
Applied Iterative Methods

Charles L. Byrne

January 23, 2007

2

Preface

Much has been written on the theory and applications of iterative algo-
rithms, so any book on the subject must be but a glimpse. The topics
included here are those most familiar to me, and not necessarily those most
familiar to others. Well known algorithms that have been exhaustively dis-
cussed in other books, such as Dantzig’s simplex method, are mentioned
here only in passing, with more attention given to methods, like the EM
algorithm, that are popular within a confined group, but perhaps less fa-
miliar to those outside the group. Over the past two or three decades,
I have had the opportunity to work on the application of mathematical
methods to problems arising in acoustic signal processing, optical imaging
and medical tomography. Many of the problems and algorithms I discuss
here are ones I became familiar with during this work. It is the interplay
between problems and algorithms, how problems can lead to algorithms,
old algorithms and proofs lead to new ones by analogy, and algorithms are
applied to new problems, that fascinates me, and provides the main theme
for this book.

This book is aimed at a fairly broad audience of scientists and engi-
neers. With few exceptions, the problems and algorithms discussed here
are presented in the context of operators on finite-dimensional Euclidean
space, although extension to infinite-dimensional spaces is often possible.

This book is not a textbook, but rather a collection of essays on iter-
ative algorithms and their uses. I have used earlier versions of this book
as the text in a graduate course on numerical linear algebra, concentrat-
ing more on specific algorithms, somewhat on the applications, and less
on the general unifying framework of operators and their properties. I
have also used substantial portions of the book in a graduate class on the
mathematics of medical image reconstruction, with emphasis on likelihood
maximization methods and Fourier inversion. Certain topics in the book
will be appropriate for an undergraduate class, but generally the book is
aimed at a graduate-level audience.

Some of the chapters end with a section devoted to exercises. In ad-
dition, throughout the book there are a number of lemmas given without
proof, with the tacit understanding that the proofs are left as additional

i

ii

exercises for the reader.

Acknowledgments

Over the years, I have had the good fortune to work with many people
who have contributed to my growth as a mathematician. I particularly
wish to thank Francis Sullivan, Ray Fitzgerald, Mike Fiddy, Alan Steele,
Bill Penney, Mike King, Steve Glick, and Yair Censor.

iii

iv

Glossary of Symbols

• RN : the space of N -dimensional real vectors.

• CN : the space of N -dimensional complex vectors.

• J (g)(x): the Jacobian matrix of g at x.

• AT : the transpose of the matrix A.

• A†: the conjugate transpose of the matrix A.

• X : either RN or CN .

• ||x||2: the Euclidean norm of the vector x.

• α: the complex conjugate of scalar α.

• 〈x, y〉: the inner product of x and y.

• x · y: yT x in RN and y†x in CN .

• H = H(a, γ): {x|〈x, a〉 = γ}.

• PCx: the orthogonal projection of x onto the set C.

• P f
Cx: a Bregman projection of x onto C.

• I: the identity matrix.

• S⊥: the set of vectors orthogonal to all vectors in S.

• CS(A): the span of the columns of A.

• NS(A): the null space of A.

• {S, d}: a metric space.

• ||x||: a norm of x.

• ρ(S): the spectral radius of the matrix S.

v

vi

• λmax(S): the largest eigenvalue of Hermitian S.

• Re(z): the real part of the complex number z.

• Im(z): the imaginary part of the complex number z.

• Fix(T): the fixed points of T .

• KL(x, z): Kullback-Leibler distance from x to z.

• α+ = max{α, o}.

• proxγf (·): proximity operator.

• ιC(x): indicator function of the set C.

• int(D): the interior of the set D.

• Ext(C): the extreme points of the set C.

• ∂f(x): subdifferential of f at x.

• mf : Moreau envelope.

• f∗: conjugate function of f .

• Qix: weighted KL projection.

Glossary of Abbreviations

• NR: Newton-Raphson method.

• KM: Krasnoselskii-Mann Theorem 5.2

• EKN: Elsner-Koltracht-Neumann Theorem 5.3.

• SVD: singular-value decomposition of a matrix.

• ART: the algebraic reconstruction technique

• sc: strict contraction operator.

• ne: non-expansive operator.

• fne: firmly non-expansive operator.

• ism: inverse strongly monotone operator.

• av: averaged operator.

• pc: paracontractive operator.

• EMML: expectation maximization maximum likelihood method.

• MART: multiplicative ART.

• SMART: simultaneous MART.

• RBI-EMML: rescaled block-iterative EMML.

• RBI-SMART: rescaled block-iterative SMART.

• SOP: successive orthogonal projection method.

• CFP: convex feasibility problem.

• SFP: split feasibility problem.

• SGP: successive generalized projection method.

vii

viii

• CSP: cyclic subgradient projection method.

• AMS: Agmon-Motzkin-Schoenberg algorithm.

• LC: limit cycle.

• DART: double ART.

• CGM: conjugate gradient method.

• MART: multiplicative algebraic reconstruction technique.

• OSEM: ordered subset EM method.

• IPA: interior-point algorithm.

• SIMOP: simultaneous orthogonal projection method.

• BI-ART: block-iterative ART.

• RBI-ART: rescaled block-iterative ART.

• EM-MART: row-action version of EMML.

• REM-MART: rescaled EM-MART.

• JOR: Jacobi over-relaxation.

• SOR: successive over-relaxation.

• GS: Gauss-Seidel method.

• HLWB: Halpern-Lions-Wittman-Bauschke algorithm.

• MSGP: multi-distance SGP method.

• SART: simultaneous ART.

• ET: emission tomography.

• PET: positron emission tomography.

• SPECT: single-photon emission tomography.

• MRI: magnetic-resonance imaging.

• DFT: discrete Fourier transform.

• PDFT: prior DFT method.

• DPDFT: discretized PDFT.

• BLUE: best linear unbiased estimator.

• MAP: maximum a posteriori method.

• MSSFP: multi-set split feasibility problem.

Contents

I Preliminaries 3

1 Introduction 5
1.1 Dynamical Systems . 6

1.1.1 The Newton-Raphson Algorithm 7
1.1.2 Newton-Raphson and Chaos 8
1.1.3 The Sir Pinski Game 9
1.1.4 The Chaos Game . 9

1.2 Iterative Root-Finding . 10
1.2.1 Computer Division 10

1.3 Iterative Fixed-Point Algorithms 11
1.4 Convergence Theorems . 11
1.5 Positivity Constraints . 11
1.6 Fundamental Concepts . 12

2 Background 13
2.1 Iterative Algorithms and their Applications 13
2.2 The Basic Inverse Problem 14
2.3 Some Applications . 14

2.3.1 Transmission Tomography 15
2.3.2 Emission Tomography 16
2.3.3 Array Processing . 16
2.3.4 Optical Imaging and the Phase Problem 17
2.3.5 Magnetic-Resonance Imaging 17
2.3.6 Intensity-Modulated Radiation Therapy 17
2.3.7 Hyperspectral Imaging 17
2.3.8 Discrimination and Classification 18

2.4 The Urn Model . 18
2.4.1 The Model . 18
2.4.2 The Case of SPECT 19
2.4.3 The Case of PET . 19
2.4.4 The Case of Transmission Tomography 20

ix

x CONTENTS

3 Basic Concepts 21
3.1 The Geometry of Euclidean Space 21

3.1.1 Inner Products . 21
3.1.2 Cauchy’s Inequality 23

3.2 Hyperplanes in Euclidean Space 24
3.3 Convex Sets in Euclidean Space 24
3.4 Basic Linear Algebra . 25

3.4.1 Bases . 25
3.4.2 Systems of Linear Equations 26
3.4.3 Real and Complex Systems of Linear Equations . . . 27
3.4.4 The Fundamental Subspaces 28

3.5 Linear and Nonlinear Operators 29
3.5.1 Linear and Affine Linear Operators 29
3.5.2 Orthogonal Projection onto Convex Sets 30
3.5.3 Gradient Operators 32

3.6 Exercises . 33

4 Metric Spaces and Norms 35
4.1 Metric Spaces . 35
4.2 Analysis in Metric Space . 36
4.3 Norms . 37

4.3.1 Some Common Norms on X 37
4.4 Eigenvalues and Eigenvectors 38

4.4.1 The Singular-Value Decomposition 39
4.4.2 An Upper Bound for the Singular Values of A 40

4.5 Matrix Norms . 42
4.5.1 Induced Matrix Norms 42
4.5.2 Condition Number of a Square Matrix 43
4.5.3 Some Examples of Induced Matrix Norms 43
4.5.4 The Euclidean Norm of a Square Matrix 45
4.5.5 Diagonalizable Matrices 46
4.5.6 Gerschgorin’s Theorem 47
4.5.7 Strictly Diagonally Dominant Matrices 47

4.6 Exercises . 47

II Overview 49

5 Operators 51
5.1 Operators . 51
5.2 Two Useful Identities . 52
5.3 Strict Contractions . 52
5.4 Orthogonal Projection Operators 53

5.4.1 Properties of the Operator PC 54

CONTENTS xi

5.5 Averaged Operators . 55
5.5.1 Gradient Operators 56
5.5.2 The Krasnoselskii/Mann Theorem 57

5.6 Affine Linear Operators . 57
5.6.1 The Hermitian Case 58

5.7 Paracontractive Operators 58
5.7.1 Linear and Affine Paracontractions 59
5.7.2 The Elsner/Koltracht/Neumann Theorem 60

5.8 Exercises . 61

6 Problems and Algorithms 63
6.1 Systems of Linear Equations 63

6.1.1 Exact Solutions . 64
6.1.2 Optimization and Approximate Solutions 65
6.1.3 Approximate Solutions and the Nonnegativity Con-

straint . 66
6.1.4 Splitting Methods 67

6.2 Positive Solutions of Linear Equations 67
6.2.1 Cross-Entropy . 67
6.2.2 The EMML and SMART algorithms 68
6.2.3 Acceleration . 68
6.2.4 Entropic Projections onto Hyperplanes 68

6.3 Sensitivity to Noise . 69
6.3.1 Norm Constraints 69

6.4 Convex Sets as Constraints 70
6.4.1 The Convex Feasibility Problem 70
6.4.2 Constrained Optimization 70
6.4.3 Proximity Function Minimization 70
6.4.4 The Moreau Envelope and Proximity Operators . . . 70
6.4.5 The Split Feasibility Problem 71

6.5 Algorithms Based on Orthogonal Projection 71
6.5.1 Projecting onto the Intersection of Convex Sets . . . 73

6.6 Steepest Descent Minimization 73
6.6.1 Fixed Step-Length Methods 73
6.6.2 Employing Positivity 74
6.6.3 Constrained Optimization 75

6.7 Bregman Projections and the SGP 75
6.7.1 Bregman’s Approach to Linear Programming 76
6.7.2 The Multiple-Distance SGP (MSGP) 76

6.8 Applications . 76

xii CONTENTS

III Operators 79

7 Averaged and Paracontractive Operators 81
7.1 Solving Linear Systems of Equations 81

7.1.1 Landweber’s Algorithm 82
7.1.2 Splitting Algorithms 82

7.2 Averaged Operators . 83
7.2.1 General Properties of Averaged Operators 83
7.2.2 Averaged Linear Operators 85
7.2.3 Hermitian Linear Operators 86

7.3 Paracontractive Operators 87
7.3.1 Paracontractions and Convex Feasibility 87

7.4 Linear and Affine Paracontractions 88
7.4.1 Back-propagation-of-error Methods 89
7.4.2 Defining the Norm 89
7.4.3 Proof of Convergence 90

7.5 Other Classes of Operators 92

IV Algorithms 93

8 The Algebraic Reconstruction Technique 95
8.1 The ART . 96

8.1.1 Calculating the ART 96
8.1.2 Full-cycle ART . 97
8.1.3 Relaxed ART . 97
8.1.4 Constrained ART . 97

8.2 When Ax = b Has Solutions 98
8.3 When Ax = b Has No Solutions 99

8.3.1 Subsequential Convergence of ART 99
8.3.2 The Geometric Least-Squares Solution 100

8.4 Regularized ART . 101
8.5 Avoiding the Limit Cycle 102

8.5.1 Double ART (DART) 102
8.5.2 Strongly Underrelaxed ART 102

9 Simultaneous and Block-iterative ART 105
9.1 Cimmino’s Algorithm . 105
9.2 The Landweber Algorithms 106

9.2.1 Finding the Optimum γ 106
9.2.2 The Projected Landweber Algorithm 108

9.3 The Block-Iterative ART 108
9.4 The Rescaled Block-Iterative ART 109
9.5 Convergence of the RBI-ART 109

CONTENTS xiii

9.6 Using Sparseness . 110

10 Jacobi and Gauss-Seidel Methods 111
10.1 The Jacobi and Gauss-Seidel Methods: An Example 111
10.2 Splitting Methods . 112
10.3 Some Examples of Splitting Methods 113
10.4 Jacobi’s Algorithm and JOR 114

10.4.1 The JOR in the Nonnegative-definite Case 115
10.5 The Gauss-Seidel Algorithm and SOR 116

10.5.1 The Nonnegative-Definite Case 116
10.5.2 Successive Overrelaxation 118
10.5.3 The SOR for Nonnegative-Definite S 118

11 Conjugate-Direction Methods in Optimization 121
11.1 Iterative Minimization . 121
11.2 Quadratic Optimization . 122
11.3 Conjugate Bases for RJ . 125

11.3.1 Conjugate Directions 125
11.3.2 The Gram-Schmidt Method 126

11.4 The Conjugate Gradient Method 127

V Positivity in Linear Systems 131

12 The Multiplicative ART (MART) 133
12.1 A Special Case of MART 133
12.2 MART in the General Case 134
12.3 ART and MART as Sequential Projection Methods 135

12.3.1 Cross-Entropy or the Kullback-Leibler Distance . . . 135
12.3.2 Weighted KL Projections 137

12.4 Proof of Convergence for MART 138
12.5 Comments on the Rate of Convergence of MART 139

13 Rescaled Block-Iterative (RBI) Methods 141
13.1 Overview . 141

13.1.1 The SMART and its variants 141
13.1.2 The EMML and its variants 142
13.1.3 Block-iterative Versions of SMART and EMML . . . 143
13.1.4 Basic assumptions 143

13.2 The SMART and the EMML method 143
13.3 Ordered-Subset Versions . 146
13.4 The RBI-SMART . 147
13.5 The RBI-EMML . 151
13.6 RBI-SMART and Entropy Maximization 154

xiv CONTENTS

VI Stability 157

14 Sensitivity to Noise 159
14.1 Where Does Sensitivity Come From? 159

14.1.1 The Singular-Value Decomposition of A 160
14.1.2 The Inverse of Q = A†A 160
14.1.3 Reducing the Sensitivity to Noise 161

14.2 Iterative Regularization . 163
14.2.1 Iterative Regularization with Landweber’s Algorithm 163

14.3 A Bayesian View of Reconstruction 164
14.4 The Gamma Prior Distribution for x 165
14.5 The One-Step-Late Alternative 166
14.6 Regularizing the SMART 167
14.7 De Pierro’s Surrogate-Function Method 167
14.8 Block-Iterative Regularization 169

15 Feedback in Block-Iterative Reconstruction 171
15.1 Feedback in ART . 172
15.2 Feedback in RBI methods 172

15.2.1 The RBI-SMART 173
15.2.2 The RBI-EMML . 177

VII Optimization 179

16 Iterative Optimization 181
16.1 Functions of a Single Real Variable 181
16.2 Functions of Several Real Variables 182

16.2.1 Cauchy’s Inequality for the Dot Product 182
16.2.2 Directional Derivatives 182
16.2.3 Constrained Minimization 183
16.2.4 An Example . 184

16.3 Gradient Descent Optimization 185
16.4 The Newton-Raphson Approach 186

16.4.1 Functions of a Single Variable 186
16.4.2 Functions of Several Variables 186

16.5 Other Approaches . 187

17 Convex Sets and Convex Functions 189
17.1 Optimizing Functions of a Single Real Variable 189

17.1.1 The Convex Case . 190
17.2 Optimizing Functions of Several Real Variables 193

17.2.1 The Convex Case . 194
17.3 Convex Feasibility . 198

CONTENTS xv

17.3.1 The CFP in Linear Programming 198
17.3.2 The SOP for Hyperplanes 198
17.3.3 The SOP for Half-Spaces 199
17.3.4 The SOP when C is empty 199

17.4 Optimization over a Convex Set 200
17.4.1 Linear Optimization over a Convex Set 201

17.5 Geometry of Convex Sets 201
17.6 Projecting onto Convex Level Sets 202
17.7 Projecting onto the Intersection of Convex Sets 203

17.7.1 A Motivating Lemma 203
17.7.2 Dykstra’s Algorithm 203
17.7.3 The Halpern-Lions-Wittmann-Bauschke Algorithm . 204

18 Generalized Projections onto Convex Sets 205
18.1 Bregman Functions and Bregman Distances 205
18.2 The Successive Generalized Projections Algorithm 206
18.3 Bregman’s Primal-Dual Algorithm 207
18.4 Dykstra’s Algorithm for Bregman Projections 208

18.4.1 A Helpful Lemma 208

19 The Split Feasibility Problem 211
19.1 The CQ Algorithm . 211
19.2 Particular Cases of the CQ Algorithm 213

19.2.1 The Landweber algorithm 213
19.2.2 The Projected Landweber Algorithm 213
19.2.3 Convergence of the Landweber Algorithms 213
19.2.4 The Simultaneous ART (SART) 214
19.2.5 Application of the CQ Algorithm in Dynamic ET . . 215
19.2.6 Related Methods . 216

20 Non-smooth Optimization 217
20.1 Moreau’s Proximity Operators 217
20.2 Forward-Backward Splitting 219
20.3 Proximity Operators using Bregman Distances 220
20.4 The Interior-Point Algorithm (IPA) 222
20.5 Computing the Iterates . 223
20.6 Some Examples . 224

20.6.1 Minimizing KL(Px, y) over x ≥ 0 224
20.6.2 Minimizing KL(Px, y) with bounds on x 225

21 An Interior-Point Optimization Method 227
21.1 Multiprojection Successive Generalized Projection 227
21.2 An Interior-Point Algorithm (IPA) 228
21.3 The MSGP Algorithm . 228

xvi CONTENTS

21.3.1 Assumptions and Notation 228
21.3.2 The MSGP Algorithm 229
21.3.3 A Preliminary Result 229
21.3.4 The MSGP Convergence Theorem 229

21.4 The Interior-Point Algorithm for Iterative Optimization . . 231
21.4.1 Assumptions . 231
21.4.2 The IPA . 232
21.4.3 Motivating the IPA 232

22 Linear and Convex Programming 233
22.1 Primal and Dual Problems 233

22.1.1 Canonical and Standard Forms 233
22.1.2 Weak Duality . 234
22.1.3 Strong Duality . 234

22.2 The Simplex Method . 238
22.3 Convex Programming . 238

22.3.1 An Example . 239
22.3.2 An Iterative Algorithm for the Dual Problem 239

23 Systems of Linear Inequalities 241
23.1 Projection onto Convex Sets 241
23.2 Solving Ax = b . 244

23.2.1 When the System Ax = b is Consistent 244
23.2.2 When the System Ax = b is Inconsistent 245

23.3 The Agmon-Motzkin-Schoenberg algorithm 247
23.3.1 When Ax ≥ b is Consistent 248
23.3.2 When Ax ≥ b is Inconsistent 249

24 Constrained Iteration Methods 253
24.1 Modifying the KL distance 253
24.2 The ABMART Algorithm 254
24.3 The ABEMML Algorithm 255

25 Fourier Transform Estimation 257
25.1 The Limited-Fourier-Data Problem 257
25.2 Minimum-Norm Estimation 258

25.2.1 The Minimum-Norm Solution of Ax = b 258
25.2.2 Minimum-Weighted-Norm Solution of Ax = b 259

25.3 Fourier-Transform Data . 260
25.3.1 The Minimum-Norm Estimate 261
25.3.2 Minimum-Weighted-Norm Estimates 262
25.3.3 Implementing the PDFT 263

25.4 The Discrete PDFT (DPDFT) 263
25.4.1 Calculating the DPDFT 264

CONTENTS xvii

25.4.2 Regularization . 264

VIII Applications 265

26 Tomography 267
26.1 X-ray Transmission Tomography 267

26.1.1 The Exponential-Decay Model 268
26.1.2 Reconstruction from Line Integrals 269
26.1.3 The Algebraic Approach 270

26.2 Emission Tomography . 271
26.2.1 Maximum-Likelihood Parameter Estimation 272

26.3 Image Reconstruction in Tomography 272

27 Intensity-Modulated Radiation Therapy 275
27.1 The Extended CQ Algorithm 275
27.2 Intensity-Modulated Radiation Therapy 276
27.3 Equivalent Uniform Dosage Functions 276
27.4 The Algorithm . 277

28 Magnetic-Resonance Imaging 279
28.1 An Overview of MRI . 279
28.2 Alignment . 280
28.3 Slice Isolation . 280
28.4 Tipping . 280
28.5 Imaging . 281

28.5.1 The Line-Integral Approach 281
28.5.2 Phase Encoding . 282

28.6 The General Formulation 282
28.7 The Received Signal . 283

28.7.1 An Example of G(t) 284
28.7.2 Another Example of G(t) 284

29 Hyperspectral Imaging 287
29.1 Spectral Component Dispersion 287
29.2 A Single Point Source . 288
29.3 Multiple Point Sources . 289
29.4 Solving the Mixture Problem 290

30 Planewave Propagation 291
30.1 Transmission and Remote-Sensing 291
30.2 The Transmission Problem 292
30.3 Reciprocity . 293
30.4 Remote Sensing . 293
30.5 The Wave Equation . 293

xviii CONTENTS

30.6 Planewave Solutions . 294
30.7 Superposition and the Fourier Transform 295

30.7.1 The Spherical Model 295
30.8 Sensor Arrays . 296

30.8.1 The Two-Dimensional Array 296
30.8.2 The One-Dimensional Array 296
30.8.3 Limited Aperture . 297

30.9 The Remote-Sensing Problem 297
30.9.1 The Solar-Emission Problem 297

30.10Sampling . 298
30.11The Limited-Aperture Problem 299
30.12Resolution . 299

30.12.1The Solar-Emission Problem Revisited 300
30.13Discrete Data . 301

30.13.1Reconstruction from Samples 302
30.14The Finite-Data Problem 303
30.15Functions of Several Variables 303

