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Preface

Those of us old enough to have first studied linear algebra in the 1960’s
remember a course devoted largely to proofs, devoid of applications and
computation, full of seemingly endless discussion of the representation of
linear transformations with respect to various bases, and concerned with
matters that would not arise again in our mathematical education. With
the growth of computer power and the discovery of powerful algorithms
came the digitization of many problems previously analyzed solely in terms
of functions of continuous variables. As it happened, I began my study
of linear algebra in the fall of 1965, just as the two most important new
algorithms in computational linear algebra appeared in print; the Cooley-
Tukey Fast Fourier Transform (FFT) [101], and the Golub-Kahan method
for computing the singular-value decomposition [149] would revolutionize
applied linear algebra, but I learned of these more than a decade later. My
experience was not at all unique; most of the standard linear algebra texts
of the period, such as Cullen [105] and Hoffman and Kunze [168], ignored
these advances.

Linear algebra, as we shall see, is largely the study of matrices, at least
for the finite-dimensional cases. What connects the theory of matrices to
applications are algorithms. Often the particular nature of the applications
will prompt us to seek algorithms with particular properties; we then turn
to the matrix theory to understand the workings of the algorithms. This
book is intended as a text for a graduate course that focuses on applications
of linear algebra and on the algorithms used to solve the problems that arise
in those applications.

When functions of several continuous variables were approximated by
finite-dimensional vectors, partial differential operators on these functions
could be approximated by matrix multiplication. Images were represented
in terms of grids of pixel values, that is, they became matrices, and then
were vectorized into columns of numbers. Image processing then became
the manipulation of these column vectors by matrix operations. This dig-
itization meant that very large systems of linear equations now had to be
dealt with. The need for fast algorithms to solve these large systems of linear
equations turned linear algebra into a branch of applied and computational
mathematics. Long forgotten topics in linear algebra, such as singular-value
decomposition, were resurrected. Newly discovered algorithms, such as the
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simplex method and the fast Fourier transform (FFT), revolutionized the
field. As algorithms were increasingly applied to real-world data in real-
world situations, the stability of these algorithms in the presence of noise
became important. New algorithms emerged to answer the special needs
of particular applications, and methods developed in other areas, such as
likelihood maximization for statistical parameter estimation, found new ap-
plication in reconstruction of medical and synthetic-aperture-radar (SAR)
images.

The traditional topics of linear algebra, the geometry of Euclidean
spaces, solving systems of linear equations and finding eigenvectors and
eigenvalues, have not lost their importance, but now have a greater variety
of roles to play. Orthogonal projections onto hyperplanes and convex sets
form the building blocks for algorithms to design protocols for intensity-
modulated radiation therapy. The unitary matrices that arise in discrete
Fourier transformation are inverted quickly using the FFT, making es-
sentially real-time magnetic-resonance imaging possible. In high-resolution
radar and sonar, eigenvalues of certain matrices can tell us how many ob-
jects of interest are out there, while their eigenvectors can tell us where
they are. Maximum-likelihood estimation of mixing probabilities lead to
systems of linear equations to be solved to provide sub-pixel resolution of
SAR images.
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1.1 Chapter Summary

This chapter introduces some of the topics to be considered in this
course.

1.2 Overview of this Course

We shall focus here on applications that require the solution of systems
of linear equations, often subject to constraints on the variables. These
systems are typically large and sparse, that is, the entries of the matrices
are predominantly zero. Transmission and emission tomography provide
good examples of such applications. Fourier-based methods, such as filtered
back-projection and the Fast Fourier Transform (FFT), are the standard
tools for these applications, but statistical methods involving likelihood
maximization are also employed. Because of the size of these problems and
the nature of the constraints, iterative algorithms are essential.

Because the measured data is typically insufficient to specify a single
unique solution, optimization methods, such as least-squares, likelihood
maximization, and entropy maximization, are often part of the solution
process. In the companion text ”A First Course in Optimization”, we
present the fundamentals of optimization theory, and discuss problems of
optimization, in which optimizing a function of one or several variables is
the primary goal. Here, in contrast, our focus is on problems of inference,

1
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optimization is not our primary concern, and optimization is introduced to
overcome the non-uniqueness of possible solutions.

1.3 Solving Systems of Linear Equations

Many of the problems we shall consider involve solving, as least approx-
imately, systems of linear equations. When an exact solution is sought and
the number of equations and the number of unknowns are small, meth-
ods such as Gauss elimination can be used. It is common, in applications
such as medical imaging, to encounter problems involving hundreds or even
thousands of equations and unknowns. It is also common to prefer inexact
solutions to exact ones, when the equations involve noisy, measured data.
Even when the number of equations and unknowns is large, there may not
be enough data to specify a unique solution, and we need to incorporate
prior knowledge about the desired answer. Such is the case with medical
tomographic imaging, in which the images are artificially discretized ap-
proximations of parts of the interior of the body.

1.4 Imposing Constraints

The iterative algorithms we shall investigate begin with an initial guess
x0 of the solution, and then generate a sequence {xk}, converging, in the
best cases, to our solution. When we use iterative methods to solve opti-
mization problems, subject to constraints, it is necessary that the limit of
the sequence {xk} of iterates obey the constraints, but not that each of the
xk do. An iterative algorithm is said to be an interior-point method if each
vector xk obeys the constraints. For example, suppose we wish to minimize
f(x) over all x in RJ having non-negative entries; an interior-point iterative
method would have xk non-negative for each k.

1.5 Operators

Most of the iterative algorithms we shall study involve an operator, that
is, a function T : RJ → RJ . The algorithms begin with an initial guess,
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x0, and then proceed from xk to xk+1 = Txk. Ideally, the sequence {xk}
converges to the solution to our optimization problem. To minimize the
function f(x) using a gradient descent method with fixed step-length α,
for example, the operator is

Tx = x− α∇f(x).

In problems with non-negativity constraints our solution x is required to
have non-negative entries xj . In such problems, the clipping operator T ,
with (Tx)j = max{xj , 0}, plays an important role.

A subset C of RJ is convex if, for any two points in C, the line segment
connecting them is also within C. As we shall see, for any x outside C,
there is a point c within C that is closest to x; this point c is called the
orthogonal projection of x onto C, and we write c = PCx. Operators of
the type T = PC play important roles in iterative algorithms. The clipping
operator defined previously is of this type, for C the non-negative orthant
of RJ , that is, the set

RJ+ = {x ∈ RJ |xj ≥ 0, j = 1, ..., J}.

1.6 Acceleration

For problems involving many variables, it is important to use algorithms
that provide an acceptable approximation of the solution in a reasonable
amount of time. For medical tomography image reconstruction in a clinical
setting, the algorithm must reconstruct a useful image from scanning data
in the time it takes for the next patient to be scanned, which is roughly
fifteen minutes. Some of the algorithms we shall encounter work fine on
small problems, but require far too much time when the problem is large.
Figuring out ways to speed up convergence is an important part of iterative
optimization. One approach we shall investigate in some detail is the use
of block-iterative or partial gradient methods.
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2.1 Chapter Summary

The theory of linear algebra, applications of that theory, and the asso-
ciated computations are the three threads that weave their way through
this course. In this chapter we present an overview of the applications we
shall study in more detail later.

2.2 Transmission Tomography

Although transmission tomography (TT) is commonly associated with
medical diagnosis, it has scientific uses, such as determining the sound-
speed profile in the ocean, industrial uses, such as searching for faults in
girders, mapping the interior of active volcanos, and security uses, such as
the scanning of cargo containers for nuclear material. Previously, when peo-
ple spoke of a “CAT scan” they usually meant x-ray transmission tomog-
raphy, although the term is now used by lay people to describe any of the
several scanning modalities in medicine, including single-photon emission
computed tomography (SPECT), positron emission tomography (PET),
ultrasound, and magnetic resonance imaging (MRI).

2.2.1 Brief Description

Computer-assisted tomography (CAT) scans have revolutionized med-
ical practice. One example of CAT is transmission tomography. The goal
here is to image the spatial distribution of various matter within the body,
by estimating the distribution of radiation attenuation. At least in theory,
the data are line integrals of the function of interest.

In transmission tomography, radiation, usually x-ray, is transmitted
through the object being scanned. The object of interest need not be a
living human being; King Tut has received a CAT-scan and industrial uses
of transmission scanning are common. Recent work [235] has shown the
practicality of using cosmic rays to scan cargo for hidden nuclear mate-
rial; tomographic reconstruction of the scattering ability of the contents
can reveal the presence of shielding. Because of their ability to penetrate
granite, cosmic rays are being used to obtain transmission-tomographic
three-dimensional images of the interior of active volcanos, to measure the
size of the magma column and help predict the size and occurrence of
eruptions.

In the simplest formulation of transmission tomography, the beams are
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assumed to travel along straight lines through the object, the initial inten-
sity of the beams is known and the intensity of the beams, as they exit the
object, is measured for each line. The goal is to estimate and image the
x-ray attenuation function, which correlates closely with the spatial distri-
bution of attenuating material within the object. Unexpected absence of
attenuation can indicate a broken bone, for example.

As the x-ray beam travels along its line through the body, it is weak-
ened by the attenuating material it encounters. The reduced intensity of
the exiting beam provides a measure of how much attenuation the x-ray
encountered as it traveled along the line, but gives no indication of where
along that line it encountered the attenuation; in theory, what we have
learned is the integral of the attenuation function along the line. It is only
by repeating the process with other beams along other lines that we can
begin to localize the attenuation and reconstruct an image of this non-
negative attenuation function. In some approaches, the lines are all in the
same plane and a reconstruction of a single slice through the object is the
goal; in other cases, a fully three-dimensional scanning occurs. The word
“tomography” itself comes from the Greek “tomos”, meaning part or slice;
the word “atom”was coined to describe something supposed to be “without
parts”.

2.2.2 The Theoretical Problem

In theory, we will have the integral of the attenuation function along
every line through the object. The Radon Transform is the operator that
assigns to each attenuation function its integrals over every line. The math-
ematical problem is then to invert the Radon Transform, that is, to recap-
ture the attenuation function from its line integrals. Is it always possible
to determine the attenuation function from its line integrals? Yes. One way
to show this is to use the Fourier transform to prove what is called the
Central Slice Theorem. The reconstruction is then inversion of the Fourier
transform; various methods for such inversion rely on frequency-domain
filtering and back-projection.

2.2.3 The Practical Problem

Practise, of course, is never quite the same as theory. The problem, as
we have described it, is an over-simplification in several respects, the main
one being that we never have all the line integrals. Ultimately, we will
construct a discrete image, made up of finitely many pixels. Consequently,
it is reasonable to assume, from the start, that the attenuation function
to be estimated is well approximated by a function that is constant across
small squares (or cubes), called pixels (or voxels), and that the goal is to
determine these finitely many pixel values.
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2.2.4 The Discretized Problem

When the problem is discretized in this way, different mathematics be-
gins to play a role. The line integrals are replaced by finite sums, and the
problem can be viewed as one of solving a large number of linear equations,
subject to side constraints, such as the non-negativity of the pixel values.
The Fourier transform and the Central Slice Theorem are still relevant, but
in discrete form, with the fast Fourier transform (FFT) playing a major
role in discrete filtered back-projection methods. This approach provides
fast reconstruction, but is limited in other ways. Alternatively, we can turn
to iterative algorithms for solving large systems of linear equations, subject
to constraints. This approach allows for greater inclusion of the physics into
the reconstruction, but can be slow; accelerating these iterative reconstruc-
tion algorithms is a major concern, as is controlling sensitivity to noise in
the data.

2.2.5 Mathematical Tools

As we just saw, Fourier transformation in one and two dimensions, and
frequency-domain filtering are important tools that we need to discuss in
some detail. In the discretized formulation of the problem, periodic convo-
lution of finite vectors and its implementation using the fast Fourier trans-
form play major roles. Because actual data is always finite, we consider the
issue of under-determined problems that allow for more than one answer,
and the need to include prior information to obtain reasonable reconstruc-
tions. Under-determined problems are often solved using optimization, such
as maximizing the entropy or minimizing the norm of the image, subject
to the data as constraints. Constraints are often described mathematically
using the notion of convex sets. Finding an image satisfying several sets of
constraints can often be viewed as finding a vector in the intersection of
convex sets, the so-called convex feasibility problem (CFP).

2.3 Emission Tomography

Unlike transmission tomography, emission tomography (ET) is used
only with living beings, principally humans and small animals. Although
this modality was initially used to uncover pathologies, it is now used
to study normal functioning, as well. In emission tomography, including
positron emission tomography (PET) and single photon emission tomog-
raphy (SPECT), the patient inhales, swallows, or is injected with, chemi-
cals to which radioactive material has been chemically attached [263]. The



An Overview of Applications 9

chemicals are designed to accumulate in that specific region of the body we
wish to image. For example, we may be looking for tumors in the abdomen,
weakness in the heart wall, or evidence of brain activity in a selected region.
In some cases, the chemicals are designed to accumulate more in healthy
regions, and less so, or not at all, in unhealthy ones. The opposite may also
be the case; tumors may exhibit greater avidity for certain chemicals. The
patient is placed on a table surrounded by detectors that count the number
of emitted photons. On the basis of where the various counts were obtained,
we wish to determine the concentration of radioactivity at various locations
throughout the region of interest within the patient.

Although PET and SPECT share some applications, their uses are gen-
erally determined by the nature of the chemicals that have been designed
for this purpose, as well as by the half-life of the radionuclides employed.
Those radioactive isotopes used in PET generally have half-lives on the
order of minutes and must be manufactured on site, adding to the expense
of PET. The isotopes used in SPECT have half-lives on the order of many
hours, or even days, so can be manufactured off-site and can also be used
in scanning procedures that extend over some appreciable period of time.

2.3.1 Coincidence-Detection PET

In a typical PET scan to detect tumors, the patient receives an injection
of glucose, to which a radioactive isotope of fluorine, 18F, has been chem-
ically attached. The radionuclide emits individual positrons, which travel,
on average, between 4 mm and 2.5 cm (depending on their kinetic energy)
before encountering an electron. The resulting annihilation releases two
gamma-ray photons that then proceed in essentially opposite directions.
Detection in the PET case means the recording of two photons at nearly
the same time at two different detectors. The locations of these two detec-
tors then provide the end points of the line segment passing, more or less,
through the site of the original positron emission. Therefore, each possi-
ble pair of detectors determines a line of response (LOR). When a LOR
is recorded, it is assumed that a positron was emitted somewhere along
that line. The PET data consists of a chronological list of LOR that are
recorded. Because the two photons detected at either end of the LOR are
not detected at exactly the same time, the time difference can be used in
time-of-flight PET to further localize the site of the emission to a smaller
segment of perhaps 8 cm in length.

2.3.2 Single-Photon Emission Tomography

Single-photon computed emission tomography (SPECT) is similar to
PET and has the same objective: to image the distribution of a radionu-
clide, such as technetium 99mTc, within the body of the patient. In SPECT
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the radionuclide employed emits single gamma-ray photons, which then
travel through the body of the patient and, in some fraction of the cases,
are detected. Detections in SPECT correspond to individual sensor loca-
tions outside the body. The data in SPECT are the photon counts at each
of the finitely many detector locations. Unlike PET, in SPECT lead col-
limators are placed in front of the gamma-camera detectors to eliminate
photons arriving at oblique angles. While this helps us narrow down the
possible sources of detected photons, it also reduces the number of detected
photons and thereby decreases the signal-to-noise ratio.

2.3.3 The Line-Integral Model for PET and SPECT

To solve the reconstruction problem we need a model that relates the
count data to the radionuclide density function. A somewhat unsophisti-
cated, but computationally attractive, model is taken from transmission
tomography: to view the count at a particular detector as the line integral
of the radionuclide density function along the line from the detector that
is perpendicular to the camera face. The count data then provide many
such line integrals and the reconstruction problem becomes the familiar
one of estimating a function from noisy measurements of line integrals.
Viewing the data as line integrals allows us to use the Fourier transform in
reconstruction. The resulting filtered back-projection (FBP) algorithm is a
commonly used method for medical imaging in clinical settings.

The line-integral model for PET assumes a fixed set of possible LOR,
with most LOR recording many emissions. Another approach is list-mode
PET, in which detections are recording as they occur by listing the two
end points of the associated LOR. The number of potential LOR is much
higher in list-mode, with most of the possible LOR being recording only
once, or not at all [173, 216, 61].

2.3.4 Problems with the Line-Integral Model

It is not really accurate, however, to view the photon counts at the
detectors as line integrals. Consequently, applying filtered back-projection
to the counts at each detector can lead to distorted reconstructions. There
are at least three degradations that need to be corrected before FBP can
be successfully applied [181]: attenuation, scatter, and spatially dependent
resolution.

In the SPECT case, as in most such inverse problems, there is a trade-off
to be made between careful modeling of the physical situation and compu-
tational tractability. The FBP method slights the physics in favor of com-
putational simplicity and speed. In recent years, iterative methods, such
as the algebraic reconstruction technique (ART), its multiplicative vari-
ant, MART, the expectation maximization maximum likelihood (MLEM



An Overview of Applications 11

or EMML) method, and the rescaled block-iterative EMML (RBI-EMML),
that incorporate more of the physics have become competitive.

2.3.5 The Stochastic Model: Discrete Poisson Emitters

In iterative reconstruction we begin by discretizing the problem; that
is, we imagine the region of interest within the patient to consist of finitely
many tiny squares, called pixels for two-dimensional processing or cubes,
called voxels for three-dimensional processing. We imagine that each pixel
has its own level of concentration of radioactivity and these concentration
levels are what we want to determine. Proportional to these concentration
levels are the average rates of emission of photons. To achieve our goal we
must construct a model that relates the measured counts to these concen-
tration levels at the pixels. The standard way to do this is to adopt the
model of independent Poisson emitters. Any Poisson-distributed random
variable has a mean equal to its variance. The signal-to-noise ratio (SNR)
is usually taken to be the ratio of the mean to the standard deviation,
which, in the Poisson case, is then the square root of the mean. Conse-
quently, the Poisson SNR increases as the mean value increases, which
points to the desirability (at least, statistically speaking) of higher dosages
to the patient.

2.3.6 Reconstruction as Parameter Estimation

The goal is to reconstruct the distribution of radionuclide intensity by
estimating the pixel concentration levels. The pixel concentration levels can
be viewed as parameters and the data are instances of random variables, so
the problem looks like a fairly standard parameter estimation problem of
the sort studied in beginning statistics. One of the basic tools for statistical
parameter estimation is likelihood maximization, which is playing an in-
creasingly important role in medical imaging. There are several problems,
however.

One problem is that the number of parameters is quite large, as large
as the number of data values, in most cases. Standard statistical parameter
estimation usually deals with the estimation of a handful of parameters.
Another problem is that we do not quite know the relationship between the
pixel concentration levels and the count data. The reason for this is that
the probability that a photon emitted from a given pixel will be detected
at a given detector will vary from one patient to the next, since whether
or not a photon makes it from a given pixel to a given detector depends on
the geometric relationship between detector and pixel, as well as what is
in the patient’s body between these two locations. If there are ribs or skull
getting in the way, the probability of making it goes down. If there are just
lungs, the probability goes up. These probabilities can change during the
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scanning process, when the patient moves. Some motion is unavoidable,
such as breathing and the beating of the heart. Determining good values
of the probabilities in the absence of motion, and correcting for the effects
of motion, are important parts of SPECT image reconstruction.

2.3.7 X-Ray Fluorescence Computed Tomography

X-ray fluorescence computed tomography (XFCT) is a form of emission
tomography that seeks to reconstruct the spatial distribution of elements
of interest within the body [191]. Unlike SPECT and PET, these elements
need not be radioactive. Beams of synchrotron radiation are used to stim-
ulate the emission of fluorescence x-rays from the atoms of the elements of
interest. These fluorescence x-rays can then be detected and the distribu-
tion of the elements estimated and imaged. As with SPECT, attenuation
is a problem; making things worse is the lack of information about the
distribution of attenuators at the various fluorescence energies.

2.4 Magnetic Resonance Imaging

Protons have spin, which, for our purposes here, can be viewed as a
charge distribution in the nucleus revolving around an axis. Associated with
the resulting current is a magnetic dipole moment collinear with the axis of
the spin. In elements with an odd number of protons, such as hydrogen, the
nucleus itself will have a net magnetic moment. The objective in magnetic
resonance imaging (MRI) is to determine the density of such elements in a
volume of interest within the body. The basic idea is to use strong magnetic
fields to force the individual spinning nuclei to emit signals that, while too
weak to be detected alone, are detectable in the aggregate. The signals are
generated by the precession that results when the axes of the magnetic
dipole moments are first aligned and then perturbed.

In much of MRI, it is the distribution of hydrogen in water molecules
that is the object of interest, although the imaging of phosphorus to study
energy transfer in biological processing is also important. There is ongo-
ing work using tracers containing fluorine, to target specific areas of the
body and avoid background resonance. Because the magnetic properties of
blood change when the blood is oxygenated, increased activity in parts of
the brain can be imaged through functional MRI (fMRI). Non-radioactive
isotopes of gadolinium are often injected as contrast agents because of their
ability to modify certain parameters called the T1 relaxation times.
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2.4.1 Alignment

In the absence of an external magnetic field, the axes of these magnetic
dipole moments have random orientation, dictated mainly by thermal ef-
fects. When an external magnetic field is introduced, it induces a small
fraction, about one in 105, of the dipole moments to begin to align their
axes with that of the external magnetic field. Only because the number
of protons per unit of volume is so large do we get a significant number
of moments aligned in this way. A strong external magnetic field, about
20, 000 times that of the earth’s, is required to produce enough alignment
to generate a detectable signal.

2.4.2 Precession

When the axes of the aligned magnetic dipole moments are perturbed,
they begin to precess, like a spinning top, around the axis of the external
magnetic field, at the Larmor frequency, which is proportional to the in-
tensity of the external magnetic field. If the magnetic field intensity varies
spatially, then so does the Larmor frequency. Each precessing magnetic
dipole moment generates a signal; taken together, they contain informa-
tion about the density of the element at the various locations within the
body. As we shall see, when the external magnetic field is appropriately
chosen, a Fourier relationship can be established between the information
extracted from the received signal and this density function.

2.4.3 Slice Isolation

When the external magnetic field is the static field, then the Larmor
frequency is the same everywhere. If, instead, we impose an external mag-
netic field that varies spatially, then the Larmor frequency is also spatially
varying. This external field is now said to include a gradient field.

2.4.4 Tipping

When a magnetic dipole moment is given a component out of its axis of
alignment, it begins to precess around its axis of alignment, with frequency
equal to its Larmor frequency. To create this off-axis component, we apply
a radio-frequency field (rf field) for a short time. The effect of imposing this
rf field is to tip the aligned magnetic dipole moment axes away from the
axis of alignment, initiating precession. The dipoles that have been tipped
ninety degrees out of their axis of alignment generate the strongest signal.
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2.4.5 Imaging

The information we seek about the proton density function is contained
within the received signal. By carefully adding gradient fields to the exter-
nal field, we can make the Larmor frequency spatially varying, so that
each frequency component of the received signal contains a piece of the
information we seek. The proton density function is then obtained through
Fourier transformations. Fourier-transform estimation and extrapolation
techniques play a major role in this rapidly expanding field [157].

2.4.6 The Line-Integral Approach

By appropriately selecting the gradient field and the radio-frequency
field, it is possible to create a situation in which the received signal comes
primarily from dipoles along a given line in a preselected plane. Performing
an FFT of the received signal gives us line integrals of the density func-
tion along lines in that plane. In this way, we obtain the three-dimensional
Radon transform of the desired density function. The Central Slice Theo-
rem for this case tells us that, in theory, we have the Fourier transform of
the density function.

2.4.7 Phase Encoding

In the line-integral approach, the line-integral data is used to obtain
values of the Fourier transform of the density function along lines through
the origin in Fourier space. It would be more convenient for the FFT if we
have Fourier-transform values on the points of a rectangular grid. We can
obtain this by selecting the gradient fields to achieve phase encoding.

2.4.8 A New Application

A recent article [262] in The Boston Globe describes a new application
of MRI, as a guide for the administration of ultra-sound to kill tumors and
perform bloodless surgery. In MRI-guided focused ultra-sound, the sound
waves are focused to heat up the regions to be destroyed and real-time MRI
imaging shows the doctor where this region is located and if the sound waves
are having the desired effect. The use of this technique in other areas is also
being studied: to open up the blood-brain barrier to permit chemo-therapy
for brain cancers; to cure hand tremors, chronic pain, and some effects of
stroke, epilepsy, and Parkinson’s disease; and to remove uterine fibroids.
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2.5 Intensity Modulated Radiation Therapy

A fairly recent addition to the list of applications using linear alge-
bra and the geometry of Euclidean space is intensity modulated radiation
therapy (IMRT). Although it is not actually an imaging problem, intensity
modulated radiation therapy is an emerging field that involves some of the
same mathematical techniques used to solve the medical imaging problems
discussed previously, particularly methods for solving the convex feasibility
problem.

2.5.1 Brief Description

In IMRT beamlets of radiation with different intensities are transmitted
into the body of the patient. Each voxel within the patient will then absorb
a certain dose of radiation from each beamlet. The goal of IMRT is to
direct a sufficient dosage to those regions requiring the radiation, those that
are designated planned target volumes (PTV), while limiting the dosage
received by the other regions, the so-called organs at risk (OAR).

2.5.2 The Problem and the Constraints

The intensities and dosages are obviously non-negative quantities. In
addition, there are implementation constraints; the available treatment ma-
chine will impose its own requirements, such as a limit on the difference in
intensities between adjacent beamlets. In dosage space, there will be a lower
bound on the acceptable dosage delivered to those regions designated as
the PTV, and an upper bound on the acceptable dosage delivered to those
regions designated as the OAR. The problem is to determine the intensities
of the various beamlets to achieve these somewhat conflicting goals.

2.5.3 Convex Feasibility and IMRT

The CQ algorithm [62, 63] is an iterative algorithm for solving the split
feasibility problem. Because it is particularly simple to implement in many
cases, it has become the focus of recent work in IMRT. In [84] Censor
et al. extend the CQ algorithm to solve what they call the multiple-set
split feasibility problem (MSSFP) . In the sequel [82] it is shown that the
constraints in IMRT can be modeled as inclusion in convex sets and the
extended CQ algorithm is used to determine dose intensities for IMRT that
satisfy both dose constraints and radiation-source constraints.

One drawback to the use of x-rays in radiation therapy is that they
continue through the body after they have encountered their target. A re-
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cent technology, proton-beam therapy, directs a beam of protons at the
target. Since the protons are heavy, and have mass and charge, their tra-
jectories can be controlled in ways that x-ray trajectories cannot be. The
new proton center at Massachusetts General Hospital in Boston is one of
the first to have this latest technology. As with most new and expensive
medical procedures, there is some debate going on about just how much of
an improvement it provides, relative to other methods.

2.6 Array Processing

Passive SONAR is used to estimate the number and direction of dis-
tant sources of acoustic energy that have generated sound waves prop-
agating through the ocean. An array, or arrangement, of sensors, called
hydrophones, is deployed to measure the incoming waveforms over time
and space. The data collected at the sensors is then processed to provide
estimates of the waveform parameters being sought. In active SONAR, the
party deploying the array is also the source of the acoustic energy, and
what is sensed are the returning waveforms that have been reflected off of
distant objects. Active SONAR can be used to map the ocean floor, for ex-
ample. Radar is another active array-processing procedure, using reflected
radio waves instead of sound to detect distant objects. Radio astronomy
uses array processing and the radio waves emitted by distant sources to
map the heavens.

To illustrate how array processing operates, consider Figure 2.1. Imagine
a source of acoustic energy sufficiently distant from the line of sensors that
the incoming wavefront is essentially planar. As the peaks and troughs of
the wavefronts pass over the array of sensors, the measurements at the
sensors give the elapsed time between a peak at one sensor and a peak at
the next sensor, thereby giving an indication of the angle of arrival.

In practice, of course, there are multiple sources of acoustic energy, so
each sensor receives a superposition of all the plane-wave fronts from all
directions. because the sensors are spread out in space, what each receives
is slightly different from what its neighboring sensors receive, and this slight
difference can be exploited to separate the spatially distinct components of
the signals. What we seek is the function that describes how much energy
came from each direction.

When we describe the situation mathematically, using the wave equa-
tion, we find that what is received at each sensor is a value of the Fourier
transform of the function we want. Because we have only finitely many
sensors, we have only finitely many values of this Fourier transform. So, we
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have the problem of estimating a function from finitely many values of its
Fourier transform.

2.7 A Word about Prior Information

An important point to keep in mind when applying linear-algebraic
methods to measured data is that, while the data is usually limited, the
information we seek may not be lost. Although processing the data in
a reasonable way may suggest otherwise, other processing methods may
reveal that the desired information is still available in the data. Figure 2.2
illustrates this point.

The original image on the upper right of Figure 2.2 is a discrete rect-
angular array of intensity values simulating a slice of a head. The data was
obtained by taking the two-dimensional discrete Fourier transform of the
original image, and then discarding, that is, setting to zero, all these spatial
frequency values, except for those in a smaller rectangular region around
the origin. The problem then is under-determined. A minimum two-norm
solution would seem to be a reasonable reconstruction method.

The minimum two-norm solution is shown on the lower right. It is cal-
culated simply by performing an inverse discrete Fourier transform on the
array of modified discrete Fourier transform values. The original image has
relatively large values where the skull is located, but the minimum two-
norm reconstruction does not want such high values; the norm involves the
sum of squares of intensities, and high values contribute disproportionately
to the norm. Consequently, the minimum two-norm reconstruction chooses
instead to conform to the measured data by spreading what should be the
skull intensities throughout the interior of the skull. The minimum two-
norm reconstruction does tell us something about the original; it tells us
about the existence of the skull itself, which, of course, is indeed a promi-
nent feature of the original. However, in all likelihood, we would already
know about the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have
obtained from the minimum two-norm reconstruction itself, we construct
the prior estimate shown in the upper left. Now we use the same data
as before, and calculate a minimum weighted two-norm solution, using as
the weight vector the reciprocals of the values of the prior image. This
minimum weighted two-norm reconstruction is shown on the lower left; it
is clearly almost the same as the original image. The calculation of the
minimum weighted two-norm solution can be done iteratively using the
ART algorithm, as discussed in [238].
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When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know. As
this example, and many others, show, the information we seek is often still
in the data, but needs to be brought out in a more subtle way.
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FIGURE 2.1: A uniform line array sensing a plane-wave field.
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FIGURE 2.2: Extracting information in image reconstruction.
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3.2 Vector Spaces

Linear algebra is the study of vector spaces and linear transformations.
It is not simply the study of matrices, although matrix theory takes up
most of linear algebra.

It is common in mathematics to consider abstraction, which is simply
a means of talking about more than one thing at the same time. A vector
space V is an abstract algebraic structure defined using axioms. There are
many examples of vector spaces, such as the sets of real or complex numbers
themselves, the set of all polynomials, the set of row or column vectors of a
given dimension, the set of all infinite sequences of real or complex numbers,
the set of all matrices of a given size, and so on. The beauty of an abstract
approach is that we can talk about all of these, and much more, all at once,
without being specific about which example we mean.

A vector space is a set whose members are called vectors, on which
there are two algebraic operations, called scalar multiplication and vector
addition. As in any axiomatic approach, these notions are intentionally
abstract. A vector is defined to be a member of a vector space, nothing
more. Scalars are a bit more concrete, in that scalars are almost always
real or complex numbers, although sometimes, but not in this book, they
are members of an unspecified finite field. The operations themselves are
not explicitly defined, except to say that they behave according to certain
axioms, such as associativity and distributivity.

If v is a member of a vector space V and α is a scalar, then we denote
by αv the scalar multiplication of v by α. If w is also a member of V , then
we denote by v+w the vector addition of v and w. The following properties
serve to define a vector space, with u, v, and w denoting arbitrary members
of V and α and β arbitrary scalars:

• 1. v + w = w + v;

• 2. u+ (v + w) = (u+ v) + w;

• 3. there is a unique “zero vector” , denoted 0, such that, for every v,
v + 0 = v;

• 4. for each v there is a unique vector −v such that v + (−v) = 0;

• 5. 1v = v, for all v;

• 6. (αβ)v = α(βv);

• 7. α(v + w) = αv + αw;

• 8. (α+ β)v = αv + βv.
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Ex. 3.1 Show that, if z + z = z, then z is the zero vector.

Ex. 3.2 Prove that 0v = 0, for all v ∈ V , and use this to prove that
(−1)v = −v for all v ∈ V . Hint: use Exercise 3.1.

We then write
w − v = w + (−v) = w + (−1)v,

for all v and w.
If u1, ..., uN are members of V and c1, ..., cN are scalars, then the vector

x = c1u
1 + c2u

2 + ...+ cNu
N

is called a linear combination of the vectors u1, ..., uN , with coefficients
c1, ..., cN .

If W is a subset of a vector space V , then W is called a subspace of
V if W is also a vector space for the same operations. What this means
is simply that when we perform scalar multiplication on a vector in W ,
or when we add vectors in W , we always get members of W back again.
Another way to say this is that W is closed to linear combinations.

When we speak of subspaces of V we do not mean to exclude the case
of W = V . Note that V is itself a subspace, but not a proper subspace of
V . Every subspace must contain the zero vector, 0; the smallest subspace
of V is the subspace containing only the zero vector, W = {0}.

Ex. 3.3 Show that, in the vector space V = R2, the subset of all vectors
whose entries sum to zero is a subspace, but the subset of all vectors whose
entries sum to one is not a subspace.

Ex. 3.4 Let V be a vector space, and W and Y subspaces of V . Show that
the union of W and Y , written W ∪ Y , is also a subspace if and only if
either W ⊆ Y or Y ⊆W .

We often refer to things like
[
1 2 0

]
as vectors, although they are but

one example of a certain type of vector. For clarity, in this book we shall call
such an object a real row vector of dimension three or a real row three-vector.

Similarly, we shall call


3i
−1

2 + i
6

 a complex column vector of dimension four

or a complex column four-vector. For notational convenience, whenever we
refer to something like a real three-vector or a complex four-vector, we
shall always mean that they are columns, rather than rows. The space of
real (column) N -vectors will be denoted RN , while the space of complex
(column) N vectors is CN .

Shortly after beginning a discussion of vector spaces, we arrive at the
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notion of the size or dimension of the vector space. A vector space can
be finite dimensional or infinite dimensional. The spaces RN and CN have
dimension N ; not a big surprise. The vector spaces of all infinite sequences
of real or complex numbers are infinite dimensional, as is the vector space
of all real or complex polynomials. If we choose to go down the path of
finite dimensionality, we very quickly find ourselves talking about matrices.
If we go down the path of infinite dimensionality, we quickly begin to
discuss convergence of infinite sequences and sums, and find that we need
to introduce norms, which takes us into functional analysis and the study of
Hilbert and Banach spaces. In this course we shall consider only the finite
dimensional vector spaces, which means that we shall be talking mainly
about matrices.

3.3 Matrix Algebra

A system Ax = b of linear equations is called a complex system, or a
real system if the entries of A, x and b are complex, or real, respectively.
Note that when we say that the entries of a matrix or a vector are complex,
we do not intend to rule out the possibility that they are real, but just to
open up the possibility that they are not real.

3.3.1 Matrix Operations

If A and B are real or complex M by N and N by K matrices, respec-
tively, then the product C = AB is defined as the M by K matrix whose
entry Cmk is given by

Cmk =

N∑
n=1

AmnBnk. (3.1)

If x is an N -dimensional column vector, that is, x is an N by 1 matrix,
then the product b = Ax is the M -dimensional column vector with entries

bm =

N∑
n=1

Amnxn. (3.2)

Ex. 3.5 Show that, for each k = 1, ...,K, Colk(C), the kth column of the
matrix C = AB, is

Colk(C) = AColk(B).
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It follows from this exercise that, for given matrices A and C, every column
of C is a linear combination of the columns of A if and only if there is a
third matrix B such that C = AB.

For any N , we denote by I the N by N identity matrix with entries
In,n = 1 and Im,n = 0, for m,n = 1, ..., N and m 6= n. The size of I is
always to be inferred from the context.

The matrix A† is the conjugate transpose of the matrix A, that is, the
N by M matrix whose entries are

(A†)nm = Amn (3.3)

When the entries of A are real, A† is just the transpose of A, written AT .

Definition 3.1 A square matrix S is symmetric if ST = S and Hermitian
if S† = S.

Definition 3.2 A square matrix S is normal if S†S = SS†.

Ex. 3.6 Let C = AB. Show that C† = B†A†.

Ex. 3.7 Let D be a diagonal matrix such that Dmm 6= Dnn if m 6= n. Show
that if BD = DB then B is a diagonal matrix.

Ex. 3.8 Prove that, if AB = BA for every N by N matrix A, then B = cI,
for some constant c.

3.3.2 Matrix Inverses

We begin with the definition of invertibility.

Definition 3.3 A square matrix A is said to be invertible, or to be a non-
singular matrix if there is a matrix B such that

AB = BA = I

where I is the identity matrix of the appropriate size. There can be at most
one such matrix B for a given A. Then B = A−1, the inverse of A.

Note that, in this definition, the matrices A and B must commute.

Proposition 3.1 The inverse of a square matrix A is unique; that is, if
AB = BA = I and AC = CA = I, then B = C = A−1.

Ex. 3.9 Prove Proposition 3.1.
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The following proposition shows that invertibility follows from an ap-
parently weaker condition.

Proposition 3.2 If A is square and there exist matrices B and C such
that AB = I and CA = I, then B = C = A−1 and A is invertible.

Ex. 3.10 Prove Proposition 3.2.

Later in this chapter, after we have discussed the concept of rank of a
matrix, we will improve Proposition 3.2; a square matrix A is invertible
if and only if there is a matrix B with AB = I, and, for any (possibly
non-square) A, if there are matrices B and C with AB = I and CA = I
(where the two I may possibly be different in size), then A must be square
and invertible.

The 2 by 2 matrix S =

[
a b
c d

]
has an inverse

S−1 =
1

ad− bc

[
d −b
−c a

]
whenever the determinant of S, det(S) = ad−bc is not zero. More generally,
associated with every complex square matrix is the complex number called
its determinant, which is obtained from the entries of the matrix using
formulas that can be found in any text on linear algebra. The significance of
the determinant is that the matrix is invertible if and only if its determinant
is not zero. This is of more theoretical than practical importance, since no
computer can tell when a number is precisely zero. A matrix A that is not
square cannot have an inverse, but does have a pseudo-inverse, which can
be found using the singular-value decomposition.

Note that, if A is invertible, then Ax = 0 can happen only when x = 0.
We shall show later, using the notion of the rank of a matrix, that the
converse is also true: a square matrix A with the property that Ax = 0
only when x = 0 must be invertible.

3.3.3 The Sherman-Morrison-Woodbury Identity

In a number of applications, stretching from linear programming to
radar tracking, we are faced with the problem of computing the inverse of
a slightly modified version of a matrix B, when the inverse of B itself has
already been computed. For example, when we use the simplex algorithm
in linear programming, the matrix B consists of some, but not all, of the
columns of a larger matrix A. At each step of the simplex algorithm, a new
Bnew is formed from B = Bold by removing one column of B and replacing
it with another column taken from A.

Then Bnew differs from B in only one column. Therefore

Bnew = Bold − uvT , (3.4)
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where u is the column vector that equals the old column minus the new one,
and v is the column of the identity matrix corresponding to the column of
Bold being altered. The inverse of Bnew can be obtained fairly easily from
the inverse of Bold using the Sherman-Morrison-Woodbury Identity:

The Sherman-Morrison-Woodbury Identity: If vTB−1u 6= 1, then

(B − uvT )−1 = B−1 + α−1(B−1u)(vTB−1), (3.5)

where
α = 1− vTB−1u.

Ex. 3.11 Let B be invertible and vTB−1u = 1. Show that B − uvT is not
invertible. Show that Equation (3.5) holds, if vTB−1u 6= 1.

3.4 Bases and Dimension

The related notions of a basis and of linear independence are funda-
mental in linear algebra.

3.4.1 Linear Independence and Bases

As we shall see shortly, the dimension of a finite-dimensional vector
space will be defined as the number of members of any basis. Obviously,
we first need to see what a basis is, and then to convince ourselves that if
a vector space V has a basis with N members, then every basis for V has
N members.

Definition 3.4 The span of a collection of vectors {u1, ..., uN} in V is the
set of all vectors x that can be written as linear combinations of the un;
that is, for which there are scalars c1, ..., cN , such that

x = c1u
1 + ...+ cNu

N . (3.6)

Definition 3.5 A collection of vectors {w1, ..., wN} in V is called a span-
ning set for a subspace W if the set W is their span.

Definition 3.6 A subspace W of a vector space V is called finite dimen-
sional if it is the span of a finite set of vectors from V . The whole space V
is then finite dimensional if it is the span of a finite set of vectors.
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The assertion in the following proposition may seem obvious, but the
proof, which the reader is asked to supply as Exercise 3.12, is surprisingly
subtle.

Proposition 3.3 Let V be a finite dimensional vector space and W a sub-
space of V . Then W is also finite dimensional.

Ex. 3.12 Prove Proposition 3.3.

This definition tells us what it means to be finite dimensional, but does
not tell us what dimension means, nor what the actual dimension of a finite
dimensional subset is; for that we need the notions of linear independence
and basis.

Definition 3.7 A collection of vectors U = {u1, ..., uN} in V is linearly
independent if there is no choice of scalars α1, ..., αN , not all zero, such
that

0 = α1u
1 + ...+ αNu

N . (3.7)

Ex. 3.13 Show that the following are equivalent:

• 1. the set U = {u1, ..., uN} is linearly independent;

• 2. u1 6= 0 and no un is a linear combination of the members of U that
precede it in the list;

• 3. no un is a linear combination of the other members of U .

Definition 3.8 A collection of vectors U = {u1, ..., uN} in V is called a
basis for a subspace W if the collection is linearly independent and W is
their span.

Ex. 3.14 Show that

• 1. if U = {u1, ..., uN} is a spanning set for W , then U is a basis for
W if and only if, after the removal of any one member, U is no longer
a spanning set for W ; and

• 2. if U = {u1, ..., uN} is a linearly independent set in W , then U is
a basis for W if and only if, after including in U any new member
from W , U is no longer linearly independent.

Ex. 3.15 Prove that every finite dimensional vector space that is not just
the zero vector has a basis.
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3.4.2 Dimension

We turn now to the task of showing that every basis for a finite dimen-
sional vector space has the same number of members. That number will
then be used to define the dimension of that space.

Suppose thatW is a subspace of V , thatW = {w1, ..., wN} is a spanning
set for W , and U = {u1, ..., uM} is a linearly independent subset of W .
Beginning with w1, we augment the set {u1, ..., uM} with wj if wj is not
in the span of the um and the wk previously included. At the end of this
process, we have a linearly independent spanning set, and therefore, a basis,
for W (Why?). Similarly, beginning with w1, we remove wj from the set
{w1, ..., wN} if wj is a linear combination of the wk, k = 1, ..., j − 1. In
this way we obtain a linearly independent set that spans W , hence another
basis for W . The following lemma will allow us to prove that all bases for
a subspace W have the same number of elements.

Lemma 3.1 Let W = {w1, ..., wN} be a spanning set for a subspace W of
V , and U = {u1, ..., uM} a linearly independent subset of W . Then M ≤ N .

Proof: Suppose that M > N . Let B0 =W = {w1, ..., wN}. To obtain the
set B1, form the set C1 = {u1, w1, ..., wN} and remove the first member of
C1 that is a linear combination of members of C1 that occur to its left in
the listing; since u1 has no members to its left, it is not removed. Since W
is a spanning set, u1 6= 0 is a linear combination of the members of W, so
that some member of W is a linear combination of u1 and the members of
W to the left of it in the list; remove the first member of W for which this
is true.

We note that the set B1 is a spanning set for W and has N members.
Having obtained the spanning set Bk, with N members and whose first k
members are uk, ..., u1, we form the set Ck+1 = Bk ∪ {uk+1}, listing the
members so that the first k+1 of them are {uk+1, uk, ..., u1}. To get the set
Bk+1 we remove the first member of Ck+1 that is a linear combination of
the members to its left; there must be one, since Bk is a spanning set, and
so uk+1 is a linear combination of the members of Bk. Since the set U is
linearly independent, the member removed is from the set W. Continuing
in this fashion, we obtain a sequence of spanning sets B1, ..., BN , each with
N members. The set BN is BN = {uN , ..., u1} and uN+1 must then be
a linear combination of the members of BN , which contradicts the linear
independence of U .

Corollary 3.1 Every basis for a subspace W has the same number of ele-
ments.

Definition 3.9 The dimension of a subspace W , denoted dim(W ), is the
number of elements in any basis.
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Ex. 3.16 Let V be a finite dimensional vector space and W any subspace
of V . Show that dim(W ) cannot exceed dim(V ).

3.4.3 Rank of a Matrix

We rely on the following lemma to define the rank of a matrix.

Lemma 3.2 For any matrix A, the maximum number of linearly indepen-
dent rows equals the maximum number of linearly independent columns.

Proof: Suppose that A is an M by N matrix, and that K ≤ N is the
maximum number of linearly independent columns of A. Select K linearly
independent columns of A and use them as the K columns of an M by K
matrix U . Since every column of A must be a linear combination of these
K selected ones, there is a K by N matrix B such that A = UB; see the
discussion that follows Exercise 3.5. From A† = B†U† we conclude that
every column of A† is a linear combination of the K columns of the matrix
B†. Therefore, there can be at most K linearly independent columns of A†.

Definition 3.10 The rank of A, written rank(A), is the maximum number
of linearly independent rows or of linearly independent columns of A.

Ex. 3.17 Let u and v be two non-zero N -dimensional complex column vec-
tors. Show that the rank of the N by N matrix uv† is one.

Ex. 3.18 Show that the rank of a matrix C = AB is never greater than
the smaller of the rank of A and the rank of B. Can it ever be strictly less
than the smaller of these two numbers?

Ex. 3.19 Show that rank(A+B) is never greater than the sum of rank(A)
and rank(B).

Definition 3.11 An M by N matrix A is said to have full rank or to be
a full-rank matrix if the rank of A is the minimum of M and N .

Proposition 3.4 A square matrix is invertible if and only if it has full
rank.

Ex. 3.20 Prove Proposition 3.4.

Corollary 3.2 A square matrix A is invertible if and only if there is a
matrix B such that AB = I.
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Corollary 3.3 A square matrix A is invertible if and only if there is a
matrix G such that AG is invertible.

Corollary 3.4 If A and B are square matrices and C = AB is invertible,
then both A and B are invertible.

Definition 3.12 An M by N matrix A is said to have left inverse B if B
is an N by M matrix such that BA = IN , the N by N identity matrix.
Similarly, A is said to have a right inverse C if C is an N by M matrix
such that AC = IM , the M by M identity matrix.

Ex. 3.21 Let A be an M by N matrix. When does A have a left inverse?
When does it have a right inverse?

Ex. 3.22 Let A and B be M by N matrices, P an invertible M by M
matrix, and Q an invertible N by N matrix, such that B = PAQ, that is,
the matrices A and B are equivalent. Show that the rank of B is the same
as the rank of A. Hint: show that A and AQ have the same rank.

3.5 Representing a Linear Transformation

Let V and W be vector spaces. A function T : V →W is called a linear
transformation if

T (αu+ βv) = αT (u) + βT (v),

for all scalars α and β and all u and v in V . For notational convenience
we often write simply Tu instead of T (u). When both V and W are finite-
dimensional a linear transformation can be represented by a matrix, which
is why we say that there is a close relationship between abstract linear
algebra and matrix theory.

Let A = {a1, a2, ..., aN} be a basis for the finite-dimensional complex
vector space V . Now that the basis for V is specified, there is a natural
association, an isomorphism, between V and the vector space CN of N -
dimensional column vectors with complex entries. Any vector v in V can
be written as

v =

N∑
n=1

γna
n. (3.8)

The column vector γ = (γ1, ..., γN )T is uniquely determined by v and the
basis A and we denote it by [v]A. Notice that the ordering of the list of
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members of A matters, so we shall always assume that the ordering has
been fixed.

Let W be a second finite-dimensional vector space, and let T be any
linear transformation from V to W . Let B = {b1, b2, ..., bM} be a basis for
W . For n = 1, ..., N , let

Tan = A1nb
1 +A2nb

2 + ...+AMnb
M . (3.9)

Then the M by N matrix A having the Amn as entries is said to represent
T , with respect to the bases A and B, and we write A = [T ]BA.

Ex. 3.23 Show that [Tv]B = A[v]A.

Ex. 3.24 Suppose that V , W and Z are vector spaces, with bases A, B and
C, respectively. Suppose also that T is a linear transformation from V to
W and U is a linear transformation from W to Z. Let A represent T with
respect to the bases A and B, and let B represent U with respect to the bases
B and C. Show that the matrix BA represents the linear transformation UT
with respect to the bases A and C.

3.6 The Geometry of Euclidean Space

We denote by RN the real Euclidean space consisting of all N -
dimensional column vectors x = (x1, ..., xN )T with real entries xj ; here the
superscript T denotes the transpose of the 1 by N matrix (or, row vector)
(x1, ..., xN ). We denote by CN the space of all N -dimensional column vec-
tors with complex entries. For x in CN we denote by x† the N -dimensional
row vector whose entries are the complex conjugates of the entries of x.

3.6.1 Dot Products

For x = (x1, ..., xN )T and y = (y1, ..., yN )T in CN , the dot product x · y
is defined to be

x · y =

N∑
n=1

xnyn. (3.10)

Note that we can write

x · y = y†x, (3.11)
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where juxtaposition indicates matrix multiplication. The 2-norm, or Eu-
clidean norm, or Euclidean length, of x is

||x||2 =
√
x · x =

√
x†x. (3.12)

The Euclidean distance between two vectors x and y in CN is ||x − y||2.
These notions also apply to vectors in RN .

In subsequent chapters we shall consider norms for vectors other than
the two-norm. However, for the remainder of this chapter all vector norms
are the two-norm.

The spaces RN and CN , along with their dot products, are examples of
a finite-dimensional Hilbert space.

Definition 3.13 Let V be a real or complex vector space. The scalar-valued
function 〈u, v〉 is called an inner product on V if the following four prop-
erties hold, for all u, w, and v in V , and all scalars c:

〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉; (3.13)

〈cu, v〉 = c〈u, v〉; (3.14)

〈v, u〉 = 〈u, v〉; (3.15)

and

〈u, u〉 ≥ 0, (3.16)

with equality in Inequality (3.16) if and only if u = 0.

Once we have an inner product on the vector space V we also have a norm,
denoted ‖ · ‖2 defined by

‖u‖22 = 〈u, u〉.

The dot products on RN and CN are examples of inner products. The prop-
erties of an inner product are precisely the ones needed to prove Cauchy’s
Inequality, which then holds for any inner product. We shall favor the dot
product notation u · v for the inner product of vectors in RN or CN , al-
though we shall occasionally use the matrix multiplication form, v†u or the
inner product notation 〈u, v〉.

Ex. 3.25 Show that, for any real number λ, we have

‖λx+ (1− λ)y‖2 + λ(1− λ)‖x− y‖2 = λ‖x‖2 + (1− λ)‖y‖2. (3.17)
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We may conclude from Exercise 3.25 that, for any α in the interval (0, 1)
and x not equal to y, we have

‖αx+ (1− α)y‖2 < α‖x‖2 + (1− α)‖y‖2, (3.18)

so that the square of the norm is a strictly convex function.

Definition 3.14 A collection of vectors {u1, ..., uN} in an inner product
space V is called orthonormal if ||un||2 = 1, for all n, and 〈um, un〉 = 0,
for m 6= n.

3.6.2 Cauchy’s Inequality

Cauchy’s Inequality, also called the Cauchy-Schwarz Inequality, tells us
that

|〈x, y〉| ≤ ||x||2||y||2, (3.19)

with equality if and only if y = αx, for some scalar α. The Cauchy-Schwarz
Inequality holds for any inner product.

A simple application of Cauchy’s inequality gives us

||x+ y||2 ≤ ||x||2 + ||y||2; (3.20)

this is called the Triangle Inequality. We say that the vectors x and y are
mutually orthogonal if 〈x, y〉 = 0.

The Parallelogram Law is an easy consequence of the definition of the
2-norm:

||x+ y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (3.21)

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law hold only for the 2-norm.

3.7 Vectorization of a Matrix

When the complex M by N matrix A is stored in the computer it is
usually vectorized; that is, the matrix

A =


A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN
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becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN )T .

Definition 3.15 The trace of a square matrix A, abbreviated tr(A), is the
sum of the entries on its main diagonal.

It can be shown that

tr(ABC) = tr(CAB) = tr(BCA), (3.22)

but it is not generally true that tr(ABC) = tr(BAC).

Ex. 3.26 • a) Show that the complex dot product vec(A)· vec(B) =
vec(B)†vec(A) can be obtained by

vec(A)· vec(B) = trace (AB†) = tr(AB†).

We can therefore use the trace to define an inner product between
matrices: < A,B >= trace (AB†).

• b) Show that trace (AA†) ≥ 0 for all A, so that we can use the trace
to define a norm on matrices: ||A||2F = trace (AA†). This norm is the
Frobenius norm

3.8 Solving Systems of Linear Equations

In this section we discuss systems of linear equations, Gaussian elimi-
nation, and the notions of basic and non-basic variables.

3.8.1 Row-Reduction

One approach to solving systems of linear equations is to use elementary
row operations to convert the original system to another system with the
same solutions.

Definition 3.16 There are three types of elementary row operations. The
first is to multiply a given row by a scalar. The second is to switch two
rows. The third is to add to a given row some multiple of another row.

Definition 3.17 An M by N matrix B is said to be in row-reduced echelon
form if the following conditions hold:
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• 1. the first non-zero entry of any row is a one;

• 2. in any column containing one of these “first non-zero” ones, the
remaining entries are zero;

• 3. all zero rows come at the bottom; and

• 4. if j < k then the column containing the first non-zero entry of the
jth row occurs before the column containing the first non-zero entry
of the kth row.

Lemma 3.3 Any matrix A can be transformed into a matrix B in row-
reduced echelon form using elementary row operations.

Ex. 3.27 Prove Lemma 3.3.

Proposition 3.5 Let A be an M by N matrix with rank R. Then there
are invertible matrices P and Q such that PAQ is a diagonal matrix with
the entries of the R by R identity matrix in the upper left corner and all
the rest of the entries equal to zero.

Proof: We know that any matrix A can be transformed to row-reduced
echelon form using row operations, or, equivalently, by multiplying A on
the left by elementary matrices. The proof follows by applying the same
reasoning to A†.

Proposition 3.6 Let A be an arbitrary M by N matrix and B the matrix
in row-reduced echelon form obtained from A. There is a non-zero solution
of the system of linear equations Ax = 0 if and only if B has fewer than
N non-zero rows.

Ex. 3.28 Prove Proposition 3.6.

Corollary 3.5 If A is M by N and M < N , then there is a non-zero x
with Ax = 0.

Ex. 3.29 Prove Corollary 3.5.

Ex. 3.30 Let W = {w1, ..., wN} be a spanning set for a subspace W in
RK , and U = {u1, ..., uM} a linearly independent subset of W . Let A be
the K by M matrix whose columns are the vectors um and B the K by N
matrix whose columns are the wn. Then there is an N by M matrix D such
that A = BD (Why?). Prove Lemma 3.1 for this case by showing that, if
M > N , then there is a non-zero vector x with Dx = 0.

Definition 3.18 Let A be an M by N matrix. The null space of A, denoted
NS(A), is the set of all x such that Ax = 0. The nullity of A, denoted n(A),
is the dimension of its null space.
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Proposition 3.7 Let A be an N by N matrix with rank J < N . Then
there are N − J linearly independent solutions of the system Ax = 0, and
the null space of A has dimension N − J .

Ex. 3.31 Prove Proposition 3.7.

3.8.2 Row Operations as Matrix Multiplications

Suppose that we want to apply a row operation to the M by N matrix
A. We can first apply that row operation to the M by M identity matrix, to
obtain the new matrix E, and then multiply A by E on the left. The matrix
EA is exactly what we would have obtained if we had just performed the
row operation on A directly. For example, to multiply the first row of A by
k we could multiply A by the matrix E1(k), which is the identity matrix,
except that the one in the first row is replaced by k.

If A is square and we are able to row reduce A to the identity matrix
I, then there are matrices E1, E2,...,EJ such that

EJEJ−1 · · · E2E1A = I.

It follows then that
EJEJ−1 · · · E2E1 = A−1.

We can also use this approach to calculate the determinant of A.

3.8.3 Determinants

Associated with each square matrix A is a number, its determinant,
denoted det(A). Most texts that discuss determinants define the concept
by telling us how to compute it. There is a different way that is more
interesting (see [105]).

We define the determinant to be a complex-valued function of square
complex matrices having the following two properties:

• 1. det(AB) = det(A) det(B) for all compatible square matrices A and
B;

• 2. the determinant of the matrix E1(k) is k, where E1(k) is as defined
in the previous subsection.

Using only these two properties, we can prove the following concerning the
effects of row operations on the determinant of A:

• 1. multiplying one row by k multiplies the determinant by k;

• 2. interchanging two rows changes the sign of the determinant;
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• 3. adding to one row a multiple of another row has no effect on the
determinant.

Ex. 3.32 Prove these assertions concerning the effects of row operations
on the determinant.

Of course, it remains to be shown that such a function of square matrices
exists. To show the existence of such a function it is sufficient to show
how it may be calculated, for any given square matrix A. Once we have
converted A to an upper triangular matrix using row operations we can
calculate the determinant of A immediately, since the determinant of an
upper triangular matrix can easily be shown to be the product of the entries
along its main diagonal. If we prefer, we can use more row operations to
convert A to row-reduced echelon form. If A is invertible, this reduction
produces the identity matrix, with determinant equal to one. If A is not
invertible, the row-reduced echelon form will have a zero row, so that the
determinant is zero. After we have discussed Schur’s Lemma we shall prove
the following proposition.

Proposition 3.8 A square matrix is invertible if and only if its determi-
nant is not zero.

3.8.4 Sylvester’s Nullity Theorem

Recall that the nullity of a matrix A is n(A), the dimension of its null
space. The following is taken from [77].

Theorem 3.1 Sylvester’s Nullity Theorem Let A and B be M by N
and N by J matrices, respectively. Then

• 1. n(AB) ≤ n(A) + n(B);

• 2. n(AB) ≥ n(A);

• 3. n(AB) ≥ n(B), provided that M ≥ N .

Proof: Let R be r(A), the rank of A. Select invertible matrices P and Q so
that PAQ = A∗ has the entries of the R by R identity matrix in the upper
left corner and zeros everywhere else. Set B∗ = Q−1B. Then A∗, B∗, and
A∗B∗ = PAB are equivalent to, so have the same ranks and nullities as,
A, B and AB, respectively.

The first R rows of A∗B∗ are those of B∗, and the remaining M − R
ones are zero. The matrix B∗ has r(B∗) = r(B) linearly independent rows,
of which at most N −R do not appear in A∗B∗. Therefore, there must be
at least r(B) − (N − R) = r(A) + r(B) −N linearly independent rows in
A∗B∗, and so r(A∗B∗) ≥ r(A) + r(B)−N .
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We know that r(A) = N − n(A), r(B) = J − n(B), and

r(AB) = r(A∗B∗) = J − n(A∗B∗) = J − n(AB).

Therefore,
J − n(AB) ≥ N − n(A) + J − n(B)−N,

so that n(AB) ≤ n(A) + n(B).
The null space of A is a subspace of the null space of AB, so that

n(A) ≤ n(AB).
Since r(AB) ≤ r(B), we have n(B) ≤ M − r(B) ≤ n(AB), provided

that N ≤M .

3.8.5 Homogeneous Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 + 2x2 + 2x4 + x5 = 0

−x1 − x2 + x3 + x4 = 0

x1 + 2x2 − 3x3 − x4 − 2x5 = 0. (3.23)

This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =

 1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2

 , (3.24)

and x = (x1, x2, x3, x4, x5)T .
The standard approach to solving a system of M equations in N un-

knowns is to apply Gaussian elimination, to obtain a second, simpler,
system with the same solutions. To avoid potential numerical difficulties,
Gauss elimination may involve row pivoting, which means that when we
are about to eliminate the variable xk from the equations k + 1 through
M , we switch the kth row with the one below it that has the coefficient of
xk with the largest absolute value. In the example below we do not employ
pivoting.

Using Gaussian elimination, we obtain the equivalent system of equa-
tions

x1 − 2x4 + x5 = 0

x2 + 2x4 = 0

x3 + x4 + x5 = 0. (3.25)
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The associated matrix is B, the row reduced echelon form matrix obtained
from A:

B =

 1 0 0 −2 5
0 1 0 2 0
0 0 1 1 1

 . (3.26)

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others depen-
dent. The variables x1, x2 and x3 are then called basic variables; note that
this terminology is commonly used in linear programming, but has nothing
to do with the notion of a basis. To obtain a basis of solutions we can let
x4 = 1 and x5 = 0, obtaining the solution x = (2,−2,−1, 1, 0)T , and then
choose x4 = 0 and x5 = 1 to get the solution x = (−1, 0,−1, 0, 1)T . Every
solution to Ax = 0 is then a linear combination of these two solutions.
Notice that which variables are basic and which are non-basic is somewhat
arbitrary, in that we could have chosen as the non-basic variables any two
whose columns are independent.

Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A in block-matrix form as A =

[
B C

]
, where B is the

square invertible matrix

B =

 1 2 0
−1 −1 1
1 2 −3

 , (3.27)

and C is the matrix

C =

 2 1
1 0
−1 −2

 . (3.28)

With xB = (x1, x2, x3)T and xC = (x4, x5)T the vector x can be written
in concatenated form as a block matrix, that is,

x =
[
xTB xTC

]T
=

[
xB
xC

]
.

Now we can write

Ax = BxB + CxC = 0, (3.29)

so that

xB = −B−1CxC . (3.30)
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3.8.6 Real and Complex Systems of Linear Equations

Any complex system can be converted to a real system in the following
way. A complex matrix A can be written as A = A1 + iA2, where A1 and
A2 are real matrices and i =

√
−1. Similarly, x = x1 + ix2 and b = b1 + ib2,

where x1, x2, b1 and b2 are real vectors. Denote by Ã the real matrix

Ã =

[
A1 −A2

A2 A1

]
, (3.31)

by x̃ the real vector

x̃ =

[
x1

x2

]
, (3.32)

and by b̃ the real vector

b̃ =

[
b1

b2

]
. (3.33)

Then x satisfies the system Ax = b if and only if x̃ satisfies the system
Ãx̃ = b̃.

3.9 Under-Determined Systems of Linear Equations

Suppose that Ax = b is a linear system of M equations in N unknowns,
where M < N . Then we say that the system is under-determined. Typically,
there will be an infinite number of solutions, although there need not be
any solutions in this case (give an example). A standard procedure in such
cases is to find that solution x having the smallest two-norm

||x||2 =

√√√√ N∑
n=1

|xn|2.

As we shall see shortly, the minimum two-norm solution of Ax = b is a
vector of the form x = A†z, where A† denotes the conjugate transpose of
the matrix A. Then Ax = b becomes AA†z = b. Typically, (AA†)−1 will
exist, and we get z = (AA†)−1b, from which it follows that the minimum
two-norm solution is x = A†(AA†)−1b. When M and N are not too large,
forming the matrix AA† and solving for z is not prohibitively expensive
or time-consuming. However, in image processing the vector x is often a
vectorization of a two-dimensional (or even three-dimensional) image and
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M and N can be on the order of tens of thousands or more. The ART al-
gorithm gives us a fast method for finding the minimum two-norm solution
without computing AA†.

We begin by describing the minimum two-norm solution of a consis-
tent system Ax = b, starting with the fundamental subspace decomposition
lemma.

Lemma 3.4 For every x in CN there are unique vectors A†z in the range
of A† and w in the null space of A, such that x = A†z + w.

Proof: The z that minimizes the function

f(z) =
1

2
‖x−A†z‖22

satisfies the equation

0 = ∇f(z) = A(x−A†z).

Then w = x − A†z satisfies Aw = 0. Expanding ‖x‖2 = ‖A†z + w‖2 and
using the fact that Aw = 0 we find that

‖x‖2 = ‖A†z‖2 + ‖w‖2.

If we also had
x = A†ẑ + ŵ,

with Aŵ = 0, then, writing

A†z = A†ẑ + ŵ − w,

we could conclude that

‖A†z‖2 = ‖A†ẑ‖2 + ‖ŵ − w‖2.

But writing
A†ẑ = A†z + w − ŵ,

we could also conclude that

‖A†ẑ‖2 = ‖A†z‖2 + ‖w − ŵ‖2.

It follows then that ŵ = w and that A†ẑ = A†z.

Corollary 3.6 For every M by N matrix A and every b in CM there are
unique vectors x in CN and w in CM such that A†w = 0 and b = Ax+w.

Corollary 3.7 An N by N matrix A is invertible if and only if Ax = 0
implies x = 0.
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Proof: If A is invertible and Ax = 0, then clearly we must have x = 0.
Conversely, suppose that Ax = 0 only when x = 0. Then the null space of
A is the subspace of CN consisting only of the zero vector. Consequently,
every vector in CN lies in the column space of A†, so that N is the rank of
A†, which is also the rank of A. So A has full rank and A must be invertible.

Theorem 3.2 The minimum two-norm solution of Ax = b has the form
x = A†z for some M -dimensional complex vector z.

Proof: If Ax = b then A(x + w) = b for all w in the null space of A. If
x = A†z and w is in the null space of A, then

||x+ w||22 = ||A†z + w||22 = (A†z + w)†(A†z + w)

= (A†z)†(A†z) + (A†z)†w + w†(A†z) + w†w

= ||A†z||22 + (A†z)†w + w†(A†z) + ||w||22
= ||A†z||22 + ||w||22,

since
w†(A†z) = (Aw)†z = 0†z = 0

and
(A†z)†w = z†Aw = z†0 = 0.

Therefore, ||x + w||2 = ||A†z + w||2 > ||A†z||2 = ||x||2 unless w = 0. This
completes the proof.

In a later chapter we shall consider other approaches to solving under-
determined systems of linear equations.

3.10 Over-Determined Systems of Linear Equations

When there are more equations than there are unknowns in the system
Ax = b we say that the system is over-determined; it is most likely then that
there will be no exact solution, although there may be (give an example).
In such cases, it is common to seek a least squares solution. A least squares
solution is not an exact solution of Ax = b when none exist, but rather
an exact solution of the system A†Ax = A†b. A least squares solution is a
minimizer of the function

f(x) =
1

2
‖Ax− b‖22.
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Ex. 3.33 Let A be an M by N matrix with complex entries. View A as a
linear function with domain CN , the space of all N -dimensional complex
column vectors, and range contained within CM , via the expression A(x) =
Ax. Suppose that M > N . The range of A, denoted R(A), cannot be all of
CM . Show that every vector z in CM can be written uniquely in the form
z = Ax+w, where A†w = 0. Show that ‖z‖22 = ‖Ax‖22 + ‖w‖22, where ‖z‖22
denotes the square of the two-norm of z. Hint: If z = Ax+w then consider
A†z. Assume A†A is invertible.
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4.1 Chapter Summary

The ART and the MART are two iterative algorithms that were de-
signed to address issues that arose in solving large-scale systems of linear
equations for medical imaging [151]. The EM-MART is a more recently
discovered method that combines useful features of both ART and MART
[54]. In this chapter we give an overview of these methods; later, we shall
revisit them in more detail.

4.2 Overview

In many applications, such as in image processing, we need to solve a
system of linear equations that is quite large, often several tens of thousands

45
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of equations in about the same number of unknowns. In these cases, issues
such as the costs of storage and retrieval of matrix entries, the computa-
tion involved in apparently trivial operations, such as matrix-vector prod-
ucts, and the speed of convergence of iterative methods demand greater
attention. At the same time, the systems to be solved are often under-
determined, and solutions satisfying certain additional constraints, such as
non-negativity, are required.

Both the algebraic reconstruction technique (ART) and the multiplica-
tive algebraic reconstruction technique (MART) were introduced as two
iterative methods for discrete image reconstruction in transmission tomog-
raphy.

Both methods are what are called row-action methods, meaning that
each step of the iteration uses only a single equation from the system. The
MART is limited to non-negative systems for which non-negative solutions
are sought. In the under-determined case, both algorithms find the solution
closest to the starting vector, in the two-norm or weighted two-norm sense
for ART, and in the cross-entropy sense for MART, so both algorithms can
be viewed as solving optimization problems. In the appendix “Geometric
Programming and the MART” we describe the use of MART to solve the
dual geometric programming problem. For both algorithms, the starting
vector can be chosen to incorporate prior information about the desired
solution. In addition,the ART can be employed in several ways to obtain a
least-squares solution, in the over-determined case.

The simultaneous MART (SMART) algorithm is a simultaneous vari-
ant of the MART in which all the equations are employed at each step of
the iteration. Closely related to the SMART is the expectation maximiza-
tion maximum likelihood (EMML) method, which is also a simultaneous
algorithm.

The EM-MART is a row-action variant of the EMML algorithm. Like
MART, it applies to non-negative systems of equations and produces non-
negative solutions, but, like ART, does not require exponentiation, so is
computationally simpler than MART.

4.3 The ART in Tomography

In x-ray transmission tomography, as an x-ray beam passes through
the body, it encounters various types of matter, such as soft tissue, bone,
ligaments, air, each weakening the beam to a greater or lesser extent. If the
intensity of the beam upon entry is Iin and Iout is its lower intensity after
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passing through the body, then, at least approximately,

Iout = Iine
−

∫
L
f ,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being
scanned and

∫
L
f is the integral of the function f over the line L along

which the x-ray beam has passed. This is the continuous model. In the
discrete model the slice of the body being scanned is viewed as consisting
of pixels, which we number j = 1, 2, ..., J . The x-rays are sent into the
body along I lines, which we number i = 1, 2, ..., I. The line integral of f
along the ith line is measured, approximately, from the entering and exiting
strengths of the x-ray beams; these measurements are denoted bi.

For i = 1, ..., I, let Li be the set of pixel indices j for which the j-th
pixel intersects the i-th line segment, as shown in Figure 4.1, and let |Li| be
the cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xkj +

1

|Li|
(bi − (Axk)i), (4.1)

for j in Li, and

xk+1
j = xkj , (4.2)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

This model is too simple; we are assuming that if the line segment in-
tersects a pixel, then the entire amount of attenuating material within that
pixel affects the x-ray strength. A somewhat more sophisticated version
of ART allows Aij to include the length of the i-th line segment that lies
within the j-th pixel; Aij is taken to be the ratio of this length to the length
of the diagonal of the j-pixel.

More generally, ART can be viewed as an iterative method for solving
an arbitrary system of linear equations, Ax = b.

4.4 The ART in the General Case

Let A be a matrix with complex entries, having I rows and J columns,
and let b be a member of CI . We want to solve the system Ax = b. Note
that when we say that A is a complex matrix and b a complex vector, we
do not exclude the case in which the entries of both A and b are real.
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Ex. 4.1 Find the point in R2 on the line y = −3x+ 6 closest to the point
(4, 2).

Ex. 4.2 Find the point in R3 on the plane x+ 2y − 3z = 12 closest to the
point (1, 1, 1).

Associated with each equation (Ax)i = bi in the system Ax = b there is
a hyperplane Hi defined to be the subset of J-dimensional column vectors
given by

Hi = {x|(Ax)i = bi}. (4.3)

Ex. 4.3 Show that the ith column of A† is normal to the hyperplane Hi;
that is, it is orthogonal to every vector lying in Hi.

Ex. 4.4 Show that, for any vector z in CJ , the member of Hi closest to z
is x having the entries

xj = zj + α−1
i Aij(bi − (Az)i), (4.4)

where

αi =

J∑
j=1

|Aij |2.

Definition 4.1 The orthogonal projection operator onto the hyperplane
Hi is the function Pi : CJ → CJ defined for each z in CJ by Piz = x,
where x is the member of Hi closest to z.

The ART algorithm can be expressed in terms of the operators Pi. Let x0

be arbitrary and, for each nonnegative integer k, let i(k) = k(mod I) + 1.
The iterative step of the ART is

xk+1 = Pi(k)x
k. (4.5)

Using the formula in Equation (4.4), we can write the iterative step of the
ART explicitly.

Algorithm 4.1 (ART) For k = 0, 1, ... and i = i(k) = k(mod I) + 1, the
entries of xk+1 are

xk+1
j = xkj + α−1

i Aij(bi − (Axk)i). (4.6)

Because the ART uses only a single equation at each step, it has been called
a row-action method.
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4.4.1 Simplifying the Notation

To simplify our notation, we shall assume, throughout this chapter, that
the rows of A have been rescaled to have Euclidean length one; that is

αi =

J∑
j=1

|Aij |2 = 1, (4.7)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b. The ART is then the following: begin
with an arbitrary vector x0; for each nonnegative integer k, having found
xk, the next iterate xk+1 has entries

xk+1
j = xkj +Aij(bi − (Axk)i). (4.8)

4.4.2 Consistency

When we are dealing with a general system of linear equations Ax = b,
we shall say that the system is consistent if there are vectors x with Ax = b;
that is, the system has exact solutions. If not, the system will be called
inconsistent.

When we are dealing with non-negative systems Ax = b, in which the
entries of A are non-negative, the entries of b are positive, and we seek
a non-negative solution x, we shall say that such a system is consistent
if there are non-negative vectors x with Ax = b; otherwise, the system
is inconsistent. It will always be clear from the context which category of
systems we are discussing. The ART applies to general systems of linear
equations, while the MART and EM-MART apply only to non-negative
systems. Note that a non-negative system can be inconsistent even when
it possesses exact solutions x that happen not to be non-negative.

4.4.3 When Ax = b Has Solutions

For the consistent case we have the following result concerning the ART.

Theorem 4.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (4.8). Then the sequence of Euclidean distances or two-norms
{||x̂ − xk||2} is decreasing and {xk} converges to the solution of Ax = b
closest to x0.

So, when the system Ax = b has exact solutions, the ART converges to
the solution closest to x0, in the 2-norm. How fast the algorithm converges
will depend on the ordering of the equations and on whether or not we use
relaxation, which we shall discuss later. In selecting the equation ordering,
the important thing is to avoid particularly bad orderings, in which the
hyperplanes Hi and Hi+1 are nearly parallel.
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4.4.4 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a
single vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...}
converges to a vector zi and the collection {zi |i = 1, ..., I} is called the limit
cycle. The ART limit cycle will vary with the ordering of the equations,
and contains more than one vector unless an exact solution exists.

Figures 4.2 and 4.3 illustrate the behavior of the ART in the two cases.

4.4.5 The Geometric Least-Squares Solution

When the system Ax = b has no solutions, it is reasonable to seek an ap-
proximate solution, such as the least squares solution, xLS = (A†A)−1A†b,
which minimizes ||Ax−b||2. It is important to note that the system Ax = b
has solutions if and only if the related system WAx = Wb has solutions,
where W denotes an invertible matrix; when solutions of Ax = b exist,
they are identical to those of WAx = Wb. But, when Ax = b does not
have solutions, the least-squares solutions of Ax = b, which need not be
unique, but usually are, and the least-squares solutions of WAx = Wb need
not be identical. In the typical case in which A†A is invertible, the unique
least-squares solution of Ax = b is

(A†A)−1A†b, (4.9)

while the unique least-squares solution of WAx = Wb is

(A†W †WA)−1A†W †b, (4.10)

and these need not be the same.
A simple example is the following. Consider the system

x = 1

x = 2, (4.11)

which has the unique least-squares solution x = 1.5, and the system

2x = 2

x = 2, (4.12)

which has the least-squares solution x = 1.2.

Definition 4.2 The geometric least-squares solution of Ax = b is the
least-squares solution of WAx = Wb, for W the diagonal matrix whose
entries are the reciprocals of the Euclidean lengths of the rows of A.
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In our example above, the geometric least-squares solution for the first
system is found by using W11 = 1 = W22, so is again x = 1.5, while the
geometric least-squares solution of the second system is found by using
W11 = 0.5 and W22 = 1, so that the geometric least-squares solution is
x = 1.5, not x = 1.2.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?

There is a partial answer to the first question. It is known that if the
system Ax = b has no exact solution, and if I = J+1, then the vectors of the
limit cycle lie on a sphere in J-dimensional space having the geometric least-
squares solution at its center [55]. This is not generally true for I 6= J + 1,
however.

4.5 The MART

The multiplicative ART (MART) is an iterative algorithm closely re-
lated to the ART. It also was devised to obtain tomographic images, but,
like ART, applies more generally; MART applies to non-negative systems
of linear equations Ax = b for which the bi are positive, the Aij are non-
negative, and the solution x we seek is to have nonnegative entries. It is
not so easy to see the relation between ART and MART if we look at the
most general formulation of MART. For that reason, we begin with a sim-
pler case, transmission tomographic imaging, in which the relation is most
clearly apparent.

4.5.1 A Special Case of MART

We begin by considering the application of MART to the transmission
tomography problem. For i = 1, ..., I, let Li be the set of pixel indices j
for which the j-th pixel intersects the i-th line segment, and let |Li| be the
cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xkj +

1

|Li|
(bi − (Axk)i), (4.13)

for j in Li, and

xk+1
j = xkj , (4.14)
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if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

Suppose, now, that each bi is positive, and we know in advance that the
desired image we wish to reconstruct must be nonnegative. We can begin
with x0 > 0, but as we compute the ART steps, we may lose nonnegativity.
One way to avoid this loss is to correct the current xk multiplicatively,
rather than additively, as in ART. This leads to the multiplicative ART
(MART).

The MART, in this case, has the iterative step

xk+1
j = xkj

( bi
(Axk)i

)
, (4.15)

for those j in Li, and

xk+1
j = xkj , (4.16)

otherwise. Therefore, we can write the iterative step as

xk+1
j = xkj

( bi
(Axk)i

)Aij

. (4.17)

4.5.2 The MART in the General Case

Taking the entries of the matrix A to be either one or zero, depending
on whether or not the j-th pixel is in the set Li, is too crude. The line Li
may just clip a corner of one pixel, but pass through the center of another.
Surely, it makes more sense to let Aij be the length of the intersection of
line Li with the j-th pixel, or, perhaps, this length divided by the length
of the diagonal of the pixel. It may also be more realistic to consider a
strip, instead of a line. Other modifications to Aij may be made, in order
to better describe the physics of the situation. Finally, all we can be sure
of is that Aij will be nonnegative, for each i and j. In such cases, what is
the proper form for the MART?

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration.

Algorithm 4.2 (MART) Let x0 be a positive vector. For k = 0, 1, ...,
and i = k(mod I) + 1, having found xk define xk+1 by

xk+1
j = xkj

( bi
(Axk)i

)m−1
i Aij

, (4.18)

where mi = max {Aij |j = 1, 2, ..., J}.
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Some treatments of MART leave out the mi, but require only that the
entries of A have been rescaled so that Aij ≤ 1 for all i and j. The mi is
important, however, in accelerating the convergence of MART.

Notice that we can write xk+1
j as a weighted geometric mean of xkj and

xkj

(
bi

(Axk)i

)
:

xk+1
j =

(
xkj

)1−m−1
i Aij

(
xkj

( bi
(Axk)i

))m−1
i Aij

. (4.19)

This will help to motivate the EM-MART.

4.5.3 Cross-Entropy

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler (KL)
distance from a to b be

KL(a, b) = a log
a

b
+ b− a, (4.20)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =

J∑
j=1

KL(xj , zj). (4.21)

Unlike the Euclidean distance, the KL distance is not symmetric;
KL(Ax, b) and KL(b, Ax) are distinct, and we can obtain different ap-
proximate solutions of Ax = b by minimizing these two distances with
respect to non-negative x.

4.5.4 Convergence of MART

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART.

Theorem 4.2 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1KL(xj , x

0
j ) is

minimized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =

J∑
j=1

xj log xj − xj . (4.22)
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As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of a
limit cycle for MART. Is there such a proof?

4.6 The EM-MART

The MART enforces positivity of the xkj , but at the cost of an exponen-
tiation in each step. The EM-MART is similar to the MART, guarantees
positivity at each step, but does not employ exponentiation.

The EM-MART is a row-action version of the expectation maximization
maximum likelihood (EMML) algorithm, which we shall discuss in detail
later. The EMML algorithm, which was developed as a method for recon-
structing tomographic medical images, was found to converge too slowly
to be of practical use. Several faster variants of the EMML algorithm were
subsequently discovered, one of which is the EM-MART.

As with MART, we assume that the entries of the matrix A are non-
negative, that the entries of b are positive, and that we seek a non-negative
solution of Ax = b.

Algorithm 4.3 (EM-MART) Let x0 be an arbitrary positive vector and
i = k(mod I) + 1. Then let

xk+1
j = (1−m−1

i Aij)x
k
j +m−1

i Aij

(
xkj

bi
(Axk)i

)
. (4.23)

Notice that xk+1
j is always positive, since it is a weighted arithmetic mean

of xkj and xkj

(
bi

(Axk)i

)
.

In the consistent case, in which there are non-negative solutions of
Ax = b, the EM-MART converges to a non-negative solution. However,
no characterization of the solution, in terms of x0, is known.

The EM-MART fails to converge in the inconsistent case. What is al-
ways observed, but for which no proof is known, is that, for each fixed
i = 1, 2, ..., I, as m → +∞, the EM-MART subsequences {xmI+i} con-
verge to separate limit vectors, say x∞,i.

