential of f at xk. Therefore, there is
uk ∈ ∂f(xk) with

∇h(xk−1) = uk +∇h(xk).

From

Gk(x)−Gk(xk) = f(x) +Dh(x, xk−1)− f(xk)−Dh(xk, xk−1)

= f(x) + h(x)− f(xk)− h(xk)− 〈∇h(xk−1), x− xk)〉,

it follows that

Gk(x)−Gk(xk) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, xk)

and so

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x).

�

Corollary 2.3. If gk(x) = 1
2‖x−x

k−1‖2 then the AF algorithm to minimize

the convex function f(x) over all x ∈ RN is PMAB and therefore is in the
SUMMA class.

For a > 0 and b > 0, KL(a, b) = a log a
b + b − a is the Kullback-Leibler

distance [64], which is positive, unless a = b. Using limits, we define
KL(a, 0) = +∞ and KL(0, b) = b. We then extend coordinate-wise to
get

KL(x, z) =
J∑
j=1

KL(xj , zj)

for nonnegative vectors x and z. With x+
.
=
∑J

j=1 xj we have the identity

KL(x, z) = KL(x+, z+) +KL(x,
x+

z+
z)(2.2)

from which we get the useful inequality

KL(x+, z+) ≤ KL(x, z).(2.3)

The KL distance is a Bregman distance Dh for h(x) =
∑J

j=1 xj log xj − xj .

Corollary 2.4. If gk(x) = KL(x, xk−1), for nonnegative vectors x and
xk−1, then the AF algorithm to minimize the convex function f(x) over all
x ≥ 0 is PMAB and therefore is in the SUMMA class.
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3. The EM Algorithm and PMA

Maximizing the likelihood function is a well known tool in statistical pa-
rameter estimation. Assume that Y is a random vector governed by a proba-
bility density function or probability function fY (y|θ∗), for some parameter
vector θ∗ ∈ Θ. We have one realization y of Y , from which we want to
estimate θ∗. Our maximum-likelihood estimate is the θ for which the like-
lihood function L(θ)

.
= fY (y|θ) is maximized over θ ∈ Θ. The expectation

maximization (EM) algorithm [52, 67] is not one algorithm, but a template
or recipe for the design of iterative methods for maximizing likelihood in
statistics. As discussed in [35], the usual presentation of the EM algorithm,
as found in [67] and elsewhere, is flawed. The STEM approach discussed
here can be viewed as an improvement upon the usual EM method, although
the two are the same in most cases.

In this section we present our nonstochastic EM for optimization and
define our STEM template in terms of NSEM. It will follow from results
concerning NSEM that likelihood is always increasing for STEM algorithms.

3.1. NSEM. We assume that there is a function b : Θ × Ω → R+, where
(Ω, µ) is a measure space and

a(θ)
.
=

∫
Ω
b(θ, ω)dµ(ω).(3.1)

Let f(θ) = −a(θ) and θ0 be arbitrary. For k = 1, 2, ..., we maximize∫
Ω
b(θk−1, ω) log b(θ, ω)dµ(ω)(3.2)

to get θk. Note that the integration may be replaced by summation, as
needed. Using the Kullback–Leibler distance, we can reformulate the NSEM.

With the shorthand notation b(θ) = b(θ, ω) we define

KL (b(θ), b(γ)) =

∫
Ω
KL (b(θ, ω), b(γ, ω)) dµ(ω).

Proposition 3.1. The sequence {a(θk)} is increasing.

Proof. We have

a(θk−1) = a(θk−1)−KL
(
b(θk−1), b(θk−1)

)
≤ a(θk)−KL

(
b(θk−1), b(θk)

)
.

Therefore,

a(θk)− a(θk−1) ≥ KL
(
b(θk−1), b(θk)

)
.

�

We see easily that θk minimizes

Gk(θ) = KL
(
b(θk−1), b(θ)

)
− a(θ) = f(θ) + d(θ, θk−1),(3.3)

for
d(θ, γ) = KL (b(γ), b(θ)) .
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Consequently, the NSEM is a PMA.

3.2. STEM. Now we define the STEM class of iterative algorithms as a
subclass of the NSEM. For any random vectors X and Y governed by the
joint probability density function or joint probability function fX,Y (x, y|θ)
we have

fY (y|θ) =

∫
fX,Y (x, y|θ)dx.(3.4)

With a(θ) = fY (y|θ) and b(θ, ω) = fX,Y (x, y|θ) we see that Equation (3.4)
becomes Equation (3.1). For the case of probability functions, the integra-
tion is replaced by summation. So our STEM template fits into that of the
NSEM. The iterative step is then to find θk by maximizing the function∫

fX,Y (x, y|θk−1) log fX,Y (x, y|θ)dx.

It follows from our discussion of the NSEM that the sequence {fY (y|θk)} is
increasing. Of course, additional restrictions are needed to prove that the
sequence {θk} converges to a maximizer of the likelihood function L(θ) =
fY (y|θ).

4. Concerning Computation

We haven’t said anything yet about the difficulties involved in computing
the xk in AF algorithms. Minimizing f(x) + 1

2‖x− x
k−1‖2 leads to

xk = xk−1 −∇f(xk),

so we do not have a closed-form expression for xk. Similarly, minimizing
f(x) +KL(x, xk−1) over x ≥ 0 leads to

log xkj = log xk−1
j −∇f(xk)j .

Once again, we have no closed-form expression for xk. How can we remedy
this situation?

4.1. A Remedy. Suppose that we select g(x) convex and differentiable,
with h(x)

.
= g(x)− f(x) also convex. Then minimizing f(x) + Dh(x, xk−1)

is equivalent to minimizing f(x)+Dg(x, x
k−1)−Df (x, xk−1). Therefore, we

have
∇g(xk) = ∇g(xk−1)−∇f(xk−1).

Now suppose we have selected g(x) so that this equation is easily solved.
Then we would have a closed-form expression for the iterate xk.

For example, suppose that ∇f(x) is L-Lipschitz continuous and 0 < γ <
1
L . Then h(x)

.
= 1

2γ ‖x‖
2 − f(x) is convex. Minimizing f(x) + Dh(x, xk−1)

now leads to
xk = xk−1 − γ∇f(xk−1),

which is a gradient-descent algorithm. If f(x) = 1
2‖Ax − b‖2 we get the

Landweber algorithm [65].