30.15.1Two-Dimensional Farfield Object 303
30.15.2Limited Apertures in Two Dimensions 304

30.16Broadband Signals . 304

31 Inverse Problems and the Laplace Transform 307
31.1 The Laplace Transform and the Ozone Layer 307

31.1.1 The Laplace Transform 307
31.1.2 Scattering of Ultraviolet Radiation 307
31.1.3 Measuring the Scattered Intensity 308
31.1.4 The Laplace Transform Data 308

31.2 The Laplace Transform and Energy Spectral Estimation . . 309
31.2.1 The attenuation coefficient function 309
31.2.2 The absorption function as a Laplace transform . . . 309

32 Detection and Classification 311
32.1 Estimation . 312

32.1.1 The simplest case: a constant in noise 312
32.1.2 A known signal vector in noise 312
32.1.3 Multiple signals in noise 313

32.2 Detection . 314
32.2.1 Parameterized signal 314

32.3 Discrimination . 316
32.3.1 Channelized Observers 316
32.3.2 An Example of Discrimination 317

32.4 Classification . 317
32.4.1 The Training Stage 317
32.4.2 Our Example Again 318

CONTENTS xix

32.5 More realistic models . 318
32.5.1 The Fisher linear discriminant 319

IX Appendicies 321

33 Bregman-Legendre Functions 323
33.1 Essential Smoothness and Essential Strict Convexity 323
33.2 Bregman Projections onto Closed Convex Sets 324
33.3 Bregman-Legendre Functions 325
33.4 Useful Results about Bregman-Legendre Functions 325

34 Bregman-Paracontractive Operators 327
34.1 Bregman Paracontractions 327

34.1.1 Entropic Projections 328
34.1.2 Weighted Entropic Projections 329

34.2 Extending the EKN Theorem 330
34.3 Multiple Bregman Distances 331

34.3.1 Assumptions and Notation 331
34.3.2 The Algorithm . 331
34.3.3 A Preliminary Result 331
34.3.4 Convergence of the Algorithm 332

35 The Fourier Transform 333
35.1 Fourier-Transform Pairs . 333

35.1.1 Reconstructing from Fourier-Transform Data 333
35.1.2 Functions in the Schwartz class 334
35.1.3 An Example . 335
35.1.4 The Issue of Units 335

35.2 The Dirac Delta . 335
35.3 Practical Limitations . 336

35.3.1 Convolution Filtering 337
35.3.2 Low-Pass Filtering 338

35.4 Two-Dimensional Fourier Transforms 339
35.4.1 Two-Dimensional Fourier Inversion 339

36 The EM Algorithm 341
36.1 The Discrete Case . 341
36.2 The Continuous Case . 343

36.2.1 An Example . 344

CONTENTS 1

37 Using Prior Knowledge in Remote Sensing 345
37.1 The Optimization Approach 345
37.2 Introduction to Hilbert Space 346

37.2.1 Minimum-Norm Solutions 347
37.3 A Class of Inner Products 348
37.4 Minimum-T -Norm Solutions 348
37.5 The Case of Fourier-Transform Data 349

37.5.1 The L2(−π, π) Case 349
37.5.2 The Over-Sampled Case 349
37.5.3 Using a Prior Estimate of f 350

38 Optimization in Remote Sensing 353
38.1 The General Form of the Cost Function 353
38.2 The Conditions . 354

Bibliography 355

Index 371

2 CONTENTS

Part I

Preliminaries

3

Chapter 1

Introduction

VALENTINE: What she’s doing is, every time she works out a value for y,
she’s using that as her next value for x. And so on. Like a feedback. She’s
feeding the solution into the equation, and then solving it again. Iteration,
you see. ... This thing works for any phenomenon which eats its own
numbers.

HANNAH: What I don’t understand is... why nobody did this feedback
thing before- it’s not like relativity, you don’t have to be Einstein.

VALENTINE: You couldn’t see to look before. The electronic calculator
was what the telescope was for Galileo.

HANNAH: Calculator?

VALENTINE: There wasn’t enough time before. There weren’t enough
pencils. ... Now she’d only have to press a button, the same button, over
and over. Iteration. ... And so boring!

HANNAH: Do you mean that was the only problem? Enough time? And
paper? And the boredom?

VALENTINE: Well, the other thing is, you’d have to be insane.

Arcadia (Act 1, Scene 4), by Tom Stoppard

5

6 CHAPTER 1. INTRODUCTION

A typical iterative algorithm (the name comes from the Latin word
iterum, meaning “again”) involves a relatively simple calculation, per-
formed repeatedly. An iterative method produces a sequence of approx-
imate answers that, in the best case, converges to the solution of the prob-
lem. The idea of using iterative procedures for solving problems is an
ancient one. Archimedes’ use of the areas of inscribed and circumscribed
regular polygons to estimate the area of a circle is a famous instance of an
iterative procedure, as is his method of exhaustion for finding the area of
a section of a parabola.

The well known formula for solving a quadratic equation produces the
answer in a finite number of calculations; it is a non-iterative method, if we
are willing to accept a square-root symbol in our answer. Similarly, Gauss
elimination gives the solution to a system of linear equations, if there is one,
in a finite number of steps; it, too, is a non-iterative method. The bisection
method for root-finding is an iterative method. Some iterative sequences
arise not from algorithms but from discrete models of continuous systems.
The study of dynamical systems provides several interesting examples.

1.1 Dynamical Systems

The characters in Stoppard’s play are discussing the apparent anticipa-
tion, by a (fictional) teenage girl in 1809, of the essential role of iterative
algorithms in chaos theory and fractal geometry.

To illustrate the role of iteration in chaos theory, consider the simplest
differential equation describing population dynamics:

p′(t) = ap(t), (1.1)

with exponential solutions. More realistic models impose limits to growth,
and may take the form

p′(t) = a(L− p(t))p(t), (1.2)

where L is an asymptotic limit for p(t). Discrete versions of the limited-
population problem then have the form

xk+1 − xk = a(L− xk)xk, (1.3)

which, for zk = a
1+aLxk, can be written as

zk+1 = r(1− zk)zk; (1.4)

we shall assume that r = 1 + aL > 1. With Tz = r(1 − z)z = f(z) and
zk+1 = Tzk, we are interested in the behavior of the sequence, as a function
of r.

1.1. DYNAMICAL SYSTEMS 7

The operator T has fixed points at z∗ = 0 and z∗ = 1, for every value
of r, and another fixed point at z∗ = 1− 1

r , if r > 1. From the Mean-Value
Theorem we know that

z∗ − zk+1 = f(z∗)− f(zk) = f ′(ck)(z∗ − zk), (1.5)

for some ck between z∗ and zk. If zk is sufficiently close to z∗, then ck will
be even closer to z∗ and f ′(ck) can be approximated by f ′(z∗).

A fixed point z∗ of f(z) is said to be stable if |f ′(z∗)| < 1. The fixed
point z∗ = 0 is stable if r < 1, while z∗ = 1 − 1

r is stable if 1 < r < 3.
When z∗ is a stable fixed point, and zk is sufficiently close to z∗, we have

|z∗ − zk+1| < |z∗ − zk|, (1.6)

so we get closer to z∗ with each iterative step. Such a fixed point is attrac-
tive. In fact, if r = 2, z∗ = 1 − 1

r = 1
2 is superstable and convergence is

quite rapid, since f ′(1
2) = 0. What happens for r > 3 is more interesting.

Using the change of variable x = −rz + r
2 , the iteration in Equation

(1.4) becomes

xk+1 = x2
k + (

r

2
− r2

4
), (1.7)

and the fixed points become x∗ = − r
2 and x∗ = 1 + r

2 .
For r = 4 there is a starting point x0 for which the iterates are periodic

of period three, which implies, according to the results of Li and Yorke,
that there are periodic orbits of all periods [121]. Using Equation (1.7),
the iteration for r = 4 can be written as

xk+1 = x2
k − 2. (1.8)

In [22] Burger and Starbird illustrate the sensitivity of this iterative scheme
to the choice of x0 by comparing, for k = 1, ..., 50, the computed values of
xk for x0 = 0.5 with those for x0 = 0.50001. For r > 4 the set of starting
points in [0, 1] for which the sequence of iterates never leaves [0, 1] is a
Cantor set, which is a fractal. The book by Devaney [79] gives a rigorous
treatment of these topics; Young’s book [154] contains a more elementary
discussion of some of the same notions.

1.1.1 The Newton-Raphson Algorithm

The well known Newton-Raphson (NR) iterative algorithm is used to find
a root of a function g : R → R.

Algorithm 1.1 (Newton-Raphson) Let x0 ∈ R be arbitrary. Having
calculated xk, let

xk+1 = xk − g(xk)/g′(xk). (1.9)

8 CHAPTER 1. INTRODUCTION

The operator T is now the ordinary function

Tx = x− g(x)/g′(x). (1.10)

If g is a vector-valued function, g : RJ → RJ , then g(x) has the form
g(x) = (g1(x), ..., gJ(x))T , where gj : RJ → R are the component functions
of g(x). The NR algorithm is then as follows:

Algorithm 1.2 (Newton-Raphson) Let x0 ∈ RJ be arbitrary. Having
calculated xk, let

xk+1 = xk − [J (g)(xk)]−1g(xk). (1.11)

Here J (g)(x) is the Jacobian matrix of first partial derivatives of the com-
ponent functions of g; that is, its entries are ∂gm

∂xj
(x). The operator T is

now

Tx = x− [J (g)(x)]−1g(x). (1.12)

Convergence of the NR algorithm is not guaranteed and depends on the
starting point being sufficiently close to a solution. When it does converge,
however, it does so fairly rapidly. In both the scalar and vector cases, the
limit is a fixed point of T , and therefore a root of g(x).

1.1.2 Newton-Raphson and Chaos

It is interesting to consider how the behavior of the NR iteration depends
on the starting point.

A Simple Case

The complex-valued function f(z) = z2 − 1 of the complex variable z has
two roots, z = 1 and z = −1. The NR method for finding a root now has
the iterative step

zk+1 = Tzk =
zk

2
+

1
2zk

. (1.13)

If z0 is selected closer to z = 1 than to z = −1 then the iterative
sequence converges to z = 1; similarly, if z0 is closer to z = −1, the limit is
z = −1. If z0 is on the vertical axis of points with real part equal to zero,
then the sequence does not converge, and is not even defined for z0 = 0.
This axis separates the two basins of attraction of the algorithm.

1.1. DYNAMICAL SYSTEMS 9

A Not-So-Simple Case

Now consider the function f(z) = z3 − 1, which has the three roots z = 1,
z = ω = e2πi/3, and z = ω2 = e4πi/3. The NR method for finding a root
now has the iterative step

zk+1 = Tzk =
2zk

3
+

1
3z2

k

. (1.14)

Where are the basins of attraction now? Is the complex plane divided up
as three people would divide a pizza, into three wedge-shaped slices, each
containing one of the roots? Far from it. In fact, it can be shown that,
if the sequence starting at z0 = a converges to z = 1 and the sequence
starting at z0 = b converges to ω, then there is a starting point z0 = c,
closer to a than b is, whose sequence converges to ω2. For more details
and beautiful colored pictures illustrating this remarkable behavior, see
Schroeder’s delightful book [140].

1.1.3 The Sir Pinski Game

In [140] Schroeder discusses several iterative sequences that lead to fractal
or chaotic behavior. The Sir Pinski Game has the following rules. Let P0

be a point chosen arbitrarily within the interior of the equilateral triangle
with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1). Let V be the vertex closest to
P0 and P1 chosen so that P0 is the midpoint of the line segment V P1.
Repeat the process, with P1 in place of P0. The game is lost when Pn falls
outside the original triangle. The objective of the game is to select P0 that
will allow the player to win the game. Where are these winning points?

The inverse Sir Pinski Game is similar. Select any point P0 in the
plane of the equilateral triangle, let V be the most distance vertex, and P1

the midpoint of the line segment P0V . Replace P0 with P1 and repeat the
procedure. The resulting sequence of points is convergent. Which points
are limit points of sequences obtained in this way?

1.1.4 The Chaos Game

Schroeder also mentions Barnsley’s Chaos Game. Select P0 inside the equi-
lateral triangle. Roll a fair die and let V = (1, 0, 0) if 1 or 2 is rolled,
V = (0, 1, 0) if 3 or 4 is rolled, and V = (0, 0, 1) if 5 or 6 is rolled. Let
P1 again be the midpoint of V P0. Replace P0 with P1 and repeat the
procedure. Which points are limits of such sequences of points?

10 CHAPTER 1. INTRODUCTION

1.2 Iterative Root-Finding

A good example of an iterative algorithm is the bi-section method for finding
a root of a real-valued continuous function f(x) of the real variable x: begin
with an interval [a, b] such that f(a)f(b) < 0 and then replace one of the
endpoints with the average a+b

2 , maintaining the negative product. The
length of each interval so constructed is half the length of the previous
interval and each interval contains a root. In the limit, the two sequences
defined by the left endpoints and right endpoints converge to the same
root. The bisection approach can be used to calculate

√
2, by finding

a positive root of the function f(x) = x2 − 2, or to solve the equation
tanx = x, by finding a root of the function f(x) = x − tanx. It can also
be used to optimize a function F (x), by finding the roots of its derivative,
f(x) = F ′(x).

Iterative algorithms are used to solve problems for which there is no
non-iterative solution method, such as the two just mentioned, as well as
problems for which non-iterative methods are impractical, such as using
Gauss elimination to solve a system of thousands of linear equations in
thousands of unknowns. If our goal is to minimize F (x), we may choose
an iterative algorithm, such as steepest descent, that generates an iterative
sequence {xk}, k = 0, 1, ..., that, in the best cases, at least, will converge
to a minimizer of F (x).

1.2.1 Computer Division

Iterative algorithms that use only addition, subtraction and multiplication
can be designed to perform division. The solution of the equation ax = b
is x = b/a. We can solve this equation by minimizing the function f(x) =
1
2 (ax− b)2, using the iterative sequence

xk+1 = xk + (b− axk).

Since, in the binary system, multiplication by powers of two is easily im-
plemented as a shift, we assume that the equation has been re-scaled so
that 1

2 ≤ a < 1. Then, the operator Tx = x + (b − ax) is an affine linear
function and a strict contraction:

|Tx− Ty| = (1− a)|x− y|,

for any x and y. Convergence of the iterative sequence to a fixed point
of T is a consequence of the Banach-Picard Theorem [81], also called the
Contraction Mapping Theorem. A fixed point of T satisfies Tx = x, or
x = x + (b − ax), so must be the quotient, x = b/a. As we shall see
later, the iterative sequence is also an instance of the Landweber method
for solving systems of linear equations.

1.3. ITERATIVE FIXED-POINT ALGORITHMS 11

1.3 Iterative Fixed-Point Algorithms

Iterative algorithms are often formulated as fixed-point methods: the equa-
tion f(x) = 0 is equivalent to x = f(x) + x = g(x), so we may try to
find a fixed point of g(x), that is, an x for which g(x) = x. The iterative
algorithms we discuss take the form xk+1 = Txk, where T is some (usually
nonlinear) continuous operator on the space RJ of J-dimensional real vec-
tors, or CJ , the space of J-dimensional complex vectors. If the sequence
{T kx0} converges to x∗, then Tx∗ = x∗, that is, x∗ is a fixed point of T . In
order to discuss convergence of a sequence of vectors, we need a measure
of distance between vectors. A vector norm is one such distance, but there
are other useful distances, such as the Kullback-Leibler, or cross-entropy
distance.

1.4 Convergence Theorems

To be sure that the sequence {T kx0} converges, we need to know that T
has fixed points, but we need more than that. Most of the operators T
that we shall encounter fall into two broad classes, those that are averaged,
non-expansive with respect to the Euclidean vector norm, and those that
are paracontractive with respect to some vector norm. Convergence for
the first class of operators is a consequence of the Krasnoselskii/Mann
(KM) Theorem 5.2, and the Elsner/Koltracht/Neumann (EKN) Theorem
5.3 establishes convergence for the second class. The definitions of these
classes are derived from basic properties of orthogonal projection operators,
which are members of both classes.

1.5 Positivity Constraints

In many remote-sensing applications, the object sought is naturally repre-
sented as a nonnegative function or a vector with nonnegative entries. For
such problems, we can incorporate nonnegativity in the algorithms through
the use of projections with respect to entropy-based distances. These algo-
rithms are often developed by analogy with those methods using orthogonal
projections. As we shall see, this analogy can often be further exploited to
derive convergence theorems. The cross-entropy, or Kullback-Leibler (KL),
distance is just one example of a Bregman distance. The KL distance ex-
hibits several convenient properties that are reminiscent of the Euclidean
distance, making it a useful tool in extending linear algorithms for general
vector variables to non-linear algorithms for positively constrained vari-
ables. The notion of an operator being paracontractive, with respect to a
norm, can be extended to being paracontractive, with respect to a Breg-
man distance. Bregman projections onto convex sets are paracontractive in

12 CHAPTER 1. INTRODUCTION

this generalized sense, as are many of the operators of interest. The EKN
Theorem and many of its corollaries can be extended to operators that are
paracontractive, with respect to Bregman distances.

1.6 Fundamental Concepts

Although the object function of interest is often a function of one or more
continuous variables, it may be necessary to discretize the problem, and to
represent that function as a finite-dimensional real or complex vector, that
is, as a member of RJ or CJ . When we impose a norm on the spaces RJ

and CJ we make them metric spaces. The basic properties of such metric
spaces are important in our analysis of the behavior of iterative algorithms.
It is often the case that the data we have measured is related to the ob-
ject function in a linear manner. Consequently, the estimation procedure
will involve solving a system of linear equations, sometimes inconsistent,
and usually quite large. There may also be constraints, such as positivity,
imposed on the solution. For these reasons, the fundamentals of linear al-
gebra, including matrix norms and eigenvalues, will also play an important
role.

We begin with a discussion of the basic properties of finite-dimensional
spaces and the fundamentals of linear algebra. Then we turn to an overview
of operators and the mathematical problems and algorithms to be treated
in more detail in subsequent chapters.

Chapter 2

Background

We sketch briefly some of the issues we plan to address in the book.

2.1 Iterative Algorithms and their Applica-
tions

Iterative algorithms are playing an increasing prominent role in a variety of
applications where it is necessary to solve large systems of linear equations,
often with side constraints on the unknowns, or to optimize functions of
many variables. Such mathematical problems arise in many remote-sensing
applications, such as sonar, radar, radio astronomy, optical and hyperspec-
tral imaging, transmission and emission tomography, magnetic-resonance
imaging, radiation therapy, and so on. We shall be particularly interested
in algorithms that are used to solve such inverse problems.

In the chapters that follow, we present several iterative algorithms and
discuss their theoretical properties. In each case, we attempt to motivate
the algorithm with a brief discussion of applications in which the algorithm
is used. More detailed treatment of the particular applications is left to
later chapters. Whenever it seems helpful to do so, we include, usually
in separate chapters, background material to clarify certain points of the
theoretical discussion. For this purpose, the reader will find early chapters
on basic notions concerning the analysis and geometry of finite-dimensional
Euclidean space, and linear algebra and matrices, as well as later ones on
convex functions and optimization, alternatives to the Euclidean distance,
the Fourier transform, and so on.

One theme of the book is to find unity underlying the different algo-
rithms. Many of the algorithms discussed here are special cases of general
iterative schemes involving one of two types of operators; in such cases,
convergence will follow from the theorems pertaining to the general case.

13

14 CHAPTER 2. BACKGROUND

Some algorithms and their convergence proofs have been discovered by
analogy with other algorithms. We shall see this, in particular, when we
move from algorithms for solving general systems of linear equations, to
solving those with positivity requirements or other constraints, and from
gradient-descent optimization to related methods involving positive-valued
variables.

It usually comes as a bit of a shock to mathematicians, accustomed
to focusing on convergence and limits of iterative sequences, when they
discover that, in practice, iterative algorithms may only be incremented
one or two times. The need to produce usable reconstructions in a short
time is a constraint that is not easily incorporated into the mathematical
treatment of iterative methods, and one that makes the entire enterprize
partly experimental.

2.2 The Basic Inverse Problem

The basic inverse problem is to estimate or reconstruct a object function
from a finite number of measurements pertaining to that function. When
the object function being estimated is a distribution of something, it is
natural to display the estimate in the form of an image. For this reason,
we often speak of these problems as image reconstruction problems. For
example, in passive sonar we estimate the distribution of sources of acoustic
energy in the ocean, based on readings taken at some finite number of
hydrophones. In medical emission tomography we estimate the spatial
(and, perhaps, temporal) distribution of radionuclides within the patient’s
body, based on photon counts at detectors exterior to the patient. These
problems are highly under-determined; even in the absence of noise, the
data are insufficient to specify a single solution. It is common, therefore,
to seek an estimate that minimizes some cost function, subject to data
constraints and other prior information about the object function being
estimated. The cost function may measure the distance from the estimate
to a prior estimate of the object function, or the statistical likelihood,
or the energy in the estimate, or its entropy, and so on. Typically, such
optimization problems can be solved only with iterative algorithms.

2.3 Some Applications

A main theme of this book is the interplay between problems and algo-
rithms. Each application presents a unique set of desiderata and require-
ments. We know, more or less, how the data we have measured relates
to the information we seek, and usually have a decent idea of what an
acceptable solution looks like. Sometimes, general-purpose methods are

2.3. SOME APPLICATIONS 15

satisfactory, while often algorithms tailored to the problem at hand per-
form better. In this section we describe some of the applications to be
treated in more detail later in the book.

2.3.1 Transmission Tomography

In transmission tomography, radiation, usually x-ray, is transmitted along
many lines through the object of interest and the initial and final intensities
are measured. The intensity drop associated with a given line indicates the
amount of attenuation the ray encountered as it passed along the line. It
is this distribution of attenuating matter within the patient, described by
a function of two or three spatial variables, that is the object of interest.
Unexpected absence of attenuation can indicate a break in a bone, for
example. The data are usually modeled as line integrals of that function.
The Radon transform is the function that associates with each line its line
integral.