Open Questions: We know that, in the consistent case, the MART con-
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verges to the non-negative solution of Ax = b for which KL(x, x0) is min-
imized. Is there a similar characterization of the EM-MART solution, in
terms of x0? When there are no nonnegative solutions, EM-MART does not
converge to a single vector, but, like ART and MART, is always observed
to produce a limit cycle of vectors. Unlike ART, no one has found a proof
of the existence of a limit cycle for EM-MART. Is there such a proof?
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FIGURE 4.1: Line integrals through a discretized object.
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FIGURE 4.2: The ART algorithm in the consistent case.
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FIGURE 4.3: The ART algorithm in the inconsistent case.
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5.1 Chapter Summary

In this chapter we continue our study of matrix algebra.
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5.2 Proof By Induction

Proof by induction is a tool used in a wide variety of proofs; we shall
use it shortly to prove Schur’s Lemma. In this section we present the basic
idea and an example to illustrate its use.

All proofs by induction have the same basic form. There is some prop-
erty, say Property P, that a positive integer n may or may not have. The
assertion, which we must prove, is that all n have Property P. The proof is
by contradiction; we assume the assertion is false and that not all n have
Property P. Therefore, there must be a first n that does not have Property
P. We begin by checking to see if n = 1 has Property P. Having established
that n = 1 has Property P, we focus on the first n that does not have Prop-
erty P; we know that this n is not one, so n − 1 is also a positive integer,
and n− 1 does have Property P, since n is the first one without Property
P. The rest of the proof involves showing that, because n− 1 has Property
P, so must n. This will give us our contradiction and allow us to conclude
that there is no such first n without Property P.

For example, let Property P be the following: n is a positive integer
such that the sum of the first n positive integers is 1

2n(n+ 1). This clearly
holds for n = 1, so n = 1 has Property P. Assume that not all n do have
Property P, and let n be the first that does not have Property P. Then
n− 1 is a positive integer and

1 + 2 + ...+ n− 1 =
1

2
(n− 1)n.

Then

1+2+...+n = 1+2+...+n−1+n =
1

2
(n−1)n+n =

1

2
n(n−1+2) =

1

2
n(n+1).

Therefore, n must also have Property P. This contradicts our assumption
that not all positive integers have Property P. Therefore, Property P holds
for all positive integers.

Note that there are other ways to prove this theorem. We have used
induction here because we are trying to illustrate the use of induction. In
most cases in which induction is used, induction is the best, and maybe the
only, way to prove the theorem.

Ex. 5.1 Prove that

1

2!
+

2

3!
+ ...+

n

(n+ 1)!
= 1− 1

(n+ 1)!
.



More Matrix Theory 63

5.3 Schur’s Lemma

Schur’s Lemma is a useful tool for proving the diagonalization theorems
for Hermitian and normal matrices.

Definition 5.1 A complex square matrix U is said to be unitary if U†U =
I. A real square matrix O is orthogonal if OTO = I. A square matrix T is
upper triangular if all the entries of T below the main diagonal are zero.

Theorem 5.1 (Schur’s Lemma) For any square matrix S there is a
unitary matrix U such that U†SU = T is an upper triangular matrix.

Proof: We proceed by induction. The theorem is obviously true for any 1
by 1 matrix. Assume that the theorem is true for any n−1 by n−1 matrix.
We show that it is true also for any n by n matrix.

Because every polynomial has at least one (possibly complex) root, S
has at least one eigenvector. Therefore, let Su1 = λu1, with ‖u1‖2 = 1. Let
{u1, u2, ..., un} be an orthonormal basis for Cn. Then

U =
[
u1 u2 ... un

]
(5.1)

is unitary and

U†SU =


(u1)†

(u2)†

.

.

.
(un)†


[
Su1 Su2 ... Sun

]
=



λ1 c12 ... c1n
0
0
. S1

.

.
0


,

where S1 is of order n− 1.
Now let U1 be an n − 1 by n − 1 unitary matrix such that U†1S1U1 is

upper triangular; such a U1 exists by the induction hypothesis. Let

U2 =



1 0 ... 0
0
0
. U1

.

.
0


.
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Then U2 and UU2 are unitary and

(UU2)†S(UU2) = U†2 (U†SU)U2

=



λ1 b12 ... b1n
0
0

. U†1SU1

.

.
0


,

which is upper triangular.

Using essentially the same proof, we can establish the following version
of Schur’s Lemma:

Theorem 5.2 Let S be a real square matrix with only real eigenvalues.
Then there is a real orthogonal matrix O such that OTSO is upper trian-
gular.

Corollary 5.1 • (a) If S† = S then there is a unitary matrix U such
that U†SU is a real diagonal matrix.

• (b) If S is real and ST = S then there is an orthogonal matrix O such
that OTSO is a real diagonal matrix.

Ex. 5.2 Use Schur’s Lemma to prove Corollary 5.1.

Theorem 5.3 For a given complex square matrix S there is a unitary
matrix U such that U†SU = D is a diagonal matrix if and only if S is
normal.

Ex. 5.3 Use Schur’s Lemma to prove Theorem 5.3. Hint: compute
(TT †)nn two ways.

We are now in a position to prove Proposition 3.8, which we restate
now.

Proposition 5.1 A square matrix A is invertible if and only if its deter-
minant is not zero.

Proof: From Schur’s Lemma we know that there is a unitary matrix U
such that U†AU = T is upper triangular. The determinant of T is the
product of the entries on its main diagonal. Clearly, T is invertible if and
only if none of these entries is zero; this is true because Tx = 0 implies
x = 0 if and only if no diagonal entry is zero. Therefore, T is invertible if
and only if the determinant of T is not zero. But, the determinant of A is
the same as that of T and A is invertible precisely when T is invertible.
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5.4 Eigenvalues and Eigenvectors

Let A be a complex M by N matrix. It is often helpful to know how
large the two-norm ‖Ax‖2 can be, relative to ‖x‖2; that is, we want to find
a constant a so that

‖Ax‖2/‖x‖2 ≤ a,

for all x 6= 0. We can reformulate the problem by asking how large ‖Au‖22
can be, subject to ‖u‖2 = 1. Using Lagrange multipliers, we discover that
a unit vector u that maximizes ‖Au‖22 has the property that

A†Au = λu,

for some constant λ. This leads to the more general problem discussed in
this section.

Definition 5.2 Given an N by N complex matrix S, we say that a complex
number λ is an eigenvalue of S if there is a nonzero vector u with Su = λu.
The column vector u is then called an eigenvector of S associated with
eigenvalue λ.

Clearly, if u is an eigenvector of S, then so is cu, for any constant c 6= 0;
therefore, it is common to choose eigenvectors to have norm equal to one.

If λ is an eigenvalue of S, then the matrix S−λI fails to have an inverse,
since (S − λI)u = 0 but u 6= 0, and so its determinant must be zero. If we
treat λ as a variable and compute the characteristic polynomial of S,

P (λ) = det(S − λI),

we obtain a polynomial of degree N in λ. Its roots λ1, ..., λN are then the
eigenvalues of S. If ||u||22 = u†u = 1 then u†Su = λu†u = λ. Note that the
eigenvalues need not be real, even if S is a real matrix.

Ex. 5.4 Prove that the eigenvalues of an upper triangular matrix T are
the entries of its main diagonal, so that the trace of T is the sum of its
eigenvalues.

Ex. 5.5 Prove that, if S is square, U is unitary, and U†SU = T is upper
triangular, then the eigenvalues of S and T are the same and S and T
have the same trace. Hint: use the facts that det(AB) = det(A) det(B) and
Equation (3.22).

Ex. 5.6 Use the two previous exercises to prove that, for any square matrix
S, the trace of S is the sum of its eigenvalues.
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We know that a square matrix S is invertible if and only if Sx = 0
implies that x = 0. We can say this another way now: S is invertible if and
only if λ = 0 is not an eigenvalue of S.

Ex. 5.7 Compute the eigenvalues for the real square matrix

S =

[
1 2
−2 1

]
. (5.2)

Note that the eigenvalues are complex, even though the entries of S are
real.

The eigenvalues of the Hermitian matrix

H =

[
1 2 + i

2− i 1

]
(5.3)

are λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding eigenvectors u =
(
√

5, 2 − i)T and v = (
√

5, i − 2)T , respectively. Then H̃, defined as in
Equation (3.31), has the same eigenvalues, but both with multiplicity two.
Finally, the associated eigenvectors of B̃ are[

u1

u2

]
, (5.4)

and [
−u2

u1

]
, (5.5)

for λ = 1 +
√

5, and [
v1

v2

]
, (5.6)

and [
−v2

v1

]
, (5.7)

for λ = 1−
√

5.

Definition 5.3 The spectral radius of S, denoted ρ(S), is the largest value
of |λ|, where λ denotes an eigenvalue of S.

Ex. 5.8 Use the facts that λ is an eigenvalue of S if and only if det(S −
λI) = 0, and det(AB) = det(A)det(B) to show that λ2 is an eigenvalue of
S2 if and only if either λ or −λ is an eigenvalue of S. Then use this result
to show that ρ(S)2 = ρ(S2).
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5.4.1 The Hermitian Case

LetH be anN byN Hermitian matrix. As we just saw, there is a unitary
matrix U such that U†HU = D is real and diagonal. Then HU = UD, so
that the columns of U are eigenvectors of H with two-norms equal to one,
and the diagonal entries of D are the eigenvalues of H. Since U is invertible,
its columns form a set of N mutually orthogonal norm-one eigenvectors of
the Hermitian matrix H; call them {u1, ..., uN}. We denote by λn, n =
1, 2, ..., N , the N eigenvalues, so that Hun = λnu

n. This is the well known
eigenvalue-eigenvector decomposition of the matrix H. Not every square
matrix has such a decomposition, which is why we focus on Hermitian
H. The singular-value decomposition, which we discuss shortly, provides a
similar decomposition for an arbitrary, possibly non-square, matrix.

The matrix H can also be written as

H =

N∑
n=1

λnu
n(un)†,

a linear superposition of the dyad matrices un(un)†. The Hermitian matrix
H is invertible if and only if none of the λ are zero and its inverse is

H−1 =

N∑
n=1

λ−1
n un(un)†.

We also have H−1 = UL−1U†.

Ex. 5.9 Show that if z = (z1, ..., zN )T is a column vector with complex
entries and H = H† is an N by N Hermitian matrix with complex entries
then the quadratic form z†Hz is a real number. Show that the quadratic
form z†Hz can be calculated using only real numbers. Let z = x+ iy, with
x and y real vectors and let H = A+ iB, where A and B are real matrices.
Then show that AT = A, BT = −B, xTBx = 0 and finally,

z†Hz =
[
xT yT

] [A −B
B A

] [
x
y

]
.

Use the fact that z†Hz is real for every vector z to conclude that the eigen-
values of H are real.

Ex. 5.10 Show that the eigenvalues of a Hermitian matrix H are real by
computing the conjugate transpose of the 1 by 1 matrix z†Hz.

Definition 5.4 A Hermitian matrix Q is said to be nonnegative-definite
if all the eigenvalues of Q are nonnegative, and positive-definite if all the
eigenvalues are positive.
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Proposition 5.2 A Hermitian matrix Q is a nonnegative-definite matrix
if and only if there is another matrix C, not necessarily square, such that
Q = C†C.

Proof: Assume that Q is nonnegative-definite and let Q = ULU† be the
eigenvalue/eigenvector decomposition of Q. Since the eigenvalues of Q are
nonnegative, each diagonal entry of the matrix L has a nonnegative square
root; the matrix with these square roots as entries is called

√
L. Using the

fact that U†U = I, we have

Q = ULU† = U
√
LU†U

√
LU†;

we then take C = U
√
LU†, so C† = C. This choice of C is called the

Hermitian square root of Q.
Conversely, assume now that Q = C†C, for some arbitrary, possibly not

square, matrix C. Let Qu = λu, for some non-zero eigenvector u, so that
λ is an eigenvalue of Q. Then

λ‖u‖22 = λu†u = u†Qu = u†C†Cu = ‖Cu‖22,

so that
λ = ‖Cu‖22/‖u‖22 ≥ 0.

If N is a square complex matrix with N = UDU†, where, as above,
U†U = I and D is diagonal, but not necessarily real, then we do have
N†N = NN†; then N is normal, which means that NTN = NNT . The
matrix N will be Hermitian if and only if D is real. It follows then that a
real normal matrix N will be symmetric if and only if its eigenvalues are
real, since it is then Hermitian and real.

The normal matrices are precisely those for which such an eigenvector-
eigenvalue decomposition holds, as we saw above. In the appendix on Her-
mitian and Normal Linear Operators we prove this result again, as a state-
ment about operators on a finite-dimensional vector space.

The following exercise gives an example of a matrix N that is real,
normal, not symmetric, and has non-real eigenvalues. The matrix NTN
has repeated eigenvalues. As we shall see in Theorem 5.4, if a real, normal
matrix is such that NTN does not have repeated eigenvalues, then N is
symmetric and so the eigenvalues of N are real.

Ex. 5.11 Show that the 2 by 2 matrix N =

[
0 1
−1 0

]
is real, normal, and

has eigenvalues ±i. Show that the eigenvalues of NTN are both 1.
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5.5 The Singular Value Decomposition (SVD)

The year 1965 was a good one for the discovery of important algorithms.
In that year, Cooley and Tukey [101] introduced the fast Fourier transform
(FFT) algorithm and Golub and Kahan [149] their method for calculating
the singular-value decomposition (SVD).

We have just seen that an N by N Hermitian matrix H can be written
in terms of its eigenvalues and eigenvectors as H = ULU† or as

H =

N∑
n=1

λnu
n(un)†.

The singular value decomposition (SVD) is a similar result that applies to
any rectangular matrix A. It is an important tool in image compression
and pseudo-inversion.

5.5.1 Defining the SVD

Let A be any M by N complex matrix. In presenting the SVD of A we
shall assume that N ≥ M ; the SVD of A† will come from that of A. Let
Q = A†A and P = AA†; we assume, reasonably, that P , the smaller of the
two matrices, is invertible, so all the eigenvalues λ1, ..., λM of P are positive.
We let the eigenvalue/eigenvector decomposition of P be P = ULU†, where
{u1, ..., uM} are orthonormal eigenvectors of P and Pum = λmu

m.
From PU = UL or AA†U = UL it follows that A†AA†U = A†UL.

Therefore, the M columns of W = A†U are eigenvectors of Q corresponding
to the eigenvalues λm; since Pum = AA†um is not the zero vector, A†um

cannot be the zero vector either. But the columns of W do not have norm
one. To normalize these columns we replace them with the M columns of
A†UL−1/2, which are orthonormal eigenvectors of Q.

Ex. 5.12 Show that the nonzero eigenvalues of Q = A†A and P = AA†

are the same.

Let Z be the N by N matrix whose first M columns are those of the
matrix A†UL−1/2 and whose remaining N −M columns are any mutually
orthogonal norm-one vectors that are all orthogonal to each of the first M
columns; note that this gives us Z†Z = I.

Let Σ be the M by N matrix with diagonal entries Σmm =
√
λm, for

m = 1, ...,M , and whose remaining entries are zero. The nonzero entries
of Σ, the

√
λm, are called the singular values of A. The singular value

decomposition (SVD) of A is A = UΣZ†. The SVD of A† is A† = ZΣTU†.
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Ex. 5.13 Show that UΣZ† equals A.

We have assumed, for convenience, that none of the eigenvalues λm,
m = 1, ...,M are zero. If this is not true, we can obtain the SVD of A
simply by modifying the definition of L−1/2 to have 1/

√
λm on the main

diagonal if λm is not zero, and zero if it is. To show that UΣZ† = A now
we need to use the fact that Pum = 0 implies that A†um = 0. To see this,
note that

0 = Pum = AA†um

implies that

0 = (um)†Pum = (um)†AA†um = ‖A†um‖2.

As an example of the singular-value decomposition, consider the matrix
A, whose SVD is given by

A =

[
4 8 8
3 6 6

]
=

[
4/5 3/5
3/5 −4/5

] [
15 0 0
0 0 0

]1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

 ,
which can also be written in dyad form as

A = 15

[
4/5
3/5

] [
1/3 2/3 2/3

]
.

It is just a coincidence that, in this example, the matrices U and Z are
symmetric.

The SVD of AT is then

AT =

4 3
8 6
8 6

 =

1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

15 0
0 0
0 0

[4/5 3/5
3/5 −4/5

]
.

Ex. 5.14 If H is a Hermitian matrix, its eigenvalue/eigenvector decom-
position H = ULU† need not be its SVD. Illustrate this point for the real

symmetric matrix

[
1 0
0 −1

]
.

Using the SVD of A we can write A as a sum of dyads:

A =

M∑
m=1

√
λmu

m(zm)†, (5.8)
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where zm denotes the mth column of the matrix Z.
In image processing, matrices such as A are used to represent discrete

two-dimensional images, with the entries of A corresponding to the grey
level or color at each pixel. It is common to find that most of the M singular
values of A are nearly zero, so that A can be written approximately as a
sum of far fewer than M dyads; this leads to SVD image compression.
Such compression is helpful when many images are being transmitted, as,
for example, when pictures of the surface of Mars are sent back to Earth.

Figures 5.1 and 5.2 illustrate what can be achieved with SVD compres-
sion. In both Figures the original is in the upper left. It is a 128 by 128
digitized image, so M = 128. In the images that follow, the number of
terms retained in the sum in Equation (5.8) is, first, 2, then 4, 6, 8, 10, 20
and finally 30. The full sum has 128 terms, remember. In Figure 5.1 the
text is nearly readable using only 10 terms, and certainly could be made
perfectly readable with suitable software, so storing just this compressed
image would be acceptable. In Figure 5.2, an image of a satellite, we get
a fairly good idea of the general shape of the object from the beginning,
with only two terms.

Ex. 5.15 Suppose that M = N and A is invertible. Show that we can write

A−1 =

M∑
m=1

(
√
λm)−1zm(um)†.

5.5.2 An Application in Space Exploration

The Galileo was deployed from the space shuttle Atlantis on October 18,
1989. After a detour around Venus and back past Earth to pick up gravity-
assisted speed, Galileo headed for Jupiter. Its mission included a study of
Jupiter’s moon Europa, and the plan was to send back one high-resolution
photo per minute, at a rate of 134KB per second, via a huge high-gain
antenna. When the time came to open the antenna, it stuck. Without the
pictures, the mission would be a failure.

There was a much smaller low-gain antenna on board, but the best
transmission rate was going to be ten bits per second. All that could be
done from earth was to reprogram an old on-board computer to compress
the pictures prior to transmission. The problem was that pictures could
be taken much faster than they could be transmitted to earth; some way
to store them prior to transmission was key. The original designers of the
software had long since retired, but the engineers figured out a way to
introduce state-of-the art image compression algorithms into the computer.
It happened that there was an ancient reel-to-reel storage device on board
that was there only to serve as a backup for storing atmospheric data.
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Using this device and the compression methods, the engineers saved the
mission [16].

5.5.3 A Theorem on Real Normal Matrices

Consider the real square matrix

S =

[
1 −1
1 1

]
.

Since

STS = SST =

[
2 0
0 2

]
,

S is a real normal matrix. The eigenvalues of S are complex, S is not
symmetric, and the eigenvalues of STS are not distinct. In contrast, we
have the following theorem.

Let N be a real square matrix that is normal; that is NTN = NNT .
Now we use the SVD of N to prove the following theorem.

Theorem 5.4 If N is a real normal matrix and all the eigenvalues of NTN
are distinct, then N is symmetric.

Proof: Let Q = NTN . Since Q is real, symmetric, and non-negative def-
inite, there is an orthogonal matrix O such that QO = NNTO = OD2,
with D ≥ 0 and D2 the diagonal matrix whose diagonal entries are the
eigenvalues of Q = NTN . We shall want to be able to assume that the
entries of D are all positive, which requires a bit of explanation.

We replace the matrix N with the new matrix N + αI, where α > 0 is
selected so that the matrix (N+αI)(N+αI)T has only positive eigenvalues.
We can do this because

(N + αI)(N + αI)T = NNT + α(N +NT ) + α2I;

the first and third matrices have only non-negative eigenvalues and the
second one has only real ones, so a large enough α can be found. Now
we can prove the theorem for the new matrix N + αI, showing that it is
symmetric. But it then follows that the matrix N must also be symmetric.

Now we continue with the proof, assuming that D > 0. The columns of
Z = NTOD−1 are then orthonormal eigenvectors of NTN and the SVD of
N is N = ODZT .

Since N is normal, we have NTNO = OD2, and

ZD2 = NTNZ = OD2OTZ,

so that
OTZD2 = D2OTZ.
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It follows from Exercise 3.7 that OTZ = B is diagonal. From Z = OB and

N = ODZT = ODBTOT = ODBOT = OCOT ,

where C = DB is diagonal, it follows that NT = N .

This proof illustrates a use of the SVD of N , but the theorem can
be proved using the eigenvector diagonalization of the normal matrix N
itself. Note that the characteristic polynomial of N has real coefficients,
so its roots occur in conjugate pairs. If N has a complex root λ, then
both λ and λ are eigenvalues of N . It follows that |λ|2 is an eigenvalue of
NTN with multiplicity at least two. Consequently, if NTN has no repeated
eigenvalues, then every eigenvalue of N is real. Using U†NU = D, with D
real and diagonal, we get N = UDU†, so that N† = UDU† = N . Therefore
N is real and Hermitian, and so is symmetric.

5.5.4 The Golub-Kahan Algorithm

We have obtained the SVD of A using the eigenvectors and eigenvalues
of the Hermitian matrices Q = A†A and P = AA†; for large matrices, this
is not an efficient way to get the SVD. The Golub-Kahan algorithm [149]
calculates the SVD of A without forming the matrices P and Q.

A matrix A is bi-diagonal if the only non-zero entries occur on the main
diagonal and the first diagonal above the main one. Any matrix can be
reduced to bi-diagonal form by multiplying the matrix first on the left by a
succession of Householder matrices, and then on the right by another suc-
cession of Householder matrices. The QR factorization is easier to calculate
when the matrix involved is bi-diagonal.

The Golub-Kahan algorithm for calculating the SVD of A involves first
reducing A to a matrix B in bi-diagonal form and then applying a variant
of the QR factorization.

Using Householder matrices, we get unitary matrices U0 and Z0 such
that A = U0BZ

†
0 , where B is bi-diagonal. Then we find the SVD of B,

B = ŨΣZ̃†,

using QR factorization. Finally, the SVD for A itself is

A = U0ŨΣZ̃†Z†0 .

Ever since the publication of the Golub-Kahan algorithm, there have
been efforts to improve both the accuracy and the speed of the method.
The improvements announced in [118] and [119] won for their authors the
2009 SIAM Activity Group on Linear Algebra Prize.
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5.6 Generalized Inverses

Even if A does not have an inverse, as, for example, when M 6= N , it
does have generalized inverses or pseudo-inverses.

Definition 5.5 A matrix G is called a generalized inverse or pseudo-
inverse for a matrix A if x = Gb is a solution of Ax = b, whenever there
are solutions.

It is not obvious that generalized inverses exist for an arbitrary matrix
A, but they do. In fact, we can use the SVD to obtain a pseudo-inverse for
any A.

5.6.1 The Moore-Penrose Pseudo-Inverse

The Moore-Penrose pseudo-inverse is the matrix

A] = ZΣ]U†,

where Σ] is the transpose of the matrix obtained from the matrix Σ in
the SVD by taking the inverse of each of its nonzero entries and leaving
unchanged the zero entries. The Moore-Penrose (MP) pseudo-inverse of A†

is
(A†)] = (A])† = U(Σ])TZ† = U(Σ†)]Z†.

Ex. 5.16 Show that A] is a generalized inverse for A.

Some important properties of the MP pseudo-inverse are the following:

• 1. AA]A = A,

• 2. A]AA] = A],

• 3. (A]A)† = A]A,

• 4. (AA])† = AA].

The MP pseudo-inverse of an arbitrary M by N matrix A can be used
in much the same way as the inverse of nonsingular matrices to find ap-
proximate or exact solutions of systems of equations Ax = b. The examples
in the following exercises illustrate this point.

Ex. 5.17 If M > N the system Ax = b probably has no exact solution.
Show that whenever A†A is invertible the pseudo-inverse of A is A] =
(A†A)−1A† so that the vector x = A]b is the least squares approximate
solution.
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Ex. 5.18 If M < N the system Ax = b probably has infinitely many solu-
tions. Show that whenever the matrix AA† is invertible the pseudo-inverse
of A is A] = A†(AA†)−1, so that the vector x = A]b is the exact solution
of Ax = b closest to the origin; that is, it is the minimum norm solution.

In general, the vector A]b is the vector of smallest norm for which
‖Ax − b‖2 is minimized; that is, A]b is the minimum-norm least-squares
solution for the system Ax = b.

5.6.2 An Example of the MP Pseudo-Inverse

The matrix

A =

[
4 8 8
3 6 6

]
has MP pseudo-inverse

A] =

1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

1/15 0
0 0
0 0

[4/5 3/5
3/5 −4/5

]
.

5.6.3 Characterizing the MP Pseudo-Inverse

The MP pseudo-inverse is characterized by the four properties listed
above. In other words, an N by M matrix X is the MP pseudo-inverse of
A if and only if it satisfies the properties

• 1. AXA = A,

• 2. XAX = X,

• 3. (XA)† = XA,

• 4. (AX)† = AX.

5.6.4 Calculating the MP Pseudo-Inverse

The properties in the previous subsection that characterize the MP
pseudo-inverse suggest algorithms for calculating X = A] without first
calculating the SVD. Let X = A].

Lemma 5.1 Let C = XX†. Then CA† = X.

Proof: We have

CA† = XX†A† = X(AX)† = X(AX) = X.
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Lemma 5.2 Let B = A†AA†. Then B†C = A.

Proof: We have

B†C = AA†AXX† = AA†(AX)X† = AA†(AX)†X† = AA†(X†A†)X†

= AA†(XAX)† = AA†X† = A(XA)† = AXA = A.

We know, therefore, that there is at least one Hermitian matrix W ,
namely W = C, having the property that B†W = A. We show now that if
we have any Hermitian W with B†W = A, then WA† = X = A].

Proposition 5.3 If B†W = A and W † = W , then X = A] = WA†.

Proof: Let Y = WA†. We show first that (Y A)† = Y A, or, equivalently,
WA†A = A†AW . From WB = A† we have

A†(AW ) = WB(AW ) = WA†AA†(AW ) = WA†(B†W ) = WA†A.

Therefore, (Y A)† = Y A. Next, we show that (AY )† = AY . This is trivial,
since we have

(AY )† = (AWA†)† = AWA† = AY.

Then we show Y AY = Y . We have

Y = WA† = W (WB) = W (WA†A)A† = W (A†AW )A† = Y AY.

Finally, we show that AY A = A. Again, this is easy, since

AY A = A(WA†A) = AA†AW = B†W = A.

This completes the proof of the proposition.

This proposition suggests that we may be able to calculate the MP
pseudo-inverse without first finding the SVD. Suppose that we solve the
matrix equations B†W = A and W † = W . Having found W , we form
Y = WA† = X. One approach may be to solve iteratively the combined
system B†W = A and W = 1

2 (W + W †). We leave it to the interested
reader to investigate the feasibility of this idea.

5.7 Principal-Component Analysis and the SVD

The singular-value decomposition has many uses. One of the most im-
portant is as a tool for revealing information hidden in large amounts of
data. A good illustration of this is principal-component analysis (PCA).
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5.7.1 An Example

Suppose, for example, that D is an M by N matrix, that each row
of D corresponds to particular applicant to the university, and that each
column of D corresponds to a particular measurement of a student’s ability
or aptitude. One column of D could be SAT mathematics score, another
could be IQ, and so on. To permit cross-measurement correlation, the actual
scores are not stored, but only the difference between the actual score and
the group average; if the average IQ for the group is 110 and John has an
IQ of 103, then −7 is entered in the IQ column for John’s row. We shall
assume that M is greater than N .

The matrix 1
MD†D is the covariance matrix, each entry describing how

one measurement category is related to a second. We shall focus on the
matrix D†D, although proper statistical correlation would require that we
normalize to remove the distortions coming from the use of scores that are
not all on the same scale. How do we compare twenty points of difference
in IQ with one hundred points of difference in SAT score? Once we have
calculated D†D, we may find that this N by N matrix is not diagonal,
meaning that there is correlation between different measurement categories.

Although the column space of D, denoted CS(D), the span of the
columns of D in the space CM , is probably of dimension N , it may well be
the case that the columns of D are nearly spanned by a much smaller set
of its members; that is, there is a smaller subset of the columns such that
each column of D is nearly equal to a linear combination of the members of
this smaller set. That would mean that knowing some of the columns of D,
we could predict fairly well what the other columns would be. Statistically
speaking, this would say that some scores are highly correlated with others.
The goal of principal-component analysis is to find such a smaller set.

5.7.2 Decomposing D†D

The matrix Q = D†D is Hermitian and non-negative definite; almost
certainly, all of its eigenvalues are positive. We list these eigenvalues as
follows:

λ1 ≥ λ2 ≥ ... ≥ λN > 0,

and assume that λJ+k is nearly zero, for k = 1, 2, ..., N − J . With uj , j =
1, ..., J denoting the orthonormal eigenvectors of D†D corresponding to the
first J eigenvalues, we see that the matrix D†D is nearly equal to the sum
of J dyads:

D†D ≈
J∑
j=1

λju
j(uj)†. (5.9)
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5.7.3 Decomposing D Itself

Let E be the N by J matrix whose J columns are the vectors uj and R

be the J by J diagonal matrix whose entries are λ
−1/2
j , for j = 1, ..., J . Let

W be the M by J matrix W = DER. The matrix D is then approximately
equal to the sum of J dyads:

D ≈
J∑
j=1

√
λjw

j(uj)†, (5.10)

where wj denotes the jth column of the matrix W . The approximation
is with respect to the Frobenius norm. The columns of W lie in CS(D)
and each column of D is nearly in the span of the wj . The wj are the
principal-component vectors.

5.7.4 Using the SVD in PCA

In the previous subsection, we obtained a decomposition of the matrix
D using the eigenvectors and eigenvalues of the Hermitian matrix D†D.
This is not an efficient way to proceed. Instead, we can use the SVD.

Let A = D†. As we saw previously, the singular-value decomposition of
A is

A = UΣZ†,

so that the SVD of the matrix D is

D = ZΣ†U† =

N∑
j=1

√
λjz

j(uj)†.

The first J columns of the matrix Z are the wj defined above, so the
Golub-Kahan SVD algorithm [149] can then be used to obtain the principal-
component vectors of the data matrix D.

5.8 The PCA and Factor Analysis

Principal-component analysis has as one of its goals the approximation
of a covariance matrix D†D by nonnegative-definite matrices of lower rank.
A related area is factor analysis, which attempts to describe an arbitrary
N by N Hermitian positive-definite matrix Q as Q = G†G + K, where
G is some N by J matrix, for some J < N , and K is diagonal. Factor
analysis views Q as a covariance matrix, Q = E(vv†), where v is a random
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column vector with mean zero, and attempts to account for the off-diagonal
correlated components of Q using the lower-rank matrix G†G. Underlying
this is the following model for the random vector v:

v = Gx+ w,

where both x and w are uncorrelated. The entries of the random vector
x are the common factors that affect each entry of v while those of w are
the special factors, each associated with a single entry of v. Factor analysis
plays an increasingly prominent role in signal and image processing [36] as
well as in the social sciences.

In [246] Gil Strang points out that, from a linear algebra standpoint,
factor analysis raises some questions. As his example shows, the represen-
tation of Q as Q = G†G+K is not unique. The matrix Q does not uniquely
determine the size of the matrix G:

Q =


1 .74 .24 .24
.74 1 .24 .24
.24 .24 1 .74
.24 .24 .74 1

 =


.7 .5
.7 .5
.7 −.5
.7 −.5

[.7 .7 .7 .7
.5 .5 −.5 −.5

]
+ .26I

and

Q =


.6
√
.38 0

.6
√
.38 0

.4 0
√
.58

.4 0
√
.58


 .6 .6 .4 .4√

.38
√
.38 0 0

0 0
√
.58

√
.58

+ .26I.

It is also possible to represent Q with different diagonal components K.

5.9 The MUSIC Method

The “multiple signal identification and classification” (MUSIC)
method, originally due to Schmidt [234], is similar to PCA in some re-
spects.

The basic problem now is the following. We have a positive-definite N
by N matrix R that we believe has the form

R =

J∑
j=1

αje
j(ej)† + σ2I = S + σ2I, (5.11)

where J < N is not known, and the scalars σ and αj > 0, and the column
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vectors ej are not known, but are assumed to be linearly independent. The
problem is to determine these unknown scalars and vectors. In applications
we usually do have a model for the vectors ej : it is assumed that each ej

has the form ej = e(θj), where θj is an unknown member of a known family
of parameters denoted by θ.

We can say that R = G†G + K, where now K = σ2I, so the MUSIC
problem fits into the formulation of factor analysis also. But the MUSIC
does more than find a G; it uses the model of parameterized vectors e(θ)
to determine the individual ej .

The MUSIC method proceeds as follows. First, we calculate the eigen-
vector/eigenvalue decomposition ofR. Let λ1 ≥ ... ≥ λN > 0 be the ordered
eigenvalues, with associated orthonormal eigenvectors uj . Since J < N , we
know that the rank of S is J , so that the system Sx = 0 has N −J linearly
independent solutions. Each of these is an eigenvector of S corresponding
to the eigenvalue 0. Therefore, they are also eigenvectors of R correspond-
ing to the eigenvalue λ = σ2. Since, for j = 1, 2, ..., J , Suj 6= 0, for these j
we have λj > σ2. So we can tell what J is from the list of eigenvalues of
R. Now we find the θj . Note that the ej are in the span of the u1, ..., uJ ,
but they are not the uj themselves, generally, since the ej are probably not
mutually orthogonal.

For each m = 1, ..., N − J and each j = 1, ..., J , the eigenvector uJ+m

is orthogonal to ej . Therefore, the function of θ given by

F (θ) =

N−J∑
m=1

|(uJ+m)†e(θ)|2 (5.12)

is such that F (θj) = 0, for j = 1, ..., J . In most situations F (θ) will have
precisely J zeros in the parameter family, so the zeros of F (θ) will identify
the parameter values θj . Finding these parameter values then amounts to
determining approximately the zeros of F (θ). Once J and the θj have been
found, determining the coefficients αj becomes a linear problem.

5.10 Singular Values of Sparse Matrices

In image reconstruction from projections the M by N matrix A is usu-
ally quite large and often ε-sparse; that is, most of its elements do not
exceed ε in absolute value, where ε denotes a small positive quantity.

In transmission tomography each column of A corresponds to a single
pixel in the digitized image, while each row of A corresponds to a line
segment through the object, along which an x-ray beam has traveled. The
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entries of a given row of A are nonzero only for those columns whose as-
sociated pixel lies on that line segment; clearly, most of the entries of any
given row of A will then be zero.

In emission tomography the I by J nonnegative matrix P has entries
Pij ≥ 0; for each detector i and pixel j, Pij is the probability that an emis-
sion at the jth pixel will be detected at the ith detector. When a detection
is recorded at the ith detector, we want the likely source of the emission
to be one of only a small number of pixels. For single photon emission to-
mography (SPECT), a lead collimator is used to permit detection of only
those photons approaching the detector straight on. In positron emission
tomography (PET), coincidence detection serves much the same purpose.
In both cases the probabilities Pij will be zero (or nearly zero) for most
combinations of i and j. Such matrices are called sparse (or almost sparse).

We discuss now a convenient estimate for the largest singular value of
an almost sparse matrix A, which, for notational convenience only, we take
to be real. Related estimates of the largest singular value will be presented
later, in the chapter “Eigenvalue Bounds in Iteration” .

In [62] it was shown that if A is normalized so that each row has length
one, then the spectral radius of ATA, which is the square of the largest
singular value of A itself, does not exceed the maximum number of nonzero
elements in any column of A. A similar upper bound on ρ(ATA) can be
obtained for non-normalized, ε-sparse A.

Let A be an M by N matrix. For each n = 1, ..., N , let sn > 0 be
the number of nonzero entries in the nth column of A, and let s be the
maximum of the sn. Let G be the M by N matrix with entries

Gmn = Amn/(

N∑
l=1

slA
2
ml)

1/2.

Lent has shown that the eigenvalues of the matrix GTG do not exceed
one [195]. This result suggested the following proposition, whose proof was
given in [62].

Proposition 5.4 Let A be an M by N matrix. For each m = 1, ...,M let
νm =

∑N
n=1A

2
mn > 0. For each n = 1, ..., N let σn =

∑M
m=1 emnνm, where

emn = 1 if Amn 6= 0 and emn = 0 otherwise. Let σ denote the maximum
of the σn. Then the eigenvalues of the matrix ATA do not exceed σ. If A
is normalized so that the Euclidean length of each of its rows is one, then
the eigenvalues of ATA do not exceed s, the maximum number of nonzero
elements in any column of A.

Proof: For simplicity, we consider only the normalized case; the proof for
the more general case is similar.

Let ATAv = cv for some nonzero vector v. We show that c ≤ s. We have
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AATAv = cAv and so wTAATw = vTATAATAv = cvTATAv = cwTw,
for w = Av. Then, with emn = 1 if Amn 6= 0 and emn = 0 otherwise, we
have

(

M∑
m=1

Amnwm)2 = (

M∑
m=1

Amnemnwm)2

≤ (

M∑
m=1

A2
mnw

2
m)(

M∑
m=1

e2
mn) =

(

M∑
m=1

A2
mnw

2
m)sj ≤ (

M∑
m=1

A2
mnw

2
m)s.

Therefore,

wTAATw =

N∑
n=1

(

M∑
m=1

Amnwm)2 ≤
N∑
n=1

(

M∑
m=1

A2
mnw

2
m)s,

and

wTAATw = c

M∑
m=1

w2
m = c

M∑
m=1

w2
m(

N∑
n=1

A2
mn)

= c

M∑
m=1

N∑
n=1

w2
mA

2
mn.

The result follows immediately.

If we normalize A so that its rows have length one, then the trace of
the matrix AAT is tr(AAT ) = M , which is also the sum of the eigenvalues
of ATA. Consequently, the maximum eigenvalue of ATA does not exceed
M ; this result improves that upper bound considerably, if A is sparse and
so s << M . A more general theorem along the same lines is Theorem 27.5.

In image reconstruction from projection data that includes scattering we
often encounter matrices A most of whose entries are small, if not exactly
zero. A slight modification of the proof provides us with a useful upper
bound for L, the largest eigenvalue of ATA, in such cases. Assume that the
rows of A have length one. For ε > 0 let s be the largest number of entries
in any column of A whose magnitudes exceed ε. Then we have

L ≤ s+MNε2 + 2ε(MNs)1/2.

The proof of this result is similar to that for Proposition 5.4.
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5.11 The “Matrix Inversion Theorem”

In this section we bring together several of the conditions equivalent to
saying that an N by N matrix A is invertible. Taken together, these con-
ditions are sometimes called the “Matrix Inversion Theorem”. The equiv-
alences on the list are roughly in increasing order of difficulty of proof.
The reader is invited to supply proofs. We begin with the definition of
invertibility.

• 1. According to the definition of invertibility, we say A is invertible
if there is a matrix B such that AB = BA = I. Then B = A−1, the
inverse of A.

• 2. A is invertible if and only if there are matrices B and C such that
AB = CA = I. Then B = C = A−1.

• 3. A is invertible if and only if the rank of A is N .

• 4. A is invertible if and only if there is a matrix B with AB = I.
Then B = A−1.

• 5. A is invertible if and only if the columns of A are linearly indepen-
dent.

• 6. A is invertible if and only if Ax = 0 implies x = 0.

• 7. A is invertible if and only if A can be transformed by elementary
row operations into an upper triangular matrix having no zero entries
on its main diagonal.

• 8. A is invertible if and only if the upper triangular matrix T = U†AU
given by Schur’s Lemma is invertible, and if and only if there are no
zeros on the main diagonal of T .

• 9. A is invertible if and only if its determinant is not zero.

• 10. A is invertible if and only if A has no zero eigenvalues.

5.12 Matrix Diagonalization and Systems of Linear
ODE’s

We know that the ordinary linear differential equation

x′(t) = ax(t)
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has the solution
x(t) = x(0)eat.

In this section we use matrix diagonalization to generalize this solution to
systems of linear ordinary differential equations.

Consider the system of linear ordinary differential equations

x′(t) = 4x(t)− y(t) (5.13)

y′(t) = 2x(t) + y(t), (5.14)

which we write as z′(t) = Az(t), with

A =

[
4 −1
2 1

]
,

z(t) =

[
x(t)
y(t)

]
,

and

z′(t) =

[
x′(t)
y′(t)

]
.

We then have

det(A− λI) = (4− λ)(1− λ) + 2 = (λ− 2)(λ− 3),

so the eigenvalues of A are λ = 2 and λ = 3.
The vector u given by

u =

[
1
2

]
solves the system Au = 2u and the vector v given by

v =

[
1
1

]
solves the system Av = 3v. Therefore, u and v are linearly independent
eigenvectors of A. With

B =

[
1 1
2 1

]
,

B−1 =

[
−1 1
2 −1

]
,

and

D =

[
2 0
0 3

]
,

we have A = BDB−1 and B−1AB = D; this is a diagonalization of A using
its eigenvalues and eigenvectors.
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Note that not every N by N matrix A will have such a diagonalization;
we need N linearly independent eigenvectors of A, which need not exist.
They do exist if the eigenvalues of A are all different, as in the example
here, and also if the matrix A is Hermitian or normal. The reader should
prove that matrix

M =

[
1 1
0 1

]
has no such diagonalization.

Continuing with our example, we let w(t) = B−1z(t) so that w′(t) =
Dw(t). Because D is diagonal, this new system is uncoupled;

w′1(t) = 2w1(t),

and
w′2(t) = 3w2(t).

The solutions are then
w1(t) = w1(0)e2t,

and
w2(t) = w2(0)e3t.

It follows from z(t) = Bw(t) that

x(t) = w1(0)e2t + w2(0)e3t,

and
y(t) = 2w1(0)e2t + w2(0)e3t.

We want to express x(t) and y(t) in terms of x(0) and y(0). To do this we
use z(0) = Bw(0), which tells us that

x(t) = (−x(0) + y(0))e2t + (2x(0)− y(0))e3t,

and
y(t) = (−2x(0) + 2y(0))e2t + (2x(0)− y(0))e3t.

We can rewrite this as
z(t) = E(t)z(0),

where

E(t) =

[
−e2t + 2e3t e2t − e3t

−2e2t + 2e3t 2e2t − e3t

]
.

What is the matrix E(t)?
To mimic the solution x(t) = x(0)eat of the problem x′(t) = ax(t), we

try
z(t) = etAz(0),
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with the matrix exponential defined by

etA =

∞∑
n=0

1

n!
tnAn.

Since A = BDB−1, it follows that An = BDnB−1, so that

etA = BetDB−1.

Since D is diagonal, we have

etD =

[
e2t 0
0 e3t

]
.

A simple calculation shows that

etA = B

[
e2t 0
0 e3t

]
B−1 =

[
−e2t + 2e3t e2t − e3t

−2e2t + 2e3t 2e2t − e3t

]
= E(t).

Therefore, the solution of the original system is

z(t) = etAz(0).

5.13 Classical Lie Algebras

Any additive group of square matrices that is closed under the commu-
tation operation [A,B] = AB − BA is a matrix Lie (pronounced “Lee” )
algebra. Here are some examples. Unless otherwise noted, the entries can
be real or complex.

• 1. The collection MN of all N by N matrices.

• 2. The collection of matrices in MN with zero trace.

• 3. The collection of all real skew-symmetric matrices in MN .

• 4. The collection of all A in MN with A+A† = 0.
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FIGURE 5.1: Compressing text with the SVD.
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FIGURE 5.2: Compressing an image with the SVD.
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6.1 Chapter Summary

In many applications in which we seek a solution of a linear system of
equations Ax = b the entries of the vector b are measurements. If small
changes in b result in large changes in the solution x, then we have an
unstable situation. In order to measure such changes we need a notion of
size of a vector. This leads us to study metrics and norms.

The usual dot product is an inner product on RJ or CJ and can be used
to define the Euclidean norm ‖x‖2 of a vector x, which, in turn, provides a
metric, or a measure of distance between two vectors, d(x, y) = ‖x − y‖2.
The notions of metric and norm are actually more general notions, with no
necessary connection to the inner product.

6.2 Metric Space Topology

To prepare for our discussion of norms on vectors and matrices we take
a quick look at metric space topology.

6.2.1 General Topology

Let S be a non-empty set and T a non-empty collection of subsets of S.
The collection T is called a topology for S if the following conditions hold:

• 1. the empty set and the set S are in T ;

• 2. for any finite or infinite sub-collection of members of T , their union
is again in T ;

• 3. for any positive integer N and sets Un, n = 1, 2, ..., N in T , their
intersection, the set ∩Nn=1Un, is in T .

The members of T are then called the open sets for the topology. Notice
that we are not given any property that a subset of S may or may not have
such that having it would qualify the subset to be called open; a subset of
S is open precisely when it is a member of the topology, that is, when it is a
member of the collection of subsets called the open subsets. The empty set
and S itself are always open, but there need not be any other open subsets.
On the other hand, it could be the case that every subset of S is open. It
all depends on the collection T we are given. The interior of a subset C of
S is the largest open subset of S that is contained within C.
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A subset C of S is called a closed subset if its complement, the set of all
members of S that are not in C, is an open set. The closure of a subset C
is the smallest closed subset of S that contains C. Once again, we do not
describe what it means to be a closed set in terms of some property that
C may or may not have, except that its complement is open.

Although the terminology sounds familiar and is borrowed from geom-
etry, these definitions are quite abstract and it is remarkable that a deep
theory of topological spaces and continuous functions can be built on such
definitions.

6.2.2 Metric Spaces

Metric spaces are the most important and most familiar examples of
topological spaces. In contrast to what happens in general topology, now
the fundamental notion is that of a metric and sets are called open or
closed depending on how they behave with respect to the metric. Unlike
the general case, now the topology is built up by defining what it means
for an individual subset to be open and then including all such subsets in
the topology T . We begin with the basic definitions.

Definition 6.1 Let S be a non-empty set. We say that the function d :
S × S → [0,+∞) is a metric if the following hold:

d(s, t) ≥ 0, (6.1)

for all s and t in S;

d(s, t) = 0 (6.2)

if and only if s = t;

d(s, t) = d(t, s), (6.3)

for all s and t in S; and, for all s, t, and u in S,

d(s, t) ≤ d(s, u) + d(u, t). (6.4)

The pair {S, d} is a metric space.

The last inequality is the Triangle Inequality for this metric.

6.3 Analysis in Metric Space

Analysis is concerned with issues of convergence and limits.
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Definition 6.2 A sequence {sk}, k = 1, 2, ..., in the metric space (S, d) is
said to have limit s∗ if

lim
k→+∞

d(sk, s∗) = 0. (6.5)

Any sequence with a limit is said to be convergent.

Ex. 6.1 Show that a sequence can have at most one limit.

Definition 6.3 The sequence {sk} is said to be a Cauchy sequence if, for
any ε > 0, there is positive integer m, such that, for any nonnegative integer
n,

d(sm, sm+n) ≤ ε. (6.6)

Ex. 6.2 Show that every convergent sequence is a Cauchy sequence.

Definition 6.4 The metric space (S, d) is said to be complete if every
Cauchy sequence is a convergent sequence.

Completeness is part of the axiomatic approach to the definition of
the real numbers. From that, it follows that the finite-dimensional spaces
RJand CJ are complete metric spaces, with respect to the usual Euclidean
distance.

Ex. 6.3 Let S be the set of rational numbers, with d(s, t) = |s − t|. Show
that (S, d) is a metric space, but not a complete metric space.

Definition 6.5 A sequence {sk} in S is said to be bounded if there is a
positive constant b > 0 such that d(s1, sk) ≤ b, for all k.

Ex. 6.4 Show that any convergent sequence in a metric space is bounded.
Find a bounded sequence of real numbers that is not convergent.

Ex. 6.5 Show that, if {sk} is bounded, then, for any element c in the metric
space, there is a constant r > 0, with d(c, sk) ≤ r, for all k.

Definition 6.6 A point s in S is a limit point of a subset C of S if there
are members ck of C such that the sequence {ck} converges to s. Denote
by C∗ the set of all limit points of the set C.

For any c in C the constant sequence formed by taking ck = c for each
k converges to c. Therefore, every point of C is a limit point of C and
C ⊆ C∗.

Definition 6.7 A subset C of the metric space is said to be closed if every
limit point of C is in C; that is, C = C∗. The closure of a subset C, denoted
cl(C), is the smallest closed set containing C.
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For example, in RJ = R, the set C = (0, 1] is not closed, because it does
not contain the point s = 0, which is the limit of the sequence {sk = 1

k};
the set C = [0, 1] is closed and is the closure of the set (0, 1], that is, it is
the smallest closed set containing (0, 1].

It is not obvious that there is always a smallest closed set containing
C, so it is not clear that the closure of C is well defined. The following
proposition gives an explicit description of the closure of C.

Proposition 6.1 For any subset C of S the closure of C is the set C∗.

This proposition tells us that we obtain the closure of C by including all
its limit points.

Ex. 6.6 Prove Proposition 6.1. Hint: you need to show that the set C∗ is
a closed set, which is not immediately obvious. If you think it is obvious,
think again.

Definition 6.8 For any bounded sequence {xk} in RJ , there is at least one
subsequence, often denoted {xkn}, that is convergent; the notation implies
that the positive integers kn are ordered, so that k1 < k2 < .... The limit
of such a subsequence is then said to be a cluster point of the original
sequence.

Ex. 6.7 Show that your bounded, but not convergent, sequence found in
Exercise 6.4 has a cluster point.

Ex. 6.8 Show that, if x is a cluster point of the sequence {xk}, and if
d(x, xk) ≥ d(x, xk+1), for all k, then x is the limit of the sequence.

6.4 Motivating Norms

We turn now to metrics that come from norms. Our interest in norms
for vectors and matrices stems from their usefulness in analyzing iterative
algorithms. Most of the algorithms we shall study involve generating a
sequence of vectors {xk}, k = 0, 1, 2, ... in RJ or CJ , where xk+1 comes
from xk according to the formula xk+1 = T (xk), where T is a (possibly
nonlinear) operator on the space of vectors. When we investigate iterative
algorithms, we will want to know if the sequence {xk} generated by the
algorithm converges. As a first step, we will usually ask if the sequence is
bounded? If it is bounded, then it will have at least one cluster point. We
then try to discover if that cluster point is really the limit of the sequence.
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It would help if we know that the vector T (x) − T (y) is smaller, in some
sense, than the vector x− y.

Affine operators T have the form T (x) = Bx+ d, where B is a matrix
and d is a fixed vector. Such affine operators arise, for example, in the
Landweber algorithm for solving Ax = b; the iterative step is

xk+1 = xk + γA†(b− (Axk)),

which we can write as

xk+1 = (I − γA†A)xk + γA†b.

Then xk+1 = T (xk), where T is the affine operator

T (x) = (I − γA†A)x+ γA†b.

For affine operators T (x)−T (y) = Bx−By = B(x−y), so we are interested
in the size of Bz, relative to the size of z, for all vectors z. Vector and matrix
norms will help us here.

6.5 Norms

The metric spaces that interest us most are vector spaces V for which
the metric comes from a norm, which is a measure of the length of a vector.

Definition 6.9 We say that ‖ · ‖ is a norm on V if

‖x‖ ≥ 0, (6.7)

for all x,

‖x‖ = 0 (6.8)

if and only if x = 0,

‖γx‖ = |γ| ‖x‖, (6.9)

for all x and scalars γ, and

‖x+ y‖ ≤ ‖x‖+ ‖y‖, (6.10)

for all vectors x and y.

Lemma 6.1 The function d(x, y) = ‖x− y‖ defines a metric on V .

It can be shown that RJ and CJ are complete for any metric arising from
a norm.
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6.5.1 Some Common Norms on CJ

We consider now the most common norms on the space CJ . These
notions apply equally to RJ .

6.5.1.1 The 1-norm

The 1-norm on CJ is defined by

‖x‖1 =

J∑
j=1

|xj |. (6.11)

6.5.1.2 The ∞-norm

The ∞-norm on CJ is defined by

‖x‖∞ = max{|xj | |j = 1, ..., J}. (6.12)

6.5.1.3 The p-norm

For any p ≥ 1, the p-norm is defined by

‖x‖p =
( J∑
j=1

|xj |p
)1/p

. (6.13)

6.5.1.4 The 2-norm

The 2-norm, also called the Euclidean norm, is the most commonly used
norm on CJ . It is the p-norm for p = 2 and is the one that comes from the
inner product:

‖x‖2 =

√√√√ J∑
j=1

|xj |2 =
√
〈x, x〉 =

√
x†x. (6.14)

6.5.1.5 Weighted 2-norms

Let A be an invertible matrix and Q = A†A. Define

‖x‖Q = ‖Ax‖2 =
√
x†Qx, (6.15)

for all vectors x. This is the Q-weighted 2-norm of x. If Q is the diagonal
matrix with diagonal entries Qjj > 0, then

‖x‖Q =

√√√√ J∑
j=1

Qjj |xj |2. (6.16)
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Ex. 6.9 Show that the 1-norm is a norm.

Ex. 6.10 Show that the ∞-norm is a norm.

Ex. 6.11 Show that the 2-norm is a norm. Hint: for the triangle inequality,
use the Cauchy Inequality.

Ex. 6.12 Show that the Q-weighted 2-norm is a norm.

6.6 The Hölder and Minkowski Inequalities

To show that the p-norm is a norm we need Minkowski’s Inequality,
which follows from Hölder’s Inequality.

Let c = (c1, ..., cN ) and d = (d1, ..., dN ) be vectors with complex entries
and let p and q be positive real numbers such that

1

p
+

1

q
= 1.

The p-norm of c is defined to be

‖c‖p =
( N∑
n=1

|cn|p
)1/p

,

with the q-norm of d, denoted ‖d‖q, defined similarly.

6.6.1 Hölder’s Inequality

Hölder’s Inequality is the following:

N∑
n=1

|cndn| ≤ ‖c‖p‖d‖q,

with equality if and only if( |cn|
‖c‖p

)p
=
( |dn|
‖d‖q

)q
,

for each n.
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Hölder’s Inequality follows from the GAGM Inequality. To see this, we
fix n and apply Inequality (30.2), with

x1 =
( |cn|
‖c‖p

)p
,

a1 =
1

p
,

x2 =
( |dn|
‖d‖q

)q
,

and

a2 =
1

q
.

From (30.2) we then have( |cn|
‖c‖p

)( |dn|
‖d‖q

)
≤ 1

p

( |cn|
‖c‖p

)p
+

1

q

( |dn|
‖d‖q

)q
.

Now sum both sides over the index n.
It will be helpful later to note here that

N∑
n=1

cndn =

N∑
n=1

|cn||dn|

if each cndn is non-negative, which means that the complex numbers cn
and dn have the same phase angles.

6.6.2 Minkowski’s Inequality

Minkowski’s Inequality, which is a consequence of Hölder’s Inequality,
states that

‖c+ d‖p ≤ ‖c‖p + ‖d‖p ;

it is the triangle inequality for the metric induced by the p-norm.
To prove Minkowski’s Inequality, we write

N∑
n=1

|cn + dn|p ≤
N∑
n=1

|cn|(|cn + dn|)p−1 +

N∑
n=1

|dn|(|cn + dn|)p−1.

Then we apply Hölder’s Inequality to both of the sums on the right side of
the equation.

For the choices p = q = 2, Hölder’s Inequality becomes the famous
Cauchy Inequality.

Ex. 6.13 Show that the p-norm is a norm.
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6.7 Matrix Norms

Any matrix can be turned into a vector by vectorization. Therefore,
we can define a norm for any matrix by simply vectorizing the matrix
and taking a norm of the resulting vector; the 2-norm of the vectorized
matrix is the Frobenius norm of the matrix itself. Such norms for matrices
may not be compatible with the role of a matrix as representing a linear
transformation. For that reason, we consider norms on matrices that are
induced by the norms of the vectors on which the matrices operate.

Definition 6.10 Let A be an M by N complex matrix. A norm on A,
denoted ‖A‖, is said to be compatible with given norms on CN and CM if
‖Ax‖ ≤ ‖A‖‖x‖, for every x in CN .

6.7.1 Induced Matrix Norms

One way to obtain a compatible norm for matrices is through the use
of an induced matrix norm.

Definition 6.11 Let ‖x‖ be any norm on CJ , not necessarily the Euclidean
norm, ‖b‖ any norm on CI , and A a rectangular I by J matrix. The in-
duced matrix norm of A, simply denoted ‖A‖, derived from these two vector
norms, is the smallest positive constant c such that

‖Ax‖ ≤ c‖x‖, (6.17)

for all x in CJ . This induced norm can be written as

‖A‖ = max
x 6=0
{‖Ax‖/‖x‖}. (6.18)

When A is square we always assume that it is the same norm being used
on x and Ax.

We study induced matrix norms in order to measure the distance from
Ax to Az, ‖Ax−Az‖, relative to ‖x− z‖, the distance from x to z:

‖Ax−Az‖ ≤ ‖A‖ ‖x− z‖, (6.19)

for all vectors x and z and ‖A‖ is the smallest number for which this
statement is valid.

Ex. 6.14 Show that ρ(S) ≤ ‖S‖ for any square matrix S.
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Ex. 6.15 Let the matrices A be M by N , and B be N by K. Show that,
for any norms on the spaces RM , RN and RK , we have the inequality

‖AB‖ ≤ ‖A‖ ‖B‖,

for the induced matrix norms.

Using the next two lemmas, we can show that there are induced matrix
norms for S that are as close to ρ(S) as we wish.

Lemma 6.2 Let M be an invertible matrix and ‖x‖ any vector norm. De-
fine

‖x‖M = ‖Mx‖. (6.20)

Then, for any square matrix S, the matrix norm

‖S‖M = max
x6=0
{‖Sx‖M/‖x‖M} (6.21)

is

‖S‖M = ‖MSM−1‖. (6.22)

In [7] this result is used to prove the following lemma:

Lemma 6.3 Let S be any square matrix and let ε > 0 be given. Then there
is an invertible matrix M such that

‖S‖M ≤ ρ(S) + ε. (6.23)

Later, we shall show that if an N by N matrix S is diagonalizable, that is,
if there is a basis for CN consisting of eigenvectors of S, then there is an
invertible matrix M such that ‖S‖M = ρ(S).

Ex. 6.16 Show that, if ρ(S) < 1, then there is a vector norm on CJ for
which the induced matrix norm of S is less than one.

Ex. 6.17 Show that ρ(S) < 1 if and only if limk→∞ Sk = 0.

Definition 6.12 Let A be an arbitrary matrix. Denote by |A| the matrix
whose entries are the absolute values of those of A, that is, |A|mn = |Amn|.

Proposition 6.2 Let A and B be N by N real matrices. If |A|mn ≤ Bmn
for all m and n, then ρ(A) ≤ ρ(B).

Proof: Let σ = ρ(B) and ε > 0 be arbitrary. Let B1 = (σ+ε)−1B and A1 =
(σ+ ε)−1A. Then ρ(B1) < 1, so that Bk1 → 0, as k →∞. Therefore, Ak1 →
0 also. From Exercise 6.17 we can conclude that ρ(A1) < 1. Therefore,
ρ(A) < σ + ε. Since ε is arbitrary, it follows that ρ(A) ≤ σ = ρ(B).

Corollary 6.1 For any square matrix A we have ρ(A) ≤ ρ(|A|).
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6.7.2 Some Examples of Induced Matrix Norms

If we choose the two vector norms carefully, then we can get an explicit
description of ‖A‖, but, in general, we cannot.

For example, let ‖x‖ = ‖x‖1 and ‖Ax‖ = ‖Ax‖1 be the 1-norms of the
vectors x and Ax, where

‖x‖1 =

J∑
j=1

|xj |. (6.24)

Lemma 6.4 The 1-norm of A, induced by the 1-norms of vectors in CJ
and CI , is

‖A‖1 = max {
I∑
i=1

|Aij | , j = 1, 2, ..., J}. (6.25)

Proof: Use basic properties of the absolute value to show that

‖Ax‖1 ≤
J∑
j=1

(

I∑
i=1

|Aij |)|xj |. (6.26)

Then let j = m be the index for which the maximum column sum is reached
and select xj = 0, for j 6= m, and xm = 1.

The infinity norm of the vector x is

‖x‖∞ = max {|xj | , j = 1, 2, ..., J}. (6.27)

Lemma 6.5 The infinity norm of the matrix A, induced by the infinity
norms of vectors in RJ and CI , is

‖A‖∞ = max {
J∑
j=1

|Aij | , i = 1, 2, ..., I}. (6.28)

The proof is similar to that of the previous lemma.
From these two lemmas we learn that

‖A†‖1 = ‖A‖∞,

and
‖A†‖∞ = ‖A‖1.
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6.7.3 The Two-Norm of a Matrix

We shall be particularly interested in the two-norm (or 2-norm) of a
matrix A, denoted by ‖A‖2, which is the induced matrix norm derived
from the Euclidean vector norms.

From the definition of the two-norm of A, we know that

‖A‖2 = max{‖Ax‖2/‖x‖2}, (6.29)

with the maximum over all nonzero vectors x. Since

‖Ax‖22 = x†A†Ax, (6.30)

we have

‖A‖2 =

√
max {x

†A†Ax

x†x
}, (6.31)

over all nonzero vectors x.

Proposition 6.3 The two-norm of a matrix A is

‖A‖2 =
√
ρ(A†A); (6.32)

that is, the term inside the square-root in Equation (6.31) is the largest
eigenvalue of the matrix A†A.

Proof: Let

λ1 ≥ λ2 ≥ ... ≥ λJ ≥ 0 (6.33)

be the eigenvalues of A†A, and let {uj , j = 1, ..., J} be the associated
mutually orthogonal eigenvectors of A†A with ‖uj‖2 = 1. Then, for any x,
we have

x =

J∑
j=1

[(uj)†x]uj , (6.34)

while

A†Ax =

J∑
j=1

[(uj)†x]A†Auj =

J∑
j=1

λj [(u
j)†x]uj . (6.35)

It follows that

‖x‖22 = x†x =

J∑
j=1

|(uj)†x|2, (6.36)
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and

‖Ax‖22 = x†A†Ax =

J∑
j=1

λj |(uj)†x|2. (6.37)

Maximizing ‖Ax‖22/‖x‖22 over x 6= 0 is equivalent to maximizing ‖Ax‖22,
subject to ‖x‖22 = 1. The right side of Equation (6.37) is then a convex
combination of the λj , which will have its maximum when only the coeffi-
cient of λ1 is non-zero.

Ex. 6.18 Show that ‖A‖2 = ‖A†‖2 for any matrix A. Hints: use Exercise
5.12 and Proposition 6.3.

Note that it can be shown ([7], p. 164) that for any square matrix S
and any matrix norm we have

ρ(S) = lim
n→∞

(‖Sn‖)1/n.

6.7.4 The Two-norm of an Hermitian Matrix

Let H be an Hermitian matrix. We then have the following result:

Proposition 6.4 The two-norm of H is ‖H‖2 = ρ(H).

Ex. 6.19 Prove Proposition 6.4. Hint: use H†H = H2 and Exercise 5.8.

Using Proposition 6.4, we can prove the following theorem.

Theorem 6.1 For any matrix A we have the inequality

‖A‖22 ≤ ‖A‖1‖A‖∞. (6.38)

Proof: Let H = A†A. We know that ‖A‖22 = ‖H‖2 and that

‖H‖2 ≤ ‖H‖1 = ‖A†A‖1 ≤ ‖A†‖1‖A‖1 = ‖A‖∞‖A‖1.

The inequality (6.38) also follows, as a particular case, from the more
general Theorem 27.5 concerning upper bounds for the singular values of
a matrix A.
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Ex. 6.20 Show that if the rows of the matrix A are rescaled so that, for
each i, we have

∑J
j=1 |Aij | ≤ 1, then no eigenvalue of A†A is larger than

the maximum number of non-zero entries in any column of A. In Corollary
27.2 we shall see that the same conclusion holds if the rows of A are rescaled
to have Euclidean length not greater than one.

If S is not Hermitian, then the two-norm of S cannot be calculated
directly from the eigenvalues of S. Take, for example, the square, non-
Hermitian matrix

S =

[
i 2
0 i

]
, (6.39)

having eigenvalues λ = i and λ = i. The eigenvalues of the Hermitian
matrix

S†S =

[
1 −2i
2i 5

]
(6.40)

are λ = 3 + 2
√

2 and λ = 3− 2
√

2. Therefore, the two-norm of S is

‖S‖2 =

√
3 + 2

√
2. (6.41)

6.7.5 The p-norm of a Matrix

The p-norm of an I by J complex matrix A is the norm induced by
the p-norms on the vectors in CI and CJ ; we can say that ‖A‖p is the
maximum of ‖Ax‖p, over all x with ‖x‖p = 1.

Previously, we were able to use the explicit descriptions of ‖A‖1 and
‖A‖∞ to show that ‖A†‖1 = ‖A‖∞. A similar result holds for the p-norm.

Theorem 6.2 Let 1
p + 1

q = 1. Then

‖A†‖p = ‖A‖q.

Proof: We select a vector x with ‖x‖p = 1. We then construct the vector
v with

|vi|q = |(Ax)i|p/‖Ax‖pp,
and such that vi and (Ax)i have the same phase angles. Then ‖v‖q = 1. It
follows that

I∑
i=1

(Ax)ivi = ‖Ax‖p.

We also have
I∑
i=1

(Ax)ivi =

J∑
j=1

xj(A
†v)j ,
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so that

‖Ax‖p =

J∑
j=1

xj(A
†v)j ≤ ‖x‖p‖A†v‖q.

It then follows that the maximum of ‖Ax‖p, over all x with ‖x‖p = 1, is
not greater than the maximum of ‖A†v‖q, over all v with ‖v‖q = 1. Since
this is true for all A, the theorem follows.

We can use Theorem 6.2 to prove Young’s Inequality.

Theorem 6.3 (Young’s Inequality) For any complex matrix A we have

‖A‖22 ≤ ‖A‖p‖A‖q. (6.42)

Proof: We know that ρ(S) ≤ ‖S‖, for all square matrices S and all induced
matrix norms. Also, for S = H Hermitian, we have ρ(H) = ‖H‖2, from
which we conclude that ‖H‖2 ≤ ‖H‖, for all induced matrix norms. Now
we let H = A†A.

From ‖A‖22 = ‖H‖2, we have

‖A‖22 =
√
‖H‖22 =

√
‖H‖2‖H‖2 ≤

√
‖H‖p‖H‖q.

Since
‖H‖p = ‖A†A‖p ≤ ‖A†‖p‖A‖p = ‖A‖q‖A‖p,

it follows that
‖A‖22 ≤ ‖A‖p‖A‖q.

6.7.6 Diagonalizable Matrices

Definition 6.13 A J by J matrix S is diagonalizable if CJ has a basis of
eigenvectors of S.

As the following lemma tells us, most square matrices are diagonaliz-
able.

Lemma 6.6 A square matrix S is diagonalizable if all its eigenvalues are
distinct.

Proof: We need to show that the eigenvectors associated with different
eigenvalues are linearly independent. Let S be J by J . Let λj be the eigen-
values of S, Suj = λju

j , and uj 6= 0, for j = 1, ..., J . Let um be the first
eigenvector that is in the span of {uj |j = 1, ...,m− 1}. Then

um = a1u
1 + ...+ am−1u

m−1, (6.43)
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for some constants aj that are not all zero. Multiply both sides by λm to
get

λmu
m = a1λmu

1 + ...+ am−1λmu
m−1. (6.44)

From

λmu
m = Aum = a1λ1u

1 + ...+ am−1λm−1u
m−1, (6.45)

it follows that

a1(λm − λ1)u1 + ...+ am−1(λm − λm−1)um−1 = 0, (6.46)

from which we can conclude that some un in {u1, ..., um−1} is in the span
of the others. This is a contradiction.

When S is diagonalizable, we let U be a square matrix whose columns
are J linearly independent eigenvectors of S and L the diagonal matrix
having the eigenvalues of S along its main diagonal; then we have SU = UL,
or U−1SU = L.

Ex. 6.21 Let M = U−1 and define ‖x‖M = ‖Mx‖2, the Euclidean norm
of Mx. Show that the induced matrix norm of S is ‖S‖M = ρ(S).

We see from this exercise that, for any diagonalizable matrix S, in
particular, for any Hermitian matrix, there is a vector norm such that the
induced matrix norm of S is ρ(S).

In the Hermitian case S = H, we know that we can select the eigen-
vector columns of U to be mutually orthogonal and scaled to have length
one, so that U−1 = U† and ‖Mx‖2 = ‖U†x‖2 = ‖x‖2, so that the required
vector norm is just the Euclidean norm, and ‖H‖M is just ‖H‖2, which we
know to be ρ(H).

Ex. 6.22 The Cayley-Hamilton Theorem asserts that if S is any square
matrix and P (λ) its characteristic polynomial, then P (S) = 0. Prove this
for the case of diagonalizable S.

6.8 Estimating Eigenvalues

Calculating the eigenvalues of a square matrix amounts to solving for
the roots of a polynomial. In general, this requires an iterative procedure,
since there are no algebraic formulas for finding the roots of arbitrary poly-
nomials. In this section we give two simply methods for obtaining somewhat
crude estimates of the eigenvalues. Later, we shall present better estimation
methods.
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6.8.1 Using the Trace

The trace of a square matrix S, written trace(S) or tr(S), is the sum of
the entries on the main diagonal of S. If S is diagonalizable, then we can
write S = ULU−1, where L is the diagonal matrix whose diagonal entries
are the eigenvalues of S. For any square matrices A, B, and C we have

tr(ABC) = tr(CAB) = tr(BCA),

but these are not necessarily equal to tr(BAC). Therefore,

tr(S) = tr(ULU−1) = tr(U−1UL) = tr(L),

so that the trace of S is the sum of its eigenvalues. The same result holds
for non-diagonalizable matrices, but the proof is a bit harder; try to prove
this using Schur’s Lemma 5.1.

6.8.2 Gerschgorin’s Theorem

Gerschgorin’s theorem gives us a way to estimate the eigenvalues of an
arbitrary square matrix S.

Theorem 6.4 Let S be J by J . For j = 1, ..., J , let Cj be the circle in the
complex plane with center Sjj and radius rj =

∑
m 6=j |Sjm|. Then every

eigenvalue of S lies within one of the Cj.

Proof: Let λ be an eigenvalue of S, with associated eigenvector u. Let
uj be the entry of the vector u having the largest absolute value. From
Su = λu, we have

(λ− Sjj)uj =
∑
m6=j

Sjmum, (6.47)

so that

|λ− Sjj | ≤
∑
m 6=j

|Sjm||um|/|uj | ≤ rj . (6.48)

This completes the proof.

6.8.3 Strictly Diagonally Dominant Matrices

Definition 6.14 A square I by I matrix S is said to be strictly diagonally
dominant if, for each i = 1, ..., I,

|Sii| > ri =
∑
m6=i

|Sim|. (6.49)
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When the matrix S is strictly diagonally dominant, all the eigenvalues of
S lie within the union of the spheres with centers Sii and radii Sii. With D
the diagonal component of S, the matrix D−1S then has all its eigenvalues
within the circle of radius one, centered at (1, 0). Then ρ(I −D−1S) < 1.
This result is used when we discuss the Jacobi splitting method [66].

6.9 Conditioning

6.9.1 Condition Number of a Square Matrix

Let S be a square, invertible matrix and z the solution to Sz = h. We
are concerned with the extent to which the solution changes as the right
side, h, changes. Denote by δh a small perturbation of h, and by δz the
solution of Sδz = δh. Then S(z + δz) = h+ δh. Applying the compatibility
condition ‖Ax‖ ≤ ‖A‖‖x‖, we get

‖δz‖ ≤ ‖S−1‖‖δh‖, (6.50)

and

‖z‖ ≥ ‖h‖/‖S‖. (6.51)

Therefore

‖δz‖
‖z‖

≤ ‖S‖ ‖S−1‖‖δh‖
‖h‖

. (6.52)

Definition 6.15 The quantity c = ‖S‖‖S−1‖ is the condition number of
S, with respect to the given matrix norm.

Note that c ≥ 1: for any non-zero z, we have

1 = ‖I‖ = ‖SS−1‖ ≤ ‖S‖‖S−1‖. (6.53)

Ex. 6.23 Show that when Q is Hermitian and positive-definite, the condi-
tion number of Q, with respect to the matrix norm induced by the Euclidean
vector norm, is

c = λmax(Q)/λmin(Q), (6.54)

the ratio of the largest to the smallest eigenvalues of Q.
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7.1 Chapter Summary

When a system of M linear equations in N unknowns, denoted Ax = b,
has multiple solutions, we say that the system is under-determined. Then
it has infinitely many solutions; if Ax = b and Az = b and x 6= z, then
x + α(z − x) is also a solution, for any scalar α. In such cases, we usually
select one solution out of the infinitely many possibilities by requiring that
the solution also satisfy some additional constraints. For example, we can
select that solution x for which ‖x‖2 is minimized, which we denote by x̂.
This minimum two-norm solution is given by

x̂ = A†(AA†)−1b,

109
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provided that the matrix AA† has an inverse. In this chapter we survey
several of the constraints that are commonly used and the algorithms that
are employed to calculate these constrained solutions.

7.2 Minimum Two-Norm Solutions

When the system Ax = b is under-determined, it is reasonable to ask
for that solution x = x̂ having the smallest two-norm

‖x‖2 =

√√√√ N∑
n=1

|xn|2.

As we showed previously, the minimum two-norm solution of Ax = b is a
vector of the form x̂ = A†z. Then Ax̂ = b becomes AA†z = b. Typically,
(AA†)−1 will exist, and we get z = (AA†)−1b, from which it follows that
the minimum two-norm solution is x̂ = A†(AA†)−1b. When M and N are
not too large, forming the matrix AA† and solving for z is not prohibitively
expensive or time-consuming.

When M and N are large, we turn to iterative algorithms to find the
minimum two-norm solution. Both the ART and the Landweber algorithm
converge to that solution closest to the starting vector x0, in the two-norm
sense. Therefore, when we begin with x0 = 0, these algorithms give us the
minimum two-norm solution.

If C is a closed convex set in RN , the projected Landweber algorithm
converges to that solution x in C closest to x0, in the two-norm sense.
Again, if we take x0 = 0, the projected Landweber algorithm converges to
that solution x in C having the smallest two-norm.

7.3 Minimum Weighted Two-Norm Solutions

The minimum weighted two-norm solution is the x = x̃ satisfying Ax =
b for which the weighted two-norm

‖x‖w =

√√√√ N∑
n=1

|xn|2wn

is minimized. This solution can be found easily by changing variables,
letting un = xn

√
wn, to convert the problem into a minimum two-norm
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problem, and then applying any of the methods discussed in the previous
chapter. The minimum weighted two-norm approach is a discrete version
of a method, called the PDFT, for estimating a function from values of its
Fourier transform [43].

Figure 2.2 illustrates the potential advantages to be obtained through
the use of weights. In that example, we have a prior estimate of the mag-
nitudes of the xn, which we called pn > 0. Then we chose for the weights
wn = p−1

n .

7.4 Minimum One-Norm Solutions

Instead of the minimum two-norm solution, we can seek a minimum
one-norm solution, that is, minimize

||x||1 =

N∑
n=1

|xn|,

subject to Ax = b; we denote by x∗ the minimum one-norm solution. As we
shall see, this problem can be formulated as a linear programming problem,
so is easily solved.

The entries of x need not be non-negative, so the problem is not yet a
linear programming problem. Let

B =
[
A −A

]
,

and consider the linear programming problem of minimizing the function

cT z =

2N∑
n=1

zn,

subject to the constraints z ≥ 0, and Bz = b. Let z∗ be the solution. We
write

z∗ =

[
u∗

v∗

]
.

Then, as we shall see, x∗ = u∗ − v∗ minimizes the one-norm, subject to
Ax = b.

First, we show that u∗nv
∗
n = 0, for each n. If this were not the case and

there is an n such that 0 < v∗n < u∗n, then we can create a new vector
z by replacing the old u∗n with u∗n − v∗n and the old v∗n with zero, while
maintaining Bz = b. But then, since u∗n − v∗n < u∗n + v∗n, it follows that
cT z < cT z∗, which is a contradiction. Consequently, we have ‖x∗‖1 = cT z∗.
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Now we select any x with Ax = b. Write un = xn, if xn ≥ 0, and un = 0,
otherwise. Let vn = un − xn, so that x = u− v. Then let

z =

[
u
v

]
.

Then b = Ax = Bz, and cT z = ‖x‖1. And so,

‖x∗‖1 = cT z∗ ≤ cT z = ‖x‖1,

and x∗ must be a minimum one-norm solution.

Ex. 7.1 Find a system of linear equations Ax = b for which there are
multiple minimum one-norm solutions.

7.5 Sparse Solutions

For any vector x, we define the support of x to be the subset S of
{1, 2, ..., N} consisting of those n for which the entries xn 6= 0. For any
under-determined system Ax = b, there will, of course, be at least one
solution, call it x′, of minimum support, that is, for which |S|, the size of
the support set S, is minimum. However, finding such a maximally sparse
solution requires combinatorial optimization, and is known to be compu-
tationally difficult. It is important, therefore, to have a computationally
tractable method for finding maximally sparse solutions.

7.5.1 Maximally Sparse Solutions

Consider the following problem: among all solutions x of the consis-
tent system Ax = b, find one, x′, that is maximally sparse, that is, has
the minimum number of non-zero entries. Obviously, there will be at least
one such solution having minimal support, but finding one, however, is a
combinatorial optimization problem and is generally NP-hard.

7.5.2 Why the One-Norm?

When a system of linear equations Ax = b is under-determined, we can
find the minimum two-norm solution. One drawback to this approach is
that the two-norm penalizes relatively large values of xn much more than
the smaller ones, so tends to provide non-sparse solutions. Alternatively,
we may seek the minimum one-norm solution. The one-norm still penalizes
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relatively large entries xn more than the smaller ones, but much less so
than the two-norm does. As a result, it often happens that the minimum
one-norm solution actually is a maximally sparse solution, as well.

7.5.3 Comparison with the Weighted Two-Norm Solution

Our intention is to select weights wn so that w−1
n is reasonably close to

the absolute value of the corresponding entry of the minimum one-norm
solution |x∗n|; consider, therefore, what happens when w−1

n = |x∗n|. We claim
that x̃ is also a minimum-one-norm solution.

To see why this is true, note that, for any x, we have

N∑
n=1

|xn| =
N∑
n=1

|xn|√
|x∗n|

√
|x∗n|

≤

√√√√ N∑
n=1

|xn|2
|x∗n|

√√√√ N∑
n=1

|x∗n|.

Therefore,

N∑
n=1

|x̃n| ≤

√√√√ N∑
n=1

|x̃n|2
|x∗n|

√√√√ N∑
n=1

|x∗n|

≤

√√√√ N∑
n=1

|x∗n|2
|x∗n|

√√√√ N∑
n=1

|x∗n| =
N∑
n=1

|x∗n|.

Therefore, x̃ is also a solution that minimizes the one-norm. If x∗ is unique,
then x̃ = x∗.

7.5.4 Iterative Reweighting

Let x be the truth. generally, we want each weight wn to be a good prior
estimate of the reciprocal of |xn|. Because we do not yet know x, we may
take a sequential-optimization approach, beginning with weights w0

n > 0,
finding the minimum weighted two-norm solution using these weights, then
using this solution to get a (we hope!) better choice for the weights, and
so on. This sequential approach was successfully implemented in the early
1980’s by Michael Fiddy and his students [135].

In [74], the same approach is taken, but with respect to the one-norm.
Since the one-norm still penalizes larger values disproportionately, balance
can be achieved by minimizing a weighted one-norm, with weights close to
the reciprocals of the |xn|. Again, not yet knowing x, they employ a sequen-
tial approach, using the previous minimum weighted one-norm solution to
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obtain the new set of weights for the next minimization. At each step of
the sequential procedure, the previous reconstruction is used to estimate
the true support of the desired solution.

It is interesting to note that an on-going debate among users of the
minimum weighted two-norm approach concerns the nature of the prior
weighting. With x denoting the truth, does wn approximate |xn| or |xn|2?
This is close to the issue treated in [74], the use of a weight in the minimum
one-norm approach.

It should be noted again that finding a sparse solution is not usually
the goal in the use of the minimum weighted two-norm approach, but the
use of the weights has much the same effect as using the one-norm to find
sparse solutions: to the extent that the weights approximate the entries of
x∗, their use reduces the penalty associated with the larger entries of an
estimated solution.

7.6 Why Sparseness?

One obvious reason for wanting sparse solutions of Ax = b is that we
have prior knowledge that the desired solution is sparse. Such a problem
arises in signal analysis from Fourier-transform data. In other cases, such
as in the reconstruction of locally constant signals, it is not the signal itself,
but its discrete derivative, that is sparse.

7.6.1 Signal Analysis

Suppose that our signal f(t) is known to consist of a small number of
complex exponentials, so that f(t) has the form

f(t) =

J∑
j=1

aje
iωjt,

for some small number of frequencies ωj in the interval [0, 2π). For n =
0, 1, ..., N − 1, let fn = f(n), and let f be the N -vector with entries fn;
we assume that J is much smaller than N . The discrete (vector) Fourier

transform of f is the vector f̂ having the entries

f̂k =
1√
N

N−1∑
n=0

fne
2πikn/N ,

for k = 0, 1, ..., N−1; we write f̂ = Ef , where E is the N by N matrix with
entries Ekn = 1√

N
e2πikn/N . If N is large enough, we may safely assume that
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each of the ωj is equal to one of the frequencies 2πik and that the vector f̂
is J-sparse. The question now is: How many values of f(n) do we need to
calculate in order to be sure that we can recapture f(t) exactly? We have
the following theorem [73]:

Theorem 7.1 Let N be prime. Let S be any subset of {0, 1, ..., N − 1}
with |S| ≥ 2J . Then the vector f̂ can be uniquely determined from the
measurements fn for n in S.