8 C. BYRNE

The simultaneous multiplicative algebraic reconstruction technique, the
SMART [51, 74, 44, 17, 19], is an iterative algorithm that minimizes f(x) =
KL(Px, y) over x ≥ 0, where P is an I by J matrix with nonnegative
entries and y is a positive vector. If we enforce the nonnegativity con-
straint by minimizing KL(Px, y) + KL(x, xk−1) to get xk we do not ob-
tain xk in closed form. However, if the column sums of the matrix P are
all equal to one, then KL(Px, Pxk−1) = Df (x, xk−1) and Dh(x, xk−1)

.
=

KL(x, xk−1) −KL(Px, Pxk−1) is a Bregman distance. The SMART itera-
tive step, obtained by minimizing KL(Px, y) +Dh(x, xk−1), is

xkj = xk−1
j exp

(
I∑
i=1

Pi,j log
yi

Pxk−1
i

)
.(4.1)

We shall discuss the SMART in more detail later in this paper.

4.2. Forward-Backward Splitting. The forward-backward splitting (FBS)
algorithm [49] is used to minimize f(x) = f1(x) + f2(x), where both f1 and
f2 are convex, but f1 need not be differentiable. When ∇f2(x) is L-Lipschitz
continuous and 0 < γ < 1

L we have a Bregman distance

Dh(x, xk−1)
.
=

1

2γ
‖x− xk−1‖2 −Df2(x, xk−1).

We minimize Gk(x) = f(x) +Dh(x, xk−1) to get

0 ∈ ∂f1(xk) +∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1),

or

xk−1 − γ∇f2(xk−1) ∈ xk + γ∂f1(xk).

It follows from a characterization of Moreau’s proximity operator prox [68,
69, 70, 49] that

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
.(4.2)

This is the FBS iterative step. The FBS is a PMAB algorithm, so we
know that the sequence {f(xk)} is decreasing to β

.
= infx f(x). If f2(x) =

1
2‖Ax − b‖

2 and f1(x) = ιC(x), the function equal to zero for x ∈ C and
equal to +∞ otherwise, we get the projected Landweber algorithm. We
have the following convergence theorem for the FBS algorithm.

Theorem 4.1. The sequence {xk} given by Equation (4.2) converges to a
minimizer of the function f(x) = f1(x) + f2(x), whenever minimizers exist.

Proof. A relatively simple calculation shows that

Gk(x)−Gk(xk) =
1

2γ
‖x− xk‖22 +

(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
.(4.3)
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Since

(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(xk),

it follows that(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(xk) ≥
1

2γ
‖x− xk‖22 ≥ gk+1(x);(4.4)

the SUMMA Inequality holds and the FBS algorithm is in the SUMMA
class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),
so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(x

k) ≥ 0.

Therefore, the sequence {Gk(x̂) − Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(xk) ≥
1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we may select a
subsequence {xkn} converging to some x∗∗, with {xkn−1} converging to some
x∗, and therefore f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x∗∗)−Gk(xk)} is de-
creasing to zero. From the inequality in (4.4), we conclude that the sequence
{‖x∗−xk‖22} converges to zero, and so {xk} converges to x∗. This completes
the proof of the theorem. �

As shown in [49], using the Baillon–Haddad Theorem [3, 9, 37] and the
theory of firmly non-expansive operators we can allow 0 < γ < 2

ρ(ATA)
.

4.3. The Split Feasibility Problem. We apply the FBS algorithm to
solve the split feasibility problem (SFP) [40, 24]: given a real M by N matrix
A, a closed convex set C ⊆ RN and a closed convex set Q ⊆ RM , find x ∈ C
with Ax ∈ Q. We consider the more general problem of minimizing the
convex differentiable function f2(x) = 1

2‖PQAx − Ax‖
2 over x ∈ C, where

PQ denotes the orthogonal projection onto the set Q. With f1(x) = ιC(x)
we know proxγf1(x) = PC(x), and the gradient of f2(x) is

∇f2(x) = AT (I − PQ)Ax.
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For 0 < γ < 1
ρ(ATA)

the iterative sequence

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
(4.5)

converges to a minimizer of f(x) over x ∈ C, whenever such minimizers
exist [27]. In recent work Yair Censor and his colleagues have generalized
the CQ algorithm and applied it to problems in proton-beam and x-ray
radiation therapy [42, 43, 72]. If A = I, the identity matrix, and γ = 1,
then the iteration in Equation (4.5) becomes xk = PCPQx

k−1, which is the
alternating orthogonal projection algorithm investigated in [47]. It is also
an example of an alternating minimization algorithm, which we discuss later
in this paper.

5. The SUMMA2 Class

We turn now to several AF algorithms that are not in the SUMMA class,
but for which {f(xk)} ↓ β∗ = β

.
= infx∈C f(x).

5.1. Defining the SUMMA2 Class. We say that an AF method for min-
imizing f(x) over x ∈ C is in the SUMMA2 class if, for each sequence
generated by the algorithm, there are functions hk : C → R+ such that

hk(x) + f(x) ≥ hk+1(x) + f(xk),(5.1)

for all x ∈ C. We have the following theorem.

Theorem 5.1. If an AF algorithm is in the SUMMA2 class, then β∗ = β.

Proof. If {f(xk)} ↓ β∗ > β
.
= infx∈C f(x) then there is z ∈ C with β∗ >

f(z) ≥ β. Consequently, we have

hk(z)− hk+1(z) ≥ f(xk)− f(z) ≥ β∗ − f(z) > 0,

for all k, which cannot happen. �

5.2. The Approach of Auslender and Teboulle. The method of Aus-
lander and Teboulle [2] is a particular example of an AF algorithm not in
the SUMMA class, but for which β∗ = β. We take C to be a closed, convex
subset of RN , with nonempty interior U . At the kth step of their method
one minimizes a function