If we had the line integrals for every line, then we could use that data to
determine the Fourier transform of the attenuation function. In practice,
of course, we have finitely many noisy line-integral values, so finding the
attenuation function using Fourier methods is approximate. Both iterative
and non-iterative methods are used to obtain the final estimate.

The estimated attenuation function will ultimately be reduced to a finite
array of numbers. This discretization can be performed at the end, or can
be made part of the problem model from the start. In the latter case,
the attenuation function is assumed to be constant over small pixels or
voxels; these constants are the object of interest now. The problem has
been reduced to solving a large system of linear equations, possibly subject
to non-negativity or other constraints.

If the physical nature of the radiation is described using a statistical
model, then the pixel values can be viewed as parameters to be estimated.
The well known maximum likelihood parameter estimation method can
then be employed to obtain these pixel values. This involves a large-scale
optimization of the likelihood function.

Because components of the x-ray beam that have higher energies can
be attenuated less, the loss of low-energy components as the beam pro-
ceeds along a line, which is known as beam hardening, may need to be
considered. The Laplace transform connects the energy spectrum of the
x-ray beam to the amount of attenuation produced by a given thickness of
material. Measurements of the attenuation as a function of thickness can
be used to determine the energy spectrum by Laplace-transform inversion.
In similar fashion, measurements of the intensities of ultraviolet light from
the sun that has been scattered by the ozone layer are related by Laplace
transformation to the density of the ozone as a function of altitude and can
be used to estimate that density.

16 CHAPTER 2. BACKGROUND

2.3.2 Emission Tomography

In emission tomography, a carefully designed chemical tagged with a ra-
dioisotope is introduced into the body of the patient. The chemical is
selected to accumulate in a specific organ or region of the body, such as the
brain, or the heart wall. On the basis of emissions from the radioisotope
that are detected outside the body, the distribution of the chemical within
the body is estimated. Unexpected absence of the chemical from a given
region can indicate a medical problem.

There are two basic types of emission tomography: single photon emis-
sion tomography (SPECT); and positron emission tomography (PET). In
SPECT the radioisotope emits a single photon, while in PET a positron
is emitted, which shortly meets an electron and the resulting annihilation
produces two photons traveling in essentially opposite directions.

In both SPECT and PET the data can be viewed as integrals along
a line through the body. However, more sophisticated models that more
accurately describe the physics of the situation are preferred. The photons
that travel through the body toward the external detectors are sometimes
absorbed by the body itself and not detected. The probability of being
detected depends on the attenuation presented by the body. This atten-
uation, while not the object of interest now, is an important part of the
physical model and needs to be included in the reconstruction method. The
randomness inherent in emission can also be included, leading once again
to a maximum likelihood approach to reconstruction.

Although in both transmission and emission medical tomography the
dosage to the patient is restricted, the amount of data is considerable and
the need to produce the reconstructed image in a few minutes paramount.
Much work has gone into methods for accelerating the iterative reconstruc-
tion algorithms.

2.3.3 Array Processing

The term array processing refers to those applications, such as sonar, radar
and astronomy, in which the data are measurements of a propagating
spatio-temporal field, taken in the farfield, using an array of sensors. Plane-
wave solutions to the wave equation are used to model the situation, with
the result that the data so obtained are usually related by Fourier transfor-
mation to the distribution of interest. In some cases, the array is too short
to provide the desired resolution and line-integral models for the data can
be used. Reconstruction then proceeds as in tomography.

The data are finite, while the object of interest is often, at least initially,
viewed as a function of continuous variables; therefore, even in the absence
of noise, no unique solution is specified by the data. Solutions can be
obtained by minimizing a cost function, such as a norm, or entropy, subject

2.3. SOME APPLICATIONS 17

to the data constraints.

2.3.4 Optical Imaging and the Phase Problem

In certain applications of optical imaging, such as imaging through a turbu-
lent atmospheric layer, only the magnitude of the Fourier transform data is
available and the phase information is lost. The problem of reconstructing
the image from magnitude-only Fourier data can be solved using algorithms
that iteratively estimate the missing phases.

2.3.5 Magnetic-Resonance Imaging

When the body is placed inside a strong magnetic field, a small fraction
of the spinning protons in, say, the hydrogen nuclei in water, are induced
to align their spin axes with the external field. When a second magnetic
field perturbs the spin axes, the precession results in a detectable signal,
providing information about the spatial density of the water molecules.
This is magnetic-resonance imaging (MRI).

The detected signals are related to the distribution of interest by means
of the Fourier transform. Which values of the Fourier transform we obtain
depends on the particular magnetic fields activated. In some approaches,
the data are line integrals, as in tomography. Both iterative and non-
iterative methods can be used to obtain the reconstruction.

2.3.6 Intensity-Modulated Radiation Therapy

The problem in intensity-modulated radiation therapy (IMRT) is to deter-
mine the various intensities of radiation to apply to the patient so as to
deliver the desired minimum dosage to the tumor, while not exceeding the
acceptable dosage to nearby parts of the body. Mathematically, the prob-
lem is one of solving a system of linear equations, subject to inequality
constraints involving convex sets. Iterative algorithms developed to solve
the convex feasibility and split feasibility problems can be applied to solve
the IMRT problem.

2.3.7 Hyperspectral Imaging

In hyperspectral imaging the problem is to obtain sub-pixel resolution in
radar imaging through the use of multi-frequency data. The problem is
a mixture problem, which can be solved using methods for reconstructing
from Fourier data, along with iterative procedures for solving large sys-
tems of linear equations, subject to positivity constraints. Similar mixture
problems arise in determining photon-count statistics in optics.

18 CHAPTER 2. BACKGROUND

2.3.8 Discrimination and Classification

Obtaining linear discriminants leads to a system of linear inequalities,
which can be solved using various iterative methods for convex feasibil-
ity.

2.4 The Urn Model

There seems to be a tradition in physics of using simple models involving
urns and marbles to illustrate important principles. In keeping with that
tradition, we have here such a model, to illustrate various aspects of remote
sensing. We begin with the model itself, and then give several examples to
show how the model illustrates randomness in tomography.

Although remote-sensing problems differ from one another in many re-
spects, they often share a fundamental aspect that can best be illustrated
by a simple model involving urns containing colored marbles.

2.4.1 The Model

Suppose that we have J urns numbered j = 1, ..., J , each containing mar-
bles of various colors. Suppose that there are I colors, numbered i = 1, ..., I.
Suppose also that there is a box containing N small pieces of paper, and
on each piece is written the number of one of the J urns. Assume that N
is much larger than J . Assume that I know the precise contents of each
urn. My objective is to determine the precise contents of the box, that
is, to estimate the number of pieces of paper corresponding to each of the
numbers j = 1, ..., J .

Out of my view, my assistant removes one piece of paper from the box,
takes one marble from the indicated urn, announces to me the color of the
marble, and then replaces both the piece of paper and the marble. This
action is repeated many times, at the end of which I have a long list of
colors. This list is my data, from which I must determine the contents of
the box.

This is a form of remote sensing, in that what we have access to is
related to, but not equal to, which we are interested in. Sometimes such
data is called “incomplete data” , in contrast to the “complete data” , which
would be the list of the actual urn numbers drawn from the box.

If all the marbles of one color are in a single urn, the problem is trivial;
when I hear a color, I know immediately which urn contained that marble.
My list of colors is then a list of urn numbers; I have the complete data
now. My estimate of the number of pieces of paper containing the urn
number j is then simply N times the proportion of draws that resulted in
urn j being selected.

2.4. THE URN MODEL 19

At the other extreme, suppose two urns had identical contents. Then
I could not distinguish one urn from the other and would be unable to
estimate more than the total number of pieces of paper containing either
of the two urn numbers.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box.

To introduce some mathematics, let us denote by xj the proportion of
the pieces of paper that have the number j written on them. Let Pij be
the proportion of the marbles in urn j that have the color i. Let yi be the
proportion of times the color i occurs on the list of colors. The expected
proportion of times i occurs on the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
vector with entries xj . A reasonable way to estimate x is to replace E(yi)
with the actual yi and solve the system of linear equations yi =

∑J
j=1 Pijxj ,

i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms, such as the EMML, may be needed to find such
solutions.

2.4.2 The Case of SPECT

In the SPECT case, let there be J pixels or voxels, numbered j = 1, ..., J
and I detectors, numbered i = 1, ..., I. Let Pij be the probability that
a photon emitted at pixel j will be detected at detector i; we assume
these probabilities are known to us. Let yi be the proportion of the total
photon count that was recorded at the ith detector. Denote by xj the
(unknown) proportion of the total photon count that was emitted from
pixel j. Selecting an urn randomly is analogous to selecting which pixel
will be the next to emit a photon. Learning the color of the marble is
analogous to learning where the photon was detected; for simplicity we are
assuming that all emitted photons are detected, but this is not essential.
The data we have, the counts at each detector, constitute the “incomplete
data” ; the “complete data” would be the counts of emissions from each of
the J pixels.

We can determine the xj by finding nonnegative solutions of the system
yi =

∑J
j=1 Pijxj ; this is what the various iterative algorithms, such as

MART, EMML and RBI-EMML, seek to do.

2.4.3 The Case of PET

In the PET case, let there be J pixels or voxels, numbered j = 1, ..., J
and I lines of response (LOR), numbered i = 1, ..., I. Let Pij be the
probability that a positron emitted at pixel j will result in a coincidence
detection associated with LOR i; we assume these probabilities are known
to us. Let yi be the proportion of the total detections that was associated

20 CHAPTER 2. BACKGROUND

with the ith LOR. Denote by xj the (unknown) proportion of the total
count that was due to a positron emitted from pixel j. Selecting an urn
randomly is analogous to selecting which pixel will be the next to emit a
positron. Learning the color of the marble is analogous to learning which
LOR was detected; again, for simplicity we are assuming that all emitted
positrons are detected, but this is not essential. As in the SPECT case,
we can determine the xj by finding nonnegative solutions of the system
yi =

∑J
j=1 Pijxj .

2.4.4 The Case of Transmission Tomography

Assume that x-ray beams are sent along I line segments, numbered i =
1, ..., I, and that the initial strength of each beam is known. By measuring
the final strength, we determine the drop in intensity due to absorption
along the ith line segment. Associated with each line segment we then
have the proportion of transmitted photons that were absorbed, but we
do not know where along the line segment the absorption took place. The
proportion of absorbed photons for each line is our data, and corresponds to
the proportion of each color in the list. The rate of change of the intensity
of the x-ray beam as it passes through the jth pixel is proportional to the
intensity itself, to Pij , the length of the ith segment that is within the jth
pixel, and to xj , the amount of attenuating material present in the jth
pixel. Therefore, the intensity of the x-ray beam leaving the jth pixel is
the product of the intensity of the beam upon entering the jth pixel and
the decay term, e−Pijxj .

The “complete data” is the proportion of photons entering the jth pixel
that were absorbed within it; the “incomplete data” is the proportion of
photons sent along each line segment that were absorbed. Selecting the
jth urn is analogous to having an absorption occurring at the jth pixel.
Knowing that an absorption has occurred along the ith line segment does
tell us that an absorption occurred at one of the pixels that intersections
that line segment, but that is analogous to knowing that there are certain
urns that are the only ones that contain the ith color.

The (measured) intensity of the beam at the end of the ith line segment
is e−(Px)i times the (known) intensity of the beam when it began its journey
along the ith line segment. Taking logs, we obtain a system of linear
equations which we can solve for the xj .

Chapter 3

Basic Concepts

In iterative methods, we begin with an initial vector, say x0, and, for
each nonnegative integer k, we calculate the next vector, xk+1, from the
current vector xk. The limit of such a sequence of vectors {xk}, when the
limit exists, is the desired solution to our problem. The fundamental tools
we need to understand iterative algorithms are the geometric concepts of
distance between vectors and mutual orthogonality of vectors, the algebraic
concept of transformation or operator on vectors, and the vector-space
notions of subspaces and convex sets.

3.1 The Geometry of Euclidean Space

We denote by RJ the real Euclidean space consisting of all J-dimensional
column vectors x = (x1, ..., xJ)T with real entries xj ; here the superscript
T denotes the transpose of the 1 by J matrix (or, row vector) (x1, ..., xJ).
We denote by CJ the collection of all J-dimensional column vectors x =
(x1, ..., xJ)† with complex entries xj ; here the superscript † denotes the
conjugate transpose of the 1 by J matrix (or, row vector) (x1, ..., xJ). When
discussing matters that apply to both RJ and CJ we denote the underlying
space simply as X .

3.1.1 Inner Products

For x = (x1, ..., xJ)T and y = (y1, ..., yJ)T in RJ , the dot product x · y is
defined to be

x · y =
J∑

j=1

xjyj . (3.1)

21

22 CHAPTER 3. BASIC CONCEPTS

Note that we can write

x · y = yT x = xT y, (3.2)

where juxtaposition indicates matrix multiplication. The 2-norm, or Eu-
clidean norm, or Euclidean length, of x is

||x||2 =
√

x · x =
√

xT x. (3.3)

The Euclidean distance between two vectors x and y in RJ is ||x− y||2. As
we discuss in the chapter on metric spaces, there are other norms on X ;
nevertheless, in this chapter we focus on the 2-norm of x.

For x = (x1, ..., xJ)T and y = (y1, ..., yJ)T in CJ , the dot product x · y
is defined to be

x · y =
J∑

j=1

xjyj . (3.4)

Note that we can write

x · y = y†x. (3.5)

The norm, or Euclidean length, of x is

||x||2 =
√

x · x =
√

x†x. (3.6)

As in the real case, the distance between vectors x and y is ||x− y||2.
Both of the spaces RJ and CJ , along with their dot products, are

examples of finite-dimensional Hilbert space. Much of what follows in this
chapter applies to both RJ and CJ . In such cases, we shall simply refer to
the underlying space as X .

Definition 3.1 Let V be a real or complex vector space. The scalar-valued
function 〈u, v〉 is called an inner product on V if the following four prop-
erties hold, for all u, w, and v in V , and scalars c:

〈u + w, v〉 = 〈u, v〉+ 〈w, v〉; (3.7)

〈cu, v〉 = c〈u, v〉; (3.8)

〈v, u〉 = 〈u, v〉; (3.9)

and

〈u, u〉 ≥ 0, (3.10)

with equality in Inequality 3.10 if and only if u = 0.

3.1. THE GEOMETRY OF EUCLIDEAN SPACE 23

The usual real or complex dot product of vectors are examples of inner
products. The properties of an inner product are precisely the ones needed
to prove Cauchy’s Inequality, so that inequality holds for any inner product,
as we shall see shortly. We shall favor the dot product notation u · v for
the inner product of vectors, although we shall occasionally use the matrix
multiplication form, v†u or the inner product notation 〈u, v〉.

3.1.2 Cauchy’s Inequality

Cauchy’s Inequality, also called the Cauchy-Schwarz Inequality, tells us
that

|〈x, y〉| ≤ ||x||2||y||2, (3.11)

with equality if and only if y = αx, for some scalar α. The Cauchy-Schwarz
Inequality holds for any inner product.

Proof of Cauchy’s inequality: To prove Cauchy’s inequality, we write

〈x, y〉 = |〈x, y〉|eiθ. (3.12)

Let t be a real variable and consider

0 ≤ ||e−iθx− ty||22 = 〈e−iθx− ty, e−iθx− ty〉

= ||x||22 − t[〈e−iθx, y〉+ 〈y, e−iθx〉] + t2||y||22

= ||x||22 − t[〈e−iθx, y〉+ 〈e−iθx, y〉] + t2||y||22

= ||x||22 − 2Re(te−iθ〈x, y〉) + t2||y||22

= ||x||22 − 2Re(t|〈x, y〉|) + t2||y||22 = ||x||22 − 2t|〈x, y〉|+ t2||y||22. (3.13)

This is a nonnegative quadratic polynomial in the variable t, so it cannot
have two distinct real roots. Therefore, the discriminant is non-positive,
that is,

4|〈x, y〉|2 − 4||y||22||x||22 ≤ 0, (3.14)

and so

|〈x, y〉|2 ≤ ||x||22||y||22. (3.15)

This is the desired inequality.
A simple application of Cauchy’s inequality gives us

||x + y||2 ≤ ||x||2 + ||y||2; (3.16)

24 CHAPTER 3. BASIC CONCEPTS

this is called the Triangle Inequality. We say that the vectors x and y are
mutually orthogonal if 〈x, y〉 = 0.

The Parallelogram Law is an easy consequence of the definition of the
2-norm:

||x + y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (3.17)

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law hold only for the 2-norm.

3.2 Hyperplanes in Euclidean Space

For a fixed column vector a with Euclidean length one and a fixed scalar γ
the hyperplane determined by a and γ is the set H(a, γ) = {z|〈a, z〉 = γ}.

For an arbitrary vector x in X and arbitrary hyperplane H = H(a, γ),
the orthogonal projection of x onto H is the member z = PHx of H that is
closest to x. For H = H(a, γ), z = PHx is the vector

z = PHx = x + (γ − 〈a, x〉)a. (3.18)

Definition 3.2 A subset H of X is a subspace if, for every x and y in H
and scalars α and β, the linear combination αx + βy is again in H.

For γ = 0, the hyperplane H = H(a, 0) is also a subspace of X ; in partic-
ular, the zero vector 0 is in H(a, 0).

3.3 Convex Sets in Euclidean Space

The notion of a convex set will play an important role in our discussions.

Definition 3.3 A subset C of X is said to be convex if, for every pair of
members x and y of C, and for every α in the open interval (0, 1), the
vector αx + (1− α)y is also in C.

For example, the unit ball U in X , consisting of all x with ||x||2 ≤ 1, is
convex, while the surface of the ball, the set of all x with ||x||2 = 1, is not
convex.

Definition 3.4 A subset B of X is closed if, whenever xk is in B for each
non-negative integer k and ||x− xk|| → 0, as k → +∞, then x is in B.

For example, B = [0, 1] is closed as a subset of R, but B = (0, 1) is not.

Definition 3.5 We say that d ≥ 0 is the distance from the point x to the
set B if, for every ε > 0, there is bε in B, with ||x− bε||2 < d + ε, and no
b in B with ||x− b||2 < d.

3.4. BASIC LINEAR ALGEBRA 25

It follows easily that, if B is closed and d = 0, then x is in B.
The following proposition is fundamental in the study of convexity and

can be found in most books on the subject; see, for example, the text by
Goebel and Reich [91].

Proposition 3.1 Given any nonempty closed convex set C and an arbi-
trary vector x in X , there is a unique member of C closest to x, denoted
PCx, the orthogonal (or metric) projection of x onto C.

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n , and ||x− cn||2 < ||x− cn−1||2. Then
the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x− (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

For example, if C = U , the unit ball, then PCx = x/||x||2, for all x such
that ||x||2 > 1, and PCx = x otherwise. If C is RJ

+, the nonnegative cone
of RJ , consisting of all vectors x with xj ≥ 0, for each j, then PCx = x+,
the vector whose entries are max (xj , 0).

3.4 Basic Linear Algebra

In this section we discuss systems of linear equations, Gaussian elimination,
basic and non-basic variables, the fundamental subspaces of linear algebra
and eigenvalues and norms of square matrices.

3.4.1 Bases

The notions of a basis and of linear independence are fundamental in linear
algebra.

Definition 3.6 A collection of vectors {u1, ..., uN} in X is linearly inde-
pendent if there is no choice of scalars α1, ..., αN , not all zero, such that

0 = α1u
1 + ... + αNuN . (3.19)

Definition 3.7 The span of a collection of vectors {u1, ..., uN} in X is the
set of all vectors x that can be written as linear combinations of the un;
that is, for which there are scalars c1, ..., cN , such that

x = c1u
1 + ... + cNuN . (3.20)

Definition 3.8 A collection of vectors {u1, ..., uN} in X is called a basis
for a subspace S if the collection is linearly independent and S is their span.

26 CHAPTER 3. BASIC CONCEPTS

Definition 3.9 A collection of vectors {u1, ..., uN} in X is called orthonor-
mal if ||un||2 = 1, for all n, and 〈um, un〉 = 0, for m 6= n.

3.4.2 Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 +2x2 +2x4 +x5 = 0
−x1 −x2 +x3 +x4 = 0
x1 +2x2 −3x3 −x4 −2x5 = 0

. (3.21)

This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =

 1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2

 , (3.22)

and x = (x1, x2, x3, x4, x5)T . Applying Gaussian elimination to this sys-
tem, we obtain a second, simpler, system with the same solutions:

x1 −2x4 +x5 = 0
x2 +2x4 = 0

x3 +x4 +x5 = 0
. (3.23)

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others de-
pendent. The variables x1, x2 and x3 are then called basic variables. To
obtain a basis of solutions we can let x4 = 1 and x5 = 0, obtaining the
solution x = (2,−2,−1, 1, 0)T , and then choose x4 = 0 and x5 = 1 to get
the solution x = (−1, 0,−1, 0, 1)T . Every solution to Ax = 0 is then a
linear combination of these two solutions. Notice that which variables are
basic and which are non-basic is somewhat arbitrary, in that we could have
chosen as the non-basic variables any two whose columns are independent.

Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A as A = [B N], where B is the square invertible
matrix

B =

 1 2 0
−1 −1 1
1 2 −3

 , (3.24)

and N is the matrix

N =

 2 1
1 0
−1 −2

 . (3.25)

3.4. BASIC LINEAR ALGEBRA 27

With xB = (x1, x2, x3)T and xN = (x4, x5)T we can write

Ax = BxB + NxN = 0, (3.26)

so that

xB = −B−1NxN . (3.27)

3.4.3 Real and Complex Systems of Linear Equations

A system Ax = b of linear equations is called a complex system, or a real
system if the entries of A, x and b are complex, or real, respectively. Any
complex system can be converted to a real system in the following way. A
complex matrix A can be written as A = A1 + iA2, where A1 and A2 are
real matrices and i =

√
−1. Similarly, x = x1 + ix2 and b = b1 + ib2, where

x1, x2, b1 and b2 are real vectors. Denote by Ã the real matrix

Ã =
[

A1 −A2

A2 A1

]
, (3.28)

by x̃ the real vector

x̃ =
[

x1

x2

]
, (3.29)

and by b̃ the real vector

b̃ =
[

b1

b2

]
. (3.30)

Then x satisfies the system Ax = b if and only if x̃ satisfies the system
Ãx̃ = b̃.