We know that
f = E†f̂ ,

where E† is the conjugate transpose of the matrix E. The point here is
that, for any matrix R obtained from the identity matrix I by deleting
N − |S| rows, we can recover the vector f̂ from the measurements Rf .

If N is not prime, then the assertion of the theorem may not hold, since
we can have n = 0 modN , without n = 0. However, the assertion remains
valid for most sets of J frequencies and most subsets S of indices; therefore,
with high probability, we can recover the vector f̂ from Rf .

Note that the matrix E is unitary, that is, E†E = I, and, equivalently,
the columns of E form an orthonormal basis for CN . The data vector is

b = Rf = RE†f̂ .

In this example, the vector f is not sparse, but can be represented sparsely
in a particular orthonormal basis, namely as f = E†f̂ , using a sparse vector
f̂ of coefficients. The representing basis then consists of the columns of the
matrix E†. The measurements pertaining to the vector f are the values fn,
for n in S. Since fn can be viewed as the inner product of f with δn, the
nth column of the identity matrix I, that is,

fn = 〈δn, f〉,

the columns of I provide the so-called sampling basis. With A = RE† and
x = f̂ , we then have

Ax = b,

with the vector x sparse. It is important for what follows to note that the
matrix A is random, in the sense that we choose which rows of I to use to
form R.

7.6.2 Locally Constant Signals

Suppose now that the function f(t) is locally constant, consisting of
some number of horizontal lines. We discretize the function f(t) to get
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the vector f = (f(0), f(1), ..., f(N))T . The discrete derivative vector is
g = (g1, g2, ..., gN )T , with

gn = f(n)− f(n− 1).

Since f(t) is locally constant, the vector g is sparse. The data we will have
will not typically be values f(n). The goal will be to recover f from M
linear functional values pertaining to f , where M is much smaller than N .
We shall assume, from now on, that we have measured, or can estimate,
the value f(0).

Our M by 1 data vector d consists of measurements pertaining to the
vector f :

dm =

N∑
n=0

Hmnfn,

for m = 1, ...,M , where the Hmn are known. We can then write

dm = f(0)
( N∑
n=0

Hmn

)
+

N∑
k=1

( N∑
j=k

Hmj

)
gk.

Since f(0) is known, we can write

bm = dm − f(0)
( N∑
n=0

Hmn

)
=

N∑
k=1

Amkgk,

where

Amk =

N∑
j=k

Hmj .

The problem is then to find a sparse solution of Ax = g. As in the previous
example, we often have the freedom to select the linear functions, that is,
the values Hmn, so the matrix A can be viewed as random.

7.6.3 Tomographic Imaging

The reconstruction of tomographic images is an important aspect of
medical diagnosis, and one that combines aspects of both of the previous
examples. The data one obtains from the scanning process can often be
interpreted as values of the Fourier transform of the desired image; this is
precisely the case in magnetic-resonance imaging, and approximately true
for x-ray transmission tomography, positron-emission tomography (PET)
and single-photon emission tomography (SPECT). The images one encoun-
ters in medical diagnosis are often approximately locally constant, so the
associated array of discrete partial derivatives will be sparse. If this sparse
derivative array can be recovered from relatively few Fourier-transform val-
ues, then the scanning time can be reduced.
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7.7 Positive Linear Systems

When the entries of the matrix A are non-negative, the entries of the
vector b are positive, and we require that the entries of x be non-negative,
we say that we have a positive system. We call the system under-determined
when there are multiple non-negative solutions. It is appropriate now to use
the cross-entropy, or Kullback-Leibler (KL), distance between non-negative
vectors, rather than the two-norm or the one-norm.

In the under-determined case, the MART and its block-iterative ver-
sions, the RBI-SMART algorithms, all converge to that non-negative so-
lution x for which KL(x, x0) is minimized. The EMML algorithm and its
block-iterative variants also converge to non-negative solutions, but they
may not all be the same solution, and no explicit characterization of these
solutions is known; that is, they depend on x0, but precisely how is not
known.

When we wish to impose further constraints on the entries of x, we can
use the ABMART or the ABEMML algorithms.

7.8 Feasible-Point Methods

In previous sections we considered the minimum two-norm and mini-
mum one-norm solutions for under-determined systems Ax = b. A more
general approach is to minimize some function f(x), subject to Ax = b,
which is the subject of this section.

We consider now the problem of minimizing the function f(x) : RN →
R, subject to the equality constraints Ax = b, where A is an M by N real
matrix, with rank M and M < N . The two methods we consider here are
feasible-point methods, also called interior-point methods.

7.8.1 The Reduced Newton-Raphson Method

The first method we consider is a modification of the Newton-Raphson
method, in which we begin with a feasible point and each NR step is pro-
jected into the null space of the matrix A, to maintain the condition Ax = b.
The discussion here is taken from [209].

Let x̂ be a feasible point, that is, Ax̂ = b. Then x = x̂+p is also feasible
if p is in the null space of A, that is, Ap = 0. Let Z be an N by N −M
matrix whose columns form a basis for the null space of A. We want p = Zv
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for some v. The best v will be the one for which the function

φ(v) = f(x̂+ Zv)

is minimized. We can apply to the function φ(v) the steepest descent
method, or Newton-Raphson or any other minimization technique. The
steepest descent method, applied to φ(v), is called the reduced steepest de-
scent method; the Newton-Raphson method, applied to φ(v), is called the
reduced Newton-Raphson method. The gradient of φ(v), also called the re-
duced gradient, is

∇φ(v) = ZT∇f(x),

and the Hessian matrix of φ(v), also called the reduced Hessian matrix, is

∇2φ(v) = ZT∇2f(x)Z,

where x = x̂+Zv, so algorithms to minimize φ(v) can be written in terms
of the gradient and Hessian of f itself.

The reduced NR algorithm can then be viewed in terms of the vectors
{vk}, with v0 = 0 and

vk+1 = vk − [∇2φ(vk)]−1∇φ(vk); (7.1)

the corresponding xk is
xk = x̂+ Zvk.

7.8.1.1 An Example

Consider the problem of minimizing the function

f(x) =
1

2
x2

1 −
1

2
x2

3 + 4x1x2 + 3x1x3 − 2x2x3,

subject to
x1 − x2 − x3 = −1.

Let x̂ = [1, 1, 1]T . Then the matrix A is A = [1,−1,−1] and the vector b is
b = [−1]. Let the matrix Z be

Z =

1 1
1 0
0 1

 . (7.2)

The reduced gradient at x̂ is then

ZT∇f(x̂) =

[
1 1 0
1 0 1

]8
2
0

 =

[
10
8

]
, (7.3)
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and the reduced Hessian matrix at x̂ is

ZT∇2f(x̂)Z =

[
1 1 0
1 0 1

]1 4 3
4 0 −2
3 −2 −1

1 1
1 0
0 1

 =

[
9 6
6 6

]
. (7.4)

Then the reduced Newton-Raphson equation yields

v =

[
−2/3
−2/3

]
, (7.5)

and the reduced Newton-Raphson direction is

p = Zv =

−4/3
−2/3
−2/3

 . (7.6)

Since the function φ(v) is quadratic, one reduced Newton-Raphson step
suffices to obtain the solution, x∗ = [−1/3, 1/3, 1/3]T .

7.8.2 A Primal-Dual Approach

Once again, the objective is to minimize the function f(x) : RN → R,
subject to the equality constraints Ax = b. According to the Karush-Kuhn-
Tucker Theorem [70], ∇L(x, λ) = 0 at the optimal values of x and λ, where
the Lagrangian L(x, λ) is

L(x, λ) = f(x) + λT (b−Ax).

Finding a zero of the gradient of L(x, λ) means that we have to solve the
equations

∇f(x)−ATλ = 0

and
Ax = b.

We define the function G(x, λ) taking values in RN × RM to be

G(x, λ) = (∇f(x)−ATλ,Ax− b)T .

We then apply the NR method to find a zero of the function G. The Jaco-
bian matrix for G is

JG(x, λ) =

[
∇2f(x) −AT
A 0

]
,

so one step of the NR method is

(xk+1, λk+1)T = (xk, λk)T − JG(xk, λk)−1G(xk, λk). (7.7)
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We can rewrite this as

∇2f(xk)(xk+1 − xk)−AT (λk+1 − λk) = ATλk −∇f(xk), (7.8)

and

A(xk+1 − xk) = b−Axk. (7.9)

It follows from Equation (7.9) that Axk+1 = b, for k = 0, 1, ... , so that this
primal-dual algorithm is a feasible-point algorithm.
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8.1 Chapter Summary

Convex sets and convex functions play important roles in linear algebra
and optimization. Subspaces, hyperplanes and half-spaces are convex sets
that are naturally associated with linear equations and inequalities. In this
chapter we survey the basic facts concerning the geometry of convex sets.

8.2 A Bit of Topology

Having a norm allows us to define the distance between two points x
and y in RJ as ||x−y||. Being able to talk about how close points are to each
other enables us to define continuity of functions on RJ and to consider
topological notions of closed set, open set, interior of a set and boundary of
a set. While the actual numerical distance between points will vary as we
change norm, all of these purely topological notions are independent of the
particular norm being used. When we are required to limit our discussion
to the two-norm we shall indicate that by using the notation ‖x‖2 instead
of the general ‖x‖. Whenever we speak of “orthogonality” , we are in the
context of an inner product space and the norm will be the two-norm
derived from the inner product.

Definition 8.1 A subset B of RJ is closed if, whenever xk is in B for
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each non-negative integer k and ||x − xk|| → 0, as k → +∞, then x is in
B.

For example, B = [0, 1] is closed as a subset of R, but B = (0, 1) is not.

Definition 8.2 We say that d ≥ 0 is the distance from the point x to the
set B if, for every ε > 0, there is bε in B, with ||x− bε|| < d+ ε, and no b
in B with ||x− b|| < d.

The Euclidean distance from the point 0 in R to the set (0, 1) is zero,
while its distance to the set (1, 2) is one. It follows easily from the definitions
that, if B is closed and d = 0, then x is in B.

Definition 8.3 The closure of a set B is the set of all points x whose
distance from B is zero.

The closure of the interval B = (0, 1) is [0, 1].

Definition 8.4 A subset U of RJ is open if its complement, the set of all
points not in U , is closed.

Definition 8.5 Let C be a subset of RJ . A point x in C is said to be
an interior point of set C if there is ε > 0 such that every point z with
||x− z|| < ε is in C. The interior of the set C, written int(C), is the set of
all interior points of C. It is also the largest open set contained within C.

For example, the open interval (0, 1) is the interior of the intervals (0, 1]
and [0, 1]. A set C is open if and only if C = int(C).

Definition 8.6 A point x in RJ is said to be a boundary point of set C
if, for every ε > 0, there are points yε in C and zε not in C, both depending
on the choice of ε, with ||x − yε|| < ε and ||x − zε|| < ε. The boundary of
C is the set of all boundary points of C. It is also the intersection of the
closure of C with the closure of its complement.

For example, the points x = 0 and x = 1 are boundary points of the set
(0, 1].

Definition 8.7 For k = 0, 1, 2, ..., let xk be a vector in RJ . The sequence
of vectors {xk} is said to converge to the vector z if, given any ε > 0, there
is positive integer n, usually depending on ε, such that, for every k > n,
we have ||z − xk|| ≤ ε. Then we say that z is the limit of the sequence.

For example, the sequence {xk = 1
k+1} in R converges to z = 0. The

sequence {(−1)k} alternates between 1 and −1, so does not converge. How-
ever, the subsequence associated with odd k converges to z = −1, while the
subsequence associated with even k converges to z = 1. The values z = −1
and z = 1 are called subsequential limit points, or, sometimes, cluster points
of the sequence.
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Definition 8.8 A sequence {xk} of vectors in RJ is said to be bounded if
there is a constant b > 0, such that ||xk|| ≤ b, for all k.

A fundamental result in analysis is the following.

Proposition 8.1 Every convergent sequence of vectors in RJ is bounded.
Every bounded sequence of vectors in RJ has at least one convergent sub-
sequence, therefore, has at least one cluster point.

8.3 Convex Sets in RJ

In preparation for our discussion of orthogonal projection operators, we
consider some of the basic concepts from the geometry of convex sets.

8.3.1 Basic Definitions

We begin with the basic definitions.

Definition 8.9 A vector z is said to be a convex combination of the vectors
x and y if there is α in the interval [0, 1] such that z = (1− α)x+ αy.

Definition 8.10 A nonempty set C in RJ is said to be convex if, for any
distinct points x and y in C, and for any real number α in the interval
(0, 1), the point (1 − α)x + αy is also in C; that is, C is closed to convex
combinations.

For example, the two-norm unit ball B in RJ , consisting of all x with
||x||2 ≤ 1, is convex, while the surface of the ball, the set of all x with
||x||2 = 1, is not convex. In fact, the unit ball in any norm is a closed
convex set.

Definition 8.11 The convex hull of a set S, denoted conv(S), is the small-
est convex set containing S.

Proposition 8.2 The convex hull of a set S is the set C of all convex
combinations of members of S.

Definition 8.12 A subset S of RJ is a subspace if, for every x and y in
S and scalars α and β, the linear combination αx+ βy is again in S.

A subspace is necessarily a convex set.
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Definition 8.13 The orthogonal complement of a subspace S is the set

S⊥ = {u|uT s = 0, for every s ∈ S}, (8.1)

the set of all vectors u in RJ that are orthogonal to every member of S.

For example, in R3, the x, y-plane is a subspace and has for its orthogonal
complement the z-axis.

Definition 8.14 A subset M of RJ is a linear manifold if there is a sub-
space S and a vector b such that

M = S + b = {x|x = s+ b, for some s inS}.

Any linear manifold is convex.

Definition 8.15 For a fixed column vector a with Euclidean length one
and a fixed scalar γ the hyperplane determined by a and γ is the set

H(a, γ) = {z|〈a, z〉 = γ}.

The hyperplanes H(a, γ) are linear manifolds, and the hyperplanes H(a, 0)
are subspaces.

Definition 8.16 Given a subset C of RJ , the affine hull of C, denoted
aff(C), is the smallest linear manifold containing C.

For example, let C be the line segment connecting the two points (0, 1)
and (1, 2) in R2. The affine hull of C is the straight line whose equation is
y = x+ 1.

Definition 8.17 The dimension of a subset of RJ is the dimension of its
affine hull, which is the dimension of the subspace of which it is a translate.

The set C above has dimension one. A set containing only one point is
its own affine hull, since it is a translate of the subspace {0}.

In R2, the line segment connecting the points (0, 1) and (1, 2) has no
interior; it is a one-dimensional subset of a two-dimensional space and can
contain no two-dimensional ball. But, the part of this set without its two
end points is a sort of interior, called the relative interior.

Definition 8.18 The relative interior of a subset C of RJ , denoted ri(C),
is the interior of C, as defined by considering C as a subset of its affine
hull.

Since a set consisting of a single point is its own affine hull, it is its own
relative interior.
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Definition 8.19 A point x in a convex set C is said to be an extreme
point of C if the set obtained by removing x from C remains convex.

Said another way, x ∈ C is an extreme point of C if x cannot be written
as

x = (1− α)y + αz, (8.2)

for y, z 6= x and α ∈ (0, 1). For example, the point x = 1 is an extreme
point of the convex set C = [0, 1]. Every point on the boundary of a sphere
in RJ is an extreme point of the sphere. The set of all extreme points of a
convex set is denoted Ext(C).

Definition 8.20 A non-zero vector d is said to be a direction of unbound-
edness of a convex set C if, for all x in C and all γ ≥ 0, the vector x+ γd
is in C.

For example, if C is the non-negative orthant in RJ , then any non-negative
vector d is a direction of unboundedness.

Definition 8.21 A vector a is normal to a convex set C at the point s in
C if

〈a, c− s〉 ≤ 0, (8.3)

for all c in C.

Definition 8.22 Let C be convex and s in C. The normal cone to C at s,
denoted NC(s), is the set of all vectors a that are normal to C at s.

The notions of normality and normal cone make sense only in the pres-
ence of an inner product, and therefore, will be discussed only when the
norm is the two-norm.

8.3.2 Orthogonal Projection onto Convex Sets

The following proposition is fundamental in the study of convexity and
can be found in most books on the subject; see, for example, the text by
Goebel and Reich [147].

Proposition 8.3 Given any nonempty closed convex set C and an arbi-
trary vector x in RJ , there is a unique member PCx of C closest to x, in the
two-norm. The vector PCx is called the orthogonal (or metric) projection
of x onto C, and the operator PC is the orthogonal projection onto C.



126 Applied and Computational Linear Algebra: A First Course

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n . Then, since for all n we have

‖cn‖2 = ‖cn − x+ x‖2 ≤ ‖cn − x‖2 + ‖x‖2 ≤ d+
1

n
+ ‖x‖2 < d+ 1 + ‖x‖2,

the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x− (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

For example, if C = U , the unit ball, then PCx = x/||x||2, for all x such
that ||x||2 > 1, and PCx = x otherwise. If C is RJ+, the nonnegative cone
of RJ , consisting of all vectors x with xj ≥ 0, for each j, then PCx = x+,
the vector whose entries are max (xj , 0). For any closed, convex set C, the
distance from x to C is ||x− PCx||2.

If a nonempty set S is not convex, then the orthogonal projection of
a vector x onto S need not be well defined; there may be more than one
vector in S closest to x. In fact, it is known that a set S is convex if and
only if, for every x not in S, there is a unique point in S closest to x. Note
that there may well be some x for which there is a unique closest point in
S, but if S is not convex, then there must be at least one point without a
unique closest point in S.

The main reason for not speaking about orthogonal projection onto
convex sets in other norms is that the nearest point to x in C need not
be unique; remember, the parallelogram law need not hold. For example,
consider the closed convex set C in R2 consisting of all vectors (a, b)T with
a ≥ 0, b ≥ 0, and a + b = 1. Let x = (1, 1)T . Then each point in C is a
distance one from x, in the sense of the one-norm.

Lemma 8.1 For H = H(a, γ), z = PHx is the vector

z = PHx = x+ (γ − 〈a, x〉)a. (8.4)

We shall use this fact in our discussion of the ART algorithm.
For an arbitrary nonempty closed convex set C in RJ , the orthogonal

projection T = PC is a nonlinear operator, unless, of course, C is a sub-
space. We may not be able to describe PCx explicitly, but we do know a
useful property of PCx.

Proposition 8.4 For a given x, a vector z in C is PCx if and only if

〈c− z, z − x〉 ≥ 0, (8.5)

for all c in the set C.
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Proof: Let c be arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx+ α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22. (8.6)

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0, (8.7)

so that

2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22. (8.8)

Taking the limit, as α→ 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0. (8.9)

If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0, (8.10)

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0, (8.11)

and

〈z − PCx, x− z〉 ≥ 0. (8.12)

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx− z〉 ≥ 0. (8.13)

But,

〈z − PCx, PCx− z〉 = −||z − PCx||22, (8.14)

so it must be the case that z = PCx. This completes the proof.

8.4 Geometric Interpretations of RJ

The word vector is used in two distinct ways when we speak of a member
of RJ and this can lead to some confusion. When we say that x is a member
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of RJ we mean that x is a J by 1 real matrix, that is, a single column, with
J real entries xj . By choosing to make x a column and not a row we make
it possible to write Ax, where A is a matrix with J columns. One linear
equation in J variables has the form

a1x1 + a2x2 + ...+ aJxJ = γ. (8.15)

We denote by a the J by 1 matrix with entries aj , so that Equation (8.15)
can be written in the compact form aTx = γ. Because the dot product
a · x of a and x is also the standard inner product on RJ , we have these
equivalent ways of writing Equation (8.15):

a · x = 〈a, x〉 = aTx = γ. (8.16)

We commonly visualize the space RJ by thinking of R2 or R3, and inter-
preting the members x of RJ as specific locations or points in J-dimensional
space. We think of x = (3,−4)T in R2 as the point we reach from the origin
by going three units “east” and four units “south” .

In any inner product space V it is natural to speak about orthogonality
and to say that members u and v of V are orthogonal if 〈u, v〉 = 0. This
can lead to some confusion when we seek a geometric interpretation of RJ .

When we discuss the plane R2 or three-dimensional space R3, we also
use the word vector to mean a directed line segment. For the purposes of
this section, and nowhere else in this text, we shall denote a directed line
segment by x = (x1, x2)T . It is unfortunate that this notational distinction
is not maintained in most literature on the subject; for that reason, we
do not maintain it in this text. It is left to the reader to infer the proper
interpretation from the context.

The directed line segment x and the vector x = (x1, x2)T in R2 are
obviously related. The directed line segment x is what we obtain if we begin
the segment at 0 = (0, 0)T and end at x = (x1, x2)T . But x is also what we
get if we begin the segment at (−2, 7)T and end it at (−2 + x1, 7 + x2)T .
Vectors x interpreted as directed line segments in RJ have no fixed location
in RJ , unlike vectors x interpreted as points in RJ .

When we consider a single linear equation, as in Equation (8.15), it
is convenient to define the hyperplane H(a, γ) in RJ associated with this
equation as

H(a, γ) = {x|a · x = aTx = 〈a, x〉 = γ}. (8.17)

Note that the symbol x| means “all x for which the following property
holds” .

The members of the hyperplane are to be thought of as points in RJ
having a specific location, not as directed line segments. On the other hand,
it is helpful to think of a as a, a directed line segment, so that the first
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term in 〈a, x〉 is a directed line segment, while the second term is a point
with a fixed location. If x and z are any two members of H(a, γ), then the
directed line segment that goes from z to x, which is x−z, is orthogonal to
the directed line segment a. We say then that a is a vector that is normal
to H(a, γ). Note that we do not mean that a · x = 0 for each x in H(a, γ),
but that a · (x− z) = 0 for all x and z in H(a, γ).

8.5 Some Results on Projections

The characterization of the orthogonal projection operator PC given by
Proposition 8.4 has a number of important consequences.

Corollary 8.1 Let S be any subspace of RJ . Then, for any x in RJ and s
in S, we have

〈PSx− x, s〉 = 0. (8.18)

Proof: Since S is a subspace, s+ PSx is again in S, for all s, as is cs, for
every scalar c.

This corollary enables us to prove the Decomposition Theorem.

Theorem 8.1 Let S be any subspace of RJ and x any member of RJ . Then
there are unique vectors s in S and u in S⊥ such that x = s+u. The vector
s is PSx and the vector u is PS⊥x.

Proof: For the given x we take s = PSx and u = x − PSx. Corollary 8.1
assures us that u is in S⊥. Now we need to show that this decomposition is
unique. To that end, suppose that we can write x = s1 + u1, with s1 in S
and u1 in S⊥. Then Proposition 8.4 tells us that, since s1−x is orthogonal
to every member of S, s1 must be PSx.

This theorem is often presented in a slightly different manner.

Theorem 8.2 Let A be a real I by J matrix. Then every vector b in RI
can be written uniquely as b = Ax+ w, where ATw = 0.

To derive Theorem 8.2 from Theorem 8.1, we simply let S = {Ax|x ∈ RJ}.
Then S⊥ is the set of all w such that ATw = 0. It follows that w is the
member of the null space of AT closest to b.

Here are additional consequences of Proposition 8.4.
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Corollary 8.2 Let S be any subspace of RJ , d a fixed vector, and V the
linear manifold V = S+ d = {v = s+ d|s ∈ S}, obtained by translating the
members of S by the vector d. Then, for every x in RJ and every v in V ,
we have

〈PV x− x, v − PV x〉 = 0. (8.19)

Proof: Since v and PV x are in V , they have the form v = s + d, and
PV x = ŝ+ d, for some s and ŝ in S. Then v − PV x = s− ŝ.

Corollary 8.3 Let H be the hyperplane H(a, γ). Then, for every x, and
every h in H, we have

〈PHx− x, h− PHx〉 = 0. (8.20)

Corollary 8.4 Let S be a subspace of RJ . Then (S⊥)⊥ = S.

Proof: Every x in RJ has the form x = s + u, with s in S and u in S⊥.
Suppose x is in (S⊥)⊥. Then u = 0.

Theorem 8.3 (The Separation Theorem) Let C b e a non-empty,
closed convex set in RJ and x not in C. Then there exists a vector a in RJ
and a scalar γ such that, for all c in C,

〈a, x〉 < γ ≤ 〈a, c〉.

Proof: Let a = PCx− x. Then, using the inequality

〈PCx− x, c− PCx〉 ≥ 0,

for all c in C, and the fact that the positive distance d from x to C is
d = ‖PCx− x‖, we have

〈a, c〉 ≥ γ = 〈a, PCx〉 = 〈a, PCx− x〉+ 〈a, x〉 = d2 + 〈a, x〉.
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9.1 Chapter Summary

Most books on linear algebra devote considerable space to the prob-
lem of solving a consistent or inconsistent system of linear equations, say
Ax = b. Problems involving linear inequalities, such as solving Ax ≥ b,
attract less attention, although such problems play a crucial role in linear
programming. The term linear programming (LP) refers to the problem
of optimizing a linear function of several variables over linear equality or
inequality constraints. Such problems arise in many areas of applications.
In linear programming, the primary problem in standard form (PS) is to
minimize cTx, subject to Ax = b and x ≥ 0. We can view this as one
approach to solving an under-determined system, Ax = b, by imposing ad-
ditional constraints on the solution x. It is common, in applications, for A
to be quite large, necessitating the use of an iterative algorithm to solve the
problem. Dantzig’s Simplex Method (see [70]) is the best known iterative
method for solving LP problems.
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9.2 Theorems of the Alternative

Later in this chapter we shall present David Gale’s proof of his strong
duality theorem in linear programming ([141]). His proof makes use of a
theorem concerning linear inequalities known as a theorem of the alterna-
tive. For that reason, we begin with a discussion of these types of theorems.

9.2.1 A Theorem of the Alternative

The following theorem is a good illustration of a type of theorem known
as Theorems of the Alternative. These theorems assert that precisely one
of two problems will have a solution. The proof illustrates how we should
go about proving such theorems.

Theorem 9.1 (Gale I)[141] Precisely one of the following is true:

• (1) there is x such that Ax = b;

• (2) there is y such that AT y = 0 and bT y = 1.

Proof: First, we show that it is not possible for both to be true at the same
time. Suppose that Ax = b and AT y = 0. Then bT y = xTAT y = 0, so that
we cannot have bT y = 1. By Theorem 8.1, the fundamental decomposition
theorem from linear algebra, we know that, for any b, there are unique
Ax and w with ATw = 0 such that b = Ax + w. Clearly, b = Ax if and
only if w = 0. Also, bT y = wT y. Therefore, if alternative (1) does not
hold, we must have w non-zero, in which case AT y = 0 and bT y = 1, for
y = w/||w||2, so alternative (2) holds.

In this section we consider several other theorems of this type.

9.2.2 More Theorems of the Alternative

Theorem 9.2 (Farkas’ Lemma)[128] Precisely one of the following is
true:

• (1) there is x ≥ 0 such that Ax = b;

• (2) there is y such that AT y ≥ 0 and bT y < 0.

Proof: We can restate the lemma as follows: there is a vector y with
AT y ≥ 0 and bT y < 0 if and only if b is not a member of the convex set
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C = {Ax|x ≥ 0}. If b is not in C, which is closed and convex, then, by the
Separation Theorem 8.3, there is a non-zero vector a and real α with

aT b < α ≤ aTAx = (ATa)Tx,

for all x ≥ 0. Since (ATa)Tx is bounded below, as x runs over all non-
negative vectors, it follows that ATa ≥ 0. Choosing x = 0, we have α ≤ 0.
Then let y = a. Conversely, if Ax = b does have a non-negative solution x,
then AT y ≥ 0 implies that 0 ≤ yTAx = yT b ≥ 0.

The next theorem can be obtained from Farkas’ Lemma.

Theorem 9.3 (Gale II)[141] Precisely one of the following is true:

• (1) there is x such that Ax ≤ b;

• (2) there is y ≥ 0 such that AT y = 0 and bT y < 0.

Proof: First, if both are true, then 0 ≤ yT (b − Ax) = yT b − 0 = yT b,
which is a contradiction. Now assume that (2) does not hold. Therefore,
for every y ≥ 0 with AT y = 0, we have bT y ≥ 0. Let B =

[
A b

]
. Then the

system BT y =
[
0T −1

]T
has no non-negative solution. Applying Farkas’

Lemma, we find that there is a vector w =
[
zT γ

]T
with Bw ≥ 0 and[

0T −1
]
w < 0. So, Az + γb ≥ 0 and γ > 0. Let x = − 1

γ z to get Ax ≤ b,

so that (1) holds.

Theorem 9.4 (Gordan)[150] Precisely one of the following is true:

• (1) there is x such that Ax < 0;

• (2) there is y ≥ 0, y 6= 0, such that AT y = 0.

Proof: First, if both are true, then 0 < −yTAx = 0, which cannot be true.
Now assume that there is no non-zero y ≥ 0 with AT y = 0. Then, with
e = (1, 1, ..., 1)T , C =

[
A e

]
, and d = (0, 0, ..., 0, 1)T , there is no non-

negative solution of CT y = d. From Farkas’ Lemma we then know that

there is a vector z =
[
uT γ

]T
, with Cz = Au + γe ≥ 0, and dT z < 0.

Then Ax < 0 for x = −u.

Here are several more theorems of the alternative.

Theorem 9.5 (Stiemke I)[245] Precisely one of the following is true:

• (1) there is x such that Ax ≤ 0 and Ax 6= 0;

• (2) there is y > 0 such that AT y = 0.

Theorem 9.6 (Stiemke II)[245] Let c be a fixed non-zero vector. Pre-
cisely one of the following is true:
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• (1) there is x such that Ax ≤ 0 and cTx ≥ 0 and not both Ax = 0
and cTx = 0;

• (2) there is y > 0 such that AT y = c.

Theorem 9.7 (Gale III)[141] Let c be a fixed non-zero vector. Precisely
one of the following is true:

• (1) there is x ≥ 0 such that Ax ≥ 0 and cTx < 0;

• (2) there is y ≥ 0 such that AT y ≤ c.

Proof: First, note that we cannot have both true at the same time, since
we would then have

0 ≤ xT (c−AT y) = cTx− (Ax)T y ≤ cTx < 0,

which is a contradiction. Now suppose that (2) does not hold. Then there
is no w = [yT vT ]T ≥ 0 such that[

AT I
]
w = AT y + v = c.

By Farkas’ Lemma (Theorem 9.2), it follows that there is x with[
A
I

]
x ≥ 0,

and cTx < 0. Therefore, Ax ≥ 0, Ix = x ≥ 0, and cTx < 0; therefore, (1)
holds.

Theorem 9.8 (Von Neumann)[259] Precisely one of the following is
true:

• (1) there is x ≥ 0 such that Ax > 0;

• (2) there is y ≥ 0, y 6= 0, such that AT y ≤ 0.

Proof: If both were true, then we would have

0 < (Ax)T y = xT (AT y),

so that AT y ≤ 0 would be false. Now suppose that (2) does not hold. Then
there is no y ≥ 0, y 6= 0, with AT y ≤ 0. Consequently, there is no y ≥ 0,
y 6= 0, such that [

AT

−uT
]
y =

[
AT y
−uT y

]
≤
[

0
−1

]
,
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where uT = (1, 1, ..., 1). By Theorem 9.7, there is

z =

[
x
α

]
≥ 0,

such that [
A −u

]
z =

[
A −u

] [x
α

]
≥ 0,

and [
0T −1

]
z =

[
0T −1

] [x
α

]
= −α < 0.

Therefore, α > 0 and (Ax)i − α ≥ 0 for each i, and so Ax > 0 and (1)
holds.

Theorem 9.9 (Tucker)[251] Precisely one of the following is true:

• (1) there is x ≥ 0 such that Ax ≥ 0, Ax 6= 0;

• (2) there is y > 0 such that AT y ≤ 0.

9.2.3 Another Proof of Farkas’ Lemma

In the previous section, we proved Farkas’ Lemma, Theorem 9.2, using
the Separation Theorem, the proof of which, in turn, depended here on
the existence of the orthogonal projection onto any closed convex set. It is
possible to prove Farkas’ Lemma directly, along the lines of Gale [141].

Suppose that Ax = b has no non-negative solution. If, indeed, it has no
solution whatsoever, then b = Ax+w, where w 6= 0 and ATw = 0. Then we
take y = −w/||w||22. So suppose that Ax = b does have solutions, but not
any non-negative ones. The approach is to use induction on the number of
columns of the matrix involved in the lemma.

If A has only one column, denoted a1, then Ax = b can be written as

x1a
1 = b.

Assuming that there are no non-negative solutions, it must follow that
x1 < 0. We take y = −b. Then

bT y = −bT b = −||b||22 < 0,

while

AT y = (a1)T (−b) =
−1

x1
bT b > 0.

Now assume that the lemma holds whenever the involved matrix has no
more than m− 1 columns. We show the same is true for m columns.
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If there is no non-negative solution of the system Ax = b, then clearly
there are no non-negative real numbers x1, x2, ..., xm−1 such that

x1a
1 + x2a

2 + ...+ xm−1a
m−1 = b,

where aj denotes the jth column of the matrix A. By the induction hy-
pothesis, there must be a vector v with

(aj)T v ≥ 0,

for j = 1, ...,m− 1, and bT v < 0. If it happens that (am)T v ≥ 0 also, then
we are done. If, on the other hand, we have (am)T v < 0, then let

cj = (aj)Tam − (am)Taj , j = 1, ...,m− 1,

and
d = (bT v)am − ((am)T v)b.

Then there are no non-negative real numbers z1, ..., zm−1 such that

z1c
1 + z2c

2 + ...+ zm−1c
m−1 = d, (9.1)

since, otherwise, it would follow from simple calculations that

−1

(am)T v

(
[

m−1∑
j=1

zj((a
j)T v)]− bT v

)
am −

m−1∑
j=1

zj((a
m)T v)aj = b.

Close inspection of this shows all the coefficients to be non-negative, which
implies that the system Ax = b has a non-negative solution, contrary to
our assumption. It follows, therefore, that there can be no non-negative
solution to the system in Equation (9.1).

By the induction hypothesis, it follows that there is a vector u such that

(cj)Tu ≥ 0, j = 1, ...,m− 1,

and
dTu < 0.

Now let
y = ((am)Tu)v − ((am)T v)u.

We can easily verify that

(aj)T y = (cj)Tu ≥ 0, j = 1, ...,m− 1,

bT y = dTu < 0,

and
(am)T y = 0,
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so that
AT y ≥ 0,

and
bT y < 0.

This completes the proof.

9.3 Linear Programming

We begin with an example.

9.3.1 An Example

Consider the problem of maximizing the function f(x1, x2) = x1 + 2x2,
over all x1 ≥ 0 and x2 ≥ 0, for which the inequalities

x1 + x2 ≤ 40,

and
2x1 + x2 ≤ 60

are satisfied. The set of points satisfying all four inequalities is the quadri-
lateral with vertices (0, 0), (30, 0), (20, 20), and (0, 40); draw a picture.
Since the level curves of the function f are straight lines, the maximum
value must occur at one of these vertices; in fact, it occurs at (0, 40) and
the maximum value of f over the constraint set is 80. Rewriting the problem
as minimizing the function −x1 − 2x2, subject to x1 ≥ 0, x2 ≥ 0,

−x1 − x2 ≥ −40,

and
−2x1 − x2 ≥ −60,

the problem is now in what is called primal canonical form.

9.3.2 Canonical and Standard Forms

Let b and c be fixed vectors and A a fixed matrix. The problem

minimize z = cTx, subject toAx ≥ b, x ≥ 0 (PC) (9.2)

is the so-called primary problem of LP, in canonical form. The dual problem
in canonical form is

maximizew = bT y, subject toAT y ≤ c, y ≥ 0. (DC) (9.3)
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The primary problem, in standard form, is

minimize z = cTx, subject toAx = b, x ≥ 0 (PS) (9.4)

with the dual problem in standard form given by

maximizew = bT y, subject toAT y ≤ c. (DS) (9.5)

Notice that the dual problem in standard form does not require that y be
nonnegative. Note also that (PS) makes sense only if the system Ax = b
has solutions. For that reason, we shall assume, for the standard problems,
that the I by J matrix A has at least as many columns as rows, so J ≥ I,
and A has full rank I.

If we are given the primary problem in canonical form, we can convert
it to standard form by augmenting the variables, that is, by defining

ui = (Ax)i − bi, (9.6)

for i = 1, ..., I, and rewriting Ax ≥ b as

Ãx̃ = b, (9.7)

for Ã =
[
A −I

]
and x̃ = [xTuT ]T .

If we are given the primary problem in standard form, we can convert
it to canonical form by writing the equations as inequalities, that is, by
replacing Ax = b with the two matrix inequalities Ax ≥ b, and (−A)x ≥
−b.

9.3.3 Weak Duality

Consider the problems (PS) and (DS). Say that x is feasible if x ≥ 0
and Ax = b. Let F be the set of feasible x. Say that y is feasible if AT y ≤ c.
The Weak Duality Theorem is the following:

Theorem 9.10 Let x and y be feasible vectors. Then

z = cTx ≥ bT y = w. (9.8)

Corollary 9.1 If z is not bounded below, then there are no feasible y.

Corollary 9.2 If x and y are both feasible, and z = w, then both x and y
are optimal for their respective problems.
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The proof of the theorem and its corollaries are left as exercises.
The nonnegative quantity cTx− bT y is called the duality gap. The com-

plementary slackness condition says that, for optimal x and y, we have

xj(cj − (AT y)j) = 0, (9.9)

for each j, which says that the duality gap is zero. Primal-dual algorithms
for solving linear programming problems are based on finding sequences
{xk} and {yk} that drive the duality gap down to zero [209].

9.3.4 Strong Duality

The Strong Duality Theorems make a stronger statement. The following
theorems are well known examples.

Theorem 9.11 If one of the problems (PS) or (DS) has an optimal solu-
tion, then so does the other and z = w for the optimal vectors.

Theorem 9.12 Gale’s Strong Duality Theorem[141] If both problems
(PC) and (DC) have feasible solutions, then both have optimal solutions
and the optimal values are equal.

Proof: We show that there are non-negative vectors x and y such that
Ax ≥ b, AT y ≤ c, and bT y − cTx ≥ 0. It will then follow that z = cTx =
bT y = w, so that x and y are both optimal. In matrix notation, we want
to find x ≥ 0 and y ≥ 0 such that

 A 0
0 −AT
−cT bT

[x
y

]
≥

 b
−c
0

 . (9.10)

We assume that there are no x ≥ 0 and y ≥ 0 for which the inequalities
in (9.10) hold. Then, according to Theorem 9.7, there are non-negative
vectors s and t, and non-negative scalar ρ such that

[
−AT 0 c

0 A −b

]st
ρ

 ≥ 0, (9.11)

and

[
−bT cT 0

] st
ρ

 < 0. (9.12)
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Note that ρ cannot be zero, for then we would have AT s ≤ 0 and
At ≥ 0. Taking feasible vectors x and y, we would find that sTAx ≤ 0,
which implies that bT s ≤ 0, and tTAT y ≥ 0, which implies that cT t ≥ 0.
Therefore, we could not also have cT t− bT s < 0.

Writing out the inequalities, we have

ρcT t ≥ sTAt ≥ sT (ρb) = ρsT b.

Using ρ > 0, we find that
cT t ≥ bT s,

which is a contradiction. Therefore, there do exist x ≥ 0 and y ≥ 0 such
that Ax ≥ b, AT y ≤ c, and bT y − cTx ≥ 0.

In his book [141] Gale uses his strong duality theorem to obtain a proof
of the min-max theorem in game theory (see [70]).
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10.1 Chapter Summary

In a broad sense, all iterative algorithms generate a sequence {xk} of
vectors. The sequence may converge for any starting vector x0, or may
converge only if the x0 is sufficiently close to a solution. The limit, when it
exists, may depend on x0, and may, or may not, solve the original problem.
Convergence to the limit may be slow and the algorithm may need to be
accelerated. The algorithm may involve measured data. The limit may be
sensitive to noise in the data and the algorithm may need to be regularized
to lessen this sensitivity. The algorithm may be quite general, applying to
all problems in a broad class, or it may be tailored to the problem at hand.
Each step of the algorithm may be costly, but only a few steps generally
needed to produce a suitable approximate answer, or, each step may be
easily performed, but many such steps needed. Although convergence of an
algorithm is important, theoretically, sometimes in practice only a few iter-
ative steps are used. In this chapter we consider several classes of operators
that play important roles in applied linear algebra.

10.2 Operators

A function T : RJ → RJ is often called an operator on RJ . For most of
the iterative algorithms we shall consider, the iterative step is

xk+1 = Txk, (10.1)

for some operator T . If T is a continuous operator (and it usually is), and
the sequence {T kx0} converges to x̂, then T x̂ = x̂, that is, x̂ is a fixed point
of the operator T . We denote by Fix(T ) the set of fixed points of T . The
convergence of the iterative sequence {T kx0} will depend on the properties
of the operator T .
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10.3 Contractions

Contraction operators are perhaps the best known class of operators
associated with iterative algorithms.

10.3.1 Lipschitz Continuity

Definition 10.1 An operator T on RJ is Lipschitz continuous, with re-
spect to a vector norm || · ||, or L-Lipschitz, if there is a positive constant
L such that

||Tx− Ty|| ≤ L||x− y||, (10.2)

for all x and y in RJ .

10.3.1.1 An Example: Bounded Derivative

We know from the Mean Value Theorem that, for any differentiable
function f : R→ R,

f(x)− f(y) = f ′(c)(x− y),

where c is between x and y. Suppose that there is a positive constant L
such that |f ′(c)| ≤ L, for all real c. Then

|f(x)− f(y)| ≤ L|x− y|,

for all x and y. Therefore, the function f is L-Lipschitz. The function
f(x) = 1

2 cos(x) is 1
2 -Lipschitz.

More generally, if f is a real-valued differentiable function of J real
variables, that is, f : RJ → R, and the gradient satisfies ‖∇f(c)‖2 ≤ L for
all c in RJ , then

|f(x)− f(y)| ≤ L‖x− y‖2,
so that f is L-Lipschitz, with respect to the 2-norm.

10.3.1.2 Another Example: Lipschitz Gradients

If f : RJ → R is twice differentiable and ‖∇2f(c)‖2 ≤ L, for all x, then
T = ∇f is L-Lipschitz, with respect to the 2-norm.

10.3.2 Non-expansive Operators

Definition 10.2 If, for some norm, T is L-Lipschitz for L = 1, then T
is said to be non-expansive (ne), with respect to the given norm; in other
words, ‖Tx− Ty‖ ≤ ‖x− y‖, for all x and y.
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Lemma 10.1 Let T : RJ → RJ be a non-expansive operator, with respect
to the 2-norm. Then the set F of fixed points of T is a convex set.

Proof: If the set of fixed points of T is empty, or contains just a single
point, then it is trivially convex, since there are no two points in it for
which the convexity condition fails. So assume that the set of fixed points
contains at least two members. Select two distinct points a and b in F , a
scalar α in the open interval (0, 1), and let c = αa+(1−α)b. We show that
Tc = c. Note that

a− c =
1− α
α

(c− b).

We have

‖a−b‖2 = ‖a−Tc+Tc−b‖2 ≤ ‖a−Tc‖2+‖Tc−b‖2 = ‖Ta−Tc‖2+‖Tc−Tb‖2

≤ ‖a− c‖2 + ‖c− b‖2 = ‖a− b‖2;

the last equality follows since a − c is a multiple of (c − b). From this, we
conclude that

‖a− Tc‖2 = ‖a− c‖2,

‖Tc− b‖2 = ‖c− b‖2,

and that a − Tc and Tc− b are positive multiples of one another, that is,
there is β > 0 such that

a− Tc = β(Tc− b),

or

Tc =
1

1 + β
a+

β

1 + β
b = γa+ (1− γ)b.

Then inserting c = αa+ (1− α)b and Tc = γa+ (1− γ)b into

‖Tc− b‖2 = ‖c− b‖2,

we find that γ = α and so Tc = c.

We want to find properties of an operator T that guarantee that the
sequence of iterates {T kx0} will converge to a fixed point of T , for any x0,
whenever fixed points exist. Being non-expansive is not enough; the non-
expansive operator T = −I, where Ix = x is the identity operator, has the
fixed point x = 0, but the sequence {T kx0} converges only if x0 = 0.

10.3.3 Strict Contractions

One property that guarantees not only that the iterates converge, but
that there is a fixed point is the property of being a strict contraction.
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Definition 10.3 An operator T on RJ is a strict contraction (sc), with
respect to a vector norm || · ||, if there is r ∈ (0, 1) such that

||Tx− Ty|| ≤ r||x− y||, (10.3)

for all vectors x and y.

For example, if the operator T is L-Lipschitz for some L < 1, then T
is a strict contraction. Therefore, if f : RJ → R is differentiable and ∇f is
L-Lipschitz for some L < 1, for all x, then T = ∇f is a strict contraction.

For strict contractions, we have the Banach-Picard Theorem [122]:

Theorem 10.1 Let T be sc. Then, there is a unique fixed point of T and,
for any starting vector x0, the sequence {T kx0} converges to the fixed point.

The key step in the proof is to show that {xk} is a Cauchy sequence,
therefore, it has a limit.

Corollary 10.1 If Tn is a strict contraction, for some positive integer n,
then T has a fixed point.

Proof: Suppose that Tnx̂ = x̂. Then

TnT x̂ = TTnx̂ = T x̂,

so that both x̂ and T x̂ are fixed points of Tn. But Tn has a unique fixed
point. Therefore, T x̂ = x̂.

10.3.4 Eventual Strict Contractions

Consider the problem of finding x such that x = e−x. We can see from
the graphs of y = x and y = e−x that there is a unique solution, which we
shall denote by z. It turns out that z = 0.56714329040978.... Let us try to
find z using the iterative sequence xk+1 = e−xk , starting with some real
x0. Note that we always have xk > 0 for k = 1, 2, ..., even if x0 < 0. The
operator here is Tx = e−x, which, for simplicity, we view as an operator
on the non-negative real numbers.

Since the derivative of the function f(x) = e−x is f ′(x) = −e−x, we
have |f ′(x)| ≤ 1, for all non-negative x, so T is non-expansive. But we do
not have |f ′(x)| ≤ r < 1, for all non-negative x; therefore, T is a not a
strict contraction, when considered as an operator on the non-negative real
numbers.

If we choose x0 = 0, then x1 = 1, x2 = 0.368, approximately, and so on.
Continuing this iteration a few more times, we find that after about k = 14,
the value of xk settles down to 0.567, which is the answer, to three decimal
places. The same thing is seen to happen for any positive starting points x0.
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It would seem that T has another property, besides being non-expansive,
that is forcing convergence. What is it?

From the fact that 1− e−x ≤ x, for all real x, with equality if and only
if x = 0, we can show easily that, for r = max{e−x1 , e−x2},

|z − xk+1| ≤ r|z − xk|,

for k = 3, 4, .... Since r < 1, it follows, just as in the proof of the Banach-
Picard Theorem, that {xk} is a Cauchy sequence and therefore converges.
The limit must be a fixed point of T , so the limit must be z.

Although the operator T is not a strict contraction, with respect to the
non-negative numbers, once we begin to calculate the sequence of iterates
the operator T effectively becomes a strict contraction, with respect to the
vectors of the particular sequence being constructed, and so the sequence
converges to a fixed point of T . We cannot conclude from this that T has
a unique fixed point, as we can in the case of a strict contraction; we must
decide that by other means.

Note that the operator Tx = e−x is paracontractive, a notion that we
shall discuss later in this chapter, so convergence to the fixed point is also
a consequence of the EKN Theorem 10.6, also to be discussed later.

Ex. 10.1 Show that a strict contraction can have at most one fixed point.

Ex. 10.2 Let T be sc. Show that the sequence {T kx0} is a Cauchy se-
quence. Hint: consider

||xk − xk+n|| ≤ ||xk − xk+1||+ ...+ ||xk+n−1 − xk+n||, (10.4)

and use

||xk+m − xk+m+1|| ≤ rm||xk − xk+1||. (10.5)

Since {xk} is a Cauchy sequence, it has a limit, say x̂. Let ek = x̂ − xk.
Show that {ek} → 0, as k → +∞, so that {xk} → x̂. Finally, show that
T x̂ = x̂.

Ex. 10.3 Suppose that we want to solve the equation

x =
1

2
e−x.

Let Tx = 1
2e
−x for x in R. Show that T is a strict contraction, when re-

stricted to non-negative values of x, so that, provided we begin with x0 > 0,
the sequence {xk = Txk−1} converges to the unique solution of the equa-
tion. Hint: use the mean value theorem from calculus.
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10.3.5 Instability

Suppose we rewrite the equation e−x = x as x = − log x, and define
Tx = − log x, for x > 0. Now our iterative scheme becomes xk+1 = Txk =
− log xk. A few calculations will convince us that the sequence {xk} is
diverging away from the correct answer, not converging to it. The lesson
here is that we cannot casually reformulate our problem as a fixed-point
problem and expect the iterates to converge to the answer. What matters
is the behavior of the operator T .

10.4 Gradient Descent

We provide an elementary proof of the following theorem.

Theorem 10.2 Let f : RJ → R be convex and differentiable, with ∇f L-
Lipschitz. For 0 < γ < 1

L , let T = I − γ∇f . If T has fixed points, then the
sequence {xk} given by xk = Txk−1 converges to a fixed point of T .

The iterative step is given by

xk = xk−1 − γ∇f(xk−1). (10.6)

It is a consequence of the Krasnoselskii-Mann Theorem for averaged oper-
ators that convergence holds for 0 < γ < 2

L . The proof given here employs
sequential unconstrained minimization and avoids using the non-trivial the-
orem that tells us that, because the operator 1

L∇f is non-expansive, it is
firmly non-expansive.

10.4.1 Using Sequential Unconstrained Minimization

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, xk−1), (10.7)

where

Df (x, xk−1) = f(x)− f(xk−1)− 〈∇f(xk−1), x− xk−1〉. (10.8)

Since f(x) is convex, Df (x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f [29]. The xk that minimizes Gk(x) is
given by Equation (10.6).
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The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, xk−1) (10.9)

can be rewritten as

gk(x) = Dh(x, xk−1), (10.10)

where

h(x) =
1

2γ
‖x‖22 − f(x). (10.11)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (10.12)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f(x)−∇f(y), x− y〉 ≥ 0. (10.13)

Since ∇f is L-Lipschitz, the inequality (10.13) holds whenever 0 < γ < 1
L .

It is easy to see that

Gk(x)−Gk(xk) = Df (x, xk) +Dh(x, xk)

=
1

2γ
‖x− xk‖22 ≥ Dh(x, xk) = gk+1(x). (10.14)

We turn now to the behavior of the sequence {xk}.

10.4.2 Proving Convergence

Let Tz = z for the operator T = I − γ∇f , so that ∇f(z) = 0 and z is
a global minimizer of f(x). We have

1

2γ
‖z − xk‖22 = Gk+1(z)−Gk+1(xk+1)

= f(z)− f(xk+1) + gk+1(z)− gk+1(xk+1)

≤ f(z)− f(xk+1) +Gk(z)−Gk(xk)− gk+1(xk+1), (10.15)

so that(
Gk(z)−Gk(xk)

)
−
(
Gk+1(z)−Gk+1(xk+1)

)
=

1

2γ

(
‖z−xk−1‖22−‖z−xk‖22

)
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≥ f(xk+1)− f(z) + gk+1(xk+1) ≥ 0. (10.16)

It follows that the sequence {‖z − xk‖22} is decreasing, and the sequences
{f(xk+1)−f(z)} and {gk+1(xk+1)} converge to zero. The sequence {xk} is
therefore bounded and has a subsequence converging to x∗, with f(x∗) =
f(z). We replace the generic fixed point z with x∗ in the expressions above,
and conclude that the sequence {‖x∗− xk‖22} converges to zero. This com-
pletes the proof of the theorem.

10.4.3 An Example: Least Squares

We consider the problem of minimizing the function f(x) = 1
2‖Ax−b‖

2
2

to get a least squares solution of the linear system Ax = b. The gradient of
f(x) is

∇f(x) = ATAx−AT b, (10.17)

and is L-Lipschitz for L = ρ(ATA), the largest eigenvalue of the matrix
ATA.

The Landweber iterative algorithm is defined by the iterative step

xk = xk−1 − γAT (Axk−1 − b). (10.18)

It follows from our previous discussion that the sequence {xk} converges to
a least squares solution for any γ satisfying the inequalities 0 < γ < 1

ρ(ATA)
.

10.5 Two Useful Identities

The notions of non-expansive operator and strict contraction make sense
for any norm. In what follows, when we speak of orthogonal projections,
averaged operators or firmly non-expansive operators, it will be understood
that we are speaking about the 2-norm, since the definitions of such oper-
ators involve the inner product.

The identities in the next two lemmas apply to the 2-norm and relate
an arbitrary operator T to its complement, G = I−T , where I denotes the
identity operator. These identities will allow us to transform properties of T
into properties of G that may be easier to work with. A simple calculation
is all that is needed to establish the following lemma.

Lemma 10.2 Let T be an arbitrary operator T on RJ and G = I − T .
Then

||x− y||22 − ||Tx− Ty||22 = 2(〈Gx−Gy, x− y〉) − ||Gx−Gy||22. (10.19)
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Proof: We use

‖a+ b‖22 = 〈a+ b, a+ b〉 = 〈a, a〉+ 2〈a, b〉+ 〈b, b〉 = ‖a‖22 + 2〈a, b〉+ ‖b‖22.

We write
‖x− y‖22 = ‖Tx− Ty + (x− Tx)− (y − Ty)‖22

= ‖Tx− Ty‖2 + 2〈Tx− Ty,Gx−Gy〉+ ‖Gx−Gy‖22.
Then write

2〈Tx−Ty,Gx−Gy〉 = 2〈x−y−Gx+Gy,Gx−Gy〉 = 〈Gx−Gy, x−y〉−‖Gx−Gy‖22.

Lemma 10.3 Let T be an arbitrary operator T on RJ and G = I − T .
Then

〈Tx− Ty, x− y〉 − ||Tx− Ty||22 =

〈Gx−Gy, x− y〉 − ||Gx−Gy||22. (10.20)

Proof: Use the previous lemma.

10.6 Orthogonal Projection Operators

If C is a closed, non-empty convex set in RJ , and x is any vector, then,
as we have seen, there is a unique point PCx in C closest to x, in the sense
of the Euclidean distance. This point is called the orthogonal projection
of x onto C. If C is a subspace, then we can get an explicit description
of PCx in terms of x; for general convex sets C, however, we will not be
able to express PCx explicitly, and certain approximations will be needed.
Orthogonal projection operators are central to our discussion, and, in this
overview, we focus on problems involving convex sets, algorithms involving
orthogonal projection onto convex sets, and classes of operators derived
from properties of orthogonal projection operators.

10.6.1 Properties of the Operator PC

Although we usually do not have an explicit expression for PCx, we
can, however, characterize PCx as the unique member of C for which

〈PCx− x, c− PCx〉 ≥ 0, (10.21)

for all c in C; see Proposition 8.4.
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10.6.1.1 PC is Non-expansive

Recall that an operator T is non-expansive (ne), with respect to a given
norm, if, for all x and y, we have

||Tx− Ty|| ≤ ||x− y||. (10.22)

Lemma 10.4 The orthogonal projection operator T = PC is non-
expansive, with respect to the Euclidean norm, that is,

||PCx− PCy||2 ≤ ||x− y||2, (10.23)

for all x and y.

Proof: Use Inequality (10.21) to get

〈PCy − PCx, PCx− x〉 ≥ 0, (10.24)

and

〈PCx− PCy, PCy − y〉 ≥ 0. (10.25)

Add the two inequalities to obtain

〈PCx− PCy, x− y〉 ≥ ||PCx− PCy||22, (10.26)

and use the Cauchy Inequality.

Because the operator PC has multiple fixed points, PC cannot be a
strict contraction, unless the set C is a singleton set.

10.6.1.2 PC is Firmly Non-expansive

Definition 10.4 An operator T is said to be firmly non-expansive (fne) if

〈Tx− Ty, x− y〉 ≥ ||Tx− Ty||22, (10.27)

for all x and y in RJ .

Lemma 10.5 An operator T is fne if and only if G = I − T is fne.

Proof: Use the identity in Equation (10.20).

From Equation (10.26), we see that the operator T = PC is not simply
ne, but fne, as well. A good source for more material on these topics is the
book by Goebel and Reich [147].

Proposition 10.1 An operator F is firmly non-expansive if and only if
F = 1

2 (I +N), for some non-expansive operator N .

Ex. 10.4 Prove Proposition 10.1.
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10.6.1.3 The Search for Other Properties of PC

The class of non-expansive operators is too large for our purposes; the
operator Tx = −x is non-expansive, but the sequence {T kx0} does not
converge, in general, even though a fixed point, x = 0, exists. The class
of firmly non-expansive operators is too small for our purposes. Although
the convergence of the iterative sequence {T kx0} to a fixed point does
hold for firmly non-expansive T , whenever fixed points exist, the product
of two or more fne operators need not be fne; that is, the class of fne
operators is not closed to finite products. This poses a problem, since, as
we shall see, products of orthogonal projection operators arise in several of
the algorithms we wish to consider. We need a class of operators smaller
than the ne ones, but larger than the fne ones, closed to finite products,
and for which the sequence of iterates {T kx0} will converge, for any x0,
whenever fixed points exist. The class we shall consider is the class of
averaged operators.

For the remainder of this chapter the term non-expansive will mean
with respect to the Euclidean norm, unless otherwise indicated from the
context.

10.7 Averaged Operators

The term ‘averaged operator’ appears in the work of Baillon, Bruck
and Reich [34, 9]. There are several ways to define averaged operators. One
way is in terms of the complement operator.

Definition 10.5 An operator G on RJ is called ν-inverse strongly mono-
tone (ν-ism)[148] (also called co-coercive in [98]) if there is ν > 0 such
that

〈Gx−Gy, x− y〉 ≥ ν||Gx−Gy||22. (10.28)

Lemma 10.6 An operator T is ne if and only if its complement G = I−T
is 1

2 -ism, and T is fne if and only if G is 1-ism, and if and only if G is fne.
Also, T is ne if and only if F = (I + T )/2 is fne. If G is ν-ism and γ > 0
then the operator γG is ν

γ -ism.

Ex. 10.5 Prove Lemma 10.6.

Definition 10.6 An operator T is called averaged (av) if G = I − T is
ν-ism for some ν > 1

2 . If G is 1
2α -ism, for some α ∈ (0, 1), then we say

that T is α-av.
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It follows that every av operator is ne, with respect to the Euclidean norm,
and every fne operator is av.

The averaged operators are sometimes defined in a different, but equiv-
alent, way, using the following characterization of av operators.

Lemma 10.7 An operator T is av if and only if, for some operator N that
is non-expansive in the Euclidean norm, and α ∈ (0, 1), we have

T = (1− α)I + αN.

Consequently, the operator T is av if and only if, for some α in (0, 1), the
operator

N =
1

α
T − 1− α

α
I = I − 1

α
(I − T ) = I − 1

α
G

is non-expansive.

Proof: We assume first that there is α ∈ (0, 1) and ne operator N such
that T = (1 − α)I + αN , and so G = I − T = α(I − N). Since N is ne,
I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely, assume that G

is ν-ism for some ν > 1
2 . Let α = 1

2ν and write T = (1 − α)I + αN for
N = I − 1

αG. Since I −N = 1
αG, I −N is αν-ism. Consequently I −N is

1
2 -ism and N is ne.

An averaged operator is easily constructed from a given ne operator N
by taking a convex combination of N and the identity I. The beauty of the
class of av operators is that it contains many operators, such as PC , that
are not originally defined in this way. As we shall see shortly, finite products
of averaged operators are again averaged, so the product of finitely many
orthogonal projections is av.

We present now the fundamental properties of averaged operators, in
preparation for the proof that the class of averaged operators is closed to
finite products.

Note that we can establish that a given operator A is av by showing
that there is an α in the interval (0, 1) such that the operator

1

α
(A− (1− α)I) (10.29)

is ne. Using this approach, we can easily show that if T is sc, then T is av.

Lemma 10.8 Let T = (1−α)A+αN for some α ∈ (0, 1). If A is averaged
and N is non-expansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1− γ = (1− α)(1− β). Then we have

T = (1− γ)I + γ[(1− α)βγ−1M + αγ−1N ]. (10.30)
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Since
(1− α)βγ−1 + αγ−1 = 1,

and both M and N are ne, the operator

K = (1− α)βγ−1M + αγ−1N,

which is the convex combination of two ne operators, is again ne, so that
T is averaged.

Corollary 10.2 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.

Corollary 10.3 Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne
and N is ne then T is averaged.

Ex. 10.6 Show that, if the operator T is α-av and 1 > β > α, then T is
β-av.

The orthogonal projection operators PH onto hyperplanes H = H(a, γ)
are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1− ω)I + ωPH , (10.31)

for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH − I,
which is reflection through H; that is,

PHx =
1

2
(x+RHx), (10.32)

for each x.

Lemma 10.9 The operator RH = 2PH − I is an isometry; that is,

||RHx−RHy||2 = ||x− y||2, (10.33)

for all x and y, so that RH is ne.

Lemma 10.10 For ω = 1 + γ in the interval [1, 2), we have

(1− ω)I + ωPH = αI + (1− α)RH , (10.34)

for α = 1−γ
2 ; therefore, T = (1− ω)I + ωPH is av.
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The product of finitely many ne operators is again ne, while the product
of finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1− α)I + αN is averaged and B is averaged then T = AB has
the form T = (1−α)B+αNB. Since B is av and NB is ne, it follows from
Lemma 10.8 that T is averaged. Summarizing, we have

Proposition 10.2 If A and B are averaged, then T = AB is averaged.

10.7.1 Gradient Operators

Another type of operator that is averaged can be derived from gradient
operators.

Definition 10.7 An operator T on RJ is monotone if

〈Tx− Ty, x− y〉 ≥ 0, (10.35)

for all x and y.

Firmly non-expansive operators on RJ are monotone operators. Let g(x) :
RJ → R be a differentiable convex function and f(x) = ∇g(x) its gradient.
The operator ∇g is also monotone. If ∇g is non-expansive, then it can be
shown that ∇g is fne (see the chapter on Convex Functions in [70]). If, for
some L > 0, ∇g is L-Lipschitz, for the 2-norm, that is,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2, (10.36)

for all x and y, then 1
L∇g is ne, therefore fne, and the operator T = I−γ∇g

is av, for 0 < γ < 2
L .

10.7.2 The Krasnoselskii-Mann Theorem

For any operator T that is averaged, convergence of the sequence
{T kx0} to a fixed point of T , whenever fixed points of T exist, is guar-
anteed by the Krasnoselskii-Mann (KM) Theorem [201]:

Theorem 10.3 Let T be averaged. Then the sequence {T kx0} converges
to a fixed point of T , whenever Fix(T ) is non-empty.

Proof: Let z be a fixed point of non-expansive operator N and let α ∈
(0, 1). Let T = (1− α)I + αN , so the iterative step becomes

xk+1 = Txk = (1− α)xk + αNxk. (10.37)
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The identity in Equation (10.19) is the key to proving Theorem 10.3.
Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xk||22 − ||Tz − xk+1||22 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||22.
(10.38)

Since, by Lemma 10.7, G is 1
2α -ism, we have

||z − xk||22 − ||z − xk+1||22 ≥ (
1

α
− 1)||xk − xk+1||22. (10.39)

Consequently the sequence {xk} is bounded, the sequence {||z − xk||2} is
decreasing and the sequence {||xk−xk+1||2} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗ − xk||2}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete.

A version of the KM Theorem 10.3, with variable coefficients, appears
in Reich’s paper [228].

10.8 Affine Linear Operators

It may not always be easy to decide if a given operator is averaged.
The class of affine linear operators provides an interesting illustration of
the problem.

The affine operator Tx = Bx+d on CJ will be ne, sc, fne, or av precisely
when the linear operator given by multiplication by the matrix B is the
same.

10.8.1 The Hermitian Case

When B is Hermitian, we can determine if B belongs to these classes
by examining its eigenvalues λ.

Theorem 10.4 Suppose that B is an Hermitian matrix, viewed as a linear
operator on CJ . Then

• B is non-expansive if and only if −1 ≤ λ ≤ 1, for all λ;

• B is averaged if and only if −1 < λ ≤ 1, for all λ;

• B is a strict contraction if and only if −1 < λ < 1, for all λ;

• B is firmly non-expansive if and only if 0 ≤ λ ≤ 1, for all λ.
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Proof: Since B is linear, G = I −B will be ν-ism for some ν > 0 if

〈Gx, x〉 ≥ ν‖Gx‖22.

Let {u1, ..., uJ} be an orthonormal basis for CJ , consisting of eigenvectors
of B, with Buj = λju

j , for j = 1, ..., J . In order for B to be ne it is
necessary and sufficient that |λ| ≤ 1 for each eigenvalue λ of B. Order the
eigenvalues so that 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λJ ≥ −1.

Let x be arbitrary in CJ . Then there are coefficients aj so that

x =

J∑
j=1

aju
j .

It follows that

Bx =

J∑
j=1

λjaju
j ,

and

Gx = (I −B)x = x−Bx =

J∑
j=1

(1− λj)ajuj .

Then

〈Gx, x〉 =

J∑
j=1

(1− λj)|aj |2,

and

‖Gx‖22 =

J∑
j=1

(1− λj)2|aj |2.

Then G is ν-ism for ν−1 = max{1− λj}.
Let λ be an arbitrary eigenvalue of B. Since −1 ≤ λ ≤ 1 always holds,

we have ν−1 ≤ 2, ν ≥ 1
2 , and B is ne. If −1 < λ ≤ 1 always holds, then

ν > 1
2 and B is av. If 0 ≤ λ ≤ 1 always holds, then ν ≥ 1 and B is fne. If

−1 < λ < 1 always holds, then

‖Bx‖2 =

J∑
j=1

|λj |2|aj |2 ≤ r
J∑
j=1

|aj |2 = r‖x‖2,

for r = max{|λj |2} < 1. Therefore, B is sc. The converses of these assertions
are easy to prove.
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10.8.2 Example: Landweber’s Algorithm

The Landweber algorithm for solving a complex linear system of equa-
tions Ax = b has the iterative step

xk+1 = xk − γA†(Axk − b) = (I − γA†A)xk +A†b. (10.40)

With B = I − γA†A and d = A†b the iteration is xk+1 = Txk = Bxk + d.
The matrix B is Hermitian, so is averaged if and only if every eigenvalue λ
of B lies in the interval (−1, 1]. This means that T is averaged for γ in the
interval (0, 2

L ), where L = ρ(A†A) is the largest eigenvalue of the matrix
A†A.

10.8.3 What if B is not Hermitian?

In Exercise 10.7 you are asked to show that, even if B is not Hermitian,
if B is av, then |λ| < 1 for all eigenvalues of B that are not equal to one.
The converse is not true, though; see Exercise 10.8.

Ex. 10.7 Show that, if B is a linear av operator, then all its eigenvalues
are real and |λ| < 1 for all eigenvalues λ of B that are not equal to one.

Ex. 10.8 Show that having |λ| < 1 for all eigenvalues λ of B that are
not equal to one does not imply that the linear operator B is av. Hint:
by selecting x0 appropriately, show that the linear operator defined by the
matrix

B =

[
1 1
0 1

]
is not av by showing that it is not even ne.

Affine linear operators T that arise, for instance, in splitting methods
for solving systems of linear equations, generally have non-Hermitian linear
part B. Deciding if such operators belong to these classes is more difficult.
Instead, we can ask if the operator is paracontractive, with respect to some
norm.

10.9 Paracontractive Operators

By examining the properties of the orthogonal projection operators PC ,
we were led to the useful class of averaged operators. The orthogonal pro-
jections also belong to another useful class, the paracontractions.
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Definition 10.8 An operator T is called paracontractive (pc), with respect
to a given norm, if, for every fixed point y of T , we have

||Tx− y|| < ||x− y||, (10.41)

unless Tx = x.

Paracontractive operators are studied by Censor and Reich in [87].

Ex. 10.9 Show that the operator Tx = e−x is a paracontraction on the
non-negative reals.

Proposition 10.3 The operators T = PC are paracontractive, with respect
to the Euclidean norm.

Proof: It follows from Lemma 10.4 and Cauchy’s Inequality that

||PCx− PCy||2 ≤ ||x− y||2,

with equality if and only if

PCx− PCy = α(x− y),

for some scalar α with |α| = 1. If we have equality then, because

0 ≤ 〈PCx− PCy, x− y〉 = α||x− y||22,

it follows that α = 1, and so

PCx− x = PCy − y.

So if y is a fixed point of PC and equality holds, then x is also a fixed point
of PC .

When we ask if a given operator T is pc, we must specify the norm. We
often construct the norm specifically for the operator involved. To illustrate,
we consider the case of affine operators.

10.9.1 Diagonalizable Linear Operators

Let the matrix B be diagonalizable and let the columns of U form a basis
for CJ consisting of eigenvectors of B. Then we have U−1BU = L, where
L is the diagonal matrix having the eigenvalues of B along its diagonal.

The characteristic polynomial of any complex J by J matrix B has J
complex roots, which need not all be distinct, however. In order for B to be
diagonalizable, we need to know that there is a set of J linearly independent
eigenvectors of B. Lemma 6.6 tells us that when all the eigenvalues of B
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are distinct B is diagonalizable. When some of the eigenvalues of B are the
same, this need not be the case.

We see from Lemma 6.6 that almost all square matrices B are diago-
nalizable. Indeed, all Hermitian B are diagonalizable. If B has real entries,
but is not symmetric, then the eigenvalues of B need not be real, and the
eigenvectors of B can have non-real entries. Consequently, we must consider
B as a linear operator on CJ , if we are to talk about diagonalizability. For
example, consider the real matrix

B =

[
0 1
−1 0

]
. (10.42)

Its eigenvalues are λ = i and λ = −i. The corresponding eigenvectors are
(1, i)T and (1,−i)T . The matrix B is then diagonalizable as an operator
on C2, but not as an operator on R2.

When B is not Hermitian, it is not as easy to determine if the affine
operator T is sc with respect to a given norm. Instead, we often tailor the
norm to the operator T . Suppose that B is a diagonalizable matrix, that is,
there is a basis for RJ consisting of eigenvectors of B. Let A = {u1, ..., uJ}
be such a basis, and let Buj = λju

j , for each j = 1, ..., J . For each x in
RJ , there are unique coefficients aj so that

x =

J∑
j=1

aju
j . (10.43)

Then let

||x|| =
J∑
j=1

|aj |. (10.44)

Recall that we saw previously that once we have a basis A we can define an
inner product, and therefore, a norm, using the vectors [x]A. That norm is
the two-norm of the vectors [x]A. The norm we have just introduced is the
one-norm of the vectors [x]A.

Lemma 10.11 The expression || · || in Equation (10.44) defines a norm
on RJ . If ρ(B) < 1, then the affine operator T is sc, with respect to this
norm.

Ex. 10.10 Prove Lemma 10.11.

It is known that, for any square matrix B and any ε > 0, there is a
vector norm for which the induced matrix norm satisfies ||B|| ≤ ρ(B) + ε.
Therefore, if B is an arbitrary square matrix with ρ(B) < 1, there is a
vector norm with respect to which B is sc.
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We know that having |λ| < 1, unless λ = 1, does not imply that B is an
av operator, so we cannot establish convergence of the sequence {Bkx0} by
invoking the KM Theorem. However, we do have a convergence theorem
for such B.

Theorem 10.5 Let B be a diagonalizable linear operator on CJ whose
eigenvalues satisfy the condition that |λ| < 1, unless λ = 1. Then the
sequence {Bkx0} converges to a fixed point of B for every starting vector
x0.

Proof: Let {u1, ..., uJ} be a basis for CJ , with Buj = λju
j , for j = 1, ..., J .

Suppose that λj = 1 for j = 1, ...,M ≤ J . Then there are coefficients aj
such that

x0 = a1u
1 + ...+ aJu

J .

Then, for k = 1, 2, ..., we have

Bkx0 = λka1u
1 + ...+ λkaJu

J ,

which converges to the fixed point a1u
1 + ...+ aMu

M , as k →∞. If there
are no λ equal to one, then the sequence {Bkx0} converges to the zero
vector.

10.9.2 Linear and Affine Paracontractions

Proposition 10.4 Let T be an affine linear operator whose linear part B
is diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal to
one. Then the operator T is pc, with respect to the norm given by Equation
(10.44).

Ex. 10.11 Prove Proposition 10.4.

We see from Proposition 10.4 that, for the case of affine operators T
whose linear part is not Hermitian, instead of asking if T is av, we can ask
if T is pc; since B will almost certainly be diagonalizable, we can answer
this question by examining the eigenvalues of B.

Unlike the class of averaged operators, the class of paracontractive op-
erators is not necessarily closed to finite products, unless those factor op-
erators have a common fixed point.

10.9.3 The Elsner-Koltracht-Neumann Theorem

Our interest in paracontractions is due to the Elsner-Koltracht-
Neumann (EKN) Theorem [125]:
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Theorem 10.6 Let T be pc with respect to some vector norm. If T has
fixed points, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

We follow the development in [125].

Theorem 10.7 Suppose that there is a vector norm on RJ , with respect
to which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩Ii=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I) + 1, and xk+1 = Ti(k)x

k.

The sequence {xk} converges to a member of F , for every starting vector
x0.

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)x
k − y|| ≤ ||xk − y||, (10.45)

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix∗ − y|| = ||x∗ − y||, (10.46)

and Tix
∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary

member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a sub-
sequence converges to zero, so the whole sequence must converge to zero.
This completes the proof.

Corollary 10.4 If T is pc with respect to some vector norm, and T has
fixed points, then the iterative sequence {T kx0} converges to a fixed point
of T , for every starting vector x0.

Corollary 10.5 If T = TITI−1 · · · T2T1, and F = ∩Ii=1Fix (Ti) is not
empty, then F = Fix (T ).

Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T ), for

every x0. Select x0 in F .

Corollary 10.6 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩Ii=1Fix (Ti) is not empty.

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T ), we
have

||Tx− y|| = ||x− y||. (10.47)

Then, since

||TI(TI−1 · · · T1)x− y|| ≤ ||TI−1 · · · T1x− y||
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≤ ... ≤ ||T1x− y|| ≤ ||x− y||, (10.48)

it follows that

||Tix− y|| = ||x− y||, (10.49)

and Tix = x, for each i. Therefore, Tx = x.

10.10 Applications of the KM Theorem

In this section we sketch briefly several instances in which the KM The-
orem can be applied to obtain convergence of iterative algorithms. These
methods will be considered in more detail later in the text.

10.10.1 The ART

The ART is an iterative method for solving Ax = b, a system of I
linear equations in J unknowns. For each i = 1, ..., I, we denote by Pi the
orthogonal projection onto the hyperplane

Hi = {x|(Ax)i = bi},

and let
T = PIPI−1 · · · P2P1.

The full-cycle ART sequence is defined as zm = Tmz0, for m = 1, 2, .... The
operators Pi are averaged, therefore so is T . If the system has solutions,
then T has fixed points, and, by the KM Theorem 10.3, the sequence {zm}
converges to a solution of Ax = b. Later, we shall prove that the limit is
the solution closest to z0 in the 2-norm.

10.10.2 The CQ Algorithm

Let A be a real I by J matrix, and C and Q given closed convex sets
in RJ and RI , respectively. The split feasibility problem (SFP) is to find
x in C with Ax in Q. In [62] the CQ algorithm for solving the SFP was
presented, for the real case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (10.50)

where I is the identity operator and γ ∈ (0, 2/ρ(ATA)), for ρ(ATA) the
spectral radius of the matrix ATA, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
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has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (10.51)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1

2
||PQAx−Ax||22

over the set C, provided such constrained minimizers exist [62, 63]. The
CQ algorithm employs the relaxation parameter γ in the interval (0, 2/L),
where L is the largest eigenvalue of the matrix ATA. Choosing the best
relaxation parameter in any algorithm is a nontrivial procedure. Generally
speaking, we want to select γ near to 1/L.

For the real case, the gradient of the function f(x) is

∇f(x) = AT (I − PQ)Ax. (10.52)

It is shown in [63] that the operator ∇f(x) is ρ(ATA)-Lipschitz and
therefore is ν-ism for ν = 1/ρ(ATA). It follows that the operator T =
PC(I − γ∇f) is averaged, whenever 0 < γ < 2/ρ(ATA). Consequently, the
CQ algorithm converges to a minimizer of f(x) over x in C, whenever such
minimizers exist.

With A = I and C = Q, it follows that the gradient of the function

h(x) =
1

2
‖x− PCx‖22

is ∇h(x) = x− PCx, and therefore the gradient of the function

g(x) =
1

2

(
‖x‖22 − ‖x− PCx2

2

)
is ∇g(x) = PCx.

10.10.3 Landweber’s Algorithm

If we select C = RJ and Q = {b}, then the CQ algorithm has the
iterative step

xk+1 = xk − γAT (Axk − b), (10.53)

which is the iterative step of Landweber’s algorithm. Therefore, Landwe-
ber’s algorithm converges to a minimizer of the function f(x) = ‖Ax− b‖2.
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10.10.4 Projected Landweber’s Algorithm

Let C be an arbitrary closed convex set in RJ . The projected Landwe-
ber’s algorithm has the iterative step

xk+1 = PC(xk − γAT (Axk − b)). (10.54)

This also is a special case of the CQ algorithm, so we know that the pro-
jected Landweber algorithm converges to a minimizer, over x in C, of the
function f(x) = ‖Ax− b‖2, whenever such minimizers exist.

10.10.5 Successive Orthogonal Projection

Let C1, ..., CI be closed convex sets in RJ , with non-empty intersection
C. The convex feasibility problem (CFP) is to find a member of C. Typi-
cally, the orthogonal projection onto each Ci is easy to calculate, but the
orthogonal projection onto C is not. The objective is to find a member of
C, not necessarily the orthogonal projection of x0, using the orthogonal
projections onto each Ci in turn.

For each i let Pi be the orthogonal projection operator for Ci and define
T = PIPI−1 · · · P2P1. Then T is averaged. If C is non-empty, then the
members of C are the fixed points of T . The successive orthogonal projection
algorithm (SOP) has the iterative step xm = Tmx0. According to the KM
Theorem 10.3, the SOP sequence converges to a member of C.
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11.1 Chapter Summary

In this chapter we consider two well known iterative algorithms for solv-
ing square systems of linear equations, the Jacobi method and the Gauss-
Seidel method. Both these algorithms are easy to describe and to motivate.
They both require not only that the system be square, that is, have the
same number of unknowns as equations, but satisfy additional constraints
needed for convergence.

Linear systems Ax = b need not be square but can be associated with
two square systems, A†Ax = A†b, the so-called normal equations, and
AA†z = b, sometimes called the Björck-Elfving equations [108]. Both the
Jacobi and the Gauss-Seidel algorithms can be modified to apply to any
square system of linear equations, Sz = h. The resulting algorithms, the
Jacobi overrelaxation (JOR) and successive overrelaxation (SOR) methods,
involve the choice of a parameter. The JOR and SOR will converge for more
general classes of matrices, provided that the parameter is appropriately
chosen.

When we say that an iterative method is convergent, or converges, under
certain conditions, we mean that it converges for any consistent system of
the appropriate type, and for any starting vector; any iterative method

169
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will converge if we begin at the right answer. We assume throughout this
chapter that A is an I by J matrix.

11.2 The Jacobi and Gauss-Seidel Methods: An Ex-
ample

Suppose we wish to solve the 3 by 3 system

S11z1 + S12z2 + S13z3 = h1

S21z1 + S22z2 + S23z3 = h2

S31z1 + S32z2 + S33z3 = h3, (11.1)

which we can rewrite as

z1 = S−1
11 [h1 − S12z2 − S13z3]

z2 = S−1
22 [h2 − S21z1 − S23z3]

z3 = S−1
33 [h3 − S31z1 − S32z2], (11.2)

assuming that the diagonal terms Smm are not zero. Let z0 = (z0
1 , z

0
2 , z

0
3)T

be an initial guess for the solution. We then insert the entries of z0 on the
right sides and use the left sides to define the entries of the next guess z1.
This is one full cycle of Jacobi’s method.

The Gauss-Seidel method is similar. Let z0 = (z0
1 , z

0
2 , z

0
3)T be an initial

guess for the solution. We then insert z0
2 and z0

3 on the right side of the
first equation, obtaining a new value z1

1 on the left side. We then insert
z0

3 and z1
1 on the right side of the second equation, obtaining a new value

z1
2 on the left. Finally, we insert z1

1 and z1
2 into the right side of the third

equation, obtaining a new z1
3 on the left side. This is one full cycle of the

Gauss-Seidel (GS) method.

11.3 Splitting Methods

The Jacobi and the Gauss-Seidel methods are particular cases of a more
general approach known as splitting methods. Splitting methods apply to
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square systems of linear equations. Let S be an arbitrary N by N square
matrix, written as S = M−K. Then the linear system of equations Sz = h
is equivalent to Mz = Kz+h. If M is invertible, then we can also write z =
M−1Kz +M−1h. This last equation suggests a class of iterative methods
for solving Sz = h known as splitting methods. The idea is to select a matrix
M so that the equation

Mzk+1 = Kzk + h (11.3)

can be easily solved to get zk+1; in the Jacobi method M is diagonal, and
in the Gauss-Seidel method, M is triangular. Then we write

zk+1 = M−1Kzk +M−1h. (11.4)

From K = M − S, we can write Equation (11.4) as

zk+1 = zk +M−1(h− Szk). (11.5)

Suppose that S is invertible and ẑ is the unique solution of Sz = h. The
error we make at the k-th step is ek = ẑ − zk, so that

ek+1 = M−1Kek.