Gk(x) = f(x) + d(x, xk−1)(5.2)

to get xk. Their distance d(x, y) is defined for x and y in U , and the
gradient with respect to the first variable, denoted ∇1d(x, y), is assumed
to exist. The distance d(x, y) is not assumed to be a Bregman distance.
Instead, they assume that the distance d has an associated induced proximal
distance p(a, b) ≥ 0, finite for a and b in U , with p(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ p(c, a)− p(c, b),(5.3)

for all c in U . They show that, if the distance d has associated with it an
induced proximal distance, then β∗ = β.
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They consider two types of distances d for which there are induced prox-
imal distances p: the first type are the Bregman distances d = Dh, which
are self-proximal in the sense that d = p; the second type are those having
the form

d(x, z) = dφ(x, z)
.
=

N∑
n=1

znφ(
xn
zn

),

for functions φ having certain properties to be discussed below. In such cases
the induced proximal distance is p(x, z) = φ

′′
(1)KL(x, z), where KL(x, z)

is the Kullback–Leibler distance. Then for all x ≥ 0 we have

φ
′′
(1)
(
KL(x, xk)−KL(x, xk+1)

)
≥ f(xk)− f(x̂).(5.4)

The Hellinger distance,

H(x, z) =
N∑
n=1

(
√
xn −

√
zn)2 ,

fits into this framework.
The required conditions on the function φ(t) are as follows: φ : R →

(−∞,+∞] is lower semi-continuous, proper and convex, with dom φ ⊆ R+,
and dom ∂φ = R++. In addition, the function φ is C2, strictly convex, and
nonnegative on R++, with φ(1) = φ′(1) = 0, and

φ′′(1)

(
1− 1

t

)
≤ φ′(t) ≤ φ′′(1) log(t).(5.5)

For the Hellinger case we have φ(t) = (
√
t − 1)2, so that these conditions

are satisfied and for all x ≥ 0 we have

KL(x, xk)−KL(x, xk+1) ≥ 2
(
f(xk)− f(x)

)
.(5.6)

It can be shown that, whenever there is an induced proximal distance,
then, for any x, we have

p(x, xk)− p(x, xk+1) ≥ f(xk)− f(x).(5.7)

With hk(x)
.
= p(x, xk), the algorithm falls into the SUMMA2 class, and so

β∗ = β.

5.3. The EMML Algorithm. The expectation maximization maximum
likelihood (EMML) algorithm [77, 19] is an iterative algorithm that mini-
mizes f(x) = KL(y, Px) over x ≥ 0. The iterative step of the EMML,
similar to that in Equation (4.1), is

xkj = xk−1
j

(
I∑
i=1

Pi,j

(
yi

Pxk−1
i

))
.(5.8)

The EMML algorithm is not PMAB, and not in the SUMMA class, although
it does minimize f(x) over x ≥ 0. As we shall see, the reason that β∗ = β
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here is that the EMML algorithm is in the broader SUMMA2 class of AF
methods.

6. Alternating Minimization

In this section we review the basics of alternating minimization [50], and
then show that AM and PMA are equivalent. Alternating minimization
plays an important role in the application of the EM algorithm [52] to med-
ical image reconstruction [75, 77, 19].

Proximal minimization algorithms (PMA), alternating minimization meth-
ods (AM), and optimization transfer (OT) are three well studied areas in-
volving iterative minimization algorithms. Optimization transfer, also called
surrogate-function methods or majorization minimization, commonly used in
statistics [1, 66, 48] (see also [53]), uses g(x|z) ≥ f(x) = g(x|x) and xk is
obtained by minimizing g(x|xk−1). With d(x, z)

.
= g(x|z)− f(x), it is clear

that the OT iteration is equivalent to minimizing f(x) + d(x, xk−1), which
shows that OT methods are equivalent to PMA. Alternating minimization
methods are also equivalent to PMA, although showing this takes a bit more
work [33].

6.1. AM Algorithms are PMA. Let Φ : P × Q → (−∞,+∞], where
P and Q are arbitrary nonempty sets. In the AM approach we minimize
Φ(p, qk−1) over p ∈ P to get pk and then minimize Φ(pk, q) over q ∈ Q to
get qk. It follows immediately that the sequence {Φ(pk, qk)} is decreasing.
We want

{Φ(pk, qk)} ↓ β .
= inf{Φ(p, q)|p ∈ P, q ∈ Q}.(6.1)

For each p select q(p) for which Φ(p, q(p)) ≤ Φ(p, q) for all q ∈ Q. Then
define f(p)

.
= Φ(p, q(p)). Since qk−1 = q(pk−1), we have

Φ(p, qk−1) = Φ(p, q(pk−1)).

Minimizing Φ(p, qk−1) to get pk is equivalent to minimizing

Gk(p) = Φ(p, q(p)) + Φ(p, q(pk−1))− Φ(p, q(p)) = f(p) + gk(p),(6.2)

where
gk(p) = Φ(p, q(pk−1))− Φ(p, q(p)).

Clearly, gk(p) ≥ 0 and gk(p
k−1) = 0. Therefore, every AM algorithm is also

an AF algorithm.
We define a “distance” d(p, p′) on the set P × P by

d(p, p′)
.
= Φ(p, q(p′))− Φ(p, q(p)).(6.3)

Then we see that pk is obtained by minimizing f(p) + d(p, pk−1). Conse-
quently, every AM algorithm is PMA. The converse is obvious: minimizing
Φ(x, xk−1) = f(x) + d(x, xk−1) with respect to x gives x = xk and minimiz-
ing Φ(xk, x) = f(xk) + d(xk, x) gives x = xk again. We can formulate an
AM algorithm as OT by choosing Φ(p, q(p′)) to play the role of g(x|z) in
OT.
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6.2. The Five-Point Property. In [50] Csiszár and Tusnády show that,
if the function Φ possesses what they call the five-point property (5PP),

Φ(p, q) + Φ(p, qk−1) ≥ Φ(p, qk) + Φ(pk, qk−1),(6.4)

for all p, q, and k, then (6.1) holds. There seemed to be no convincing
explanation of why the five-point property should be used, except that it
works. I was quite surprised when I discovered that, when the AM method
is reformulated as above, as an AF method to minimize a function of the
single variable p, the five-point property for AM is precisely the SUMMA
Inequality.

It is often the case that AM methods are described using the three- and
four-point properties (3PP and 4PP). The 3PP is

Φ(p, qk−1)− Φ(pk, qk−1) ≥ ∆(p, pk) ≥ 0,(6.5)

where ∆ : P × P → R+ and ∆(p, p) = 0, for all p ∈ P . The 4PP is the
following:

∆(p, pk) ≥ Φ(p, qk)− Φ(p, q),(6.6)

for all p, q, and k. Clearly, the 3PP and 4PP together imply the 5PP.
When the 3PP and 4PP hold we have

∆(p, p′) ≥ d(p, p′) = Φ(p, q(p′))− Φ(p, q(p)).