Definition 3.10 A square matrix A is symmetric if AT = A and Hermi-
tian if A† = A.

Definition 3.11 A non-zero vector x is said to be an eigenvector of the
square matrix A if there is a scalar λ such that Ax = λx. Then λ is said
to be an eigenvalue of A.

If x is an eigenvector of A with eigenvalue λ, then the matrix A − λI has
no inverse, so its determinant is zero; here I is the identity matrix with
ones on the main diagonal and zeros elsewhere. Solving for the roots of the
determinant is one way to calculate the eigenvalues of A. For example, the
eigenvalues of the Hermitian matrix

B =
[

1 2 + i
2− i 1

]
(3.31)

28 CHAPTER 3. BASIC CONCEPTS

are λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding eigenvectors u =
(
√

5, 2 − i)T and v = (
√

5, i − 2)T , respectively. Then B̃ has the same
eigenvalues, but both with multiplicity two. Finally, the associated eigen-
vectors of B̃ are [

u1

u2

]
, (3.32)

and [
−u2

u1

]
, (3.33)

for λ = 1 +
√

5, and [
v1

v2

]
, (3.34)

and [
−v2

v1

]
, (3.35)

for λ = 1−
√

5.

Definition 3.12 The complex square matrix N is non-expansive (with re-
spect to the Euclidean norm) if ||Nx||2 ≤ ||x||2, for all x.

Lemma 3.1 The matrix N is non-expansive if and only if Ñ is non-
expansive.

Definition 3.13 The complex square matrix A is averaged if there is a
non-expansive N and scalar α in the interval (0, 1), with A = (1−α)I+αN .

Lemma 3.2 The matrix A is averaged if and only if Ã is averaged.

3.4.4 The Fundamental Subspaces

We begin with some notation. Let S be a subspace of X . We denote by
S⊥ the set of vectors u that are orthogonal to every member of S; that is,

S⊥ = {u|u†s = 0, for every s ∈ S}. (3.36)

Definition 3.14 Let A be an I by J matrix. Then CS(A), the column
space of A, is the subspace of CI consisting of all the linear combinations
of the columns of A; we also say that CS(A) is the range of A. The null
space of A†, denoted NS(A†), is the subspace of CI containing all the
vectors w for which A†w = 0.

3.5. LINEAR AND NONLINEAR OPERATORS 29

The subspaces CS(A), NS(A†), CS(A†) and NS(A) play a prominent role
in linear algebra and, for that reason, are called the four fundamental
subspaces.

Let Q be a I by I matrix. We denote by Q(S) the set

Q(S) = {t|there exists s ∈ S with t = Qs} (3.37)

and by Q−1(S) the set

Q−1(S) = {u|Qu ∈ S}. (3.38)

Note that the set Q−1(S) is defined whether or not the matrix Q is invert-
ible.

We assume, now, that the matrix Q is Hermitian and invertible and
that the matrix A†A is invertible. Note that the matrix A†Q−1A need not
be invertible under these assumptions. We shall denote by S an arbitrary
subspace of RJ , and by Q(S)

Lemma 3.3 For a given set S, Q(S) = S if and only if Q(S⊥) = S⊥.

Proof: Use Exercise 3.9.

Lemma 3.4 If Q(CS(A)) = CS(A) then A†Q−1A is invertible.

Proof: Show that A†Q−1Ax = 0 if and only if x = 0. Recall that Q−1Ax ∈
CS(A), by Exercise 3.8. Then use Exercise 3.6.

3.5 Linear and Nonlinear Operators

In our study of iterative algorithms we shall be concerned with sequences
of vectors {xk|k = 0, 1, ...}. The core of an iterative algorithm is the tran-
sition from the current vector xk to the next one xk+1. To understand the
algorithm, we must understand the operation (or operator) T by which xk

is transformed into xk+1 = Txk. An operator is any function T defined on
X with values again in X .

3.5.1 Linear and Affine Linear Operators

For example, if X = CJ and A is a J by J complex matrix, then we can
define an operator T by setting Tx = Ax, for each x in CJ ; here Ax denotes
the multiplication of the matrix A and the column vector x.

Definition 3.15 An operator T is said to be a linear operator if

T (αx + βy) = αTx + βTy, (3.39)

for each pair of vectors x and y and each pair of scalars α and β.

30 CHAPTER 3. BASIC CONCEPTS

Any operator T that comes from matrix multiplication, that is, for which
Tx = Ax, is linear.

Lemma 3.5 For H = H(a, γ), H0 = H(a, 0), and any x and y in X , we
have

PH(x + y) = PHx + PHy − PH0, (3.40)

so that

PH0(x + y) = PH0x + PH0y, (3.41)

that is, the operator PH0 is an additive operator. In addition,

PH0(αx) = αPH0x, (3.42)

so that PH0 is a linear operator.

Definition 3.16 If A is a square matrix and d is a fixed nonzero vector
in X , the operator defined by Tx = Ax + d is an affine linear operator.

Lemma 3.6 For any hyperplane H = H(a, γ) and H0 = H(a, 0),

PHx = PH0x + PH0, (3.43)

so PH is an affine linear operator.

Lemma 3.7 For i = 1, ..., I let Hi be the hyperplane Hi = H(ai, γi),
Hi0 = H(ai, 0), and Pi and Pi0 the orthogonal projections onto Hi and
Hi0, respectively. Let T be the operator T = PIPI−1 · · · P2P1. Then
Tx = Bx + d, for some square matrix B and vector d; that is, T is an
affine linear operator.

3.5.2 Orthogonal Projection onto Convex Sets

For an arbitrary nonempty closed convex set C in X , the orthogonal pro-
jection T = PC is a nonlinear operator, unless, of course, C is a subspace.
We may not be able to describe PCx explicitly, but we do know a useful
property of PCx.

Proposition 3.2 For a given x, a vector z in C is PCx if and only if

Re(〈c− z, z − x〉) ≥ 0, (3.44)

for all c in the set C.

3.5. LINEAR AND NONLINEAR OPERATORS 31

Proof: For simplicity, we consider only the real case, X = RJ . Let c be
arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx + α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22. (3.45)

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0, (3.46)

so that

2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22. (3.47)

Taking the limit, as α → 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0. (3.48)

If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0, (3.49)

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0, (3.50)

and

〈z − PCx, x− z〉 ≥ 0. (3.51)

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx− z〉 ≥ 0. (3.52)

But,

〈z − PCx, PCx− z〉 = −||z − PCx||22, (3.53)

so it must be the case that z = PCx. This completes the proof.

Corollary 3.1 Let S be any subspace of X . Then, for any x in X and s
in S, we have

〈PSx− x, s〉 = 0. (3.54)

32 CHAPTER 3. BASIC CONCEPTS

Proof: Since S is a subspace, s + PSx is again in S, for all s, as is cs, for
every scalar c.

Corollary 3.2 Let S be any subspace of X , d a fixed vector, and V the
affine subspace V = S + d = {v = s + d|s ∈ S}, obtained by translating the
members of S by the vector d. Then, for every x in X and every v in V ,
we have

〈PV x− x, v − PV x〉 = 0. (3.55)

Proof: Since v and PV x are in V , they have the form v = s + d, and
PV x = ŝ + d, for some s and ŝ in S. Then v − PV x = s− ŝ.

Corollary 3.3 Let H be the hyperplane H(a, γ). Then, for every x, and
every h in H, we have

〈PHx− x, h− PHx〉 = 0. (3.56)

Corollary 3.4 Let S be a subspace of X . Then, every x in X can be
written as x = s + u, for a unique s in S and a unique u in S⊥.

Proof: The vector PSx− x is in S⊥.

Corollary 3.5 Let S be a subspace of X . Then (S⊥)⊥ = S.

Proof: Every x in X has the form x = s + u, with s in S and u in S⊥.
Suppose x is in (S⊥)⊥. Then u = 0.

3.5.3 Gradient Operators

Another important example of a nonlinear operator is the gradient of a
real-valued function of several variables. Let f(x) = f(xi, ..., xJ) be a real
number for each vector x in RJ . The gradient of f at the point x is the
vector whose entries are the partial derivatives of f ; that is,

∇f(x) = (
∂f

∂x1
(x), ...,

∂f

∂xJ
(x))T . (3.57)

The operator Tx = ∇f(x) is linear only if the function f(x) is quadratic;
that is, f(x) = xT Ax for some square matrix x, in which case the gradient
of f is ∇f(x) = 1

2 (A + AT)x.
If u is any vector in X with ||u||2 = 1, then u is said to be a direction

vector. Let f : RJ → R. The directional derivative of f , at the point x, in
the direction of u, is

Duf(x) = lim
t→0

(1/t)(f(x + tu)− f(x)), (3.58)

3.6. EXERCISES 33

if this limit exists. If the partial derivatives of f are continuous, then

Duf(x) = u1
∂f

∂x1
(x) + ... + uJ

∂f

∂xJ
(x). (3.59)

It follows from the Cauchy Inequality that |Duf(x)| ≤ ||∇f(x)||2, with
equality if and only if u is parallel to the gradient vector, ∇f(x). The
gradient points in the direction of the greatest increase in f(x).

3.6 Exercises

3.1 Show that the vector a is orthogonal to the hyperplane H = H(a, γ);
that is, if u and v are in H, then a is orthogonal to u− v.

3.2 Show that B is Hermitian if and only if the real matrix B̃ is symmet-
ric.

3.3 Let B be Hermitian. For any x = x1 + ix2, let x̃′ = (−x2, x1)T . Show
that the following are equivalent: 1) Bx = λx; 2) B̃x̃ = λx̃; 3) B̃x̃′ = λx̃′.

3.4 Show that B†Bx = c if and only if B̃T B̃x̃ = c̃.

3.5 Show that CS(A)⊥ = NS(A†). Hint: If v ∈ CS(A)⊥, then v†Ax = 0
for all x, including x = A†v.

3.6 Show that CS(A) ∩ NS(A†) = {0}. Hint: If y = Ax ∈ NS(A†)
consider ||y||22 = y†y.

3.7 Show that Ax = b has solutions if and only if the associated Björck-
Elfving equations AA†z = b has solutions.

3.8 Let S be any subspace of CI . Show that if Q is invertible and Q(S) =
S then Q−1(S) = S. Hint: If Qt = Qs then t = s.

3.9 Let Q be Hermitian. Show that Q(S)⊥ = Q−1(S⊥) for every subspace
S. If Q is also invertible then Q−1(S)⊥ = Q(S⊥). Find an example of a
non-invertible Hermitian Q for which Q−1(S)⊥ and Q(S⊥) are different.

3.10 Show that we can write PH0 as a matrix multiplication:

PH0x = (I − aa†)x. (3.60)

3.11 Prove Lemma 3.7. Hint: Use the previous exercise and the fact that
Pi0 is linear to show that

B = (I − aI(aI)†) · · · (I − a1(a1)†). (3.61)

34 CHAPTER 3. BASIC CONCEPTS

3.12 Let A be a complex I by J matrix with I < J , b a fixed vector in CI ,
and S the affine subspace of CJ consisting of all vectors x with Ax = b.
Denote by PSz the orthogonal projection of vector z onto S. Assume that
A has rank I, so that the matrix AA† is invertible. Show that

PSz = (I −A†(AA†)−1A)z + A†(AA†)−1b. (3.62)

Hint: note that, if z = 0, then PSz is the minimum-norm solution of the
system Ax = b.

3.13 Let C be a fixed, non-empty, closed convex subset of X , and x not in
C. Where are the vectors z for which PCz = PCx? Prove your conjecture.

Chapter 4

Metric Spaces and Norms

As we have seen, the inner product on X = RJ or X = CJ can be used to
define the Euclidean norm ||x||2 of a vector x, which, in turn, provides a
metric, or a measure of distance between two vectors, d(x, y) = ||x− y||2.
The notions of metric and norm are actually more general notions, with no
necessary connection to the inner product.

4.1 Metric Spaces

We begin with the basic definitions.

Definition 4.1 Let S be a non-empty set. We say that the function d :
S × S → [0,+∞) is a metric if the following hold:

d(s, t) ≥ 0, (4.1)

for all s and t in S;

d(s, t) = 0 (4.2)

if and only if s = t;

d(s, t) = d(t, s), (4.3)

for all s and t in S; and, for all s, t, and u in S,

d(s, t) ≤ d(s, u) + d(u, t). (4.4)

The pair {S, d} is a metric space.

The last inequality is the Triangle Inequality for this metric.

35

36 CHAPTER 4. METRIC SPACES AND NORMS

4.2 Analysis in Metric Space

Analysis is concerned with issues of convergence and limits.

Definition 4.2 A sequence {sk} in the metric space (S, d) is said to have
limit s∗ if

lim
k→+∞

d(sk, s∗) = 0. (4.5)

Any sequence with a limit is said to be convergent.

A sequence can have at most one limit.

Definition 4.3 The sequence {sk} is said to be a Cauchy sequence if, for
any ε > 0, there is positive integer m, such that, for any nonnegative integer
n,

d(sm, sm+n) ≤ ε. (4.6)

Every convergent sequence is a Cauchy sequence.

Definition 4.4 The metric space (S, d) is said to be complete if every
Cauchy sequence is a convergent sequence.

The finite-dimensional spaces RJand CJ are complete metric spaces, with
respect to the usual Euclidean distance.

Definition 4.5 An infinite sequence {sk} in S is said to be bounded if
there is an element a and a positive constant b > 0 such that d(a, sk) ≤ b,
for all k.

Definition 4.6 A subset K of the metric space is said to be closed if, for
every convergent sequence {sk} of elements in K, the limit point is again
in K. The closure of a set K is the smallest closed set containing K.

For example, in X = R, the set K = (0, 1] is not closed, because it does
not contain the point s = 0, which is the limit of the sequence {sk = 1

k};
the set K = [0, 1] is closed and is the closure of the set (0, 1], that is, it is
the smallest closed set containing (0, 1].

Definition 4.7 For any bounded sequence {xk} in X , there is at least one
subsequence, often denoted {xkn}, that is convergent; the notation implies
that the positive integers kn are ordered, so that k1 < k2 < The limit of
such a subsequence is then said to be a cluster point of the original sequence.

When we investigate iterative algorithms, we will want to know if the
sequence {xk} generated by the algorithm converges. As a first step, we
will usually ask if the sequence is bounded? If it is bounded, then it will
have at least one cluster point. We then try to discover if that cluster point
is really the limit of the sequence. We turn now to metrics that come from
norms.

4.3. NORMS 37

4.3 Norms

The metric spaces that interest us most are those for which the metric
comes from a norm, which is a measure of the length of a vector.

Definition 4.8 We say that || · || is a norm on X if

||x|| ≥ 0, (4.7)

for all x,

||x|| = 0 (4.8)

if and only if x = 0,

||γx|| = |γ| ||x||, (4.9)

for all x and scalars γ, and

||x + y|| ≤ ||x||+ ||y||, (4.10)

for all vectors x and y.

Lemma 4.1 The function d(x, y) = ||x− y|| defines a metric on X .

It can be shown that RJ and CJ are complete for any metric arising from
a norm.

4.3.1 Some Common Norms on X
We consider now the most common norms on the space X .

The 1-norm

The 1-norm on X is defined by

||x||1 =
J∑

j=1

|xj |. (4.11)

The ∞-norm

The ∞-norm on X is defined by

||x||∞ = max{|xj | |j = 1, ..., J}. (4.12)

38 CHAPTER 4. METRIC SPACES AND NORMS

The 2-norm

The 2-norm, also called the Euclidean norm, is the most commonly used
norm on X . It is the one that comes from the inner product:

||x||2 =
√
〈x, x〉 =

√
x†x. (4.13)

Weighted 2-norms

Let A be an invertible matrix and Q = A†A. Define

||x||Q = ||Ax||2 =
√

x†Qx, (4.14)

for all vectors x. If Q is the diagonal matrix with diagonal entries Qjj > 0,
then

||x||Q =

√√√√ J∑
j=1

Qjj |xj |2; (4.15)

for that reason we speak of ||x||Q as the Q-weighted 2-norm of x.

4.4 Eigenvalues and Eigenvectors

Let S be a complex, square matrix. We say that λ is an eigenvalue of S if λ
is a root of the complex polynomial det (λI −S). Therefore, each S has as
many (possibly complex) eigenvalues as it has rows or columns, although
some of the eigenvalues may be repeated.

An equivalent definition is that λ is an eigenvalue of S if there is a
non-zero vector x with Sx = λx, in which case the vector x is called an
eigenvector of S. From this definition, we see that the matrix S is invertible
if and only if zero is not one of its eigenvalues. The spectral radius of S,
denoted ρ(S), is the maximum of |λ|, over all eigenvalues λ of S.

If S is an I by I Hermitian matrix with (necessarily real) eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λI , (4.16)

and associated (column) eigenvectors {ui |i = 1, ..., I} (which we may as-
sume are mutually orthogonal), then S can be written as

S = λ1u1u
†
1 + · · ·+ λIuIu

†
I . (4.17)

This is the eigenvalue/eigenvector decomposition of S. The Hermitian ma-
trix S is invertible if and only if all of its eigenvalues are non-zero, in which
case we can write the inverse of S as

S−1 = λ−1
1 u1u

†
1 + · · ·+ λ−1

I uIu
†
I . (4.18)

4.4. EIGENVALUES AND EIGENVECTORS 39

Definition 4.9 A Hermitian matrix S is positive-definite if each of its
eigenvalues is positive.

It follows from the eigenvector decomposition of S that S = QQ† for the
Hermitian, positive-definite matrix

Q =
√

λ1u1u
†
1 + · · ·+

√
λIuIu

†
I ; (4.19)

Q is called the Hermitian square root of S.

4.4.1 The Singular-Value Decomposition

The eigenvector/eigenvalue decomposition applies only to square matrices.
The singular-value decomposition is similar, but applies to any matrix.

Definition 4.10 Let A be an I by J complex matrix. The rank of A is
the number of linearly independent rows, which always equals the number
of linearly independent columns. The matrix A is said to have full rank if
its rank is the smaller of I and J .

Let I ≤ J . Let B = AA† and C = A†A. Let λi ≥ 0, for i = 1, ..., I,
be the eigenvalues of B, and let {u1, ..., uI} be associated orthonormal
eigenvectors of B. Assume that λi > 0 for i = 1, ..., N ≤ I, and, if
N < I, λi = 0, for i = N + 1, ..., I; if N = I, then the matrix A has
full rank. For i = 1, ..., N , let vi = λ

−1/2
i A†ui. It is easily shown that

the collection {v1, ..., vN} is orthonormal. Let {vN+1, ..., vJ} be selected so
that {v1, ..., vJ} is orthonormal. Then the sets {u1, ..., uN}, {uN+1, ..., uI},
{v1, ..., vN}, and {vN+1, ..., vJ} are orthonormal bases for the subspaces
CS(A), NS(A†), CS(A†), and NS(A), respectively.

Definition 4.11 We have

A =
N∑

i=1

√
λiu

i(vi)†, (4.20)

which is the singular-value decomposition (SVD) of the matrix A.

The SVD of the matrix A† is then

A† =
N∑

i=1

√
λiv

i(ui)†. (4.21)

Definition 4.12 The pseudo-inverse of the matrix A is the J by I matrix

A] =
N∑

i=1

λ
−1/2
i vi(ui)†. (4.22)

40 CHAPTER 4. METRIC SPACES AND NORMS

Lemma 4.2 For any matrix A, we have

(A†)] = (A])†. (4.23)

For A that has full rank, if N = I ≤ J , then

A] = A†B−1, (4.24)

and

(A†)] = B−1A. (4.25)

4.4.2 An Upper Bound for the Singular Values of A

Several of the iterative algorithms we shall encounter later involve a pos-
itive parameter γ that can be no larger than 2/λmax, where λmax is the
largest eigenvalue of the matrix A†A, which is also the square of the largest
singular value of A itself. In order for these iterations to converge quickly,
it is necessary that the parameter be chosen reasonably large, which implies
that we must have a good estimate of λmax. When A is not too large, find-
ing λmax poses no significant problem, but, for many of our applications,
A is large. Even calculating A†A, not to mention finding eigenvalues, is
expensive in those cases. We would like a good estimate of λmax that can
be obtained from A itself. The upper bounds for λmax we present here
apply to any matrix A, but will be particularly helpful when A is sparse,
that is, most of its entries are zero.

The Normalized Case

We assume now that the matrix A has been normalized so that each of
its rows has Euclidean length one. Denote by sj the number of nonzero
entries in the jth column of A, and let s be the maximum of the sj . Our
first result is the following :

Theorem 4.1 For normalized A, λmax, the largest eigenvalue of the ma-
trix A†A, does not exceed s.

Proof: For notational simplicity, we consider only the case of real matrices
and vectors. Let AT Av = cv for some nonzero vector v. We show that
c ≤ s. We have AAT Av = cAv and so wT AAT w = vT AT AAT Av =
cvT AT Av = cwT w, for w = Av. Then, with eij = 1 if Aij 6= 0 and eij = 0
otherwise, we have

(
I∑

i=1

Aijwi)2 = (
I∑

i=1

Aijeijwi)2

4.4. EIGENVALUES AND EIGENVECTORS 41

≤ (
I∑

i=1

A2
ijw

2
i)(

I∑
i=1

e2
ij) =

(
I∑

i=1

A2
ijw

2
i)sj ≤ (

I∑
i=1

A2
ijw

2
i)s. (4.26)

Therefore,

wT AAT w =
J∑

j=1

(
I∑

i=1

Aijwi)2 ≤
J∑

j=1

(
I∑

i=1

A2
ijw

2
i)s, (4.27)

and

wT AAT w = c
I∑

i=1

w2
i = c

I∑
i=1

w2
i (

J∑
j=1

A2
ij)

= c
I∑

i=1

J∑
j=1

w2
i A2

ij . (4.28)

The result follows immediately.

When A is normalized, the trace of AAT , that is, the sum of its diagonal
entries, is I. Since the trace is also the sum of the eigenvalues of both AAT

and AT A, we have λmax ≤ I. When A is sparse, s is much smaller than I,
so provides a much tighter upper bound for λmax.