We want the error to decrease with each step, which means that we should
seek M and K so that ||M−1K|| < 1. If S is not invertible and there are
multiple solutions of Sz = h, then we do not want M−1K to be a strict
contraction, but only av or pc. The operator T defined by

Tz = M−1Kz +M−1h = Bz + d (11.6)

is an affine linear operator and will be a pc or av operator whenever B =
M−1K is.

It follows from our previous discussion concerning linear av operators
that, if B = B† is Hermitian, then B is av if and only if

−1 < λ ≤ 1, (11.7)

for all (necessarily real) eigenvalues λ of B.
In general, though, the matrix B = M−1K will not be Hermitian, and

deciding if such a non-Hermitian matrix is av is not a simple matter. We do
know that, if B is av, so is B†; the matrix B is a convex combination of the
identity and a non-expansive matrix N , so B† is a convex combination of
the identity and N†, which is also non-expansive, since ‖N†‖ = ‖N‖ ≤ 1.
Consequently, the Hermitian matrix Q = 1

2 (B +B†) is also av. Therefore,
I −Q = 1

2 (M−1S + (M−1S)†) is ism, and so is non-negative definite. We
have −1 < λ ≤ 1, for any eigenvalue λ of Q.

Alternatively, we can use the EKN Theorem 10.6. According to that
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theorem, if B has a basis of eigenvectors, and |λ| < 1 for all eigenvalues
λ of B that are not equal to one, then {zk} will converge to a solution of
Sz = h, whenever solutions exist.

In what follows we shall write an arbitrary square matrix S as

S = L+D + U, (11.8)

where L is the strictly lower triangular part of S, D the diagonal part, and
U the strictly upper triangular part. When S = H is Hermitian, we have

H = L+D + L†. (11.9)

We list now several examples of iterative algorithms obtained by the split-
ting method. In the remainder of the chapter we discuss these methods in
more detail.

11.4 Some Examples of Splitting Methods

As we shall now see, the Jacobi and Gauss-Seidel methods, as well as
their overrelaxed versions, JOR and SOR, are splitting methods.

Jacobi’s Method: Jacobi’s method uses M = D and K = −L−U , under
the assumption that D is invertible. The matrix B is

B = M−1K = −D−1(L+ U). (11.10)

The Gauss-Seidel Method: The Gauss-Seidel (GS) method uses the
splitting M = D + L, so that the matrix B is

B = I − (D + L)−1S. (11.11)

The Jacobi Overrelaxation Method (JOR): The JOR uses the split-
ting

M =
1

ω
D (11.12)

and

K = M − S = (
1

ω
− 1)D − L− U. (11.13)

The matrix B is

B = M−1K = (I − ωD−1S). (11.14)
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The Successive Overrelaxation Method (SOR): The SOR uses the
splitting M = ( 1

ωD + L), so that

B = M−1K = (D + ωL)−1[(1− ω)D − ωU ] (11.15)

or

B = I − ω(D + ωL)−1S, (11.16)

or

B = (I + ωD−1L)−1[(1− ω)I − ωD−1U ]. (11.17)

11.5 Jacobi’s Algorithm and JOR

The matrix B in Equation (11.10) is not generally av and the Jacobi
iterative scheme will not converge, in general. Additional conditions need
to be imposed on S in order to guarantee convergence. One such condition
is that S be strictly diagonally dominant. In that case, all the eigenvalues of
B = M−1K can be shown to lie inside the unit circle of the complex plane,
so that ρ(B) < 1. It follows from Lemma 6.3 that B is sc with respect to
some vector norm, and the Jacobi iteration converges. If, in addition, S is
Hermitian, the eigenvalues of B are in the interval (−1, 1), and so B is sc
with respect to the Euclidean norm.

Alternatively, one has the Jacobi overrelaxation (JOR) method, which
is essentially a special case of the Landweber algorithm and involves an
arbitrary parameter.

For S an N by N matrix, Jacobi’s method can be written as

znew
m = S−1

mm[hm −
∑
j 6=m

Smjz
old
j ], (11.18)

form = 1, ..., N . WithD the invertible diagonal matrix with entriesDmm =
Smm we can write one cycle of Jacobi’s method as

znew = zold +D−1(h− Szold). (11.19)

The Jacobi overrelaxation (JOR) method has the following full-cycle iter-
ative step:

znew = zold + ωD−1(h− Szold); (11.20)
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choosing ω = 1 we get the Jacobi method. Convergence of the JOR iteration
will depend, of course, on properties of S and on the choice of ω. When S =
Q, where Q is Hermitian and nonnegative-definite, for example, S = A†A
or S = AA†, we can say more. Note that such Q can always be written in
the form Q = AA† or Q = A†A, for appropriately chosen A.

11.5.1 The JOR in the Nonnegative-definite Case

When S = Q is nonnegative-definite and the system Qz = h is consis-
tent the JOR converges to a solution for any ω ∈ (0, 2/ρ(D−1/2QD−1/2)),
where ρ(Q) denotes the largest eigenvalue of the nonnegative-definite ma-
trix Q. For nonnegative-definite Q, the convergence of the JOR method is
implied by the KM Theorem 10.3, since the JOR is equivalent to Landwe-
ber’s algorithm in these cases. To see this, we rewrite Equation (11.20)
as

vnew = vold + ωG†(f −Gvold),

where v = D1/2z,
G†G = D−1/2QD−1/2,

and
G†f = D−1/2h.

The JOR method, as applied to Qz = AA†z = b, is equivalent to the
Landweber iterative method for Ax = b.

Ex. 11.1 Show that the system AA†z = b has solutions whenever the sys-
tem Ax = b has solutions.

Lemma 11.1 If {zk} is the sequence obtained from the JOR, then the
sequence {A†zk} is the sequence obtained by applying the Landweber algo-
rithm to the system D−1/2Ax = D−1/2b, where D is the diagonal part of
the matrix Q = AA†.

If we select ω = 1/I we obtain the Cimmino method. Since the trace of
the matrix D−1/2QD−1/2 equals I, which then is the sum of its eigenvalues,
all of which are non-negative, we know that ω = 1/I is less than two over
the largest eigenvalue of the matrix D−1/2QD−1/2 and so this choice of
ω is acceptable and the Cimmino algorithm converges whenever there are
solutions of Ax = b. In fact, it can be shown that Cimmino’s method
converges to a least squares approximate solution generally.

Similarly, the JOR method applied to the system A†Ax = A†b is equiv-
alent to the Landweber algorithm, applied to the system Ax = b.

Ex. 11.2 Show that, if {zk} is the sequence obtained from the JOR, then
the sequence {D1/2zk} is the sequence obtained by applying the Landweber
algorithm to the system AD−1/2x = b, where D is the diagonal part of the
matrix S = A†A.
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11.6 The Gauss-Seidel Algorithm and SOR

In general, the full-cycle iterative step of the Gauss-Seidel method is
the following:

znew = zold + (D + L)−1(h− Szold), (11.21)

where S = D + L + U is the decomposition of the square matrix S into
its diagonal, lower triangular and upper triangular diagonal parts. The GS
method does not converge without restrictions on the matrix S. As with
the Jacobi method, strict diagonal dominance is a sufficient condition.

11.6.1 The Nonnegative-Definite Case

Now we consider the square system Qz = h, assuming that Q = L +
D + L† is Hermitian and nonnegative-definite, so that x†Qx ≥ 0, for all
x. It is easily shown that all the entries of D are nonnegative. We assume
that all the diagonal entries of D are positive, so that D + L is invertible.
The Gauss-Seidel iterative step is zk+1 = Tzk, where T is the affine linear
operator given by Tz = Bz+d, for B = −(D+L)−1L† and d = (D+L)−1h.

Proposition 11.1 Let λ be an eigenvalue of B that is not equal to one.
Then |λ| < 1.

If B is diagonalizable, then there is a norm with respect to which T is
paracontractive, so, by the EKN Theorem 10.6, the GS iteration converges
to a solution of Qz = h, whenever solutions exist.

Proof of Proposition (11.1): Let Bv = λv, for v nonzero. Then −Bv =
(D + L)−1L†v = −λv, so that

L†v = −λ(D + L)v, (11.22)

and

Lv = −λ(D + L)†v. (11.23)

Therefore,

v†L†v = −λv†(D + L)v. (11.24)

Adding v†(D + L)v to both sides, we get

v†Qv = (1− λ)v†(D + L)v. (11.25)
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Since the left side of the equation is real, so is the right side. Therefore

(1− λ)(D + L)†v = (1− λ)v†(D + L)v

= (1− λ)v†Dv + (1− λ)v†Lv

= (1− λ)v†Dv − (1− λ)λv†(D + L)†v. (11.26)

So we have

[(1− λ) + (1− λ)λ]v†(D + L)†v = (1− λ)v†Dv, (11.27)

or

(1− |λ|2)v†(D + L)†v = (1− λ)v†Dv. (11.28)

Multiplying by (1− λ) on both sides, we get, on the left side,

(1− |λ|2)v†(D + L)†v − (1− |λ|2)λv†(D + L)†v, (11.29)

which is equal to

(1− |λ|2)v†(D + L)†v + (1− |λ|2)v†Lv, (11.30)

and, on the right side, we get

|1− λ|2v†Dv. (11.31)

Consequently, we have

(1− |λ|2)v†Qv = |1− λ|2v†Dv. (11.32)

Since v†Qv ≥ 0 and v†Dv > 0, it follows that 1− |λ|2 ≥ 0. If |λ| = 1, then
|1− λ|2 = 0, so that λ = 1. This completes the proof.

Note that λ = 1 if and only if Qv = 0. Therefore, if Q is invertible,
the affine linear operator T is a strict contraction, and the GS iteration
converges to the unique solution of Qz = h.

11.6.2 The GS Algorithm as ART

We show now that the GS algorithm, when applied to the system Qz =
AA†z = b, is equivalent to the ART algorithm, applied to Ax = b. Let
AA† = Q = L+D + L†.

It is convenient now to consider separately each sub-iteration step of
the GS algorithm. For m = 0, 1, ... and i = m(mod I) + 1, we denote by
zm+1 the vector whose entries are

zm+1
i = D−1

ii

(
bi − (Qzm)i +Qiiz

m
i

)
,



Jacobi and Gauss-Seidel Methods 177

and zm+1
n = zmn , for n 6= i. Therefore, we can write

zm+1
i − zmi = D−1

ii (bi − (AA†zm)i).

Now let xm = A†zm for each m. Then we have

xm+1
j = (A†zm+1)j = (A†zm)j +AijD

−1
ii (bi − (Axm)i),

which is one step of the ART algorithm, applied to the system Ax = b.
Note that

Dii =

J∑
j=1

|Aij |2.

From this, we can conclude that if {zk} is the sequence produced by
one step of the GS algorithm, applied to the system AA†z = b, then
{xk = A†zk} is the sequence produced by one full cycle of the ART al-
gorithm, applied to the system Ax = b. Since we know that the ART
algorithm converges whenever Ax = b is consistent, we know now that the
GS algorithm, applied to the system AA†z = b, converges whenever Ax = b
is consistent. So once again we have shown that when S = Q is Hermitian
and non-negative definite, the GS method converges whenever there are
solutions of Qz = h.

11.6.3 Successive Overrelaxation

The successive overrelaxation (SOR) method has the following full-cycle
iterative step:

znew = zold + (ω−1D + L)−1(h− Szold); (11.33)

the choice of ω = 1 gives the GS method. Convergence of the SOR iteration
will depend, of course, on properties of S and on the choice of ω.

Using the form

B = (D + ωL)−1[(1− ω)D − ωU ] (11.34)

we can show that

|det(B)| = |1− ω|N . (11.35)

From this and the fact that the determinant of B is the product of its
eigenvalues, we conclude that ρ(B) > 1 if ω < 0 or ω > 2. When S = Q is
Hermitian and nonnegative-definite, we can say more.
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11.6.4 The SOR for Nonnegative-Definite Q

When Q is nonnegative-definite and the system Qz = h is consistent
the SOR converges to a solution for any ω ∈ (0, 2). This follows from the
convergence of the ART algorithm, since, for such Q, the SOR is equivalent
to the ART, as we now show.

Now we write Q = AA† and consider the SOR method applied to the
Björck-Elfving equations AA†z = b. Rather than count a full cycle as one
iteration, we now count as a single step the calculation of a single new
entry. Therefore, for k = 0, 1, ... the k+1-st step replaces the value zki only,
where i = k(mod I) + 1. We have

zk+1
i = (1− ω)zki + ωD−1

ii (bi −
i−1∑
n=1

Qinz
k
n −

I∑
n=i+1

Qinz
k
n) (11.36)

and zk+1
n = zkn for n 6= i. Now we calculate xk+1 = A†zk+1:

xk+1
j = xkj + ωD−1

ii Aij(bi − (Axk)i). (11.37)

This is one step of the relaxed algebraic reconstruction technique (ART)
applied to the original system of equations Ax = b. The relaxed ART
converges to a solution, when solutions exist, for any ω ∈ (0, 2).

When Ax = b is consistent, so is AA†z = b. We consider now the
case in which Q = AA† is invertible. Since the relaxed ART sequence
{xk = A†zk} converges to a solution x∞, for any ω ∈ (0, 2), the sequence
{AA†zk} converges to b. Since Q = AA† is invertible, the SOR sequence
{zk} then converges to Q−1b.

11.7 Summary

We summarize the basic points of this chapter:

• 1. Splitting methods for solving Sz = h, for square matrix S =
M−K, involve affine linear operators Tx = Bx+d, whereB = M−1K
and d = M−1h;

• 2. T is av if and only if B is av; if B is Hermitian, then B is av if
and only if −1 < λ ≤ 1 for all eigenvalues λ of B;

• 3. if B is not Hermitian, but is diagonalizable, and |λ| < 1 unless
λ = 1, then there is a norm for which T is pc;

• 4. If S is strictly diagonally dominant, then the Jacobi and Gauss-
Seidel iterations converge;
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• 5. When S = Q is Hermitian and non-negative definite, Q can be
written as either AA† or as A†A, for appropriately chosen A, and
the JOR method is equivalent to Landweber’s algorithm for either
D−1/2Ax = D−1/2b or AD−1/2x = b;

• 6. When S = Q is Hermitian and non-negative definite, and we write
Q = AA†, the SOR method is equivalent to the relaxed ART algo-
rithm for Ax = b, and so converges whenever there are solutions, for
0 < ω < 2.
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12.1 Chapter Summary

Although the EMML and SMART algorithms have quite different his-
tories and are not typically considered together, they are closely related,
as we shall see [51, 52]. In this chapter we examine these two algorithms
in tandem, following [53]. Forging a link between the EMML and SMART
led to a better understanding of both of these algorithms and to new re-
sults. The proof of convergence of the SMART in the inconsistent case [51]
was based on the analogous proof for the EMML [258], while discovery of
the faster version of the EMML, the rescaled block-iterative EMML (RBI-
EMML) [54] came from studying the analogous block-iterative version of
SMART [89]. The proofs we give here are elementary and rely mainly on
easily established properties of the cross-entropy or Kullback-Leibler dis-
tance.
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12.2 Notation

Let A be an I by J matrix with entries Aij ≥ 0, such that, for each

j = 1, ..., J , we have sj =
∑I
i=1Aij > 0. Let b = (b1, ..., bI)

T with bi > 0
for each i. We shall assume throughout this chapter that sj = 1 for each j.
If this is not the case initially, we replace xj with xjsj and Aij with Aij/sj ;
the quantities (Ax)i are unchanged.

12.3 The Two Algorithms

The algorithms we shall consider are the expectation maximization
maximum likelihood method (EMML) and the simultaneous multiplicative
algebraic reconstruction technique (SMART). When b = Ax has nonneg-
ative solutions, both algorithms produce such a solution. In general, the
EMML gives a nonnegative minimizer of KL(b, Ax), while the SMART
minimizes KL(Ax, b) over nonnegative x.

For both algorithms we begin with an arbitrary positive vector x0. The
iterative step for the EMML method is

xk+1
j = (xk)′j = xkj

I∑
i=1

Aij
bi

(Axk)i
. (12.1)

The iterative step for the SMART is

xm+1
j = (xm)′′j = xmj exp

( I∑
i=1

Aij log
bi

(Axm)i

)
. (12.2)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

12.4 Background

The expectation maximization maximum likelihood method (EMML)
has been the subject of much attention in the medical-imaging litera-
ture over the past decade. Statisticians like it because it is based on the
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well-studied principle of likelihood maximization for parameter estimation.
Physicists like it because, unlike its competition, filtered back-projection,
it permits the inclusion of sophisticated models of the physical situation.
Mathematicians like it because it can be derived from iterative optimization
theory. Physicians like it because the images are often better than those
produced by other means. No method is perfect, however, and the EMML
suffers from sensitivity to noise and slow rate of convergence. Research is
ongoing to find faster and less sensitive versions of this algorithm.

Another class of iterative algorithms was introduced into medical imag-
ing by Gordon et al. in [151]. These include the algebraic reconstruction
technique (ART) and its multiplicative version, MART. These methods
were derived by viewing image reconstruction as solving systems of linear
equations, possibly subject to constraints, such as positivity. The simulta-
neous MART (SMART) [107, 233] is a variant of MART that uses all the
data at each step of the iteration.

12.5 The Kullback-Leibler Distance

The Kullback-Leibler distance KL(x, z) is defined for nonnegative vec-
tors x and z by Equations (24.18) and (24.19). Clearly, the KL distance
has the property KL(cx, cz) = cKL(x, z) for all positive scalars c.

Ex. 12.1 Let z+ =
∑J
j=1 zj > 0. Then

KL(x, z) = KL(x+, z+) +KL(x, (x+/z+)z). (12.3)

As we shall see, the KL distance mimics the ordinary Euclidean distance
in several ways that make it particularly useful in designing optimization
algorithms. The following exercise shows that the KL distance does exhibit
some behavior not normally associated with a distance.

Ex. 12.2 Let x be in the interval (0, 1). Show that

KL(x, 1) +KL(1, x−1) < KL(x, x−1).
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12.6 The Alternating Minimization Paradigm

For each nonnegative vector x for which (Ax)i =
∑J
j=1Aijxj > 0, let

r(x) = {r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjAij
bi

(Ax)i

and
q(x)ij = xjAij .

The KL distances

KL(r(x), q(z)) =

I∑
i=1

J∑
j=1

KL(r(x)ij , q(z)ij)

and

KL(q(x), r(z)) =

I∑
i=1

J∑
j=1

KL(q(x)ij , r(z)ij)

will play important roles in the discussion that follows. Note that if there
is nonnegative x with r(x) = q(x) then b = Ax.

12.6.1 Some Pythagorean Identities Involving the KL Dis-
tance

The iterative algorithms we discuss in this chapter are derived using
the principle of alternating minimization, according to which the distances
KL(r(x), q(z)) and KL(q(x), r(z)) are minimized, first with respect to the
variable x and then with respect to the variable z. Although the KL dis-
tance is not Euclidean, and, in particular, not even symmetric, there are
analogues of Pythagoras’ theorem that play important roles in the conver-
gence proofs.

Ex. 12.3 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (12.4)

KL(r(x), q(z)) = KL(r(x), q(x′)) +KL(x′, z), (12.5)

for

x′j = xj

I∑
i=1

Aij
bi

(Ax)i
; (12.6)
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KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Ax,Az); (12.7)

KL(q(x), r(z)) = KL(q(z′′), r(z)) +KL(x, z′′), (12.8)

for

z′′j = zj exp(

I∑
i=1

Aij log
bi

(Az)i
). (12.9)

Note that it follows from Equation (12.3) that KL(x, z)−KL(Ax,Az) ≥ 0.

12.6.2 Convergence of the SMART and EMML

We shall prove convergence of the SMART and EMML algorithms
through a series of exercises.

Ex. 12.4 Show that, for {xk} given by Equation (12.1), {KL(b, Axk)} is
decreasing and {KL(xk+1, xk)} → 0. Show that, for {xm} given by Equa-
tion (12.2), {KL(Axm, b)} is decreasing and {KL(xm, xm+1)} → 0. Hint:
Use KL(r(x), q(x)) = KL(b, Ax), KL(q(x), r(x)) = KL(Ax, b), and the
Pythagorean identities.

Ex. 12.5 Show that the EMML sequence {xk} is bounded by showing

J∑
j=1

xk+1
j =

I∑
i=1

bi.

Show that the SMART sequence {xm} is bounded by showing that

J∑
j=1

xm+1
j ≤

I∑
i=1

bi.

Ex. 12.6 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML
sequence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}. Hint: Use {KL(xk+1, xk)} → 0 and {KL(xm, xm+1)} → 0.

Ex. 12.7 Let x̂ and x̃ minimize KL(b, Ax) and KL(Ax, b), respectively,
over all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃. Hint: Apply Pythagorean
identities to KL(r(x̂), q(x̂)) and KL(q(x̃), r(x̃)).
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Note that, because of convexity properties of the KL distance, even if
the minimizers x̂ and x̃ are not unique, the vectors Ax̂ and Ax̃ are unique.

Ex. 12.8 For the EMML sequence {xk} with cluster point x∗ and x̂ as
defined previously, we have the double inequality

KL(x̂, xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂, xk+1), (12.10)

from which we conclude that the sequence {KL(x̂, xk)} is decreasing and
KL(x̂, x∗) < +∞. Hint: For the first inequality calculate KL(r(x̂), q(xk))

in two ways. For the second one, use (x)′j =
∑I
i=1 r(x)ij and Exercise 12.1.

Ex. 12.9 Show that, for the SMART sequence {xm} with cluster point x∗

and x̃ as defined previously, we have

KL(x̃, xm)−KL(x̃, xm+1) = KL(Axm+1, b)−KL(Ax̃, b)+

KL(Ax̃,Axm) +KL(xm+1, xm)−KL(Axm+1, Axm), (12.11)

and so KL(Ax̃,Ax∗) = 0, the sequence {KL(x̃, xm)} is decreasing and
KL(x̃, x∗) < +∞. Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean
identities.

Ex. 12.10 For x∗ a cluster point of the EMML sequence {xk} we have
KL(b, Ax∗) = KL(b, Ax̂). Therefore, x∗ is a nonnegative minimizer of
KL(b, Ax). Consequently, the sequence {KL(x∗, xk)} converges to zero,
and so {xk} → x∗. Hint: Use the double inequality of Equation (12.10)
and KL(r(x̂), q(x∗)).

Ex. 12.11 For x∗ a cluster point of the SMART sequence {xm} we have
KL(Ax∗, b) = KL(Ax̃, b). Therefore, x∗ is a nonnegative minimizer of
KL(Ax, b). Consequently, the sequence {KL(x∗, xm)} converges to zero,
and so {xm} → x∗. Moreover,

KL(x̃, x0) ≥ KL(x∗, x0)

for all x̃ as before. Hints: Use Exercise 12.9. For the final assertion use
the fact that the difference KL(x̃, xm)−KL(x̃, xm+1) is independent of the
choice of x̃, since it depends only on Ax∗ = Ax̃. Now sum over the index
m.

Both the EMML and the SMART algorithms are slow to converge. For
that reason attention has shifted, in recent years, to block-iterative versions
of these algorithms. We take up that topic in a later chapter.
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12.7 Sequential Optimization

As we have seen, both the SMART and the EMML algorithms can
be developed using the paradigm of alternating minimization. They can
also be obtained through sequential minimization. For details concerning
sequential optimization see [136, 70, 67, 68].

12.7.1 Sequential Unconstrained Optimization

A common, but often difficult, problem in optimization is the mini-
mization or maximization of a function f(x) subject to constraints on the
vector variable x. In the sequential unconstrained optimization approach,
at the kth step we add to the function f(x) an auxiliary function gk(x) and
optimize

Gk(x) = f(x) + gk(x),

to get x = xk as the result. The gk(x) are chosen to enforce the constraints,
so that each xk is feasible.

12.7.2 An Example

Suppose that we wish to minimize the function f(u, v) = u2+v2, subject
to the constraint that u + v ≥ 1. For each k = 1, 2, ... we minimize the
function

Gk(u, v) = f(u, v)− 1

k
log(u+ v − 1).

In the terminology of sequential optimization, we have added a logarithmic
barrier function to f(x). Setting the gradient of Gk(u, v) equal to zero, we
find that

uk = vk =
1

4
+

1

4

√
1 +

4

k
.

Clearly, uk + vk ≥ 1 and, as k → +∞, (uk, vk) approaches the limit ( 1
2 ,

1
2 ),

which is the answer to the constrained minimization problem.
This method can also be used to facilitate computation. In such cases,

we select gk(x) so that the x = xk optimizing Gk(x) can be found in closed
form. The SMART and EMML algorithms are special cases of this approach
to sequential optimization.
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12.7.3 The SMART Algorithm

In the case of the SMART algorithm, the function to be minimized is
f(x) = KL(Ax, b). The auxiliary function is

gk(x) = KL(x, xk−1)−KL(Ax,Axk−1) ≥ 0.

Using the Pythagorean identities, we can show that

Gk(x) = KL(q(x), r(xk−1)) = f(x) + gk(x).

12.7.4 The EMML Algorithm

In the case of the EMML algorithm, the function to be minimized is
f(x) = KL(b, Ax). The auxiliary function is

gk(x) = KL(r(xk−1), r(x)) ≥ 0.

Using the Pythagorean identities, we can show that

Gk(x) = KL(r(xk−1), q(x)) = f(x) + gk(x).
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13.1 Chapter Summary

Both the EMML and the SMART algorithms can be slow to converge.
These methods are simultaneous methods, in which all the equations are
employed at each step of the iteration. Block-iterative methods, in which
only some of the equations are used at each step, often converge faster than
their simultaneous cousins. In addition, the blocks can be designed to take
advantage of the manner in which the computer stores and retrieves data.

13.2 Recalling the MART Algorithm

The MART algorithm uses only one equation at a time. For k = 0, 1, ...,
we let i = k(mod I) + 1 and

xk+1
j = xkj

( bi
(Axk)i

)Aijm
−1
i

. (13.1)
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The MART converges to the non-negative solution of Ax = b for which
KL(x, x0) is minimized, whenever such solutions exist, provided that we se-
lect mi so that Aij ≤ mi, for all j. Here we shall choose mi = max{Aij |j =
1, 2, ..., J}.

13.3 The EMML and the SMART Algorithms

We recall the formulas for the iterative step of the EMML and the
SMART.

13.3.1 The EMML Algorithm

The iterative step for the EMML algorithm is

xk+1
j = xkj s

−1
j

I∑
i=1

Aij
bi

(Axk)i
, (13.2)

where sj =
∑I
i=1Aij . The iterative step can also be written as

xk+1
j =

I∑
i=1

(s−1
j Aij)

(
xkj

bi
(Axk)i

)
, (13.3)

which shows that xk+1
j is the weighted arithmetic mean of the terms

xkj
bi

(Axk)i
.

13.3.2 The SMART Algorithm

The iterative step for the SMART algorithm is

xk+1
j = xkj exp

(
s−1
j

I∑
i=1

Aij log
( bi

(Axk)i

))
. (13.4)

The iterative step can also be written as

xk+1
j =

I∏
i=1

(
xkj

bi
(Axk)i

)s−1
j Aij

, (13.5)

which shows that xk+1
j is the weighted geometric mean of the terms

xkj
bi

(Axk)i
. In a later section we shall look more closely at these terms.
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13.4 Block-Iterative Methods

The term block-iterative methods refers to algorithms in which only some
of the equations, those in the current block, are used at each step of the
iteration. We denote by Bn, n = 1, ..., N , the nth block; each Bn is a subset
of the index set {i = 1, ..., I}. The MART is an example of such a block-
iterative method; there are N = I blocks, each block containing only one
value of the index i. For simplicity, we say that Bi = {i}, for each i. Once
we know xk, we compute i = k(mod I) + 1 and use only the ith equation
to compute xk+1.

13.4.1 Block-Iterative SMART

More general block-iterative versions of the SMART algorithm have
been known since the work of Darroch and Ratcliff [107], and were treated
in detail in [89]. The iterative step of the block-iterative SMART (BI-
SMART) algorithm is

xk+1
j = xkj exp

(
m−1
n

I∑
i∈Bn

Aij log
( bi

(Axk)i

))
. (13.6)

The BI-SMART converges to the non-negative solution of Ax = b for which
KL(x, x0) is minimized, whenever such solutions exist, provided that snj ≤
mn, where snj =

∑
i∈Bn

Aij and n = k(modN) + 1. Here we shall choose
mn = max{snj |j = 1, 2, ..., J}; the BI-SMART with this choice of the
parameter mn is called the rescaled block-iterative SMART (RBI-SMART)
[54].

13.4.2 Seeking a Block-Iterative EMML

In contrast to the SMART, block-iterative versions of the EMML did
not appear in the early literature on this algorithm. The first paper that I
am aware of that suggested the use of blocks for the EMML, but without
explicit formulas, is the 1990 paper by Holte, Schmidlin et al. [170]. Some-
what later, Hudson, Hutton and Larkin [171, 172] discovered what they
called the ordered-subset (OSEM) variation of the EMML algorithm.

The iterative step of the OSEM algorithm is

xk+1
j = xkj s

−1
nj

∑
i∈Bn

Aij

( bi
(Axk)i

)
. (13.7)

It is identical with that of the EMML in Equation (13.2), except that each
sum is taken only over the i in the current block Bn.
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Although the OSEM often produces usable medical images from tomo-
graphic data in much less time than required by the EMML algorithm,
there are theoretical problems with OSEM that suggested that OSEM may
not be the correct block-iterative version of EMML. First, in order to prove
that OSEM converges to a non-negative solution of Ax = b, when such solu-
tions exist, we need to assume that the generalized subset-balance condition
holds: we need

snj =
∑
i∈Bn

Aij = tnrj ,

for some constants tn and rj . Second, if we use the OSEM formula for the
case of N = I, as in MART, we find that

xk+1
j = xkj

( bi
(Axk)i

)
,

so that each xk+1 is simply a scalar multiple of the starting vector x0;
obviously, this is not the proper analog of the MART.

13.4.3 The BI-EMML Algorithm

The problem then is how to define block-iterative versions of the EMML
that converge to a non-negative solution whenever there are such solutions,
and which give a useful analog of the MART algorithm. To see how to do
this, it is helpful to return to the EMML, SMART and MART.

We saw previously that in the SMART, the next iterate xk+1
j is the

weighted geometric mean of the terms xkj

(
bi

(Axk)i

)
, while that of the EMML

is the weighted arithmetic mean of the same terms. The MART is also a

weighted geometric mean of the single term xkj

(
bi

(Axk)i

)
and xkj itself; we

can write Equation (13.1) as

xk+1
j =

(
xkj

)1−Aijm
−1
i
(
xkj

bi
(Axk)i

)Aijm
−1
i

. (13.8)

This suggests that when we do not use all the equations, we must use xkj
itself as one of the terms in the weighted geometric or arithmetic mean,
which is a form of relaxation.

We become more convinced that relaxation is the right idea when we
notice that the BI-SMART can be written as

xk+1
j = (xkj )1−m−1

n snj

∏
i∈Bn

(
xkj

bi
(Axk)i

)Aijm
−1
n

; (13.9)

this tells us that xk+1
j is a weighted geometric mean of xkj itself and the

terms xkj

(
bi

(Axk)i

)
for i ∈ Bn.
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Now it becomes clearer how to define the block-iterative EMML algo-
rithms; we must use the weighted arithmetic mean of xkj itself and the

terms xkj

(
bi

(Axk)i

)
for i ∈ Bn. The resulting BI-EMML iteration is

xk+1
j = (1−m−1

n snj)x
k
j +m−1

n xkj
∑
i∈Bn

Aij

( bi
(Axk)i

)
. (13.10)

Actually, all we need is that the parameter mn be chosen so that snj ≤ mn;
with the choice of mn = max{snj |j = 1, 2, ..., J} the algorithm is called
the rescaled block-iterative EMML (RBI-EMML) [54]. Notice that when
snj = tnrj , the first term vanishes, since m−1

n snj = 1, and the RBI-EMML
becomes the OSEM.

13.4.4 The EMART Algorithm

When we apply the formula for the RBI-EMML to the case of N = I,
we obtain the analog of the MART that we have been seeking. It has the
iterative step

xk+1
j = (1−m−1

i Aij)x
k
j +m−1

i Aij

(
xkj

bi
(Axk)i

)
. (13.11)

13.5 KL Projections

The term xkj

(
bi

(Axk)i

)
shows up in all the algorithms we have considered

so far in this chapter. It is reasonable to ask if this term has any significance.
The ART and Cimmino algorithms involve the orthogonal projections

onto the hyperplanes determined by each of the equations in the system.
Now we are considering non-negative systems of linear equations, so it
makes sense to define

Hi = {x ≥ 0|(Ax)i = bi}.

When we try to calculate the KL projection of a vector z ≥ 0 onto Hi,
that is, when we try to find the member of Hi that minimizes KL(x, z),
we find that we cannot solve for x in closed form. However, suppose that
we calculate the x in Hi that minimizes the distance

J∑
j=1

AijKL(xj , zj),
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the weighted KL projection of z onto Hi. We find that the solution is

xj = zj

( bi
(Az)i

)
.

Therefore, the term xkj

(
bi

(Axk)i

)
is the vector in Hi that minimizes

J∑
j=1

AijKL(xj , x
k
j ).

All the algorithms we have considered in this chapter rely on the weighted
KL projection of the current vector onto Hi.

13.6 Some Open Questions

We know that the RBI-SMART algorithms converge to the non-negative
solution of Ax = b for which KL(x, x0) is minimized, for any choice of
blocks, whenever Ax = b has non-negative solutions. We know that the
RBI-EMML algorithms converge to a non-negative solution of Ax = b,
whenever Ax = b has non-negative solutions. We do not know if the solution
obtained depends on the blocks chosen, and we do not know which non-
negative solution the algorithms give us, even in the case of the original
EMML algorithm.
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14.1 Chapter Summary

The split feasibility problem (SFP) [81] is to find c ∈ C with Ac ∈ Q,
if such points exist, where A is a real I by J matrix and C and Q are
nonempty, closed convex sets in RJ and RI , respectively. In this chapter we
discuss the CQ algorithm for solving the SFP, as well as recent extensions
and applications to radiation therapy.

14.2 The CQ Algorithm

In [62] the CQ algorithm for solving the SFP was presented, for the real
case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (14.1)

where I is the identity operator and γ ∈ (0, 2/ρ(ATA)), for ρ(ATA) the
spectral radius of the matrix ATA, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
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has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (14.2)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1

2
||PQAx−Ax||22

over the set C, provided such constrained minimizers exist [63]. The CQ al-
gorithm employs the relaxation parameter γ in the interval (0, 2/L), where
L is the largest eigenvalue of the matrix ATA. Choosing the best relaxation
parameter in any algorithm is a nontrivial procedure. Generally speaking,
we want to select γ near to 1/L. If A is normalized so that each row has
length one, then the spectral radius of ATA does not exceed the maximum
number of nonzero elements in any column of A. A similar upper bound
on ρ(ATA) can be obtained for non-normalized, ε-sparse A.

14.3 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C ⊆ RJ and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RJ , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. Generally,
we cannot solve the SFP in closed form and iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber
[187] and projected Landweber methods (see [18]), are particular cases of
the CQ algorithm.

14.3.1 The Landweber algorithm

With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b−Axk). (14.3)

This is the Landweber algorithm.
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14.3.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ...,
the projected Landweber (PLW) algorithm for finding a solution of Ax = b
in C has the iterative step

xk+1 = PC(xk + γAT (b−Axk)). (14.4)

14.3.3 Convergence of the Landweber Algorithms

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever
such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution
of Ax = b, while the projected Landweber algorithm will converge to a
minimizer, over the set C, of the function ||b − Ax||2, whenever such a
minimizer exists.

14.3.4 The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous algebraic
reconstruction technique (SART) [5] for solving Ax = b, for nonnegative
matrix A. Let A be an I by J matrix with nonnegative entries. Let Ai+ > 0
be the sum of the entries in the ith row of A and A+j > 0 be the sum of the
entries in the jth column of A. Consider the (possibly inconsistent) system
Ax = b. The SART algorithm has the following iterative step:

xk+1
j = xkj +

1

A+j

∑I

i=1
Aij(bi − (Axk)i)/Ai+.

We make the following changes of variables:

Bij = Aij/(Ai+)1/2(A+j)
1/2,

zj = xj(A+j)
1/2,

and
ci = bi/(Ai+)1/2.

Then the SART iterative step can be written as

zk+1 = zk +BT (c−Bzk).

This is a particular case of the Landweber algorithm, with γ = 1. The
convergence of SART follows from that of the CQ algorithm, once we know



198 Applied and Computational Linear Algebra: A First Course

that the largest eigenvalue of BTB is less than two; in fact, we show that
it is one [62].

If BTB had an eigenvalue greater than one and some of the entries of A
are zero, then, replacing these zero entries with very small positive entries,
we could obtain a new A whose associated BTB also had an eigenvalue
greater than one. Therefore, we assume, without loss of generality, that A
has all positive entries. Since the new BTB also has only positive entries,
this matrix is irreducible and the Perron-Frobenius Theorem applies. We
shall use this to complete the proof.

Let u = (u1, ..., uJ)T with uj = (A+j)
1/2 and v = (v1, ..., vI)

T , with vi =
(Ai+)1/2. Then we have Bu = v and BT v = u; that is, u is an eigenvector
of BTB with associated eigenvalue equal to one, and all the entries of u
are positive, by assumption. The Perron-Frobenius theorem applies and
tells us that the eigenvector associated with the largest eigenvalue has all
positive entries. Since the matrix BTB is symmetric its eigenvectors are
orthogonal; therefore u itself must be an eigenvector associated with the
largest eigenvalue of BTB. The convergence of SART follows.

14.3.5 Application of the CQ Algorithm in Dynamic ET

To illustrate how an image reconstruction problem can be formulated
as a SFP, we consider briefly emission computed tomography (ET) image
reconstruction. The objective in ET is to reconstruct the internal spatial
distribution of intensity of a radionuclide from counts of photons detected
outside the patient. In static ET the intensity distribution is assumed con-
stant over the scanning time. Our data are photon counts at the detectors,
forming the positive vector b and we have a matrix A of detection prob-
abilities; our model is Ax = b, for x a nonnegative vector. We could then
take Q = {b} and C = RN+ , the nonnegative cone in RN .

In dynamic ET [129] the intensity levels at each voxel may vary with
time. The observation time is subdivided into, say, T intervals and one
static image, call it xt, is associated with the time interval denoted by t,
for t = 1, ..., T . The vector x is the concatenation of these T image vectors
xt. The discrete time interval at which each data value is collected is also
recorded and the problem is to reconstruct this succession of images.

Because the data associated with a single time interval is insufficient, by
itself, to generate a useful image, one often uses prior information concern-
ing the time history at each fixed voxel to devise a model of the behavior
of the intensity levels at each voxel, as functions of time. One may, for
example, assume that the radionuclide intensities at a fixed voxel are in-
creasing with time, or are concave (or convex) with time. The problem then
is to find x ≥ 0 with Ax = b and Dx ≥ 0, where D is a matrix chosen
to describe this additional prior information. For example, we may wish to
require that, for each fixed voxel, the intensity is an increasing function of



The Split Feasibility Problem 199

(discrete) time; then we want

xt+1
j − xtj ≥ 0,

for each t and each voxel index j. Or, we may wish to require that the
intensity at each voxel describes a concave function of time, in which case
nonnegative second differences would be imposed:

(xt+1
j − xtj)− (xt+2

j − xt+1
j ) ≥ 0.

In either case, the matrix D can be selected to include the left sides of
these inequalities, while the set Q can include the nonnegative cone as one
factor.

14.3.6 More on the CQ Algorithm

One of the obvious drawbacks to the use of the CQ algorithm is that
we would need the projections PC and PQ to be easily calculated. Several
authors have offered remedies for that problem, using approximations of the
convex sets by the intersection of hyperplanes and orthogonal projections
onto those hyperplanes [268].

14.3.7 Convex Feasibility and IMRT

The CQ algorithm [62, 63] is an iterative algorithm for solving the
split feasibility problem. Because it is particularly simple to implement in
many cases, it has become the focus of recent work in intensity modulated
radiation therapy (IMRT). In [84] Censor et al. extend the CQ algorithm to
solve what they call the multiple-set split feasibility problem (MSSFP) . In
the sequel [82] it is shown that the constraints in IMRT can be modeled as
inclusion in convex sets and the extended CQ algorithm is used to determine
dose intensities for IMRT that satisfy both dose constraints and radiation-
source constraints.

14.4 Applications of the PLW Algorithm

Suppose that G is an arbitrary I by J matrix, and that D ⊆ CJ is a
closed, non-empty convex set. We can use the PLW algorithm to minimize
‖Gw‖2 over w ∈ D: the iterative step is

wk+1 = PD(wk − γG†Gwk), (14.5)
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for 0 < γ < 2
ρ(G†G)

. The sequence {wk} converges to a minimizer, over

w ∈ D, of ‖Gw‖2, whenever such minimizers exist.
Suppose now that A is an M by N matrix, and B an M by K matrix.

Suppose also that C ⊆ CN , and Q ⊆ CM are closed, non-empty convex
sets. We want to find x ∈ C and y ∈ Q with Ax = By. Failing that, we
want to minimize ‖Ax−By‖2 over x ∈ C and y ∈ Q.

Let G =
[
A −B

]
and w =

[
x
y

]
in CN+K . Then Gw = Ax − By. We

apply the iteration in Equation (14.5) to minimize ‖Gw‖2 over w ∈ D =
C ×Q, or, equivalently, to minimize ‖Ax−By‖2 over x ∈ C and y ∈ Q.

We have

G†G =

[
A†A −A†B
−B†A B†B

]
,

so that the iteration in Equation (14.5) becomes

xk+1 = PC(xk − γA†(Axk −Byk)), (14.6)

and

yk+1 = PQ(yk + γB†(Axk −Byk)). (14.7)
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15.1 Chapter Summary

Finding the least-squares solution of a possibly inconsistent system of
linear equations Ax = b is equivalent to minimizing the quadratic function
f(x) = 1

2 ||Ax − b||
2
2 and so can be viewed within the framework of opti-

mization. Iterative optimization methods can then be used to provide, or
at least suggest, algorithms for obtaining the least-squares solution. The
conjugate gradient method is one such method.

15.2 Iterative Minimization

Iterative methods for minimizing a real-valued function f(x) over the
vector variable x usually take the following form: having obtained xk−1,
a new direction vector dk is selected, an appropriate scalar αk > 0 is
determined and the next member of the iterative sequence is given by

xk = xk−1 + αkd
k. (15.1)
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Ideally, one would choose the αk to be the value of α for which the function
f(xk−1 +αdk) is minimized. It is assumed that the direction dk is a descent
direction; that is, for small positive α the function f(xk−1 +αdk) is strictly
decreasing. Finding the optimal value of α at each step of the iteration is
difficult, if not impossible, in most cases, and approximate methods, using
line searches, are commonly used.

Ex. 15.1 Differentiate the function f(xk−1 +αdk) with respect to the vari-
able α to show that, when α = αk is optimal, then

∇f(xk) · dk = 0. (15.2)

Since the gradient ∇f(xk) is orthogonal to the previous direction vector
dk and also because −∇f(x) is the direction of greatest decrease of f(x),
the choice of dk+1 = −∇f(xk) as the next direction vector is a reasonable
one. With this choice we obtain Cauchy’s steepest descent method [198]:

xk+1 = xk − αk+1∇f(xk).

The steepest descent method need not converge in general and even when
it does, it can do so slowly, suggesting that there may be better choices
for the direction vectors. For example, the Newton-Raphson method [209]
employs the following iteration:

xk+1 = xk −∇2f(xk)−1∇f(xk),

where ∇2f(x) is the Hessian matrix for f(x) at x. To investigate further
the issues associated with the selection of the direction vectors, we consider
the more tractable special case of quadratic optimization.

15.3 Quadratic Optimization

Let A be an arbitrary real I by J matrix. The linear system of equations
Ax = b need not have any solutions, and we may wish to find a least-squares
solution x = x̂ that minimizes

f(x) =
1

2
||b−Ax||22. (15.3)

The vector b can be written

b = Ax̂+ ŵ,
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where AT ŵ = 0 and a least squares solution is an exact solution of the
linear system Qx = c, with Q = ATA and c = AT b. We shall assume
that Q is invertible and there is a unique least squares solution; this is the
typical case.

We consider now the iterative scheme described by Equation (15.1) for
f(x) as in Equation (15.3). For this f(x) the gradient becomes

∇f(x) = Qx− c.

The optimal αk for the iteration can be obtained in closed form.

Ex. 15.2 Show that the optimal αk is

αk =
rk · dk

dk ·Qdk
, (15.4)

where rk = c−Qxk−1.

Ex. 15.3 Let ||x||2Q = x ·Qx denote the square of the Q-norm of x. Show
that

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0

for any direction vectors dk.

If the sequence of direction vectors {dk} is completely general, the iter-
ative sequence need not converge. However, if the set of direction vectors
is finite and spans RJ and we employ them cyclically, convergence follows.

Theorem 15.1 Let {d1, ..., dJ} be any finite set whose span is all of RJ .
Let αk be chosen according to Equation (15.4). Then, for k = 1, 2, ...,
j = k(mod J), and any x0, the sequence defined by

xk = xk−1 + αkd
j

converges to the least squares solution.

Proof: The sequence {||x̂−xk||2Q} is decreasing and, therefore, the sequence

{(rk · dk)2/dk · Qdk must converge to zero. Therefore, the vectors xk are
bounded, and for each j = 1, ..., J , the subsequences {xmJ+j , m = 0, 1, ...}
have cluster points, say x∗,j with

x∗,j = x∗,j−1 +
(c−Qx∗,j−1) · dj

dj ·Qdj
dj .
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Since
rmJ+j · dj → 0,

it follows that, for each j = 1, ..., J ,

(c−Qx∗,j) · dj = 0.

Therefore,
x∗,1 = ... = x∗,J = x∗

with Qx∗ = c. Consequently, x∗ is the least squares solution and the se-
quence {||x∗ − xk||Q} is decreasing. But a subsequence converges to zero;
therefore, {||x∗ − xk||Q} → 0. This completes the proof.

In the quadratic case the steepest descent iteration has the form

xk = xk−1 +
rk · rk

rk ·Qrk
rk.

We have the following result.

Theorem 15.2 The steepest descent method converges to the least-squares
solution.

Proof: As in the proof of the previous theorem, we have

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0,

where now the direction vectors are dk = rk. So, the sequence {||x̂−xk||2Q}
is decreasing, and therefore the sequence {(rk ·rk)2/rk ·Qrk} must converge
to zero. The sequence {xk} is bounded; let x∗ be a cluster point. It follows
that c−Qx∗ = 0, so that x∗ is the least-squares solution x̂. The rest of the
proof follows as in the proof of the previous theorem.

There is an interesting corollary to the theorem that pertains to a mod-
ified version of the ART algorithm. For k = 1, 2, ... and i = k(modM) and
with the rows of A normalized to have length one, the ART iterative step
is

xk = xk−1 + (bi − (Axk−1)i)a
i,

where ai is the ith column of AT . When Ax = b has no solutions, the
ART algorithm does not converge to the least-squares solution; rather,
it exhibits subsequential convergence to a limit cycle. However, using the
previous theorem, we can show that the following modification of the ART,
which we shall call the least squares ART (LS-ART), converges to the least-
squares solution for every x0:

xk = xk−1 +
rk · ai

ai ·Qai
ai.
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15.4 Conjugate Bases for RJ

If the set {v1, ..., vJ} is a basis for RJ , then any vector x in RJ can be
expressed as a linear combination of the basis vectors; that is, there are
real numbers a1, ..., aJ for which

x = a1v
1 + a2v

2 + ...+ aJv
J .

For each x the coefficients aj are unique. To determine the aj we write

x · vm = a1v
1 · vm + a2v

2 · vm + ...+ aJv
J · vm,

for m = 1, ..., J . Having calculated the quantities x · vm and vj · vm, we
solve the resulting system of linear equations for the aj .

If, instead of an arbitrary basis {v1, ..., vJ}, we use an orthogonal basis
{u1, ..., uJ}, that is, uj · um = 0, unless j = m, then the system of linear
equations is trivial to solve. The solution is aj = x · uj/uj · uj , for each j.
Of course, we still need to compute the quantities x · uj .

The least-squares solution of the linear system of equations Ax = b is

x̂ = (ATA)−1AT b = Q−1c.

To express x̂ as a linear combination of the members of an orthogonal basis
{u1, ..., uJ} we need the quantities x̂ ·uj , which usually means that we need
to know x̂ first. For a special kind of basis, a Q-conjugate basis, knowing x̂
ahead of time is not necessary; we need only know Q and c. Therefore, we
can use such a basis to find x̂. This is the essence of the conjugate gradient
method (CGM), in which we calculate a conjugate basis and, in the process,
determine x̂.

15.4.1 Conjugate Directions

From Equation (15.2) we have

(c−Qxk) · dk = 0,

which can be expressed as

(x̂− xk) ·Qdk = (x̂− xk)TQdk = 0.

Two vectors x and y are said to be Q-orthogonal (or Q-conjugate, or just
conjugate) if x · Qy = 0. So, the least-squares solution that we seek lies
in a direction from xk that is Q-orthogonal to dk. This suggests that we
can do better than steepest descent if we take the next direction to be
Q-orthogonal to the previous one, rather than just orthogonal. This leads
us to conjugate direction methods.
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Ex. 15.4 Say that the set {p1, ..., pn} is a conjugate set for RJ if pi ·Qpj =
0 for i 6= j. Prove that a conjugate set that does not contain zero is linearly
independent. Show that if pn 6= 0 for n = 1, ..., J , then the least-squares
vector x̂ can be written as

x̂ = a1p
1 + ...+ aJp

J ,

with aj = c ·pj/pj ·Qpj for each j. Hint: use the Q-inner product 〈x, y〉Q =
x ·Qy.

Therefore, once we have a conjugate basis, computing the least squares
solution is trivial. Generating a conjugate basis can obviously be done using
the standard Gram-Schmidt approach.

15.4.2 The Gram-Schmidt Method

Let {v1, ..., vJ} be a basis for the space RJ . The Gram-Schmidt method
uses the vj to create an orthogonal basis {u1, ..., uJ} for RJ . Begin by
taking u1 = v1. For j = 2, ..., J , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1.

To apply this approach to obtain a conjugate basis, we would simply replace
the dot products uk · vj and uk · uk with the Q-inner products, that is,

pj = vj − p1 ·Qvj

p1 ·Qp1
p1 − ...− pj−1 ·Qvj

pj−1 ·Qpj−1
pj−1. (15.5)

Even though the Q-inner products can always be written as x · Qy =
Ax ·Ay, so that we need not compute the matrix Q, calculating a conjugate
basis using Gram-Schmidt is not practical for large J . There is a way out,
fortunately.

If we take p1 = v1 and vj = Qpj−1, we have a much more efficient
mechanism for generating a conjugate basis, namely a three-term recursion
formula [198]. The set {p1, Qp1, ..., QpJ−1} need not be a linearly indepen-
dent set, in general, but, if our goal is to find x̂, and not really to calculate
a full conjugate basis, this does not matter, as we shall see.

Theorem 15.3 Let p1 6= 0 be arbitrary. Let p2 be given by

p2 = Qp1 − Qp1 ·Qp1

p1 ·Qp1
p1,

so that p2 ·Qp1 = 0. Then, for n ≥ 2, let pn+1 be given by

pn+1 = Qpn − Qpn ·Qpn

pn ·Qpn
pn − Qpn−1 ·Qpn

pn−1 ·Qpn−1
pn−1. (15.6)
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Then, the set {p1, ..., pJ} is a conjugate set for RJ . If pn 6= 0 for each n,
then the set is a conjugate basis for RJ .

Proof: We consider the induction step of the proof. Assume that
{p1, ..., pn} is aQ-orthogonal set of vectors; we then show that {p1, ..., pn+1}
is also, provided that n ≤ J − 1. It is clear from Equation (15.6) that

pn+1 ·Qpn = pn+1 ·Qpn−1 = 0.

For j ≤ n− 2, we have

pn+1 ·Qpj = pj ·Qpn+1 = pj ·Q2pn − apj ·Qpn − bpj ·Qpn−1,

for constants a and b. The second and third terms on the right side are
then zero because of the induction hypothesis. The first term is also zero
since

pj ·Q2pn = (Qpj) ·Qpn = 0

because Qpj is in the span of {p1, ..., pj+1}, and so is Q-orthogonal to pn.

The calculations in the three-term recursion formula Equation (15.6)
also occur in the Gram-Schmidt approach in Equation (15.5); the point is
that Equation (15.6) uses only the first three terms, in every case.

15.5 The Conjugate Gradient Method

The main idea in the conjugate gradient method (CGM) is to build the
conjugate set as we calculate the least squares solution using the iterative
algorithm

xn = xn−1 + αnp
n. (15.7)

The αn is chosen so as to minimize f(xn−1 + αpn) as a function of α, and
so we have

αn =
rn · pn

pn ·Qpn
, (15.8)

where rn = c−Qxn−1.

Ex. 15.5 Show that

rn+1 = rn − αnQpn, (15.9)

so Qpn is in the span of rn+1 and rn.
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Since the function f(x) = 1
2 ||Ax − b||22 has for its gradient ∇f(x) =

AT (Ax− b) = Qx− c, the residual vector rn = c−Qxn−1 is the direction
of steepest descent from the point x = xn−1. The CGM combines the use
of the negative gradient directions from the steepest descent method with
the use of a conjugate basis of directions, by using the rn to construct the
next direction pn in such a way as to form a conjugate set {p1, ..., pJ}.

As before, there is an efficient recursive formula that provides the next
direction: let p1 = r1 = (c−Qx0) and for j = 2, 3, ...

pj = rj − βj−1p
j−1, (15.10)

with

βj−1 =
rj ·Qpj−1

pj−1 ·Qpj−1
. (15.11)

It follows from the definition of βj−1 that

pjQpj−1 = 0. (15.12)

Since the αn is the optimal choice and

rn+1 = −∇f(xn),

we have, according to Equation (15.2),

rn+1 · pn = 0. (15.13)

Ex. 15.6 Prove that rn = 0 whenever pn = 0, in which case we have
c = Qxn−1, so that xn−1 is the least-squares solution.

Ex. 15.7 Show that rn · pn = rn · rn, so that

αn =
rn · rn

pn ·Qpn
. (15.14)

In theory, the CGM converges to the least squares solution in finitely
many steps, since we either reach pn+1 = 0 or n+ 1 = J . With x0 = 0 and

xn = xn−1 + αnp
n, (15.15)

for n = 1, 2, ..., J , we have xJ = x̂, the least squares solution. In practice,
the CGM can be employed as a fully iterative method by cycling back
through the previously used directions.

An induction proof similar to the one used to prove Theorem 15.3 es-
tablishes that the set {p1, ..., pJ} is a conjugate set [198, 209]. In fact, we
can say more.
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Theorem 15.4 For n = 1, 2, ..., J and j = 1, ..., n− 1 we have

• a) rn · rj = 0;

• b) rn · pj = 0; and

• c) pn ·Qpj = 0.

The proof presented here through a series of exercises is based on that given
in [209].

The proof uses induction on the number n. Throughout the following
exercises assume that the statements in the theorem hold for some fixed n
with 2 ≤ n < J and for j = 1, 2, ..., n− 1. We prove that they hold also for
n+ 1 and j = 1, 2, ..., n.

Ex. 15.8 Show that pn ·Qpn = rn ·Qpn, so that

αn =
rn · rn

rn ·Qpn
. (15.16)

Hints: use Equation (15.10) and the induction assumption concerning c)
of the Theorem.

Ex. 15.9 Show that rn+1 ·rn = 0. Hint: use Equations (15.16) and (15.9).

Ex. 15.10 Show that rn+1 · rj = 0, for j = 1, ..., n − 1. Hints: write out
rn+1 using Equation (15.9) and rj using Equation (15.10), and use the
induction hypotheses.

Ex. 15.11 Show that rn+1 · pj = 0, for j = 1, ..., n. Hints: use Equations
(15.9) and (15.10) and induction assumptions b) and c).

Ex. 15.12 Show that pn+1 ·Qpj = 0, for j = 1, ..., n− 1. Hints: use Equa-
tion (15.9), the previous exercise, and the induction assumptions.

The final step in the proof is to show that pn+1 · Qpn = 0. But this
follows immediately from Equation (15.12).

15.6 Krylov Subspaces

Another approach to deriving the conjugate gradient method is to use
Krylov subspaces. If we select x0 = 0 as our starting vector for the CGM,
then p1 = r1 = c, and each pn+1 and xn+1 lie in the Krylov subspace
Kn(Q, c), defined to be the span of the vectors {c,Qc,Q2c, ..., Qnc}.
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For any x in RJ , we have

‖x− x̂‖2Q = (x− x̂)TQ(x− x̂).

Minimizing ‖x− x̂‖2Q over all x in Kn(Q, c) is equivalent to minimizing the

same function over all x of the form x = xn + αpn+1. This, in turn, is
equivalent to minimizing

−2αpn+1 · rn+1 + α2pn+1 ·Qpn+1,

over all α, which has for its solution the value α = αn+1 used to calculate
xn+1 in the CGM.

15.7 Convergence Issues

The convergence rate of the CGM depends on the condition number of
the matrix Q, which is the ratio of its largest to its smallest eigenvalues.
When the condition number is much greater than one convergence can be
accelerated by preconditioning the matrix Q; this means replacing Q with
P−1/2QP−1/2, for some positive-definite approximation P of Q (see [7]).

15.8 Extending the CGM

There are versions of the CGM for the minimization of nonquadratic
functions. In the quadratic case the next conjugate direction pn+1 is built
from the residual rn+1 and pn. Since, in that case, rn+1 = −∇f(xn), this
suggests that in the nonquadratic case we build pn+1 from−∇f(xn) and pn.
This leads to the Fletcher-Reeves method. Other similar algorithms, such
as the Polak-Ribiere and the Hestenes-Stiefel methods, perform better on
certain problems [209].
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16.1 Chapter Summary

When we use an iterative algorithm, we want it to solve our problem.
We also want the solution in a reasonable amount of time, and we want
slight errors in the measurements to cause only slight perturbations in the
calculated answer. We have already discussed the use of block-iterative
methods to accelerate convergence. Now we turn to regularization as a
means of reducing sensitivity to noise. Because a number of regularization
methods can be derived using a Bayesian maximum a posteriori approach,
regularization is sometimes treated under the heading of MAP methods;
see, for example, [207, 225] and the discussion in [65]. Penalty functions are
also used for regularization [132, 2, 3].
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16.2 Where Does Sensitivity Come From?

We illustrate the sensitivity problem that can arise when the inconsis-
tent system Ax = b has more equations than unknowns. We take A to be
I by J and we calculate the least-squares solution,

xLS = (A†A)−1A†b, (16.1)

assuming that the J by J Hermitian, nonnegative-definite matrix Q =
(A†A) is invertible, and therefore positive-definite.

The matrix Q has the eigenvalue/eigenvector decomposition

Q = λ1u1u
†
1 + · · ·+ λJuJu

†
J , (16.2)

where the (necessarily positive) eigenvalues of Q are

λ1 ≥ λ2 ≥ · · · ≥ λJ > 0, (16.3)

and the vectors uj are the corresponding orthonormal eigenvectors.

16.2.1 The Singular-Value Decomposition of A

The square roots
√
λj are called the singular values of A. The singular-

value decomposition (SVD) of A is similar to the eigenvalue/eigenvector
decomposition of Q: we have

A =
√
λ1u1v

†
1 + · · ·+

√
λIuJv

†
J , (16.4)

where the vj are particular eigenvectors of AA†. We see from the SVD that

the quantities
√
λj determine the relative importance of each term ujv

†
j .

The SVD is commonly used for compressing transmitted or stored im-
ages. In such cases, the rectangular matrix A is a discretized image. It is
not uncommon for many of the lowest singular values of A to be nearly
zero, and to be essentially insignificant in the reconstruction of A. Only
those terms in the SVD for which the singular values are significant need
to be transmitted or stored. The resulting images may be slightly blurred,
but can be restored later, as needed.

When the matrix A is a finite model of a linear imaging system, there
will necessarily be model error in the selection of A. Getting the dominant
terms in the SVD nearly correct is much more important (and usually much
easier) than getting the smaller ones correct. The problems arise when we
try to invert the system, to solve Ax = b for x.
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16.2.2 The Inverse of Q = A†A

The inverse of Q can then be written

Q−1 = λ−1
1 u1u

†
1 + · · ·+ λ−1

J uJu
†
J , (16.5)

so that, with A†b = c, we have

xLS = λ−1
1 (u†1c)u1 + · · ·+ λ−1

J (u†Jc)uJ . (16.6)

Because the eigenvectors are orthonormal, we can express ||A†b||22 = ||c||22
as

||c||22 = |u†1c|2 + · · ·+ |u†Jc|
2, (16.7)

and ||xLS ||22 as

||xLS ||22 = λ−1
1 |u

†
1c|2 + · · ·+ λ−1

J |u
†
Jc|

2. (16.8)

It is not uncommon for the eigenvalues of Q to be quite distinct, with some
of them much larger than the others. When this is the case, we see that
||xLS ||2 can be much larger than ||c||2, because of the presence of the terms
involving the reciprocals of the small eigenvalues. When the measurements
b are essentially noise-free, we may have |u†jc| relatively small, for the indices

near J , keeping the product λ−1
j |u

†
jc|2 reasonable in size, but when the b

becomes noisy, this may no longer be the case. The result is that those terms
corresponding to the reciprocals of the smallest eigenvalues dominate the
sum for xLS and the norm of xLS becomes quite large. The least-squares
solution we have computed is essentially all noise and useless.

In our discussion of the ART, we saw that when we impose a non-
negativity constraint on the solution, noise in the data can manifest itself
in a different way. When A has more columns than rows, but Ax = b has
no non-negative solution, then, at least for those A having the full-rank
property, the non-negatively constrained least-squares solution has at most
I − 1 non-zero entries. This happens also with the EMML and SMART
solutions. As with the ART, regularization can eliminate the problem.

16.2.3 Reducing the Sensitivity to Noise

As we just saw, the presence of small eigenvalues for Q and noise in b
can cause ||xLS ||2 to be much larger than ||A†b||2, with the result that xLS
is useless. In this case, even though xLS minimizes ||Ax − b||2, it does so
by overfitting to the noisy b. To reduce the sensitivity to noise and thereby
obtain a more useful approximate solution, we can regularize the problem.

It often happens in applications that, even when there is an exact so-
lution of Ax = b, noise in the vector b makes such as exact solution unde-
sirable; in such cases a regularized solution is usually used instead. Select
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ε > 0 and a vector p that is a prior estimate of the desired solution. Define

Fε(x) = (1− ε)‖Ax− b‖22 + ε‖x− p‖22. (16.9)

Lemma 16.1 The function Fε always has a unique minimizer x̂ε, given
by

x̂ε = ((1− ε)A†A+ εI)−1((1− ε)A†b+ εp); (16.10)

this is a regularized solution of Ax = b. Here, p is a prior estimate of the
desired solution. Note that the inverse above always exists.

Note that, if p = 0, then

x̂ε = (A†A+ γ2I)−1A†b, (16.11)

for γ2 = ε
1−ε . The regularized solution has been obtained by modifying

the formula for xLS , replacing the inverse of the matrix Q = A†A with
the inverse of Q + γ2I. When ε is near zero, so is γ2, and the matrices
Q and Q + γ2I are nearly equal. What is different is that the eigenvalues
of Q + γ2I are λi + γ2, so that, when the eigenvalues are inverted, the
reciprocal eigenvalues are no larger than 1/γ2, which prevents the norm of
xε from being too large, and decreases the sensitivity to noise.

Lemma 16.2 Let ε be in (0, 1), and let I be the identity matrix whose
dimensions are understood from the context. Then

((1− ε)AA† + εI)−1A = A((1− ε)A†A+ εI)−1, (16.12)

and, taking conjugate transposes,

A†((1− ε)AA† + εI)−1 = ((1− ε)A†A+ εI)−1A†. (16.13)

Proof: Use the identity

A((1− ε)A†A+ εI) = ((1− ε)AA† + εI)A. (16.14)

Lemma 16.3 Any vector p in RJ can be written as p = A†q + r, where
Ar = 0.

What happens to x̂ε as ε goes to zero? This will depend on which case
we are in:

Case 1: J ≤ I, and we assume that A†A is invertible; or

Case 2: J > I, and we assume that AA† is invertible.
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Lemma 16.4 In Case 1, taking limits as ε→ 0 on both sides of the expres-
sion for x̂ε gives x̂ε → (A†A)−1A†b, the least squares solution of Ax = b.

We consider Case 2 now. Write p = A†q + r, with Ar = 0. Then

x̂ε = A†((1− ε)AA† + εI)−1((1− ε)b+

εq) + ((1− ε)A†A+ εI)−1(εr). (16.15)

Lemma 16.5 (a) We have

((1− ε)A†A+ εI)−1(εr) = r, (16.16)

for all ε ∈ (0, 1). (b) Taking the limit of x̂ε, as ε → 0, we get x̂ε →
A†(AA†)−1b+ r. This is the solution of Ax = b closest to p.

Proof: For part (a) let

tε = ((1− ε)A†A+ εI)−1(εr). (16.17)

Then, multiplying by A gives

Atε = A((1− ε)A†A+ εI)−1(εr). (16.18)

Now show that Atε = 0. For part (b) draw a diagram for the case of one
equation in two unknowns.

16.3 Iterative Regularization

It is often the case that the entries of the vector b in the system Ax = b
come from measurements, so are usually noisy. If the entries of b are noisy
but the system Ax = b remains consistent (which can easily happen in the
under-determined case, with J > I), the ART begun at x0 = 0 converges
to the solution having minimum norm, but this norm can be quite large.
The resulting solution is probably useless. Instead of solving Ax = b, we
regularize by minimizing, for example, the function Fε(x) given in Equation
(16.9). For the case of p = 0, the solution to this problem is the vector x̂ε
in Equation (16.11). However, we do not want to calculate A†A + γ2I, in
order to solve

(A†A+ γ2I)x = A†b, (16.19)

when the matrix A is large. Fortunately, there are ways to find x̂ε, using
only the matrix A. We later we shall see how this might be accomplished
using the ART; now we show how the Landweber algorithm can be used
to calculate this regularized solution.
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16.3.1 Regularizing Landweber’s Algorithm

Our goal is to minimize the function in Equation (16.9), with p = 0.
Notice that this is equivalent to minimizing the function

F (x) = ||Bx− c||22, (16.20)

for

B =

[
A
γI

]
, (16.21)

and

c =

[
b
0

]
, (16.22)

where 0 denotes a column vector with all entries equal to zero and γ = ε
1−ε .

The Landweber iteration for the problem Bx = c is

xk+1 = xk + αBT (c−Bxk), (16.23)

for 0 < α < 2/ρ(BTB), where ρ(BTB) is the spectral radius of BTB.
Equation (16.23) can be written as

xk+1 = (1− αγ2)xk + αAT (b−Axk). (16.24)

16.4 A Bayesian View of Reconstruction

The EMML iterative algorithm maximizes the likelihood function for
the case in which the entries of the data vector b = (b1, ..., bI)

T are as-
sumed to be samples of independent Poisson random variables with mean
values (Ax)i; here, A is an I by J matrix with nonnegative entries and
x = (x1, ..., xJ)T is the vector of nonnegative parameters to be estimated.
Equivalently, it minimizes the Kullback-Leibler distance KL(b, Ax). This
situation arises in single photon emission tomography, where the bi are the
number of photons counted at each detector i, x is the vectorized image
to be reconstructed and its entries xj are (proportional to) the radionu-
clide intensity levels at each voxel j. When the signal-to-noise ratio is low,
which is almost always the case in medical applications, maximizing like-
lihood can lead to unacceptably noisy reconstructions, particularly when
J is larger than I. One way to remedy this problem is simply to halt the
EMML algorithm after a few iterations, to avoid over-fitting the x to the
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noisy data. A more mathematically sophisticated remedy is to employ a
penalized-likelihood or Bayesian approach and seek a maximum a posteri-
ori (MAP) estimate of x.

In the Bayesian approach we view x as an instance of a random vector
having a probability density function f(x). Instead of maximizing the likeli-
hood given the data, we now maximize the posterior likelihood, given both
the data and the prior distribution for x. This is equivalent to minimizing

F (x) = KL(b, Ax)− log f(x). (16.25)

The EMML algorithm is an example of an optimization method based on
alternating minimization of a function H(x, z) > 0 of two vector variables.
The alternating minimization works this way: let x and z be vector variables
and H(x, z) > 0. If we fix z and minimize H(x, z) with respect to x, we
find that the solution is x = z, the vector we fixed; that is,

H(x, z) ≥ H(z, z) (16.26)

always. If we fix x and minimize H(x, z) with respect to z, we get something
new; call it Tx. The EMML algorithm has the iterative step xk+1 = Txk.

Obviously, we can’t use an arbitrary function H; it must be related to
the function KL(b, Ax) that we wish to minimize, and we must be able
to obtain each intermediate optimizer in closed form. The clever step is to
select H(x, z) so that H(x, x) = KL(b, Ax), for any x. Now see what we
have so far:

KL(b, Axk) = H(xk, xk) ≥ H(xk, xk+1) (16.27)

≥ H(xk+1, xk+1) = KL(b, Axk+1). (16.28)

That tells us that the algorithm makes KL(b, Axk) decrease with each
iteration. The proof doesn’t stop here, but at least it is now plausible that
the EMML iteration could minimize KL(b, Ax).

The function H(x, z) used in the EMML case is the KL distance

H(x, z) = KL(r(x), q(z)) =

I∑
i=1

J∑
j=i

KL(r(x)ij , q(z)ij); (16.29)

we define, for each nonnegative vector x for which (Ax)i =
∑J
j=1Aijxj > 0,

the arrays r(x) = {r(x)ij} and q(x) = {q(x)ij} with entries

r(x)ij = xjAij
bi

(Ax)i
(16.30)

and

q(x)ij = xjAij . (16.31)
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With x = xk fixed, we minimize with respect to z to obtain the next
EMML iterate xk+1. Having selected the prior pdf f(x), we want an itera-
tive algorithm to minimize the function F (x) in Equation (16.25). It would
be a great help if we could mimic the alternating minimization formulation
and obtain xk+1 by minimizing

KL(r(xk), q(z))− log f(z) (16.32)

with respect to z. Unfortunately, to be able to express each new xk+1 in
closed form, we need to choose f(x) carefully.

16.5 The Gamma Prior Distribution for x

In [190] Lange et al. suggest viewing the entries xj as samples of inde-
pendent gamma-distributed random variables. A gamma-distributed ran-
dom variable x takes positive values and has for its pdf the gamma distri-
bution defined for positive x by

γ(x) =
1

Γ(α)
(
α

β
)αxα−1e−αx/β , (16.33)

where α and β are positive parameters and Γ denotes the gamma function.
The mean of such a gamma-distributed random variable is then µ = β and
the variance is σ2 = β2/α.

Lemma 16.6 If the entries zj of z are viewed as independent and gamma-
distributed with means µj and variances σ2

j , then minimizing the function
in line (16.32) with respect to z is equivalent to minimizing the function

KL(r(xk), q(z)) +

J∑
j=1

δjKL(γj , zj), (16.34)

for

δj =
µj
σ2
j

, γj =
µ2
j − σ2

j

µj
, (16.35)

under the assumption that the latter term is positive.

The resulting regularized EMML algorithm is the following:
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Algorithm 16.1 (γ-prior Regularized EMML) Let x0 be an arbitrary
positive vector. Then let

xk+1
j =

δj
δj + sj

γj +
1

δj + sj
xkj

I∑
i=1

Aijbi/(Ax
k)i, (16.36)

where sj =
∑I
i=1Aij.

We see from Equation (16.36) that the MAP iteration using the gamma
priors generates a sequence of estimates each entry of which is a convex
combination or weighted arithmetic mean of the result of one EMML step
and the prior estimate γj . Convergence of the resulting iterative sequence
is established by Lange, Bahn and Little in [190]; see also [51].

16.6 The One-Step-Late Alternative

It may well happen that we do not wish to use the gamma priors model
and prefer some other f(x). Because we will not be able to find a closed
form expression for the z minimizing the function in line (16.32), we need
some other way to proceed with the alternating minimization. Green [154]
has offered the one-step-late (OSL) alternative.

When we try to minimize the function in line (16.32) by setting the
gradient to zero we replace the variable z that occurs in the gradient of the
term − log f(z) with xk, the previously calculated iterate. Then, we can
solve for z in closed form to obtain the new xk+1. Unfortunately, negative
entries can result and convergence is not guaranteed. There is a sizable
literature on the use of MAP methods for this problem. In [60] an interior
point algorithm (IPA) is presented that avoids the OSL issue. In [208] the
IPA is used to regularize transmission tomographic images.

16.7 Regularizing the SMART

The SMART algorithm is not derived as a maximum likelihood method,
so regularized versions do not take the form of MAP algorithms. Neverthe-
less, in the presence of noisy data, the SMART algorithm suffers from the
same problem that afflicts the EMML, overfitting to noisy data resulting
in an unacceptably noisy image. As we saw earlier, there is a close con-
nection between the EMML and SMART algorithms. This suggests that a
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regularization method for SMART can be developed along the lines of the
MAP with gamma priors used for EMML. Since the SMART is obtained by
minimizing the function KL(q(z), r(xk)) with respect to z to obtain xk+1,
it seems reasonable to attempt to derive a regularized SMART iterative
scheme by minimizing

KL(q(z), r(xk)) +

J∑
j=1

δjKL(zj , γj), (16.37)

as a function of z, for selected positive parameters δj and γj . This leads to
the following algorithm:

Algorithm 16.2 (Regularized SMART) Let x0 be an arbitrary positive
vector. Then let

log xk+1
j =

δj
δj + sj

log γj +
1

δj + sj
xkj

I∑
i=1

Aij log[bi/(Ax
k)i]. (16.38)

In [51] it was shown that this iterative sequence converges to a minimizer
of the function

KL(Ax, y) +

J∑
j=1

δjKL(xj , γj). (16.39)

It is useful to note that, although it may be possible to rederive this min-
imization problem within the framework of Bayesian MAP estimation by
carefully selecting a prior pdf for the vector x, we have not done so. The
MAP approach is a special case of regularization through the use of penalty
functions. These penalty functions need not arise through a Bayesian for-
mulation of the parameter-estimation problem.

16.8 De Pierro’s Surrogate-Function Method

In [110] Alvaro De Pierro presents a modified EMML algorithm that
includes regularization in the form of a penalty function. His objective is the
same as ours was in the case of regularized SMART: to embed the penalty
term in the alternating minimization framework in such a way as to make
it possible to obtain the next iterate in closed form. Because his surrogate
function method has been used subsequently by others to obtain penalized
likelihood algorithms [91], we consider his approach in some detail.

Let x and z be vector variables and H(x, z) > 0. Mimicking the behavior
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of the function H(x, z) used in Equation (16.29), we require that if we fix z
and minimize H(x, z) with respect to x, the solution should be x = z, the
vector we fixed; that is, H(x, z) ≥ H(z, z) always. If we fix x and minimize
H(x, z) with respect to z, we should get something new; call it Tx. As with
the EMML, the algorithm will have the iterative step xk+1 = Txk.

Summarizing, we see that we need a function H(x, z) with the following
properties:

• (1) H(x, z) ≥ H(z, z) for all x and z;

• (2) H(x, x) is the function F (x) we wish to minimize; and

• (3) minimizing H(x, z) with respect to z for fixed x is easy.

The function to be minimized is

F (x) = KL(b, Ax) + g(x), (16.40)

where g(x) ≥ 0 is some penalty function. De Pierro uses penalty functions
g(x) of the form

g(x) =

p∑
l=1

fl(〈sl, x〉 ). (16.41)

Let us define the matrix S to have for its lth row the vector sTl . Then
〈sl, x〉 = (Sx)l, the lth entry of the vector Sx. Therefore,

g(x) =

p∑
l=1

fl((Sx)l). (16.42)

Let λlj > 0 with
∑J
j=1 λlj = 1, for each l.

Assume that the functions fl are convex. Therefore, for each l, we have

fl((Sx)l) = fl(

J∑
j=1

Sljxj) = fl(

J∑
j=1

λlj(Slj/λlj)xj) (16.43)

≤
J∑
j=1

λljfl((Slj/λlj)xj). (16.44)

Therefore,

g(x) ≤
p∑
l=1

J∑
j=1

λljfl((Slj/λlj)xj). (16.45)
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So we have replaced g(x) with a related function in which the xj occur
separately, rather than just in the combinations (Sx)l. But we aren’t quite
done yet.

We would like to take for De Pierro’s H(x, z) the function used in the
EMML algorithm, plus the function

p∑
l=1

J∑
j=1

λljfl((Slj/λlj)zj). (16.46)

But there is one slight problem: we need H(z, z) = F (z), which we don’t
have yet.

De Pierro’s clever trick is to replace fl((Slj/λlj)zj) with

fl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+ fl((Sx)l). (16.47)

So, De Pierro’s function H(x, z) is the sum of the H(x, z) used in the
EMML case and the function

p∑
l=1

J∑
j=1

λljfl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+

p∑
l=1

fl((Sx)l). (16.48)

Now he has the three properties he needs. Once he has computed xk, he
minimizes H(xk, z) by taking the gradient and solving the equations for
the correct z = Txk = xk+1. For the choices of fl he discusses, these
intermediate calculations can either be done in closed form (the quadratic
case) or with a simple Newton-Raphson iteration (the logcosh case).

16.9 Block-Iterative Regularization

We saw previously that it is possible to obtain a regularized least-
squares solution x̂ε, and thereby avoid the limit cycle, using only the ma-
trix A and the ART algorithm. This prompts us to ask if it is possible to
find regularized SMART solutions using block-iterative variants of SMART.
Similarly, we wonder if it is possible to do the same for EMML.

Open Question: Can we use the MART to find the minimizer of the
function

KL(Ax, b) + εKL(x, p)? (16.49)

More generally, can we obtain the minimizer using RBI-SMART?
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Open Question: Can we use the RBI-EMML methods to obtain the min-
imizer of the function

KL(b, Ax) + εKL(p, x)? (16.50)

There have been various attempts to include regularization in block-
iterative methods, to reduce noise sensitivity and avoid limit cycles; the
paper by Ahn and Fessler [2] is a good source, as is [3]. Most of these
approaches have been ad hoc, with little or no theoretical basis. Typically,
they simply modify each iterative step by including an additional term that
appears to be related to the regularizing penalty function. The case of the
ART is instructive, however. In that case, we obtained the desired iterative
algorithm by using an augmented set of variables, not simply by modifying
each step of the original ART algorithm. How to do this for the MART and
the other block-iterative algorithms is not obvious.

Recall that the RAMLA method in Equation (26.52) is similar to the
RBI-EMML algorithm, but employs a sequence of decreasing relaxation
parameters, which, if properly chosen, will cause the iterates to converge
to the minimizer of KL(b, Ax), thereby avoiding the limit cycle. In [112]
De Pierro and Yamaguchi present a regularized version of RAMLA, but
without guaranteed convergence.
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17.1 Chapter Summary

Our topic is now transmission tomography. This chapter will provide a
detailed description of how the data is gathered, the mathematical model
of the scanning process, and the problem to be solved. In the next chapter
we shall study the various mathematical techniques needed to solve this
problem and the manner in which these techniques are applied. The man
in Figure 17.1 is Allan Cormack, who won the Nobel Prize in 1979 for
inventing the CAT scan.

17.2 X-ray Transmission Tomography

Although transmission tomography is not limited to scanning living be-
ings, we shall concentrate here on the use of x-ray tomography in medical
diagnosis and the issues that concern us in that application. The mathe-
matical formulation will, of course, apply more generally.

In x-ray tomography, x-rays are transmitted through the body along
many lines. In some, but not all, cases, the lines will all lie in the same plane.
The strength of the x-rays upon entering the body is assumed known, and
the strength upon leaving the body is measured. This data can then be used
to estimate the amount of attenuation the x-ray encountered along that
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line, which is taken to be the integral, along that line, of the attenuation
function. On the basis of these line integrals, we estimate the attenuation
function. This estimate is presented to the physician as one or more two-
dimensional images.

17.3 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types
of matter, such as soft tissue, bone, ligaments, air, each weakening the
beam to a greater or lesser extent. If the intensity of the beam upon entry
is Iin and Iout is its lower intensity after passing through the body, then

Iout = Iine
−

∫
L
f ,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being
scanned and

∫
L
f is the integral of the function f over the line L along

which the x-ray beam has passed. To see why this is the case, imagine the
line L parameterized by the variable s and consider the intensity function
I(s) as a function of s. For small ∆s > 0, the drop in intensity from the
start to the end of the interval [s, s + ∆s] is approximately proportional
to the intensity I(s), to the attenuation f(s) and to ∆s, the length of the
interval; that is,

I(s)− I(s+ ∆s) ≈ f(s)I(s)∆s.

Dividing by ∆s and letting ∆s approach zero, we get

I ′(s) = −f(s)I(s).

Ex. 17.1 Show that the solution to this differential equation is

I(s) = I(0) exp(−
∫ u=s

u=0

f(u)du).

Hint: Use an integrating factor.