If we redefine ∆ by ∆(p, p′)
.
= d(p, p′), then the 4PP is automatically true

and the 3PP becomes equivalent to the 5PP. The 3PP is now

Φ(p, qk−1)− Φ(pk, qk−1) ≥ d(p, pk).(6.7)

The weak 3PP (w3PP), defined by

Φ(p, qk−1)− Φ(pk, qk) ≥ d(p, pk),(6.8)

implies that the algorithm is in the SUMMA2 class, so is sufficient to guar-
antee that β∗ = β.

It is shown in [56] that a Bregman distance that is jointly convex enjoys
the 5PP with respect to closed, convex sets P and Q. Therefore Φ(p, q) =
1
2‖p − q‖2 and Φ(p, q) = KL(p, q) both have the 5PP for appropriately
defined P and Q. Related work is found in [8].

7. The SMART and the EMML Algorithms

In this section we present the tandem development of the SMART and
the EMML algorithms, as originally published in [19]. We assume that y
is a positive vector in RI , P an I by J matrix with nonnegative entries
Pi,j , sj =

∑I
i=1 Pi,j > 0, and we want to find a nonnegative solution or

approximate solution x for the linear system of equations y = Px. The
EMML algorithm will minimize KL(y, Px), while the SMART will minimize
KL(Px, y), over x ≥ 0. For notational simplicity we shall assume that the
system has been normalized so that sj = 1 for each j.
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7.1. The SMART. The SMART algorithm [51, 74, 44, 17, 19] minimizes
the function f(x) = KL(Px, y), over nonnegative vectors x. Having found
the vector xk−1, the next vector in the SMART sequence is xk, with entries
given by

xkj = xk−1
j exp

(
I∑
i=1

Pij log

(
yi

(Pxk−1)i

))
.(7.1)

The iterative step of the SMART can be described as xk = Sxk−1, where S
is the operator defined by

(Sx)j = xj exp

(
I∑
i=1

Pij log

(
yi

(Px)i

))
.(7.2)

In our proof of convergence of the SMART we will show that any cluster
point x∗ of the SMART sequence {xk} is a fixed point of the operator S. To
avoid pathological cases in which Px∗i = 0 for some index i, we can assume,
at the outset, that all the entries of P are positive. This is wise, in any case,
since the model of y = Px is unlikely to be exactly accurate in applications.

7.2. The EMML Algorithm. The EMML algorithm minimizes the func-
tion f(x) = KL(y, Px), over nonnegative vectors x. Having found the vector
xk−1, the next vector in the EMML sequence is xk, with entries given by

xkj = xk−1
j

(
I∑
i=1

Pij

(
yi

(Pxk−1)i

))
.(7.3)

The iterative step of the EMML algorithm can be described as xk = Mxk−1,
where M is the operator defined by

(Mx)j = xj

(
I∑
i=1

Pij

(
yi

(Px)i

))
.(7.4)

As we shall see, the EMML algorithm forces the sequence {KL(y, Pxk)} to
be decreasing. It follows that (Px∗)i > 0, for any cluster point x∗ and for
all i.

7.3. The SMART as AM. In [17] the SMART was derived using the
following alternating minimization (AM) approach. Let X be the set of all
nonnegative x for which Px has only positive entries; all positive x are in
X.

For each x ∈ X, let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPij

(
yi

(Px)i

)
,(7.5)

and

q(x)ij = xjPij .(7.6)

In the iterative step of the SMART we get xk by minimizing the function
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Gk(x) = KL(q(x), r(xk−1)) =
I∑
i=1

J∑
j=1

KL(q(x)ij , r(x
k−1)ij)(7.7)

over x ≥ 0. Note that f(x) = KL(Px, y) = KL(q(x), r(x)). We have the
following helpful Pythagorean identities:

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz);(7.8)

and

KL(q(x), r(z)) = KL(q(Sz), r(z)) +KL(x, Sz).(7.9)

Note that it follows from Equation (2.3) that KL(x, z)−KL(Px, Pz) ≥ 0.
From the Pythagorean identities we find that xk is obtained by minimizing

Gk(x) = KL
(
q(x), r(xk−1)

)
=

KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1),(7.10)

so that

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1).(7.11)

Then

Gk(x)−Gk(xk) = KL(x, xk) ≥ KL(x, xk)−KL(Px, Pxk) = gk+1(x).

Therefore, the SMART is in the SUMMA class. It follows from the SUMMA
Inequality that, for all x ≥ 0,

gk(x) + f(x) ≥ gk+1(x) + f(xk).(7.12)

Since
J∑
j=1

xkj ≤
I∑
i=1

yi,

the sequence {xk} is bounded and has a cluster point, x∗, with f(xk) ≥ f(x∗)
for all k. With x = x∗ in (7.12), we obtain

Dh(x∗, xk−1)−Dh(x∗, xk) ≥ f(xk)− f(x∗) ≥ 0.

Therefore, the sequence {f(xk)} converges to f(x∗). Since the SMART
is in SUMMA, we know that f(x∗) must be the minimum of f(x). Since a
subsequence of {Dh(x∗, xk)} converges to zero, it follows that {xk} converges
to x∗.

Let x̂ be any minimizer of KL(Px, y). Using the Pythagorean identites
we find that

KL(x̂, xk)−KL(x̂, xk+1) = KL(Pxk+1, y)−KL(Px̂, y)+

KL(Px̂, Pxk) +KL(xk+1, xk)−KL(Pxk+1, Pxk).(7.13)

From Equation (7.13) we see that the difference KL(x̂, xk) − KL(x̂, xk+1)
depends only on Px̂, and not on x̂ itself. Summing over the index k on both
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sides and “telescoping” , we find that the difference KL(x̂, x0)−KL(x̂, x∗)
also depends only on Px̂, and not on x̂ itself. It follows that x̂ = x∗ is
the minimizer of f(x) for which KL(x̂, x0) is minimized. If y = Px has
nonnegative solutions, and the entries of x0 are all equal to one, then x∗

maximizes the Shannon entropy over all nonnegative solutions of y = Px.
With f(x) = KL(Px, y), we have Df (x, z) = KL(Px, Pz). Therefore, we

obtain the next iterate xk by minimizing Gk(x) given by

KL(q(x), r(xk−1)) = f(x) +KL(x, xk−1)−Df (x, xk−1).(7.14)

This shows that the SMART is yet another example of the “remedy” used
to obtain PMAB algorithms with iterates that can be simply calculated.