The General Case

A similar upper bound for λmax is given for the case in which A is not
normalized.

Theorem 4.2 For each i = 1, ..., I let νi =
∑J

j=1 |Aij |2 > 0. For each
j = 1, ..., J , let σj =

∑I
i=1 eijνi, where eij = 1 if Aij 6= 0 and eij = 0

otherwise. Let σ denote the maximum of the σj. Then the eigenvalues of
the matrix A†A do not exceed σ.

The proof of Theorem 4.2 is similar to that of Theorem 4.1.

Upper Bounds for ε-Sparse Matrices

If A is not sparse, but most of its entries have magnitude not exceeding
ε > 0 we say that A is ε-sparse. We can extend the results for the sparse
case to the ε-sparse case.

Given a matrix A, define the entries of the matrix B to be Bij = Aij if
|Aij | > ε, and Bij = 0, otherwise. Let C = A − B; then |Cij | ≤ ε, for all

42 CHAPTER 4. METRIC SPACES AND NORMS

i and j. If A is ε-sparse, then B is sparse. The 2-norm of the matrix A,
written ||A||2, is defined to be the square root of the largest eigenvalue of
the matrix A†A, that is, ||A||2 =

√
λmax. From Theorem 4.2 we know that

||B||2 ≤ σ. The trace of the matrix C†C does not exceed IJε2. Therefore√
λmax = ||A||2 = ||B + C||2 ≤ ||B||2 + ||C||2 ≤

√
σ +

√
IJε, (4.29)

so that

λmax ≤ σ + 2
√

σIJε + IJε2. (4.30)

Simulation studies have shown that these upper bounds become tighter
as the size of the matrix A increases. In hundreds of runs, with I and J
in the hundreds, we found that the relative error of the upper bound was
around one percent [49].

4.5 Matrix Norms

Any matrix can be turned into a vector by vectorization. Therefore, we
can define a norm for any matrix by simply vectorizing and taking a norm
of the resulting vector. Such norms for matrices may not be compatible
with the role of a matrix as representing a linear transformation.

4.5.1 Induced Matrix Norms

One way to obtain a compatible norm for matrices is through the use of
an induced matrix norm.

Definition 4.13 Let ||x|| be any norm on CJ , not necessarily the Eu-
clidean norm, ||b|| any norm on CI , and A a rectangular I by J matrix.
The induced matrix norm of A, simply denoted ||A||, derived from these
two vectors norms, is the smallest positive constant c such that

||Ax|| ≤ c||x||, (4.31)

for all x in CJ . This induced norm can be written as

||A|| = max
x6=0

{||Ax||/||x||}. (4.32)

We study induced matrix norms in order to measure the distance ||Ax−
Az||, relative to the distance ||x− z||:

||Ax−Az|| ≤ ||A|| ||x− z||, (4.33)

for all vectors x and z and ||A|| is the smallest number for which this
statement can be made.

4.5. MATRIX NORMS 43

4.5.2 Condition Number of a Square Matrix

Let S be a square, invertible matrix and z the solution to Sz = h. We
are concerned with the extent to which the solution changes as the right
side, h, changes. Denote by δh a small perturbation of h, and by δz the
solution of Sδz = δh. Then S(z + δz) = h+ δh. Applying the compatibility
condition ||Ax|| ≤ ||A||||x||, we get

||δz|| ≤ ||S−1||||δh||, (4.34)

and

||z|| ≥ ||h||/||S||. (4.35)

Therefore

||δz||
||z||

≤ ||S|| ||S−1|| ||δh||
||h||

. (4.36)

Definition 4.14 The quantity c = ||S||||S−1|| is the condition number of
S, with respect to the given matrix norm.

Note that c ≥ 1: for any non-zero z, we have

||S−1|| ≥ ||S−1z||/||z|| = ||S−1z||/||SS−1z|| ≥ 1/||S||. (4.37)

When S is Hermitian and positive-definite, the condition number of S, with
respect to the matrix norm induced by the Euclidean vector norm, is

c = λmax(S)/λmin(S), (4.38)

the ratio of the largest to the smallest eigenvalues of S.

4.5.3 Some Examples of Induced Matrix Norms

If we choose the two vector norms carefully, then we can get an explicit
description of ||A||, but, in general, we cannot.

For example, let ||x|| = ||x||1 and ||Ax|| = ||Ax||1 be the 1-norms of the
vectors x and Ax, where

||x||1 =
J∑

j=1

|xj |. (4.39)

Lemma 4.3 The 1-norm of A, induced by the 1-norms of vectors in CJ

and CI , is

||A||1 = max {
I∑

i=1

|Aij | , j = 1, 2, ..., J}. (4.40)

44 CHAPTER 4. METRIC SPACES AND NORMS

Proof: Use basic properties of the absolute value to show that

||Ax||1 ≤
J∑

j=1

(
I∑

i=1

|Aij |)|xj |. (4.41)

Then let j = m be the index for which the maximum column sum is reached
and select xj = 0, for j 6= m, and xm = 1.

The infinity norm of the vector x is

||x||∞ = max {|xj | , j = 1, 2, ..., J}. (4.42)

Lemma 4.4 The infinity norm of the matrix A, induced by the infinity
norms of vectors in CJ and CI , is

||A||∞ = max {
J∑

j=1

|Aij | , i = 1, 2, ..., I}. (4.43)

The proof is similar to that of the previous lemma.

Lemma 4.5 Let M be an invertible matrix and ||x|| any vector norm.
Define

||x||M = ||Mx||. (4.44)

Then, for any square matrix S, the matrix norm

||S||M = max
x6=0

{||Sx||M/||x||M} (4.45)

is

||S||M = ||MSM−1||. (4.46)

In [4] this result is used to prove the following lemma:

Lemma 4.6 Let S be any square matrix and let ε > 0 be given. Then
there is an invertible matrix M such that

||S||M ≤ ρ(S) + ε. (4.47)

4.5. MATRIX NORMS 45

4.5.4 The Euclidean Norm of a Square Matrix

We shall be particularly interested in the Euclidean norm (or 2-norm) of
the square matrix A, denoted by ||A||2, which is the induced matrix norm
derived from the Euclidean vector norms.

From the definition of the Euclidean norm of A, we know that

||A||2 = max{||Ax||2/||x||2}, (4.48)

with the maximum over all nonzero vectors x. Since

||Ax||22 = x†A†Ax, (4.49)

we have

||A||2 =

√
max {x†A†Ax

x†x
}, (4.50)

over all nonzero vectors x.

Proposition 4.1 The Euclidean norm of a square matrix is

||A||2 =
√

ρ(A†A); (4.51)

that is, the term inside the square-root in Equation (4.50) is the largest
eigenvalue of the matrix A†A.

Proof: Let

λ1 ≥ λ2 ≥ ... ≥ λJ ≥ 0 (4.52)

and let {uj , j = 1, ..., J} be mutually orthogonal eigenvectors of A†A with
||uj ||2 = 1. Then, for any x, we have

x =
J∑

j=1

[(uj)†x]uj , (4.53)

while

A†Ax =
J∑

j=1

[(uj)†x]A†Auj =
J∑

j=1

λj [(uj)†x]uj . (4.54)

It follows that

||x||22 = x†x =
J∑

j=1

|(uj)†x|2, (4.55)

46 CHAPTER 4. METRIC SPACES AND NORMS

and

||Ax||22 = x†A†Ax =
J∑

j=1

λj |(uj)†x|2. (4.56)

Maximizing ||Ax||22/||x||22 over x 6= 0 is equivalent to maximizing ||Ax||22,
subject to ||x||22 = 1. The right side of Equation (4.56) is then a con-
vex combination of the λj , which will have its maximum when only the
coefficient of λ1 is non-zero.

If S is not Hermitian, then the Euclidean norm of S cannot be calculated
directly from the eigenvalues of S. For example, consider S the square,
non-Hermitian matrix

S =
[

i 2
0 i

]
, (4.57)

having eigenvalues λ = i and λ = i. The eigenvalues of the Hermitian
matrix

S†S =
[

1 −2i
2i 5

]
(4.58)

are λ = 3 + 2
√

2 and λ = 3− 2
√

2. Therefore, the Euclidean norm of S is

||S||2 =
√

3 + 2
√

2. (4.59)

4.5.5 Diagonalizable Matrices

Definition 4.15 A square matrix S is diagonalizable if X has a basis of
eigenvectors of S.

In the case in which S is diagonalizable, with V be a square matrix whose
columns are linearly independent eigenvectors of S and L the diagonal ma-
trix having the eigenvalues of S along its main diagonal, we have SV = V L,
or V −1SV = L. Let T = V −1 and define ||x||T = ||Tx||2, the Euclidean
norm of Tx. Then the induced matrix norm of S is ||S||T = ρ(S). We
see from this that, for any diagonalizable matrix S, in particular, for any
Hermitian matrix, there is a vector norm such that the induced matrix
norm of S is ρ(S). In the Hermitian case we know that, if the eigen-
vector columns of V are scaled to have length one, then V −1 = V † and
||Tx||2 = ||V †x||2 = ||x||2, so that the required vector norm is just the
Euclidean norm, and ||S||T is just ||S||2, which we know to be ρ(S).

4.6. EXERCISES 47

4.5.6 Gerschgorin’s Theorem

Gerschgorin’s theorem gives us a way to estimate the eigenvalues of an
arbitrary square matrix A.

Theorem 4.3 Let A be J by J . For j = 1, ..., J , let Cj be the circle in the
complex plane with center Ajj and radius rj =

∑
m6=j |Ajm|. Then every

eigenvalue of A lies within one of the Cj.

Proof: Let λ be an eigenvalue of A, with associated eigenvector u. Let
uj be the entry of the vector u having the largest absolute value. From
Au = λu, we have

(λ−Ajj)uj =
∑
m6=j

Ajmum, (4.60)

so that

|λ−Ajj | ≤
∑
m6=j

|Ajm||um|/|uj | ≤ rj . (4.61)

This completes the proof.

4.5.7 Strictly Diagonally Dominant Matrices

Definition 4.16 A square I by I matrix S is said to be strictly diagonally
dominant if, for each i = 1, ..., I,

|Sii| > ri =
∑
m6=i

|Sim|. (4.62)

When the matrix S is strictly diagonally dominant, all the eigenvalues of S
lie within the union of the spheres with centers Sii and radii Sii. With D
the diagonal component of S, the matrix D−1S then has all its eigenvalues
within the circle of radius one, centered at (1, 0). Then ρ(I −D−1S) < 1.
We use this result in our discussion of the Jacobi splitting method.

4.6 Exercises

4.1 Show that every convergent sequence is a Cauchy sequence.

4.2 Let S be the set of rational numbers, with d(s, t) = |s− t|. Show that
(S, d) is a metric space, but not a complete metric space.

4.3 Show that any convergent sequence in a metric space is bounded. Find
a bounded sequence of real numbers that is not convergent.

48 CHAPTER 4. METRIC SPACES AND NORMS

4.4 Show that, if {sk} is bounded, then, for any element c in the metric
space, there is a constant r > 0, with d(c, sk) ≤ r, for all k.

4.5 Show that your bounded, but not convergent, sequence found in Exer-
cise 4.3 has a cluster point.

4.6 Show that, if x is a cluster point of the sequence {xk}, and if d(x, xk) ≥
d(x, xk+1), for all k, then x is the limit of the sequence.

4.7 Show that the 1-norm is a norm.

4.8 Show that the ∞-norm is a norm.

4.9 Show that the 2-norm is a norm. Hint: for the triangle inequality,
use the Cauchy Inequality.

4.10 Show that the Q-weighted 2-norm is a norm.

4.11 Show that ρ(S2) = ρ(S)2.

4.12 Show that, if S is Hermitian, then every eigenvalue of S is real.
Hint: suppose that Sx = λx. Then consider x†Sx.

4.13 Use the SVD of A to obtain the eigenvalue/eigenvector decomposi-
tions of B and C:

B =
N∑

i=1

λiu
i(ui)†, (4.63)

and

C =
N∑

i=1

λiv
i(vi)†. (4.64)

4.14 Show that, for any square matrix S and any induced matrix norm
||S||, we have ||S|| ≥ ρ(S). Consequently, for any induced matrix norm
||S||,

||S|| ≥ |λ|, (4.65)

for every eigenvalue λ of S. So we know that

ρ(S) ≤ ||S||, (4.66)

for every induced matrix norm, but, according to Lemma 4.6, we also have

||S||M ≤ ρ(S) + ε. (4.67)

4.15 Show that, if ρ(S) < 1, then there is a vector norm on X for which
the induced matrix norm of S is less than one.

4.16 Show that, if S is Hermitian, then ||S||2 = ρ(S). Hint: use Exercise
(4.11).

Part II

Overview

49

Chapter 5

Operators

In a broad sense, all iterative algorithms generate a sequence {xk} of vec-
tors. The sequence may converge for any starting vector x0, or may con-
verge only if the x0 is sufficiently close to a solution. The limit, when it
exists, may depend on x0, and may, or may not, solve the original problem.
Convergence to the limit may be slow and the algorithm may need to be
accelerated. The algorithm may involve measured data. The limit may be
sensitive to noise in the data and the algorithm may need to be regularized
to lessen this sensitivity. The algorithm may be quite general, applying to
all problems in a broad class, or it may be tailored to the problem at hand.
Each step of the algorithm may be costly, but only a few steps generally
needed to produce a suitable approximate answer, or, each step may be
easily performed, but many such steps needed. Although convergence of
an algorithm is important, theoretically, sometimes in practice only a few
iterative steps are used.

5.1 Operators

For most of the iterative algorithms we shall consider, the iterative step is

xk+1 = Txk, (5.1)

for some operator T . If T is a continuous operator (and it usually is), and
the sequence {T kx0} converges to x̂, then T x̂ = x̂, that is, x̂ is a fixed point
of the operator T . We denote by Fix(T) the set of fixed points of T . The
convergence of the iterative sequence {T kx0} will depend on the properties
of the operator T .

Our approach here will be to identify several classes of operators for
which the iterative sequence is known to converge, to examine the conver-
gence theorems that apply to each class, to describe several applied prob-

51

52 CHAPTER 5. OPERATORS

lems that can be solved by iterative means, to present iterative algorithms
for solving these problems, and to establish that the operator involved in
each of these algorithms is a member of one of the designated classes.

5.2 Two Useful Identities

The identities in the next two lemmas relate an arbitrary operator T to
its complement, G = I − T , where I denotes the identity operator. These
identities will allow us to transform properties of T into properties of G
that may be easier to work with.

Lemma 5.1 Let T be an arbitrary operator T on X and G = I−T . Then

||x− y||22 − ||Tx− Ty||22 = 2Re(〈Gx−Gy, x− y〉) − ||Gx−Gy||22. (5.2)

Lemma 5.2 Let T be an arbitrary operator T on X and G = I−T . Then

Re(〈Tx− Ty, x− y〉)− ||Tx− Ty||22 = Re(〈Gx−Gy, x− y〉)− ||Gx−Gy||22.
(5.3)

Proof: Use the previous lemma.

5.3 Strict Contractions

The strict contraction operators are perhaps the best known class of oper-
ators associated with iterative algorithms.

Definition 5.1 An operator T on X is Lipschitz continuous, with respect
to a vector norm || · ||, or L-Lipschitz, if there is a positive constant L such
that

||Tx− Ty|| ≤ L||x− y||, (5.4)

for all x and y in X .

Definition 5.2 An operator T on X is a strict contraction (sc), with re-
spect to a vector norm || · ||, if there is r ∈ (0, 1) such that

||Tx− Ty|| ≤ r||x− y||, (5.5)

for all vectors x and y.

For strict contractions, we have the Banach-Picard Theorem [81]:

Theorem 5.1 Let T be sc. Then, there is a unique fixed point of T and,
for any starting vector x0, the sequence {T kx0} converges to the fixed point.

5.4. ORTHOGONAL PROJECTION OPERATORS 53

The key step in the proof is to show that {xk} is a Cauchy sequence,
therefore, it has a limit.

Lemma 5.3 Let T be an affine operator, that is, T has the form Tx =
Bx + d, where B is a linear operator, and d is a fixed vector. Then T is
a strict contraction if and only if ||B||, the induced matrix norm of B, is
less than one.

The spectral radius of B, written ρ(B), is the maximum of |λ|, over all
eigenvalues λ of B. Since ρ(B) ≤ ||B|| for every norm on B induced by
a vector norm, B is sc implies that ρ(B) < 1. When B is Hermitian, the
matrix norm of B induced by the Euclidean vector norm is ||B||2 = ρ(B),
so if ρ(B) < 1, then B is sc with respect to the Euclidean norm.

When B is not Hermitian, it is not as easy to determine if the affine
operator T is sc with respect to a given norm. Instead, we often tailor the
norm to the operator T . Suppose that B is a diagonalizable matrix, that
is, there is a basis for X consisting of eigenvectors of B. Let {u1, ..., uJ}
be such a basis, and let Buj = λju

j , for each j = 1, ..., J . For each x in X ,
there are unique coefficients aj so that

x =
J∑

j=1

aju
j . (5.6)

Then let

||x|| =
J∑

j=1

|aj |. (5.7)

Lemma 5.4 The expression || · || in Equation (5.7) defines a norm on X .
If ρ(B) < 1, then the affine operator T is sc, with respect to this norm.

According to Lemma 4.6, for any square matrix B and any ε > 0, there is
a vector norm for which the induced matrix norm satisfies ||B|| ≤ ρ(B)+ ε.
Therefore, if B is an arbitrary square matrix with ρ(B) < 1, there is a
vector norm with respect to which B is sc.

In many of the applications of interest to us, there will be multiple
fixed points of T . Therefore, T will not be sc for any vector norm, and the
Banach-Picard fixed-point theorem will not apply. We need to consider
other classes of operators. These classes of operators will emerge as we
investigate the properties of orthogonal projection operators.

5.4 Orthogonal Projection Operators

If C is a closed, non-empty convex set in X , and x is any vector, then, as
we have seen, there is a unique point PCx in C closest to x, in the sense

54 CHAPTER 5. OPERATORS

of the Euclidean distance. This point is called the orthogonal projection
of x onto C. If C is a subspace, then we can get an explicit description
of PCx in terms of x; for general convex sets C, however, we will not be
able to express PCx explicitly, and certain approximations will be needed.
Orthogonal projection operators are central to our discussion, and, in this
overview, we focus on problems involving convex sets, algorithms involving
orthogonal projection onto convex sets, and classes of operators derived
from properties of orthogonal projection operators.

5.4.1 Properties of the Operator PC

Although we usually do not have an explicit expression for PCx, we can,
however, characterize PCx as the unique member of C for which

Re(〈PCx− x, c− PCx〉) ≥ 0, (5.8)

for all c in C; see Proposition 3.2.

PC is Non-expansive

Recall that an operator T is non-expansive (ne), with respect to a given
norm, if, for all x and y, we have

||Tx− Ty|| ≤ ||x− y||. (5.9)

Lemma 5.5 The orthogonal projection operator T = PC is non-expansive,
with respect to the Euclidean norm, that is,

||PCx− PCy||2 ≤ ||x− y||2, (5.10)

for all x and y.

Proof: Use Inequality (5.8) to get

Re(〈PCy − PCx, PCx− x〉) ≥ 0, (5.11)

and

Re(〈PCx− PCy, PCy − y〉) ≥ 0. (5.12)

Add the two inequalities to obtain

Re(〈PCx− PCy, x− y〉) ≥ ||PCx− PCy||22, (5.13)

and use the Cauchy Inequality.
Because the operator PC has multiple fixed points, PC cannot be a

strict contraction, unless the set C is a singleton set.

5.5. AVERAGED OPERATORS 55

PC is Firmly Non-expansive

Definition 5.3 An operator T is said to be firmly non-expansive (fne) if

Re(〈Tx− Ty, x− y〉) ≥ ||Tx− Ty||22, (5.14)

for all x and y in X .

Lemma 5.6 An operator T is fne if and only if G = I − T is fne.

Proof: Use the identity in Equation (5.3).
From Equation (5.13), we see that the operator T = PC is not simply

ne, but fne, as well. A good source for more material on these topics is the
book by Goebel and Reich [91].

The Search for Other Properties of PC

The class of non-expansive operators is too large for our purposes; the
operator Tx = −x is non-expansive, but the sequence {T kx0} does not
converge, in general, even though a fixed point, x = 0, exists. The class
of firmly non-expansive operators is too small for our purposes. Although
the convergence of the iterative sequence {T kx0} to a fixed point does
hold for firmly non-expansive T , whenever fixed points exist, the product
of two or more fne operators need not be fne; that is, the class of fne
operators is not closed to finite products. This poses a problem, since, as
we shall see, products of orthogonal projection operators arise in several of
the algorithms we wish to consider. We need a class of operators smaller
than the ne ones, but larger than the fne ones, closed to finite products,
and for which the sequence of iterates {T kx0} will converge, for any x0,
whenever fixed points exist. The class we shall consider is the class of
averaged operators.

5.5 Averaged Operators

The term ‘averaged operator’ appears in the work of Baillon, Bruck and
Reich [21, 5]. There are several ways to define averaged operators. One
way is in terms of the complement operator.

Definition 5.4 An operator G on X is called ν-inverse strongly monotone
(ν-ism)[92] (also called co-coercive in [66]) if there is ν > 0 such that

Re(〈Gx−Gy, x− y〉) ≥ ν||Gx−Gy||22. (5.15)

Lemma 5.7 An operator T is ne if and only if its complement G = I − T
is 1

2 -ism, and T is fne if and only if G is 1-ism, and if and only if G is
fne. Also, T is ne if and only if F = (I + T)/2 is fne. If G is ν-ism and
γ > 0 then the operator γG is ν

γ -ism.

56 CHAPTER 5. OPERATORS

Definition 5.5 An operator T is called averaged (av) if G = I−T is ν-ism
for some ν > 1

2 . If G is 1
2α -ism, for some α ∈ (0, 1), then we say that T is

α-av.

It follows that every av operator is ne, with respect to the Euclidean norm,
and every fne operator is av.

The averaged operators are sometimes defined in a different, but equiv-
alent, way, using the following characterization of av operators.