From knowledge of Iin and Iout, we can determine
∫
L
f . If we know

∫
L
f

for every line in the x, y-plane we can reconstruct the attenuation func-
tion f . In the real world we know line integrals only approximately and
only for finitely many lines. The goal in x-ray transmission tomography
is to estimate the attenuation function f(x, y) in the slice, from finitely
many noisy measurements of the line integrals. We usually have prior in-
formation about the values that f(x, y) can take on. We also expect to find
sharp boundaries separating regions where the function f(x, y) varies only
slightly. Therefore, we need algorithms capable of providing such images.
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17.4 Difficulties to be Overcome

There are several problems associated with this model. X-ray beams are
not exactly straight lines; the beams tend to spread out. The x-rays are not
monochromatic, and their various frequency components are attenuated at
different rates, resulting in beam hardening, that is, changes in the spectrum
of the beam as it passes through the object. The beams consist of photons
obeying statistical laws, so our algorithms probably should be based on
these laws. How we choose the line segments is determined by the nature
of the problem; in certain cases we are somewhat limited in our choice
of these segments. Patients move; they breathe, their hearts beat, and,
occasionally, they shift position during the scan. Compensating for these
motions is an important, and difficult, aspect of the image reconstruction
process. Finally, to be practical in a clinical setting, the processing that
leads to the reconstructed image must be completed in a short time, usually
around fifteen minutes. This time constraint is what motivates viewing
the three-dimensional attenuation function in terms of its two-dimensional
slices.

As we shall see, the Fourier transform and the associated theory of con-
volution filters play important roles in the reconstruction of transmission
tomographic images.

The data we actually obtain at the detectors are counts of detected
photons. These counts are not the line integrals; they are random quan-
tities whose means, or expected values, are related to the line integrals.
The Fourier inversion methods for solving the problem ignore its statistical
aspects; in contrast, other methods, such as likelihood maximization, are
based on a statistical model that involves Poisson-distributed emissions.

17.5 Reconstruction from Line Integrals

We turn now to the underlying problem of reconstructing attenuation
functions from line-integral data.

17.5.1 The Radon Transform

Our goal is to reconstruct the function f(x, y) ≥ 0 from line-integral
data. Let θ be a fixed angle in the interval [0, π). Form the t, s-axis system
with the positive t-axis making the angle θ with the positive x-axis, as
shown in Figure 17.2. Each point (x, y) in the original coordinate system



230 Applied and Computational Linear Algebra: A First Course

has coordinates (t, s) in the second system, where the t and s are given by

t = x cos θ + y sin θ,

and
s = −x sin θ + y cos θ.

If we have the new coordinates (t, s) of a point, the old coordinates are
(x, y) given by

x = t cos θ − s sin θ,

and
y = t sin θ + s cos θ.

We can then write the function f as a function of the variables t and s. For
each fixed value of t, we compute the integral∫

L

f(x, y)ds =

∫
f(t cos θ − s sin θ, t sin θ + s cos θ)ds

along the single line L corresponding to the fixed values of θ and t. We
repeat this process for every value of t and then change the angle θ and
repeat again. In this way we obtain the integrals of f over every line L in
the plane. We denote by rf (θ, t) the integral

rf (θ, t) =

∫
L

f(x, y)ds.

The function rf (θ, t) is called the Radon transform of f .

17.5.2 The Central Slice Theorem

For fixed θ the function rf (θ, t) is a function of the single real variable
t; let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =

∫
rf (θ, t)eiωtdt

=

∫ ∫
f(t cos θ − s sin θ, t sin θ + s cos θ)eiωtdsdt

=

∫ ∫
f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the Central Slice Theorem. For fixed θ, as we change the value
of ω, we obtain the values of the function F along the points of the line
making the angle θ with the horizontal axis. As θ varies in [0, π), we get all
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the values of the function F . Once we have F , we can obtain f using the
formula for the two-dimensional inverse Fourier transform. We conclude
that we are able to determine f from its line integrals. As we shall see,
inverting the Fourier transform can be implemented by combinations of
frequency-domain filtering and back-projection.
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FIGURE 17.1: Allan Cormack, who won the Nobel Prize for the CAT
scan.
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FIGURE 17.2: The Radon transform of f at (t, θ) is the line integral of
f along line L.
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18.1 Chapter Summary

According to the Central Slice Theorem, if we have all the line integrals
through the attenuation function f(x, y) then we have the two-dimensional
Fourier transform of f(x, y). To get f(x, y) we need to invert the two-
dimensional Fourier transform; that is the topic of this chapter.

18.2 Inverting the Fourier Transform

The Fourier-transform inversion formula for two-dimensional functions
tells us that the function f(x, y) can be obtained as

f(x, y) =
1

4π2

∫ ∫
F (u, v)e−i(xu+yv)dudv. (18.1)

We now derive alternative inversion formulas.
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18.2.1 Back-Projection

Let g(θ, t) be any function of the variables θ and t; for example, it could
be the Radon transform. As with the Radon transform, we imagine that
each pair (θ, t) corresponds to one line through the x, y-plane. For each
fixed point (x, y) we assign to this point the sum of the quantities g(θ, t)
for every pair (θ, t) such that the point (x, y) lies on the associated line. The
summing process is integration and the back-projection function at (x, y) is

BPg(x, y) =

∫
g(θ, x cos θ + y sin θ)dθ.

The operation of back-projection will play an important role in what follows
in this chapter.

18.2.2 Ramp Filter, then Back-project

Expressing the double integral in Equation (18.1) in polar coordinates
(ω, θ), with ω ≥ 0, u = ω cos θ, and v = ω sin θ, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞
0

F (u, v)e−i(xu+yv)ωdωdθ,

or

f(x, y) =
1

4π2

∫ π

0

∫ ∞
−∞

F (u, v)e−i(xu+yv)|ω|dωdθ.

Now write
F (u, v) = F (ω cos θ, ω sin θ) = Rf (θ, ω),

where Rf (θ, ω) is the FT with respect to t of rf (θ, t), so that∫ ∞
−∞

F (u, v)e−i(xu+yv)|ω|dω =

∫ ∞
−∞

Rf (θ, ω)|ω|e−iωtdω.

The function gf (θ, t) defined for t = x cos θ + y sin θ by

gf (θ, x cos θ + y sin θ) =
1

2π

∫ ∞
−∞

Rf (θ, ω)|ω|e−iωtdω (18.2)

is the result of a linear filtering of rf (θ, t) using a ramp filter with transfer
function H(ω) = |ω|. Then,

f(x, y) =
1

2π

∫ π

0

gf (θ, x cos θ + y sin θ)dθ (18.3)

gives f(x, y) as the result of a back-projection operator; for every fixed value
of (θ, t) add gf (θ, t) to the current value at the point (x, y) for all (x, y)
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lying on the straight line determined by θ and t by t = x cos θ + y sin θ.
The final value at a fixed point (x, y) is then the average of all the values
gf (θ, t) for those (θ, t) for which (x, y) is on the line t = x cos θ + y sin θ.
It is therefore said that f(x, y) can be obtained by filtered back-projection
(FBP) of the line-integral data.

Knowing that f(x, y) is related to the complete set of line integrals by
filtered back-projection suggests that, when only finitely many line integrals
are available, a similar ramp filtering and back-projection can be used to
estimate f(x, y); in the clinic this is the most widely used method for the
reconstruction of tomographic images.

18.2.3 Back-project, then Ramp Filter

There is a second way to recover f(x, y) using back-projection and fil-
tering, this time in the reverse order; that is, we back-project the Radon
transform and then ramp filter the resulting function of two variables. We
begin again with the relation

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞
0

F (u, v)e−i(xu+yv)ωdωdθ,

which we write as

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞
0

F (u, v)√
u2 + v2

√
u2 + v2e−i(xu+yv)ωdωdθ

=
1

4π2

∫ 2π

0

∫ ∞
0

G(u, v)
√
u2 + v2e−i(xu+yv)ωdωdθ, (18.4)

using

G(u, v) =
F (u, v)√
u2 + v2

for (u, v) 6= (0, 0). Equation (18.4) expresses f(x, y) as the result of per-
forming a two-dimensional ramp filtering of g(x, y), the inverse Fourier
transform of G(u, v). We show now that g(x, y) is the back-projection of
the function rf (θ, t); that is, we show that

g(x, y) =
1

2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

We have

g(x, y) =
1

4π2

∫ π

0

∫ ∞
−∞

G(ω cos θ, ω sin θ)|ω|e−iω(x cos θ+y sin θ)dωdθ
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=
1

4π2

∫ π

0

∫ ∞
−∞

F (ω cos θ, ω sin θ)e−iω(x cos θ+y sin θ)dωdθ

=
1

4π2

∫ π

0

∫ ∞
−∞

Rf (θ, ω)e−iω(x cos θ+y sin θ)dωdθ

=
1

2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ,

as required.

18.2.4 Radon’s Inversion Formula

To get Radon’s inversion formula, we need two basic properties of the
Fourier transform. First, if f(x) has Fourier transform F (γ) then the deriva-
tive f ′(x) has Fourier transform −iγF (γ). Second, if F (γ) = sgn(γ), the
function that is γ

|γ| for γ 6= 0, and equal to zero for γ = 0, then its inverse

Fourier transform is f(x) = 1
iπx .

Writing equation (18.2) as

gf (θ, t) =
1

2π

∫ ∞
−∞

ωRf (θ, ω)sgn(ω)e−iωtdω,

we see that gf is the inverse Fourier transform of the product of the two
functions ωRf (θ, ω) and sgn(ω). Consequently, gf is the convolution of their
individual inverse Fourier transforms, i ∂∂trf (θ, t) and 1

iπt ; that is,

gf (θ, t) =
1

π

∫ ∞
−∞

∂

∂t
rf (θ, s)

1

t− s
ds,

which is the Hilbert transform of the function ∂
∂trf (θ, t), with respect to

the variable t. Radon’s inversion formula is then

f(x, y) =
1

2π

∫ π

0

HT (
∂

∂t
rf (θ, t))dθ.

18.3 From Theory to Practice

What we have just described is the theory. What happens in practice?
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18.3.1 The Practical Problems

Of course, in reality we never have the Radon transform rf (θ, t) for
all values of its variables. Only finitely many angles θ are used, and, for
each θ, we will have (approximate) values of line integrals for only finitely
many t. Therefore, taking the Fourier transform of rf (θ, t), as a function of
the single variable t, is not something we can actually do. At best, we can
approximate Rf (θ, ω) for finitely many θ. From the Central Slice Theorem,
we can then say that we have approximate values of F (ω cos θ, ω sin θ), for
finitely many θ. This means that we have (approximate) Fourier transform
values for f(x, y) along finitely many lines through the origin, like the
spokes of a wheel. The farther from the origin we get, the fewer values
we have, so the coverage in Fourier space is quite uneven. The low-spatial-
frequencies are much better estimated than higher ones, meaning that we
have a low-pass version of the desired f(x, y). The filtered back-projection
approaches we have just discussed both involve ramp filtering, in which the
higher frequencies are increased, relative to the lower ones. This too can
only be implemented approximately, since the data is noisy and careless
ramp filtering will cause the reconstructed image to be unacceptably noisy.

18.3.2 A Practical Solution: Filtered Back-Projection

We assume, to begin with, that we have finitely many line integrals,
that is, we have values rf (θ, t) for finitely many θ and finitely many t.
For each fixed θ we estimate the Fourier transform, Rf (θ, ω). This step
can be performed in various ways, and we can freely choose the values of
ω at which we perform the estimation. The FFT will almost certainly be
involved in calculating the estimates of Rf (θ, ω).

For each fixed θ we multiply our estimated values of Rf (θ, ω) by |ω| and
then use the FFT again to inverse Fourier transform, to achieve a ramp
filtering of rf (θ, t) as a function of t. Note, however, that when |ω| is large,
we may multiply by a smaller quantity, to avoid enhancing noise. We do
this for each angle θ, to get a function of (θ, t), which we then back-project
to get our final image. This is ramp-filtering, followed by back-projection,
as applied to the finite data we have.

It is also possible to mimic the second approach to inversion, that is, to
back-project onto the pixels each rf (θ, t) that we have, and then to perform
a ramp filtering of this two-dimensional array of numbers to obtain the
final image. In this case, the two-dimensional ramp filtering involves many
applications of the FFT.

There is a third approach. Invoking the Central Slice Theorem, we can
say that we have finitely many approximate values of F (u, v), the Fourier
transform of the attenuation function f(x, y), along finitely many lines
through the origin. The first step is to use these values to estimate the
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values of F (u, v) at the points of a rectangular grid. This step involves
interpolation [249, 254]. Once we have (approximate) values of F (u, v) on
a rectangular grid, we perform a two-dimensional FFT to obtain our final
estimate of the (discretized) f(x, y).

18.4 Some Practical Concerns

As computer power increases and scanners become more sophisticated,
there is pressure to include more dimensionality in the scans. This means
going beyond slice-by-slice tomography to fully three-dimensional images,
or even including time as the fourth dimension, to image dynamically. This
increase in dimensionality comes at a cost, however [236]. Besides the in-
crease in radiation to the patient, there are other drawbacks, such as longer
acquisition time, storing large amounts of data, processing and analyzing
this data, displaying the results, reading and understanding the higher-
dimensional images, and so on.

18.5 Summary

We have seen how the problem of reconstructing a function from line in-
tegrals arises in transmission tomography. The Central Slice Theorem con-
nects the line integrals and the Radon transform to the Fourier transform
of the desired attenuation function. Various approaches to implementing
the Fourier Inversion Formula lead to filtered back-projection algorithms
for the reconstruction. In x-ray tomography, as well as in PET, viewing the
data as line integrals ignores the statistical aspects of the problem, and in
SPECT, it ignores, as well, the important physical effects of attenuation.
To incorporate more of the physics of the problem, iterative algorithms
based on statistical models have been developed. We shall consider some
of these algorithms later.
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19.1 Chapter Summary

In this chapter we describe the two modalities of emission tomography,
positron emission tomography (PET) and single photon emission computed
tomography (SPECT), and introduce the basic mathematical models for
both.

The man in Figure 19.1 is the mathematician Paul Dirac, often called
“the British Einstein” . Almost all cancer survivors have had a PET scan,
a marvelous invention that owes its existence to the genius of this man.
Those who knew him often remarked on his “strangeness” ; recent studies
have suggested that both Dirac and his father were autistic.

This is Dirac’s Equation from quantum mechanics, which predicted the
existence of the positron and eventually led to PET scans:

i~
∂ψ

∂t
=

~c
i

(
α1

∂ψ

∂x1
+ α2

∂ψ

∂x2
+ α3

∂ψ

∂x3

)
+ α4mc

2ψ.

In 1930 Dirac added his equation, now inscribed on the wall of Westminster
Abbey, to the developing field of quantum mechanics. This equation agreed
remarkably well with experimental data on the behavior of electrons in
electric and magnetic fields, but it also seemed to allow for nonsensical
solutions, such as spinning electrons with negative energy.

The next year, Dirac realized that what the equation was calling for
was anti-matter, a particle with the same mass as the electron, but with
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a positive charge. In the summer of 1932, Carl Anderson, working at Cal
Tech, presented clear evidence for the existence of such a particle, which
we now call the positron. What seemed like the height of science fiction in
1930 has become commonplace today.

Both PET and SPECT scans rely on metabolism and so must be per-
formed on living beings, principally people and small animals. The pig in
Figure 19.2 is having his heart imaged using SPECT, as part of a research
effort to study the effectiveness of certain SPECT imaging algorithms. The
hearts of pigs are similar to our own, which makes the pig a good subject
for this study.

19.2 Positron Emission Tomography

As we noted previously, detection in the PET case means the recording
of two photons at nearly the same time at two different detectors. The loca-
tions of these two detectors then provide the end points of the line segment
passing, more or less, through the site of the original positron emission.
Therefore, each possible pair of detectors determines a line of response
(LOR). When a LOR is recorded, it is assumed that a positron was emit-
ted somewhere along that line. The PET data consists of a chronological
list of LOR that are recorded.

Let the LOR be parameterized by the variable s, with s = 0 and s = c
denoting the two ends, and c the distance from one end to the other. For
a fixed value s = s0, let P (s) be the probability of reaching s for a photon
resulting from an emission at s0. For small ∆s > 0 the probability that a
photon that reached s is absorbed in the interval [s, s+∆s] is approximately
µ(s)∆s, where µ(s) ≥ 0 is the photon attenuation density at s. Then
P (s+ ∆s) ≈ P (s)[1− µ(s)∆s], so that

P (s+ ∆s)− P (s) ≈ −P (s)µ(s)∆s.

Dividing by ∆s and letting ∆s go to zero, we get

P ′(s) = −P (s)µ(s).

It follows that
P (s) = e

−
∫ s
s0
µ(t)dt

.

The probability that the photon will reach s = c and be detected is then

P (c) = e
−

∫ c
s0
µ(t)dt

.
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Similarly, we find that the probability that a photon will succeed in reaching
s = 0 from s0 is

P (0) = e−
∫ s0
0 µ(t)dt.

Since having one photon reach s = 0 and the other reach s = c are indepen-
dent events, their probabilities multiply, so that the probability that both
photons reach their destinations and a coincident detection is recorded for
this LOR is

e−
∫ c
0
µ(t)dt.

The expected number of coincident detections along the LOR is then pro-
portional to ∫ c

0

f(s)e−
∫ c
0
µ(t)dtds = e−

∫ c
0
µ(t)dt

∫ c

0

f(s)ds, (19.1)

where f(s) is the intensity of radionuclide at s.
Let yi be the number of coincidence detections associated with the ith

LOR. If we are willing to equate the actual count with the expected count,
and assuming we know the attenuation function µ(s), we can estimate the
line integral

∫ c
0
f(s)ds along the ith LOR as∫ c

0

f(s)ds = yie
∫ c
0
µ(t)dt.

So, once again, we have line-integral data pertaining to the function of
interest.

19.3 Single-Photon Emission Tomography

We turn now to single-photon computed emission tomography
(SPECT).

19.3.1 Sources of Degradation to be Corrected

We remarked earlier that there are at least three degradations that need
to be corrected before the line-integral model and FBP can be successfully
applied in the SPECT case [181]: attenuation, scatter, and spatially depen-
dent resolution. There are mathematical ways to correct for both spatially
varying resolution and uniform attenuation [243]. Correcting for the more
realistic non-uniform and patient-specific attenuation is more difficult and
is the subject of on-going research.

Some photons never reach the detectors because they are absorbed in
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the body. As in the PET case, correcting for attenuation requires knowl-
edge of the patient’s body; this knowledge can be obtained by performing
a transmission scan at the same time. In contrast to the PET case, the
attenuation due to absorption is more difficult to correct, since it does not
involve merely the line integral of the attenuation function, but a half-line
integral that depends on the distribution of matter between each photon
source and each detector.

While some photons are absorbed within the body, others are first de-
flected and then detected; this is called scatter. Consequently, some of the
detected photons do not come from where they seem to come from. The
scattered photons often have reduced energy, compared to primary, or non-
scattered, photons, and scatter correction can be based on this energy dif-
ference; see [181].

Finally, even if there were no attenuation and no scatter, it would be
incorrect to view the detected photons as having originated along a single
straight line from the detector. Due to the use of a lead collimator in SPECT
(but not in PET), the detectors have a cone of acceptance that widens as
it recedes from the detector. This results in spatially varying resolution.

It is not uncommon, however, to make the simplifying assumption that
all photons detected at a given detector originated along a single line. As in
the PET case previously discussed, the probability that a photon emitted
at the point on the line corresponding to the variable s = s0 will reach
s = c and be detected is then

P (s0) = e
−

∫ c
s0
µ(t)dt

.

If f(s) is the expected number of photons emitted from point s during the
scanning, then the expected number of photons detected at c and originat-
ing along this line is proportional to∫ c

0

f(s)e−
∫ c
s
µ(t)dtds. (19.2)

Notice the difference between the integral in Equation (19.2) and the one
in Equation (19.1).

The integral in Equation (19.2) varies with the line being considered;
the resulting function of lines is called the attenuated Radon transform.

If the attenuation function µ is constant, then the attenuated Radon
transform is called the exponential Radon transform. Since∫ c

s

µdt = µ(c− s),

the integral in (19.2) is now

e−µc
∫ c

0

f(s)eµsds = e−µc
∫ ∞

0

f(s)e−(−µ)sds = e−µcF(−µ),
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where F denotes the Laplace transform of f . Since the function f(s) is
zero outside a bounded interval, we may safely assume that the Laplace
transform is defined for all real values of the argument.

In practice, one sometimes assumes, initially, that µ = 0 and that the
counts at each detector are essentially integrals of f along a single line.
Filtered back-projection is then used to reconstruct an image. Since the
image does not reflect the effects of attenuation, it can be “corrected”
during the back-projection phase.

Spatially varying resolution complicates the quantitation problem,
which is the effort to determine the exact amount of radionuclide present
within a given region of the body, by introducing the partial volume effect
and spill-over (see [263]). To a large extent, these problems are shortcom-
ings of reconstruction based on the line-integral model. If we assume that
all photons detected at a particular detector came from points within a
narrow strip perpendicular to the camera face, and we reconstruct the im-
age using this assumption, then photons coming from locations outside this
strip will be incorrectly attributed to locations within the strip (spill-over),
and therefore not correctly attributed to their true source location. If the
true source location also has its counts raised by spill-over, the net effect
may not be significant; if, however, the true source is a hot spot surrounded
by cold background, it gets no spill-over from its neighbors and its true in-
tensity value is underestimated, resulting in the partial-volume effect. The
term “partial volume” indicates that the hot spot is smaller than the re-
gion that the line-integral model offers as the source of the emitted photons.
One way to counter these effects is to introduce a description of the spa-
tially dependent blur into the reconstruction, which is then performed by
iterative methods [220].

In the SPECT case, as in most such inverse problems, there is a trade-
off to be made between careful modeling of the physical situation and
computational tractability. The FBP method slights the physics in favor
of computational simplicity and speed. In recent years, iterative methods
that incorporate more of the physics have become competitive.

19.3.2 The Discrete Model

In iterative reconstruction we begin by discretizing the problem; that
is, we imagine the region of interest within the patient to consist of finitely
many tiny squares, called pixels for two-dimensional processing or cubes,
called voxels for three-dimensional processing. In what follows we shall not
distinguish the two cases, but as a linguistic shorthand, we shall refer to
‘pixels’ indexed by j = 1, ..., J . The detectors are indexed by i = 1, ..., I, the
count obtained at detector i is denoted yi, and the vector y = (y1, ..., yI)

T

is our data. In practice, for the fully three-dimensional case, I and J can
be several hundred thousand.
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We imagine that each pixel j has its own level of concentration of ra-
dioactivity and these concentration levels are what we want to determine.
Proportional to these concentration levels are the average rates of emission
of photons; the average rate for j we denote by xj . The goal is to determine
the vector x = (x1, ..., xJ)T from y.

19.3.3 Discrete Attenuated Radon Transform

To achieve our goal we must construct a model that relates y to x. One
way to do that is to discretize the attenuated Radon Transform [156, 250].

The objective is to describe the contribution to the count data from
the intensity xj at the jth pixel. We assume, for the moment, that all
the radionuclide is concentrated within the jth pixel, and we compute the
resulting attenuated Radon Transform. Following [156, 250], we adopt a
ray model for detection, which means that corresponding to each detector
is a line of acceptance and that all the counts recorded at that detector
came from pixels that intersect this line. This is a simplification, of course,
since each detector has a solid angle of acceptance, which leads to depth-
dependent blur.

For notational simplicity, we suppose that the line of acceptance asso-
ciated with the ith detector is parameterized by arc-length s ≥ 0, with
s = c > 0 corresponding to the point closest to the detector, within the
body, s = 0 corresponding to the point farthest from the detector, at which
the line leaves the body, s = b < c the point closest to the detector within
the jth pixel, and s = a < b the point farthest from the detector at which
the line leaves the jth pixel. The length of the intersection of the jth pixel
with the line is then dij = b− a.

We are assuming that all the radionuclide is within the jth pixel, with
intensity distribution (proportional to) xj , so the value at detector i of the
attenuated Radon Transform is

Aij =

∫ b

a

xje
−

∫ c
s
µ(t)dtds. (19.3)

We assume that the attenuation is uniformly equal to µj ≥ 0 within the
jth pixel, so we can write

Aij =

∫ b

a

xje
−

∫ b
s
µjdt−

∫ c
b
µ(t)dtds,

or

Aij = xje
−

∫ c
b
µ(t)dt

∫ b

a

e(s−b)µjds.

If µj = 0, then we have

Aij = xje
−

∫ c
b
µ(t)dtdij ,
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while if µj > 0 we have

Aij =
(
xje
−

∫ c
b
µ(t)dtdij

)
Sij ,

where

Sij =
1

dij

∫ b

a

e(b−s)µjds =
1

µjdij
(1− e−µjdij ).

We can then write
Aij = xjWij ,

for each j and i.
Since the function

g(t) =
1

t
(1− e−t)

is positive for positive t, g(0) = 1, and g(+∞) = 0, it is reasonable to view
Sij as the survival proportion associated with the jth pixel and the line
from the ith detector. Expanding the exponential in Sij in a power series,
we find that

Sij =
1

µjdij
(1− e−µjdij ) ≈ 1− 1

2
µjdij ,

so that the loss proportion is approximately 1
2µjdij . If we were to adopt

the decaying exponential model for a photon surviving its passage through
the jth pixel, and assume all the radionuclide was initially at the far side
of the jth pixel, we would replace Sij with e−µjdij , which is approximately
1− µjdij , so that the loss proportion is approximately µjdij . This is twice
the loss proportion that we got using the other model, and is larger because
we are assuming that all the photons emitted from within the jth pixel
have to attempt to travel through the entire jth pixel, whereas, due to
the spreading of the radionuclide throughout the pixel, the average photon
journey through the pixel is only half of the length dij .

Having found the values Wij , we form the matrix W having these entries
and then find a non-negative solution of the system of equations Wx =
y, using one of a number of iterative algorithms, including the EMML.
Contrary to what is stated in [250], it may not be appropriate to consider
Wij as the probability that a photon emitted at the jth pixel is detected
at the ith detector, even though 0 ≤ Wij ≤ 1 for each i and j. If viewed
that way, it would be the case that

I∑
i=1

Wij

would be the probability of detecting a photon emitted from the jth pixel;
we have no guarantee, however, that this sum is not greater than one.

It is significant that the authors in [250] realize that the EMML iterative
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algorithm can be used to find a non-negative solution of Wx = y, even
though no stochastic model for the data is assumed in their derivation.
Their development involves discretizing the attenuated Radon Transform,
which involves no randomness, and viewing the count data as approximate
values of this discrete function.

There is another approach that can be used to relate the count data to
the intensity levels xj . This other approach is based on a stochastic model,
as we describe next.

19.3.4 A Stochastic Model

Another way to relate the count data to the intensities xj is to adopt the
model of independent Poisson emitters. For i = 1, ..., I and j = 1, ..., J , de-
note by Zij the random variable whose value is to be the number of photons
emitted from pixel j, and detected at detector i, during the scanning time.
We assume that the members of the collection {Zij |i = 1, ..., I, j = 1, ..., J}
are independent. In keeping with standard practice in modeling radioactiv-
ity, we also assume that the Zij are Poisson-distributed.

Generally, the signal-to-noise ratio (SNR) is the ratio of the mean of
a distribution to its standard deviation (the square root of the variance).
In the case of the Poisson distribution, the variance and the mean are the
same, so the SNR is the square root of the mean; therefore, the higher the
mean the higher the SNR.

We assume that Zij is a Poisson random variable whose mean value (and
variance) is λij = Pijxj . Here the xj ≥ 0 is the average rate of emission
from pixel j, as discussed previously, and Pij ≥ 0 is the probability that a
photon emitted from pixel j will be detected at detector i. The calculation
of the Pij can be quite similar to the derivation of the Wij in the previous
subsection, with the exception that we do need to have

I∑
i=1

Pij ≤ 1.

We then define the random variables Yi =
∑J
j=1 Zij , the total counts to

be recorded at detector i; our actual count yi is then the observed value of
the random variable Yi. Note that the actual values of the individual Zij
are not observable.

Any Poisson-distributed random variable has a mean equal to its vari-
ance. The signal-to-noise ratio (SNR) is usually taken to be the ratio of
the mean to the standard deviation, which, in the Poisson case, is then the
square root of the mean. Consequently, the Poisson SNR increases as the
mean value increases, which points to the desirability (at least, statistically
speaking) of higher dosages to the patient.

Having found the Pij , we take P to be the matrix with these entries.



Emission Tomography 249

Since Px is the vector of expected counts at the various detectors, and y
is the vector of actual counts, trying to find a non-negative solution of the
system y = Px may not seem completely reasonable. However, this is what
several well known iterative algorithms do, even ones such as the EMML
that were not originally designed for this purpose.

19.3.5 Reconstruction as Parameter Estimation

The goal is to estimate the distribution of radionuclide intensity by
calculating the vector x. The entries of x are parameters and the data are
instances of random variables, so the problem looks like a fairly standard
parameter estimation problem of the sort studied in beginning statistics.
One of the basic tools for statistical parameter estimation is likelihood
maximization, which is playing an increasingly important role in medical
imaging. There are several problems, however. One is that the number
of parameters is quite large, as large as the number of data values, in
most cases. Standard statistical parameter estimation usually deals with
the estimation of a handful of parameters. Another problem is that we do
not know what the Pij are. These values will vary from one patient to
the next, since whether or not a photon makes it from a given pixel to
a given detector depends on the geometric relationship between detector
i and pixel j, as well as what is in the patient’s body between these two
locations. If there are ribs or skull getting in the way, the probability of
making it goes down. If there are just lungs, the probability goes up. These
values can change during the scanning process, when the patient moves.
Some motion is unavoidable, such as breathing and the beating of the
heart. Determining good values of the Pij in the absence of motion, and
correcting for the effects of motion, are important parts of SPECT image
reconstruction.

19.4 Relative Advantages

In [212], Ollinger and Fessler discuss some of the relative advantages of
these two modes of emission tomography.

Attenuation, which is primarily the scattering of photons by the body
to locations outside the field of view of the detecting cameras, is harder to
correct in SPECT. The radiopharmaceuticals used in SPECT must incor-
porate heavy isotopes, such as thallium and technetium; since these do not
occur naturally in biologically active molecules, the synthesis of physiologi-
cally useful tracers is a challenge. In contrast, in PET the positron-emitting
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isotopes of carbon, nitrogen, oxygen and fluorine that are used occur natu-
rally in many compounds of biological interest and can therefore be easily
incorporated into useful radiopharmaceuticals.

Because collimation is performed by the computer in PET, while
SPECT must employ lead collimators, which absorb many of the photons,
the sensitivity of the detecting gamma cameras in SPECT is reduced, in
comparison to PET.

On the other side of the balance sheet, the short half-life of most
positron-emitting isotopes necessitates an on-site cyclotron, while the iso-
topes used in SPECT have longer half-lives and can be stored. Also, the
scanners for PET are more expensive than those used in SPECT.

At any given time, computer speed limits the size of the problem that
can be dealt with. While 2D reconstructions are clinically feasible, fully 3D
imaging (not to mention dynamic, 4D imaging) poses more of a challenge,
hence the need for continuing algorithm development.
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FIGURE 19.1: Paul Dirac: his equation predicted positrons.
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FIGURE 19.2: A pet getting a PET scan? Not quite.
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20.1 Chapter Summary

In elements with an odd number of protons, such as hydrogen, the nu-
cleus itself will have a net magnetic moment. The objective in magnetic
resonance imaging (MRI) is to determine the density of such elements in
a volume of interest within the body. This is achieved by forcing the indi-
vidual spinning nuclei to emit signals that, while too weak to be detected
alone, are detectable in the aggregate. Fourier-transform estimation and
extrapolation techniques play a major role in the rapidly expanding field
of magnetic resonance imaging [265, 157].

The gentleman in Figure 20.1 is Raymond Damadian, who received the
Nobel prize in 2004 for inventing MRI. In Figure 20.2 we see a typical MRI
image of a head; check out the eyeballs.
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20.2 Slice Isolation

When the external magnetic field is the static field B0k, that is, the
magnetic field has strength B0 and axis k = (0, 0, 1), then the Larmor
frequency is the same everywhere and equals ω0 = γB0, where γ is the
gyromagnetic constant. If, instead, we impose an external magnetic field
(B0 +Gz(z−z0))k, for some constant Gz, then the Larmor frequency is ω0

only within the plane z = z0. This external field now includes a gradient
field.

20.3 Tipping

When a magnetic dipole moment that is aligned with k is given a com-
ponent in the x, y-plane, it begins to precess around the z-axis, with fre-
quency equal to its Larmor frequency. To create this x, y-plane component,
we apply a radio-frequency field (rf field)

H1(t)(cos(ωt)i + sin(ωt)j).

The function H1(t) typically lasts only for a short while, and the effect
of imposing this rf field is to tip the aligned magnetic dipole moment axes
away from the z-axis, initiating precession. Those dipole axes that tip most
are those whose Larmor frequency is ω. Therefore, if we first isolate the slice
z = z0 and then choose ω = ω0, we tip primarily those dipole axes within
the plane z = z0. The dipoles that have been tipped ninety degrees into
the x, y-plane generate the strongest signal. How much tipping occurs also
depends on H1(t), so it is common to select H1(t) to be constant over
the time interval [0, τ ], and zero elsewhere, with integral π

2γ . This H1(t) is
called a π

2 -pulse, and tips those axes with Larmor frequency ω0 into the
x, y-plane.

20.4 Imaging

The information we seek about the proton density function is contained
within the received signal. By carefully adding gradient fields to the exter-
nal field, we can make the Larmor frequency spatially varying, so that each
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frequency component of the received signal contains a piece of the informa-
tion we seek. The proton density function is then obtained through Fourier
transformations.

20.4.1 The Line-Integral Approach

Suppose that we have isolated the plane z = z0 and tipped the aligned
axes using a π

2 -pulse. After the tipping has been completed, we introduce
an external field (B0 +Gxx)k, so that now the Larmor frequency of dipoles
within the plane z = z0 is ω(x) = ω0 + γGxx, which depends on the x-
coordinate of the point. The result is that the component of the received
signal associated with the frequency ω(x) is due solely to those dipoles
having that x coordinate. Performing an FFT of the received signal gives
us line integrals of the density function along lines in the x, y-plane having
fixed x-coordinate.

More generally, if we introduce an external field (B0 +Gxx+Gyy)k, the
Larmor frequency is constant at ω(x, y) = ω0 + γ(Gxx + Gyy) = ω0 + γs
along lines in the x, y-plane with equation

Gxx+Gyy = s.

Again performing an FFT on the received signal, we obtain the integral
of the density function along these lines. In this way, we obtain the three-
dimensional Radon transform of the desired density function. The central
slice theorem for this case tells us that we can obtain the Fourier transform
of the density function by performing a one-dimensional Fourier transform
with respect to the variable s. For each fixed (Gx, Gy) we obtain this Fourier
transform along a ray through the origin. By varying the (Gx, Gy) we get
the entire Fourier transform. The desired density function is then obtained
by Fourier inversion.

20.4.2 Phase Encoding

In the line-integral approach, the line-integral data is used to obtain
values of the Fourier transform of the density function along lines through
the origin in Fourier space. It would be more convenient to have Fourier-
transform values on the points of a rectangular grid. We can obtain this by
selecting the gradient fields to achieve phase encoding.

Suppose that, after the tipping has been performed, we impose the
external field (B0+Gyy)k for T seconds. The effect is to alter the precession
frequency from ω0 to ω(y) = ω0 + γGyy. A harmonic eiω0t is changed to

eiω0teiγGyyt,
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so that, after T seconds,we have

eiω0T eiγGyyT .

For t ≥ T , the harmonic eiω0t returns, but now it is

eiω0teiγGyyT .

The effect is to introduce a phase shift of γGyyT . Each point with the same
y-coordinate has the same phase shift.

After time T , when this gradient field is turned off, we impose a second
external field, (B0 + Gxx)k. Because this gradient field alters the Larmor
frequencies, at times t ≥ T the harmonic eiω0teiγGyyT is transformed into

eiω0teiγGyyT eiγGxxt.

The received signal is now

S(t) = eiω0t

∫ ∫
ρ(x, y)eiγGyyT eiγGxxtdxdy,

where ρ(x, y) is the value of the proton density function at (x, y). Removing
the eiω0t factor, we have∫ ∫

ρ(x, y)eiγGyyT eiγGxxtdxdy,

which is the Fourier transform of ρ(x, y) at the point (γGxt, γGyT ). By
selecting equi-spaced values of t and altering the Gy, we can get the Fourier
transform values on a rectangular grid.

20.5 The General Formulation

The external magnetic field generated in the MRI scanner is generally
described by

H(r, t) = (H0 + G(t) · r)k +H1(t)(cos(ωt)i + sin(ωt)j). (20.1)

The vectors i, j, and k are the unit vectors along the coordinate axes,
and r = (x, y, z). The vector-valued function G(t) = (Gx(t), Gy(t), Gz(t))
produces the gradient field

G(t) · r.

The magnetic field component in the x, y plane is the radio frequency (rf)
field.
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If G(t) = 0, then the Larmor frequency is ω0 everywhere. Using ω = ω0

in the rf field, with a π
2 -pulse, will then tip the aligned axes into the x, y-

plane and initiate precession. If G(t) = θ, for some direction vector θ, then
the Larmor frequency is constant on planes θ · r = s. Using an rf field
with frequency ω = γ(H0 + s) and a π

2 -pulse will then tip the axes in this
plane into the x, y-plane. The strength of the received signal will then be
proportional to the integral, over this plane, of the proton density function.
Therefore, the measured data will be values of the three-dimensional Radon
transform of the proton density function, which is related to its three-
dimensional Fourier transform by the Central Slice Theorem. Later, we
shall consider two more widely used examples of G(t).

20.6 The Received Signal

We assume now that the function H1(t) is a short π
2 -pulse, that is, it

has constant value over a short time interval [0, τ ] and has integral π
2γ .

The received signal produced by the precessing magnetic dipole moments
is approximately

S(t) =

∫
R3

ρ(r) exp(−iγ(

∫ t

0

G(s)ds) · r) exp(−t/T2)dr, (20.2)

where ρ(r) is the proton density function, and T2 is the transverse or spin-
spin relaxation time. The vector integral in the exponent is∫ t

0

G(s)ds = (

∫ t

0

Gx(s)ds,

∫ t

0

Gy(s)ds,

∫ t

0

Gz(s)ds).

Now imagine approximating the function Gx(s) over the interval [0, t] by
a step function that is constant over small subintervals, that is, Gx(s) is
approximately Gx(n∆) for s in the interval [n∆, (n+1)∆), with n = 1, ..., N
and ∆ = t

N . During the interval [n∆, (n+1)∆), the presence of this gradient
field component causes the phase to change by the amount xγGx(n∆)∆,
so that by the time we reach s = t the phase has changed by

x

N∑
n=1

Gx(n∆)∆,

which is approximately x
∫ t

0
Gx(s)ds.
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20.6.1 An Example of G(t)

Suppose now that g > 0 and θ is an arbitrary direction vector. Let

G(t) = gθ, for τ ≤ t, (20.3)

and G(t) = 0 otherwise. Then the received signal S(t) is

S(t) =

∫
R3

ρ(r) exp(−iγg(t− τ)θ · r)dr

= (2π)3/2ρ̂(γg(t− τ)θ), (20.4)

for τ ≤ t << T2, where ρ̂ denotes the three-dimensional Fourier transform
of the function ρ(r).

From Equation (20.4) we see that, by selecting different direction vectors
and by sampling the received signal S(t) at various times, we can obtain
values of the Fourier transform of ρ along lines through the origin in the
Fourier domain, called k-space. If we had these values for all θ and for all
t we would be able to determine ρ(r) exactly. Instead, we have much the
same problem as in transmission tomography; only finitely many θ and
only finitely many samples of S(t). Noise is also a problem, because the
resonance signal is not strong, even though the external magnetic field is.

We may wish to avoid having to estimate the function ρ(r) from finitely
many noisy values of its Fourier transform. We can do this by selecting the
gradient field G(t) differently.

20.6.2 Another Example of G(t)

The vector-valued function G(t) can be written as

G(t) = (G1(t), G2(t), G3(t)).

Now we let
G2(t) = g2,

and
G3(t) = g3,

for 0 ≤ t ≤ τ , and zero otherwise, and

G1(t) = g1,

for τ ≤ t, and zero otherwise. This means that only H0k and the rf field
are present up to time τ , and then the rf field is shut off and the gradient
field is turned on. Then, for t ≥ τ , we have

S(t) = (2π)3/2M̂0(γ(t− τ)g1, γτg2, γτg3).
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By selecting
tn = n∆t+ τ, forn = 1, ..., N,

g2k = k∆g,

and
g3i = i∆g,

for i, k = −m, ...,m we have values of the Fourier transform, M̂0, on a
Cartesian grid in three-dimensional k-space. The proton density function,
ρ, can then be approximated using the fast Fourier transform.

Although the reconstruction employs the FFT, obtaining the Fourier-
transform values on the Cartesian grid can take time. An abdominal scan
can last for a couple of hours, during which the patient is confined, mo-
tionless and required to hold his or her breath repeatedly. Recent work
on compressed sensing is being applied to reduce the number of Fourier-
transform values that need to be collected, and thereby reduce the scan
time [270, 199].

20.7 Compressed Sensing in Image Reconstruction

As we have seen, the data one obtains from the scanning process can
often be interpreted as values of the Fourier transform of the desired im-
age; this is precisely the case in magnetic-resonance imaging, and approxi-
mately true for x-ray transmission tomography, positron-emission tomogra-
phy (PET) and single-photon emission tomography (SPECT). The images
one encounters in medical diagnosis are often approximately locally con-
stant, so the associated array of discrete partial derivatives will be sparse.
If this sparse derivative array can be recovered from relatively few Fourier-
transform values, then the scanning time can be reduced.

20.7.1 Incoherent Bases

The objective in CS is to exploit sparseness to reconstruct a vector f
in RJ from relatively few linear functional measurements [116].

Let U = {u1, u2, ..., uJ} and V = {v1, v2, ..., vJ} be two orthonormal
bases for RJ , with all members of RJ represented as column vectors. For
i = 1, 2, ..., J , let

µi = max
1≤j≤J

{|〈ui, vj〉|}

and
µ(U, V ) = max{mui |i = 1, ..., I}.
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We know from Cauchy’s Inequality that

|〈ui, vj〉| ≤ 1,

and from Parseval’s Equation

J∑
j=1

|〈ui, vj〉|2 = ||ui||2 = 1.

Therefore, we have
1√
J
≤ µ(U, V ) ≤ 1.

The quantity µ(U, V ) is the coherence measure of the two bases; the closer
µ(U, V ) is to the lower bound of 1√

J
, the more incoherent the two bases

are.
Let f be a fixed member of RJ ; we expand f in the V basis as

f = x1v
1 + x2v

2 + ...+ xJv
J .

We say that the coefficient vector x = (x1, ..., xJ) is S-sparse if S is the
number of non-zero xj .

20.7.2 Exploiting Sparseness

If S is small, most of the xj are zero, but since we do not know which
ones these are, we would have to compute all the linear functional values

xj = 〈f, vj〉

to recover f exactly. In fact, the smaller S is, the harder it would be to learn
anything from randomly selected xj , since most would be zero. The idea in
CS is to obtain measurements of f with members of a different orthonormal
basis, which we call the U basis. If the members of U are very much like
the members of V , then nothing is gained. But, if the members of U are
quite unlike the members of V , then each inner product measurement

yi = 〈f, ui〉 = fTui

should tell us something about f . If the two bases are sufficiently inco-
herent, then relatively few yi values should tell us quite a bit about f .
Specifically, we have the following result due to Candès and Romberg [72]:
suppose the coefficient vector x for representing f in the V basis is S-sparse.
Select uniformly randomly M ≤ J members of the U basis and compute
the measurements yi = 〈f, ui〉 . Then, if M is sufficiently large, it is highly
probable that z = x also solves the problem of minimizing the one-norm

||z||1 = |z1|+ |z2|+ ...+ |zJ |,
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subject to the conditions

yi = 〈g, ai〉 = gTui,

for those M randomly selected ui, where

g = z1v
1 + z2v

2 + ...+ zJv
J .

This can be formulated as a linear programming problem. The smaller
µ(U, V ) is, the smaller the M is permitted to be without reducing the
probability of perfect reconstruction.
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FIGURE 20.1: Raymond Damadian: inventor of MRI.
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FIGURE 20.2: An MRI head scan. Check out the eyeballs.
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21.1 Chapter Summary

In intensity modulated radiation therapy (IMRT) beamlets of radiation
with different intensities are transmitted into the body of the patient. Each
voxel within the patient will then absorb a certain dose of radiation from
each beamlet. The goal of IMRT is to direct a sufficient dosage to those
regions requiring the radiation, those that are designated planned target
volumes (PTV), while limiting the dosage received by the other regions,
the so-called organs at risk (OAR). In our discussion here we follow Censor
et al. [82].

21.2 The Forward and Inverse Problems

The forward problem is to calculate the radiation dose absorbed in the
irradiated tissue based on a given distribution of the beamlet intensities.
The inverse problem is to find a distribution of beamlet intensities, the
radiation intensity map, that will result in a clinically acceptable dose dis-
tribution. One important constraint is that the radiation intensity map
must be implementable, that is, it is physically possible to produce such
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an intensity map, given the machine’s design. There will be limits on the
change in intensity between two adjacent beamlets, for example.

21.3 Equivalent Uniform Dosage

The equivalent uniform dose (EUD) for tumors is the biologically equiv-
alent dose which, if given uniformly, will lead to the same cell-kill within
the tumor volume as the actual non-uniform dose.

21.4 Constraints

Constraints on the EUD received by each voxel of the body are described
in dose space, the space of vectors whose entries are the doses received
at each voxel. Constraints on the deliverable radiation intensities of the
beamlets are best described in intensity space, the space of vectors whose
entries are the intensity levels associated with each of the beamlets. The
constraints in dose space will be upper bounds on the dosage received
by the OAR and lower bounds on the dosage received by the PTV. The
constraints in intensity space are limits on the complexity of the intensity
map and on the delivery time, and, obviously, that the intensities be non-
negative. Because the constraints operate in two different domains, it is
convenient to formulate the problem using these two domains. This leads
to a split-feasibility problem.

21.5 The Multi-Set Split-Feasibilty-Problem Model

The split feasibility problem (SFP) is to find an x in a given closed
convex subset C of RJ such that Ax is in a given closed convex subset Q
of RI , where A is a given real I by J matrix. Because the constraints are
best described in terms of several sets in dose space and several sets in
intensity space, the SFP model needed to be expanded into the multi-set
SFP (MSSFP) [84] and the CQ algorithm extended to this more general
case.

It is not uncommon to find that, once the various constraints have been
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specified, there is no intensity map that satisfies them all. In such cases,
it is desirable to find an intensity map that comes as close as possible to
satisfying all the constraints. One way to do this, as we shall see, is to
minimize a proximity function.

21.6 Formulating the Proximity Function

For i = 1, ..., I, and j = 1, ..., J , let hi ≥ 0 be the dose absorbed by the
i-th voxel of the patient’s body, xj ≥ 0 be the intensity of the j-th beamlet
of radiation, and Dij ≥ 0 be the dose absorbed at the i-th voxel due to a
unit intensity of radiation at the j-th beamlet. The non-negative matrix D
with entries Dij is the dose influence matrix.

In intensity space, we have the obvious constraints that xj ≥ 0. In addi-
tion, there are implementation constraints; the available treatment machine
will impose its own requirements, such as a limit on the difference in in-
tensities between adjacent beamlets. In dosage space, there will be a lower
bound on the dosage delivered to those regions designated as planned tar-
get volumes (PTV), and an upper bound on the dosage delivered to those
regions designated as organs at risk (OAR).

21.7 Equivalent Uniform Dosage Functions

Suppose that St is either a PTV or a OAR, and suppose that St contains
Nt voxels. For each dosage vector h = (h1, ..., hI)

T define the equivalent
uniform dosage function (EUD-function) et(h) by

et(h) = (
1

Nt

∑
i∈St

(hi)
α)1/α, (21.1)

where 0 < α < 1 if St is a PTV, and α > 1 if St is an OAR. The function
et(h) is convex, for h nonnegative, when St is an OAR, and −et(h) is
convex, when St is a PTV. The constraints in dosage space take the form

et(h) ≤ at,

when St is an OAR, and
−et(h) ≤ bt,

when St is a PTV. Therefore, we require that h = Dx lie within the inter-
section of these convex sets.
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21.8 Recent Developments

One drawback to the use of x-rays in radiation therapy is that they
continue through the body after they have encountered their target. A re-
cent technology, proton-beam therapy, directs a beam of protons at the
target. Since the protons are heavy, and have mass and charge, their tra-
jectories can be controlled in ways that x-ray trajectories cannot be. The
new proton center at Massachusetts General Hospital in Boston is one of
the first to have this latest technology. As with most new and expensive
medical procedures, there is some debate going on about just how much of
an improvement it provides, relative to other methods.
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22.1 Chapter Summary

Linear algebra is the study of linear transformations between vector
spaces. Although the subject is not simply matrix theory, there is a close
connection, stemming from the role of matrices in representing linear trans-
formations. Throughout this section we shall limit discussion to finite-
dimensional vector spaces.

22.2 Representing a Linear Transformation

Let A = {a1, a2, ..., aN} be a basis for the finite-dimensional complex
vector space V . Now that the basis for V is specified, there is a natural
association, an isomorphism, between V and the vector space CN of N -
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dimensional column vectors with complex entries. Any vector v in V can
be written as

v =

N∑
n=1

γna
n. (22.1)

The column vector γ = (γ1, ..., γN )T is uniquely determined by v and the
basis A and we denote it by [v]A. Notice that the ordering of the list of
members of A matters, so we shall always assume that the ordering has
been fixed.

Let W be a second finite-dimensional vector space, and let T be any
linear transformation from V to W . Let B = {b1, b2, ..., bM} be a basis for
W . For n = 1, ..., N , let

Tan = A1nb
1 +A2nb

2 + ...+AMnb
M . (22.2)

Then the M by N matrix A having the Amn as entries is said to represent
T , with respect to the bases A and B, and we write A = [T ]BA.

Ex. 22.1 Show that [Tv]B = A[v]A.

Ex. 22.2 Let P2 and P3 be the vector spaces of real polynomials of degrees
two and three, respectively. Let T : P3 → P2 be the differentiation operator.
Select bases for P2 and P3 and represent T by matrix multiplication.

Ex. 22.3 Suppose that V , W and Z are vector spaces, with bases A, B and
C, respectively. Suppose also that T is a linear transformation from V to
W and U is a linear transformation from W to Z. Let A represent T with
respect to the bases A and B, and let B represent U with respect to the bases
B and C. Show that the matrix BA represents the linear transformation UT
with respect to the bases A and C.

22.3 Linear Operators on V

When W = V , we say that the linear transformation T is a linear
operator on V . In this case, we can also take the basis B to be A, and say
that the matrix A represents the linear operator T , with respect to the
basis A. We then write A = [T ]A.

Ex. 22.4 Suppose that Ã is a second basis for V . Let T be any linear
operator on V and Ã = [T ]Ã. Show that there is a unique invertible N by
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N matrix Q having the property that, for all T , the matrix Ã = QAQ−1,
so we can write

[T ]Ã = Q[T ]AQ
−1.

Hint: the matrix Q is the change-of-basis matrix, which means that Q rep-
resents the identity operator I, with respect to the bases A and Ã; that is,

Q = [I]ÃA.

Ex. 22.5 Let T be a linear operator on the finite-dimensional vector space
V with basis A = {a1, a2, ..., aN}. Let W be the subspace of V spanned by
the elements {a1, ..., aM}, where M < N . Suppose that W is T -invariant,
that is, Tw ∈ W for every w ∈ W . What can then be said about the
representing matrix A = [T ]A?

22.4 Linear Operators on CN

Let A be the usual basis for the vector space V = CN . In practice, we
make no distinction between a member x of CN and [x]A; that is, we use
the equation

x = [x]A

without comment. If T is a linear operator on CN and A = [T ]A, then from

[Tx]A = A[x]A

we write
Tx = Ax;

in other words, we make no distinction between T and A and say that every
linear operator on CN is multiplication by a matrix. Of course, all of this
presupposes that A is the usual basis for CN ; if we change the basis, then
the distinctions again become necessary.

22.5 Similarity and Equivalence of Matrices

Let A and Ã = {ã1, ..., ãN} be bases for V , and B and B̃ = {b̃1, ..., b̃M}
be bases for W . Let Q = [I]ÃA and R = [I]B̃B be the change-of-bases matrices
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in V and W , respectively. As we just saw, for any linear operator T on V ,
the matrices Ã = [T ]Ã and A = [T ]A are related according to

A = Q−1ÃQ. (22.3)

We describe the relationship in Equation (22.3) by saying that the matrices
A and Ã are similar.

Definition 22.1 Two N by N matrices A and B are said to be similar if
there is an invertible matrix Q such that A = Q−1BQ.

Ex. 22.6 Show that similar matrices have the same eigenvalues.

Let S be a linear transformation from V to W . Then we have

[S]BA = R−1[S]B̃ÃQ. (22.4)

With G = [S]BA and G̃ = [S]B̃Ã, we have

G = R−1G̃Q. (22.5)

Definition 22.2 Two M by N matrices A and B are said to be equivalent
if there are invertible matrices P and Q such that B = PAQ.

We can therefore describe the relationship in Equation (22.5) by saying
that the matrices G and G̃ are equivalent.

Ex. 22.7 Show that A and B are equivalent if B can be obtained from A
by means of elementary row and column operations.

Ex. 22.8 Prove that two equivalent matrices A and B must have the same
rank, and so two similar matrices must also have the same rank. Hint: use
the fact that Q is invertible to show that A and AQ have the same rank.

Ex. 22.9 Prove that any two M by N matrices with the same rank r are
equivalent. Hints: Let A be an M by N matrix, which we can also view
as inducing, by multiplication, a linear transformation T from V = CN to
W = CM . Therefore, A represents T in the usual bases of CN and CM .
Now construct a basis A for CN , such that

A = {a1, ..., aN},

with {ar+1, ..., aN} forming a basis for the null space of A. Show that the
set {Aa1, ..., Aar} is linearly independent and can therefore be extended to
a basis B for CM . Show that the matrix D that represents T with respect
to the bases A and B is the M by N matrix with the r by r identity matrix
in the upper left corner, and all the other entries are zero. Since A is then
equivalent to this matrix D, so is the matrix B; therefore A and B are
equivalent to each other. Another way to say this is that both A and B can
be reduced to D using elementary row and column operations.
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22.6 Linear Functionals and Duality

We turn now to the particular case in which the second vector space
W is just the space C of complex numbers. Any linear transformation f
from V to C is called a linear functional. The space of all linear functionals
on V is denoted V ∗ and called the dual space of V . The set V ∗ is itself a
finite-dimensional vector space, so it too has a dual space, (V ∗)∗ = V ∗∗,
the second dual space, which is the set of all linear transformations F from
V ∗ to C.

Ex. 22.10 Show that the dimension of V ∗ is the same as that of V .
Hint: let A = {a1, ..., aN} be a basis for V , and for each m = 1, ..., N ,
let fm(an) = 0, if m 6= n, and fm(am) = 1. Show that the collection
{f1, ..., fN} is a basis for V ∗.

Proposition 22.1 Let V be a vector space of dimension N and S a sub-
space of V . Then the dimension of S is N − 1 if and only if there is a
non-zero member f of V ∗ such that S = {v|f(v) = 0}.

Proof: Let S have dimension M < N and let {u1, u2, ..., uM} be a basis
for S. Extend this basis for S to a basis for V , denoted

{u1, u2, ..., uM , v1, v2, ..., vN−M}.

Now suppose that the dimension of S is M = N − 1, and that the
enlarged basis has only one new member, v1. Every vector v in V can be
written uniquely as

v = a1u
1 + a2u

2 + ...+ aN−1u
N−1 + aNv

1.

Let f(v) = aN ; then f is a member of V ∗ and S = {v|f(v) = 0}.
Conversely, suppose now that S = {v|f(v) = 0}, and its dimension is

M < N − 1. Then the enlarged basis has at least two new members, v1

and v2, neither of them in S. Therefore α1 = f(v1) and α2 = f(v2) are not
zero. We then have f(v) = 0 for the vector v = α2v

1 − α1v
2, which means

that v is in S. But v is a linear combination of v1 and v2, and therefore,
because of the linear independence of the members of the enlarged basis,
cannot also be a linear combination of the um, for m = 1, 2, ...,M .

There is a natural identification of V ∗∗ with V itself. For each v in V ,
define Jv(f) = f(v) for each f in V ∗. Then it is easy to establish that Jv
is in V ∗∗ for each v in V . The set JV of all members of V ∗∗ of the form Jv
for some v is a subspace of V ∗∗.

Ex. 22.11 Show that the subspace JV has the same dimension as V ∗∗

itself, so that it must be all of V ∗∗.
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In the previous exercise we established that JV = V ∗∗ by showing that
these spaces have the same dimension. We can also prove this result in a
more direct way. Let F be any member of V ∗∗. We show that there is a v
in V such that F (f) = f(v) for all f in V ∗ by displaying v explicitly. Let
γn = F (fn), for n = 1, 2, ..., N , where fn are as defined in Exercise 22.10.
Then let v = γ1a

1 + γ2a
2 + ... + γNa

N . Let f be arbitrary in V ∗, written
in terms of the basis as

f = α1f
1 + α2f

2 + ...+ αNf
N ,

so that

f(v) = α1f
1(v) + α2f

2(v) + ...+ αNf
N (v) = α1γ1 + α2γ2 + ...+ αNγN .

Then

F (f) = α1F (f1)+α2F (f2)+...+αNF (fN ) = α1γ1+α2γ2+...+αNγN = f(v).

We shall see later that once V has been endowed with an inner product,
there is a simple way to describe every linear functional on V : for each f
in V ∗ there is a unique vector vf in V with f(v) = 〈v, vf 〉, for each v in V .
As a result, we have an identification of V ∗ with V itself.

22.7 Diagonalization

Let T : V → V be a linear operator, A a basis for V , and A = [T ]A. As
we change the basis, the matrix representing T also changes. We wonder if
it is possible to find some basis B such that B = [T ]B is a diagonal matrix
L. Let P = [I]AB be the change-of basis matrix from B to A. We would then
have P−1AP = L, or A = PLP−1. When this happens, we say that A has
been diagonalized by P . According to Lemma 6.6, A is diagonalizable if all
its eigenvalues are distinct.

Suppose that the basis B = {b1, ..., bN} is such that B = [T ]B = L,
where L is the diagonal matrix L = diag {λ1, ..., λN}. Then we have AP =
PL, which tells us that pn, the n-th column of P , is an eigenvector of the
matrix A, with λn as its eigenvalue. Since pn = [bn]A, we have

0 = (A− λnI)pn = (A− λnI)[bn]A = [(T − λnI)bn]A,

from which we conclude that

(T − λnI)bn = 0,

or
Tbn = λnb

n;

therefore, bn is an eigenvector of the linear operator T .
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22.8 Using Matrix Representations

The matrix A has eigenvalues λn, n = 1, ..., N , precisely when these λn
are the roots of the characteristic polynomial

P (λ) = det (A− λI).

We would like to be able to define the characteristic polynomial of T itself
to be P (λ); the problem is that we do not yet know that different matrix
representations of T have the same characteristic polynomial, although we
do know that, since they are similar matrices, they have the same eigen-
values.

Ex. 22.12 Use the fact that det(GH)=det(G)det(H) for any square ma-
trices G and H to show that

det([T ]B − λI) = det([T ]C − λI),

for any bases B and C for V .

22.9 An Inner Product on V

For any two column vectors x = (x1, ..., xN )T and y = (y1, ..., yn)T in
CN , their complex dot product is defined by

x · y =

N∑
n=1

xnyn = y†x,

where y† is the conjugate transpose of the vector y, that is, y† is the row
vector with entries yn.

The association of the elements v in V with the complex column vector
[v]A can be used to obtain an inner product on V . For any v and w in V ,
define

〈v, w〉 = [v]A · [w]A, (22.6)

where the right side is the ordinary complex dot product in CN . Note that,
with respect to this inner product, the basis A becomes an orthonormal
basis.
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For particular vector spaces V we may want to define an inner product
that conforms well to the special nature of the elements of V . For example,
suppose that V is the vector space of all N by N complex matrices. This
space has dimension N2. A basis for this space is the collection of all N
by N matrices that have a one in a single entry and zero everywhere else.
The induced inner product that we get using this basis can be described
in another way: it is 〈A,B〉 = trace(B†A). The resulting norm of A is the
Frobenius norm.

22.10 Orthogonality

Two vectors v and w in the inner-product space V are said to be orthog-
onal if 〈v, w〉 = 0. A basis U = {u1, u2, ..., uN} is called an orthogonal basis
if every two vectors in U are orthogonal, and orthonormal if, in addition,
‖un‖ = 1, for each n.

Ex. 22.13 Let U and V be orthonormal bases for the inner-product space
V , and let Q be the change-of-basis matrix satisfying

[v]U = Q[v]V .

Show that Q−1 = Q†, so that Q is a unitary matrix.

22.11 Representing Linear Functionals

Let f : V → C be a linear functional on the inner-product space V and
let A = {a1, ..., aN} be an orthonormal basis for V . Let vf be the member
of V defined by

vf =

N∑
m=1

f(am)am.

Then for each

v =

N∑
n=1

αna
n,

in V , we have

〈v, vf 〉 =

N∑
n=1

N∑
m=1

αnf(am)〈an, am〉
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=

N∑
n=1

αnf(an) = f(

N∑
n=1

αna
n) = f(v).

So we see that once V has been given an inner product, each linear
functional f on V can be thought of as corresponding to a vector vf in V ,
so that

f(v) = 〈v, vf 〉.

Ex. 22.14 Show that the vector vf associated with the linear functional f
is unique by showing that

〈v, y〉 = 〈v, w〉,

for every v in V implies that y = w.

22.12 Adjoint of a Linear Transformation

If T is a linear operator on an inner product space V , we say that T is
self adjoint if 〈Tu, v〉 = 〈u, Tv〉, for all u and v in V . This definition allows
us to speak of self-adjoint linear operators before we have introduced the
adjoint of a linear operator, the topic of this section.

Let T : V → W be a linear transformation from a vector space V to
a vector space W . The adjoint of T is the linear operator T ∗ : W ∗ → V ∗

defined by

(T ∗g)(v) = g(Tv), (22.7)

for each g ∈W ∗ and v ∈ V .
Once V and W have been given inner products, and V ∗ and W ∗ have

been identified with V and W , respectively, the operator T ∗ can be defined
as a linear operator from W to V as follows. Let T : V → W be a linear
transformation from an inner-product space V to an inner-product space
W . For each fixed w in W , define a linear functional f on V by

f(v) = 〈Tv,w〉.

By our earlier discussion, f has an associated vector vf in V such that

f(v) = 〈v, vf 〉.

Therefore,
〈Tv,w〉 = 〈v, vf 〉,
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for each v in V . The adjoint of T is the linear transformation T ∗ from W
to V defined by T ∗w = vf .

When W = V , and T is a linear operator on V , then so is T ∗. In
this case, we can ask whether or not T ∗T = TT ∗, that is, whether or not
T is normal, and whether or not T = T ∗, that is, whether or not T is
self-adjoint.

Ex. 22.15 Let U be an orthonormal basis for the inner-product space V
and T a linear operator on V . Show that

[T ∗]U = ([T ]U )†. (22.8)

22.13 Normal and Self-Adjoint Operators

Let T be a linear operator on an inner-product space V . We say that
T is normal if T ∗T = TT ∗, and self-adjoint if T ∗ = T . A square matrix A
is said to be normal if A†A = AA†, and Hermitian if A† = A.

Ex. 22.16 Let U be an orthonormal basis for the inner-product space V .
Show that T is normal if and only if [T ]U is a normal matrix, and T is
self-adjoint if and only if [T ]U is Hermitian. Hint: use Exercise (22.3).

Ex. 22.17 Compute the eigenvalues for the real square matrix

A =

[
1 2
−2 1

]
. (22.9)

Note that the eigenvalues are complex, even though the entries of A are
real. The matrix A is not Hermitian.

Ex. 22.18 Show that the eigenvalues of the complex matrix

B =

[
1 2 + i

2− i 1

]
(22.10)

are the real numbers λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding
eigenvectors u = (

√
5, 2− i)T and v = (

√
5, i− 2)T , respectively.

Ex. 22.19 Show that the eigenvalues of the real matrix

C =

[
1 1
0 1

]
(22.11)

are both equal to one, and that the only eigenvectors are non-zero multiples
of the vector (1, 0)T . Compute CTC and CCT . Are they equal?
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22.14 It is Good to be “Normal”

For a given linear operator on V , when does there exist an orthonormal
basis for V consisting of eigenvectors of T? The answer is: When T is
normal.

Consider an N by N matrix A. We use A to define a linear operator T
on the space of column vectors V = CN by Tv = Av, that is, the operator
T works by multiplying each column vector v in CN by the matrix A.
Then A represents T with respect to the usual orthonormal basis A for
CN . Suppose now that there is an orthonormal basis U = {u1, ..., uN} for
CN such that

Tun = Aun = λnu
n,

for each n. The matrix representing T in the basis U is the matrix B =
Q−1AQ, where Q is the change-of-basis matrix with

Q[v]U = [v]A.

But we also know that B is the diagonal matrix B = L =diag(λ1, ..., λN ).
Therefore, L = Q−1AQ, or A = QLQ−1.

As we saw in Exercise (22.13), the matrix Q is unitary, that is, Q−1 =
Q†. Therefore, A = QLQ†. Then we have

A†A = QL†Q†QLQ† = QL†LQ†

= QLL†Q† = QLQ†QL†Q† = AA†,

so that
A†A = AA†,

and A is normal.
Two fundamental results in linear algebra are the following, which we

discuss in more detail in the chapter “Hermitian and Normal Linear Oper-
ators”.

Theorem 22.1 For a linear operator T on a finite-dimensional complex
inner-product space V there is an orthonormal basis of eigenvectors if and
only if T is normal.

Corollary 22.1 A self-adjoint linear operator T on a finite-dimensional
complex inner-product space V has an orthonormal basis of eigenvectors.

Ex. 22.20 Show that the eigenvalues of a self-adjoint linear operator T on
a finite-dimensional complex inner-product space are real numbers. Hint:
consider Tu = λu, and begin with λ〈u, u〉 = 〈Tu, u〉.
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Combining the various results obtained so far, we can conclude the follow-
ing.

Corollary 22.2 Let T be a linear operator on a finite-dimensional real
inner-product space V . Then V has an orthonormal basis consisting of
eigenvectors of T if and only if T is self-adjoint.

22.15 Bases and Inner Products

Throughout this section V will denote a finite-dimensional real or com-
plex vector space. We know that it is always possible to find a basis for V ;
we simply build up a set of linearly independent vectors until including any
additional vector will render the set linearly dependent. As we have seen,
once we have a basis for V it is a simple matter to use that basis to induce
an inner product on V . In this section we make several assertions without
proof; the proofs are left as exercises for the reader.

Let A = {a1, ..., aN} be a basis for V . Each vector x in V can then be
written uniquely as a linear combination of the members of A:

x = α1a
1 + ...+ αNa

N .

The column vector α = (α1, ..., αN )T is then denoted [x]A. We denote by
FA the linear transformation FA : V → CN that associates with each x in V
the column vector [x]A, and by EA the linear transformation EA : CN → V
that associates with each vector α in CN the member of V given by

x = α1a
1 + ...+ αNa

N .

Note that EA is the inverse of FA.
The inner product on V induced by the basis A is

〈x, y〉A = [x]A · [y]A,

which can also be written as

〈x, y〉A = FAx · FAy.

The basis A is orthonormal with respect to this inner product. We denote
by VA the vector space V with the inner product 〈x, y〉A.

The adjoint of FA is the linear transformation F ∗A : CN → VA for which

〈F ∗Aα, y〉A = α · FAy,
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for all α in CN and y in V . But we also have

〈F ∗Aα, y〉A = FAF
∗
Aα · FAy.

It follows that
FAF

∗
A = I.

Therefore,
F ∗A = EA.

Let B = {b1, ..., bN} be a second basis for V . The change-of-basis matrix
Q = [I]BA has the property

[x]B = Q[x]A,

or
FBx = QFAx,

for all x in V . Therefore we can write

FB = QFA,

so that
Q = FBEA.

Ex. 22.21 Viewing FB as a linear transformation from the inner product
space VA to CN , show that the adjoint of FB is the linear transformation
F ′B given by F ′B = EAQ

†.

Then we have

〈x, y〉B = FBx · FBy = QFAx ·QFAy = Q†QFAx · FAy.

Writing
H = Q†Q = FAF

′
BFBEA,

where F ′B = EAQ
† is the adjoint of the linear transformation FB, with

respect to the vector space VA, we have

〈x, y〉B = HFAx · FAy.

The matrix H is hermitian and positive-definite.
Now let S be the linear transformation on V for which H = [S]A. This

means that
HFAx = FASx,

for all x in V . Then we can get an explicit description of S;

S = EAHFA = EAQ
†QFA.
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This tells us that for any other basis B the associated inner product can
be expressed in terms of the inner product from A by

〈x, y〉B = 〈Sx, y〉A.

The linear operator S is self-adjoint and positive-definite on the inner prod-
uct space VA.

If T is any self-adjoint, positive-definite linear operator on VA then T
induces another inner product, denoted 〈x, y〉T , by

〈x, y〉T = 〈Tx, y〉A.

We also know that VA has an orthonormal basis {u1, ..., uN} of eigenvectors
of T , with Tun = λnu

n. Let bn = 1√
λn
un. Then the family B = {b1, ..., bN}

is another basis for V and

〈x, y〉T = 〈x, y〉B.

If we begin with a vector space V that already has an inner product
〈x, y〉, then

〈x, y〉 = 〈x, y〉A,

for any orthonormal basis A.
We can summarize our findings as follows:

• 1. Any inner product 〈x, y〉 on V is 〈x, y〉A, for any orthonormal basis
A;

• 2. Any basis A induces an inner product, 〈x, y〉A;

• 3. If A and B are any two bases for V , then

〈x, y〉B = 〈Sx, y〉A,

for some self-adjoint, positive definite linear operator S on VA;

• 4. If T is any self-adjoint positive-definite linear operator on VA, then
T induces an inner product

〈x, y〉T = 〈Tx, y〉,

and there is a basis B such that

〈x, y〉T = 〈x, y〉B.
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23.1 LU and QR Factorization

Let S be a real N by N matrix. Two important methods for solving
the system Sx = b, the LU factorization and the QR factorization, involve
factoring the matrix S and thereby reducing the problem to finding the
solutions of simpler systems.

In the LU factorization, we seek a lower triangular matrix L and an
upper triangular matrix U so that S = LU . We then solve Sx = b by
solving Lz = b and Ux = z.

In the QR factorization, we seek an orthogonal matrix Q, that is, QT =
Q−1, and an upper triangular matrix R so that S = QR. Then we solve
Sx = b by solving the upper triangular system Rx = QT b.

285
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23.2 The LU Factorization

The matrix

S =

 2 1 1
4 1 0
−2 2 1


can be reduced to the upper triangular matrix

U =

2 1 1
0 −1 −2
0 0 −4


through three elementary row operations: first, add −2 times the first row
to the second row; second, add the first row to the third row; finally, add
three times the new second row to the third row. Each of these row opera-
tions can be viewed as the result of multiplying on the left by the matrix
obtained by applying the same row operation to the identity matrix. For
example, adding −2 times the first row to the second row can be achieved
by multiplying A on the left by the matrix

L1 =

 1 0 0
−2 1 0
0 0 1

 ;

note that the inverse of L1 is

L−1
1 =

1 0 0
2 1 0
0 0 1

 .
We can write

L3L2L1S = U,

where L1, L2, and L3 are the matrix representatives of the three elementary
row operations. Therefore, we have

S = L−1
1 L−1

2 L−1
3 U = LU.

This is the LU factorization of S. As we just saw, the LU factorization can
be obtained along with the Gauss elimination.

23.2.1 A Shortcut

There is a shortcut we can take in calculating the LU factorization. We
begin with the identity matrix I, and then, as we perform a row operation,
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for example, adding −2 times the first row to the second row, we put the
number 2, the multiplier just used, but with a sign change, in the second
row, first column, the position of the entry of S that was just converted to
zero. Continuing in this fashion, we build up the matrix L as

L =

 1 0 0
2 1 0
−1 −3 1

 ,
so that

S =

 2 1 1
4 1 0
−2 2 1

 =

 1 0 0
2 1 0
−1 −3 1

2 1 1
0 −1 −2
0 0 −4

 .
The entries of the main diagonal of L will be all ones. If we want the

same to be true of U , we can rescale the rows of U and obtain the factor-
ization S = LDU , where D is a diagonal matrix.

23.2.2 A Warning!

We have to be careful when we use the shortcut, as we illustrate now.
For the purpose of this discussion let’s use the terminology Ri + aRj to
mean the row operation that adds a times the jth row to the ith row,
and aRi to mean the operation that multiplies the ith row by a. Now we
transform S to an upper triangular matrix U using the row operations

• 1. 1
2R1;

• 2. R2 + (−4)R1;

• 3. R3 + 2R1;

• 4. R3 + 3R2;

• 5. (−1)R2; and finally,

• 6. (−1
4 )R3.

We end up with

U =

1 1/2 1/2
0 1 2
0 0 1

 .
If we use the shortcut to form the lower triangular matrix L, we find that

L =

 2 0 0
4 −1 0
−2 −3 −4

 .
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Let’s go through how we formed L from the row operations listed above.
We get L11 = 2 from the first row operation, L21 = 4 from the second,
L31 = −2 from the third, L32 = −3 from the fourth, L22 = −1 from the
fifth, and L33 = −1

4 from the sixth. But, if we multiple LU we do not get
back S! The problem is that we performed the fourth operation, adding
to the third row three times the second row, before the (2, 2) entry was
rescaled to one. Suppose, instead, we do the row operations in this order:

• 1. 1
2R1;

• 2. R2 + (−4)R1;

• 3. R3 + 2R1;

• 4. (−1)R2;

• 5. R3 − 3R2; and finally,

• 6. (−1
4 )R3.

Then the entry L32 becomes 3, instead of −3, and now LU = S. The
message is that if we want to use the shortcut and we plan to rescale the
diagonal entries of U to be one, we should rescale a given row prior to
adding any multiple of that row to another row; otherwise, we can get the
wrong L. The problem is that certain elementary matrices associated with
row operations do not commute.

We just saw that
L = L−1

1 L−1
2 L−1

3 .

However, when we form the matrix L simultaneously with performing the
row operations, we are, in effect, calculating

L−1
3 L−1

2 L−1
1 .

Most of the time the order doesn’t matter, and we get the correct L anyway.
But this is not always the case. For example, if we perform the operation
1
2R1, followed by R2 + (−4)R1, this is not the same as doing R2 + (−4)R1,
followed by 1

2R1.
With the matrix L1 representing the operation 1

2R1 and the matrix
L2 representing the operation R2 + (−4)R1, we find that storing a 2 in
the (1, 1) position, and then a +4 in the (1, 2) position as we build L is
not equivalent to multiplying the identity matrix by L−1

2 L−1
1 but rather

multiplying the identity matrix by

(L−1
1 L−1

2 L1)L−1
1 = L−1

1 L−1
2 ,

which is the correct order.
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To illustrate this point, consider the matrix S given by

S =

2 1 1
4 1 0
0 0 1

 .
In the first instance, we perform the row operations R2 + (−2)R1, followed
by 1

2R1 to get

U =

1 0.5 0.5
0 −1 −2
0 0 1

 .
Using the shortcut, the matrix L becomes

L =

2 0 0
2 1 0
0 0 1

 ,
but we do not get S = LU . We do have U = L2L1S, where

L1 =

 1 0 0
−2 1 0
0 0 1

 ,
and

L2 =

0.5 0 0
0 1 0
0 0 1

 ,
so that S = L−1

1 L−1
2 U and the correct L is

L = L−1
1 L−1

2 =

2 0 0
4 1 0
0 0 1

 .
But when we use the shortcut to generate L, we effectively multiply the
identity matrix first by L−1

1 and then by L−1
2 , giving the matrix L−1

2 L−1
1

as our candidate for L. But L−1
1 L−1

2 and L−1
2 L−1

1 are not the same. But
why does reversing the order of the row operations work?

When we perform 1
2R1 first, and then R2 + (−4)R1 to get U , we are

multiplying S first by L2 and then by the matrix

E =

 1 0 0
−4 1 0
0 0 1

 .
The correct L is then L = L−1

2 E−1.
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When we use the shortcut, we are first multiplying the identity by the
matrix L−1

2 and then by a second matrix that we shall call J ; the correct
L must then be L = JL−1

2 . The matrix J is not E−1, but

J = L−1
2 E−1L2,

so that
L = J −+L−1

2 = L−1
2 E−1L2L

−1
2 = L−1

2 E−1,

which is correct.

23.2.3 Using the LU decomposition

Suppose that we have to solve the system of linear equations Sx = b.
Once we have the LU factorization, it is a simple matter to find x: first,
we solve the system Lz = b, and then solve Ux = z. Because both L and
U are triangular, solving these systems is a simple matter. Obtaining the
LU factorization is often better than finding S−1; when S is banded, that
is, has non-zero values only for the main diagonal and a few diagonals on
either side, the L and U retain that banded property, while S−1 does not.

If H is real and symmetric, and if H = LDU , then U = LT , so we have
H = LDLT . If, in addition, the non-zero entries of D are positive, then we
can write

H = (L
√
D)(L

√
D)T ,

which is the Cholesky Decomposition of H.

Ex. 23.1 Prove that if L is invertible and lower triangular , then so is
L−1.

Ex. 23.2 Show that the symmetric matrix

H =

[
0 1
1 0

]
cannot be written as H = LDLT .

Ex. 23.3 Show that the symmetric matrix

H =

[
0 1
1 0

]
cannot be written as H = LU , where L is lower triangular, U is upper
triangular, and both are invertible.
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23.2.4 The Non-Square Case

If A is an M by N matrix, the same elimination procedure leads to a
factoring PA = LU , where now the matrix L is square and lower-triangular
and the matrix U is in upper echelon form, meaning that

• 1. the non-zero rows of U come at the top of U and the first non-zero
entries are called the pivots;

• 2. below each pivot is a column of zeros;

• 3. each pivot lies to the right of the pivot in the row above it.

23.2.5 The LU Factorization in Linear Programming

Each step of the simplex algorithm involves solving systems of equations
of the form Bx = b and BT z = c. As we proceed from one step to the next,
the matrix B is updated by having one of its columns changed. This can
be performed by multiplying B on the right by a matrix F that is the
identity matrix, except for one column. The matrix E = F−1 is then also
the identity matrix, except for one column, so the updated inverse is

(Bnew)−1 = EB−1.

As the calculations proceed, the next inverse can be represented in product
form as

(Bnew)−1 = EkEk−1 · · · E1(B0)−1,

where B0 is the original choice for the matrix B. This product approach
suggests a role for LU factorization, in which the individual factors L and
U are updated in a stable manner as the iteration proceeds [266].

Ex. 23.4 • a. Show that the matrix B = A+ xδTn differs from A only
in the nth column, where x is an arbitrary column vector and δn is
the nth column of the identity matrix.

• b. Let F be a matrix that is the identity matrix, except for one column.
Show that the matrix E = F−1, when it exists, is then also the identity
matrix, except for one column, and compute E explicitly, in terms of
the entries of F .

Hint: use the identity in Equation 3.5.
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23.3 When is S = LU?

Note that it may not be possible to obtain S = LU without first permut-
ing the rows of S; in such cases we obtain PS = LU , where P is obtained
from the identity matrix by permuting rows.

We know from Exercise 23.3 that the invertible symmetric matrix

H =

[
0 1
1 0

]
cannot be written as H = LU , where both L and U are invertible. In [269]
Mark Yin gave a necessary and sufficient condition for a square matrix S
to have the form S = LU , where both L and U are invertible.

Definition 23.1 An n by n real matrix S is called a T -matrix if, for every
partition

S =

[
S11 S12

S21 S22

]
such that S11 is square, S11 is invertible.

Yin’s theorem is the following:

Theorem 23.1 An n by n matrix S has the form S = LU , where L is
lower triangular, U is upper triangular, and both are invertible, if and only
if S is a T -matrix.

Proof: Suppose that S = LU as in the statement of the theorem. Let S
be partitioned arbitrarily, as

S =

[
S11 S12

S21 S22

]
,

where S11 is square. Let

P = L−1 =

[
P11 0
P21 P22

]
be an invertible lower triangular matrix, partitioned to be compatible with
the partitioning of S, such that the matrix

PS =

[
P11S11 P11S12

0 ∗

]
is invertible and upper triangular. Since P11S11 must then be invertible, so
is S11. Since the partition is arbitrary, S is a T -matrix.
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Now suppose that S is a T -matrix. We show that S = LU as above.
First of all, notice that, if P is invertible and lower triangular, then PS
is also a T -matrix, since the upper left corner square sub-matrix of PS is
P11S11.

The proof uses induction on the size n. The case of n = 1 is trivial, so
assume that n > 1 and that the theorem holds for square matrices of size
n− 1 by n− 1. Let

P1 =

[
1 0T

b I

]
,

where I is the identity matrix, smn are the entries of the matrix S, and

bT = − 1

s11
(s21, ..., sn1).

Then

P1S =

[
s11 0T

S12 A22

]
,

where A22 is square and has size n− 1. Since P1S is a T -matrix, so is A22.
By the induction hypothesis, there is an invertible lower triangular matrix
P2 such that P2A22 is invertible and upper triangular. It follows that RP1S
is invertible and upper triangular, where

R =

[
1 0T

0 P2

]
.

Since RP1 is invertible and lower triangular, the proof is completed.

23.4 Householder Matrices

A real Householder matrix has the form

H = I − 2wwT ,

where w is a column vector in RN with ‖w‖2 = 1.

Lemma 23.1 For any Householder matrix we have HT = H and H−1 =
H.

Ex. 23.5 Prove Lemma 23.1.

Proposition 23.1 Let x and y be any members of RN with ‖x‖2 = ‖y‖2,
and let w = 1

‖x−y‖2 (x− y). Then Hx = y.
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Ex. 23.6 Prove Proposition 23.1.