The following theorem summarizes the situation with regard to the SMART
[17, 18, 19].

Theorem 7.1. In the consistent case, in which the system y = Px has
nonnegative solutions, the sequence of iterates of SMART converges to the
unique nonnegative solution of y = Px for which the distance KL(x, x0) is
minimized. In the inconsistent case it converges to the unique nonnegative
minimizer of the distance KL(Px, y) for which KL(x, x0) is minimized.
In the inconsistent case, if P and every matrix derived from P by delet-
ing columns has full rank, then there is a unique nonnegative minimizer of
KL(Px, y) and at most I − 1 of its entries are nonzero.

7.4. The EMML Algorithm as AM. Now we want to minimize f(x) =
KL(y, Px). The iterative step of the EMML algorithm is obtained by min-
imizing

Gk(x) = KL(r(xk−1), q(x))(7.15)

to get xk. We have the following helpful Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z));(7.16)

and

KL(r(x), q(z)) = KL(r(x), q(Mx)) +KL(Mx, z).(7.17)

From the Pythagorean identities we have

KL(y, Pxk)−KL(y, Pxk+1) =

KL(r(xk), r(xk+1)) +KL(xk+1, xk),(7.18)

so that

KL(y, Pxk)−KL(y, Pxk+1) ≥ KL(xk+1, xk).(7.19)

The inequality in (7.19) is called the First Monotonicity Property in [55].
We also have Gk(x) given by

KL(r(x), q(x)) +KL(r(xk−1, r(x)) = f(x) + d(x, xk−1),(7.20)
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so that

Gk(x) = f(x) + gk(x),(7.21)

with

d(x, xk−1) = gk(x) = KL(r(xk−1), q(x))−KL(r(x), q(x)).(7.22)

Therefore, the EMML algorithm is an AF algorithm, so that {f(xk)} is de-
creasing. The EMML algorithm appears not to be a member of the SUMMA
subclass; however, as we shall see shortly, it is a member of the SUMMA2
subclass.

Lemma 7.2. For {xk} given by Equation (7.3), the sequence {KL(y, Pxk)}
is decreasing and the sequences {KL(xk+1, xk)} and {KL(r(xk), r(xk+1))}
converge to zero.

Lemma 7.3. The EMML sequence {xk} is bounded; for k ≥ 1 we have

J∑
j=1

xkj =

I∑
i=1

yi.

Using (2.3) we obtain the following useful inequality:

KL(r(x), r(z)) ≥ KL(Mx,Mz).(7.23)

From
KL(r(x), q(xk)) = KL(r(xk), q(xk)) +KL(r(x), r(xk))

≥ f(xk) +KL(Mx, xk+1),

and
KL(r(x), q(xk)) = KL(r(x), q(Mx)) +KL(Mx, xk) =

f(x)−KL(Mx, x) +KL(Mx, xk)

we have

KL(Mx, xk)−KL(Mx, xk+1) ≥ f(xk)− f(x) +KL(Mx, x).(7.24)

Note that we have used (7.23) here. With hk(x)
.
= KL(Mx, xk) we get

Equation (5.1), so the EMML is in the SUMMA2 class. With x∗ a cluster
point, we have

KL(Mx∗, xk)−KL(Mx∗, xk+1) ≥ f(xk)− f(x∗) ≥ 0.(7.25)

Therefore, the sequence {KL(Mx∗, xk)} is decreasing, and the sequence
{f(xk)} converges to f(x∗). Since the EMML is in the SUMMA2 class, we
know that f(x∗) is the minimum value of f(x) and Mx∗ = x∗.

Let x̂ be a minimizer of f(x) = KL(y, Px). Inserting x = x̂ into Equation
(7.24), we obtain

KL(x̂, xk)−KL(x̂, xk+1) ≥ KL(y, Pxk)−KL(y, Pxk+1).(7.26)

The inequality in (7.26) is called the Second Monotonicity Property in [55].
The following theorem summarizes the situation with regard to the EMML

algorithm [17, 18, 19].
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Theorem 7.4. In the consistent case, in which the system y = Px has
nonnegative solutions, the sequence of EMML iterates converges to a non-
negative solution of y = Px. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(y, Px). In the inconsistent case,
if P and every matrix derived from P by deleting columns has full rank, then
there is a unique nonnegative minimizer of KL(y, Px) and at most I − 1 of
its entries are nonzero.

In contrast to the SMART, we have been unable to characterize the limit
in terms of the starting vector x0.

7.5. Imposing Constraints. In [71] we discussed certain situations in
emission tomographic imaging in which it was helpful to impose reasonable
constraints on the individual pixel values of the reconstructed image. In
[71, 31] we presented modified versions of the SMART and EMML that em-
ployed Fermi–Dirac entropy to incorporate upper and lower bounds on these
pixel values. Suppose that, for each j, we have 0 ≤ aj < bj and we want to
minimize KL(Px, y) over all x in Xab = {x|aj ≤ xj ≤ bj , j = 1, ..., J}. In
the version presented in [31] we take sj = 1 for each j and

g(x) =
J∑
j=1

((xj − aj) log(xj − aj) + (bj − xj) log(bj − xj)) .(7.27)

Then

Dg(x, z) =

J∑
j=1

(KL(xj − aj , zj − aj) +KL(bj − xj , bj − zj)) .(7.28)

It was shown there that Dg(x, z) ≥ Df (x, z) = KL(Px, Pz). At the kth
step of the iteration we minimize

KL(Px, y) +Dg(x, x
k−1)−KL(Px, Pxk−1)(7.29)

to get xk. If y = Px has solutions satisfying the constraints, then the
sequence {xk} converges to such a solution.