Lemma 5.8 An operator T is av if and only if, for some operator N that
is non-expansive in the Euclidean norm, and α ∈ (0, 1), we have

T = (1− α)I + αN.

Proof: We assume first that there is α ∈ (0, 1) and ne operator N such
that T = (1 − α)I + αN , and so G = I − T = α(I − N). Since N is ne,
I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely, assume that G

is ν-ism for some ν > 1
2 . Let α = 1

2ν and write T = (1 − α)I + αN for
N = I − 1

αG. Since I −N = 1
αG, I −N is αν-ism. Consequently I −N is

1
2 -ism and N is ne.

An averaged operator is easily constructed from a given ne operator
N by taking a convex combination of N and the identity I. The beauty
of the class of av operators is that it contains many operators, such as
PC , that are not originally defined in this way. As we shall show later,
finite products of averaged operators are again averaged, so the product of
finitely many orthogonal projections is av.

5.5.1 Gradient Operators

Another type of operator that is averaged can be derived from gradient
operators.

Definition 5.6 An operator T is monotone if

〈Tx− Ty, x− y〉 ≥ 0, (5.16)

for all x and y.

Firmly non-expansive operators on RJ are monotone operators. Let g(x) :
RJ → R be a differentiable convex function and f(x) = ∇g(x) its gradient.
The operator ∇g is also monotone. If ∇g is non-expansive, then, as we
shall see later in Theorem 17.6, ∇g is fne . If, for some L > 0, ∇g is
L-Lipschitz, for the 2-norm, that is,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2, (5.17)

for all x and y, then 1
L∇g is ne, therefore fne, and the operator T = I−γ∇g

is av, for 0 < γ < 2
L .

5.6. AFFINE LINEAR OPERATORS 57

5.5.2 The Krasnoselskii/Mann Theorem

For any operator T that is averaged, convergence of the sequence {T kx0}
to a fixed point of T , whenever fixed points of T exist, is guaranteed by
the Krasnoselskii/Mann (KM) Theorem [123]:

Theorem 5.2 Let T be averaged. Then the sequence {T kx0} converges to
a fixed point of T , whenever Fix(T) is non-empty.

Proof: Let z be a fixed point of non-expansive operator N and let α ∈
(0, 1). Let T = (1− α)I + αN , so the iterative step becomes

xk+1 = Txk = (1− α)xk + αNxk. (5.18)

The identity in Equation (5.2) is the key to proving Theorem 5.2.
Using Tz = z and (I − T)z = 0 and setting G = I − T we have

||z − xk||22 − ||Tz − xk+1||22 = 2Re(〈Gz −Gxk, z − xk〉) − ||Gz −Gxk||22.
(5.19)

Since, by Lemma 5.8, G is 1
2α -ism, we have

||z − xk||22 − ||z − xk+1||22 ≥ (
1
α
− 1)||xk − xk+1||22. (5.20)

Consequently the sequence {xk} is bounded, the sequence {||z − xk||2} is
decreasing and the sequence {||xk−xk+1||2} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗−xk||2}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete.

A version of the KM Theorem 5.2, with variable coefficients, appears
in Reich’s paper [134].

5.6 Affine Linear Operators

It may not always be easy to decide if a given operator is averaged. The
class of affine linear operators provides an interesting illustration of the
problem.

The affine operator Tx = Bx + d will be ne, sc, fne, or av precisely
when the linear operator given by multiplication by the matrix B is the
same.

58 CHAPTER 5. OPERATORS

5.6.1 The Hermitian Case

As we shall see later, in Theorem 7.1, when B is Hermitian, we can deter-
mine if B belongs to these classes by examining its eigenvalues λ:

B is non-expansive if and only if −1 ≤ λ ≤ 1, for all λ;

B is a strict contraction if and only if −1 < λ < 1, for all λ;

B is averaged if and only if −1 < λ ≤ 1, for all λ;

B is firmly non-expansive if and only if 0 ≤ λ ≤ 1, for all λ.

Affine linear operators T that arise, for instance, in splitting methods
for solving systems of linear equations, generally have non-Hermitian linear
part B. Deciding if such operators belong to these classes is more difficult.
Instead, we can ask if the operator is paracontractive, with respect to some
norm.

5.7 Paracontractive Operators

By examining the properties of the orthogonal projection operators PC ,
we were led to the useful class of averaged operators. The orthogonal
projections also belong to another useful class, the paracontractions.

Definition 5.7 An operator T is called paracontractive (pc), with respect
to a given norm, if, for every fixed point y of T , we have

||Tx− y|| < ||x− y||, (5.21)

unless Tx = x.

Paracontractive operators are studied by Censor and Reich in [56].

Proposition 5.1 The operators T = PC are paracontractive, with respect
to the Euclidean norm.

Proof: It follows from Cauchy’s Inequality that

||PCx− PCy||2 ≤ ||x− y||2,

with equality if and only if

PCx− PCy = α(x− y),

for some scalar α with |α| = 1. But, because

0 ≤ Re(〈PCx− PCy, x− y〉) = α||x− y||22,

5.7. PARACONTRACTIVE OPERATORS 59

it follows that α = 1, and so

PCx− x = PCy − y.

When we ask if a given operator T is pc, we must specify the norm.
We often construct the norm specifically for the operator involved, as we
did earlier in our discussion of strict contractions, in Equation (5.7). To
illustrate, we consider the case of affine operators.

5.7.1 Linear and Affine Paracontractions

Let the matrix B be diagonalizable and let the columns of V be an eigen-
vector basis. Then we have V −1BV = D, where D is the diagonal matrix
having the eigenvalues of B along its diagonal.

Lemma 5.9 A square matrix B is diagonalizable if all its eigenvalues are
distinct.

Proof: Let B be J by J . Let λj be the eigenvalues of B, Bxj = λjx
j , and

xj 6= 0, for j = 1, ..., J . Let xm be the first eigenvector that is in the span
of {xj |j = 1, ...,m− 1}. Then

xm = a1x
1 + ...am−1x

m−1, (5.22)

for some constants aj that are not all zero. Multiply both sides by λm to
get

λmxm = a1λmx1 + ...am−1λmxm−1. (5.23)

From

λmxm = Axm = a1λ1x
1 + ...am−1λm−1x

m−1, (5.24)

it follows that

a1(λm − λ1)x1 + ... + am−1(λm − λm−1)xm−1 = 0, (5.25)

from which we can conclude that some xn in {x1, ..., xm−1} is in the span
of the others. This is a contradiction.

We see from this Lemma that almost all square matrices B are diago-
nalizable. Indeed, all Hermitian B are diagonalizable. If B has real entries,
but is not symmetric, then the eigenvalues of B need not be real, and the
eigenvectors of B can have non-real entries. Consequently, we must con-
sider B as a linear operator on CJ , if we are to talk about diagonalizability.
For example, consider the real matrix

B =
[

0 1
−1 0

]
. (5.26)

60 CHAPTER 5. OPERATORS

Its eigenvalues are λ = i and λ = −i. The corresponding eigenvectors are
(1, i)T and (1,−i)T . The matrix B is then diagonalizable as an operator
on C2, but not as an operator on R2.

Proposition 5.2 Let T be an affine linear operator whose linear part B is
diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal to
one. Then the operator T is pc, with respect to the norm given by Equation
(5.7).

Proof: This is Exercise 5.5.
We see from Proposition 5.2 that, for the case of affine operators T

whose linear part is not Hermitian, instead of asking if T is av, we can ask
if T is pc; since B will almost certainly be diagonalizable, we can answer
this question by examining the eigenvalues of B.

Unlike the class of averaged operators, the class of paracontractive op-
erators is not necessarily closed to finite products, unless those factor op-
erators have a common fixed point.

5.7.2 The Elsner/Koltracht/Neumann Theorem

Our interest in paracontractions is due to the Elsner/Koltracht/Neumann
(EKN) Theorem [84]:

Theorem 5.3 Let T be pc with respect to some vector norm. If T has
fixed points, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

We follow the development in [84].

Theorem 5.4 Suppose that there is a vector norm on X , with respect to
which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩I

i=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I)+1, and xk+1 = Ti(k)x

k.
The sequence {xk} converges to a member of F , for every starting vector
x0.

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)x
k − y|| ≤ ||xk − y||, (5.27)

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix
∗ − y|| = ||x∗ − y||, (5.28)

and Tix
∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary

member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a
subsequence converges to zero, so the whole sequence must converge to
zero. This completes the proof.

5.8. EXERCISES 61

Corollary 5.1 If T is pc with respect to some vector norm, and T has
fixed points, then the iterative sequence {T kx0} converges to a fixed point
of T , for every starting vector x0.

Corollary 5.2 If T = TITI−1 · · ·T2T1, and F = ∩I
i=1Fix (Ti) is not empty,

then F = Fix (T).

Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T), for

every x0. Select x0 in F .

Corollary 5.3 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩I

i=1Fix (Ti) is not empty.

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T), we
have

||Tx− y|| = ||x− y||. (5.29)

Then, since

||TI(TI−1 · · · T1)x− y|| ≤ ||TI−1 · · · T1x− y|| ≤ ... ≤ ||T1x− y|| ≤ ||x− y||,(5.30)

it follows that

||Tix− y|| = ||x− y||, (5.31)

and Tix = x, for each i. Therefore, Tx = x.

5.8 Exercises

5.1 Show that a strict contraction can have at most one fixed point.

5.2 Let T is sc. Show that the sequence {T kx0} is a Cauchy sequence.
Hint: consider

||xk − xk+n|| ≤ ||xk − xk+1||+ ... + ||xk+n−1 − xk+n||, (5.32)

and use

||xk+m − xk+m+1|| ≤ rm||xk − xk+1||. (5.33)

Since {xk} is a Cauchy sequence, it has a limit, say x̂. Let ek = x̂ − xk.
Show that {ek} → 0, as k → +∞, so that {xk} → x̂. Finally, show that
T x̂ = x̂.

62 CHAPTER 5. OPERATORS

5.3 Suppose that we want to solve the equation

x =
1
2
e−x.

Let Tx = 1
2e−x for x in R. Show that T is a strict contraction, when re-

stricted to non-negative values of x, so that, provided we begin with x0 > 0,
the sequence {xk = Txk−1} converges to the unique solution of the equa-
tion. Hint: use the mean value theorem from calculus.

5.4 Show that, if the operator T is α-av and 1 > β > α, then T is β-av.

5.5 Prove Proposition 5.2.

5.6 Show that, if B is a linear av operator, then |λ| < 1 for all eigenvalues
λ of B that are not equal to one.

Chapter 6

Problems and Algorithms

In almost all the applications we shall consider, the basic problem is to find
a vector x satisfying certain constraints. These constraints usually include
exact or approximate consistency with measured data, as well as additional
requirements, such as having non-negative entries.

6.1 Systems of Linear Equations

In remote-sensing problems, including magnetic-resonance imaging, trans-
mission and emission tomography, acoustic and radar array processing, and
elsewhere, the data we have measured is related to the object we wish to
recover by linear transformation, often involving the Fourier transform. In
the vector case, in which the object of interest is discretized, the vector
b of measured data is related to the vector x we seek by linear equations
that we write as Ax = b. The matrix A need not be square, there can be
infinitely many solutions, or no solutions at all. We may want to calculate a
minimum-norm solution, in the under-determined case, or a least-squares
solution, in the over-determined case. The vector x may be the vector-
ization of a two-dimensional image, in which case I, the number of rows,
and J , the number of columns of A, can be in the thousands, precluding
the use of non-iterative solution techniques. We may have additional prior
knowledge about x, such as its entries are non-negative, which we want
to impose as constraints. There is usually noise in measured data, so we
may not want an exact solution of Ax = b, even if such solutions exist, but
prefer a regularized approximate solution. What we need then are iterative
algorithms to solve these problems involving linear constraints.

63

64 CHAPTER 6. PROBLEMS AND ALGORITHMS

6.1.1 Exact Solutions

When J ≥ I, the system Ax = b typically has exact solutions. To calculate
one of these, we can choose among many iterative algorithms.

The ART

The algebraic reconstruction technique (ART) associates the ith equation
in the system with the hyperplane

Hi = {x|(Ax)i = bi}. (6.1)

With Pi the orthogonal projection onto Hi, and i = k(mod I)+1, the ART
is as follows:

Algorithm 6.1 (ART) With x0 arbitrary and having calculated xk, let

xk+1 = Pix
k. (6.2)

The operators Pi are av, so the product

T = PIPI−1 · · · P2P1 (6.3)

is also av and convergence of the ART follows from Theorem 5.2. The ART
is also an optimization method, in the sense that it minimizes ||x − x0||2
over all x with Ax = b.

Cimmino’s Algorithm

We can also use the operators Pi in a simultaneous manner; this algorithm
is the Cimmino algorithm [63]:

Algorithm 6.2 (Cimmino) With x0 arbitrary and having calculated xk,
let

xk+1 =
1
I

I∑
i=1

Pix
k. (6.4)

Once again, convergence follows from Theorem 5.2, since the operator

T =
1
I

I∑
i=1

Pi (6.5)

is av. Cimmino’s algorithm also minimizes ||x−x0||2 over all x with Ax = b,
but tends to converge more slowly than ART, especially if ART is im-
plemented using a random ordering of the equations or relaxation. One

6.1. SYSTEMS OF LINEAR EQUATIONS 65

advantage that Cimmino’s algorithm has over the ART is that, in the in-
consistent case, in which Ax = b has no solutions, Cimmino’s algorithm
converges to a least-squares solution of Ax = b, while the ART produces a
limit cycle of multiple vectors.

Note that Ax = b has solutions precisely when the square system
AA†z = b has a solution; for J ≥ I, if A has full rank I (which is most of
the time) the matrix AA† will be invertible and the latter system will have
a unique solution z = (AA†)−1b. Then x = A†z is the minimum-norm
solution of the system Ax = b.

Projected ART

If we require a solution of Ax = b that lies in the closed, convex set C, we
can modify both the ART and Cimmino’s algorithm to achieve this end; all
we need to do is to replace xk+1 with PCxk+1, the orthogonal projection
of xk+1 onto C. These modified algorithms are the projected ART and
projected Cimmino algorithm, respectively. Convergence is again the result
of Theorem 5.2.

6.1.2 Optimization and Approximate Solutions

When I > J and the system Ax = b has no exact solutions, we can calculate
the least-squares solution closest to x0 using Cimmino’s algorithm. When
all the rows of A are normalized to have Euclidean length one, the iterative
step of Cimmino’s algorithm can be written as

xk+1 = xk +
1
I
A†(b−Axk). (6.6)

Cimmino’s algorithm is a special case of Landweber’s algorithm.

Algorithm 6.3 (Landweber)For arbitrary x0, and γ in the interval (0, 2/L),
where L is the largest eigenvalue of the matrix A†A, let

xk+1 = xk + γA†(b−Axk). (6.7)

The sequence {xk} converges to the least-squares solution closest to x0.
Landweber’s algorithm can be written as xk+1 = Txk, for the operator T
defined by

Tx = (I − γA†A)x + γA†b. (6.8)

This operator is affine linear and is an av operator, since its linear part,
the matrix B = I − γA†A, is av for any γ in (0, 2/L). Convergence then
follows from Theorem 5.2. When the rows of A have Euclidean length one,
the trace of AA† is I, the number of rows in A, so L ≤ I. Therefore, the

66 CHAPTER 6. PROBLEMS AND ALGORITHMS

choice of γ = 1
I used in Cimmino’s algorithm is permissible, but usually

much smaller than the optimal choice.
To minimize ||Ax − b||2 over x in the closed, convex set C we can use

the projected Landweber algorithm.

Algorithm 6.4 (Projected Landweber)

xk+1 = PC(xk + γA†(b−Axk)). (6.9)

Since PC is an av operator, the operator

Tx = PC(x + γA†(b−Ax)) (6.10)

is av for all γ in (0, 2/L). Convergence again follows from Theorem 5.2,
whenever minimizers exist. Note that when Ax = b has solutions in C, the
projected Landweber algorithm converges to such a solution.

6.1.3 Approximate Solutions and the Nonnegativity
Constraint

For the real system Ax = b, consider the nonnegatively constrained least-
squares problem of minimizing the function ||Ax− b||2, subject to the con-
straints xj ≥ 0 for all j; this is a nonnegatively constrained least-squares
approximate solution. As noted previously, we can solve this problem using
a slight modification of the ART. Although there may be multiple solutions
x̂, we know, at least, that Ax̂ is the same for all solutions.

According to the Karush-Kuhn-Tucker Theorem [132], the vector Ax̂
must satisfy the condition

I∑
i=1

Aij((Ax̂)i − bi) = 0 (6.11)

for all j for which x̂j > 0 for some solution x̂. Let S be the set of all indices
j for which there exists a solution x̂ with x̂j > 0. Then Equation (6.11)
must hold for all j in S. Let Q be the matrix obtained from A by deleting
those columns whose index j is not in S. Then QT (Ax̂− b) = 0. If Q has
full rank and the cardinality of S is greater than or equal to I, then QT is
one-to-one and Ax̂ = b. We have proven the following result.

Theorem 6.1 Suppose that A has the full-rank property, that is, A and
every matrix Q obtained from A by deleting columns have full rank. Suppose
there is no nonnegative solution of the system of equations Ax = b. Then
there is a subset S of the set {j = 1, 2, ..., J} with cardinality at most I − 1
such that, if x̂ is any minimizer of ||Ax− b||2 subject to x ≥ 0, then x̂j = 0
for j not in S. Therefore, x̂ is unique.

6.2. POSITIVE SOLUTIONS OF LINEAR EQUATIONS 67

When x̂ is a vectorized two-dimensional image and J > I, the presence
of at most I− 1 positive pixels makes the resulting image resemble stars in
the sky; for that reason this theorem and the related result for the EMML
algorithm ([33]) are sometimes called night sky theorems. The zero-valued
pixels typically appear scattered throughout the image. This behavior
occurs with all the algorithms discussed so far that impose nonnegativity,
whenever the real system Ax = b has no nonnegative solutions.

6.1.4 Splitting Methods

As we noted previously, the system Ax = b has solutions if and only if
the square system AA†z = b has solutions. The splitting methods apply
to square systems Sz = h. The idea is to decompose S into S = M −K,
where M is easily inverted. Then

Sz = Mz −Kz = h. (6.12)

The operator T given by

Tz = M−1Kz + M−1h (6.13)

is affine linear and is av whenever the matrix M−1K is av. When M−1K is
not Hermitian, if M−1K is a paracontraction, with respect to some norm,
we can use Theorem 5.3.

Particular choices of M and K lead to Jacobi’s method, the Gauss-
Seidel method, and the more general Jacobi and Gauss-Seidel overrelax-
ation methods (JOR and SOR). For the case of S non-negative-definite,
the JOR algorithm is equivalent to Landweber’s algorithm and the SOR is
closely related to the relaxed ART method. Convergence of both JOR and
SOR in this case follows from Theorem 5.2.

6.2 Positive Solutions of Linear Equations

Suppose now that the entries of the matrix A are non-negative, those of b
are positive, and we seek a solution x with non-negative entries. We can,
of course, use the projected algorithms discussed in the previous section.
Alternatively, we can use algorithms designed specifically for non-negative
problems and based on cross-entropy, rather than on the Euclidean distance
between vectors.

6.2.1 Cross-Entropy

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler distance
from a to b be

KL(a, b) = a log
a

b
+ b− a, (6.14)

68 CHAPTER 6. PROBLEMS AND ALGORITHMS

KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors coordinate-
wise, so that

KL(x, z) =
J∑

j=1

KL(xj , zj). (6.15)

Unlike the Euclidean distance, the KL distance is not symmetric; KL(Ax, b)
and KL(b, Ax) are distinct, and we can obtain different approximate so-
lutions of Ax = b by minimizing these two distances with respect to non-
negative x.

6.2.2 The EMML and SMART algorithms

The expectation maximization maximum likelihood (EMML) algorithm min-
imizes KL(b, Ax), while the simultaneous multiplicative ART (SMART)
minimizes KL(Ax, b). These methods were developed for application to
tomographic image reconstruction, although they have much more general
uses. Whenever there are nonnegative solutions of Ax = b, SMART con-
verges to the nonnegative solution that minimizes KL(x, x0); the EMML
also converges to a non-negative solution, but no explicit description of
that solution is known.

6.2.3 Acceleration

Both the EMML and SMART algorithms are simultaneous, like Cimmino’s
algorithm, and use all the equations in each step of the iteration. Like
Cimmino’s algorithm, they are slow to converge. In the consistent case,
the ART converges much faster than Cimmino’s algorithm, and analo-
gous successive- and block-projection methods for accelerating the EMML
and SMART methods have been developed; including the multiplicative
ART (MART), the rescaled block-iterative SMART (RBI-SMART) and the
rescaled block-iterative EMML (RBI-EMML). These methods can be viewed
as involving projections onto hyperplanes, but the projections are entropic,
not orthogonal, projections.

6.2.4 Entropic Projections onto Hyperplanes

Let Hi be the hyperplane

Hi = {x|(Ax)i = bi}. (6.16)

For any non-negative z, denote by x = P e
i z the non-negative vector in

Hi that minimizes the entropic distance KL(x, z). Generally, we cannot

6.3. SENSITIVITY TO NOISE 69

express P e
i z in closed form. On the other hand, if we ask for the non-

negative vector x = Qe
i z in Hi for which the weighted entropic distance

J∑
j=1

AijKL(xj , zj) (6.17)

is minimized, we find that x = Qe
i z can be written explicitly:

xj = zj
bi

(Az)i
. (6.18)

We can use these weighted entropic projection operators Qe
i to derive the

MART, the SMART, the EMML, the RBI-SMART, and the RBI-EMML
methods.

6.3 Sensitivity to Noise

In many applications of these iterative methods, the vector b consists of
measurements, and therefore, is noisy. Even though exact solutions of
Ax = b may exist, they may not be useful, because they are the result
of over-fitting the answer to noisy data. It is important to know where
sensitivity to noise can come from, and how modify the algorithms to lessen
the sensitivity. Ill-conditioning in the matrix A can lead to sensitivity to
noise and regularization can help to make the solution less sensitive to noise
and other errors.