We can use Householder matrices to turn certain non-zero entries of a
vector to zero.

Given any vector x in RN , let yn = xn, for n = 1, ..., k − 1, yn = 0, for
n = k + 1, ..., N , and

|yk| =
√
x2
k + x2

k+1 + ...+ x2
N ,

where the sign of yk is chosen to be opposite that of xk. Then ‖x‖2 = ‖y‖2,
the first k− 1 entries of x and y agree, and the final N − k entries of y are
zero. If we then build the Householder matrix H using these x and y to
create w, we find that Hx = y, so that the final N − k entries are zero.

23.5 The QR Factorization

Given an invertible N by N real matrix S, we can multiply S on the
left by a succession of Householder matrices H1, H2, ...,Hk−1 so that

Hk−1 · · ·H1S = R

is upper triangular. Since HT
n = Hn = H−1

n , it follows that

QT = Hk−1 · · ·H1

is orthogonal, and that S = QR. This is the QR factorization of S. Once
we have S = QR, we can solve Sx = b easily, by solving Rx = QT b.

23.5.1 The Non-Square Case

Using the same approach, any real rectangular matrix A with linearly
independent columns can be factored as A = QR, where R is square, upper
triangular, and invertible, and the columns of Q are orthonormal, so that
QTQ = I.

23.5.2 The QR Factorization and Least Squares

The least-squares solution of Ax = b is the solution of ATAx = AT b.
Once we have A = QR, we have ATA = RTQTQR = RTR, so we find
the least squares solution easily, by solving RT z = AT b, and then Rx = z.
Note that ATA = RTR is the Cholesky decomposition of ATA.
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23.5.3 Upper Hessenberg Matrices

The time required to calculate the QR factorization of a general N by N
matrix is proportional to N3; the time is proportional to N2 if the matrix
has the upper Hessenberg form.

We say that a real N by N matrix has upper Hessenberg form if its
non-zero entries occur on or above the main diagonal (as with an upper
triangular matrix), or on the first sub-diagonal below the main diagonal.
Note that any real N by N matrix S can be converted to upper Hessenberg
form by multiplying on the left by a succession of Householder matrices;
we can find Householder matrices H1, H2, ..., Hk−2 so that

Hk−2 · · ·H1A = B,

with B in upper Hessenberg form. The matrix

C = BH1 · · ·Hk−2 = Hk−2 · · ·H1AH1 · · ·Hk−2

is also in upper Hessenberg form. Since C = P−1AP for an invertible
matrix P , the matrix C is similar to A, and so has the same eigenvalues.
This will be helpful later.

23.5.4 The QR Method for Finding Eigenvalues

The QR factorization can be used to calculate the eigenvalues of a real
N by N matrix S. The method proceeds as follows: begin with S = S0 =
Q0R0, then define S1 = R0Q0. Next, perform the QR factorization on S1

to get S1 = Q1R1, and define S2 = R1Q1, and so on. If S has only real
eigenvalues, this procedure usually converges to an upper triangular matrix,
whose eigenvalues are displayed along its main diagonal. Since Sk = QkRk
and Qk is orthogonal, we have Rk = (Qk)TSk, so that

Sk+1 = RkQk = (Qk)TSkQk = (Qk)−1SkQk.

Therefore, each Sk is similar to S and so they have the same eigenvalues.
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24.1 Chapter Summary

Although the ART and the MART were developed to compute tomo-
graphic images, they can be viewed more generally as iterative methods for
solving systems of linear equations.

24.2 The ART in the General Case

Let A be a complex matrix with I rows and J columns, and let b be a
member of CI . We want to solve the system Ax = b. For each index value
i, let Hi be the hyperplane of J-dimensional vectors given by

Hi = {x|(Ax)i = bi}, (24.1)
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and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k. (24.2)

Because the ART uses only a single equation at each step, it has been called
a row-action method .

24.2.1 Calculating the ART

Given any vector z the vector in Hi closest to z, in the sense of the
Euclidean distance, has the entries

xj = zj +Aij(bi − (Az)i)/

J∑
m=1

|Aim|2. (24.3)

To simplify our calculations, we shall assume, throughout this chapter, that
the rows of A have been rescaled to have Euclidean length one; that is

J∑
j=1

|Aij |2 = 1, (24.4)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b. The ART is then the following: begin
with an arbitrary vector x0; for each nonnegative integer k, having found
xk, the next iterate xk+1 has entries

xk+1
j = xkj +Aij(bi − (Axk)i). (24.5)

As we shall show, when the system Ax = b has exact solutions the
ART converges to the solution closest to x0, in the 2-norm. How fast the
algorithm converges will depend on the ordering of the equations and on
whether or not we use relaxation. In selecting the equation ordering, the
important thing is to avoid particularly bad orderings, in which the hyper-
planes Hi and Hi+1 are nearly parallel.

24.2.2 Full-cycle ART

We again consider the full-cycle ART, with iterative step zm+1 = Tzm,
for

T = PIPI−1 · · · P2P1. (24.6)

When the system Ax = b has solutions, the fixed points of T are solutions.
When there are no solutions of Ax = b, the operator T will still have fixed
points, but they will no longer be exact solutions.
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24.2.3 Relaxed ART

The ART employs orthogonal projections onto the individual hyper-
planes. If we permit the next iterate to fall short of the hyperplane, or
somewhat beyond it, we get a relaxed version of ART.The relaxed ART
algorithm is as follows:

Algorithm 24.1 (Relaxed ART) With ω ∈ (0, 2), x0 arbitrary, and
i = k(mod I) + 1, let

xk+1
j = xkj + ωAij(bi − (Axk)i)). (24.7)

The relaxed ART converges to the solution closest to x0, in the consis-
tent case. In the inconsistent case, it does not converge, but subsequences
associated with the same i converge to distinct vectors, forming a limit
cycle.

24.2.4 Constrained ART

Let C be a closed, nonempty convex subset of CJ and PCx the orthog-
onal projection of x onto C. If there are solutions of Ax = b that lie within
C, we can find them using the constrained ART algorithm:

Algorithm 24.2 (Constrained ART) With x0 arbitrary and i =
k(mod I) + 1, let

zk+1
j = xkj +Aij(bi − (Axk)i), (24.8)

and xk+1 = PCz
k+1.

For example, if A and b are real and we seek a nonnegative solution to
Ax = b, we can use

Algorithm 24.3 (Non-negative ART) With i = k(mod I) + 1, and x0

arbitrary, let

xk+1
j = (xkj +Aij(bi − (Axk)i))+, (24.9)

where, for any real number a, a+ = max{a, 0}.

The constrained ART converges to a solution of Ax = b within C, whenever
such solutions exist.

Noise in the data vector b can manifest itself in a variety of ways.
Suppose that the system Ax = b ought to have non-negative solutions, but
because the entries of b are noisy measured data, it does not. Theorem 24.1
tells us that when J > I, but Ax = b has no non-negative solutions, the
non-negatively constrained least-squares solution can have at most I − 1
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non-zero entries, regardless of how large J is. This phenomenon also occurs
with several other approximate methods, such as those that minimize the
cross-entropy distance. This gives us a sense of what can happen when we
impose positivity on the calculated least-squares solution, that is, when we
minimize ||Ax− b||2 over all non-negative vectors x.

Definition 24.1 The matrix A has the full-rank property if A and every
matrix Q obtained from A by deleting columns have full rank.

Theorem 24.1 Let A have the full-rank property. Suppose there is no non-
negative solution to the system of equations Ax = b. Then there is a subset
S of the set {j = 1, 2, ..., J}, with cardinality at most I − 1, such that, if x̂
is any minimizer of ||Ax − b||2 subject to x ≥ 0, then x̂j = 0 for j not in
S. Therefore, x̂ is unique.

For a proof, see the chapter on optimization.

24.2.5 When Ax = b Has Solutions

For the consistent case, in which the system Ax = b has exact solutions,
we have the following result.

Theorem 24.2 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (24.5). Then the sequence {||x̂−xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

The proof of the following lemma follows from the definition of the ART
iteration, with a little algebraic manipulation.

Lemma 24.1 Let x0 and y0 be arbitrary and {xk} and {yk} be the se-
quences generated by applying the ART algorithm, beginning with x0 and
y0, respectively; that is, yk+1 = Pi(k)y

k. Then

||x0 − y0||22 − ||xI − yI ||22 =

I∑
i=1

|(Axi−1)i − (Ayi−1)i|2. (24.10)

Ex. 24.1 Prove Lemma 24.1.

Proof of Theorem 24.2: Let Ax̂ = b. Let vri = (AxrI+i−1)i and vr =
(vr1, ..., v

r
I )
T , for r = 0, 1, .... It follows from Equation (24.10) that the

sequence {||x̂ − xrI ||2} is decreasing and the sequence {vr − b} → 0. So
{xrI} is bounded; let x∗,0 be a cluster point. Then, for i = 1, 2, ..., I, let
x∗,i be the successor of x∗,i−1 using the ART algorithm. It follows that
(Ax∗,i−1)i = bi for each i, from which we conclude that x∗,0 = x∗,i for all
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i and that Ax∗,0 = b. Using x∗,0 in place of the arbitrary solution x̂, we
have that the sequence {||x∗,0 − xk||2} is decreasing. But a subsequence
converges to zero, so {xk} converges to x∗,0. By Equation (24.10), the
difference ||x̂− xk||22 − ||x̂− xk+1||22 is independent of which solution x̂ we
pick; consequently, so is ||x̂− x0||22− ||x̂− x∗,0||22. It follows that x∗,0 is the
solution closest to x0. This completes the proof.

24.2.6 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a
single vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...}
converges to a vector zi and the collection {zi |i = 1, ..., I} is called the limit
cycle. This was shown by Tanabe [247] and also follows from the results of
De Pierro and Iusem [111]. Proofs of subsequential convergence are given in
[65, 66]. The ART limit cycle will vary with the ordering of the equations,
and contains more than one vector unless an exact solution exists.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?

There is a partial answer to the second question. In [55] (see also [65])
it was shown that if the system Ax = b has no exact solution, and if
I = J+1, then the vectors of the limit cycle lie on a sphere in J-dimensional
space having the least-squares solution at its center. This is not true more
generally, however.

Open Question: In both the consistent and inconsistent cases, the se-
quence {xk} of ART iterates is bounded, as Tanabe [247], and De Pierro
and Iusem [111] have shown. The proof is easy in the consistent case. Is
there an easy proof for the inconsistent case?

24.3 Regularized ART

If the entries of b are noisy but the system Ax = b remains consistent
(which can easily happen in the under-determined case, with J > I), the
ART begun at x0 = 0 converges to the solution having minimum Euclidean
norm, but this norm can be quite large. The resulting solution is probably
useless.

We know from a previous exercise that the system AA†z = b has a
solution if and only if the system Ax = b has solutions.
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Ex. 24.2 Show that the matrix AA†+εI is always invertible, for any ε > 0.
Then show that

(AA† + εI)−1A = A(A†A+ εI)−1.

Instead of solving Ax = b, we regularize by minimizing, for example,
the function

Fε(x) = ||Ax− b||22 + ε2||x||22. (24.11)

The solution to this problem is the vector

x̂ε = (A†A+ ε2I)−1A†b, (24.12)

which always exists, even when the system Ax = b has no solutions.
However, we do not want to calculate A†A+ ε2I when the matrix A is

large. Fortunately, there are ways to find x̂ε, using only the matrix A and
the ART algorithm.

We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is presented in [65], while the second one is due to
Eggermont, Herman, and Lent [124].

Both methods rely on the fact that when the ART is applied to a
consistent system Ax = b it converges to the solution of that system closest
to where we began the iteration. We know from Theorem 3.2 that the
solution of Ax = b closest to the origin has the form x = A†z, so that
b = AA†z. Assuming AA† is invertible, we have z = (AA†)−1b and and

x = A†(AA†)−1b.

If we want to find the solution closest to a given vector p, we write t = x−p,
so that At = Ax−Ap = b−Ap and then find the solution of At = b−Ap
closest to the origin. Then

t = A†(AA†)−1(b−Ap),

and
x = t+ p = A†(AA†)−1(b−Ap) + p.

In our first method we use ART to solve the system of equations given
in matrix form by

[
A† εI

] [u
v

]
= 0. (24.13)

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −εx̂ε.
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The method of Eggermont et al. is similar. In their method we use ART
to solve the system of equations given in matrix form by[

A εI
] [x
v

]
= b. (24.14)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε as before, and that εv∞ = b−Ax̂ε.

Ex. 24.3 Prove that the two iterative methods for regularized ART perform
as indicated.

24.4 Avoiding the Limit Cycle

Generally, the greater the minimum value of ||Ax − b||22 the more the
vectors of the LC are distinct from one another. There are several ways to
avoid the LC in ART and to obtain a least-squares solution. One way is
the double ART (DART) [59]:

24.4.1 Double ART (DART)

We know that any b can be written as b = Ax̂+ ŵ, where AT ŵ = 0 and
x̂ is a minimizer of ||Ax − b||22. The vector ŵ is the orthogonal projection
of b onto the null space of the matrix transformation A†. Therefore, in
Step 1 of DART we apply the ART algorithm to the consistent system of
linear equations A†w = 0, beginning with w0 = b. The limit is w∞ = ŵ,
the member of the null space of A† closest to b. In Step 2, apply ART
to the consistent system of linear equations Ax = b − w∞ = Ax̂. The
limit is then the minimizer of ||Ax − b||2 closest to x0. Notice that we
could also obtain the least-squares solution by applying ART to the system
A†y = A†b, starting with y0 = 0, to obtain the minimum-norm solution,
which is y = Ax̂, and then applying ART to the system Ax = y.

24.4.2 Strongly Under-relaxed ART

Another method for avoiding the LC is strong under-relaxation, due to
Censor, Eggermont and Gordon [80]. Let t > 0. Replace the iterative step
in ART with

xk+1
j = xkj + tAij(bi − (Axk)i). (24.15)
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In [80] it is shown that, as t→ 0, the vectors of the LC approach the geo-
metric least squares solution closest to x0; a short proof is in [55]. Bertsekas
[20] uses strong under-relaxation to obtain convergence of more general in-
cremental methods.

24.5 The MART

The multiplicative ART (MART) [151] is an iterative algorithm closely
related to the ART. It also was devised to obtain tomographic images,
but, like ART, applies more generally; MART applies to systems of linear
equations Ax = b for which the bi are positive, the Aij are nonnegative,
and the solution x we seek is to have nonnegative entries. It is not so easy
to see the relation between ART and MART if we look at the most general
formulation of MART. For that reason, we began with a simpler case,
transmission tomographic imaging, in which the relation is most clearly
visible.

24.5.1 The MART in the General Case

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration.

Algorithm 24.4 (MART) Let x0 be any positive vector, and i =
k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xkj

( bi
(Axk)i

)m−1
i Aij

, (24.16)

where mi = max {Aij |j = 1, 2, ..., J}.

Some treatments of MART leave out the mi, but require only that the
entries of A have been rescaled so that Aij ≤ 1 for all i and j. The mi

is important, however, in accelerating the convergence of MART. There
is another way to do the rescaling for MART, which we discuss in the
appendix on Geometric Programming and the MART.

The MART can be accelerated by relaxation, as well.

Algorithm 24.5 (Relaxed MART) Let x0 be any positive vector, and
i = k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xkj

( bi
(Axk)i

)γim−1
i Aij

, (24.17)
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where γi is in the interval (0, 1).

As with ART, finding the best relaxation parameters is a bit of an art.

24.5.2 Cross-Entropy

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler distance
from a to b be

KL(a, b) = a log
a

b
+ b− a, (24.18)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =

J∑
j=1

KL(xj , zj). (24.19)

Unlike the Euclidean distance, the KL distance is not symmetric;
KL(Ax, b) and KL(b, Ax) are distinct, and we can obtain different ap-
proximate solutions of Ax = b by minimizing these two distances with
respect to non-negative x.

24.5.3 Convergence of MART

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART.

Theorem 24.3 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1KL(xj , x

0
j ) is

minimized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =

J∑
j=1

xj log xj − xj . (24.20)

As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of a
limit cycle for MART.
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25.1 Chapter Summary

The ART and its simultaneous and block-iterative versions are designed
to solve general systems of linear equations Ax = b. The SMART, EMML
and RBI methods require that the entries of A be nonnegative, those of b
positive and produce nonnegative x. In this chapter we present variations
of the SMART and EMML that impose the constraints uj ≤ xj ≤ vj ,
where the uj and vj are selected lower and upper bounds on the individual
entries xj . These algorithms were used in [208] as a method for including in
transmission tomographic reconstruction spatially varying upper and lower
bounds on the x-ray attenuation.

25.2 Modifying the KL distance

The SMART, EMML and RBI methods are based on the Kullback-
Leibler distance between nonnegative vectors. To impose more general con-
straints on the entries of x we derive algorithms based on shifted KL dis-
tances, also called Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
shifted distance KL(v − x, v − z) applies only to those vectors x and z for
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which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) +KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the interval
[uj , vj ]. Our objective is to mimic the derivation of the SMART, EMML
and RBI methods, replacing KL distances with shifted KL distances, to
obtain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each j.
The algorithms that result are the ABMART and ABEMML block-iterative
methods. These algorithms were originally presented in [57], in which the
vectors u and v were called a and b, hence the names of the algorithms.
Throughout this chapter we shall assume that the entries of the matrix
A are nonnegative. We shall denote by Bn, n = 1, ..., N a partition of the
index set {i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN)+1.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.

25.3 The ABMART Algorithm

We assume that (Au)i ≤ bi ≤ (Av)i and seek a solution of Ax = b with
uj ≤ xj ≤ vj , for each j. The algorithm begins with an initial vector x0

satisfying uj ≤ x0
j ≤ vj , for each j. Having calculated xk, we take

xk+1
j = αkj vj + (1− αkj )uj , (25.1)

with n = n(k),

αkj =
ckj
∏n

(dki )Aij

1 + ckj
∏n

(dki )Aij
, (25.2)

ckj =
(xkj − uj)
(vj − xkj )

, (25.3)

and

dkj =
(bi − (Au)i)((Av)i − (Axk)i)

((Av)i − bi)((Axk)i − (Au)i)
, (25.4)
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where
∏n

denotes the product over those indices i in Bn(k). Notice that,

at each step of the iteration, xkj is a convex combination of the endpoints

uj and vj , so that xkj lies in the interval [uj , vj ].
We have the following theorem concerning the convergence of the AB-

MART algorithm:

Theorem 25.1 If there is a solution of the system Ax = b that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
blocks Bn, the ABMART sequence converges to that constrained solution
of Ax = b for which the Fermi-Dirac generalized entropic distance from x
to x0,

KL(x− u, x0 − u) +KL(v − x, v − x0),

is minimized. If there is no constrained solution of Ax = b, then, for N = 1,
the ABMART sequence converges to the minimizer of

KL(Ax−Au, b−Au) +KL(Av −Ax,Av − b)

for which
KL(x− u, x0 − u) +KL(v − x, v − x0)

is minimized.

The proof is similar to that for RBI-SMART and is found in [57].

25.4 The ABEMML Algorithm

We make the same assumptions as in the previous section. The iterative
step of the ABEMML algorithm is

xk+1
j = αkj vj + (1− αkj )uj , (25.5)

where

αkj = γkj /d
k
j , (25.6)

γkj = (xkj − uj)ekj , (25.7)

βkj = (vj − xkj )fkj , (25.8)

dkj = γkj + βkj , (25.9)
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ekj =

(
1−

∑
i∈Bn

Aij

)
+
∑
i∈Bn

Aij

(
bi − (Au)i

(Axk)i − (Au)i

)
, (25.10)

and

fkj =

(
1−

∑
i∈Bn

Aij

)
+
∑
i∈Bn

Aij

(
(Av)i − bi

(Av)i − (Axk)i

)
. (25.11)

We have the following theorem concerning the convergence of the ABE-
MML algorithm:

Theorem 25.2 If there is a solution of the system Ax = b that satisfies
the constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice
of the blocks Bn, the ABEMML sequence converges to such a constrained
solution of Ax = b. If there is no constrained solution of Ax = b, then, for
N = 1, the ABEMML sequence converges to a constrained minimizer of

KL(b−Au,Ax−Au) +KL(Av − b, Av −Ax).

The proof is similar to that for RBI-EMML and is to be found in [57]. In
contrast to the ABMART theorem, this is all we can say about the limits
of the ABEMML sequences.

Open Question: How does the limit of the ABEMML iterative sequence
depend, in the consistent case, on the choice of blocks, and, in general, on
the choice of x0?
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26.1 Chapter Summary

Image reconstruction problems in tomography are often formulated as
statistical likelihood maximization problems in which the pixel values of
the desired image play the role of parameters. Iterative algorithms based
on cross-entropy minimization, such as the expectation maximization max-
imum likelihood (EMML) method and the simultaneous multiplicative al-
gebraic reconstruction technique (SMART) can be used to solve such prob-
lems. Because the EMML and SMART are slow to converge for large
amounts of data typical in imaging problems, acceleration of the algo-
rithms using blocks of data or ordered subsets has become popular. There
are a number of different ways to formulate these block-iterative versions
of EMML and SMART, involving the choice of certain normalization and
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regularization parameters. These methods are not faster merely because
they are block-iterative; the correct choice of the parameters is crucial.
The purpose of this chapter is to discuss these different formulations in
detail sufficient to reveal the precise roles played by the parameters and to
guide the user in choosing them.

It is not obvious, nor, in fact, is it even true, that using block-iterative
methods will accelerate convergence. To better understand the connection
between the use of blocks and acceleration, we begin with a discussion of
the ART algorithm and its simultaneous versions, the Landweber algorithm
and more particularly, Cimmino’s method.

26.2 The ART and its Simultaneous Versions

In this section we let Ax = b denote any real system of I linear equations
in J unknowns. For each i = 1, ..., I denote by Hi the hyperplane associated
with the ith equation, that is,

Hi = {x|(Ax)i = bi},

and Pi the orthogonal projection operator onto Hi, that is, for every vector
z, Piz is the vector in Hi closest to z. We can write Piz explicitly; we have

Piz = z + (bi − (Az)i)a
i,

where ai is the ith column of the matrix AT , which we shall assume has
been normalized to have ||ai||2 = 1.

26.2.1 The ART

For k = 0, 1, ... and i = i(k) = k(mod I) + 1, the ART iterative step is

xk+1 = Pix
k = xk + (bi − (Axk)i)a

i.

The ART operates by projecting the current vector onto the next hyper-
plane and cycling through the hyperplanes repeatedly. The ART uses only
one equation at each step of the iteration.

Suppose that x̂ is a solution of Ax = b, so that Ax̂ = b. Each step of
the ART gets us closer to x̂, as the following calculations show.

We begin by calculating ||x̂− xk+1||22. We use

||x̂− xk+1||22 = 〈x̂− xk+1, x̂− xk+1〉
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and the definition of xk+1 to get

||x̂−xk+1||22 = ||x̂−xk||22−2〈x̂−xk, (bi−(Axk)i)a
i〉+〈(bi−(Axk)i)a

i, (bi−(Axk)i)a
i〉

= ||x̂− xk||22 − 2(bi − (Axk)i)〈x̂− xk, ai〉+ (bi − (Axk)i)
2

= ||x̂−xk||22−2(bi− (Axk)i)
2 +(bi− (Axk)i)

2 = ||x̂−xk||22− (bi− (Axk)i)
2.

Therefore, we find that

||x̂− xk||22 − ||x̂− xk+1||22 = (bi − (Axk)i)
2. (26.1)

Consequently, we know that

||x̂− xk||22 ≥ ||x̂− xk+1||22.

It will help us later to know that

||x̂− x0||22 − ||x̂− xI ||22 =

I∑
i=1

(bi − (Axi−1)i)
2. (26.2)

This measures how much closer to x̂ we are after we have used all the
equations one time.

There is one other consideration concerning the ART. From Equation
(26.2) we see that it is helpful to have the quantities (bi− (Axi−1)i)

2 large;
if the equations are ordered in such a way that these quantities are not
large, then the ART will not converge as quickly as it may otherwise do.
This can easily happen if the equations correspond to discrete line integrals
through the object and the lines are ordered so that each line is close to
the previous line. Ordering the lines randomly, or in any way that avoids
unfortunate ordering, greatly improves convergence speed [166].

Relaxation also helps to speed up the convergence of ART [238]. A
relaxed version of ART has the following iterative step:

xk+1 = xk + β(bi − (Axk)i)a
i,

where 0 < β ≤ 1.

26.2.2 The Landweber and Cimmino Algorithms

As we just saw, the ART uses one equation at a time and, at each step
of the iteration, projects orthogonally onto the hyperplane associated with
the next equation. A simultaneous version of ART, Cimmino’s method,
uses all the equations at each step, projecting orthogonally onto all the
hyperplanes and averaging the result.



314 Applied and Computational Linear Algebra: A First Course

26.2.2.1 Cimmino’s Algorithm:

The iterative step of Cimmino’s algorithm is

xk+1 = xk +
1

I

I∑
i=1

(bi − (Axk)i)a
i = xk +

1

I
AT (b−Axk), (26.3)

where, as previously, we assume that ||ai||2 = 1 for all i.

26.2.2.2 Landweber’s Algorithm:

A more general iterative algorithm is the Landweber algorithm, with
the iterative step

xk+1 = xk + γAT (b−Axk); (26.4)

for convergence of this algorithm we need 0 ≤ γ ≤ 2/ρ(ATA), where
ρ(ATA) denotes the largest eigenvalue of the matrix ATA. Since ||ai||2 = 1
for all i, it follows that the trace of the matrix AAT is I, which is also
the trace of the matrix ATA; since the trace of ATA is also the sum of
the eigenvalues of ATA, it follows that the choice of γ = 1

I in Cimmino’s
method is acceptable.

Theorem 26.1 For any γ in the interval (0, 2
ρ(ATA)

), and any starting vec-

tor x0, the Landweber iterative sequence given by Equation (26.4) converges
to the minimizer of the function f(x) = 1

2‖Ax− b‖
2
2 for which ‖x−x0‖2 is

minimized.

Proof: Let x̂ be a minimizer of f(x). We calculate how much closer to x̂
we get as we take one step of the Landweber iteration. We have

||x̂− xk||22 − ||x̂− xk+1||22

= 2γ〈x̂− xk, AT (b−Axk)〉 − γ2〈AT (b−Axk), AT (b−Axk)〉. (26.5)

From Theorem 8.2, we know that b = Ax̂+ ŵ, where

‖b−Ax̂‖2 ≤ ‖b−Ax‖2,

for all x, and AT ŵ = 0. Since every occurrence of b in Equation (26.5) is
preceded by AT , we can replace all those b with Ax̂. This gives us

||x̂− xk||22 − ||x̂− xk+1||22 = 2γ〈x̂− xk, AT (Ax̂−Axk)〉

−γ2〈AT (Ax̂−Axk), AT (Ax̂−Axk)〉. (26.6)
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From our earlier discussion of eigenvectors and eigenvalues, we know that,
for any matrix B, we have

||Bx||22 ≤ ρ(BTB)||x||22.

Therefore,

〈AT (Ax̂−Axk), AT (Ax̂−Axk)〉 = ||AT (Ax̂−Axk)||22 ≤ ρ(ATA)||Ax̂−Axk||22.

Using

〈x̂−xk, AT (Ax̂−Axk)〉 = 〈A(x̂−xk), Ax̂−Axk〉 = 〈Ax̂−Axk, Ax̂−Axk〉 = ||Ax̂−Axk||22,

we find that

||x̂− xk||22 − ||x̂− xk+1||22 ≥ (2γ − γ2ρ(ATA))||Ax̂−Axk||22.

For 0 < γ < 2
ρ(ATA)

the sequence {||x̂− xk||22} is decreasing.

We can draw several conclusions from this inequality:

• 1. the sequence {‖x̂− xk‖2} is decreasing;

• 2. the sequence {‖Ax̂−Axk‖2} converges to zero;

• 3. the sequence {xk} is bounded;

• 4. there is a subsequence {xkn} converging to some vector x∗;

• 5. Ax∗ = Ax̂;

• 6. we can replace x̂ with x∗, and so the sequence {‖x∗ − xk‖2} is
decreasing;

• 7. since the subsequence {‖x∗−xkn‖2} converges to zero, so does the
entire sequence {‖x∗ − xk‖2}.

We can then say that the sequence {xk} converges to x∗, which is a
minimizer of f(x). Now we want to show that x∗ is the minimizer closest
to x0.

We see from Equation (26.6) that the right side of the equation depends
on Ax̂, but not directly on x̂ itself. Therefore, the same is true of the
difference

‖x̂− x0‖22 − ‖x̂− x∗‖22.

Therefore, minimizing ‖x̂−x0‖2 over all x̂ that minimize f(x) is equivalent
to minimizing ‖x̂− x∗‖2 over all x̂ minimizing f(x). But the answer to the
latter problem is obviously x̂ = x∗. Therefore, x∗ is the minimizer of f(x)
closest to x0.
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If we take γ = 1
ρ(ATA)

we have

||x̂− xk||22 − ||x̂− xk+1||22 ≥
1

ρ(ATA)
||Ax̂−Axk||22. (26.7)

In the case of Cimmino’s method, we have γ = 1
I , so that

||x̂− xk||22 − ||x̂− xk+1||22 ≥
1

I
||b−Axk||22. (26.8)

Using Equation (26.2) and the inequality in (26.8), we can make a
rough comparison between ART and Cimmino’s method, with respect to
how much closer to x̂ we get as we pass through all the equations one time.
The two quantities

I∑
i=1

(bi − (Axi−1)i)
2

from Equation (26.2) and
||b−Axk||22

from the inequality in (26.8) are comparable, in that both sums are over
i = 1, ..., I, even though what is being summed is not the same in both
cases. In image reconstruction I is quite large and the most important
thing in such comparisons is the range of the summation index, so long
as what is being summed is roughly comparable. However, notice that in
the inequality in (26.8) the right side also has a factor of 1

I . This tells
us that, roughly speaking, one pass through all the equations using ART
improves the squared distance to x̂ by a factor of I, compared to using all
the equations in one step of Cimmino’s method, even though the amount
of calculation is about the same.

Because the Landweber algorithm permits other choices for the param-
eter γ, there is hope that we may obtain better results with γ 6= 1

I . The
inequality

0 < γ <
2

ρ(ATA)

suggests using γ = 1
ρ(ATA)

, which means that it would help to have a

decent estimate of ρ(ATA); the estimate used in Cimmino’s method is
ρ(ATA) = I, which is usually much too large. As a result, the choice of
γ = 1

I means that we are taking unnecessarily small steps at each iteration.
A smaller upper bound for ρ(ATA) would allow us to take bigger steps each
time, and therefore, getting close to x̂ sooner.

In many image processing applications, such as tomography, the matrix
A is sparse, which means that most of the entries of A are zero. In the
tomography problems for example, the number of non-zero entries of A is
usually on the order of

√
J ; since I and J are usually roughly comparable,
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this means that A has about
√
I non-zero entries. In the appendix on matrix

theory we obtain an upper bound estimate for ρ(ATA) that is particularly
useful when A is sparse. Suppose that all the rows of A have length one.
Let s be the largest number of non-zero entries in any column of A. Then
ρ(ATA) does not exceed s. Notice that this estimate does not require us
to calculate the matrix ATA and makes use of the sparse nature of A; the
matrix ATA need not be sparse, and would be time-consuming to calculate
in practice, anyway.

If, for the sparse cases, we take ρ(ATA) to be approximately
√
I, and

choose γ = 1√
I
, we find that we have replaced the factor 1

I in the inequality

(26.8) with the much larger factor 1√
I
, which then improves the rate of

convergence. However, the ART is still faster by, roughly, a factor of
√
I.

26.2.3 Block-Iterative ART

The ART uses only one equation at a time, while the Landweber algo-
rithm uses all the equations at each step of the iteration. It is sometimes
convenient to take a middle course, and use some, but not all, equations at
each step of the iteration. The collection of equations to be used together
constitute a block. Such methods are called block-iterative or ordered-subset
methods. Generally speaking, when unfortunate ordering of the blocks and
selection of equations within each block are avoided, and the parameters
well chosen, these block-iterative methods converge faster than the Cim-
mino algorithm by roughly a factor of the number of blocks.

We turn now to the iterative algorithms that are based on the KL
distance. For these algorithms as well, we find that using block-iterative
methods and choosing the parameters carefully, we can improve conver-
gence by roughly the number of blocks, with respect to the simultaneous
EMML and SMART methods.

26.3 Overview of KL-based methods

The algorithms we discuss here have interesting histories, which we
sketch in this section.

26.3.1 The SMART and its variants

Like the ART, the MART has a simultaneous version, called the
SMART. Like MART, SMART applies only to nonnegative systems of equa-
tions Ax = b. Unlike MART, SMART is a simultaneous algorithm that uses
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all equations in each step of the iteration. The SMART was discovered in
1972, independently, by Darroch and Ratcliff, working in statistics, [107]
and by Schmidlin [233] in medical imaging; neither work makes reference
to MART. Darroch and Ratcliff do consider block-iterative versions of their
algorithm, in which only some of the equations are used at each step, but
their convergence proof involves unnecessary restrictions on the system ma-
trix. Censor and Segman [89] seem to be the first to present the SMART
and its block-iterative variants explicitly as generalizations of MART.

26.3.2 The EMML and its variants

The expectation maximization maximum likelihood (EMML) method
turns out to be closely related to the SMART, although it has quite a
different history. The EMML algorithm we discuss here is actually a special
case of a more general approach to likelihood maximization, usually called
the EM algorithm [109]; the book by McLachnan and Krishnan [202] is a
good source for the history of this more general algorithm.

It was noticed by Rockmore and Macovski [230] that the image recon-
struction problems posed by medical tomography could be formulated as
statistical parameter estimation problems. Following up on this idea, Shepp
and Vardi [237] suggested the use of the EM algorithm for solving the re-
construction problem in emission tomography. In [189], Lange and Carson
presented an EM-type iterative method for transmission tomographic im-
age reconstruction, and pointed out a gap in the convergence proof given
in [237] for the emission case. In [258], Vardi, Shepp and Kaufman repaired
the earlier proof, relying on techniques due to Csiszár and Tusnády [104].
In [190] Lange, Bahn and Little improved the transmission and emission
algorithms, by including regularization to reduce the effects of noise. The
question of uniqueness of the solution in the inconsistent case was resolved
in [51].

The MART and SMART were initially designed to apply to consistent
systems of equations. Darroch and Ratcliff did not consider what happens
in the inconsistent case, in which the system of equations has no non-
negative solutions; this issue was resolved in [51], where it was shown that
the SMART converges to a non-negative minimizer of the Kullback-Leibler
distanceKL(Ax, b). The EMML, as a statistical parameter estimation tech-
nique, was not originally thought to be connected to any system of linear
equations. In [51] it was shown that the EMML leads to a non-negative
minimizer of the Kullback-Leibler distance KL(b, Ax), thereby exhibiting
a close connection between the SMART and the EMML methods. Conse-
quently, when the non-negative system of linear equations Ax = b has a
non-negative solution, the EMML converges to such a solution.
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26.3.3 Block-iterative Versions of SMART and EMML

As we have seen, Darroch and Ratcliff included what are now called
block-iterative versions of SMART in their original paper [107]. Censor
and Segman [89] viewed SMART and its block-iterative versions as natural
extension of the MART. Consequently, block-iterative variants of SMART
have been around for some time. The story with the EMML is quite differ-
ent.

The paper of Holte, Schmidlin, et al. [170] compares the performance of
Schmidlin’s method of [233] with the EMML algorithm. Almost as an aside,
they notice the accelerating effect of what they call projection interleaving,
that is, the use of blocks. This paper contains no explicit formulas, however,
and presents no theory, so one can only make educated guesses as to the
precise iterative methods employed. Somewhat later, Hudson, Hutton and
Larkin [171, 172] observed that the EMML can be significantly accelerated
if, at each step, one employs only some of the data. They referred to this
approach as the ordered subset EM method (OSEM). They gave a proof
of convergence of the OSEM, for the consistent case. The proof relied on
a fairly restrictive relationship between the matrix A and the choice of
blocks, called subset balance. In [54] a revised version of the OSEM, called
the rescaled block-iterative EMML (RBI-EMML), was shown to converge,
in the consistent case, regardless of the choice of blocks.

26.3.4 Basic assumptions

Methods based on cross-entropy, such as the MART, SMART, EMML
and all block-iterative versions of these algorithms apply to nonnegative
systems that we denote by Ax = b, where b is a vector of positive entries,
A is a matrix with entries Aij ≥ 0 such that for each j the sum sj =∑I
i=1Aij is positive and we seek a solution x with nonnegative entries. If

no nonnegative x satisfies b = Ax we say the system is inconsistent.
Simultaneous iterative algorithms employ all of the equations at each

step of the iteration; block-iterative methods do not. For the latter methods
we assume that the index set {i = 1, ..., I} is the (not necessarily disjoint)
union of the N sets or blocks Bn, n = 1, ..., N . We shall require that snj =∑
i∈Bn

Aij > 0 for each n and each j. Block-iterative methods like ART
and MART for which each block consists of precisely one element are called
row-action or sequential methods. We begin our discussion with the SMART
and the EMML method.
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26.4 The SMART and the EMML method

Both the SMART and the EMML method provide a solution of b = Ax
when such exist and (distinct) approximate solutions in the inconsistent
case. The SMART algorithm is the following:

Algorithm 26.1 (SMART) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xkj exp

(
s−1
j

I∑
i=1

Aij log
bi

(Axk)i

)
. (26.9)

The exponential and logarithm in the SMART iterative step are compu-
tationally expensive. The EMML method is similar to the SMART, but
somewhat less costly to compute.

Algorithm 26.2 (EMML) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xkj s

−1
j

I∑
i=1

Aij
bi

(Axk)i
. (26.10)

The main results concerning the SMART are given by the following theo-
rem.

Theorem 26.2 In the consistent case the SMART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Ax, y) for which

∑J
j=1 sjKL(xj , x

0
j ) is

minimized; if A and every matrix derived from A by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Ax, y) and
at most I − 1 of its entries are nonzero.

For the EMML method the main results are the following.

Theorem 26.3 In the consistent case the EMML algorithm converges to
nonnegative solution of b = Ax. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(y,Ax); if A and every matrix
derived from A by deleting columns has full rank then there is a unique
nonnegative minimizer of KL(y,Ax) and at most I − 1 of its entries are
nonzero.

In the consistent case there may be multiple nonnegative solutions and the
one obtained by the EMML algorithm will depend on the starting vector
x0; how it depends on x0 is an open question.
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These theorems are special cases of more general results on block-
iterative methods that we shall prove later in this chapter.

Both the EMML and SMART are related to likelihood maximization.
Minimizing the function KL(y,Ax) is equivalent to maximizing the like-
lihood when the bi are taken to be measurements of independent Poisson
random variables having means (Ax)i. The entries of x are the parame-
ters to be determined. This situation arises in emission tomography. So the
EMML is a likelihood maximizer, as its name suggests.

The connection between SMART and likelihood maximization is a bit
more convoluted. Suppose that sj = 1 for each j. The solution of b = Ax
for which KL(x, x0) is minimized necessarily has the form

xj = x0
j exp

( I∑
i=1

Aijλi

)
(26.11)

for some vector λ with entries λi. This log linear form also arises in trans-
mission tomography, where it is natural to assume that sj = 1 for each j
and λi ≤ 0 for each i. We have the following lemma that helps to connect
the SMART algorithm with the transmission tomography problem:

Lemma 26.1 Minimizing KL(d, x) over x as in Equation (26.11) is equiv-
alent to minimizing KL(x, x0), subject to Ax = Ad.

The solution to the latter problem can be obtained using the SMART.
With x+ =

∑J
j=1 xj the vector A with entries pj = xj/x+ is a probabil-

ity vector. Let d = (d1, ..., dJ)T be a vector whose entries are nonnegative

integers, with K =
∑J
j=1 dj . Suppose that, for each j, pj is the probability

of index j and dj is the number of times index j was chosen in K trials.
The likelihood function of the parameters λi is

L(λ) =

J∏
j=1

p
dj
j (26.12)

so that the log-likelihood function is

LL(λ) =

J∑
j=1

dj log pj . (26.13)

Since A is a probability vector, maximizing L(λ) is equivalent to minimiz-
ing KL(d, p) with respect to λ, which, according to the lemma above, can
be solved using SMART. In fact, since all of the block-iterative versions of
SMART have the same limit whenever they have the same starting vector,
any of these methods can be used to solve this maximum likelihood prob-
lem. In the case of transmission tomography the λi must be non-positive,
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so if SMART is to be used, some modification is needed to obtain such a
solution.

Those who have used the SMART or the EMML on sizable problems
have certainly noticed that they are both slow to converge. An important
issue, therefore, is how to accelerate convergence. One popular method is
through the use of block-iterative (or ordered subset) methods.

26.5 Ordered-Subset Versions

To illustrate block-iterative methods and to motivate our subsequent
discussion we consider now the ordered subset EM algorithm (OSEM),
which is a popular technique in some areas of medical imaging, as well as
an analogous version of SMART, which we shall call here the OSSMART.
The OSEM is now used quite frequently in tomographic image reconstruc-
tion, where it is acknowledged to produce usable images significantly faster
then EMML. From a theoretical perspective both OSEM and OSSMART
are incorrect. How to correct them is the subject of much that follows here.

The idea behind the OSEM (OSSMART) is simple: the iteration looks
very much like the EMML (SMART), but at each step of the iteration the
summations are taken only over the current block. The blocks are processed
cyclically.

The OSEM iteration is the following: for k = 0, 1, ... and n =
k(modN) + 1, having found xk let

OSEM:

xk+1
j = xkj s

−1
nj

∑
i∈Bn

Aij
bi

(Axk)i
. (26.14)

The OSSMART has the following iterative step:

OSSMART

xk+1
j = xkj exp

(
s−1
nj

∑
i∈Bn

Aij log
bi

(Axk)i

)
. (26.15)

In general we do not expect block-iterative algorithms to converge in the
inconsistent case, but to exhibit subsequential convergence to a limit cycle,
as we shall discuss later. We do, however, want them to converge to a
solution in the consistent case; the OSEM and OSSMART fail to do this
except when the matrix A and the set of blocks {Bn, n = 1, ..., N} satisfy
the condition known as subset balance, which means that the sums snj
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depend only on j and not on n. While this may be approximately valid in
some special cases, it is overly restrictive, eliminating, for example, almost
every set of blocks whose cardinalities are not all the same. When the
OSEM does well in practice in medical imaging it is probably because the
N is not large and only a few iterations are carried out.

The experience with the OSEM was encouraging, however, and strongly
suggested that an equally fast, but mathematically correct, block-iterative
version of EMML was to be had; this is the rescaled block-iterative EMML
(RBI-EMML). Both RBI-EMML and an analogous corrected version of
OSSMART, the RBI-SMART, provide fast convergence to a solution in
the consistent case, for any choice of blocks.

26.6 The RBI-SMART

We turn next to the block-iterative versions of the SMART, which we
shall denote BI-SMART. These methods were known prior to the discov-
ery of RBI-EMML and played an important role in that discovery; the
importance of rescaling for acceleration was apparently not appreciated,
however.

We start by considering a formulation of BI-SMART that is general
enough to include all of the variants we wish to discuss. As we shall see,
this formulation is too general and will need to be restricted in certain ways
to obtain convergence. Let the iterative step be

xk+1
j = xkj exp

(
βnj

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (26.16)

for j = 1, 2, ..., J , n = k(modN) + 1 and βnj and αni positive. As we
shall see, our convergence proof will require that βnj be separable, that is,
βnj = γjδn for each j and n and that

γjδnσnj ≤ 1, (26.17)

for σnj =
∑
i∈Bn

αniAij . With these conditions satisfied we have the fol-
lowing result.

Theorem 26.4 Suppose that we are in the consistent case, in which the
system Ax = b has non-negative solutions. For any positive vector x0 and
any collection of blocks {Bn, n = 1, ..., N} the sequence {xk} given by
Equation (26.16) converges to the unique solution of b = Ax for which

the weighted cross-entropy
∑J
j=1 γ

−1
j KL(xj , x

0
j ) is minimized.
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The inequality in the following lemma is the basis for the convergence proof.

Lemma 26.2 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (26.16) we have

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) ≥ (26.18)

δn
∑
i∈Bn

αniKL(bi, (Ax
k)i). (26.19)

Proof: First note that

xk+1
j = xkj exp

(
γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (26.20)

and

exp
(
γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
(26.21)

can be written as

exp
(

(1− γjδnσnj) log 1 + γjδn
∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (26.22)

which, by the convexity of the exponential function, is not greater than

(1− γjδnσnj) + γjδn
∑
i∈Bn

αniAij
bi

(Axk)i
. (26.23)

It follows that

J∑
j=1

γ−1
j (xkj − xk+1

j ) ≥ δn
∑
i∈Bn

αni((Ax
k)i − bi). (26.24)

We also have

log(xk+1
j /xkj ) = γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
. (26.25)

Therefore

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) (26.26)
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=

J∑
j=1

γ−1
j (xj log(xk+1

j /xkj ) + xkj − xk+1
j ) (26.27)

=

J∑
j=1

xjδn
∑
i∈Bn

αniAij log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xkj − xk+1

j ) (26.28)

= δn
∑
i∈Bn

αni(

J∑
j=1

xjAij) log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xkj − xk+1

j ) (26.29)

≥ δn
( ∑
i∈Bn

αni(bi log
bi

(Axk)i
+ (Axk)i − bi)

)
= δn

∑
i∈Bn

αniKL(bi, (Ax
k)i).

(26.30)

This completes the proof of the lemma.

From the inequality (26.19) we conclude that the sequence

{
J∑
j=1

γ−1
j KL(xj , x

k
j )} (26.31)

is decreasing, that {xk} is therefore bounded and the sequence

{
∑
i∈Bn

αniKL(bi, (Ax
k)i)} (26.32)

is converging to zero. Let x∗ be any cluster point of the sequence {xk}.
Then it is not difficult to show that b = Ax∗. Replacing x with x∗ we
have that the sequence {

∑J
j=1 γ

−1
j KL(x∗j , x

k
j )} is decreasing; since a sub-

sequence converges to zero, so does the whole sequence. Therefore x∗ is the
limit of the sequence {xk}. This proves that the algorithm produces a so-
lution of b = Ax. To conclude further that the solution is the one for which
the quantity

∑J
j=1 γ

−1
j KL(xj , x

0
j ) is minimized requires further work to

replace the inequality (26.19) with an equation in which the right side is
independent of the particular solution x chosen; see the final section of this
chapter for the details.

We see from the theorem that how we select the γj is determined by

how we wish to weight the terms in the sum
∑J
j=1 γ

−1
j KL(xj , x

0
j ). In some

cases we want to minimize the cross-entropy KL(x, x0) subject to b = Ax;
in this case we would select γj = 1. In other cases we may have some
prior knowledge as to the relative sizes of the xj and wish to emphasize
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the smaller values more; then we may choose γj proportional to our prior
estimate of the size of xj . Having selected the γj , we see from the inequality
(26.19) that convergence will be accelerated if we select δn as large as
permitted by the condition γjδnσnj ≤ 1. This suggests that we take

δn = 1/min{σnjγj , j = 1, ..., J}. (26.33)

The rescaled BI-SMART (RBI-SMART) as presented in [53, 55, 56] uses
this choice, but with αni = 1 for each n and i. For each n = 1, ..., N let

mn = max{snjs−1
j |j = 1, ..., J}. (26.34)

The original RBI-SMART is as follows:

Algorithm 26.3 (RBI-SMART) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = xkj exp

(
m−1
n s−1

j

∑
i∈Bn

Aij log
( bi

(Axk)i

))
. (26.35)

Notice that Equation (26.35) can be written as

log xk+1
j = (1−m−1

n s−1
j snj) log xkj +m−1

n s−1
j

∑
i∈Bn

Aij log
(
xkj

bi
(Axk)i

)
,

(26.36)

from which we see that xk+1
j is a weighted geometric mean of xkj and the

terms

(Qix
k)j = xkj

( bi
(Axk)i

)
,

for i ∈ Bn. This will be helpful in deriving block-iterative versions of the
EMML algorithm. The vectors Qi(x

k) are sometimes called weighted KL
projections.

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSSMART does not generally satisfy the re-
quirements, since in (26.15) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSSMART.

In [89] Censor and Segman make the choices βnj = 1 and αni > 0 such
that σnj ≤ 1 for all n and j. In those cases in which σnj is much less than
1 for each n and j their iterative scheme is probably excessively relaxed; it
is hard to see how one might improve the rate of convergence by altering
only the weights αni, however. Limiting the choice to γjδn = 1 reduces our
ability to accelerate this algorithm.
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The original SMART in Equation (26.9) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (26.17) is satisfied; in fact it becomes
an equality now.

For the row-action version of SMART, the multiplicative ART (MART),
due to Gordon, Bender and Herman [151], we take N = I and Bn = Bi =
{i} for i = 1, ..., I. The MART has the iterative

xk+1
j = xkj

( bi
(Axk)i

)m−1
i Aij

, (26.37)

for j = 1, 2, ..., J , i = k(mod I) + 1 and mi > 0 chosen so that m−1
i Aij ≤ 1

for all j. The smaller mi is the faster the convergence, so a good choice
is mi = max{Aij |, j = 1, ..., J}. Although this particular choice for mi is
not explicitly mentioned in the various discussions of MART I have seen,
it was used in implementations of MART from the beginning [165].

Darroch and Ratcliff included a discussion of a block-iterative version of
SMART in their 1972 paper [107]. Close inspection of their version reveals
that they require that snj =

∑
i∈Bn

Aij = 1 for all j. Since this is unlikely
to be the case initially, we might try to rescale the equations or unknowns
to obtain this condition. However, unless snj =

∑
i∈Bn

Aij depends only
on j and not on n, which is the subset balance property used in [172], we
cannot redefine the unknowns in a way that is independent of n.

The MART fails to converge in the inconsistent case. What is always
observed, but for which no proof exists, is that, for each fixed i = 1, 2, ..., I,
as m→ +∞, the MART subsequences {xmI+i} converge to separate limit
vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to
a single vector whenever there is a nonnegative solution of b = Ax. The
greater the minimum value ofKL(Ax, b) the more distinct from one another
the vectors of the limit cycle are. An analogous result is observed for BI-
SMART.

26.7 The RBI-EMML

As we did with SMART, we consider now a formulation of BI-EMML
that is general enough to include all of the variants we wish to discuss.
Once again, the formulation is too general and will need to be restricted in
certain ways to obtain convergence. Let the iterative step be

xk+1
j = xkj (1− βnjσnj) + xkjβnj

∑
i∈Bn

αniAij
bi

(Axk)i
, (26.38)
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for j = 1, 2, ..., J , n = k(modN)+1 and βnj and αni positive. As in the case
of BI-SMART, our convergence proof will require that βnj be separable,
that is,

βnj = γjδn (26.39)

for each j and n and that the inequality (26.17) hold. With these conditions
satisfied we have the following result.

Theorem 26.5 Suppose that we are in the consistent case. For any posi-
tive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the sequence
{xk} given by Equation (26.16) converges to a nonnegative solution of
b = Ax.

When there are multiple nonnegative solutions of b = Ax the solution
obtained by BI-EMML will depend on the starting point x0, but precisely
how it depends on x0 is an open question. Also, in contrast to the case of
BI-SMART, the solution can depend on the particular choice of the blocks.
The inequality in the following lemma is the basis for the convergence proof.

Lemma 26.3 Let Ax = b for some non-negative x. Then, for {xk} as in
Equation (26.38), we have

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) ≥ (26.40)

δn
∑
i∈Bn

αniKL(bi, (Ax
k)i). (26.41)

Proof: From the iterative step

xk+1
j = xkj (1− γjδnσnj) + xkj γjδn

∑
i∈Bn

αniAij
bi

(Axk)i
(26.42)

we have

log(xk+1
j /xkj ) = log

(
(1− γjδnσnj) + γjδn

∑
i∈Bn

αniAij
bi

(Axk)i

)
. (26.43)

By the concavity of the logarithm we obtain the inequality

log(xk+1
j /xkj ) ≥

(
(1− γjδnσnj) log 1 + γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i

)
,

(26.44)
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or

log(xk+1
j /xkj ) ≥ γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
. (26.45)

Therefore

J∑
j=1

γ−1
j xj log(xk+1

j /xkj ) ≥ δn
∑
i∈Bn

αni(

J∑
j=1

xjAij) log
bi

(Axk)i
. (26.46)

Note that it is at this step that we used the separability of the βnj . Also

J∑
j=1

γ−1
j (xk+1

j − xkj ) = δn
∑
i∈Bn

((Axk)i − bi). (26.47)

This concludes the proof of the lemma.

From the inequality in (26.41) we conclude, as we did in the BI-SMART

case, that the sequence {
∑J
j=1 γ

−1
j KL(xj , x

k
j )} is decreasing, that {xk} is

therefore bounded and the sequence {
∑
i∈Bn

αniKL(bi, (Ax
k)i)} is con-

verging to zero. Let x∗ be any cluster point of the sequence {x}. Then it is
not difficult to show that b = Ax∗. Replacing x with x∗ we have that the
sequence {

∑J
j=1 γ

−1
j KL(x∗j , x

k
j )} is decreasing; since a subsequence con-

verges to zero, so does the whole sequence. Therefore x∗ is the limit of
the sequence {xk}. This proves that the algorithm produces a nonnegative
solution of b = Ax. So far, we have been unable to replace the inequality
in (26.41) with an equation in which the right side is independent of the
particular solution x chosen.

Having selected the γj , we see from the inequality in (26.41) that con-
vergence will be accelerated if we select δn as large as permitted by the
condition γjδnσnj ≤ 1. This suggests that once again we take

δn = 1/min{σnjγj , j = 1, ..., J}. (26.48)

The rescaled BI-EMML (RBI-EMML) as presented in [53, 55, 56] uses this
choice, but with αni = 1 for each n and i. The original motivation for the
RBI-EMML came from consideration of Equation (26.36), replacing the
geometric means with arithmetic means. This RBI-EMML is as follows:

Algorithm 26.4 (RBI-EMML) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = (1−m−1

n s−1
j snj)x

k
j +m−1

n s−1
j xkj

∑
i∈Bn

(Aij
bi

(Axk)i
). (26.49)
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Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSEM does not generally satisfy the require-
ments, since in (26.14) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSEM.

The original EMML in Equation (26.10) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (26.17) is satisfied; in fact it becomes
an equality now.

Notice that the calculations required to perform the BI-SMART are
somewhat more complicated than those needed in BI-EMML. Because the
MART converges rapidly in most cases there is considerable interest in the
row-action version of EMML. It was clear from the outset that using the
OSEM in a row-action mode does not work. We see from the formula for
BI-EMML that the proper row-action version of EMML, which we call the
EM-MART, is the following:

Algorithm 26.5 (EM-MART) Let x0be an arbitrary positive vector and
i = k(mod I) + 1. Then let

xk+1
j = (1− δiγjαiiAij)xkj + δiγjαiix

k
jAij

bi
(Axk)i

, (26.50)

with

γjδiαiiAij ≤ 1 (26.51)

for all i and j.

The optimal choice would seem to be to take δiαii as large as possible;
that is, to select δiαii = 1/max{γjAij , j = 1, ..., J}. With this choice the
EM-MART is called the rescaled EM-MART (REM-MART).

The EM-MART fails to converge in the inconsistent case. What is
always observed, but for which no proof exists, is that, for each fixed
i = 1, 2, ..., I, as m→ +∞, the EM-MART subsequences {xmI+i} converge
to separate limit vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I}
reduces to a single vector whenever there is a nonnegative solution of
b = Ax. The greater the minimum value of KL(b, Ax) the more distinct
from one another the vectors of the limit cycle are. An analogous result is
observed for BI-EMML.

We must mention a method that closely resembles the REM-MART, the
row-action maximum likelihood algorithm (RAMLA), which was discovered
independently by Browne and De Pierro [33]. The RAMLA avoids the limit
cycle in the inconsistent case by using strong underrelaxation involving
a decreasing sequence of relaxation parameters λk. The RAMLA is the
following:
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Algorithm 26.6 (RAMLA) Let x0 be an arbitrary positive vector, and
n = k(modN) + 1. Let the positive relaxation parameters λk be chosen to
converge to zero and

∑+∞
k=0 λk = +∞. Then,

xk+1
j = (1− λk

∑
i∈Bn

Aij)x
k
j + λkx

k
j

∑
i∈Bn

Aij

( bi
(Axk)i

)
, (26.52)

26.8 RBI-SMART and Entropy Maximization

As we stated earlier, in the consistent case the sequence {xk} generated
by the BI-SMART algorithm and given by Equation (26.20) converges to

the unique solution of b = Ax for which the distance
∑J
j=1 γ

−1
j KL(xj , x

0
j )

is minimized. In this section we sketch the proof of this result as a sequence
of lemmas, each of which is easily established.

Lemma 26.4 For any nonnegative vectors a and b with a+ =
∑M
m=1 am

and b+ =
∑M
m=1 bm > 0 we have

KL(a, b) = KL(a+, b+) +KL(a+,
a+

b+
b). (26.53)

For nonnegative vectors x and z let

Gn(x, z) =

J∑
j=1

γ−1
j KL(xj , zj) (26.54)

+δn
∑
i∈Bn

αni[KL((Ax)i, bi)−KL((Ax)i, (Az)i)]. (26.55)

It follows from Equation 26.53 and the inequality

γ−1
j − δnσnj ≥ 1 (26.56)

that Gn(x, z) ≥ 0 in all cases.

Lemma 26.5 For every x we have

Gn(x, x) = δn
∑
i∈Bn

αniKL((Ax)i, bi) (26.57)

so that

Gn(x, z) = Gn(x, x) +

J∑
j=1

γ−1
j KL(xj , zj) (26.58)
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−δn
∑
i∈Bn

αniKL((Ax)i, (Az)i). (26.59)

Therefore the distance Gn(x, z) is minimized, as a function of z, by z = x.
Now we minimize Gn(x, z) as a function of x. The following lemma shows
that the answer is

xj = z′j = zj exp
(
γjδn

∑
i∈Bn

αniAij log
bi

(Az)i

)
. (26.60)

Lemma 26.6 For each x and z we have

Gn(x, z) = Gn(z′, z) +

J∑
j=1

γ−1
j KL(xj , z

′
j). (26.61)

It is clear that (xk)′ = xk+1 for all k.
Now let b = Au for some nonnegative vector u. We calculate Gn(u, xk)

in two ways: using the definition we have

Gn(u, xk) =

J∑
j=1

γ−1
j KL(uj , x

k
j )− δn

∑
i∈Bn

αniKL(bi, (Ax
k)i), (26.62)

while using Lemma 26.61 we find that

Gn(u, xk) = Gn(xk+1, xk) +

J∑
j=1

γ−1
j KL(uj , x

k+1
j ). (26.63)

Therefore

J∑
j=1

γ−1
j KL(uj , x

k
j )−

J∑
j=1

γ−1
j KL(uj , x

k+1
j ) (26.64)

= Gn(xk+1, xk) + δn
∑
i∈Bn

αniKL(bi, (Ax
k)i). (26.65)

We conclude several things from this.
First, the sequence {

∑J
j=1 γ

−1
j KL(uj , x

k
j )} is decreasing, so that the

sequences {Gn(xk+1, xk)} and {δn
∑
i∈Bn

αniKL(bi, (Ax
k)i)} converge to

zero. Therefore the sequence {xk} is bounded and we may select an arbi-
trary cluster point x∗. It follows that b = Ax∗. We may therefore replace
the generic solution u with x∗ to find that {

∑J
j=1 γ

−1
j KL(x∗j , x

k
j )} is a de-

creasing sequence; but since a subsequence converges to zero, the entire
sequence must converge to zero. Therefore {xk} converges to the solution
x∗.
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Finally, since the right side of Equation (26.65) does not depend on
the particular choice of solution we made, neither does the left side. By
telescoping we conclude that

J∑
j=1

γ−1
j KL(uj , x

0
j )−

J∑
j=1

γ−1
j KL(uj , x

∗
j ) (26.66)

is also independent of the choice of u. Consequently, minimizing the func-
tion

∑J
j=1 γ

−1
j KL(uj , x

0
j ) over all solutions u is equivalent to minimizing∑J

j=1 γ
−1
j KL(uj , x

∗
j ) over all solutions u; but the solution to the latter

problem is obviously u = x∗. This completes the proof.
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27.1 Chapter Summary

The ART is a sequential algorithm, using only a single equation from
the system Ax = b at each step of the iteration. In this chapter we con-
sider iterative procedures for solving Ax = b in which several or all of the
equations are used at each step. Such methods are called block-iterative
and simultaneous algorithms, respectively. We survey a number of these
block-iterative methods. We obtain upper bounds on the spectral radius of

335
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positive-definite matrices and use these bounds in the selection of param-
eters in the iterative methods.

27.2 Introduction and Notation

We are concerned here with iterative methods for solving, at least ap-
proximately, the system of I linear equations in J unknowns symbolized
by Ax = b. In the applications of interest to us, such as medical imaging,
both I and J are quite large, making the use of iterative methods the only
feasible approach. It is also typical of such applications that the matrix
A is sparse, that is, has relatively few non-zero entries. Therefore, itera-
tive methods that exploit this sparseness to accelerate convergence are of
special interest to us.

The algebraic reconstruction technique (ART) of Gordon, et al. [151] is
a sequential method; at each step only one equation is used. The current
vector xk−1 is projected orthogonally onto the hyperplane corresponding
to that single equation, to obtain the next iterate xk. The iterative step of
the ART is

xkj = xk−1
j +Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

)
, (27.1)

where i = k(mod I). The sequence {xk} converges to the solution closest
to x0 in the consistent case, but only converges subsequentially to a limit
cycle in the inconsistent case.

Cimmino’s method [94] is a simultaneous method, in which all the equa-
tions are used at each step. The current vector xk−1 is projected orthog-
onally onto each of the hyperplanes and these projections are averaged to
obtain the next iterate xk. The iterative step of Cimmino’s method is

xkj =
1

I

I∑
i=1

(
xk−1
j +Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

))
,

which can also be written as

xkj = xk−1
j +

I∑
i=1

Aij

(
bi − (Axk−1)i

I
∑J
t=1 |Ait|2

)
. (27.2)

Landweber’s iterative scheme [187] with

xk = xk−1 +B†(d−Bxk−1), (27.3)
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converges to the least-squares solution of Bx = d closest to x0, provided
that the largest singular value of B does not exceed one. If we let B be the
matrix with entries

Bij = Aij/

√√√√I

J∑
t=1

|Ait|2,

and define

di = bi/

√√√√I

J∑
t=1

|Ait|2,

then, since the trace of the matrix BB† is one, convergence of Cimmino’s
method follows. However, using the trace in this way to estimate the largest
singular value of a matrix usually results in an estimate that is far too
large, particularly when A is large and sparse, and therefore in an iterative
algorithm with unnecessarily small step sizes.

The appearance of the term

I

J∑
t=1

|Ait|2

in the denominator of Cimmino’s method suggested to Censor et al. [85]
that, when A is sparse, this denominator might be replaced with

J∑
t=1

st|Ait|2,

where st denotes the number of non-zero entries in the tth column of A.
The resulting iterative method is the component-averaging (CAV) itera-
tion. Convergence of the CAV method was established by showing that no
singular value of the matrix B exceeds one, where B has the entries

Bij = Aij/

√√√√ J∑
t=1

st|Ait|2.

In [69] we extended this result, to show that no eigenvalue of A†A exceeds
the maximum of the numbers

pi =

J∑
t=1

st|Ait|2.

Convergence of CAV then follows, as does convergence of several other
methods, including the ART, Landweber’s method, the SART [5], the
block-iterative CAV (BICAV) [86], the CARP1 method of Gordon and



338 Applied and Computational Linear Algebra: A First Course

Gordon [152], a block-iterative variant of CARP1 obtained from the DROP
method of Censor et al. [83], and the SIRT method [257].

For a positive integer N with 1 ≤ N ≤ I, we let B1, ..., BN be not
necessarily disjoint subsets of the set {i = 1, ..., I}; the subsets Bn are
called blocks. We then let An be the matrix and bn the vector obtained
from A and b, respectively, by removing all the rows except for those whose
index i is in the set Bn. For each n, we let snt be the number of non-zero
entries in the tth column of the matrix An, sn the maximum of the snt,
s the maximum of the st, and Ln = ρ(A†nAn) be the spectral radius, or
largest eigenvalue, of the matrix A†nAn, with L = ρ(A†A). We denote by
Ai the ith row of the matrix A, and by νi the length of Ai, so that

ν2
i =

J∑
j=1

|Aij |2.

27.3 Cimmino’s Algorithm

The ART seeks a solution of Ax = b by projecting the current vector
xk−1 orthogonally onto the next hyperplane H(ai(k), bi(k)) to get xk; here
i(k) = k(mod )I. In Cimmino’s algorithm, we project the current vector
xk−1 onto each of the hyperplanes and then average the result to get xk.
The algorithm begins at k = 1, with an arbitrary x0; the iterative step is
then

xk =
1

I

I∑
i=1

Pix
k−1, (27.4)

where Pi is the orthogonal projection onto H(ai, bi). The iterative step can
then be written as

xkj = xk−1
j +

1

I

I∑
i=1

(
Aij(bi − (Axk−1)i)

ν2
i

)
. (27.5)

As we saw in our discussion of the ART, when the system Ax = b has
no solutions, the ART does not converge to a single vector, but to a limit
cycle. One advantage of many simultaneous algorithms, such as Cimmino’s,
is that they do converge to the least squares solution in the inconsistent
case.

When νi = 1 for all i, Cimmino’s algorithm has the form xk+1 = Txk,
for the operator T given by

Tx = (I − 1

I
A†A)x+

1

I
A†b.
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Experience with Cimmino’s algorithm shows that it is slow to converge.
In the next section we consider how we might accelerate the algorithm.

27.4 The Landweber Algorithms

For simplicity, we assume, in this section, that νi = 1 for all i. The
Landweber algorithm [187, 18], with the iterative step

xk = xk−1 + γA†(b−Axk−1), (27.6)

converges to the least squares solution closest to the starting vector x0,
provided that 0 < γ < 2/λmax, where λmax is the largest eigenvalue of
the nonnegative-definite matrix A†A. Loosely speaking, the larger γ is, the
faster the convergence. However, precisely because A is large, calculating
the matrix A†A, not to mention finding its largest eigenvalue, can be pro-
hibitively expensive. The matrix A is said to be sparse if most of its entries
are zero. Useful upper bounds for λmax are then given by Theorems 27.1
and 27.6.

27.4.1 Finding the Optimum γ

The operator

Tx = x+ γA†(b−Ax) = (I − γA†A)x+ γA†b

is affine linear and is av if and only if its linear part, the Hermitian matrix

B = I − γA†A,

is av. To guarantee this we need 0 ≤ γ < 2/λmax. Should we always try to
take γ near its upper bound, or is there an optimum value of γ? To answer
this question we consider the eigenvalues of B for various values of γ.

Lemma 27.1 If γ < 0, then none of the eigenvalues of B is less than one.

Lemma 27.2 For

0 ≤ γ ≤ 2

λmax + λmin
, (27.7)

we have

ρ(B) = 1− γλmin; (27.8)
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the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (27.9)

and equals

λmax − λmin
λmax + λmin

. (27.10)

Similarly, for

γ ≥ 2

λmax + λmin
, (27.11)

we have

ρ(B) = γλmax − 1; (27.12)

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (27.13)

and equals

λmax − λmin
λmax + λmin

. (27.14)

We see from this lemma that, if 0 ≤ γ < 2/λmax, and λmin > 0, then
‖B‖2 = ρ(B) < 1, so that B is sc. We minimize ‖B‖2 by taking

γ =
2

λmax + λmin
, (27.15)

in which case we have

‖B‖2 =
λmax − λmin
λmax + λmin

=
c− 1

c+ 1
, (27.16)

for c = λmax/λmin, the condition number of the positive-definite matrix
A†A. The closer c is to one, the smaller the norm ‖B‖2, and the faster the
convergence.

On the other hand, if λmin = 0, then ρ(B) = 1 for all γ in the interval
(0, 2/λmax). The matrix B is still av, but it is no longer sc. For example,
consider the orthogonal projection P0 onto the hyperplane H0 = H(a, 0),
where ‖a‖2 = 1. This operator can be written

P0 = I − aa†. (27.17)

The largest eigenvalue of aa† is λmax = 1; the remaining ones are zero. The
relaxed projection operator

B = I − γaa† (27.18)

has ρ(B) = 1 − γ > 1, if γ < 0, and for γ ≥ 0, we have ρ(B) = 1. The
operator B is av, in fact, it is fne, but it is not sc.
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27.4.2 The Projected Landweber Algorithm

When we require a nonnegative approximate solution x for the real sys-
tem Ax = b we can use a modified version of the Landweber algorithm,
called the projected Landweber algorithm [18], in this case having the it-
erative step

xk+1 = (xk + γA†(b−Axk))+, (27.19)

where, for any real vector a, we denote by (a)+ the nonnegative vector
whose entries are those of a, for those that are nonnegative, and are zero
otherwise. The projected Landweber algorithm converges to a vector that
minimizes ‖Ax− b‖2 over all nonnegative vectors x, for the same values of
γ.

The projected Landweber algorithm is actually more general. For any
closed, nonempty convex set C in X, define the iterative sequence

xk+1 = PC(xk + γA†(b−Axk)). (27.20)

This sequence converges to a minimizer of the function ‖Ax− b‖2 over all
x in C, whenever such minimizers exist.

Both the Landweber and projected Landweber algorithms are special
cases of the CQ algorithm [62], which, in turn, is a special case of the
more general iterative fixed point algorithm, the Krasnoselskii/Mann (KM)
method, with convergence governed by the KM Theorem (see [70]).

27.5 Some Upper Bounds for L

For the iterative algorithms we shall consider here, having a good upper
bound for the largest eigenvalue of the matrix A†A is important. In the
applications of interest, principally medical image processing, the matrix
A is large; even calculating A†A, not to mention computing eigenvalues,
is prohibitively expensive. In addition, the matrix A is typically sparse,
but A†A will not be, in general. In this section we present upper bounds
for L that are particularly useful when A is sparse and do not require the
calculation of A†A.

27.5.1 Earlier Work

Many of the concepts we study in computational linear algebra were
added to the mathematical toolbox relatively recently, as this area blos-
somed with the growth of electronic computers. Based on my brief inves-
tigations into the history of matrix theory, I believe that the concept of
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a norm of a matrix was not widely used prior to about 1945. This was
recently confirmed when I read the paper [153]; as pointed out there, the
use of matrix norms became an important part of numerical linear algebra
only after the publication of [260]. Prior to the late 1940’s a number of
papers were published that established upper bounds on ρ(A), for general
square matrix A. As we now can see, several of these results are immediate
consequences of the fact that ρ(A) ≤ ‖A‖, for any induced matrix norm.
We give two examples.

For a given N by N matrix A, let

Cn =

N∑
m=1

|Amn|,

Rm =

N∑
n=1

|Amn|,

and C and R the maxima of Cn and Rm, respectively. We now know that
C = ‖A‖1, and R = ‖A‖∞, but the earlier authors did not.

In 1930 Browne [32] proved the following theorem.

Theorem 27.1 (Browne) Let λ be any eigenvalue of A. Then

|λ| ≤ 1

2
(C +R).

In 1944 Farnell [130] published the following theorems.

Theorem 27.2 (Farnell I) For any eigenvalue λ of A we have

|λ| ≤
√
CR.

Theorem 27.3 (Farnell II) Let

rm =

N∑
n=1

|Amn|2,

and

cm =

N∑
n=1

|Anm|2.

Then, for any eigenvalue λ of A, we have

|λ| ≤

√√√√ N∑
m=1

√
rmcm.

In 1946 Brauer [28] proved the following theorem.
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Theorem 27.4 (Brauer) For any eigenvalue λ of A, we have

|λ| ≤ min{C,R}.

Ex. 27.1 Prove Theorems 27.1, 27.2, and 27.4 using properties of matrix
norms. Can you also prove Theorem 27.3 this way?

Let A be an arbitrary rectangular complex matrix. Since the largest
singular value of A is the square root of the maximum eigenvalue of the
square matrix S = A†A, we could use the inequality

ρ(A†A) = ‖A†A‖2 ≤ ‖A†A‖,

for any induced matrix norm, to establish an upper bound for the singular
values of A. However, that bound would be in terms of the entries of A†A,
not of A itself. In what follows we obtain upper bounds on the singular
values of A in terms of the entries of A itself.

Ex. 27.2 Let A be an arbitrary rectangular matrix. Prove that no singular
value of A exceeds

√
‖A‖1‖A‖∞.

We see from this exercise that Farnell (I) does generalize to arbitrary
rectangular matrices and singular values. Brauer’s Theorem 27.4 may sug-
gest that no singular value of a rectangular matrix A exceeds the minimum
of ‖A‖1 and ‖A‖∞, but this is not true. Consider the matrix A whose SVD
is given by

A =

4 3
8 6
8 6

 =

1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

15 0
0 0
0 0

[4/5 3/5
3/5 −4/5

]
.

The largest singular value of A is 15, ‖A‖1 = 20, ‖A‖∞ = 14, and we do
have

15 ≤
√

(20)(14),

but we do not have
15 ≤ min{20, 14} = 14.

27.5.2 Our Basic Eigenvalue Inequality

In [257] van der Sluis and van der Vorst show that certain rescaling of
the matrix A results in none of the eigenvalues of A†A exceeding one. A
modification of their proof leads to upper bounds on the eigenvalues of the
original A†A ([69]). For any a in the interval [0, 2] let

caj = caj(A) =

I∑
i=1

|Aij |a,



344 Applied and Computational Linear Algebra: A First Course

rai = rai(A) =

J∑
j=1

|Aij |2−a,

and ca and ra the maxima of the caj and rai, respectively. We prove the
following theorem.

Theorem 27.5 For any a in the interval [0, 2], no eigenvalue of the matrix
A†A exceeds the maximum of

J∑
j=1

caj |Aij |2−a,

over all i, nor the maximum of

I∑
i=1

rai|Aij |a,

over all j. Therefore, no eigenvalue of A†A exceeds cara.

Proof: Let A†Av = λv, and let w = Av. Then we have

‖A†w‖22 = λ‖w‖22.

Applying Cauchy’s Inequality, we obtain

∣∣∣ I∑
i=1

Aijwi

∣∣∣2 ≤ ( I∑
i=1

|Aij |a/2|Aij |1−a/2|wi|
)2

≤
( I∑
i=1

|Aij |a
)( I∑

i=1

|Aij |2−a|wi|2
)
.

Therefore,

‖A†w‖22 ≤
J∑
j=1

(
caj(

I∑
i=1

|Aij |2−a|wi|2)
)

=

I∑
i=1

( J∑
j=1

caj |Aij |2−a
)
|wi|2

≤ max
i

( J∑
j=1

caj |Aij |2−a
)
‖w‖2.

The remaining two assertions follow in similar fashion.

As a corollary, we obtain the following eigenvalue inequality, which is
central to our discussion.
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Corollary 27.1 For each i = 1, 2, ..., I, let

pi =

J∑
j=1

sj |Aij |2,

and let p be the maximum of the pi. Then L ≤ p.

Proof: Take a = 0. Then, using the convention that 00 = 0, we have
c0j = sj .

Corollary 27.2 ([62]; [256], Th. 4.2) If
∑J
j=1 |Aij |2 ≤ 1 for each i, then

L ≤ s.

Proof: For all i we have

pi =

J∑
j=1

sj |Aij |2 ≤ s
J∑
j=1

|Aij |2 ≤ s.

Therefore,
L ≤ p ≤ s.

The next corollary gives Inequality (6.38) that we saw earlier.

Corollary 27.3 Selecting a = 1, we have

L = ‖A‖22 ≤ ‖A‖1‖A‖∞ = c1r1.

Therefore, the largest singular value of A does not exceed
√
‖A‖1‖A‖∞.

Corollary 27.4 Selecting a = 2, we have

L = ‖A‖22 ≤ ‖A‖2F ,

where ‖A‖F denotes the Frobenius norm of A.

Corollary 27.5 Let G be the matrix with entries

Gij = Aij
√
αi
√
βj ,

where

αi ≤
( J∑
j=1

sjβj |Aij |2
)−1

,

for all i. Then ρ(G†G) ≤ 1.
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Proof: We have

J∑
j=1

sj |Gij |2 = αi

J∑
j=1

sjβj |Aij |2 ≤ 1,

for all i. The result follows from Corollary 27.1.

Corollary 27.6 If
∑J
j=1 sj |Aij |2 ≤ 1 for all i, then L ≤ 1.

Corollary 27.7 If 0 < γi ≤ p−1
i for all i, then the matrix B with entries

Bij =
√
γiAij has ρ(B†B) ≤ 1.

Proof: We have

J∑
j=1

sj |Bij |2 = γi

J∑
j=1

sj |Aij |2 = γipi ≤ 1.

Therefore, ρ(B†B) ≤ 1, according to the theorem.

Corollary 27.8 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (27.21)

for each i, and

βj ≤ c−1
aj , (27.22)

for each j, then, for the matrix G with entries

Gij = Aij
√
αi
√
βj ,

no eigenvalue of G†G exceeds one.

Proof: We calculate caj(G) and rai(G) and find that

caj(G) ≤
(

max
i
α
a/2
i

)
β
a/2
j

I∑
i=1

|Aij |a =
(

max
i
α
a/2
i

)
β
a/2
j caj(A),

and
rai(G) ≤

(
max
j
β

1−a/2
j

)
α

1−a/2
i rai(A).

Therefore, applying the inequalities (27.21) and (27.22), we have

caj(G)rai(G) ≤ 1,

for all i and j. Consequently, ρ(G†G) ≤ 1.
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27.5.3 Another Upper Bound for L

The next theorem ([62]) provides another upper bound for L that is
useful when A is sparse. As previously, for each i and j, we let eij = 1,

if Aij is not zero, and eij = 0, if Aij = 0. Let 0 < νi =
√∑J

j=1 |Aij |2,

σj =
∑I
i=1 eijν

2
i , and σ be the maximum of the σj .

Theorem 27.6 ([62]) No eigenvalue of A†A exceeds σ.

Proof: Let A†Av = cv, for some non-zero vector v and scalar c. With
w = Av, we have

w†AA†w = cw†w.

Then∣∣∣ I∑
i=1

Aijwi

∣∣∣2 =
∣∣∣ I∑
i=1

Aijeijνi
wi
νi

∣∣∣2 ≤ ( I∑
i=1

|Aij |2
|wi|2

ν2
i

)( I∑
i=1

ν2
i eij

)

=
( I∑
i=1

|Aij |2
|wi|2

ν2
i

)
σj ≤ σ

( I∑
i=1

|Aij |2
|wi|2

ν2
i

)
.

Therefore, we have

cw†w = w†AA†w =

J∑
j=1

∣∣∣ I∑
i=1

Aijwi

∣∣∣2

≤ σ
J∑
j=1

( I∑
i=1

|Aij |2
|wi|2

ν2
i

)
= σ

I∑
i=1

|wi|2 = σw†w.

We conclude that c ≤ σ.

Corollary 27.9 Let the rows of A have Euclidean length one. Then no
eigenvalue of A†A exceeds the maximum number of non-zero entries in any
column of A.

Proof: We have ν2
i =

∑J
j=1 |Aij |2 = 1, for each i, so that σj = sj is

the number of non-zero entries in the jth column of A, and σ = s is the
maximum of the σj .

Corollary 27.10 Let ν be the maximum Euclidean length of any row of A
and s the maximum number of non-zero entries in any column of A. Then
L ≤ ν2s.

When the rows of A have length one, it is easy to see that L ≤ I, so
the choice of γ = 1

I in the Landweber algorithm, which gives Cimmino’s
algorithm [94], is acceptable, although perhaps much too small.

The proof of Theorem 27.6 is based on results presented by Arnold Lent
in informal discussions with Gabor Herman, Yair Censor, Rob Lewitt and
me at MIPG in Philadelphia in the late 1990’s.
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27.6 Eigenvalues and Norms: A Summary

It is helpful, at this point, to summarize the main facts concerning
eigenvalues and norms. Throughout this section A will denote an arbitrary
matrix, S an arbitrary square matrix, and H an arbitrary Hermitian ma-
trix. We denote by ‖A‖ an arbitrary induced matrix norm of A.

Here are some of the things we now know:

• 1. ρ(S2) = ρ(S)2;

• 2. ρ(S) ≤ ‖S‖, for any matrix norm;

• 3. ρ(H) = ‖H‖2 ≤ ‖H‖, for any matrix norm;

• 4. ‖A‖22 = ρ(A†A) = ‖A†A‖2 ≤ ‖A†A‖;

• 5. ‖A†A‖1 ≤ ‖A†‖1‖A‖1 = ‖A‖∞‖A‖1;

• 6. ‖A‖22 ≤ ‖A‖1‖A‖∞;

• 7. ρ(S) ≤ min{‖S‖1, ‖S‖∞};

• 8. if
∑J
j=1 |Aij |2 ≤ 1, for all i, then ‖A‖22 ≤ s, where s is the largest

number of non-zero entries in any column of A.

27.7 The Basic Convergence Theorem

The following theorem is a basic convergence result concerning block-
iterative ART algorithms.

Theorem 27.7 Let Ln ≤ 1, for n = 1, 2, ..., N . If the system Ax = b is
consistent, then, for any starting vector x0, and with n = n(k) = k(modN)
and λk ∈ [ε, 2− ε] for all k, the sequence {xk} with iterative step

xk = xk−1 + λkA
†
n(bn −Anxk−1) (27.23)

converges to the solution of Ax = b for which ‖x− x0‖2 is minimized.