7.6. Auxiliary Functions For Regularization. We know from Theorems
7.1 and 7.4 that when J > I and there is no nonnegative solution of y = Px
the limits of the SMART and EMML iterative sequences will have at least
J − I + 1 zero values. If the x represents a vectorized reconstructed image,
these zero values appear to be randomly placed in the image, making it of
little value. To avoid this behavior regularization is used. By selecting the
regularizing functions carefully we can still get closed-form solutions for the
iterates [17]. For regularized SMART we minimize

KL(Px, y) + εKL(x, p),(7.30)

where ε is a small positive quantity and p is a chosen positive vector, per-
haps incorporating prior information about the desired solution. To get the
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iterate xk we minimize

KL(q(x), r(xk−1)) + εKL(x, p).(7.31)

To regularize the EMML algorithm we minimize

KL(y, Px) + εKL(p, x).(7.32)

To get the iterate xk we minimize

KL(r(xk−1), q(x)) + εKL(p, x).(7.33)

8. Generalized Projections and Acceleration

It is well known that both the SMART and the EMML algorithm can
be slow to converge. In this section we consider the use of generalized
projections [4, 5, 6], row-action algorithms [39] and relaxation to accelerate
convergence [20].

If, for fixed x ≥ 0, we try to minimize KL(x, z) over z ≥ 0 with Pzi = yi,
we find that we cannot obtain the desired z in closed form. However, if we
minimize

∑J
j=1 Pi,jKL(xj , zj), subject to Pzi = yi, we find that the desired

z is zj = xjyi/Pxi. This z is a generalized projection of x and we denote it
by z = Qix. The SMART iterative step,

xkj = xk−1
j exp

(
I∑
i=1

Pi,j log

(
yi

(Pxk−1)i

))
,

can be written as

xkj =

I∏
i=1

(
Qix

k−1
j

)Pi,j

,

so that xkj is a weighted geometric mean of the generalized projections

Qix
k−1
j . The EMML iterative step,

xkj = xk−1
j

I∑
i=1

Pi,j

(
yi

(Pxk−1)i

)
,

can be written as

xkj =
I∑
i=1

Pi,j(Qix
k−1
j ),

so that xkj is a weighted arithmetic mean of the same generalized projections.

The multiplicative algebraic reconstruction technique (MART) [60], with the
iterative step

xkj = xk−1
j

(
yi

(Pxk−1)i

)Pi,j

,(8.1)

for i = k(mod I) + 1, can be written as

xkj =
(
xk−1
j

)1−Pi,j
(
Qix

k−1
j

)Pi,j

,
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which says that xkj is a weighted geometric mean of the current xk−1
j and

Qix
k−1
j . This suggests an iterative algorithm that we have called the EMART

[35], with the iterative step

xkj = (1− Pi,j)xk−1
j + Pi,j(Qix

k−1
j ),(8.2)

the weighted arithmetic mean of the current xk−1
j and Qix

k−1
j . When there

are nonnegative solutions of y = Px the MART converges to the same solu-
tion as the SMART. The EMART also converges to a nonnegative solution
of y = Px, but nothing further is known.

Let Ci ⊆ RJ , i = 1, ..., I be nonempty closed convex sets with nonempty
intersection C. The convex feasibility problem (CFP) [46] is to find a member
of C. The generalized projections Qi used here are defined in terms of KL
distances that vary slightly with the index i. This suggests that such multi-
projection algorithms may be used to solve the more general CFP. This idea
was investigated in [24, 25, 27].

9. Block-Iterative Algorithms

More general block-iterative algorithms extending SMART and the EMML
method were presented in [51, 44, 61, 11, 20, 21]. We consider these briefly
in this section. Block-iterative variants of SMART and EMML will not con-
verge to a single vector when y = Px has no nonnegative solution. Therefore,
when discussing convergence of block-iterative algorithms, we shall assume
that y = Px has nonnegative solutons. A survey of block-iterative methods
is found in [31].

9.1. Block-Iterative SMART. For block-iterative algorithms to solve y =
Px we partition the row-index set {i = 1, ..., I} into blocks B1, ..., BN . If we

do not require that the matrix P be normalized to have sj
.
=
∑I

i=1 Pi,j = 1,
then the SMART iterative step becomes

xkj = xk−1
j exp

(
s−1
j

I∑
i=1

Pi,j log

(
yi

(Pxk−1)i

))
.(9.1)

Obviously, all the rows of the matrix P are employed at each step of the
iteration. As various authors have noted, to facilitate the use of parallel
computation and to accelerate convergence it is helpful to process only some
of the rows of P at each step. It may seem obvious that the appropriate
block-iterative version of SMART should have the iterative step

xkj = xk−1
j exp

(
s−1
n,j

∑
i∈Bn

Pi,j log

(
yi

(Pxk−1)i

))
,(9.2)

for n = k(modN) + 1 and sn,j =
∑

i∈Bn
Pi,j . This is not the case, however.
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In [21] it was shown that block-iterative variants of the SMART with the
following iterative step are convergent:

xkj = xk−1
j exp

(
γjδn

∑
i∈Bn

Pij log

(
yi

(Pxk−1)i

))
,(9.3)

where 0 < γjδnsn,j ≤ 1. Such iterative algorithms converge to the nonnega-

tive solution of y = Px that minimizes
∑J

j=1 γ
−1
j KL(xj , x

0
j ), whenever such

solutions exist, for any choice of blocks and any x0 > 0. Since s−1
n,j 6= γjδn

generally, the iterative algorithm described in Equation (9.2) is not conver-
gent.

For γj = 1 we must have 0 < δn ≤ s−1
n,j ≤ 1, for all j, or δn ≤ minj s

−1
n,j =

1/maxj sn,j . With mn
.
= maxj sn,j , we must have δn ≤ m−1

n . The rescaled
block-iterative SMART (RBI-SMART) [21] uses δn = m−1

n . We can write
the iterative step of the RBI-SMART as

log xkj = log xk−1
j +m−1

n

∑
i∈Bn

Pij log

(
yi

(Pxk−1)i

)
or, equivalently, as

log xkj = (1− sn,jm−1
n ) log xk−1

j +m−1
n

∑
i∈Bn

Pi,j logQi(x
k−1)j ,(9.4)

where, once again, we write Qi(x)j = xj
yi

(Px)i
. Therefore, the RBI-SMART

iterate is a weighted geometric mean of the current xk−1 and the generalized
projections Qi(x

k−1) for i ∈ Bn [21, 29]. When each block consists of a
single index we get the MART, so we could also call the RBI-SMART a
block-iterative MART or block-MART [46] algorithm.