6.3.1 Norm Constraints

For example, in the inconsistent case, when we seek a least-squares solution
of Ax = b, we minimize ||Ax− b||2. To avoid over-fitting to noisy data we
can minimize

||Ax− b||22 + ε2||x||22, (6.19)

for some small ε. In the consistent case, instead of calculating the exact
solution that minimizes ||x− x0||2, we can calculate the minimizer of

||Ax− b||22 + ε2||x− x0||22. (6.20)

These approaches to regularization involve the additional of a penalty term
to the function being minimized. Such regularization can often be obtained
through a Bayesian maximum a posteriori probability (MAP) approach.

Noise in the data can manifest itself in a variety of ways; we have seen
what can happen when we impose positivity on the calculated least-squares
solution, that is, when we minimize ||Ax−b||2 over all non-negative vectors

70 CHAPTER 6. PROBLEMS AND ALGORITHMS

x. Theorem 6.1 tells us that when J > I, but Ax = b has no non-negative
solutions, the non-negatively constrained least-squares solution can have at
most I−1 non-zero entries, regardless of how large J is. This phenomenon
also occurs with several other approximate methods, such as those that
minimize the cross-entropy distance.

6.4 Convex Sets as Constraints

Constraints on x often take the form of inclusion in certain convex sets.
These sets may be related to the measured data, or incorporate other as-
pects of x known a priori. There are several related problems that then
arise.

6.4.1 The Convex Feasibility Problem

Such constraints can often be formulated as requiring that the desired x lie
within the intersection C of a finite collection {C1, ..., CI} of convex sets.
When the number of convex sets is large and the intersection C small, any
member of C may be sufficient for our purposes. Finding such x is the
convex feasibility problem(CFP).

6.4.2 Constrained Optimization

When the intersection C is large, simply obtaining an arbitrary member
of C may not be enough; we may require, in addition, that the chosen x
optimize some cost function. For example, we may seek the x in C that
minimizes ||x− x0||22. This is constrained optimization.

6.4.3 Proximity Function Minimization

When the collection of convex sets has empty intersection, we may minimize
a proximity function, such as

f(x) =
I∑

i=1

||PCi
x− x||22. (6.21)

When the set C is non-empty, the smallest value of f(x) is zero, and is
attained at any member of C. When C is empty, the minimizers of f(x)
provide a reasonable approximate solution to the CFP.

6.4.4 The Moreau Envelope and Proximity Operators

Following Combettes and Wajs [68], we say that the Moreau envelope of
index γ > 0 of the closed, proper convex function f(x) is the continuous

6.5. ALGORITHMS BASED ON ORTHOGONAL PROJECTION 71

convex function

g(x) = inf{f(y) +
1
2γ
||x− y||22}, (6.22)

with the infimum taken over all y in RN . In Rockafellar’s book [137],
and elsewhere, it is shown that the infimum is attained at a unique y,
usually denoted proxγf (x). The proximity operators proxγf (·) are firmly
non-expansive [68] and generalize the orthogonal projections onto closed,
convex sets, as we now show.

Consider the function f(x) = ιC(x), the indicator function of the closed,
convex set C, taking the value zero for x in C, and +∞ otherwise. Then
proxγf (x) = PC(x), the orthogonal projection of x onto C.

6.4.5 The Split Feasibility Problem

An interesting variant of the CFP is the split feasibility problem (SFP)
[53]. Let A be an I by J (possibly complex) matrix. The SFP is to find
a member of a closed, convex set C in CJ for which Ax is a member of a
second closed, convex set Q in CI . When there is no such x, we can obtain
an approximate solution by minimizing the proximity function

g(x) = ||PQAx−Ax||22, (6.23)

over all x in C, whenever such minimizers exist.

6.5 Algorithms Based on Orthogonal Projec-
tion

The CFP can be solved using the successive orthogonal projections (SOP)
method.

Algorithm 6.5 (SOP)For arbitrary x0, let

xk+1 = PIPI−1 · · · P2P1x
k, (6.24)

where Pi = PCi
is the orthogonal projection onto Ci.

For non-empty C, convergence of the SOP to a solution of the CFP will
follow, once we have established that, for any x0, the iterative sequence
{T kx0} converges to a fixed point of T , where

T = PIPI−1 · · · P2P1. (6.25)

Since T is an averaged operator, the convergence of the SOP to a member
of C follows from the KM Theorem 5.2, provided C is non-empty.

72 CHAPTER 6. PROBLEMS AND ALGORITHMS

The SOP is useful when the sets Ci are easily described and the Pi are
easily calculated, but PC is not. The SOP converges to the member of C
closest to x0 when the Ci are hyperplanes, but not in general.

When C = ∩I
i=1Ci is empty and we seek to minimize the proximity

function f(x) in Equation (6.21), we can use the simultaneous orthogonal
projections (SIMOP) approach:

Algorithm 6.6 (SIMOP)For arbitrary x0, let

xk+1 =
1
I

I∑
i=1

Pix
k. (6.26)

The operator

T =
1
I

I∑
i=1

Pi (6.27)

is also averaged, so this iteration converges, by Theorem 5.2, whenever f(x)
has a minimizer.

The CQ algorithm is an iterative emthod for solving the SFP [44, 45].

Algorithm 6.7 (CQ)For arbitrary x0, let

xk+1 = PC(xk − γA†(I − PQ)Axk). (6.28)

The operator

T = PC(I − γA†(I − PQ)A) (6.29)

is averaged whenever γ is in the interval (0, 2/L), where L is the largest
eigenvalue of A†A, and so the CQ algorithm converges to a fixed point
of T , whenever such fixed points exist. When the SFP has a solution,
the CQ algorithm converges to a solution; when it does not, the CQ
algorithm converges to a minimizer, over C, of the proximity function
g(x) = ||PQAx − Ax||2, whenever such minimizers exist. The function
g(x) is convex and, according to [3], its gradient is

∇g(x) = A†(I − PQ)Ax. (6.30)

The convergence of the CQ algorithm then follows from Theorem 5.2. In
[68] Combettes and Wars use proximity operators to generalize the CQ
algorithm.

6.6. STEEPEST DESCENT MINIMIZATION 73

6.5.1 Projecting onto the Intersection of Convex Sets

When the intersection C = ∩I
i=1Ci is large, and just finding any member of

C is not sufficient for our purposes, we may want to calculate the orthogonal
projection of x0 onto C using the operators PCi

. We cannot use the SOP
unless the Ci are hyperplanes; instead we can use Dykstra’s algorithm
or the Halpern-Lions-Wittmann-Bauschke (HLWB) algorithm. Dykstra’s
algorithm employs the projections PCi , but not directly on xk, but on
translations of xk. It is motivated by the following lemma:

Lemma 6.1 If x = c +
∑I

i=1 pi, where, for each i, c = PCi
(c + pi), then

c = PCx.

Bregman discovered an iterative algorithm for minimizing a more general
convex function f(x) over x with Ax = b and also x with Ax ≥ b [17]. These
algorithms are based on his extension of the SOP to include projections
with respect to generalized distances, such as entropic distances.

6.6 Steepest Descent Minimization

Suppose that we want to minimize a real-valued function g : RJ → R. At
each x the direction of greatest decrease of g is the negative of the gradient,
−∇g(x). The steepest descent method has the iterative step

xk+1 = xk − αk∇g(xk), (6.31)

where, ideally, the step-length parameter αk would be chosen so as to min-
imize g(x) in the chosen direction, that is, the choice of α = αk would
minimize

g(xk − α∇g(xk)). (6.32)

In practice, it is difficult, if not impossible, to determine the optimal value
of αk at each step. Therefore, a line search is usually performed to find
a suitable αk, meaning that values of g(xk − α∇f(xk)) are calculated, for
some finite number of α values, to determine a suitable choice for αk.

6.6.1 Fixed Step-Length Methods

For practical reasons, we are often interested in iterative algorithms that
avoid line searches. Some of the minimization algorithms we shall study
take the form

xk+1 = xk − α∇g(xk), (6.33)

74 CHAPTER 6. PROBLEMS AND ALGORITHMS

where the α is a constant, selected at the beginning of the iteration. Such
iterative algorithms have the form xk+1 = Txk, for T the operator defined
by

Tx = x− α∇g(x). (6.34)

When properly chosen, the α will not be the optimal step-length parameter
for every step of the iteration, but will be sufficient to guarantee conver-
gence. In addition, the resulting iterative sequence is often monotonically
decreasing, which means that

g(xk+1) < g(xk), (6.35)

for each k. As we have seen, if g is convex and its gradient is L-Lipschitz,
then α can be chosen so that the operator T is averaged.

6.6.2 Employing Positivity

Suppose that we want to minimize the function g : RJ → RJ , but only
over non-negative vectors z. While zj > 0, let xj = log zj and consider
g(z) as a function f(x) of the real vector x. Then

∂f

∂xj
(x) =

∂g

∂zj
(z)zj , (6.36)

and the steepest descent iteration for f , given by Equation (6.31), becomes

zk+1
j = zk

j exp
(
− αkzk

j

∂g

∂zj
(zk)

)
, (6.37)

which we can write as

zk+1
j = zk

j exp
(
− αk,j∇g(zk)j

)
, (6.38)

using

αk,j = αkzk
j . (6.39)

We shall discuss other iterative monotone methods, such as the EMML
and SMART algorithms, that can be viewed as generalized steepest descent
methods, either having the form of Equation (6.38), or one closely related
to that form. In these cases, the step-length parameter αk is replaced by
ones that also vary with the entry index j. While this may seem even
more complicated to implement, for the algorithms mentioned, these αk,j

are automatically calculated as part of the algorithm, with no line searches
involved.

6.7. BREGMAN PROJECTIONS AND THE SGP 75

6.6.3 Constrained Optimization

If our goal is to minimize g(x) over only those x that are in the closed,
convex set C, then we may consider a projected gradient descent method.

Algorithm 6.8 (Projected Steepest Descent) For arbitrary x0, let

xk+1 = PC(xk − γ∇g(xk)). (6.40)

When the operator Tx = x−γ∇g(x) is av, so is PCT , so the KM Theorem
5.2 will apply once again.

6.7 Bregman Projections and the SGP

If f : RJ → R is convex and differentiable, then, for all x and y, we have

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 0. (6.41)

If x̂ minimizes f(x) over x with Ax = b, then

∇f(x̂) + A†c = 0, (6.42)

for some vector c. Bregman’s idea is to use Df (x, y) to define generalized
projections, and then to mimic the SOP to solve for x̂. Simply requiring
that f(x) be convex and differentiable is not sufficient for a complete theory
and additional requirements are necessary; see the chapter on Bregman-
Legendre functions and Bregman projections.

Definition 6.1 For each i, let P f
i z be the point in the hyperplane

Hi = {x|(Ax)i = bi} (6.43)

that minimizes Df (x, z). Then P f
i z is the Bregman projection of z onto

Hi.

Then

∇f(P f
i z)−∇f(z) = λia

i, (6.44)

for some λi, where ai is the ith column of A†.
Bregman’s successive generalized projection (SGP) method is the fol-

lowing:

Algorithm 6.9 (SGP)For x0 in the interior of the domain of f , let

xk+1 = ∇f−1(∇f(xk) + λkai), (6.45)

for some scalar λk and i = k(mod I) + 1.

76 CHAPTER 6. PROBLEMS AND ALGORITHMS

The sequence {xk} will converge to x with Ax = b, provided solutions exist,
and when x0 is chosen so that x0 = A†d, for some d, the sequence will
converge to the solution that minimizes f(x). Bregman also uses Bregman
distances to obtain a primal-dual algorithm for minimizing f(x) over all
x with Ax ≥ b. Dykstra’s algorithm can be extended to include Bregman
projections; this extended algorithm is then equivalent to the generalization
of Bregman’s primal-dual algorithm to minimize f(x) over the intersection
of closed , convex sets.

6.7.1 Bregman’s Approach to Linear Programming

Bregman’s primal-dual algorithm suggests a method for approximating the
solution of the basic problem in linear programming, to minimize a linear
function cT x, over all x with Ax ≥ b. Other solution methods exist for
this problem, as well. Associated with the basic primary problem is a
dual problem. Both the primary and dual problems can be stated in their
canonical forms or their standard forms. The primary and dual problems
are connected by the Weak Duality and Strong Duality theorems. The
simplex method is the best known solution procedure.

6.7.2 The Multiple-Distance SGP (MSGP)

As we noted earlier, both the EMML and SMART algorithms can be viewed
in terms of weighted entropic projections onto hyperplanes. Unlike the
SGP, the weighted entropic distances used vary with the hyperplane, sug-
gesting that it may be possible to extend the SGP algorithm to include
Bregman projections in which the function f is replaced by fi that de-
pends on the set Ci. It is known, however, that merely replacing the single
Bregman function f with fi that varies with the i is not enough to guar-
antee convergence. The multiple-distance SGP (MSGP) algorithm to be
discussed later achieves convergence by using a dominating Bregman dis-
tance Dh(x, y) with

Dh(x, y) ≥ Dfi
(x, y), (6.46)

for each i, and a generalized notion of relaxation. The MSGP leads to
an interior-point method, the IPA, for minimizing certain convex functions
over convex sets.

6.8 Applications

Iterative algorithms are necessary in many areas of applications. The ed-
itorial [117] provides a brief introduction to the many uses of iterative

6.8. APPLICATIONS 77

methods in medical imaging. Transmission and emission tomography in-
volve the solving of large-scale systems of linear equations, or optimizing
convex functions of thousands of variables. Magnetic-resonance imaging
produces data that is related to the object of interest by means of the
Fourier transform or the Radon transform. Hyperspectral imaging leads to
several problems involving limited Fourier-transform data. Iterative data-
extrapolation algorithms can be used to incorporate prior knowledge about
the object being reconstructed, as well as to improve resolution. Entropy-
based iterative methods are used to solve the mixture problems common
to remote-sensing, as illustrated by sonar and radar array processing, as
well as hyperspectral imaging.

78 CHAPTER 6. PROBLEMS AND ALGORITHMS

Part III

Operators

79

Chapter 7

Averaged and
Paracontractive Operators

Many well known algorithms in optimization, signal processing, and image
reconstruction are iterative in nature. The Jacobi, Gauss-Seidel, and suc-
cessive overrelaxation (SOR) procedures for solving large systems of linear
equations, projection onto convex sets (POCS) methods and iterative op-
timization procedures, such as entropy and likelihood maximization, are
the primary examples. It is a pleasant fact that convergence of many of
these algorithms is a consequence of the Krasnoselskii/Mann (KM) Theo-
rem 5.2 for averaged operators or the Elsner/Koltracht/Neumann (EKN)
Theorem 5.3 for paracontractions. In this chapter we take a closer look at
averaged non-expansive operators and paracontractive non-expansive op-
erators. Later, we examine the more general class of operators that are
paracontractions, with respect to Bregman distances.

7.1 Solving Linear Systems of Equations

An important class of operators are the affine linear ones, having the form

Tx = Bx + h, (7.1)

where B is linear, so that Bx is the multiplication of the vector x by the
matrix B, and h is a fixed vector. Affine linear operators occur in iterative
methods for solving linear systems of equations.

81

82CHAPTER 7. AVERAGED AND PARACONTRACTIVE OPERATORS

7.1.1 Landweber’s Algorithm

The iterative step in Landweber’s algorithm for solving the system Ax = b
is

xk+1 = xk + γA†(b−Axk), (7.2)

where γ is a selected parameter. We can write the Landweber iteration as

xk+1 = Txk, (7.3)

for

Tx = (I − γA†A)x + A†b = Bx + h. (7.4)

Landweber’s algorithm actually solves the square linear system A†A = A†b
for a least-squares solution of Ax = b. When there is a unique solution or
unique least-squares solution of Ax = b, say x̂, then the error at the k-th
step is ek = x̂− xk and we see that

Bek = ek+1. (7.5)

We want ek → 0, and so we want ||B||2 < 1; this means that both T and
B are Euclidean strict contractions. Since B is Hermitian, B will be sc if
and only ||B||2 < 1, where ||B||2 = ρ(B) is the matrix norm induced by
the Euclidean vector norm.

On the other hand, when there are multiple solutions of Ax = b, the
solution found by Landweber’s algorithm will be the one closest to the
starting vector. In this case, we cannot define ek and we do not want
||B||2 < 1; that is, we do not need that B be a strict contraction, but
something weaker. As we shall see, since B is Hermitian, B will be av
whenever γ lies in the interval (0, 2/ρ(B)).

7.1.2 Splitting Algorithms

Affine linear operators also occur in splitting algorithms for solving a square
system of linear equations, Sx = b. We write S = M − K, with M
invertible.

Algorithm 7.1 (Splitting)For x0 arbitrary, let

xk+1 = M−1Kxk + M−1b, (7.6)

This iterative step can be written as

xk+1 = Txk, (7.7)

7.2. AVERAGED OPERATORS 83

for the affine linear operator

Tx = M−1Kx + M−1b = Bx + h. (7.8)

When S is invertible, there is a unique solution of Sx = b, say x̂, and we
can define the error ek = x̂ − xk. Then ek+1 = Bek, and again we want
||B||2 < 1, that is, B is a strict contraction. However, if S is not invertible
and there are multiple solutions, then we do not want B to be sc. Since B
is usually not Hermitian, deciding if B is av may be difficult. Therefore,
we may instead ask if there is a vector norm with respect to which B is pc.

We begin, in the next section, a detailed discussion of averaged opera-
tors.

7.2 Averaged Operators

As we have seen, the fact that a ne operator N has fixed points is not suf-
ficient to guarantee convergence of the orbit sequence {Nkx0}; additional
conditions are needed. Requiring the operator to be a strict contraction
is quite restrictive; most of the operators we are interested in here have
multiple fixed points, so are not sc, in any norm. For example, if T = PC ,
then C = Fix(T). Motivated by the KM Theorem 5.2, we concentrate on
averaged operators, by which we shall always mean with respect to the
Euclidean norm.

7.2.1 General Properties of Averaged Operators

We present now the fundamental properties of averaged operators, in prepa-
ration for the proof that the class of averaged operators is closed to finite
products.

Note that we can establish that a given operator is av by showing that
there is an α in the interval (0, 1) such that the operator

1
α

(A− (1− α)I) (7.9)

is ne. Using this approach, we can easily show that if T is sc, then T is av.

Lemma 7.1 Let T = (1−α)A + αN for some α ∈ (0, 1). If A is averaged
and N is non-expansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1− γ = (1− α)(1− β). Then we have

T = (1− γ)I + γ[(1− α)βγ−1M + αγ−1N]. (7.10)

Since the operator K = (1− α)βγ−1M + αγ−1N is easily shown to be ne
and the convex combination of two ne operators is again ne, T is averaged.

84CHAPTER 7. AVERAGED AND PARACONTRACTIVE OPERATORS

Corollary 7.1 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.

Corollary 7.2 Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne
and N is Euclidean-ne then T is averaged.

The orthogonal projection operators PH onto hyperplanes H = H(a, γ)
are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1− ω)I + ωPH , (7.11)

for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH −I,
which is reflection through H; that is,

PHx =
1
2
(x + RHx), (7.12)

for each x.

Lemma 7.2 The operator RH = 2PH − I is an isometry; that is,

||RHx−RHy||2 = ||x− y||2, (7.13)

for all x and y, so that RH is ne.

Lemma 7.3 For ω = 1 + γ in the interval [1, 2), we have

(1− ω)I + ωPH = αI + (1− α)RH , (7.14)

for α = 1−γ
2 ; therefore, T = (1− ω)I + ωPH is av.

The product of finitely many ne operators is again ne, while the product
of finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1− α)I + αN is averaged and B is averaged then T = AB has
the form T = (1 − α)B + αNB. Since B is av and NB is ne, it follows
from Lemma 7.1 that T is averaged. Summarizing, we have

Proposition 7.1 If A and B are averaged, then T = AB is averaged.

It is possible for Fix(AB) to be nonempty while Fix(A)∩Fix(B) is
empty; however, if the latter is nonempty, it must coincide with Fix(AB)
[21, 9]:

7.2. AVERAGED OPERATORS 85

Proposition 7.2 Let A and B be averaged operators and suppose that
Fix(A)∩Fix(B) is nonempty. Then Fix(A)∩Fix(B) =Fix(AB)=Fix(BA).

Proof: Let I −A be νA-ism and I −B be νB-ism, where both νA and νB

are taken greater than 1
2 . Let z be in Fix(A)∩Fix(B) and x in Fix(BA).

Then

||z − x||22 ≥ ||z −Ax||22 + (2νA − 1)||Ax− x||22

≥ ||z −BAx||22 + (2νB − 1)||BAx−Ax||22 + (2νA − 1)||Ax− x||22

= ||z − x||22 + (2νB − 1)||BAx−Ax||22 + (2νA − 1)||Ax− x||22. (7.15)

Therefore ||Ax− x||2 = 0 and ||BAx−Ax||2 = ||Bx− x||2 = 0.

7.2.2 Averaged Linear Operators

Affine linear operators have the form Tx = Bx + d, where B is a matrix.
The operator T is av if and only if B is av. It is useful, then, to consider
conditions under which B is av.

When B is averaged, there is a positive α in (0, 1) and a Euclidean ne
operator N , with

B = (1− α)I + αN. (7.16)

Therefore

N =
1
α

B + (1− 1
α

)I (7.17)

is non-expansive. Clearly, N is a linear operator; that is, N is multiplication
by a matrix, which we also denote N . When is such a linear operator N
ne?

Lemma 7.4 A linear operator N is ne, in the Euclidean norm, if and only
if ||N ||2 =

√
ρ(N†N), the matrix norm induced by the Euclidean vector

norm, does not exceed one.

We know that B is av if and only if its complement, I − B, is ν-ism for
some ν > 1

2 . Therefore,

Re(〈(I −B)x, x〉) ≥ ν||(I −B)x||22, (7.18)

for all x. This implies that x†(I −B)x ≥ 0, for all x. Since this quadratic
form can be written as

x†(I −B)x = x†(I −Q)x, (7.19)

86CHAPTER 7. AVERAGED AND PARACONTRACTIVE OPERATORS

for Q = 1
2 (B + B†), it follows that I − Q must be non-negative definite.