We begin with the following lemma.
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Lemma 27.3 Let T be any (not necessarily linear) operator on RJ , and
S = I − T , where I denotes the identity operator. Then, for any x and y,
we have

‖x− y‖22 − ‖Tx− Ty‖22 = 2〈Sx− Sy, x− y〉 − ‖Sx− Sy‖2. (27.24)

The proof is a simple calculation and we omit it here.
Proof of Theorem 27.7: Let Az = b. Applying Equation (27.24) to the
operator

Tx = x+ λkA
†
n(bn −Anx),

we obtain

‖z − xk−1‖22 − ‖z − xk‖22 = 2λk‖bn −Anxk−1‖22 − λ2
k‖A†nbn −A†nAnxk−1‖22.

(27.25)

Since Ln ≤ 1, it follows that

‖A†nbn −A†nAnxk−1‖22 ≤ ‖bn −Anxk−1‖22.

Therefore,

‖z − xk−1‖22 − ‖z − xk‖22 ≥ (2λk − λ2
k)‖bn −Anxk−1‖22,

from which we draw several conclusions:

• the sequence {‖z − xk‖2} is decreasing;

• the sequence {‖bn −Anxk−1‖2} converges to zero.

In addition, for fixed n = 1, ..., N and m→∞,

• the sequence {‖bn −AnxmN+n−1‖2} converges to zero;

• the sequence {xmN+n} is bounded.

Let x∗,1 be a cluster point of the sequence {xmN+1}; then there is sub-
sequence {xmrN+1} converging to x∗,1. The sequence {xmrN+2} is also
bounded, and we select a cluster point x∗,2. Continuing in this fashion, we
obtain cluster points x∗,n, for n = 1, ..., N . From the conclusions reached
previously, we can show that x∗,n = x∗,n+1 = x∗, for n = 1, 2, ..., N − 1,
and Ax∗ = b. Replacing the generic solution x̂ with the solution x∗, we
see that the sequence {‖x∗−xk‖2} is decreasing. But, subsequences of this
sequence converge to zero, so the entire sequence converges to zero, and so
xk → x∗.

Now we show that x∗ is the solution of Ax = b that minimizes ‖x−x0‖2.
Since xk − xk−1 is in the range of A† for all k, so is x∗ − x0, from which
it follows that x∗ is the solution minimizing ‖x − x0‖2. Another way to
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get this result is to use Equation (27.25). Since the right side of Equation
(27.25) is independent of the choice of solution, so is the left side. Summing
both sides over the index k reveals that the difference

‖x− x0‖22 − ‖x− x∗‖22

is independent of the choice of solution. Consequently, minimizing ‖x−x0‖2
over all solutions x is equivalent to minimizing ‖x− x∗‖2 over all solutions
x; the solution to the latter problem is clearly x = x∗.

27.8 Simultaneous Iterative Algorithms

In this section we apply the previous theorems to obtain convergence
of several simultaneous iterative algorithms for linear systems.

27.8.1 The General Simultaneous Iterative Scheme

In this section we are concerned with simultaneous iterative algorithms
having the following iterative step:

xkj = xk−1
j + λk

I∑
i=1

γijAij(bi − (Axk−1)i), (27.26)

with λk ∈ [ε, 1] and the choices of the parameters γij that guarantee conver-
gence. Although we cannot prove convergence for this most general iterative
scheme, we are able to prove the following theorems for the separable case
of γij = αiβj .

Theorem 27.8 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (27.27)

for each i, and

βj ≤ c−1
aj , (27.28)

for each j, then the sequence {xk} given by Equation (27.26) converges to
the minimizer of the proximity function

I∑
i=1

αi|bi − (Ax)i|2
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for which
J∑
j=1

β−1
j |xj − x

0
j |2

is minimized.

Proof: For each i and j, let

Gij =
√
αi
√
βjAij ,

zj = xj/
√
βj ,

and
di =

√
αibi.

Then Ax = b if and only if Gz = d. From Corollary 27.8 we have that
ρ(G†G) ≤ 1. Convergence then follows from Theorem 27.7.

Corollary 27.11 Let γij = αiβj, for positive αi and βj. If

αi ≤
( J∑
j=1

sjβj |Aij |2
)−1

, (27.29)

for each i, then the sequence {xk} in (27.26) converges to the minimizer of
the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑
j=1

β−1
j |xj − x

0
j |2

is minimized.

Proof: We know from Corollary 27.5 that ρ(G†G) ≤ 1.

We now obtain convergence for several known algorithms as corollaries
to the previous theorems.

27.8.2 The SIRT Algorithm

Corollary 27.12 ([257]) For some a in the interval [0, 2] let αi = r−1
ai and

βj = c−1
aj . Then the sequence {xk} in (27.26) converges to the minimizer

of the proximity function

I∑
i=1

αi|bi − (Ax)i|2
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for which
J∑
j=1

β−1
j |xj − x

0
j |2

is minimized.

For the case of a = 1, the iterative step becomes

xkj = xk−1
j +

I∑
i=1

(
Aij(bi − (Axk−1)i)

(
∑J
t=1 |Ait|)(

∑I
m=1 |Amj |)

)
,

which was considered in [159]. The SART algorithm [5] is a special case, in
which it is assumed that Aij ≥ 0, for all i and j.

27.8.3 The CAV Algorithm

Corollary 27.13 If βj = 1 and αi satisfies

0 < αi ≤
( J∑
j=1

sj |Aij |2
)−1

,

for each i, then the algorithm with the iterative step

xk = xk−1 + λk

I∑
i=1

αi(bi − (Axk−1)i)A
†
i (27.30)

converges to the minimizer of

I∑
i=1

αi|bi − (Axk−1)i|2

for which ‖x− x0‖ is minimized.

When

αi =
( J∑
j=1

sj |Aij |2
)−1

,

for each i, this is the relaxed component-averaging (CAV) method of Censor
et al. [85].
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27.8.4 The Landweber Algorithm

When βj = 1 and αi = α for all i and j, we have the relaxed Landweber
algorithm. The convergence condition in Equation (27.21) becomes

α ≤
( J∑
j=1

sj |Aij |2
)−1

= p−1
i

for all i, so α ≤ p−1 suffices for convergence. Actually, the sequence {xk}
converges to the minimizer of ‖Ax− b‖2 for which the distance ‖x−x0‖2 is
minimized, for any starting vector x0, when 0 < α < 1/L. Easily obtained
estimates of L are usually over-estimates, resulting in overly conservative
choices of α. For example, if A is first normalized so that

∑J
j=1 |Aij |2 = 1

for each i, then the trace of A†A equals I, which tells us that L ≤ I. But
this estimate, which is the one used in Cimmino’s method [94], is far too
large when A is sparse.

27.8.5 The Simultaneous DROP Algorithm

Corollary 27.14 Let 0 < wi ≤ 1,

αi = wiν
−2
i = wi

( J∑
j=1

|Aij |2
)−1

and βj = s−1
j , for each i and j. Then the simultaneous algorithm with the

iterative step

xkj = xk−1
j + λk

I∑
i=1

(
wiAij(bi − (Axk−1)i)

sjν2
i

)
, (27.31)

converges to the minimizer of the function

I∑
i=1

∣∣∣∣∣wi(bi − (Ax)i)

νi

∣∣∣∣∣
2

for which the function
J∑
j=1

sj |xj − x0
j |2

is minimized.

For wi = 1, this is the CARP1 algorithm of [152] (see also [115, 85, 86]).
The simultaneous DROP algorithm of [83] requires only that the weights
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wi be positive, but dividing each wi by their maximum, maxi{wi}, while
multiplying each λk by the same maximum, gives weights in the interval
(0, 1]. For convergence of their algorithm, we need to replace the condition
λk ≤ 2− ε with λk ≤ 2−ε

maxi{wi} .

The denominator in CAV is

J∑
t=1

st|Ait|2,

while that in CARP1 is

sj

J∑
t=1

|Ait|2.

It was reported in [152] that the two methods differed only slightly in the
simulated cases studied.

27.9 Block-iterative Algorithms

The methods discussed in the previous section are simultaneous, that
is, all the equations are employed at each step of the iteration. We turn
now to block-iterative methods, which employ only some of the equations at
each step. When the parameters are appropriately chosen, block-iterative
methods can be significantly faster than simultaneous ones.

27.9.1 The Block-Iterative Landweber Algorithm

For a given set of blocks, the block-iterative Landweber algorithm has
the following iterative step: with n = k(modN),

xk = xk−1 + γnA
†
n(bn −Anxk−1). (27.32)

The sequence {xk} converges to the solution of Ax = b that minimizes
‖x − x0‖2, whenever the system Ax = b has solutions, provided that the
parameters γn satisfy the inequalities 0 < γn < 1/Ln. This follows from
Theorem 27.7 by replacing the matrices An with

√
γnAn and the vectors

bn with
√
γnb

n.
If the rows of the matrices An are normalized to have length one, then

we know that Ln ≤ sn. Therefore, we can use parameters γn that satisfy

0 < γn ≤
(
sn

J∑
j=1

|Aij |2
)−1

, (27.33)

for each i ∈ Bn.
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27.9.2 The BICAV Algorithm

We can extend the block-iterative Landweber algorithm as follows: let
n = k(modN) and

xk = xk−1 + λk
∑
i∈Bn

γi(bi − (Axk−1)i)A
†
i . (27.34)

It follows from Theorem 27.1 that, in the consistent case, the sequence {xk}
converges to the solution of Ax = b that minimizes ‖x−x0‖, provided that,
for each n and each i ∈ Bn, we have

γi ≤
( J∑
j=1

snj |Aij |2
)−1

.

The BICAV algorithm [86] uses

γi =
( J∑
j=1

snj |Aij |2
)−1

.

The iterative step of BICAV is

xk = xk−1 + λk
∑
i∈Bn

(
bi − (Axk−1)i∑J
t=1 snt|Ait|2

)
A†i . (27.35)

27.9.3 A Block-Iterative CARP1

The obvious way to obtain a block-iterative version of CARP1 would
be to replace the denominator term

sj

J∑
t=1

|Ait|2

with

snj

J∑
t=1

|Ait|2.

However, this is problematic, since we cannot redefine the vector of un-
knowns using zj = xj

√
snj , since this varies with n. In [83], this issue is

resolved by taking τj to be not less than the maximum of the snj , and
using the denominator

τj

J∑
t=1

|Ait|2 = τjν
2
i .
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A similar device is used in [175] to obtain a convergent block-iterative
version of SART. The iterative step of DROP is

xkj = xk−1
j + λk

∑
i∈Bn

(
Aij

(bi − (Axk−1)i)

τjν2
i

)
. (27.36)

Convergence of the DROP (diagonally-relaxed orthogonal projection) it-
eration follows from their Theorem 11. We obtain convergence as a corollary
of our previous results.

The change of variables is zj = xj
√
τj , for each j. Using our eigenvalue

bounds, it is easy to show that the matrices Cn with entries

(Cn)ij =

(
Aij√
τjνi

)
,

for all i ∈ Bn and all j, have ρ(C†nCn) ≤ 1. The resulting iterative scheme,
which is equivalent to Equation (27.36), then converges, whenever Ax = b
is consistent, to the solution minimizing the proximity function

I∑
i=1

∣∣∣∣∣bi − (Ax)i
νi

∣∣∣∣∣
2

for which the function
J∑
j=1

τj |xj − x0
j |2

is minimized.

27.9.4 Using Sparseness

Suppose, for the sake of illustration, that each column of A has s non-
zero elements, for some s < I, and we let r = s/I. Suppose also that the
number of members of Bn is In = I/N for each n, and that N is not too
large. Then sn is approximately equal to rIn = s/N . On the other hand,
unless An has only zero entries, we know that sn ≥ 1. Therefore, it is no
help to select N for which s/N < 1. For a given degree of sparseness s we
need not select N greater than s. The more sparse the matrix A, the fewer
blocks we need to gain the maximum advantage from the rescaling, and the
more we can benefit from parallelization in the calculations at each step of
the algorithm in Equation (27.23).
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27.10 Exercises

Ex. 27.3 Prove Lemma 27.1.

Ex. 27.4 (Computer Problem) Compare the speed of convergence of
the ART and Cimmino algorithms.

Ex. 27.5 (Computer Problem) By generating sparse matrices of var-
ious sizes, test the accuracy of the estimates of the largest singular-value
given above.
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28.1 Chapter Summary

In modern PET scanners the number of pairs of detectors, and there-
fore, the number of potential lines of response (LOR), often exceeds the
number of detections; the count recorded at any single i is typically one or
zero. It makes sense, therefore, to record the data as a list of those LOR
corresponding to a detection; this is list-mode data.

28.2 Why List-Mode Processing?

In PET the radionuclide emits individual positrons, which travel, on
average, between 4 mm and 2.5 cm (depending on their kinetic energy)
before encountering an electron. The resulting annihilation releases two
gamma-ray photons that then proceed in essentially opposite directions.
Detection in the PET case means the recording of two photons at nearly
the same time at two different detectors. The locations of these two detec-
tors then provide the end points of the line segment passing, more or less,
through the site of the original positron emission. Therefore, each possible

359
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pair of detectors determines a line of response. When a LOR is recorded,
it is assumed that a positron was emitted somewhere along that line.

28.3 Correcting for Attenuation in PET

In SPECT attenuation correction is performed by modifying the prob-
abilities Pij . In PET the situation is at once simpler and more involved.

Let a given LOR be parameterized by the variable s, with s = 0 and
s = c denoting the two ends, and c the distance from one end to the other.
For a fixed value s = s0, let P (s) be the probability of reaching s for a
photon resulting from an emission at s0. For small ∆s > 0 the probability
that a photon that reached s is absorbed in the interval [s, s + ∆s] is
approximately µ(s)∆s, where µ(s) ≥ 0 is the photon attenuation density
at s. Then P (s+ ∆s) ≈ P (s)[1− µ(s)∆s], so that

P (s+ ∆s)− P (s) ≈ −P (s)µ(s)∆s.

Dividing by ∆s and letting ∆s go to zero, we get

P ′(s) = −P (s)µ(s).

It follows that
P (s) = e

−
∫ s
s0
µ(t)dt

.

The probability that the photon will reach s = c and be detected is then

P (c) = e
−

∫ c
s0
µ(t)dt

.

Similarly, we find that the probability that a photon will succeed in reaching
s = 0 from s0 is

P (0) = e−
∫ s0
0 µ(t)dt.

Since having one photon reach s = 0 and the other reach s = c are indepen-
dent events, their probabilities multiply, so that the probability that both
photons reach their destinations and a coincident detection is recorded for
this LOR is

e−
∫ c
0
µ(t)dt.

The expected number of coincident detections along the LOR is then pro-
portional to ∫ c

0

f(s)e−
∫ c
0
µ(t)dtds = e−

∫ c
0
µ(t)dt

∫ c

0

f(s)ds, (28.1)
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where f(s) is the intensity of radionuclide at s.
For each LOR i and each pixel or voxel j, let Aij be the geometric

probability that an emission at j will result in two photons traveling along
the LOR i. The probability Aij is unrelated to the attenuation presented
by the body of the patient. Then the probability that an emission at j will
result in the LOR i being added to the list is

Pij = aiAij ,

where
ai = e−

∫
i
µ(s)ds,

and the integral is the line integral along the line segment associated with
the LOR i. We then perform attenuation correction by using the probabil-
ities Pij in the reconstruction.

Note that, if the number I of potential LOR is not too large and the
entries of the data vector y are not simply zero or one, we might correct
for attenuation by replacing each yi with yi/ai, which is approximately the
count we would have seen for the LOR i if there had been no attenuation.
However, in the more typical case of large I and zero or one values for the
yi, this approach does not make much sense. The effect of attenuation now
is to prevent certain i from being recorded, not to diminish the values of
the positive yi of the LOR that were recorded. Therefore, at least in theory,
it makes more sense to correct for attenuation by using the Pij . There is
an additional complication, though.

In list-mode processing, I, the number of potential LOR, is much larger
than the size of the list. To employ the EMML algorithm or one of its
block-iterative variants, we need to calculate the probabilities associated
with those LOR on the list, but it is costly to do this for all the potential
LOR; we do need to compute the sensitivities, or probabilities of detection,
for each pixel, however. If we consider only the geometry of the scanner,
calculating the sensitivities for each pixel is not difficult and can be done
once and used repeatedly; it is much more problematic if we must include
the patient-specific attenuation. For this reason, it makes sense, practically
speaking, to correct for attenuation in list-mode PET by replacing yi with
yi/ai for those yi equal to one. The reconstruction is probably much the
same, either way.

28.4 Modeling the Possible LOR

We can model the potential LOR simply as pairs of detectors, so that I,
the number of potential LOR, is very large, but finite, and finite probability
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vectors, rather than probability density functions, suffice in forming the
likelihood function. The EMML algorithm applies directly to this list-mode
model. This is the approach adopted by Huesman et al. [173].

Alternatively, one can assume that the end-point coordinates form a
continuum, so that the set of potential LOR is uncountably infinite. Now
we need probability density functions to form the likelihood function. This
method, adopted by Parra and Barrett [216], makes the application of the
EMML algorithm more complicated, as discussed in [61].

28.5 EMML: The Finite LOR Model

In this section we discuss the EMML iterative algorithm for list-mode
reconstruction based on the finite model.

Let the list of recorded LOR be {i1, ..., iM} and let

Qmj = Pim,j ,

for m = 1, ...,M . Since the values of the yi are typically zero or one, the im
are typically distinct, but this is not essential here. The EMML iteration
becomes

xk+1
j = xkj s

−1
j

M∑
m=1

Qmj

( 1

(Qxk)m

)
. (28.2)

Note that we still need to use the sensitivity values

sj =

I∑
i=1

Pij ,

which are the probabilities of detection. However, for imaging the radionu-
clide we do not need to calculate the sj by first determining each of the

Pij ; we need only that the sj >
∑M
m=1Qmj for each j and that the relative

values of the various sj be reasonably accurate. For quantitation, though,
accurate absolute values of the sj are needed.

28.6 List-mode RBI-EMML

We turn now to the block-iterative versions of EMML. For n = 1, ..., N
let Cn consist of all indices m such that the LOR im on the list is also in
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Bn. The list-mode BI-EMML (LMBI-EMML) has the iterative step

xkj = (1− γnδjsnj)xk−1
j + xkj γnδj

∑
m∈Cn

Pij

( 1

(Qxk)m

)
, (28.3)

with γ > 0 chosen so that
snjδjγn ≤ 1.

When we select δj = s−1
j , we must then have γn ≤ µ−1

n . When we have

δj = 1, we need γn ≤ m−1
n . Generally speaking, the larger the γn the

faster the convergence. The rescaled LMBI-EMML (LMRBI-EMML) uses
the largest values of γn consistent with these constraints.

Note that, as previously, we need sj and now we also need snj . As before,
though, we do not need to specify each of the Pij to obtain reasonable
choices for these values.

28.7 The Row-action LMRBI-EMML: LMEMART

The row-action or event-by-event version of the RBI-EMML algorithm,
the LMEMART, is a special case of the LMRBI-EMML in which, for m =
1, ...,M , each LOR im on the list forms its own block or subset, denoted
Cm. Another way to say this is that we choose the original blocks Bn so
that no Bn contains more than one im. For clarity, we shall assume that the
blocks Bn are chosen so that Bm = {im} and Cm = {m}, for m = 1, ...,M .
We then let BM+1 consist of all the i not equal to some Im on the list, and
N = M + 1. Therefore, for n = 1, ...,M , we have

snj = Qnj .

In the LMEMART each iteration employs a single member of the list and we
cycle through the list repeatedly. The iteration index is now m = 1, ...,M ,
with m = m(k) = k(modM) + 1.

The LMEMART has the iterative step

xk+1
j = (1− γmδjQmj)xkj + xkj γmδjQmj

( 1

(Qxk)m

)
, (28.4)

with Qmjδjγm ≤ 1.
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28.8 EMML: The Continuous LOR Model

When the end points of the potential LOR are allowed to take on val-
ues in a continuum, the likelihood function involves probability density
functions, rather than finite probabilities. This poses a difficulty, in that
the values of probability density functions can be any non-negative real
number; only their integrals are required to be one. As a result, the con-
vergence theory for the EMML algorithm and its various block-iterative
versions does not apply unchanged.

For each pixel index j, let fj(·) be the probability density function (pdf)
whose domain is the (uncountably infinite) set of potential LOR with the
property that the probability that an emission at j results in an LOR from
the set S being recorded is the integral of fj over S. With xj the expected
number of emissions from j during the scanning time, and

x+ =

J∑
j=1

xj ,

the probability that an emission came from j, given that an emission has
happened, is xj/x+. Therefore, the probability that an LOR in the set S
will be recorded, given that an emission has happened, is the integral over
S of the pdf

f(·) =
1

x+

J∑
j=1

xjfj(·).

For each j let dj be the probability that an emission from j will be detected,
and let

d =
1

x+

J∑
j=1

xjdj

be the probability that an emission will be detected.
The number of items on the list, M , is also a random variable, which we

model as having a Poisson distribution with mean value dx+. Therefore,
the probability of M is

p(M) = exp(−x+d)(x+d)M/M !.

Given the list of recorded LOR, the likelihood function is then

L(x) = p(M)

M∏
m=1

f(im),
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and the log likelihood function to be maximized is

LL(x) = −x+d+

M∑
m=1

log(Px)m,

where the matrix P has entries

Pmj = fj(im).

Note that

(Px)m =

J∑
j=1

Pmjxj ,

so that
M∑
m=1

(Px)m =

J∑
j=1

( M∑
m=1

Pmj)xj =

J∑
j=1

cjxj ,

for

cj =

M∑
m=1

Pmj .

Maximizing the log likelihood function is equivalent to minimizing

KL(u, Px)−
M∑
m=1

(Px)m + x+d+ constants,

where u is the vector whose entries are all one, and therefore equivalent to
minimizing

F (x) = KL(u, Px) +

J∑
j=1

(dj − cj)xj .

The EMML algorithm itself will minimize only KL(u, Px). The basic prob-
lem now is that we have values of probability density functions and the
quantities cj , which can be any positive real numbers, are unrelated to the
detectability or sensitivity dj .

It was shown in [61] that the EMML algorithm can be modified to
provide a convergent iterative method for minimizing F (x). This modified
EMML algorithm has the iterative step

xk+1
j = xkj d

−1
j

M∑
m=1

( 1

(Pxk)m

)
.

For the finite model, as in [173], this is just the usual EMML and conver-
gence follows from known results, but for the continuous model, as in [216],
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this iterative scheme falls outside the EMML framework and convergence
needed to be established, as in [61].

Just as the EMML algorithm must be modified before it can be applied
to the continuous model, we must adapt the block-iterative versions as well;
see [61] for details.
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29.1 Chapter Summary

In our discussion of both transmission and emission tomography we saw
that discretization leads to systems of linear equations to be solved for the
vectorized image x. Typically, these systems are quite large, the measured
data is noisy, and there will be no non-negative x satisfying the system
exactly. In such cases, one can turn to optimization, and calculate a non-
negatively constrained least-squares solution, with or without a penalty
term.

29.2 Image Reconstruction Through Optimization

In the stochastic approach to emission tomography, we maximize the
likelihood function with respect to the unknown image vector x. Here again,

367
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optimization plays a role. It is reasonable, therefore, to take a brief look
at the theory of optimization, particularly constrained optimization. In
this chapter we discuss optimization with equality constraints and the area
known as convex programming (CP).

29.3 Eigenvalues and Eigenvectors Through Optimiza-
tion

Let B be any real I by J matrix. We want to find the maximum value of
the ratio ||Bx||/||x||, over all non-zero vectors x. If x̂ solves this problem,
so does cx̂ for every non-zero real number c; therefore, we may and do
constrain the vectors x to have ||x|| = 1.

We reformulate the problem as follows: maximize f(x) = ||Bx||2, sub-
ject to g(x) = ||x||2 = 1. Our approach will be to use the method of
Lagrange multipliers. Suppose that x̂ is a solution and S is the level surface
of the function f(x) containing the vector x̂, that is,

S = {x|f(x) = f(x̂)}.

The gradient of f(x) at x̂ is a vector normal to S at x̂. Now let U be the
unit surface of all x with ||x|| = 1. We claim that S and U must be tangent
at x = x̂. If that is not the case, then U cuts through S, making it possible
to move from one side of S to the other side of S, while remaining on the
surface U . Therefore, we would be able to move along U to another vector
x with f(x) > f(x̂), which cannot happen.

Since the two surfaces are tangent at x = x̂, their gradients are parallel,
so that

∇f(x̂) = α∇g(x̂),

for some constant α. Equivalently,

∇f(x̂) + (−α)∇g(x̂) = 0.

The main idea of the Lagrange-multiplier method is to define the La-
grangian as

L(x;λ) = f(x) + λg(x),

so that, for some value of the parameter λ the gradient of L(x;λ) is zero;
here λ = −α works.

The Lagrangian for this problem is

L(x, λ) = f(x) + λg(x) = ||Bx||2 + λ||x||2.
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Therefore, we have
2BTBx̂+ 2λx̂ = 0,

or
BTBx̂ = αx̂,

which tells us that x̂ is an eigenvector of the matrix BTB corresponding to
the eigenvalue α. Since the matrix BTB is symmetric, all its eigenvalues are
real numbers; in fact, BTB is non-negative definite, so all its eigenvalues
are non-negative.

Since
||Bx̂||2 = x̂TBTBx̂ = αx̂T x̂ = α||x̂||2 = α,

we see that the largest value of ||Bx||2, subject to ||x|| = 1, must be α.
So α is the largest eigenvalue of the matrix BTB and x̂ is an associated
eigenvector.

The largest eigenvalue of BTB is also the largest eigenvalue of the ma-
trix BBT and is denoted ρ(BTB) = ρ(BBT ), and called the spectral radius
of BTB. We can therefore write

||Bz||2 ≤ ρ(BTB)||z||2, (29.1)

for all vectors z.

29.4 Convex Sets and Convex Functions

A subset C of RJ is said to be convex if, for every collection c1, c2, ..., cN
of points in C and all positive constants a1, a2, ..., aN summing to one, the
point a1c1 + ... + aNcN is again in C. A function f : RJ → R is said to
be a convex function on the convex set C if, for all such combinations as
above, we have

f(a1c1 + ...+ aNcN ) ≤ a1f(c1) + ...+ aNf(cN ).

The function f(x) = ||Ax − b||2 is convex on C = RJ and the function
f(x) = KL(b, Ax) is convex on the set C of non-negative x in RJ .

29.5 The Convex Programming Problem

Let f and gi, i = 1, ..., I, be convex functions defined on a non-empty
closed convex subset C of RJ . The primal problem in convex programming
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(CP) is the following:

minimize f(x), subject to gi(x) ≤ 0, for i = 1, ..., I. (P) (29.2)

For notational convenience, we define g(x) = (g1(x), ..., gI(x)). Then (P)
becomes

minimize f(x), subject to g(x) ≤ 0. (P) (29.3)

The feasible set for (P) is

F = {x|g(x) ≤ 0}. (29.4)

Definition 29.1 The problem (P) is said to be consistent if F is not
empty, and super-consistent if there is x in F with gi(x) < 0 for all
i = 1, ..., I. Such a point x is then called a Slater point.

Definition 29.2 The Lagrangian for the problem (P) is the function

L(x, λ) = f(x) +

I∑
i=1

λigi(x), (29.5)

defined for all x in C and λ ≥ 0.

29.6 A Simple Example

Let us minimize the function f : R2 → R given by

f(x, y) = (x+ 1)2 + y2,

subject to x ≥ 0 and y ≥ 0. To get this problem into the form of the CP
problem we introduce the functions

g1(x, y) = −x,

and
g2(x, y) = −y.

The partial derivative of f , with respect to x, is

∂f

∂x
(x, y) = 2(x+ 1),
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and the partial derivative of f , with respect to y, is

∂f

∂y
(x, y) = 2y.

If we simply set both partial derivatives to zero, we get x = −1 and y = 0,
which is, of course, the unconstrained minimizing point for f . But this
point does not satisfy our constraints.

If we graph the function, we see immediately that the constrained so-
lution is the origin, x = 0 and y = 0. At this point, we can move up or
down without decreasing f , and this is reflected in the fact that the y-
partial derivative at (0, 0) is zero. The x-partial derivative at (0, 0) is not
zero, however, since, if we move horizontally to the left, the function f
decreases. However, we are prevented from moving left by the constraint
that x ≥ 0, so it is not necessary that the x-partial derivative be zero at
the solution. We only need to know that if we move to the right, which
is permitted by the constraints, the function f increases; the fact that the
x-partial derivative is positive at (0, 0) guarantees this.

29.7 The Karush-Kuhn-Tucker Theorem

As we have just seen, at the solution of a CP problem it is not necessarily
the case that the partial derivatives all be zero. But what does have to be
the case?

The Karush-Kuhn Tucker Theorem gives necessary and sufficient con-
ditions for a vector x∗ to be a solution of a super-consistent problem (P).

Theorem 29.1 Let (P) be super-consistent. Then x∗ solves (P) if and only
if there is a vector λ∗ such that

• 1) λ∗ ≥ 0;

• 2) λ∗i gi(x
∗) = 0, for all i = 1, ..., I;

• 3) ∇f(x∗) +
∑I
i=1 λ

∗
i∇gi(x∗) = 0.

When we optimize subject to an equality constraint the first condition
of the KKT Theorem need not hold, that is, the Lagrange multipliers need
not be non-negative, and the second condition is automatically true, since
the constraints are now gi(x) = 0 for all i.
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29.8 Back to our Example

Once again, the problem is to minimize f(x, y) = (x+ 1)2 + y2, subject
to g1(x, y) = −x ≤ 0 and g2(x, y) = −y ≤ 0. Applying Condition 3 of the
KKT Theorem, we get

0 = 2(x+ 1)− λ∗1,

and
0 = 2y − λ∗2.

From Condition 2 we know that either λ∗1 = 0, which can’t happen, since
then x = −1, or x = 0; therefore x = 0. Also from Condition 2 we know
that either λ∗2 = 0 or y = 0; therefore, y = 0. We have found the solution
to our constrained minimization problem.

29.9 Two More Examples

We illustrate the use of the gradient form of the KKT Theorem with
two more examples that appeared in the paper of Driscoll and Fox [117].

29.9.1 A Linear Programming Problem

Minimize f(x1, x2) = 3x1 + 2x2, subject to the constraints 2x1 + x2 ≥
100, x1 + x2 ≥ 80, x1 ≥ 0 and x2 ≥ 0. We define

g1(x1, x2) = 100− 2x1 − x2 ≤ 0, (29.6)

g2(x1, x2) = 80− x1 − x2, (29.7)

g3(x1, x2) = −x1, (29.8)

and

g4(x1, x2) = −x2. (29.9)

The Lagrangian is then

L(x, λ) = 3x1 + 2x2 + λ1(100− 2x1 − x2)

+λ2(80− x1 − x2)− λ3x1 − λ4x2.
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(29.10)

From the KKT Theorem, we know that if there is a solution x∗, then there
is λ∗ ≥ 0 with

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗),

for all x. For notational simplicity, we write λ in place of λ∗.
Taking the partial derivatives of L(x, λ) with respect to the variables

x1 and x2, we get

3− 2λ1 − λ2 − λ3 = 0, (29.11)

and

2− λ1 − λ2 − λ4 = 0. (29.12)

The complementary slackness conditions are

λ1 = 0 , if 2x1 + x2 6= 100, (29.13)

λ2 = 0 , if x1 + x2 6= 80, (29.14)

λ3 = 0 , if x1 6= 0, (29.15)

and

λ4 = 0 , if x2 6= 0. (29.16)

A little thought reveals that precisely two of the four constraints must be
binding. Examining the six cases, we find that the only case satisfying all
the conditions of the KKT Theorem is λ3 = λ4 = 0. The minimum occurs
at x1 = 20 and x2 = 60 and the minimum value is f(20, 60) = 180.

29.9.2 A Nonlinear Convex Programming Problem

Minimize the function

f(x1, x2) = (x1 − 14)2 + (x2 − 11)2,

subject to

g1(x1, x2) = (x1 − 11)2 + (x2 − 13)2 − 49 ≤ 0,

and
g2(x1, x2) = x1 + x2 − 19 ≤ 0.
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The Lagrangian is then

L(x, λ) = (x1 − 14)2 + (x2 − 11)2+

λ1

(
(x1 − 11)2 + (x2 − 13)2 − 49

)
+ λ2

(
x1 + x2 − 19

)
. (29.17)

Again, we write λ in place of λ∗. Setting the partial derivatives, with respect
to x1 and x2, to zero, we get the KKT equations

2x1 − 28 + 2λ1x1 − 22λ1 + λ2 = 0, (29.18)

and

2x2 − 22 + 2λ1x2 − 26λ1 + λ2 = 0. (29.19)

The complementary slackness conditions are

λ1 = 0 , if (x1 − 11)2 + (x2 − 13)2 6= 49, (29.20)

and

λ2 = 0 , if x1 + x2 6= 19. (29.21)

There are four cases to consider. First, if neither constraint is binding, the
KKT equations have solution x1 = 14 and x2 = 11, which is not feasible.
If only the first constraint is binding, we obtain two solutions, neither
feasible. If only the second constraint is binding, we obtain x∗1 = 11, x∗2 = 8,
and λ2 = 6. This is the optimal solution. If both constraints are binding,
we obtain, with a bit of calculation, two solutions, neither feasible. The
minimum value is f(11, 8) = 18, and the sensitivity vector is λ∗ = (0, 6).

29.10 Non-Negatively Constrained Least-Squares

If there is no solution to a system of linear equations Ax = b, then we
may seek a least-squares “solution” , which is a minimizer of the function

f(x) =

I∑
i=1

(
(

J∑
m=1

Aimxm)− bi
)2

= ||Ax− b||2.

The partial derivative of f(x) with respect to the variable xj is

∂f

∂xj
(x) = 2

I∑
i=1

Aij

(
(

J∑
m=1

Aimxm)− bi
)
.
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Setting the gradient equal to zero, we find that to get a least-squares solu-
tion we must solve the system of equations

AT (Ax− b) = 0.

Now we consider what happens when the additional constraints xj ≥ 0 are
imposed.

This problem fits into the CP framework, when we define

gj(x) = −xj ,

for each j. Let x̂ be a least-squares solution. According to the KKT The-
orem, for those values of j for which x̂j is not zero we have λ∗j = 0 and
∂f
∂xj

(x̂) = 0. Therefore, if x̂j 6= 0,

0 =

I∑
i=1

Aij

(
(

J∑
m=1

Aimx̂m)− bi
)
.

Let Q be the matrix obtained from A by deleting rows j for which x̂j = 0.
Then we can write

QT (Ax̂− b) = 0.

If Q has at least I columns and has full rank, then QT is a one-to-one
linear transformation, which implies that Ax̂ = b. Therefore, when there
is no non-negative solution of Ax = b, Q must have fewer than I columns,
which means that x̂ has fewer than I non-zero entries. This is the proof of
Theorem 24.1.

This result has some practical implications in medical image reconstruc-
tion. In the hope of improving the resolution of the reconstructed image,
we may be tempted to take J , the number of pixels, larger than I, the
number of equations arising from photon counts or line integrals. Since
the vector b consists of measured data, it is noisy and there may well not
be a non-negative solution of Ax = b. As a result, the image obtained by
non-negatively constrained least-squares will have at most I − 1 non-zero
entries; many of the pixels will be zero and they will be scattered through-
out the image, making it unusable for diagnosis. The reconstructed images
resemble stars in a night sky, and, as a result, the theorem is sometimes
described as the “night sky” theorem.

This “night sky” phenomenon is not restricted to least squares. The
same thing happens with methods based on the Kullback-Leibler distance,
such as MART, EMML and SMART.
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29.11 The EMML Algorithm

Maximizing the likelihood function in SPECT is equivalent to mini-
mizing the KL distance KL(b, Ax) over non-negative vectors x, where b is
the vector of photon counts at the detectors and A the matrix of detec-
tion probabilities. With f(x) = KL(b, Ax) and gj(x) = −xj , the problem
becomes a CP problem. We have

∂f

∂xj
(x) =

I∑
i=1

Aij

(
1− bi/(Ax)i

)
,

where

(Ax)i =

J∑
m=1

Aimxm.

Let x̂ be the solution. According to the Karush-Kuhn-Tucker Theorem
29.1, one of two things are possible: for each j either 1): x̂j = 0 or 2): both
λ∗j = 0 and, consequently,

∂f

∂xj
(x̂) = 0.

Therefore, for all values of the index j we have

0 = x̂j

I∑
i=1

Aij

(
1− bi/(Ax̂)i

)
,

or, equivalently,

x̂j = x̂js
−1
j

I∑
i=1

Aij

(
bi/(Ax̂)i

)
,

where sj =
∑I
i=1Aij .

This suggests an iterative optimization algorithm whereby we insert
the current value of the vector, call it xk, into the right side of the last
equation, and call the resulting vector the next iterate, xk+1. For simplicity,
we assume sj = 1. Then the iteration becomes

xk+1
j = xkj

( I∑
i=1

Aij(bi/(Ax
k)i)

)
. (29.22)

This is the EMML iterative algorithm.
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29.12 The Simultaneous MART Algorithm

The MART algorithm has the following iterative step:

xk+1
j = xkj

(
bi/(Ax

k)i

)Aij

,

where i = k(mod I) + 1. The MART uses only one equation at each step.
The simultaneous MART (SMART) uses all the equations at each step.
Assuming once again that sj = 1 for all j, the iterative step of the SMART
is

xk+1
j = xkj exp

( I∑
i=1

Aij log(bi/(Ax
k)i)

)
. (29.23)

The SMART is clearly closely related to the EMML algorithm, with sub-
tle differences, namely the exponentiation and the logarithm. As we shall
show in the next chapter, the SMART algorithm minimizes the function
KL(Ax, b), while the EMML minimizes KL(b, Ax).
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30.1 Chapter Summary

In this chapter we present yet another application of the MART. Ge-
ometric Programming (GP) involves the minimization of functions of a
special type, known as posynomials. The first systematic treatment of ge-
ometric programming appeared in the book [121], by Duffin, Peterson and
Zener, the founders of geometric programming. As we shall see, the Gen-
eralized Arithmetic-Geometric Mean Inequality plays an important role in
the theoretical treatment of geometric programming, particularly in the
development of the dual GP (DGP) problem. The MART is then used to
solve the DGP.

379
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30.2 An Example of a GP Problem

The following optimization problem was presented originally by Duffin,
et al. [121] and discussed by Peressini et al. in [218]. It illustrates well the
type of problem considered in geometric programming. Suppose that 400
cubic yards of gravel must be ferried across a river in an open box of length
t1, width t2 and height t3. Each round-trip cost ten cents. The sides and
the bottom of the box cost 10 dollars per square yard to build, while the
ends of the box cost twenty dollars per square yard. The box will have no
salvage value after it has been used. Determine the dimensions of the box
that minimize the total cost.

With t = (t1, t2, t3), the cost function is

g(t) =
40

t1t2t3
+ 20t1t3 + 10t1t2 + 40t2t3, (30.1)

which is to be minimized over tj > 0, for j = 1, 2, 3. The function g(t) is
an example of a posynomial.

30.3 The Generalized AGM Inequality

The generalized arithmetic-geometric mean inequality will play a promi-
nent role in solving the GP problem.

Suppose that x1, ..., xN are positive numbers. Let a1, ..., aN be positive
numbers that sum to one. Then the Generalized AGM Inequality (GAGM
Inequality) is

xa11 xa22 · · · x
aN
N ≤ a1x1 + a2x2 + ...+ aNxN , (30.2)

with equality if and only if x1 = x2 = ... = xN . We can prove this using
the convexity of the function − log x.

A function f(x) is said to be convex over an interval (a, b) if

f(a1t1 + a2t2 + ...+ aN tN ) ≤ a1f(t1) + a2f(t2) + ...+ aNf(tN ),

for all positive integers N , all an as above, and all real numbers tn in (a, b).
If the function f(x) is twice differentiable on (a, b), then f(x) is convex
over (a, b) if and only if the second derivative of f(x) is non-negative on
(a, b). For example, the function f(x) = − log x is convex on the positive
x-axis. The GAGM Inequality follows immediately.



Appendix: Geometric Programming and the MART 381

30.4 Posynomials and the GP Problem

Functions g(t) of the form

g(t) =

n∑
i=1

ci

( m∏
j=1

t
aij
j

)
, (30.3)

with t = (t1, ..., tm), the tj > 0, ci > 0 and aij real, are called posynomials.
The geometric programming problem, denoted (GP), is to minimize a given
posynomial over positive t. In order for the minimum to be greater than
zero, we need some of the aij to be negative.

We denote by ui(t) the function

ui(t) = ci

m∏
j=1

t
aij
j , (30.4)

so that

g(t) =

n∑
i=1

ui(t). (30.5)

For any choice of δi > 0, i = 1, ..., n, with

n∑
i=1

δi = 1,

we have

g(t) =

n∑
i=1

δi

(ui(t)
δi

)
. (30.6)

Applying the Generalized Arithmetic-Geometric Mean (GAGM) Inequal-
ity, we have

g(t) ≥
n∏
i=1

(ui(t)
δi

)δi
. (30.7)

Therefore,

g(t) ≥
n∏
i=1

(ci
δi

)δi( n∏
i=1

m∏
j=1

t
aijδi
j

)
, (30.8)
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or

g(t) ≥
n∏
i=1

(ci
δi

)δi( m∏
j=1

t
∑n

i=1 aijδi
j

)
, (30.9)

Suppose that we can find δi > 0 with

n∑
i=1

aijδi = 0, (30.10)

for each j. Then the inequality in (30.9) becomes

g(t) ≥ v(δ), (30.11)

for

v(δ) =

n∏
i=1

(ci
δi

)δi
. (30.12)

30.5 The Dual GP Problem

The dual geometric programming problem, denoted (DGP), is to maxi-
mize the function v(δ), over all feasible δ = (δ1, ..., δn), that is, all positive
δ for which

n∑
i=1

δi = 1, (30.13)

and

n∑
i=1

aijδi = 0, (30.14)

for each j = 1, ...,m. Clearly, we have

g(t) ≥ v(δ), (30.15)

for any positive t and feasible δ. Of course, there may be no feasible δ, in
which case (DGP) is said to be inconsistent.

As we have seen, the inequality in (30.15) is based on the GAGM In-
equality. We have equality in the GAGM Inequality if and only if the terms
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in the arithmetic mean are all equal. In this case, this says that there is a
constant λ such that

ui(t)

δi
= λ, (30.16)

for each i = 1, ..., n. Using the fact that the δi sum to one, it follows that

λ =

n∑
i=1

ui(t) = g(t), (30.17)

and

δi =
ui(t)

g(t)
, (30.18)

for each i = 1, ..., n. As the theorem below asserts, if t∗ is positive and
minimizes g(t), then δ∗, the associated δ from Equation (30.18), is feasible
and solves (DGP). Since we have equality in the GAGM Inequality now,
we have

g(t∗) = v(δ∗).

The main theorem in geometric programming is the following.

Theorem 30.1 If t∗ > 0 minimizes g(t), then (DGP) is consistent. In
addition, the choice

δ∗i =
ui(t

∗)

g(t∗)
(30.19)

is feasible and solves (DGP). Finally,

g(t∗) = v(δ∗); (30.20)

that is, there is no duality gap.

Proof: We have

∂ui
∂tj

(t∗) =
aijui(t

∗)

t∗j
, (30.21)

so that

t∗j
∂ui
∂tj

(t∗) = aijui(t
∗), (30.22)

for each j = 1, ...,m. Since t∗ minimizes g(t), we have

0 =
∂g

∂tj
(t∗) =

n∑
i=1

∂ui
∂tj

(t∗), (30.23)



384 Applied and Computational Linear Algebra: A First Course

so that, from Equation (30.22), we have

0 =

n∑
i=1

aijui(t
∗), (30.24)

for each j = 1, ...,m. It follows that δ∗ is feasible. Since we have equality
in the GAGM Inequality, we know

g(t∗) = v(δ∗). (30.25)

Therefore, δ∗ solves (DGP). This completes the proof.

30.6 Solving the GP Problem

The theorem suggests how we might go about solving (GP). First, we
try to find a feasible δ∗ that maximizes v(δ). This means we have to find
a positive solution to the system of m+ 1 linear equations in n unknowns,
given by

n∑
i=1

δi = 1, (30.26)

and

n∑
i=1

aijδi = 0, (30.27)

for j = 1, ...,m, such that v(δ) is maximized. As we shall see, the multi-
plicative algebraic reconstruction technique (MART) is an iterative proce-
dure that we can use to find such δ. If there is no such vector, then (GP)
has no minimizer. Once the desired δ∗ has been found, we set

δ∗i =
ui(t

∗)

v(δ∗)
, (30.28)

for each i = 1, ..., n, and then solve for the entries of t∗. This last step can
be simplified by taking logs; then we have a system of linear equations to
solve for the values log t∗j .
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30.7 Solving the DGP Problem

The iterative multiplicative algebraic reconstruction technique MART
can be used to minimize the function v(δ), subject to linear equality con-
straints, provided that the matrix involved has nonnegative entries. We
cannot apply the MART yet, because the matrix AT does not satisfy these
conditions.

30.7.1 The MART

The Kullback-Leibler, or KL distance [186] between positive numbers a
and b is

KL(a, b) = a log
a

b
+ b− a. (30.29)

We also define KL(a, 0) = +∞ and KL(0, b) = b. Extending to non-
negative vectors a = (a1, ..., aJ)T and b = (b1, ..., bJ)T , we have

KL(a, b) =

J∑
j=1

KL(aj , bj) =

J∑
j=1

(
aj log

aj
bj

+ bj − aj
)
.

The MART is an iterative algorithm for finding a non-negative solution of
the system Px = y, for an I by J matrix P with non-negative entries and
vector y with positive entries. We also assume that

pj =

I∑
i=1

Pij > 0,

for all i = 1, ..., I. When discussing the MART, we say that the system
Px = y is consistent when it has non-negative solutions. We consider two
different versions of the MART.

30.7.1.1 MART I

The iterative step of the first version of MART, which we shall call
MART I, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

( yi
(Pxk)i

)Pij/mi

,

for j = 1, ..., J , where the parameter mi is defined to be

mi = max{Pij |j = 1, ..., J}.

The MART I algorithm converges, in the consistent case, to the non-
negative solution for which the KL distance KL(x, x0) is minimized.
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30.7.1.2 MART II

The iterative step of the second version of MART, which we shall call
MART II, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

( yi
(Pxk)i

)Pij/pjni

,

for j = 1, ..., J , where the parameter ni is defined to be

ni = max{Pijp−1
j |j = 1, ..., J}.

The MART II algorithm converges, in the consistent case, to the non-
negative solution for which the KL distance

J∑
j=1

pjKL(xj , x
0
j )

is minimized.

30.7.2 Using the MART to Solve the DGP Problem

Let the (n + 1) by m matrix AT have the entries Aji = aij , for j =
1, ...,m and i = 1, ..., n, and A(m+1),i = 1. Let u be the column vector with
entries uj = 0, for j = 1, ...,m, and um+1 = 1.

The entries on the bottom row of AT are all one, as is the bottom en-
try of the column vector u, since these entries correspond to the equation∑I
i=1 δi = 1. By adding suitably large positive multiples of this last equa-

tion to the other equations in the system, we obtain an equivalent system,
BT δ = s, for which the new matrix BT and the new vector s have only
positive entries. Now we can apply the MART I algorithm to the system
BT δ = s, letting P = BT , pi =

∑J+1
j=1 Bij , δ = x, x0 = c and y = s.

In the consistent case, the MART I algorithm will find the non-negative
solution that minimizes KL(x, x0), so we select x0 = c. Then the MART I
algorithm finds the non-negative δ∗ satisfying BT δ∗ = s, or, equivalently,
AT δ∗ = u, for which the KL distance

KL(δ, c) =

I∑
i=1

(
δi log

δi
ci

+ ci − δi
)

is minimized. Since we know that

I∑
i=1

δi = 1,
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it follows that minimizing KL(δ, c) is equivalent to maximizing v(δ). Using
δ∗, we find the optimal t∗ solving the GP problem.

For example, the linear system of equations AT δ = u corresponding to
the posynomial in Equation (30.1) is

AT δ = u =


−1 1 1 0
−1 0 1 1
−1 1 0 1
1 1 1 1



δ1
δ2
δ3
δ4

 =


0
0
0
1

 .
Adding two times the last row to the other rows, the system becomes

BT δ = s =


1 3 3 2
1 2 3 3
1 3 2 3
1 1 1 1



δ1
δ2
δ3
δ4

 =


2
2
2
1

 .
The matrix BT and the vector s are now positive. We are ready to apply
the MART.

The MART iteration is as follows. With j = k(mod (J + 1)) + 1, mj =
max {Bij |i = 1, 2, ..., I} and k = 0, 1, ..., let

δk+1
i = δki

( sj
(BT δk)j

)m−1
j Bij

.

The optimal δ∗ is δ∗ = (.4, .2, .2, .2)T , the optimal t∗ is t∗ = (2, 1, .5), and
the lowest cost is one hundred dollars.

30.8 Constrained Geometric Programming

Consider now the following variant of the problem of transporting the
gravel across the river. Suppose that the bottom and the two sides will
be constructed for free from scrap metal, but only four square yards are
available. The cost function to be minimized becomes

g0(t) =
40

t1t2t3
+ 40t2t3, (30.30)

and the constraint is

g1(t) =
t1t3

2
+
t1t2

4
≤ 1. (30.31)

With δ1 > 0, δ2 > 0, and δ1 + δ2 = 1, we write

g0(t) = δ1
40

δ1t1t2t3
+ δ2

40t2t3
δ2

. (30.32)
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Since 0 ≤ g1(t) ≤ 1, we have

g0(t) ≥
(
δ1

40

δ1t1t2t3
+ δ2

40t2t3
δ2

)(
g1(t)

)λ
, (30.33)

for any positive λ. The GAGM Inequality then tells us that

g0(t) ≥

(( 40

δ1t1t2t3

)δ1(40t2t3
δ2

)δ2)(
g1(t)

)λ
, (30.34)

so that

g0(t) ≥

((40

δ1

)δ1(40

δ2

)δ2)
t−δ11 tδ2−δ12 tδ2−δ13

(
g1(t)

)λ
. (30.35)

From the GAGM Inequality, we also know that, for δ3 > 0, δ4 > 0 and
λ = δ3 + δ4,

(
g1(t)

)λ
≥ (λ)λ

(( 1

2δ3

)δ3( 1

4δ4

)δ4)
tδ3+δ4
1 tδ42 t

δ3
3 . (30.36)

Combining the inequalities in (30.35) and (30.36), we obtain

g0(t) ≥ v(δ)t−δ1+δ3+δ4
1 t−δ1+δ2+δ4

2 t−δ1+δ2+δ3
3 , (30.37)

with

v(δ) =
(40

δ1

)δ1(40

δ2

)δ2( 1

2δ3

)δ3( 1

4δ4

)δ4(
δ3 + δ4

)δ3+δ4
, (30.38)

and δ = (δ1, δ2, δ3, δ4). If we can find a positive vector δ with

δ1 + δ2 = 1,

δ3 + δ4 = λ,

−δ1 + δ3 + δ4 = 0,

−δ1 + δ2 + δ4 = 0

−δ1 + δ2 + δ3 = 0, (30.39)

then

g0(t) ≥ v(δ). (30.40)
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In this particular case, there is a unique positive δ satisfying the equations
(30.39), namely

δ∗1 =
2

3
, δ∗2 =

1

3
, δ∗3 =

1

3
, and δ∗4 =

1

3
, (30.41)

and

v(δ∗) = 60. (30.42)

Therefore, g0(t) is bounded below by 60. If there is t∗ such that

g0(t∗) = 60, (30.43)

then we must have

g1(t∗) = 1, (30.44)

and equality in the GAGM Inequality. Consequently,

3

2

40

t∗1t
∗
2t
∗
3

= 3(40t∗2t
∗
3) = 60, (30.45)

and

3

2
t∗1t
∗
3 =

3

4
t∗1t
∗
2 = K. (30.46)

Since g1(t∗) = 1, we must have K = 3
2 . We solve these equations by taking

logarithms, to obtain the solution

t∗1 = 2, t∗2 = 1, and t∗3 =
1

2
. (30.47)

The change of variables tj = exj converts the constrained (GP) prob-
lem into a constrained convex programming problem. The theory of the
constrained (GP) problem can then be obtained as a consequence of the
theory for the convex programming problem.

30.9 Exercises

Ex. 30.1 Show that there is no solution to the problem of minimizing the
function

g(t1, t2) =
2

t1t2
+ t1t2 + t1, (30.48)

over t1 > 0, t2 > 0.
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Ex. 30.2 Minimize the function

g(t1, t2) =
1

t1t2
+ t1t2 + t1 + t2, (30.49)

over t1 > 0, t2 > 0. This will require some iterative numerical method for
solving equations.

Ex. 30.3 Program the MART algorithm and use it to verify the assertions
made previously concerning the solutions of the two numerical examples.
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31.1 Chapter Summary

The Fourier transform of a complex-valued function f(x) of the real
variable x is defined as

F (ω) =

∫ ∞
−∞

f(x)eixωdx. (31.1)

If we have F (ω), we can obtain f(x) again via the Fourier Inversion For-
mula,

f(x) =
1

2π

∫ ∞
−∞

F (ω)e−ixωdω. (31.2)

In many applications, particularly in remote sensing, what we are able to
measure are values of f(x), and what we really want is the function F (ω).
This is the case in medical tomography, magnetic-resonance imaging, sonar,
radar, optical and radio astronomy, and many other areas. Because our
measurements are finite in number, the problem becomes how to estimate
F (ω) from finitely many values of f(x). The fast Fourier transform (FFT)
is a fast algorithm for calculating one such estimate, the discrete Fourier
transform. Discovered in 1965 by Cooley and Tukey, the FFT has revo-
lutionized signal and image processing. The man in Figure 31.1 is John
Tukey.

391
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31.2 Non-periodic Convolution

Recall the algebra problem of multiplying one polynomial by another.
Suppose

A(x) = a0 + a1x+ ...+ aMx
M

and
B(x) = b0 + b1x+ ...+ bNx

N .

Let C(x) = A(x)B(x). With

C(x) = c0 + c1x+ ...+ cM+Nx
M+N ,

each of the coefficients cj , j = 0, ...,M+N, can be expressed in terms of the
am and bn (an easy exercise!). The vector c = (c0, ..., cM+N ) is called the
non-periodic convolution of the vectors a = (a0, ..., aM ) and b = (b0, ..., bN ).
Non-periodic convolution can be viewed as a particular case of periodic
convolution, as we shall see.

31.3 The DFT as a Polynomial

Given the complex numbers f0, f1, ..., fN−1, which may or may not be
measured values of f(x), we form the vector f = (f0, f1, ..., fN−1)T . The
DFT of the vector f is the function

DFTf (ω) =

N−1∑
n=0

fne
inω,

defined for ω in the interval [0, 2π). Because einω = (eiω)n, we can write
the DFT as a polynomial

DFTf (ω) =

N−1∑
n=0

fn(eiω)n.

If we have a second vector, say d = (d0, d1, ..., dN−1)T , then we define
DFTd(ω) similarly. When we multiply DFTf (ω) by DFTd(ω), we are mul-
tiplying two polynomials together, so the result is a sum of powers of the
form

c0 + c1e
iω + c2(eiω)2 + ...+ c2N−2(eiω)2N−2, (31.3)
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for
cj = f0dj + f1dj−1 + ...+ fjd0.

This is non-periodic convolution again. In the next section, we consider
what happens when, instead of using arbitrary values of ω, we consider
only the N special values ωk = 2π

N k, k = 0, 1, ..., N − 1. Because of the
periodicity of the complex exponential function, we have

(eiωk)N+j = (eiωk)j ,

for each k. As a result, all the powers higher than N − 1 that showed
up in the previous multiplication in Equation (31.3) now become equal
to lower powers, and the product now only has N terms, instead of the
2N−1 terms we got previously. When we calculate the coefficients of these
powers, we find that we get more than we got when we did the non-periodic
convolution. Now what we get is called periodic convolution.

31.4 The Vector DFT and Periodic Convolution

As we just discussed, non-periodic convolution is another way of look-
ing at the multiplication of two polynomials. This relationship between
convolution on the one hand and multiplication on the other is a funda-
mental aspect of convolution. Whenever we have a convolution we should
ask what related mathematical objects are being multiplied. We ask this
question now with regard to periodic convolution; the answer turns out to
be the vector discrete Fourier transform (vDFT).

31.4.1 The Vector DFT

Let f = (f0, f1, ..., fN−1)T be a column vector whose entries are N
arbitrary complex numbers. For k = 0, 1, ..., N − 1, we let

Fk =

N−1∑
n=0

fne
2πikn/N = DFTf (ωk). (31.4)

Then we let F = (F0, F1, ..., FN−1)T be the column vector with the N com-
plex entries Fk. The vector F is called the vector discrete Fourier transform
of the vector f , and we denote it by F = vDFTf .

As we can see from Equation (31.4), there areN multiplications involved
in the calculation of each Fk, and there are N values of k, so it would seem
that, in order to calculate the vector DFT of f , we need N2 multiplications.
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In many applications, N is quite large and calculating the vector F using
the definition would be unrealistically time-consuming. The fast Fourier
transform algorithm (FFT), to be discussed later, gives a quick way to
calculate the vector F from the vector f . The FFT, usually credited to
Cooley and Tukey, was discovered in the mid-1960’s and revolutionized
signal and image processing.

31.4.2 Periodic Convolution

Given the N by 1 vectors f and d with complex entries fn and dn,
respectively, we define a third N by 1 vector f ∗ d, the periodic convolution
of f and d, to have the entries

(f ∗ d)n = f0dn + f1dn−1 + ...+ fnd0 + fn+1dN−1 + ...+ fN−1dn+1,(31.5)

for n = 0, 1, ..., N − 1.
Notice that the term on the right side of Equation (31.5) is the sum of

all products of entries, one from f and one from d, where the sum of their
respective indices is either n or n+N .

In the exercises that follow we investigate properties of the vector DFT
and relate it to periodic convolution. It is not an exaggeration to say that
these two exercises are the most important ones in signal processing.

Ex. 31.1 Let F = vDFTf and D = vDFTd. Define a third vector E
having for its kth entry Ek = FkDk, for k = 0, ..., N − 1. Show that E is
the vDFT of the vector f ∗ d.

The vector vDFTf can be obtained from the vector f by means of
matrix multiplication by a certain matrix G, called the DFT matrix. The
matrix G has an inverse that is easily computed and can be used to go
from F = vDFTf back to the original f . The details are in Exercise 31.2.

Ex. 31.2 Let G be the N by N matrix whose entries are Gjk =
ei(j−1)(k−1)2π/N . The matrix G is sometimes called the DFT matrix. Show
that the inverse of G is G−1 = 1

NG
†, where G† is the conjugate transpose

of the matrix G. Then f ∗ d = G−1E = 1
NG

†E.

As mentioned previously, non-periodic convolution is really a special
case of periodic convolution. Extend the M+1 by 1 vector a to an M+N+1
by 1 vector by appending N zero entries; similarly, extend the vector b to
an M + N + 1 by 1 vector by appending zeros. The vector c is now the
periodic convolution of these extended vectors. Therefore, since we have
an efficient algorithm for performing periodic convolution, namely the Fast
Fourier Transform algorithm (FFT), we have a fast way to do the periodic
(and thereby non-periodic) convolution and polynomial multiplication.
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31.5 The Fast Fourier Transform (FFT)

A fundamental problem in signal processing is to estimate the function
F (ω) from finitely many values of its (inverse) Fourier transform, f(x). As
we have seen, the DFT is one such estimate. The fast Fourier transform
(FFT), discovered in 1965 by Cooley and Tukey, is an important and effi-
cient algorithm for calculating the vector DFT [101]. John Tukey has been
quoted as saying that his main contribution to this discovery was the firm
and often voiced belief that such an algorithm must exist.

To illustrate the main idea underlying the FFT, consider the problem of
evaluating a real polynomial P (x) at a point, say x = c. Let the polynomial
be

P (x) = a0 + a1x+ a2x
2 + ...+ a2Kx

2K ,

where a2K might be zero. Performing the evaluation efficiently by Horner’s
method,

P (c) = (((a2Kc+ a2K−1)c+ a2K−2)c+ a2K−3)c+ ...,

requires 2K multiplications, so the complexity is on the order of the degree
of the polynomial being evaluated. But suppose we also want P (−c). We
can write

P (x) = (a0 + a2x
2 + ...+ a2Kx

2K) + x(a1 + a3x
2 + ...+ a2K−1x

2K−2)

or
P (x) = Q(x2) + xR(x2).

Therefore, we have P (c) = Q(c2) + cR(c2) and P (−c) = Q(c2) − cR(c2).
If we evaluate P (c) by evaluating Q(c2) and R(c2) separately, one more
multiplication gives us P (−c) as well. The FFT is based on repeated use of
this idea, which turns out to be more powerful when we are using complex
exponentials, because of their periodicity.

Say the data are {fn = f(n), n = 0, ..., N − 1}. The DFT estimate of
F (ω) is the function DFTf (ω), defined for ω in [0, 2π], and given by

DFTf (ω) =

N−1∑
n=0

f(n)einω.

The DFT estimateDFT (ω) is data consistent; its inverse Fourier-transform
value at x = n is f(n) for n = 0, ..., N − 1. The DFT is also used in a more
general context in which the fn are not necessarily values of a function
f(x).

Given any complexN -dimensional column vector f = (f0, f1, ..., fN−1)T ,
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define the DFT of the vector f to be the function DFTf (ω), defined for ω
in [0, 2π), given by

DFTf (ω) =

N−1∑
n=0

fne
inω.

Let F be the complex N -dimensional vector F = (F0, F1, ..., FN−1)T , where
Fk = DFTf (2πk/N), k = 0, 1, ..., N−1. So the vector F consists of N values
of the function DFTf , taken at N equispaced points 2π/N apart in [0, 2π).

From the formula for DFTf we have, for k = 0, 1, ..., N − 1,

Fk = F (2πk/N) =

N−1∑
n=0

fne
2πink/N . (31.6)

To calculate a single Fk requires N multiplications; it would seem that to
calculate all N of them would require N2 multiplications. However, using
the FFT algorithm, we can calculate vector F in approximately N log2(N)
multiplications.

Suppose that N = 2M is even. We can rewrite Equation (31.6) as
follows:

Fk =

M−1∑
m=0

f2me
2πi(2m)k/N +

M−1∑
m=0

f2m+1e
2πi(2m+1)k/N ,

or, equivalently,

Fk =

M−1∑
m=0

f2me
2πimk/M + e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M . (31.7)

Note that if 0 ≤ k ≤M − 1 then

Fk+M =

M−1∑
m=0

f2me
2πimk/M − e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M , (31.8)

so there is no additional computational cost in calculating the second half
of the entries of F, once we have calculated the first half. The FFT is the
algorithm that results when we take full advantage of the savings obtainable
by splitting a DFT calculating into two similar calculations of half the size.

We assume now that N = 2L. Notice that if we use Equations (31.7)
and (31.8) to calculate vector F, the problem reduces to the calculation of
two similar DFT evaluations, both involving half as many entries, followed
by one multiplication for each of the k between 0 and M − 1. We can split
these in half as well. The FFT algorithm involves repeated splitting of the
calculations of DFTs at each step into two similar DFTs, but with half the
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number of entries, followed by as many multiplications as there are entries
in either one of these smaller DFTs. We use recursion to calculate the cost
C(N) of computing F using this FFT method. From Equation (31.7) we
see that C(N) = 2C(N/2) + (N/2). Applying the same reasoning to get
C(N/2) = 2C(N/4) + (N/4), we obtain

C(N) = 2C(N/2) + (N/2) = 4C(N/4) + 2(N/2) = ...

= 2LC(N/2L) + L(N/2) = N + L(N/2).

Therefore, the cost required to calculate F is approximately N log2N .
From our earlier discussion of discrete linear filters and convolution, we

see that the FFT can be used to calculate the periodic convolution (or even
the nonperiodic convolution) of finite length vectors.

Finally, let’s return to the original context of estimating the Fourier
transform F (ω) of function f(x) from finitely many samples of f(x). If we
have N equispaced samples, we can use them to form the vector f and
perform the FFT algorithm to get vector F consisting of N values of the
DFT estimate of F (ω). It may happen that we wish to calculate more
than N values of the DFT estimate, perhaps to produce a smooth looking
graph. We can still use the FFT, but we must trick it into thinking we have
more data that the N samples we really have. We do this by zero-padding.
Instead of creating the N -dimensional vector f , we make a longer vector by
appending, say, J zeros to the data, to make a vector that has dimension
N + J . The DFT estimate is still the same function of ω, since we have
only included new zero coefficients as fake data; but, the FFT thinks we
have N + J data values, so it returns N + J values of the DFT, at N + J
equispaced values of ω in [0, 2π).
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FIGURE 31.1: John Tukey: co-inventor of the FFT.



Chapter 32

Appendix: Hermitian and Normal
Linear Operators

32.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
32.2 The Diagonalization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
32.3 Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
32.4 Proof of the Diagonalization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
32.5 Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
32.6 A Counter-Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
32.7 Simultaneous Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
32.8 Quadratic Forms and Congruent Operators . . . . . . . . . . . . . . . . . . . . . 403

32.8.1 Sesquilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
32.8.2 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
32.8.3 Congruent Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
32.8.4 Congruent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
32.8.5 Does φT Determine T? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
32.8.6 A New Sesquilinear Functional . . . . . . . . . . . . . . . . . . . . . . . . . . 406

32.1 Chapter Summary

We saw previously that if the finite-dimensional vector space V has
an orthonormal basis of eigenvectors of the linear operator T , then T is a
normal operator. We need to prove the converse: if T is normal, then V has
an orthonormal basis consisting of eigenvectors of T . Earlier, we proved this
result using matrix representations of linear operators and Schur’s Lemma.
Now we give a proof within the context of linear operators themselves.

32.2 The Diagonalization Theorem

In this chapter we present a proof of the following theorem.

399
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Theorem 32.1 For a linear operator T on a finite-dimensional complex
inner-product space V there is an orthonormal basis of eigenvectors if and
only if T is normal.

32.3 Invariant Subspaces

A subspace W of V is said to be T -invariant if Tw is in W whenever
w is in W . For any T -invariant subspace W , the restriction of T to W ,
denoted TW , is a linear operator on W .

For any subspace W , the orthogonal complement of W is the space
W⊥ = {v|〈w, v〉 = 0, for allw ∈W}.

Proposition 32.1 Let W be a T -invariant subspace of V . Then

• (a) if T is self-adjoint, so is TW ;

• (b) W⊥ is T ∗-invariant;

• (c) if W is both T - and T ∗-invariant, then (TW )∗ = (T ∗)W ;

• (d) if W is both T - and T ∗-invariant, and T is normal, then TW is
normal.

• (e) if T is normal and Tx = λx, then T ∗x = λx.

Ex. 32.1 Prove Proposition (32.1).

Proposition 32.2 If T is normal, Tu1 = λ1u
1, Tu2 = λ2u

2, and λ1 6= λ2,
then 〈u1, u2〉 = 0.

Ex. 32.2 Prove Proposition 32.2. Hint: use (e) of Proposition 32.1.

32.4 Proof of the Diagonalization Theorem

We turn now to the proof of the theorem.

Proof of Theorem 32.1 The proof is by induction on the dimension of the
inner-product space V . To begin with, let N = 1, so that V is simply the
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span of some unit vector x. Then any linear operator T on V has Tx = λx,
for some λ, and the set {x} is an orthonormal basis for V .

Now suppose that the theorem is true for every inner-product space
of dimension N − 1. We know that every linear operator T on V has at
least one eigenvector, say x1, since its characteristic polynomial has at
least one distinct root λ1 in C. Take x1 to be a unit vector. Let W be the
span of the vector x1, and W⊥ the orthogonal complement of W . Since
Tx1 = λ1x

1 and T is normal, we know that T ∗x1 = λ1x
1. Therefore, both

W and W⊥ are T - and T ∗-invariant. Therefore, TW⊥ is normal on W⊥.
By the induction hypothesis, we know that W⊥ has an orthonormal basis
consisting of N − 1 eigenvectors of TW⊥ , and, therefore, of T . Augmenting
this set with the original x1, we get an orthonormal basis for all of V .

32.5 Corollaries

The theorem has several important corollaries.

Corollary 32.1 A self-adjoint linear operator T on a finite-dimensional
complex inner-product space V has an orthonormal basis of eigenvectors.

Corollary 32.2 Let T be a linear operator on a finite-dimensional real
inner-product space V . Then V has an orthonormal basis consisting of
eigenvectors of T if and only if T is self-adjoint.

Corollary 32.3 Let A be a normal matrix. Then there is a unitary matrix
U and diagonal matrix L such that A = ULU†.

Proving the existence of the orthonormal basis uses essentially the same
argument as the induction proof given earlier. The eigenvalues of a self-
adjoint linear operator T on a finite-dimensional complex inner-product
space are real numbers. If T be a linear operator on a finite-dimensional real
inner-product space V and V has an orthonormal basis U = {u1, ..., uN}
consisting of eigenvectors of T , then we have

Tun = λnu
n = λnu

n = T ∗un,

so, since T = T ∗ on each member of the basis, these operators are the same
everywhere, so T = T ∗ and T is self-adjoint.

Definition 32.1 A linear operator P on a finite-dimensional inner-
product space is a perpendicular projection if

P 2 = P = P ∗.
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Corollary 32.4 (The Spectral Theorem) Let T be a normal operator
on a finite-dimensional inner-product space. Then T can be written as

T =

M∑
m=1

λmPm, (32.1)

where λm, m = 1, ...,M are the distinct eigenvalues of T , Pm is the per-
pendicular projection

Pm =
∑
n∈Im

un(un)†, (32.2)

and
Im = {n|λn = λm}.

Corollary 32.5 Let T be a normal operator on a finite-dimensional inner-
product space. Then there is a complex polynomial f(z) such that

T ∗ = f(T ).

Proof: Let f(z) be any polynomial such that f(λm) = λm, for each m =
1, ...,M . The assertion then follows, since

T ∗ =

M∑
m=1

λmPm,

and PmPk = 0, for m 6= k.

32.6 A Counter-Example

We present now an example of a real 2 by 2 matrix A with ATA = AAT ,
but with no eigenvectors in R2. Take 0 < θ < π and A to be the matrix

A =

[
cos θ − sin θ
sin θ cos θ

]
. (32.3)

This matrix represents rotation through an angle of θ in R2. Its transpose
represents rotation through the angle −θ. These operations obviously can
be done in either order, so the matrix A is normal. But there is no non-zero
vector in R2 that is an eigenvector. Clearly, A is not symmetric; but it is
skew-symmetric.



Appendix: Hermitian and Normal Linear Operators 403

32.7 Simultaneous Diagonalization

Any linear operator T on a finite-dimensional inner-product space can
be written as T = R + iS, where both R and S are Hermitian linear
operators; simply take R = 1

2 (T + T ∗) and S = 1
2i (T − T

∗).

Ex. 32.3 Show that T is a normal operator if and only if RS = SR.

Theorem 32.2 Let T and U be commuting normal linear operators on a
finite-dimensional inner-product space V . There there is an orthonormal
basis for V consisting of vectors that are simultaneously eigenvectors for T
and for U .

Proof: For each m let Wm be the range of the perpendicular projection
Pm in the spectral theorem expansion for T ; that is,

Wm = {x ∈ V |Tx = λmx}.

It is easy to see that, for each x in Wm, the vector Ux is in Wm; therefore,
the sets Wm are T - and U -invariant. It follows along the lines of our proof
of the spectral theorem that the restriction of U to each of the subspaces
Wm is a normal operator. Therefore, each Wm has an orthonormal basis
consisting of eigenvectors of U . Combining these bases for the Wm gives
the desired basis for V .

When T is normal, we have RS = SR, so there is an orthonormal basis
for V consisting of simultaneous eigenvectors for R and S. It follows that
these basis vectors are eigenvectors for T as well. This shows that the spec-
tral theorem for normal operators can be derived from the spectral theorem
for Hermitian operators, once we have the simultaneous-diagonalization
theorem for commuting Hermitian operators.

It can be shown that, for any family of commuting normal operators on
V , there is an orthonormal basis of simultaneous eigenvectors. The recent
article by Bouten, van Handel and James [25] describes the use of this
result in quantum filtering.

32.8 Quadratic Forms and Congruent Operators

If Q is a Hermitian positive-definite N by N matrix, then the function

φ(x, y) = y†Qx = 〈x, y〉Q
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is an inner product on CN , and the quadratic form

φ̂(x) = x†Qx = 〈x, x〉Q = ‖x‖2Q,

is the square of the Q-norm. If S is an arbitrary N by N matrix, then
the function φ̂(x) = x†Sx will not be a norm, generally, and φ(x, y) =
y†Sx will not be an inner product, unless S is Hermitian and positive-
definite. However, the function φ(x, y) = y†Sx will still possess some of the
properties of an inner product. Such functions are called sesquilinear forms
or sesquilinear functionals.

32.8.1 Sesquilinear Forms

Let V be any complex vector space. A sesquilinear functional φ(x, y) of
two variables in V is linear in the first variable and conjugate-linear in the
second; that is,

φ(x, α1y
1 + α2y

2) = α1φ(x, y1) + α2φ(x, y2);

the term sesquilinear means one and one-half linear. An inner product on
V is a special kind of sesquilinear functional.

32.8.2 Quadratic Forms

Any sesquilinear functional has an associated quadratic form given by

φ̂(x) = φ(x, x).

If P is any invertible linear operator on V , we can define a new quadratic
form by

φ̂P (x) = φ(Px, Px).

32.8.3 Congruent Linear Operators

Let T be a linear operator on an inner product space V . Then T can
be used to define a sesquilinear functional φT (x, y) according to

φT (x, y) = 〈Tx, y〉. (32.4)

For this sesquilinear functional φT (x, y), we have

(φ̂T )P (x) = φT (Px, Px) = 〈TPx, Px〉 = 〈P ∗TPx, x〉.

We say that a linear operator U on V is congruent to T if there is an
invertible linear operator P with U = P ∗TP .
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In order for the sesquilinear functional φT (x, y) = 〈Tx, y〉 to be an inner
product, it is necessary and sufficient that T be positive-definite; that is,
for all x in V ,

φT (x, x) = 〈Tx, x〉 ≥ 0,

with equality if and only if x = 0.

32.8.4 Congruent Matrices

Now let V = CN , with the usual basis and inner product. Linear oper-
ators T , U and P are identified with their corresponding matrix represen-
tations. We then say that the matrix B is congruent to matrix A if there
is an invertible matrix P for which B = P †AP .

32.8.5 Does φT Determine T?

Let T and U be linear operators on an inner product space V . Is it
possible for

〈Tx, x〉 = 〈Ux, x〉,

for all x in the inner product space V , and yet have T 6= U? As we shall
see, the answer is “No”. First, we answer a simpler question. Is it possible
for

〈Tx, y〉 = 〈Ux, y〉,

for all x and y, with T 6= U? The answer again is “No”.

Ex. 32.4 Show that
〈Tx, y〉 = 〈Ux, y〉,

for all x and y, implies that T = U .

We can use the result of the exercise to answer our first question, but first,
we need the polarization identity.

Ex. 32.5 Establish the polarization identity:

〈Tx, y〉 =
1

4
〈T (x+ y), x+ y〉 − 1

4
〈T (x− y), x− y〉

+
i

4
〈T (x+ iy), x+ iy〉 − i

4
〈T (x− iy), x− iy〉.

Ex. 32.6 Show that the answer to our first question is “No”; the quadratic
form determines the operator.
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32.8.6 A New Sesquilinear Functional

Given any sesquilinear functional φ(x, y) and two linear operators P
and Q on V , we can define a second sesquilinear functional

ψ(x, y) = φ(Px,Qy).

For the sesquilinear functional φT , we have

ψ(x, y) = φT (Px,Qy) = 〈TPx,Qy〉 = 〈Q∗TPx, y〉.
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33.1 Chapter Summary

Previously, we discussed self-adjoint linear operators on an inner prod-
uct space. An important application of this theory is the analysis of linear
ordinary differential equations in Sturm-Liouville form. Now the linear op-
erators involved are differential operators, the members of the inner product
space are twice differentiable functions of a single variable, and the inner
product is defined in terms of an integration. The eigenvectors of the dif-
ferential operators are eigenfunctions. The expansion of members of the
inner product space in terms of bases of eigenvectors becomes the famous
expansion of functions as sums of Bessel functions, Legendre polynomials
and so on.
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33.2 Second-Order Linear ODE

The most general form of the second-order linear homogeneous ordinary
differential equation with variable coefficients is

R(x)y′′(x) + P (x)y′(x) +Q(x)y(x) = 0. (33.1)

Many differential equations of this type arise when we employ the technique
of separating the variables to solve a partial differential equation.

33.2.1 The Standard Form

Of course, dividing through by the function R(x) and renaming the
coefficient functions, we can also write Equation (33.1) in the standard
form as

y′′(x) + P (x)y′(x) +Q(x)y(x) = 0. (33.2)

There are other equivalent forms of Equation (33.1).

33.2.2 The Sturm-Liouville Form

Let S(x) = exp(−F (x)), where F ′(x) = (R′(x)−P (x))/R(x). Then we
have

d

dx
(S(x)R(x)) = S(x)P (x).

From Equation (33.1) we obtain

S(x)R(x)y′′(x) + S(x)P (x)y′(x) + S(x)Q(x)y(x) = 0,

so that
d

dx
(S(x)R(x)y′(x)) + S(x)Q(x)y(x) = 0,

which then has the form

d

dx
(p(x)y′(x))− w(x)q(x)y(x) + λw(x)y(x) = 0, (33.3)

where w(x) > 0 and λ is a constant. Rewriting Equation (33.3) as

− 1

w(x)

( d
dx

(p(x)y′(x))
)

+ q(x)y(x) = λy(x), (33.4)

suggests an analogy with the linear algebra eigenvalue problem

Ax = λx, (33.5)
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where A is a square matrix, λ is an eigenvalue of A, and x 6= 0 is an
associated eigenvector. It also suggests that we study the linear differential
operator

(Ly)(x) = − 1

w(x)

( d
dx

(p(x)y′(x))
)

+ q(x)y(x) (33.6)

to see if we can carry the analogy with linear algebra further.

33.3 Inner Products and Self-Adjoint Differential Op-
erators

For the moment, let V0 be the vector space of complex-valued integrable
functions f(x), defined for a ≤ x ≤ b, for which∫ b

a

|f(x)|2dx <∞.

For any f and g in V0 the inner product of f and g is then

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

The linear differential operator

Ty = y′′

is defined for the subspace V1 of functions y(x) in V0 that are twice con-
tinuously differentiable. Now let V be the subspace of V1 consisting of all
y(x) with y(a) = y(b) = 0.

Proposition 33.1 The operator Ty = y′′ is self-adjoint on V .

Proof: We need to show that

〈Ty, z〉 =

∫ b

a

y′′(x)z(x)dx =

∫ b

a

y(x)z′′(x)dx = 〈y, Tz〉,

for all y(x) and z(x) in V . This follows immediately from two applications
of integration by parts and the restrictions y(a) = z(a) = y(b) = z(b) = 0.

It is useful to note that

〈Ty, y〉 = −
∫ b

a

|y′(x)|2dx ≤ 0,
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for all y(x) in V , which prompts us to say that the differential operator
(−T )y = −y′′ is non-negative definite. We then expect all eigenvalues of
−T to be non-negative. We know, in particular, that solutions of

−y′′(x) = λy(x),

with y(0) = y(1) = 0 are ym(x) = sin(mπx), and the eigenvalues are
λm = m2π2.

We turn now to the differential operator L given by Equation (33.6).
We take V0 to be all complex-valued integrable functions f(x) with∫ b

a

|f(x)|2w(x)dx <∞.

We let the inner product of any f(x) and g(x) in V0 be

〈f, g〉 =

∫ b

a

f(x)g(x)w(x)dx. (33.7)

Let V1 be all functions in V0 that are twice continuously differentiable, and
V all the functions y(x) in V1 with y(a) = y(b) = 0. We then have the
following result.

Theorem 33.1 The operator L given by Equation (33.6) is self-adjoint on
the inner product space V .

Proof: It is easily seen that

(Ly)z − y(Lz) =
1

w(x)

d

dx
(pyz′ − py′z).

Therefore, ∫ b

a

(
(Ly)z − y(Lz)

)
w(x)dx = (pyz′ − py′z)|ba = 0.

Therefore, L∗ = L on V .

It is interesting to note that

〈Ly, y〉 =

∫ b

a

p(y′)2dx+

∫ b

a

qy2dx,

so that, if we have p(x) ≥ 0 and q(x) ≥ 0, then the operator L is non-
negative-definite and we expect all its eigenvalues to be non-negative.
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33.4 Orthogonality

Once again, let V be the space of all twice continuously differentiable
functions y(x) on [a, b] with y(a) = y(b) = 0. Let λm and λn be distinct
eigenvalues of the linear differential operator L given by Equation (33.6),
with associated eigenfunctions um(x) and un(x), respectively. Let the inner
product on V be given by Equation (33.7).

Theorem 33.2 The eigenfunctions um(x) and un(x) are orthogonal.

Proof: We have

d

dx
(p(x)u′m(x))− w(x)q(x)um(x) = −λmum(x)w(x),

and
d

dx
(p(x)u′n(x))− w(x)q(x)un(x) = −λmun(x)w(x),

so that

un(x)
d

dx
(p(x)u′m(x))− w(x)q(x)um(x)un(x) = −λmum(x)un(x)w(x)

and

um(x)
d

dx
(p(x)u′n(x))− w(x)q(x)um(x)un(x) = −λnum(x)un(x)w(x).