9.2. Block-Iterative EMML. The EMML has attracted more attention
within the medical imaging community than has the SMART. Researchers
in that field have noticed its slow convergence and have experimented with
various means of acceleration. In [62, 63] the authors introduced the ordered-
subset EM (OSEM) algorithm and observed that it often led to usable re-
constructed images much faster than did the EMML.

Again, without assuming that sj = 1, the EMML iterative step becomes

xkj = xk−1
j s−1

j

I∑
i=1

Pij

(
yi

(Pxk−1)i

)
.(9.5)

The OSEM is a block-iterative variant of the EMML. It uses an obvious
modification of the EMML iteration and has the iterative step

xkj = xk−1
j s−1

n,j

∑
i∈Bn

Pij

(
yi

(Pxk−1)i

)
,(9.6)

for n = k(modN) + 1. But the OSEM is not the correct block-iterative
variant of EMML; it fails to converge in most cases.
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In [29] it was shown that the block-iterative algorithm with the iterative
step

xkj = (1− γjδnsn,j)xk−1
j + xk−1

j γjδn
∑
i∈Bn

Pi,j

(
yi

(Pxk−1)i

)
(9.7)

converges to a nonnegative solution of y = Px for any x0 > 0 and any
choice of blocks, provided that 0 < γjδnsn,j ≤ 1. In those rare cases in
which γjδnsn,j = 1 Equation (9.7) reduces to Equation (9.6). As in the
RBI-SMART case, we take γj = 1 and δn = m−1

n to get the RBI-EMML
algorithm. The iterative step of the RBI-EMML algorithm is then

xkj = (1− sn,jm−1
n )xk−1

j +m−1
n

∑
i∈Bn

xk−1
j Pi,j

(
yi

(Pxk−1)i

)
,(9.8)

which we can write as

xkj = (1− sn,jm−1
n )xk−1

j +m−1
n

∑
i∈Bn

Pi,jQi(x
k−1)j .(9.9)

This tells us that the RBI-EMML iterate is a weighted arithmetic mean of
the current xk−1 and the generalized projections Qi(x

k−1), for i ∈ Bn. As
with RBI-SMART, the RBI-EMML converges, for any x0 and any choices of
blocks, to a nonnegative solution of y = Px. However, in contrast to RBI-
SMART, we have no characterization of the particular solution to which it
converges nor how that solution may vary with x0 and the choice of blocks.

9.3. Why Are Block-Iterative Methods Faster? We have made the
claim, and experience has shown, that in the consistent case block-iterative
methods can converge significantly faster than their simultaneous relatives.
We investigate this claim a bit more theoretically now. The arguments given
here are not completely rigorous, but will give some idea of the source of
the acceleration. Our goal is to get orders-of-magnitude estimates, not pre-
cise values. We begin by comparing the simultaneous Landweber algorithm
with the sequential ART algorithm for solving the general system of linear
equations Ax = b. Then we compare the simultaneous SMART with the
sequential MART for solving the nonnegative system Px = y.

9.3.1. The Landweber and Cimmino Algorithms. Let Ax = b be a consistent
system of I linear equations in J unknowns, with

∑J
j=1A

2
i,j = 1, for each

i = 1, ..., I. The iterative step of the Landweber algorithm is

xk+1 = xk + γAT (b−Axk),(9.10)

where 0 < γ < 2
L for L = ρ(ATA), the largest eigenvalue of the matrix ATA.

The trace of AAT is I, so 1 ≤ L ≤ I. The choice of γ = 1
I is acceptable.

Simple calculations show that, for any z with Az = b,

‖z − xk‖2 − ‖z − xk+1‖2 ≥ (2γ − Lγ2)‖b−Axk‖2.(9.11)
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With the choice of γ = 1
I we get Cimmino’s algorithm:

xk+1 = xk +
1

I
AT (b−Axk),(9.12)

and

‖z − xk‖2 − ‖z − xk+1‖2 ≥ (2/I − L/I2)‖b−Axk‖2.(9.13)

The improvement we obtain in Equation (9.11) will depend L, and the choice
of γ.

If we know L, which is probably not the case, especially for large systems,
we may select γ = 1

I , just to be safe; this is Cimmino’s choice. If we have
a better upper bound for L than just I, then we can use it in the choice
of γ. For example, it was shown in [32] that, whenever the rows of A are
normalized to length one, L cannot be larger than the maximum number of
nonzero entries in any column of A. This is useful in the case of sparse A.
In transmission tomography there are typically about

√
I nonzero entries in

a column, so the estimate L ≤
√
I is usually acceptable. If L = 1 and we

choose γ = 1, then Equation (9.11) becomes

‖z − xk‖2 − ‖z − xk+1‖2 ≥ ‖b−Axk‖2.(9.14)

However, if L is closer to I than to 1 the choice of γ = 1
I will give us

something more like

‖z − xk‖2 − ‖z − xk+1‖2 ≥ 1

I
‖b−Axk‖2.(9.15)

9.3.2. The ART. When the rows of A are normalized to have length one,
the iterative step of the ART is

xkj = xk−1
j +Ai,j(bi − (Axk−1)i),(9.16)

where i = k(mod I) + 1. We consider the improvement we obtain after one
pass through all the data. For any z with Az = b we have

‖z − x0‖2 − ‖z − xI‖2 =
I∑
i=1

(bi − (Axi−1)i)
2.(9.17)

This is, very roughly, about I times the improvement in Equation (9.15).

9.3.3. The SMART. For SMART we assume that sj =
∑I

i=1 Pi,j = 1, for
each j. Then, with y = Pz, Equation (7.13) tells us that

KL(z, xk)−KL(z, xk+1) ≈ KL(Pxk+1, y).(9.18)
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9.3.4. The MART. With mi = max{Pi,j |j = 1, ..., J}, and y = Pz we have

KL(z, x0)−KL(z, x1) ≈ m−1
1 KL(y1, (Px

0)1).(9.19)

Since sj = 1, we might estimate m1 ≈ 1
I . Therefore, after one pass through

all the data, we have

KL(z, x0)−KL(z, xI) ≈ I KL(y, Pxi−1),(9.20)

for some representative i. The point is that the improvement we may expect
after one pass through the data may well be a factor of I larger than that
obtained by one SMART iteration. Of course, if the entries of P are not
more or less uniformly distributed, the mi may well be greater than 1

I and
the improvement after one pass through the data may well be somewhat less
than before. In the sparse case, in which there are, say, only

√
I nonnegative

entries in any column, the mi will be more like 1√
I

and the improvement will

be only a factor of
√
I better than SMART. Since, in many applications, I

is in the thousands, even this reduced improvement is significant.

10. Probabilistic Mixture Problems

When sj = 1 for all j and x+
.
=
∑J

j=1 xj = 1 we can view Px as a proba-
bilistic mixture of the columns of the matrix P , each of which is a probability
vector, with the entries of x the unknown mixing proportions to be deter-
mined. In list-mode positron-emission tomography we sometimes encounter
mixtures of probability-density functions (pdf), not of finite probability vec-
tors [26]. A modification of the EMML algorithm, called the Mix-EM algo-
rithm, can be used to solve this problem. In keeping with the conventions
in this area we adopt somewhat different notation.

10.1. Probabilistic-Mixture Models. Let X be a random vector gov-
erned by a pdf or discrete probability f(x). The pdf f(x) is said to be a
probabilistic mixture (PM) if f(x) has the form

f(x) =
J∑
j=1

θjfj(x),(10.1)

where the fj(x) are known probability-density functions (pdf) or finite or
infinite discrete probabilities and the entries of θ = (θ1, ..., θJ)T are to be

determined, subject to
∑J

j=1 θj = 1. We have finitely many realizations of
X, denoted x1, ..., xN , from which we must estimate the mixing proportions
θj . The estimate is obtained by maximizing the likelihood function

L(θ) =
N∏
n=1

f(xn) =
N∏
n=1

 J∑
j=1

θjfj(xn)

 .

In a more general formulation of probabilistic mixture the pdf fj(x) in-
volve parameters to be determined as well. For example, we may wish to
model f(x) as a probabilistic mixture of a small number of normal pdf whose
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means and variances are unknown, or a small number of Poisson probabili-
ties with unknown means. If the fj themselves involve unknown parameters,
we have a choice: we can take J large, but expect only a few of the θj to
be non-zero; or we can estimate J , the non-zero θj , and the parameters
associated with those fj for which θj is non-zero. In most applications of
PM models the pdf f(x) is suspected of being a superposition of a relatively
small number of components fj(x) and the goal is to determine the rela-
tive sizes of the θj and, in particular, which θj are non-zero [14, 16]. Such
models have uses in a wide variety of applications, including sonar, radar,
astronomy, spectral analysis, analytic chemistry, and many others.

10.2. The Mix-EM Algorithm. When the fj are probability-density func-
tions the values fj(xn) can be any nonnegative values. In such cases we can-
not apply the EMML algorithm directly, just by replacing Pi,j with fj(xn).
We require a modification of the EMML algorithm that we call the Mix-EM
algorithm [26]. We start with θ0

j > 0, for each j. Having found θk−1
j , for

each j, we define

θkj = θk−1
j

1

N

N∑
n=1

(
fj(xn)

1

(Pθk−1)n

)
,(10.2)

where P is the matrix with entries Pn,j
.
= fj(xn) and

(Pθk−1)n =
J∑
j=1

Pn,jθ
k−1
j .(10.3)

The sequence {θk} converges to a vector of maximum-likelihood values of
the θj [26].

11. Fixed-Point Algorithms

Suppose that T : X → X is an operator on the set X. We say that z is a
fixed point for T if Tz = z. A variety of problems can be solved using fixed-
point iteration, in which xk = Txk−1 and T is selected so that the solutions
of the problem coincide with the fixed points of T . We have seen this already
in this paper, in our discussion of the FBS methods, the SMART and the
EMML algorithm. Most of the theory of fixed-point iteration is developed
within the context of X a Hilbert space [5, 28, 38], although, as we have
seen, this approach can be applied more generally [10, 57, 17, 19, 46, 6].

Fixed-point theory seems to play little role in AF methods, although a
few things can be said. Consider a SUMMA iteration algorithm in which we
minimize f(x) + gk(x) to get xk. Suppose that xk = xk−1 for some k. Then
we must have f(xk) = β = minx∈C f(x). In PMAB iteration we can define
an operator T by setting Tz equal to the minimizer of f(x) + Dh(x, z). If
Tz = z, then f(z) = β so z is a solution to our problem.
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12. Some Questions

In this section we survey a few open questions related to the topics dis-
cussed in this article.

12.1. Limit Cycles for MART and EMART. If the M by N system
of linear equations Ax = b has no solution then the algebraic reconstruction
technique (ART) iteration [60], in which xk = PMPM−1 · · ·P2P1x

k−1, cannot
converge to a single vector, where Pm denotes the orthogonal projection onto
the hyperplane Hm = {x|(Ax)m = bm}. Tanabe shows in [76] that we get
subsequential convergence to a limit cycle of (usually) M distinct vectors
z1, ..., zM , with P1z

M = z1 and Pmz
m−1 = zm, for m = 2, 3, ...,M . When

the nonnegative system of linear equations y = Px has no nonnegative
solution neither the MART nor the EMART can converge to a single vector.
In practice we always see subsequential convergence to limit cycles, but as
yet no proof of their existence has emerged.

12.2. The Goldstein–Osher Problem. The following question arises from
some assertions made in [59]. Suppose that xk minimizes

f(x) +Dh(x, xk−1),

and {xk} converges to x∗. We know that x∗ minimizes f(x) over all x in
C, the domain of the function f . Let S be the set of all such minimizers.
Does x∗ also minimize h(z) over all z in S? In general, the answer is no;
Dh does not determine h uniquely. What if h(x) = Dh(x, x0); that is, what
if h(x0) = 0 and ∇h(x0) = 0? There are several examples, using both
Euclidean and Kullback-Leibler distances, in which the answer is yes.

12.3. Characterizing the EMML and EMART Solutions. When the
nonnegative system of linear equations y = Px has nonnegative solutions
then SMART and MART converge to the nonnegative solution that mini-
mizes KL(x, x0), where x0 is the positive starting vector for the iteration.
It has been shown that both EMML and EMART converge to nonnegative
solutions in this case, but no similar characterization of the limit is known.
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