Subtracting one equation from the other, we get

un(x)
d

dx
(p(x)u′m(x))−um(x)

d

dx
(p(x)u′n(x)) = (λn−λm)um(x)un(x)w(x).

The left side of the previous equation can be written as

un(x)
d

dx
(p(x)u′m(x))− um(x)

d

dx
(p(x)u′n(x))

=
d

dx

(
p(x)un(x)u′m(x)− p(x)um(x)u′n(x)

)
.

Therefore,

(λn − λm)

∫ b

a

um(x)un(x)w(x)dx =

(
p(x)un(x)u′m(x)− p(x)um(x)u′n(x)

)
|ba = 0. (33.8)



412 Applied and Computational Linear Algebra: A First Course

Since λm 6= λn, it follows that∫ b

a

um(x)un(x)w(x)dx = 0.

Note that it is not necessary to have um(a) = um(b) = 0 for all m in
order for the right side of Equation (33.8) to be zero; it is enough to have

p(a)um(a) = p(b)um(b) = 0.

We shall make use of this fact in our discussion of Bessel’s and Legendre’s
equations.

33.5 Normal Form of Sturm-Liouville Equations

We can put an equation in the Sturm-Liouville form into normal form
by first writing it in standard form. There is a better way, though. With
the change of variable from x to µ, where

µ(x) =

∫ x

a

1

p(t)
dt,

and
µ′(x) = 1/p(x),

we can show that
dy

dx
=

1

p(x)

dy

dµ

and
d2y

dx2
=

1

p2

d2y

dµ2
− p′(x)

p(x)

dy

dµ
.

It follows that

d2y

dµ2
+ q1(µ)y = 0. (33.9)

For that reason, we study equations of the form

y′′ + q(x)y = 0. (33.10)
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33.6 Examples

In this section we present several examples. We shall study these in
more detail later in these notes.

33.6.1 Wave Equations

Separating the variables to solve wave equations leads to important
ordinary differential equations.

33.6.1.1 The Homogeneous Vibrating String

The wave equation for the homogeneous vibrating string is

T
∂2u

∂x2
= m

∂2u

∂t2
, (33.11)

where T is the constant tension and m the constant mass density. Separat-
ing the variables leads to the differential equation

−y′′(x) = λy(x). (33.12)

33.6.1.2 The Non-homogeneous Vibrating String

When the mass density m(x) varies with x, the resulting wave equation
becomes

T
∂2u

∂x2
= m(x)

∂2u

∂t2
. (33.13)

Separating the variables leads to the differential equation

− T

m(x)
y′′(x) = λy(x). (33.14)

33.6.1.3 The Vibrating Hanging Chain

In the hanging chain problem, considered in more detail later, the ten-
sion is not constant along the chain, since at each point it depends on the
weight of the part of the chain below. The wave equation becomes

∂2u

∂t2
= g

∂

∂x

(
x
∂u

∂x

)
. (33.15)

Separating the variables leads to the differential equation

−g d
dx

(
x
dy

dx

)
= λy(x). (33.16)
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Note that all three of these differential equations have the form

Ly = λy,

for L given by Equation (33.6).
If we make the change of variable

z = 2

√
λx

g
,

the differential equation in (33.16) becomes

z2 d
2y

dz2
+ z

dy

dz
+ (z2 − 02)y = 0. (33.17)

As we shall see shortly, this is a special case of Bessel’s Equation, with
ν = 0.

33.6.2 Bessel’s Equations

For each non-negative constant ν the associated Bessel’s Equation is

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0. (33.18)

Note that the differential equation in Equation (33.16) has the form
Ly = λy, but Equation (33.17) was obtained by a change of variable that
absorbed the λ into the z, so we do not expect this form of the equation
to be in eigenvalue form. However, we can rewrite Equation (33.18) as

− 1

x

d

dx

(
xy′(x)

)
+
ν2

x2
y(x) = y(x), (33.19)

which is in the form of a Sturm-Liouville eigenvalue problem, with w(x) =

x = p(x), q(x) = ν2

x2 , and λ = 1. As we shall discuss again in the chapter
on Bessel’s Equations, we can use this fact to obtain a family of orthogonal
eigenfunctions.

Let us fix ν and denote by Jν(x) a solution of Equation (33.18). Then
Jν(x) solves the eigenvalue problem in Equation (33.19), for λ = 1. A little
calculation shows that for any a the function u(x) = Jν(ax) satisfies the
eigenvalue problem

− 1

x

d

dx

(
xy′(x)

)
+
ν2

x2
y(x) = a2y(x). (33.20)

Let γm > 0 be the positive roots of Jν(x) and define ym(x) = Jν(γmx) for
each m. Then we have

− 1

x

d

dx

(
xy′m(x)

)
+
ν2

x2
ym(x) = γ2

mym(x), (33.21)

and ym(1) = 0 for each m. We have the following result.
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Theorem 33.3 Let γm and γn be distinct positive zeros of Jν(x). Then∫ 1

0

ym(x)yn(x)xdx = 0.

Proof: The proof is quite similar to the proof of Theorem 33.2. The main
point is that now (

xyn(x)y′m(x)− xym(x)y′n(x)
)
|10 = 0

because ym(1) = 0 for all m and the function w(x) = x is zero when x = 0.

33.6.3 Legendre’s Equations

Legendre’s equations have the form

(1− x2)y′′(x)− 2xy′(x) + p(p+ 1)y(x) = 0, (33.22)

where p is a constant. When p = n is a non-negative integer, there is a
solution Pn(x) that is a polynomial of degree n, containing only even or
odd powers, as n is either even or odd; Pn(x) is called the nth Legendre
polynomial. Since the differential equation in (33.22) can be written as

− d

dx

(
(1− x2)y′(x)

)
= p(p+ 1)y(x), (33.23)

it is a Sturm-Liouville eigenvalue problem with w(x) = 1, p(x) = (1− x2)
and q(x) = 0. The polynomials Pn(x) are eigenfunctions of the Legendre
differential operator T given by

(Ty)(x) = − d

dx

(
(1− x2)y′(x)

)
, (33.24)

but we have not imposed any explicit boundary conditions. Nevertheless,
we have the following orthogonality theorem.

Theorem 33.4 For m 6= n we have∫ 1

−1

Pm(x)Pn(x)dx = 0.

Proof: In this case, Equation (33.8) becomes

(λn − λm)

∫ 1

−1

Pm(x)Pn(x)dx =

(
(1− x2)[Pn(x)P ′m(x)− Pm(x)P ′n(x)]

)
|1−1 = 0, (33.25)

which holds not because we have imposed end-point conditions on the
Pn(x), but because p(x) = 1− x2 is zero at both ends.
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33.6.4 Other Famous Examples

Well known examples of Sturm-Liouville problems also include

• Chebyshev:

d

dx

(√
1− x2

dy

dx

)
+ λ(1− x2)−1/2y = 0;

• Hermite:
d

dx

(
e−x

2 dy

dx

)
+ λe−x

2

y = 0;

and

• Laguerre:
d

dx

(
xe−x

dy

dx

)
+ λe−xy = 0.

Ex. 33.1 For each of the three differential equations just listed, see if you
can determine the interval over which their eigenfunctions will be orthogo-
nal.

In the next appendix we consider Hermite’s Equation and its connection
to quantum mechanics.
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34.1 The Schrödinger Wave Function

In quantum mechanics, the behavior of a particle with mass m subject
to a potential V (x, t) satisfies the Schrödinger Equation

i~
∂ψ(x, t)

∂t
= − ~

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t), (34.1)

where ~ is Planck’s constant. Here the x is one-dimensional, but extensions
to higher dimensions are also possible.

When the solution ψ(x, t) is selected so that

|ψ(x, t)| → 0,

as |x| → ∞, and ∫ ∞
−∞
|ψ(x, t)|2dx = 1,

then, for each fixed t, the function |ψ(x, t)|2 is a probability density function
governing the position of the particle. In other words, the probability of
finding the particle in the interval [a, b] at time t is∫ b

a

|ψ(x, t)|2dx.

An important special case is that of time-independent potentials.

417
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34.2 Time-Independent Potentials

We say that V (x, t) is time-independent if V (x, t) = V (x), for all t. We
then attempt to solve Equation (34.1) by separating the variables; we take
ψ(x, t) = f(t)g(x) and insert this product into Equation (34.1).

The time function is easily shown to be

f(t) = e−Et/~,

where E is defined to be the energy. The function g(x) satisfies the time-
independent Schrödinger Equation

− ~
2m

g′′(x) + V (x)g(x) = Eg(x). (34.2)

An important special case is the harmonic oscillator.

34.3 The Harmonic Oscillator

The case of the harmonic oscillator corresponds to the potential V (x) =
1
2kx

2.

34.3.1 The Classical Spring Problem

To motivate the development of the harmonic oscillator in quantum me-
chanics, it is helpful to recall the classical spring problem. In this problem
a mass m slides back and forth along a frictionless surface, with position
x(t) at time t. It is connected to a fixed structure by a spring with spring
constant k > 0. The restoring force acting on the mass at any time is −kx,
with x = 0 the equilibrium position of the mass. The equation of motion is

mx′′(t) = −kx(t),

and the solution is

x(t) = x(0) cos

√
k

m
t.

The period of oscillation is T = 2π
√

m
k and the frequency of oscillation is

ν = 1
T = 1

2π

√
k
m , from which we obtain the equation

k = 4π2mν2.
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The potential energy is 1
2kx

2, while the kinetic energy is 1
2mẋ

2. The sum of
the kinetic and potential energies is the total energy, E(t). Since E′(t) = 0,
the energy is constant.

34.3.2 Back to the Harmonic Oscillator

When the potential function is V (x) = 1
2kx

2, Equation (34.2) becomes

~
2m

g′′(x) + (E − 1

2
kx2)g(x) = 0, (34.3)

where k = mω2, for ω = 2πν. With u =
√

mω
~ and ε = 2E

~ω , we have

d2g

du2
+ (ε− u2)g = 0. (34.4)

Equation (34.4) is equivalent to

w′′(x) + (2p+ 1− x2)w(x) = 0,

which can be transformed into Hermite’s Equation

y′′ − 2xy′ + 2py = 0,

by writing y(x) = w(x)ex
2/2.

In order for the solutions of Equation (34.3) to be physically admissible
solutions, it is necessary that p be a non-negative integer, which means that

E = ~ω(n+
1

2
),

for some non-negative integer n; this gives the quantized energy levels for
the harmonic oscillator.

34.4 Dirac’s Equation

Einstein’s theory of special relativity tells us that there are four vari-
ables, not just three, that have length for their units of measurement: the
familiar three-dimensional spatial coordinates, and ct, where c is the speed
of light and t is time. Looked at this way, Schrödinger’s Equation (34.1),
extended to three spatial dimensions, is peculiar, in that it treats the vari-
able ct differently from the others. There is only a first partial derivative in
t, but second partial derivatives in the other variables. In 1930 the British
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mathematician Paul Dirac presented his relativistically correct version of
Schrödinger’s Equation.

Dirac’s Equation, a version of which is inscribed on the wall of West-
minster Abbey, is the following:

i~
∂ψ

∂t
=

~c
i

(
α1

∂ψ

∂x1
+ α2

∂ψ

∂x2
+ α3

∂ψ

∂x3

)
+ α4mc

2ψ. (34.5)

Here the αi are the Dirac matrices.
This equation agreed remarkably well with experimental data on the

behavior of electrons in electric and magnetic fields, but it also seemed to
allow for nonsensical solutions, such as spinning electrons with negative
energy. The next year, Dirac realized that what the equation was calling
for was anti-matter, a particle with the same mass as the electron, but with
a positive charge. In the summer of 1932 Carl Anderson, working at Cal
Tech, presented clear evidence for the existence of such a particle, which
we now call the positron. What seemed like the height of science fiction in
1930 has become commonplace today.

When a positron collides with an electron their masses vanish and two
gamma ray photons of pure energy are produced. These photons then move
off in opposite directions. In positron emission tomography (PET) certain
positron-emitting chemicals, such as glucose with radioactive fluorine chem-
ically attached, are injected into the patient. When the PET scanner detects
two photons arriving at the two ends of a line segment at (almost) the same
time, called coincidence detection, it concludes that a positron was emitted
somewhere along that line. This is repeated thousands of times. Once all
this data has been collected, the mathematicians take over and use these
clues to reconstruct an image of where the glucose is in the body. It is this
image that the doctor sees.
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35.1 Chapter Summary

In most signal- and image-processing applications the measured data
includes (or may include) a signal component we want and unwanted com-
ponents called noise. Estimation involves determining the precise nature
and strength of the signal component; deciding if that strength is zero or
not is detection.

Noise often appears as an additive term, which we then try to remove.
If we knew precisely the noisy part added to each data value we would
simply subtract it; of course, we never have such information. How then do
we remove something when we don’t know what it is? Statistics provides a
way out.

The basic idea in statistics is to use procedures that perform well on
average, when applied to a class of problems. The procedures are built
using properties of that class, usually involving probabilistic notions, and
are evaluated by examining how they would have performed had they been
applied to every problem in the class. To use such methods to remove
additive noise, we need a description of the class of noises we expect to
encounter, not specific values of the noise component in any one particular
instance. We also need some idea about what signal components look like.
In this chapter we discuss solving this noise removal problem using the best

421
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linear unbiased estimation (BLUE). We begin with the simplest case and
then proceed to discuss increasingly complex scenarios.

An important application of the BLUE is in Kalman filtering. The con-
nection between the BLUE and Kalman filtering is best understood by
considering the case of the BLUE with a prior estimate of the signal com-
ponent, and mastering the various matrix manipulations that are involved
in this problem. These calculations then carry over, almost unchanged, to
the Kalman filtering.

Kalman filtering is usually presented in the context of estimating a
sequence of vectors evolving in time. Kalman filtering for image processing
is derived by analogy with the temporal case, with certain parts of the
image considered to be in the “past” of a fixed pixel.

35.2 The Simplest Case

Suppose our data is zj = c+ vj , for j = 1, ..., J , where c is an unknown
constant to be estimated and the vj are additive noise. We assume that
E(vj) = 0, E(vjvk) = 0 for j 6= k, and E(|vj |2) = σ2

j . So, the additive
noises are assumed to have mean zero and to be independent (or at least
uncorrelated). In order to estimate c, we adopt the following rules:

• 1. The estimate ĉ is linear in the data z = (z1, ..., zJ)T ; that is,
ĉ = k†z, for some vector k = (k1, ..., kJ)T .

• 2. The estimate is unbiased; E(ĉ) = c. This means
∑J
j=1 kj = 1.

• 3. The estimate is best in the sense that it minimizes the expected
error squared; that is, E(|ĉ− c|2) is minimized.

Ex. 35.1 Show that the resulting vector k is

ki = σ−2
i /(

J∑
j=1

σ−2
j ),

and the BLUE estimator of c is then

ĉ =

J∑
i=1

ziσ
−2
i /(

J∑
j=1

σ−2
j ).

Ex. 35.2 Suppose we have data z1 = c+v1 and z2 = c+v2 and we want to
estimate the constant c. Assume that E(v1) = E(v2) = 0 and E(v1v2) = ρ,
with 0 < |ρ| < 1. Find the BLUE estimate of c.
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Ex. 35.3 The concentration of a substance in solution decreases exponen-
tially during an experiment. Noisy measurements of the concentration are
made at times t1 and t2, giving the data

zi = x0e
−ti + vi, i = 1, 2,

where the vi have mean zero, and are uncorrelated. Find the BLUE for the
initial concentration x0.

35.3 A More General Case

Suppose now that our data vector is z = Hx+v. Here, x is an unknown
vector whose value is to be estimated, the random vector v is additive
noise whose mean is E(v) = 0 and whose known covariance matrix is
Q = E(vv†), not necessarily diagonal, and the known matrix H is J by
N , with J > N . Now we seek an estimate of the vector x. We now use the
following rules:

• 1. The estimate x̂ must have the form x̂ = K†z, where the matrix K
is to be determined.

• 2. The estimate is unbiased; that is, E(x̂) = x.

• 3. The K is determined as the minimizer of the expected squared
error; that is, once again we minimize E(|x̂− x|2).

Ex. 35.4 Show that for the estimator to be unbiased we need K†H = I,
the identity matrix.

Ex. 35.5 Show that

E(|x̂− x|2) = traceK†QK.

Hints: Write the left side as

E(trace ((x̂− x)(x̂− x)†)).

Also use the fact that the trace and expected-value operations commute.



424 Applied and Computational Linear Algebra: A First Course

The problem then is to minimize trace K†QK subject to the constraint
equation K†H = I. We solve this problem using a technique known as
prewhitening.

Since the noise covariance matrix Q is Hermitian and nonnegative def-
inite, we have Q = UDU†, where the columns of U are the (mutually
orthogonal) eigenvectors of Q and D is a diagonal matrix whose diago-
nal entries are the (necessarily nonnegative) eigenvalues of Q; therefore,
U†U = I. We call C = UD1/2U† the Hermitian square root of Q, since
C† = C and C2 = Q. We assume that Q is invertible, so that C is also.
Given the system of equations

z = Hx + v,

as before, we obtain a new system

y = Gx + w

by multiplying both sides by C−1 = Q−1/2; here, G = C−1H and w =
C−1v. The new noise correlation matrix is

E(ww†) = C−1QC−1 = I,

so the new noise is white. For this reason the step of multiplying by C−1

is called prewhitening.
With J = CK and M = C−1H, we have

K†QK = J†J

and
K†H = J†M.

Our problem then is to minimize trace J†J , subject to J†M = I. Recall
that the trace of the matrix A†A is simply the square of the 2-norm of the
vectorization of A.

Our solution method is to transform the original problem into a simpler
problem, where the answer is obvious.

First, for any given matrices L and M such that J and ML have the
same dimensions, the minimum value of

f(J) = trace[(J† − L†M†)(J −ML)]

is zero and occurs when J = ML.
Now let L = L† = (M†M)−1. The solution is again J = ML, but now

this choice for J has the additional property that J†M = I. So, minimizing
f(J) is equivalent to minimizing f(J) subject to the constraint J†M = I
and both problems have the solution J = ML.
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Now using J†M = I, we expand f(J) to get

f(J) = trace[J†J − J†ML− L†M†J + L†M†ML]

= trace[J†J − L− L† + L†M†ML].

The only term here that involves the unknown matrix J is the first one.
Therefore, minimizing f(J) subject to J†M = I is equivalent to minimizing
trace J†J subject to J†M = I, which is our original problem. Therefore,
the optimal choice for J is J = ML. Consequently, the optimal choice for
K is

K = Q−1HL = Q−1H(H†Q−1H)−1,

and the BLUE estimate of x is

xBLUE = x̂ = K†z = (H†Q−1H)−1H†Q−1z.

The simplest case can be obtained from this more general formula by taking
N = 1, H = (1, 1, ..., 1)T and x = c.

Note that if the noise is white, that is, Q = σ2I, then x̂ = (H†H)−1H†z,
which is the least-squares solution of the equation z = Hx. The effect of
requiring that the estimate be unbiased is that, in this case, we simply
ignore the presence of the noise and calculate the least squares solution of
the noise-free equation z = Hx.

The BLUE estimator involves nested inversion, making it difficult to
calculate, especially for large matrices. In the exercise that follows, we
discover an approximation of the BLUE that is easier to calculate.

Ex. 35.6 Show that for ε > 0 we have

(H†Q−1H + εI)−1H†Q−1 = H†(HH† + εQ)−1. (35.1)

Hint: Use the identity

H†Q−1(HH† + εQ) = (H†Q−1H + εI)H†.

It follows from Equation (35.1) that

xBLUE = lim
ε→0

H†(HH† + εQ)−1z. (35.2)

Therefore, we can get an approximation of the BLUE estimate by selecting
ε > 0 near zero, solving the system of linear equations

(HH† + εQ)a = z

for a and taking x = H†a.
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35.4 Some Useful Matrix Identities

In the exercise that follows we consider several matrix identities that
are useful in developing the Kalman filter.

Ex. 35.7 Establish the following identities, assuming that all the products
and inverses involved are defined:

CDA−1B(C−1 −DA−1B)−1 = (C−1 −DA−1B)−1 − C; (35.3)

(A−BCD)−1 = A−1 +A−1B(C−1 −DA−1B)−1DA−1; (35.4)

A−1B(C−1 −DA−1B)−1 = (A−BCD)−1BC; (35.5)

(A−BCD)−1 = (I +GD)A−1, (35.6)

for
G = A−1B(C−1 −DA−1B)−1.

Hints: To get Equation (35.3) use

C(C−1 −DA−1B) = I − CDA−1B.

For the second identity, multiply both sides of Equation (35.4) on the left
by A−BCD and at the appropriate step use Equation (35.3). For Equation
(35.5) show that

BC(C−1 −DA−1B) = B −BCDA−1B = (A−BCD)A−1B.

For Equation (35.6), substitute what G is and use Equation (35.4).

35.5 The BLUE with a Prior Estimate

In Kalman filtering we have the situation in which we want to estimate
an unknown vector x given measurements z = Hx + v, but also given a
prior estimate y of x. It is the case there that E(y) = E(x), so we write
y = x + w, with w independent of both x and v and E(w) = 0. The
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covariance matrix for w we denote by E(ww†) = R. We now require that
the estimate x̂ be linear in both z and y; that is, the estimate has the form

x̂ = C†z +D†y,

for matrices C and D to be determined.
The approach is to apply the BLUE to the combined system of linear

equations
z = Hx + v and

y = x + w.

In matrix language this combined system becomes u = Jx + n, with uT =
[zT yT ], JT = [HT IT ], and nT = [vT wT ]. The noise covariance matrix
becomes

P =

[
Q 0
0 R

]
.

The BLUE estimate is K†u, with K†J = I. Minimizing the variance, we
find that the optimal K† is

K† = (J†P−1J)−1J†P−1.

The optimal estimate is then

x̂ = (H†Q−1H +R−1)−1(H†Q−1z +R−1y).

Therefore,
C† = (H†Q−1H +R−1)−1H†Q−1

and
D† = (H†Q−1H +R−1)−1R−1.

Using the matrix identities in Equations (35.4) and (35.5) we can rewrite
this estimate in the more useful form

x̂ = y +G(z−Hy),

for

G = RH†(Q+HRH†)−1. (35.7)

The covariance matrix of the optimal estimator is K†PK, which can be
written as

K†PK = (R−1 +H†Q−1H)−1 = (I −GH)R.

In the context of the Kalman filter, R is the covariance of the prior estimate
of the current state, G is the Kalman gain matrix, and K†PK is the pos-
terior covariance of the current state. The algorithm proceeds recursively
from one state to the next in time.
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35.6 Adaptive BLUE

We have assumed so far that we know the covariance matrix Q corre-
sponding to the measurement noise. If we do not, then we may attempt
to estimate Q from the measurements themselves; such methods are called
noise-adaptive. To illustrate, let the innovations vector be e = z − Hy.
Then the covariance matrix of e is S = HRH† + Q. Having obtained an
estimate Ŝ of S from the data, we use Ŝ−HRH† in place of Q in Equation
(35.7).

35.7 The Kalman Filter

So far in this chapter we have focused on the filtering problem: given the
data vector z, estimate x, assuming that z consists of noisy measurements
of Hx; that is, z = Hx + v. An important extension of this problem is
that of stochastic prediction. Shortly, we discuss the Kalman-filter method
for solving this more general problem. One area in which prediction plays
an important role is the tracking of moving targets, such as ballistic mis-
siles, using radar. The range to the target, its angle of elevation, and its
azimuthal angle are all functions of time governed by linear differential
equations. The state vector of the system at time t might then be a vector
with nine components, the three functions just mentioned, along with their
first and second derivatives. In theory, if we knew the initial state perfectly
and our differential equations model of the physics was perfect, that would
be enough to determine the future states. In practice neither of these is
true, and we need to assist the differential equation by taking radar mea-
surements of the state at various times. The problem then is to estimate
the state at time t using both the measurements taken prior to time t and
the estimate based on the physics.

When such tracking is performed digitally, the functions of time are re-
placed by discrete sequences. Let the state vector at time k∆t be denoted
by xk, for k an integer and ∆t > 0. Then, with the derivatives in the dif-
ferential equation approximated by divided differences, the physical model
for the evolution of the system in time becomes

xk = Ak−1xk−1 + mk−1.

The matrix Ak−1, which we assume is known, is obtained from the differen-
tial equation, which may have nonconstant coefficients, as well as from the
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divided difference approximations to the derivatives. The random vector
sequence mk−1 represents the error in the physical model due to the dis-
cretization and necessary simplification inherent in the original differential
equation itself. We assume that the expected value of mk is zero for each
k. The covariance matrix is E(mkm

†
k) = Mk.

At time k∆t we have the measurements

zk = Hkxk + vk,

where Hk is a known matrix describing the nature of the linear measure-
ments of the state vector and the random vector vk is the noise in these
measurements. We assume that the mean value of vk is zero for each k.
The covariance matrix is E(vkv

†
k) = Qk. We assume that the initial state

vector x0 is arbitrary.
Given an unbiased estimate x̂k−1 of the state vector xk−1, our prior

estimate of xk based solely on the physics is

yk = Ak−1x̂k−1.

Ex. 35.8 Show that E(yk − xk) = 0, so the prior estimate of xk is unbi-
ased. We can then write yk = xk + wk, with E(wk) = 0.

35.8 Kalman Filtering and the BLUE

The Kalman filter [178, 143, 93] is a recursive algorithm to estimate the
state vector xk at time k∆t as a linear combination of the vectors zk and
yk. The estimate x̂k will have the form

x̂k = C†kzk +D†kyk, (35.8)

for matrices Ck and Dk to be determined. As we shall see, this estimate
can also be written as

x̂k = yk +Gk(zk −Hkyk), (35.9)

which shows that the estimate involves a prior prediction step, the yk,
followed by a correction step, in which Hkyk is compared to the measured
data vector zk; such estimation methods are sometimes called predictor-
corrector methods.

In our discussion of the BLUE, we saw how to incorporate a prior
estimate of the vector to be estimated. The trick was to form a larger
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matrix equation and then to apply the BLUE to that system. The Kalman
filter does just that.

The correction step in the Kalman filter uses the BLUE to solve the
combined linear system

zk = Hkxk + vk

and
yk = xk + wk.

The covariance matrix of x̂k−1 − xk−1 is denoted by Pk−1, and we let
Qk = E(wkw

†
k). The covariance matrix of yk − xk is

cov(yk − xk) = Rk = Mk−1 +Ak−1Pk−1A
†
k−1.

It follows from our earlier discussion of the BLUE that the estimate of xk
is

x̂k = yk +Gk(zk −Hyk),

with
Gk = RkH

†
k(Qk +HkRkH

†
k)−1.

Then, the covariance matrix of x̂k − xk is

Pk = (I −GkHk)Rk.

The recursive procedure is to go from Pk−1 and Mk−1 to Rk, then to Gk,
from which x̂k is formed, and finally to Pk, which, along with the known
matrix Mk, provides the input to the next step. The time-consuming part
of this recursive algorithm is the matrix inversion in the calculation of Gk.
Simpler versions of the algorithm are based on the assumption that the
matrices Qk are diagonal, or on the convergence of the matrices Gk to a
limiting matrix G [93].

There are many variants of the Kalman filter, corresponding to varia-
tions in the physical model, as well as in the statistical assumptions. The
differential equation may be nonlinear, so that the matrices Ak depend on
xk. The system noise sequence {wk} and the measurement noise sequence
{vk} may be correlated. For computational convenience the various func-
tions that describe the state may be treated separately. The model may
include known external inputs to drive the differential system, as in the
tracking of spacecraft capable of firing booster rockets. Finally, the noise
covariance matrices may not be known a priori and adaptive filtering may
be needed. We discuss this last issue briefly in the next section.
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35.9 Adaptive Kalman Filtering

As in [93] we consider only the case in which the covariance matrix
Qk of the measurement noise vk is unknown. As we saw in the discussion
of adaptive BLUE, the covariance matrix of the innovations vector ek =
zk −Hkyk is

Sk = HkRkH
†
k +Qk.

Once we have an estimate for Sk, we estimate Qk using

Q̂k = Ŝk −HkRkH
†
k.

We might assume that Sk is independent of k and estimate Sk = S using
past and present innovations; for example, we could use

Ŝ =
1

k − 1

k∑
j=1

(zj −Hjyj)(zj −Hjyj)
†.
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36.1 Chapter Summary

The notation associated with matrix and vector algebra is designed to
reduce the number of things we have to think about as we perform our
calculations. This notation can be extended to multi-variable calculus, as
we show in this chapter.

36.2 Functions of Vectors and Matrices

As we saw in the previous chapter, the least squares approximate so-
lution of Ax = b is a vector x̂ that minimizes the function ||Ax − b||.
In our discussion of band-limited extrapolation we showed that, for any
nonnegative definite matrix Q, the vector having norm one that maximizes
the quadratic form x†Qx is an eigenvector of Q associated with the largest
eigenvalue. In the chapter on best linear unbiased optimization we seek
a matrix that minimizes a certain function. All of these examples involve
what we can call matrix-vector differentiation, that is, the differentiation of
a function with respect to a matrix or a vector. The gradient of a function
of several variables is a well-known example and we begin there. Since there
is some possibility of confusion, we adopt the notational convention that
boldfaced symbols, such as x, indicate a column vector, while x denotes a
scalar.
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36.3 Differentiation with Respect to a Vector

Let x = (x1, ..., xN )T be an N -dimensional real column vector. Let
z = f(x) be a real-valued function of the entries of x. The derivative of z
with respect to x, also called the gradient of z, is the column vector

∂z

∂x
= a = (a1, ..., aN )T

with entries

an =
∂z

∂xn
.

Ex. 36.1 Let y be a fixed real column vector and z = f(x) = yTx. Show
that

∂z

∂x
= y.

Ex. 36.2 Let Q be a real symmetric nonnegative definite matrix, and let
z = f(x) = xTQx. Show that the gradient of this quadratic form is

∂z

∂x
= 2Qx.

Hint: Write Q as a linear combination of dyads involving the eigenvectors.

Ex. 36.3 Let z = ||Ax− b||2. Show that

∂z

∂x
= 2ATAx− 2ATb.

Hint: Use z = (Ax− b)T (Ax− b).

We can also consider the second derivative of z = f(x), which is the
Hessian matrix of z

H =
∂2z

∂x2
= ∇2f(x)

with entries

Hmn =
∂2z

∂xm∂xn
.

If the entries of the vector z = (z1, ..., zM )T are real-valued functions of
the vector x, the derivative of z is the matrix whose mth column is the
derivative of the real-valued function zm. This matrix is usually called the
Jacobian matrix of z. If M = N the determinant of the Jacobian matrix is
the Jacobian.
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Ex. 36.4 Suppose (u, v) = (u(x, y), v(x, y)) is a change of variables from
the Cartesian (x, y) coordinate system to some other (u, v) coordinate sys-
tem. Let x = (x, y)T and z = (u(x), v(x))T .

• (a) Calculate the Jacobian for the rectangular coordinate system ob-
tained by rotating the (x, y) system through an angle of θ.

• (b) Calculate the Jacobian for the transformation from the (x, y)
system to polar coordinates.

36.4 Differentiation with Respect to a Matrix

Now we consider real-valued functions z = f(A) of a real matrix A. As
an example, for square matrices A we have

z = f(A) = trace (A) =

N∑
n=1

Ann,

the sum of the entries along the main diagonal of A.
The derivative of z = f(A) is the matrix

∂z

∂A
= B

whose entries are

Bmn =
∂z

∂Amn
.

Ex. 36.5 Show that the derivative of trace (A) is B = I, the identity ma-
trix.

Ex. 36.6 Show that the derivative of z = trace (DAC) with respect to A
is

∂z

∂A
= DTCT . (36.1)

Consider the function f defined for all J by J positive-definite symmet-
ric matrices by

f(Q) = − log det(Q). (36.2)
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Proposition 36.1 The gradient of f(Q) is g(Q) = −Q−1.

Proof: Let ∆Q be symmetric. Let γj , for j = 1, 2, ..., J , be the eigenvalues
of the symmetric matrix Q−1/2(∆Q)Q−1/2. These γj are then real and are
also the eigenvalues of the matrix Q−1(∆Q). We shall consider ‖∆Q‖ small,
so we may safely assume that 1 + γj > 0.

Note that

〈Q−1,∆Q〉 =

J∑
j=1

γj ,

since the trace of any square matrix is the sum of its eigenvalues. Then we
have

f(Q+ ∆Q)− f(Q) = − log det(Q+ ∆Q) + log det(Q)

= − log det(I +Q−1(∆Q)) = −
J∑
j=1

log(1 + γj).

From the submultiplicativity of the Frobenius norm we have

‖Q−1(∆Q)‖/‖Q−1‖ ≤ ‖∆Q‖ ≤ ‖Q−1(∆Q)‖‖Q‖.

Therefore, taking the limit as ‖∆Q‖ goes to zero is equivalent to taking
the limit as ‖γ‖ goes to zero, where γ is the vector whose entries are the
γj .

To show that g(Q) = −Q−1 note that

lim sup
‖∆Q‖→0

f(Q+ ∆Q)− f(Q)− 〈−Q−1,∆Q〉
‖∆Q‖

= lim sup
‖∆Q‖→0

| − log det(Q+ ∆Q) + log det(Q) + 〈Q−1,∆Q〉|
‖∆Q‖

≤ lim sup
‖γ‖→0

∑J
j=1 | log(1 + γj)− γj |
‖γ‖/‖Q−1‖

≤ ‖Q−1‖
J∑
j=1

lim
γj→0

γj − log(1 + γj)

|γj |
= 0.

We note in passing that the derivative of det(DAC) with respect to A
is the matrix det(DAC)(A−1)T .

Although the trace is not independent of the order of the matrices in a
product, it is independent of cyclic permutation of the factors:

trace (ABC) = trace (CAB) = trace (BCA).
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Therefore, the trace is independent of the order for the product of two
matrices:

trace (AB) = trace (BA).

From this fact we conclude that

xTx = trace (xTx) = trace (xxT ).

If x is a random vector with correlation matrix

R = E(xxT ),

then

E(xTx) = E(trace (xxT )) = trace (E(xxT )) = trace (R).

We shall use this trick in the chapter on detection.

Ex. 36.7 Let z = trace (ATCA). Show that the derivative of z with respect
to the matrix A is

∂z

∂A
= CA+ CTA. (36.3)

Therefore, if C = Q is symmetric, then the derivative is 2QA.

We have restricted the discussion here to real matrices and vectors. It
often happens that we want to optimize a real quantity with respect to a
complex vector. We can rewrite such quantities in terms of the real and
imaginary parts of the complex values involved, to reduce everything to
the real case just considered. For example, let Q be a hermitian matrix;
then the quadratic form k†Qk is real, for any complex vector k. As we saw
in Exercise 5.9, we can write the quadratic form entirely in terms of real
matrices and vectors.

If w = u+ iv is a complex number with real part u and imaginary part
v, the function z = f(w) = |w|2 is real-valued. The derivative of z = f(w)
with respect to the complex variable w does not exist. When we write
z = u2 + v2, we consider z as a function of the real vector x = (u, v)T . The
derivative of z with respect to x is the vector (2u, 2v)T .

Similarly, when we consider the real quadratic form k†Qk, we view
each of the complex entries of the N by 1 vector k as two real numbers
forming a two-dimensional real vector. We then differentiate the quadratic
form with respect to the 2N by 1 real vector formed from these real and
imaginary parts. If we turn the resulting 2N by 1 real vector back into an
N by 1 complex vector, we get 2Qk as the derivative; so, it appears as if
the formula for differentiating in the real case carries over to the complex
case.
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36.5 Eigenvectors and Optimization

We can use these results concerning differentiation with respect to a
vector to show that eigenvectors solve certain optimization problems.

Consider the problem of maximizing the quadratic form x†Qx, subject
to x†x = 1; here the matrix Q is Hermitian, positive-definite, so that all of
its eigenvalues are positive. We use the Lagrange-multiplier approach, with
the Lagrangian

L(x, λ) = x†Qx− λx†x,

where the scalar variable λ is the Lagrange multiplier. We differentiate
L(x, λ) with respect to x and set the result equal to zero, obtaining

2Qx− 2λx = 0,

or
Qx = λx.

Therefore, x is an eigenvector of Q and λ is its eigenvalue. Since

x†Qx = λx†x = λ,

we conclude that λ = λ1, the largest eigenvalue of Q, and x = u1, a norm-
one eigenvector associated with λ1.

Now consider the problem of maximizing x†Qx, subject to x†x = 1,
and x†u1 = 0. The Lagrangian is now

L(x, λ, α) = x†Qx− λx†x− αx†u1.

Differentiating with respect to the vector x and setting the result equal to
zero, we find that

2Qx− 2λx− αu1 = 0,

or
Qx = λx + βu1,

for β = α/2. But, we know that

(u1)†Qx = λ(u1)†x + β(u1)†u1 = β,

and
(u1)†Qx = (Qu1)†x = λ1(u1)†x = 0,

so β = 0 and we have
Qx = λx.

Since
x†Qx = λ,
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we conclude that x is a norm-one eigenvector of Q associated with the
second-largest eigenvalue, λ = λ2.

Continuing in this fashion, we can show that the norm-one eigenvector
of Q associated with the nth largest eigenvalue λn maximizes the quadratic
form x†Qx, subject to the constraints x†x = 1 and x†um = 0, for m =
1, 2, ..., n− 1.
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37.1 Chapter Summary

In this chapter we consider the problem of deciding whether or not
a particular signal is present in the measured data; this is the detection
problem. The underlying framework for the detection problem is optimal
estimation and statistical hypothesis testing [143].

37.2 The Model of Signal in Additive Noise

The basic model used in detection is that of a signal in additive noise.
The complex data vector is x = (x1, x2, ..., xN )T . We assume that there
are two possibilities:

441
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Case 1: Noise only
xn = zn, n = 1, ..., N,

or

Case 2: Signal in noise

xn = γsn + zn,

where z = (z1, z2, ..., zN )T is a complex vector whose entries zn are values
of random variables that we call noise, about which we have only statistical
information (that is to say, information about the average behavior), s =
(s1, s2, ..., sN )T is a complex signal vector that we may known exactly, or at
least for which we have a specific parametric model, and γ is a scalar that
may be viewed either as deterministic or random (but unknown, in either
case). Unless otherwise stated, we shall assume that γ is deterministic.

The detection problem is to decide which case we are in, based on some
calculation performed on the data x. Since Case 1 can be viewed as a
special case of Case 2 in which the value of γ is zero, the detection problem
is closely related to the problem of estimating γ, which we discussed in the
chapter dealing with the best linear unbiased estimator, the BLUE.

We shall assume throughout that the entries of z correspond to random
variables with means equal to zero. What the variances are and whether or
not these random variables are mutually correlated will be discussed next.
In all cases we shall assume that this information has been determined
previously and is available to us in the form of the covariance matrix Q =
E(zz†) of the vector z; the symbol E denotes expected value, so the entries
of Q are the quantities Qmn = E(zmzn). The diagonal entries of Q are
Qnn = σ2

n, the variance of zn.
Note that we have adopted the common practice of using the same

symbols, zn, when speaking about the random variables and about the
specific values of these random variables that are present in our data. The
context should make it clear to which we are referring.

In Case 2 we say that the signal power is equal to |γ|2 1
N

∑N
n=1 |sn|2 =

1
N |γ|

2s†s and the noise power is 1
N

∑N
n=1 σ

2
n = 1

N tr(Q), where tr(Q) is the
trace of the matrix Q, that is, the sum of its diagonal terms; therefore, the
noise power is the average of the variances σ2

n. The input signal-to-noise
ratio (SNRin) is the ratio of the signal power to that of the noise, prior to
processing the data; that is,

SNRin =
1

N
|γ|2s†s/ 1

N
tr(Q) = |γ|2s†s/tr(Q).
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37.3 Optimal Linear Filtering for Detection

In each case to be considered next, our detector will take the form of a
linear estimate of γ; that is, we shall compute the estimate γ̂ given by

γ̂ =

N∑
n=1

bnxn = b†x,

where b = (b1, b2, ..., bN )T is a vector to be determined. The objective is to
use what we know about the situation to select the optimal b, which will
depend on s and Q.

For any given vector b, the quantity

γ̂ = b†x = γb†s + b†z

is a random variable whose mean value is equal to γb†s and whose variance
is

var(γ̂) = E(|b†z|2) = E(b†zz†b) = b†E(zz†)b = b†Qb.

Therefore, the output signal-to-noise ratio (SNRout) is defined as

SNRout = |γb†s|2/b†Qb.

The advantage we obtain from processing the data is called the gain asso-
ciated with b and is defined to be the ratio of the SNRout to SNRin; that
is,

gain(b) =
|γb†s|2/(b†Qb)

|γ|2(s†s)/tr(Q)
=
|b†s|2 tr(Q)

(b†Qb)(s†s)
.

The best b to use will be the one for which gain(b) is the largest. So,
ignoring the terms in the gain formula that do not involve b, we see that

the problem becomes maximize |b
†s|2

b†Qb
, for fixed signal vector s and fixed

noise covariance matrix Q.
The Cauchy inequality plays a major role in optimal filtering and de-

tection:

Cauchy’s inequality: For any vectors a and b we have

|a†b|2 ≤ (a†a)(b†b),

with equality if and only if a is proportional to b; that is, there is a scalar
β such that b = βa.
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Ex. 37.1 Use Cauchy’s inequality to show that, for any fixed vector a, the
choice b = βa maximizes the quantity |b†a|2/b†b, for any constant β.

Ex. 37.2 Use the definition of the covariance matrix Q to show that Q
is Hermitian and that, for any vector y, y†Qy ≥ 0. Therefore, Q is a
nonnegative definite matrix and, using its eigenvector decomposition, can
be written as Q = CC†, for some invertible square matrix C.

Ex. 37.3 Consider now the problem of maximizing |b†s|2/b†Qb. Using
the two previous exercises, show that the solution is b = βQ−1s, for some
arbitrary constant β.

We can now use the results of these exercises to continue our discussion.
We choose the constant β = 1/(s†Q−1s) so that the optimal b has b†s = 1;
that is, the optimal filter b is

b = (1/(s†Q−1s))Q−1s,

and the optimal estimate of γ is

γ̂ = b†x = (1/(s†Q−1s))(s†Q−1x).

The mean of the random variable γ̂ is equal to γb†s = γ, and the variance is
equal to 1/(s†Q−1s). Therefore, the output signal power is |γ|2, the output
noise power is 1/(s†Q−1s), and so the output signal-to-noise ratio (SNRout)
is

SNRout = |γ|2(s†Q−1s).

The gain associated with the optimal vector b is then

maximum gain =
(s†Q−1s) tr(Q)

(s†s)
.

The calculation of the vector C−1x is sometimes called prewhitening since
C−1x = γC−1s + C−1z and the new noise vector, C−1z, has the iden-
tity matrix for its covariance matrix. The new signal vector is C−1s. The
filtering operation that gives γ̂ = b†x can be written as

γ̂ = (1/(s†Q−1s))(C−1s)†C−1x;

the term (C−1s)†C−1x is described by saying that we prewhiten, then do
a matched filter. Now we consider some special cases of noise.
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37.4 The Case of White Noise

We say that the noise is white noise if the covariance matrix is Q = σ2I,
where I denotes the identity matrix that is one on the main diagonal and
zero elsewhere and σ > 0 is the common standard deviation of the zn. This
means that the zn are mutually uncorrelated (independent, in the Gaussian
case) and share a common variance.

In this case the optimal vector b is b = 1
(s†s)

s and the gain is N . Notice

that γ̂ now involves only a matched filter. We consider now some special
cases of the signal vectors s.

37.4.1 Constant Signal

Suppose that the vector s is constant; that is, s = 1 = (1, 1, ..., 1)T .
Then, we have

γ̂ =
1

N

N∑
n=1

xn.

This is the same result we found in our discussion of the BLUE, when we
estimated the mean value and the noise was white.

37.4.2 Sinusoidal Signal, Frequency Known

Suppose that

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))T ,

where ω0 denotes a known frequency in [−π, π). Then, b = 1
N e(ω0) and

γ̂ =
1

N

N∑
n=1

xn exp(inω0);

so, we see yet another occurrence of the DFT.

37.4.3 Sinusoidal Signal, Frequency Unknown

If we do not know the value of the signal frequency ω0, a reasonable
thing to do is to calculate the γ̂ for each (actually, finitely many) of the
possible frequencies within [−π, π) and base the detection decision on the
largest value; that is, we calculate the DFT as a function of the variable
ω. If there is only a single ω0 for which there is a sinusoidal signal present
in the data, the values of γ̂ obtained at frequencies other than ω0 provide
estimates of the noise power σ2, against which the value of γ̂ for ω0 can be
compared.
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37.5 The Case of Correlated Noise

We say that the noise is correlated if the covariance matrix Q is not a
multiple of the identity matrix. This means either that the zn are mutually
correlated (dependent, in the Gaussian case) or that they are uncorrelated,
but have different variances.

In this case, as we saw previously, the optimal vector b is

b =
1

(s†Q−1s)
Q−1s

and the gain is

maximum gain =
(s†Q−1s) tr(Q)

(s†s)
.

How large or small the gain is depends on how the signal vector s relates
to the matrix Q.

For sinusoidal signals, the quantity s†s is the same, for all values of the
parameter ω; this is not always the case, however. In passive detection of
sources in acoustic array processing, for example, the signal vectors arise
from models of the acoustic medium involved. For far-field sources in an
(acoustically) isotropic deep ocean, planewave models for s will have the
property that s†s does not change with source location. However, for near-
field or shallow-water environments, this is usually no longer the case.

It follows from Exercise 37.3 that the quantity s†Q−1s
s†s

achieves its maxi-
mum value when s is an eigenvector of Q associated with its smallest eigen-
value, λN ; in this case, we are saying that the signal vector does not look
very much like a typical noise vector. The maximum gain is then λ−1

N tr(Q).
Since tr(Q) equals the sum of its eigenvalues, multiplying by tr(Q) serves
to normalize the gain, so that we cannot get larger gain simply by having
all the eigenvalues of Q small.

On the other hand, if s should be an eigenvector of Q associated with
its largest eigenvalue, say λ1, then the maximum gain is λ−1

1 tr(Q). If the
noise is signal-like, that is, has one dominant eigenvalue, then tr(Q) is
approximately λ1 and the maximum gain is around one, so we have lost
the maximum gain of N we were able to get in the white-noise case. This
makes sense, in that it says that we cannot significantly improve our ability
to discriminate between signal and noise by taking more samples, if the
signal and noise are very similar.
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37.5.1 Constant Signal with Unequal-Variance Uncorre-
lated Noise

Suppose that the vector s is constant; that is, s = 1 = (1, 1, ..., 1)T .
Suppose also that the noise covariance matrix is Q = diag{σ1, ..., σN}.

In this case the optimal vector b has entries

bm =
1

(
∑N
n=1 σ

−1
n )

σ−1
m ,

for m = 1, ..., N , and we have

γ̂ =
1

(
∑N
n=1 σ

−1
n )

N∑
m=1

σ−1
m xm.

This is the BLUE estimate of γ in this case.

37.5.2 Sinusoidal signal, Frequency Known, in Correlated
Noise

Suppose that

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))T ,

where ω0 denotes a known frequency in [−π, π). In this case the optimal
vector b is

b =
1

e(ω0)†Q−1e(ω0)
Q−1e(ω0)

and the gain is

maximum gain =
1

N
[e(ω0)†Q−1e(ω0)]tr(Q).

How large or small the gain is depends on the quantity q(ω0), where

q(ω) = e(ω)†Q−1e(ω).

The function 1/q(ω) can be viewed as a sort of noise power spectrum,
describing how the noise power appears when decomposed over the various
frequencies in [−π, π). The maximum gain will be large if this noise power
spectrum is relatively small near ω = ω0; however, when the noise is similar
to the signal, that is, when the noise power spectrum is relatively large
near ω = ω0, the maximum gain can be small. In this case the noise power
spectrum plays a role analogous to that played by the eigenvalues of Q
earlier.

To see more clearly why it is that the function 1/q(ω) can be viewed
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as a sort of noise power spectrum, consider what we get when we apply
the optimal filter associated with ω to data containing only noise. The
average output should tell us how much power there is in the component of
the noise that resembles e(ω); this is essentially what is meant by a noise
power spectrum. The result is b†z = (1/q(ω))e(ω)†Q−1z. The expected
value of |b†z|2 is then 1/q(ω).

37.5.3 Sinusoidal Signal, Frequency Unknown, in Corre-
lated Noise

Again, if we do not know the value of the signal frequency ω0, a rea-
sonable thing to do is to calculate the γ̂ for each (actually, finitely many)
of the possible frequencies within [−π, π) and base the detection decision
on the largest value. For each ω the corresponding value of γ̂ is

γ̂(ω) = [1/(e(ω)†Q−1e(ω))]

N∑
n=1

an exp(inω),

where a = (a1, a2, ..., aN )T satisfies the linear system Qa = x or a = Q−1x.
It is interesting to note the similarity between this estimation procedure and
the PDFT discussed earlier; to see the connection, view [1/(e(ω)†Q−1e(ω))]
in the role of P (ω) and Q its corresponding matrix of Fourier-transform val-
ues. The analogy breaks down when we notice that Q need not be Toeplitz,
as in the PDFT case; however, the similarity is intriguing.

37.6 Capon’s Data-Adaptive Method

When the noise covariance matrix Q is not available, perhaps because
we cannot observe the background noise in the absence of any signals that
may also be present, we may use the signal-plus-noise covariance matrix R
in place of Q.

Ex. 37.4 Show that for
R = |γ|2ss† +Q

maximizing the ratio
|b†s|2/b†Rb

is equivalent to maximizing the ratio

|b†s|2/b†Qb.
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In [76] Capon offered a high-resolution method for detecting and re-
solving sinusoidal signals with unknown frequencies in noise. His estimator
has the form

1/e(ω)†R−1e(ω). (37.1)

The idea here is to fix an arbitrary ω, and then to find the vector b(ω) that
minimizes b(ω)†Rb(ω), subject to b(ω)†e(ω) = 1. The vector b(ω) turns out
to be

b(ω) =
1

e(ω)†R−1e(ω)
R−1e(ω). (37.2)

Now we allow ω to vary and compute the expected output of the filter b(ω),
operating on the signal plus noise input. This expected output is then

1/e(ω)†R−1e(ω). (37.3)

The reason that this estimator resolves closely spaced delta functions better
than linear methods such as the DFT is that, when ω is fixed, we obtain an
optimal filter using R as the noise covariance matrix, which then includes
all sinusoids not at the frequency ω in the noise component. This is actu-
ally a good thing, since, when we are looking at a frequency ω that does
not correspond to a frequency actually present in the data, we want the
sinusoidal components present at nearby frequencies to be filtered out.





Bibliography

[1] Agmon, S. (1954) “The relaxation method for linear inequali-
ties.”Canadian Journal of Mathematics 6, pp. 382–392.

[2] Ahn, S., and Fessler, J. (2003) “Globally convergent image recon-
struction for emission tomography using relaxed ordered subset algo-
rithms.” IEEE Transactions on Medical Imaging, 22(5), pp. 613–626.

[3] Ahn, S., Fessler, J., Blatt, D., and Hero, A. (2006) “Convergent incre-
mental optimization transfer algorithms: application to tomography.”
IEEE Transactions on Medical Imaging, 25(3), pp. 283–296.

[4] Anderson, T. (1972) “Efficient estimation of regression coefficients
in time series.”Proc. of Sixth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: The Theory of Statistics Univer-
sity of California Press, Berkeley, CA, pp. 471–482.

[5] Anderson, A. and Kak, A. (1984) “Simultaneous algebraic reconstruc-
tion technique (SART): a superior implementation of the ART algo-
rithm.”Ultrasonic Imaging 6, pp. 81–94.

[6] Ash, R. and Gardner, M. (1975) Topics in Stochastic Processes Boston:
Academic Press.

[7] Axelsson, O. (1994) Iterative Solution Methods. Cambridge, UK: Cam-
bridge University Press.

[8] Baillet, S., Mosher, J., and Leahy, R. (2001) “Electromagnetic Brain
Mapping” , IEEE Signal Processing Magazine, 18 (6), pp. 14–30.

[9] Baillon, J.-B., Bruck, R.E., and Reich, S. (1978) “On the asymp-
totic behavior of nonexpansive mappings and semigroups in Banach
spaces” , Houston Journal of Mathematics, 4, pp. 1–9.

[10] Barrett, H., White, T., and Parra, L. (1997) “List-mode likelihood.”J.
Opt. Soc. Am. A 14, pp. 2914–2923.

[11] Bauschke, H. (1996) “The approximation of fixed points of composi-
tions of nonexpansive mappings in Hilbert space,”Journal of Mathe-
matical Analysis and Applications, 202, pp. 150–159.

451



452 Bibliography

[12] Bauschke, H. (2001) “Projection algorithms: results and open prob-
lems.”in Inherently Parallel Algorithms in Feasibility and Optimiza-
tion and their Applications, Butnariu, D., Censor, Y., and Reich, S.,
editors, Amsterdam: Elsevier Science. pp. 11–22.

[13] Bauschke, H. and Borwein, J. (1996) “On projection algorithms for
solving convex feasibility problems.”SIAM Review 38 (3), pp. 367–
426.

[14] Bauschke, H., Borwein, J., and Lewis, A. (1997) “The method of cyclic
projections for closed convex sets in Hilbert space.”Contemporary
Mathematics: Recent Developments in Optimization Theory and Non-
linear Analysis 204, American Mathematical Society, pp. 1–38.

[15] Bauschke, H., and Lewis, A. (2000) “Dykstra’s algorithm with Breg-
man projections: a convergence proof.” Optimization, 48, pp. 409–427.

[16] Benson, M. (2003) “What Galileo Saw.” in The New Yorker; reprinted
in [95].

[17] Bertero, M. (1992) “Sampling theory, resolution limits and inversion
methods.”in [19], pp. 71–94.

[18] Bertero, M., and Boccacci, P. (1998) Introduction to Inverse Problems
in Imaging Bristol, UK: Institute of Physics Publishing.

[19] Bertero, M. and Pike, E.R., editors (1992) Inverse Problems in Scat-
tering and Imaging Malvern Physics Series, Adam Hilger, IOP Pub-
lishing, London.

[20] Bertsekas, D.P. (1997) “A new class of incremental gradient methods
for least squares problems.”SIAM J. Optim. 7, pp. 913–926.

[21] Blackman, R. and Tukey, J. (1959) The Measurement of Power Spec-
tra. New York: Dover Publications.

[22] Boas, D., Brooks, D., Miller, E., DiMarzio, C., Kilmer, M., Gaudette,
R., and Zhang, Q. (2001) “Imaging the body with diffuse optical to-
mography.” IEEE Signal Processing Magazine, 18 (6), pp. 57–75.

[23] Bochner, S. and Chandrasekharan, K. (1949) Fourier Transforms, An-
nals of Mathematical Studies, No. 19. Princeton, NJ: Princeton Uni-
versity Press.

[24] Born, M. and Wolf, E. (1999) Principles of Optics: 7th edition. Cam-
bridge, UK: Cambridge University Press.



Bibliography 453

[25] Bouten, L., van Handel, R., and James, M. ((2009) “A discrete in-
vitation to quantum filtering and feedback control.” SIAM Review,
51(2), pp. 239–316.

[26] Borwein, J. and Lewis, A. (2000) Convex Analysis and Nonlinear Op-
timization. Canadian Mathematical Society Books in Mathematics,
New York: Springer-Verlag.

[27] Bracewell, R.C. (1979) “Image reconstruction in radio astronomy.” in
[162], pp. 81–104.

[28] Brauer, A. (1946) “Characteristic roots of a matrix.” Duke Mathe-
matics Journal, 13, pp. 387–395.

[29] Bregman, L.M. (1967) “The relaxation method of finding the common
point of convex sets and its application to the solution of problems in
convex programming.”USSR Computational Mathematics and Math-
ematical Physics 7, pp. 200–217.

[30] Bregman, L., Censor, Y., and Reich, S. (1999) “Dykstra’s algorithm as
the nonlinear extension of Bregman’s optimization method.” Journal
of Convex Analysis, 6 (2), pp. 319–333.

[31] Brooks, D., and MacLeod, R. (1997) “Electrical imaging of the heart.”
IEEE Signal Processing Magazine, 14 (1), pp. 24–42.

[32] Browne, E. (1930) “The characteristic roots of a matrix.” Bulletin of
the American Mathematical Society, 36, pp. 705–710.

[33] Browne, J. and A. DePierro, A. (1996) “A row-action alternative to
the EM algorithm for maximizing likelihoods in emission tomogra-
phy.”IEEE Trans. Med. Imag. 15, pp. 687–699.

[34] Bruck, R.E., and Reich, S. (1977) “Nonexpansive projections and re-
solvents of accretive operators in Banach spaces.” Houston Journal of
Mathematics, 3, pp. 459–470.

[35] Bruckstein, A., Donoho, D., and Elad, M. (2009) “From sparse solu-
tions of systems of equations to sparse modeling of signals and images.”
SIAM Review, 51(1), pp. 34–81.

[36] Bruyant, P., Sau, J., and Mallet, J.J. (1999) “Noise removal using fac-
tor analysis of dynamic structures: application to cardiac gated stud-
ies.”Journal of Nuclear Medicine 40 (10), pp. 1676–1682.

[37] Budinger, T., Gullberg, G., and Huesman, R. (1979) “Emission com-
puted tomography.” in [162], pp. 147–246.



454 Bibliography

[38] Burg, J. (1967) “Maximum entropy spectral analysis.”paper presented
at the 37th Annual SEG meeting, Oklahoma City, OK.

[39] Burg, J. (1972) “The relationship between maximum entropy spectra
and maximum likelihood spectra.”Geophysics 37, pp. 375–376.

[40] Burg, J. (1975) Maximum Entropy Spectral Analysis, Ph.D. disserta-
tion, Stanford University.

[41] Byrne, C. and Fitzgerald, R. (1979) “A unifying model for spec-
trum estimation.”in Proceedings of the RADC Workshop on Spectrum
Estimation- October 1979, Griffiss AFB, Rome, NY.

[42] Byrne, C. and Fitzgerald, R. (1982) “Reconstruction from partial in-
formation, with applications to tomography.”SIAM J. Applied Math.
42(4), pp. 933–940.

[43] Byrne, C., Fitzgerald, R., Fiddy, M., Hall, T. and Darling, A. (1983)
“Image restoration and resolution enhancement.”J. Opt. Soc. Amer.
73, pp. 1481–1487.

[44] Byrne, C., and Wells, D. (1983) “Limit of continuous and discrete
finite-band Gerchberg iterative spectrum extrapolation.”Optics Let-
ters 8 (10), pp. 526–527.

[45] Byrne, C. and Fitzgerald, R. (1984) “Spectral estimators that extend
the maximum entropy and maximum likelihood methods.”SIAM J.
Applied Math. 44(2), pp. 425–442.

[46] Byrne, C., Levine, B.M., and Dainty, J.C. (1984) “Stable estimation
of the probability density function of intensity from photon frequency
counts.”JOSA Communications 1(11), pp. 1132–1135.

[47] Byrne, C., and Wells, D. (1985) “Optimality of certain iterative and
non-iterative data extrapolation procedures.”Journal of Mathematical
Analysis and Applications 111 (1), pp. 26–34.

[48] Byrne, C. and Fiddy, M. (1987) “Estimation of continuous object
distributions from Fourier magnitude measurements.”JOSA A 4, pp.
412–417.

[49] Byrne, C. and Fiddy, M. (1988) “Images as power spectra; reconstruc-
tion as Wiener filter approximation.”Inverse Problems 4, pp. 399–409.

[50] Byrne, C., Haughton, D., and Jiang, T. (1993) “High-resolution in-
version of the discrete Poisson and binomial transformations.”Inverse
Problems 9, pp. 39–56.



Bibliography 455

[51] Byrne, C. (1993) “Iterative image reconstruction algorithms based on
cross-entropy minimization.”IEEE Transactions on Image Processing
IP-2, pp. 96–103.

[52] Byrne, C. (1995) “Erratum and addendum to ‘Iterative image re-
construction algorithms based on cross-entropy minimization’.”IEEE
Transactions on Image Processing IP-4, pp. 225–226.

[53] Byrne, C. (1996) “Iterative reconstruction algorithms based on cross-
entropy minimization.”in Image Models (and their Speech Model
Cousins), S.E. Levinson and L. Shepp, editors, IMA Volumes in Mathe-
matics and its Applications, Volume 80, pp. 1–11. New York: Springer-
Verlag.

[54] Byrne, C. (1996) “Block-iterative methods for image reconstruction
from projections.”IEEE Transactions on Image Processing IP-5, pp.
792–794.

[55] Byrne, C. (1997) “Convergent block-iterative algorithms for image
reconstruction from inconsistent data.”IEEE Transactions on Image
Processing IP-6, pp. 1296–1304.

[56] Byrne, C. (1998) “Accelerating the EMML algorithm and related it-
erative algorithms by rescaled block-iterative (RBI) methods.”IEEE
Transactions on Image Processing IP-7, pp. 100–109.

[57] Byrne, C. (1998) “Iterative deconvolution and deblurring with con-
straints.” Inverse Problems, 14, pp. 1455-1467.

[58] Byrne, C. (1999) “Iterative projection onto convex sets using multiple
Bregman distances.” Inverse Problems 15, pp. 1295–1313.

[59] Byrne, C. (2000) “Block-iterative interior point optimization methods
for image reconstruction from limited data.”Inverse Problems 16, pp.
1405–1419.

[60] Byrne, C. (2001) “Bregman-Legendre multidistance projection algo-
rithms for convex feasibility and optimization.”in Inherently Parallel
Algorithms in Feasibility and Optimization and their Applications,
Butnariu, D., Censor, Y., and Reich, S., editors, pp. 87–100. Amster-
dam: Elsevier Publ.,

[61] Byrne, C. (2001) “Likelihood maximization for list-mode emission
tomographic image reconstruction.”IEEE Transactions on Medical
Imaging 20(10), pp. 1084–1092.

[62] Byrne, C. (2002) “Iterative oblique projection onto convex sets and
the split feasibility problem.”Inverse Problems 18, pp. 441–453.



456 Bibliography

[63] Byrne, C. (2004) “A unified treatment of some iterative algorithms in
signal processing and image reconstruction.”Inverse Problems 20, pp.
103–120.

[64] Byrne, C. (2005) “Choosing parameters in block-iterative or ordered-
subset reconstruction algorithms.” IEEE Transactions on Image Pro-
cessing, 14 (3), pp. 321–327.

[65] Byrne, C. (2005) Signal Processing: A Mathematical Approach, AK
Peters, Publ., Wellesley, MA.

[66] Byrne, C. (2007) Applied Iterative Methods, AK Peters, Publ., Welles-
ley, MA.

[67] Byrne, C. (2008) “Sequential unconstrained minimization algorithms
for constrained optimization.” Inverse Problems, 24(1), article no.
015013.

[68] Byrne, C. (2009) “Block-iterative algorithms.” International Transac-
tions in Operations Research, 16(4).

[69] Byrne, C. (2009) “Bounds on the largest singular value of a matrix
and the convergence of simultaneous and block-iterative algorithms
for sparse linear systems.” International Transactions in Operations
Research, 16(4).

[70] Byrne, C. (2009) A First Course in Optimization, unpublished text
available at my website.

[71] Byrne, C. and Censor, Y. (2001) “Proximity function minimization us-
ing multiple Bregman projections, with applications to split feasibility
and Kullback-Leibler distance minimization.” Annals of Operations
Research 105, pp. 77–98.

[72] Candès, E., and Romberg, J. (2007) “Sparsity and incoherence in com-
pressive sampling.” Inverse Problems, 23(3), pp. 969–985.

[73] Candès, E., Romberg, J., and Tao, T. (2006) “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete frequency
information.” IEEE Transactions on Information Theory, 52(2), pp.
489–509.

[74] Candès, E., Wakin, M., and Boyd, S. (2007) “Enhancing
sparsity by reweighted l1 minimization.” preprint available at
http://www.acm.caltech.edu/ emmanuel/publications.html .

[75] Candy, J. (1988) Signal Processing: The Modern Approach New York:
McGraw-Hill Publ.



Bibliography 457

[76] Capon, J. (1969) “High-resolution frequency-wavenumber spectrum
analysis.”Proc. of the IEEE 57, pp. 1408–1418.

[77] Carlson, D., Johnson, C., Lay, D., and Porter, A.D. (2002) Linear
Algebra Gems: Assets for Undergraduates, The Mathematical Society
of America, MAA Notes 59.

[78] Cederquist, J., Fienup, J., Wackerman, C., Robinson, S., and
Kryskowski, D. (1989) “Wave-front phase estimation from Fourier in-
tensity measurements.” Journal of the Optical Society of America A
6(7), pp. 1020–1026.

[79] Censor, Y. (1981) “Row-action methods for huge and sparse systems
and their applications.” SIAM Review, 23: 444–464.

[80] Censor, Y., Eggermont, P.P.B., and Gordon, D. (1983) “Strong un-
derrelaxation in Kaczmarz’s method for inconsistent systems.” Nu-
merische Mathematik 41, pp. 83–92.

[81] Censor, Y. and Elfving, T. (1994) “A multi-projection algorithm using
Bregman projections in a product space.” Numerical Algorithms, 8,
pp. 221–239.

[82] Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. “A unified ap-
proach for inversion problems in intensity-modulated radiation ther-
apy.” Physics in Medicine and Biology 51 (2006), pp. 2353-2365.

[83] Censor, Y., Elfving, T., Herman, G.T., and Nikazad, T. (2008) “On
diagonally-relaxed orthogonal projection methods.” SIAM Journal on
Scientific Computation, 30(1), pp. 473–504.

[84] Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. “The multiple-
sets split feasibility problem and its application for inverse problems.”
Inverse Problems 21 (2005), pp. 2071-2084.

[85] Censor, Y., Gordon, D., and Gordon, R. (2001) “Component averag-
ing: an efficient iterative parallel algorithm for large and sparse un-
structured problems.” Parallel Computing, 27, pp. 777–808.

[86] Censor, Y., Gordon, D., and Gordon, R. (2001) “BICAV: A block-
iterative, parallel algorithm for sparse systems with pixel-related
weighting.” IEEE Transactions on Medical Imaging, 20, pp. 1050–
1060.

[87] Censor, Y., and Reich, S. (1996) “Iterations of paracontractions and
firmly nonexpansive operators with applications to feasibility and op-
timization” , Optimization, 37, pp. 323–339.



458 Bibliography

[88] Censor, Y., and Reich, S. (1998) “The Dykstra algorithm for Bregman
projections.” Communications in Applied Analysis, 2, pp. 323–339.

[89] Censor, Y. and Segman, J. (1987) “On block-iterative maximiza-
tion.”J. of Information and Optimization Sciences 8, pp. 275–291.

[90] Censor, Y. and Zenios, S.A. (1997) Parallel Optimization: Theory, Al-
gorithms and Applications. New York: Oxford University Press.

[91] Chang, J.-H., Anderson, J.M.M., and Votaw, J.R. (2004) “Regularized
image reconstruction algorithms for positron emission tomography.”
IEEE Transactions on Medical Imaging 23(9), pp. 1165–1175.

[92] Childers, D., editor (1978) Modern Spectral Analysis. New York:IEEE
Press.

[93] Chui, C. and Chen, G. (1991) Kalman Filtering, second edition. Berlin:
Springer-Verlag.

[94] Cimmino, G. (1938) “Calcolo approssimato per soluzioni dei sistemi
di equazioni lineari.” La Ricerca Scientifica XVI, Series II, Anno IX
1, pp. 326–333.

[95] Cohen, J. (2010) (editor) The Best of The Best American Science
Writing, Harper-Collins Publ.

[96] Combettes, P. (1993) “The foundations of set theoretic estimation.”
Proceedings of the IEEE 81 (2), pp. 182–208.

[97] Combettes, P. (1996) “The convex feasibility problem in image recov-
ery.” Advances in Imaging and Electron Physics 95, pp. 155–270.

[98] Combettes, P. (2000) “Fejér monotonicity in convex optimization.”
in Encyclopedia of Optimization, C.A. Floudas and P. M. Pardalos,
editors, Boston: Kluwer Publ.

[99] Combettes, P., and Trussell, J. (1990) “Method of successive projec-
tions for finding a common point of sets in a metric space.” Journal
of Optimization Theory and Applications 67 (3), pp. 487–507.

[100] Combettes, P., and Wajs, V. (2005) “Signal recovery by proximal
forward-backward splitting.” Multi-scale Modeling and Simulation,
4(4), pp. 1168–1200.

[101] Cooley, J. and Tukey, J. (1965) “An algorithm for the machine cal-
culation of complex Fourier series.” Math. Comp., 19, pp. 297–301.

[102] Csiszár, I. (1989) “A geometric interpretation of Darroch and Rat-
cliff’s generalized iterative scaling.” The Annals of Statistics 17 (3),
pp. 1409–1413.



Bibliography 459

[103] Csiszár, I. (1991) “Why least squares and maximum entropy? An ax-
iomatic approach to inference for linear inverse problems.” The Annals
of Statistics 19 (4), pp. 2032–2066.

[104] Csiszár, I. and Tusnády, G. (1984) “Information geometry and alter-
nating minimization procedures.” Statistics and Decisions Supp. 1,
pp. 205–237.

[105] Cullen, C. (1966) Matrices and Linear Transformations. Reading,
MA: Addison-Wesley.

[106] Dainty, J. C. and Fiddy, M. (1984) “The essential role of prior knowl-
edge in phase retrieval.” Optica Acta 31, pp. 325–330.

[107] Darroch, J. and Ratcliff, D. (1972) “Generalized iterative scaling for
log-linear models.” Annals of Mathematical Statistics 43, pp. 1470–
1480.

[108] Dax, A. (1990) “The convergence of linear stationary iterative pro-
cesses for solving singular unstructured systems of linear equations.”
SIAM Review, 32, pp. 611–635.

[109] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) “Maximum like-
lihood from incomplete data via the EM algorithm.” Journal of the
Royal Statistical Society, Series B 37, pp. 1–38.

[110] De Pierro, A. (1995) “A modified expectation maximization algo-
rithm for penalized likelihood estimation in emission tomography.”
IEEE Transactions on Medical Imaging 14, pp. 132–137.

[111] De Pierro, A. and Iusem, A. (1990) “On the asymptotic behavior of
some alternate smoothing series expansion iterative methods.” Linear
Algebra and its Applications 130, pp. 3–24.

[112] De Pierro, A., and Yamaguchi, M. (2001) “Fast EM-like methods for
maximum ‘a posteriori’ estimates in emission tomography.” Transac-
tions on Medical Imaging, 20 (4).

[113] Deutsch, F., and Yamada, I. (1998) “Minimizing certain convex func-
tions over the intersection of the fixed point sets of nonexpansive map-
pings.” Numerical Functional Analysis and Optimization, 19, pp. 33–
56.

[114] Dhanantwari, A., Stergiopoulos, S., and Iakovidis, I. (2001) “Cor-
recting organ motion artifacts in x-ray CT medical imaging systems
by adaptive processing. I. Theory.” Med. Phys. 28(8), pp. 1562–1576.

[115] Dines, K., and Lyttle, R. (1979) “Computerized geophysical tomog-
raphy.” Proc. IEEE, 67, pp. 1065–1073.



460 Bibliography

[116] Donoho, D. (2006) “Compressed sampling.” IEEE Transactions on
Information Theory, 52 (4). (download preprints at http://www.stat.
stanford.edu/ donoho/Reports).

[117] Driscoll, P., and Fox, W. (1996) “Presenting the Kuhn-Tucker condi-
tions using a geometric method.” The College Mathematics Journal,
38 (1), pp. 101–108.
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AT , 25
A†, 25, 41
LU factorization, 286
Q-conjugate, 205
Q-orthogonal, 205
QR factorization, 285
S⊥, 124
T -invariant subspace, 273, 400
det(A), 37
ε-sparse matrix, 80
λmax, 339
λmax(Q), 107
ν-ism, 154
‖ A ‖1, 100
‖ A ‖2, 101
‖ A ‖∞, 100
ρ(S), 66
n(A), 36

adaptive filter, 428
aff(C), 124
affine hull of a set, 124
algebraic reconstruction technique,

46, 178
alternating minimization, 184
ART, 42, 46, 48, 298
attenuated Radon transform, 244
av, 154
averaged operator, 154

back-projection, 236
Banach-Picard Theorem, 147
basic variable, 40
basis, 28
beam-hardening, 229
best linear unbiased estimator, 422

bi-diagonal matrix, 73
Björck-Elfving equations, 169
block-iterative methods, 317
BLUE, 422, 442
boundary of a set, 122
boundary point, 122

canonical form, 137
Cauchy sequence, 92
Cauchy’s Inequality, 34
Cauchy-Schwarz Inequality, 34
Cayley-Hamilton Theorem, 105
Central Slice Theorem, 230
CFP, 8, 167
change-of-basis matrix, 273
characteristic polynomial, 65, 277
Cholesky Decomposition, 290
Cimmino method, 174
Cimmino’s algorithm, 338
Cimmino’s method, 313
clipping operator, 3
closed set, 92, 121
closure of a set, 92, 122
cluster point, 93
cluster point of a sequence, 122
co-coercive operator, 154
commutation operation, 86
compatible matrix norm, 98
complementary slackness condition,

139
complete metric space, 92
complex dot product, 35
compressed sensing, 259
condition number, 107, 340
congruent matrices, 404
congruent operators, 404
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conjugate gradient method, 201,
207

conjugate set, 206
conjugate transpose, 25, 41, 277
conjugate vectors, 205
consistent system, 49
constrained ART, 299
convergent sequence, 92
convex combination, 123
convex feasibility problem, 8, 167
convex function, 369
convex hull, 123
convex programming, 368, 369
convex set, 3, 123, 369
convolution, 397
Cooley, 395
correlated noise, 446
correlation, 446
covariance matrix, 442
CP, 370
CQ algorithm, 165, 195

DART, 303
Decomposition Theorem, 129
detection, 441
determinant, 37
DFT, 393, 396
DFT matrix, 394
diagonalizable matrix, 104
dimension of a subspace, 29
direction of unboundedness, 125
discrete Fourier transform, 391
distance from a point to a set, 122
double ART, 303
dual geometric programming

problem, 382
dual problem, 137
dual space, 275
duality gap, 139
dyad, 434
dyadic matrices, 67
dynamic ET, 198

eigenvalue, 65, 81, 276, 369

eigenvalue-eigenvector
decomposition, 67

eigenvector, 65, 276, 369
EKN Theorem, 163
Elsner-Koltracht-Neumann

Theorem, 163
EM-MART, 54, 330
emission tomography, 8, 81, 198,

241
EMML algorithm, 54, 318, 376
equivalent matrices, 31, 274
equivalent uniform dose, 266
ET, 198
Euclidean distance, 33, 49
Euclidean length, 33
Euclidean norm, 33
EUD, 266
expectation maximization

maximum likelihood, 54
expectation maximization

maximum likelihood
method, 318

expected squared error, 423
exponential Radon transform, 244
Ext(C), 125
extreme point, 125

factor analysis, 78
Farkas’ Lemma, 132
fast Fourier transform, 391, 394,

395
feasible-point methods, 117
Fermi-Dirac generalized entropies,

307
FFT, 391, 394, 395
filtered back-projection, 237
firmly non-expansive, 153
fixed point, 144
fne, 153
Fourier Inversion Formula, 391
Fourier transform, 391
Frobenius norm, 35, 98, 278
full-cycle ART, 165, 298
full-rank matrix, 30
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full-rank property, 213, 300

gain, 443
gamma distribution, 218
Gauss-Seidel method, 170
generalized AGM Inequality, 380
generalized inverse, 74
geometric least-squares solution, 50
geometric programming problem,

381
Gerschgorin’s theorem, 106
gradient field, 13, 254
Gram-Schmidt method, 206

Hölder’s Inequality, 96
Hermitian matrix, 25, 280
Hermitian square root, 68
Hessian matrix, 434
Hilbert space, 33
Hilbert transform, 238
Horner’s method, 395
Householder matrix, 293
hyperplane, 124

identity matrix, 25
IMRT, 15, 265
incoherent bases, 260
induced matrix norm, 98
inner product, 33
intensity modulated radiation

therapy, 15, 265
interior of a set, 122
interior point, 122
interior-point methods, 2, 117
inverse strongly monotone, 154
invertible matrix, 25
ism operator, 154
isomorphism, 31, 271

Jacobi overrelaxation, 173
Jacobi’s method, 170
Jacobian, 434
JOR, 172

Kalman filter, 429

Karush-Kuhn-Tucker theorem, 371
KKT theorem, 371
KL distance, 53, 305, 385
KM Theorem, 157
Krasnoselskii-Mann Theorem, 157
Krylov subspace, 209
Kullback-Leibler distance, 53, 305,

385

Lagrange multipliers, 368
Lagrangian, 368, 370
Landweber algorithm, 160, 166,

196, 314, 339
Larmor frequency, 13
least squares ART, 204
least squares solution, 43, 74, 202,

425
left inverse, 31
Lie algebras, 86
limit of a sequence, 122
line of response, 9, 242
linear combination, 23
linear functional, 275
linear independence, 28
linear manifold, 124
linear operator, 272
linear programming, 131
linear transformation, 31
Lipschitz continuity, 145
list-mode processing, 359
LS-ART, 204

magnetic resonance imaging, 12,
253

MAP, 217
MART, 46, 51, 304, 385
matrix differentiation, 433
matrix inverse, 25, 65
maximum a posteriori, 217
metric, 91
metric space, 91
minimum norm solution, 75
minimum two-norm solution, 41,
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minimum weighted two-norm
solution, 110

Minkowski’s Inequality, 97
monotone operators, 157
Moore-Penrose pseudo-inverse, 74
MRI, 12, 253
MSSFP, 15, 199
multiple-set split feasibility

problem, 15, 199
multiplicative algebraic

reconstruction technique,
46, 385

multiplicative ART, 51, 304
MUSIC, 79

ne, 145, 153
Newton-Raphson algorithm, 202
night-sky phenomenon, 375
noise power, 442
noise power spectrum, 447
non-expansive, 145, 153
non-periodic convolution, 393
non-singular matrix, 25
nonnegative-definite matrix, 67
norm, 94
normal cone, 125
normal equations, 169
normal matrix, 25, 280
normal operator, 280
normal vector, 125
NS(A), 36
null space of a matrix, 36
nullity, 36

one-norm, 162
open set, 122
optimal filter, 443
ordered subset EM method, 319
ordered-subset methods, 317
orthogonal basis, 278
orthogonal complement, 124, 400
orthogonal matrix, 63
orthogonal projection, 125, 152
orthogonal vectors, 278

orthonormal, 34, 278
OSEM, 319
over-determined linear system, 43

paracontractive, 161
Parallelogram Law, 34
partial volume effect, 245
pc, 161
PDFT, 448
penalized likelihood, 217
perpendicular projection, 401
PET, 8, 81, 241
phase encoding, 14, 255
Poisson, 248
Poisson emission, 11
polarization identity, 405
positive-definite matrix, 67
positron emission tomography, 8,

241
posynomials, 381
power spectrum, 447
preconditioned conjugate gradient,

210
predictor-corrector methods, 429
prewhitening, 424, 444
primal problem in CP, 369
primal-dual algorithm, 120
principal-component vectors, 78
projected Landweber algorithm,

167, 197
pseudo-inverse, 74

quadratic form, 67, 404, 437

radio-frequency field, 13, 254
Radon Transform, 7
Radon transform, 230
rank of a matrix, 30
RBI-EMML, 319
reduced gradient, 118
reduced Hessian matrix, 118
reduced Newton-Raphson method,

118
reduced steepest descent method,
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regularization, 215, 302
relative interior, 124
relaxed ART, 299, 313
rescaled block-iterative methods,

319
rf field, 13, 254
ri(C), 124
right inverse, 31
row pivoting, 39
row-action method, 48, 298
row-reduced echelon form, 35

SART, 197
sc, 147
scatter, 244
Schur’s Lemma, 63
self-adjoint operator, 279, 280
sesquilinear functional, 404
SFP, 165, 266
Shannon entropy, 53
Sherman-Morrison-Woodbury

Identity, 27
signal power, 442
signal-to-noise ratio, 442
signal-to-noise-ratio, 11, 248
similar matrices, 274
simultaneous algebraic

reconstruction technique,
197

simultaneous MART, 317
single photon emission tomography,

8, 241
singular value, 69, 81
singular value decomposition, 69
Slater point, 370
SMART algorithm, 317, 320
SNR, 442
SOP, 167
SOR, 173
span, 27
spanning set, 27
sparse matrix, 80, 316
SPECT, 8, 81, 241
spectral radius, 66, 81, 369

Spectral Theorem, 402
spill-over, 245
split feasibility problem, 165, 266
splitting methods, 170
standard form, 138
state vector, 428
static field, 13, 254
steepest descent method, 202
strict contraction, 147
strictly diagonally dominant, 106
Strong Duality Theorems, 139
strong under-relaxation, 303
subsequential limit point, 122
subspace, 23, 123
subspace decomposition, 42
successive orthogonal projection,

167
successive overrelaxation, 177
super-consistent, 370
surrogate function, 220
SVD, 69
symmetric matrix, 25

T-invariant subspace, 273, 400
Theorems of the Alternative, 132
trace, 35, 423, 435
transmission tomography, 80
transpose, 25
transpose of a matrix, 32
Triangle Inequality, 34, 91
Tukey, 395
two-norm, 49, 65

unbiased, 422
under-determined linear system, 41
unitary matrix, 63, 278
upper echelon form, 291
upper Hessenberg matrix, 295
upper triangular matrix, 63

vDFT, 393
vector, 127
vector DFT, 393
vector differentiation, 433



478 Index

vector discrete Fourier transform,
393

vector space, 22

Weak Duality Theorem, 138
white noise, 445

Young’s Inequality, 104

zero-padding, 397