Moreover, if B is av, then B is ne, so that ||B||2 ≤ 1. Since ||B||2 = ||B†||2,
and ||Q||2 ≤ 1

2 (||B||2 + ||B†||2), it follows that Q must be Euclidean ne. In
fact, since N is Euclidean ne if and only if N† is, B is av if and only if B†

is av. Consequently, if the linear operator B is av, then so is the Hermitian
operator Q, and so the eigenvalues of Q must lie in the interval (−1, 1]. We
also know from Exercise 5.6 that, if B is av, then |λ| < 1, unless λ = 1, for
every eigenvalue λ of B.

7.2.3 Hermitian Linear Operators

We are particularly interested in linear operators B that are Hermitian, in
which case N will also be Hermitian. Therefore, we shall assume, through-
out this subsection, that B is Hermitian, so that all of its eigenvalues are
real. It follows from our discussion relating matrix norms to spectral radii
that a Hermitian N is ne if and only if ρ(N) ≤ 1. We now derive condi-
tions on the eigenvalues of B that are equivalent to B being an av linear
operator.

For any (necessarily real) eigenvalue λ of B, the corresponding eigen-
value of N is

ν =
1
α

λ + (1− 1
α

). (7.20)

It follows that |ν| ≤ 1 if and only if

1− 2α ≤ λ ≤ 1. (7.21)

Therefore, the Hermitian linear operator B is av if and only if there is
α in (0, 1) such that

−1 < 1− 2α ≤ λ ≤ 1, (7.22)

for all eigenvalues λ of B. This is equivalent to saying that

−1 < λ ≤ 1, (7.23)

for all eigenvalues λ of B. The choice

α0 =
1− λmin

2
(7.24)

is the smallest α for which

N =
1
α

B + (1− 1
α

)I (7.25)

will be non-expansive; here λmin denotes the smallest eigenvalue of B. So,
α0 is the smallest α for which B is α-av.

7.3. PARACONTRACTIVE OPERATORS 87

The linear operator B will be fne if and only if it is 1
2 -av. Therefore,

B will be fne if and only if 0 ≤ λ ≤ 1, for all eigenvalues λ of B. Since
B is Hermitian, we can say that B is fne if and only if B and I − B are
non-negative definite. We summarize the situation for Hermitian B as
follows.

Theorem 7.1 Let B be Hermitian. Then B is non-expansive if and only if
−1 ≤ λ ≤ 1, for all eigenvalues λ; B is averaged if and only if −1 < λ ≤ 1,
for all eigenvalues λ; B is a strict contraction if and only if −1 < λ < 1, for
all eigenvalues λ; and B is firmly non-expansive if and only if 0 ≤ λ ≤ 1,
for all eigenvalues λ.

7.3 Paracontractive Operators

An affine linear operator Tx = Bx + d is an averaged non-expansive op-
erator if and only if its linear part, B, is also averaged. A Hermitian B
is av if and only if −1 < λ ≤ 1, for each eigenvalue λ of B. When B is
not Hermitian, deciding if B is av is harder. In such cases, we can ask if
there is some vector norm, with respect to which B is paracontractive (pc).
As we shall see, if B is diagonalizable, then B is pc if |λ| < 1, for every
eigenvalue λ of B that is not equal to one. Then we can use Theorem 5.3
to establish convergence of the iterative sequence {T kx0}.

7.3.1 Paracontractions and Convex Feasibility

Recall that an operator T on X is pc , with respect to some vector norm
|| · ||, if, for every fixed point y of T and for every x, we have

||Tx− y|| < ||x− y||, (7.26)

unless Tx = x. Note that T can be pc without being continuous, hence
without being ne. We shall restrict our attention here to those pc operators
that are continuous.

Let Ci, i = 1, ..., I, be non-empty, closed convex sets in X , with non-
empty intersection C. The orthogonal projection Pi = PCi

onto Ci is
pc, with respect to the Euclidean norm, for each i. The product T =
PIPI−1 ···P1 is also pc, since C is non-empty. The SOP algorithm converges
to a member of C, for any starting vector x0, as a consequence of Theorem
5.3. For the SOP to be a practical procedure, we need to be able to calculate
easily the orthogonal projection onto each Ci.

The cyclic subgradient projection method (CSP) (see [60]) provides a
practical alternative to the SOP, for sets Ci of the form

Ci = {x|gi(x) ≤ bi}, (7.27)

88CHAPTER 7. AVERAGED AND PARACONTRACTIVE OPERATORS

where gi is a convex function on X . In the case in which g is differentiable,
for each i, let

Tix = x− ωαi(x)∇gi(x), (7.28)

for

αi(x) = max(gi(x)− bi, 0)/||∇gi(x)||2. (7.29)

From [84] we have

Theorem 7.2 For 0 < ω < 2, the operators Ti are pc, with respect to the
Euclidean norm.

Proof: A vector y is a fixed point of Ti if and only if gi(y) ≤ 0, so if and
only if y ∈ Ci. Let x be a vector outside of Ci, and let α = αi(x). Since
gi has no relative minimum outside of Ci, Tix is well defined. We want to
show that ||Tix− y|| < ||x− y||. This is equivalent to showing that

ω2α2||∇gi(x)||2 ≤ 2ωα〈∇gi(x), x− y〉, (7.30)

which, in turn, is equivalent to showing that

ω(gi(x)− bi) ≤ 〈∇gi(x), x− y〉. (7.31)

Since gi(y) ≤ bi and gi is convex, we have

(gi(x)− β) ≤ (gi(x)− gi(y)) ≤ 〈∇gi(x), x− y〉. (7.32)

Inequality (7.31) follows immediately.
The CSP algorithm has the iterative step

xk+1 = Ti(k)x
k, (7.33)

where i(k) = k(mod I)+1. Since each of the operators Ti is pc, the sequence
converges to a member of C, whenever C is non-empty, as a consequence
of Theorem 5.3.

Let A be an I by J real matrix, and for each i let gi(x) = (Ax)i. Then
the gradient of gi is ∇gi(x) = ai, the ith column of AT . The set Ci is
the half-space C = {x| (Ax)i ≤ bi}, and the operator Ti is the orthogonal
projection onto Ci. The CSP algorithm in this case becomes the Agmon-
Motzkin-Schoenberg (AMS) algorithm for finding x with Ax ≤ b.

7.4 Linear and Affine Paracontractions

Recall that the linear operator B is diagonalizable if X has a basis of
eigenvectors of B. In that case let the columns of V be such an eigenvector
basis. Then we have V −1BV = D, where D is the diagonal matrix having
the eigenvalues of B along its diagonal.

7.4. LINEAR AND AFFINE PARACONTRACTIONS 89

7.4.1 Back-propagation-of-error Methods

Suppose that A is I by J , with J > I and that Ax = b has infinitely many
solutions. A backpropagation-of-error approach leads to an algorithm with
the iterative step

xk+1 = xk + γC†(b−Axk), (7.34)

where C is some I by J matrix. The algorithm can then be written in the
form xk+1 = T kx0, for T the affine operator given by

Tx = (I − γC†A)x + γC†b. (7.35)

Since Ax = b has multiple solutions, A has a non-trivial null space, so that
some of the eigenvalues of B = (I − γC†A) are equal to one. As we shall
see, if γ is chosen so that |λ| < 1, for all the remaining eigenvalues of B,
and B is diagonalizable, then T will be pc, with respect to some vector
norm, and the iterative sequence {xk} will converge to a solution. For such
a γ to exist, it is necessary that, for all nonzero eigenvalues µ = a + bi of
the matrix C†A, the real parts a be nonzero and have the same sign, which
we may, without loss of generality, assume to be positive. Then we need to
select γ in the intersection of the intervals (0, 2a/(a2+b2)), taken over every
eigenvalue µ. When C = A, all the nonzero eigenvalues of C†A = A†A are
positive, so such a γ exists. As C deviates from A, the eigenvalues of C†A
begin to change. We are asking that the C not deviate from A enough to
cause the real part of an eigenvalue to become negative.

7.4.2 Defining the Norm

Suppose that Tx = Bx + d is an affine linear operator whose linear part B
is diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal
to one. Let {u1, ..., uJ} be linearly independent eigenvectors of B. For each
x, we have

x =
J∑

j=1

aju
j , (7.36)

for some coefficients aj . Define

||x|| =
J∑

j=1

|aj |, (7.37)

We know from Proposition 5.2 that T is pc with respect to this norm. It
follows from Theorem 5.3 that the iterative sequence {T kx0} will converge
to a fixed point of T , whenever T has fixed points.

90CHAPTER 7. AVERAGED AND PARACONTRACTIVE OPERATORS

7.4.3 Proof of Convergence

It is not difficult to prove convergence directly, as we now show.

Proof of convergence: Let the eigenvalues of B be λj , for j = 1, ..., J ,
with associated linearly independent eigenvectors uj . Define a norm on
vectors x by

||x|| =
J∑

j=1

|aj |, (7.38)

for

x =
J∑

j=1

aju
j . (7.39)

Assume that λj = 1, for j = K +1, ..., J , and that |λj | < 1, for j = 1, ...,K.
Let

d =
J∑

j=1

dju
j . (7.40)

Let x̂ be an arbitrary fixed point of T , with

x̂ =
J∑

j=1

âju
j . (7.41)

From T x̂ = x̂ we have
J∑

j=1

âju
j =

J∑
j=1

(λj âj + dj)uj . (7.42)

Then with

xk =
J∑

j=1

ajkuj , (7.43)

and

xk+1 = Bxk + h =
J∑

j=1

(λjajk + dj)uj , (7.44)

we have

xk − x̂ =
J∑

j=1

(ajk − âj)uj , (7.45)

7.4. LINEAR AND AFFINE PARACONTRACTIONS 91

and

xk+1 − x̂ =
K∑

j=1

λj(ajk − âj)uj +
J∑

j=K+1

(ajk − âj)uj . (7.46)

Therefore,

||xk − x̂|| =
K∑

j=1

|ajk − â|+
J∑

j=K+1

|ajk − âj |, (7.47)

while

||xk+1 − x̂|| =
K∑

j=1

|λj ||ajk − â|+
J∑

j=K+1

|ajk − âj |. (7.48)

Consequently,

||xk − x̂|| − ||xk+1 − x̂|| =
K∑

j=1

(1− |λj |)|ajk − âj |. (7.49)

It follows that the sequence {||xk−x̂||} is decreasing, and that the sequences
{|ajk − âj |} converge to zero, for each j = 1, ...,K.

Since the sequence {xk} is then bounded, select a cluster point, x∗, with

x∗ =
J∑

j=1

a∗ju
j . (7.50)

Then we must have

{|ajk − a∗j |} → 0, (7.51)

for j = 1, ...,K. It follows that âj = a∗j , for j = 1, ...,K. Therefore,

x̂− x∗ =
J∑

j=K+1

cju
j , (7.52)

for cj = âj − a∗j . We can conclude, therefore, that

x̂−Bx̂ = x∗ −Bx∗, (7.53)

so that x∗ is another solution of the system (I − B)x = d. Therefore,
the sequence {||xk − x∗||} is decreasing; but a subsequence converges to
zero, so the entire sequence must converge to zero. We conclude that {xk}
converges to the solution x∗.

92CHAPTER 7. AVERAGED AND PARACONTRACTIVE OPERATORS

It is worth noting that the condition that B be diagonalizable cannot
be omitted. Consider the non-diagonalizable matrix

B =
[

1 1
0 1

]
, (7.54)

and the affine operator

Tx = Bx + (1, 0)T . (7.55)

The fixed points of T are the solutions of (I − B)x = (1, 0)T , which are
the vectors of the form x = (a,−1)T . With starting vector x0 = (1, 0)T ,
we find that xk = (k − 1)x0, so that the sequence {xk} does not converge
to a fixed point of T . There is no vector norm for which T is pc.

If T is an affine linear operator with diagonalizable linear part, then
T is pc whenever T is av, as we know from Exercise 5.6. We see from
that exercise that, for the case of affine operators T whose linear part is
not Hermitian, instead of asking if T is av, we can ask if T is pc; since
B will almost certainly be diagonalizable, we can answer this question by
examining the eigenvalues of B.

7.5 Other Classes of Operators

As we have seen, the class of non-expansive operators is too broad, and the
class of strict contractions too narrow, for our purposes. The KM Theorem
5.2 encourages us to focus on the intermediate class of averaged operators,
and the EKN Theorem 5.3 makes the paracontractions also worth consider-
ation. While this is certainly a fruitful approach, it is not the only possible
one. In [76] De Pierro and Iusem take a somewhat different approach,
basing their class of operators on properties of orthogonal projections onto
convex sets. We can use the Cauchy-Schwarz Inequality and the fact that
T = PC is firmly non-expansive to show that

||Tx− Ty||2 = ||x− y||2 (7.56)

implies that

Tx− Ty = x− y, (7.57)

and

〈Tx− x, x− y〉 = 0. (7.58)

De Pierro and Iusem consider operators Q : RJ → RJ that are non-
expansive and for which the property in Equation (7.56) implies both Equa-
tions (7.57) and (7.58). They then show that this class is closed to finite
products and convex combinations.

Part IV

Algorithms

93

Chapter 8

The Algebraic
Reconstruction Technique

We begin our detailed discussion of algorithms with a simple problem,
solving a system of linear equations, and a simple method, the algebraic
reconstruction technique (ART).

The ART was introduced by Gordon, Bender and Herman [93] as a
method for image reconstruction in transmission tomography. It was no-
ticed somewhat later that the ART is a special case of Kaczmarz’s algo-
rithm [109]. For i = 1, ..., I, let Li be the set of pixel indices j for which
the j-th pixel intersects the i-th line segment, and let |Li| be the cardinal-
ity of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise. With
i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xk

j +
1
|Li|

(bi − (Axk)i), (8.1)

for j in Li, and

xk+1
j = xk

j , (8.2)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

A somewhat more sophisticated version of ART allows Aij to include
the length of the i-th line segment that lies within the j-th pixel; Aij is
taken to be the ratio of this length to the length of the diagonal of the
j-pixel.

More generally, ART can be viewed as an iterative method for solving
an arbitrary system of linear equations, Ax = b.

95

96CHAPTER 8. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

8.1 The ART

Let A be a complex matrix with I rows and J columns, and let b be a
member of CI . We want to solve the system Ax = b.

For each index value i, let Hi be the hyperplane of J-dimensional vectors
given by

Hi = {x|(Ax)i = bi}, (8.3)

and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k. (8.4)

Because the ART uses only a single equation at each step, it has been called
a row-action method .

8.1.1 Calculating the ART

Given any vector z the vector in Hi closest to z, in the sense of the Euclidean
distance, has the entries

xj = zj + Aij(bi − (Az)i)/
J∑

m=1

|Aim|2. (8.5)

To simplify our calculations, we shall assume, throughout this chapter, that
the rows of A have been rescaled to have Euclidean length one; that is

J∑
j=1

|Aij |2 = 1, (8.6)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b. The ART is then the following: begin
with an arbitrary vector x0; for each nonnegative integer k, having found
xk, the next iterate xk+1 has entries

xk+1
j = xk

j + Aij(bi − (Axk)i). (8.7)

When the system Ax = b has exact solutions the ART converges to the
solution closest to x0, in the 2-norm. How fast the algorithm converges
will depend on the ordering of the equations and on whether or not we use
relaxation. In selecting the equation ordering, the important thing is to
avoid particularly bad orderings, in which the hyperplanes Hi and Hi+1

are nearly parallel.

8.1. THE ART 97

8.1.2 Full-cycle ART

We also consider the full-cycle ART, with iterative step zk+1 = Tzk, for

T = PIPI−1 · · · P2P1. (8.8)

When the system Ax = b has solutions, the fixed points of T are solutions.
When there are no solutions of Ax = b, the operator T will still have fixed
points, but they will no longer be exact solutions.

8.1.3 Relaxed ART

The ART employs orthogonal projections onto the individual hyperplanes.
If we permit the next iterate to fall short of the hyperplane, or somewhat
beyond it, we get a relaxed version of ART.The relaxed ART algorithm is
as follows:

Algorithm 8.1 (Relaxed ART) With ω ∈ (0, 2), x0 arbitrary, and i =
k(mod I) + 1, let

xk+1
j = xk

j + ωAij(bi − (Axk)i)). (8.9)

The relaxed ART converges to the solution closest to x0, in the consis-
tent case. In the inconsistent case, it does not converge, but subsequences
associated with the same i converge to distinct vectors, forming a limit
cycle.

8.1.4 Constrained ART

Let C be a closed, nonempty convex subset of CJ and PCx the orthogonal
projection of x onto C. If there are solutions of Ax = b that lie within C,
we can find them using the constrained ART algorithm:

Algorithm 8.2 (Constrained ART) With x0 arbitrary and i = k(mod I)+
1, let

xk+1
j = PC(xk

j + Aij(bi − (Axk)i)). (8.10)

For example, if A and b are real and we seek a nonnegative solution to
Ax = b, we can use

Algorithm 8.3 (Non-negative ART) With x0 arbitrary and i = k(mod I)+
1, let

xk+1
j = (xk

j + Aij(bi − (Axk)i))+, (8.11)

where, for any real number a, a+ = max{a, 0}.

98CHAPTER 8. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

The constrained ART converges to a solution of Ax = b within C, whenever
such solutions exist.

Noise in the data can manifest itself in a variety of ways; we have seen
what can happen when we impose positivity on the calculated least-squares
solution, that is, when we minimize ||Ax−b||2 over all non-negative vectors
x. Theorem 6.1 tells us that when J > I, but Ax = b has no non-negative
solutions, the non-negatively constrained least-squares solution can have at
most I−1 non-zero entries, regardless of how large J is. This phenomenon
also occurs with several other approximate methods, such as those that
minimize the cross-entropy distance.

8.2 When Ax = b Has Solutions

For the consistent case, in which the system Ax = b has exact solutions,
we have the following result.

Theorem 8.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (8.7). Then the sequence {||x̂− xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

The proof of the following lemma follows immediately from the defini-
tion of the ART iteration.

Lemma 8.1 Let x0 and y0 be arbitrary and {xk} and {yk} be the se-
quences generated by applying the ART algorithm, beginning with x0 and
y0, respectively; that is, yk+1 = Pi(k)y

k. Then

||x0 − y0||22 − ||xI − yI ||22 =
I∑

i=1

|(Axi−1)i − (Ayi−1)i|2. (8.12)

Proof of Theorem 8.1: Let Ax̂ = b. Let vr
i = (AxrI+i−1)i and vr =

(vr
1, ..., v

r
I)T , for r = 0, 1, It follows from Equation (8.12) that the se-

quence {||x̂ − xrI ||2} is decreasing and the sequence {vr − b} → 0. So
{xrI} is bounded; let x∗,0 be a cluster point. Then, for i = 1, 2, ..., I, let
x∗,i be the successor of x∗,i−1 using the ART algorithm. It follows that
(Ax∗,i−1)i = bi for each i, from which we conclude that x∗,0 = x∗,i for all
i and that Ax∗,0 = b. Using x∗,0 in place of the arbitrary solution x̂, we
have that the sequence {||x∗,0 − xk||2} is decreasing. But a subsequence
converges to zero, so {xk} converges to x∗,0. By Equation (8.12), the dif-
ference ||x̂ − xk||22 − ||x̂ − xk+1||22 is independent of which solution x̂ we
pick; consequently, so is ||x̂−x0||22− ||x̂−x∗,0||22. It follows that x∗,0 is the
solution closest to x0. This completes the proof.

8.3. WHEN AX = B HAS NO SOLUTIONS 99

8.3 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a single
vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...} converges
to a vector zi and the collection {zi |i = 1, ..., I} is called the limit cycle.
This was shown by Tanabe [144] and also follows from the results of De
Pierro and Iusem [76]. For simplicity, we assume that I > J , and that
the matrix A has full rank, which implies that Ax = 0 if and only if
x = 0. Because the operator T = PIPi−1 · · · P2P1 is av, this subsequential
convergence to a limit cycle will follow from the KM Theorem 5.2, once we
have established that T has fixed points. A different proof of subsequential
convergence is given in [47].

8.3.1 Subsequential Convergence of ART

We know from Lemma (3.7) that the operator T is affine linear and has
the form

Tx = Bx + d, (8.13)

where B is the matrix

B = (I − aI(aI)†) · · · (I − a1(a1)†), (8.14)

and d a vector.
The matrix I − B is invertible, since if (I − B)x = 0, then Bx = x. It

follows that x is in Hi0 for each i, which means that 〈ai, x〉 = 0 for each i.
Therefore Ax = 0, and so x = 0.

Lemma 8.2 The operator T in Equation (8.13) is strictly nonexpansive,
meaning that

||x− y||2 ≥ ||Tx− Ty||2, (8.15)

with equality if and only if x = Tx and y = Ty.

Proof: Write Tx − Ty = Bx − By = B(x − y) Since B is the product of
orthogonal projections, B is av. Therefore, there is α > 0 with

||x− y||22 − ||Bx−By||22 ≥ (
1
α
− 1)||(I −B)x− (I −B)y||22. (8.16)

The function ||x−Tx||2 has minimizers, since ||x−Tx||22 = ||x−Bx−d||22
is quadratic in x. For any such minimizer z we will have

||z − Tz||2 = ||Tz − T 2z||2. (8.17)

Since T is strictly ne, it follows that z = Tz.

100CHAPTER 8. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

Lemma 8.3 Let AA† = L + D + L†, for diagonal matrix D and lower
triangular matrix L. The operator T in equation (8.13)can be written as

Tx = (I −A†(L + D)−1)x + A†(L + D)−1b. (8.18)

As we shall see, this formulation of the operator T provides a connection
between the full-cycle ART for Ax = b and the Gauss-Seidel method, as
applied to the system AA†z = b, as Dax has pointed out [73].

The ART limit cycle will vary with the ordering of the equations, and
contains more than one vector unless an exact solution exists. There are
several open questions about the limit cycle.

Open Question: For a fixed ordering, does the limit cycle depend on the
initial vector x0? If so, how?

8.3.2 The Geometric Least-Squares Solution

When the system Ax = b has no solutions, it is reasonable to seek an ap-
proximate solution, such as the least squares solution, xLS = (A†A)−1A†b,
which minimizes ||Ax−b||2. It is important to note that the system Ax = b
has solutions if and only if the related system WAx = Wb has solutions,
where W denotes an invertible matrix; when solutions of Ax = b exist, they
are identical to those of WAx = Wb. But, when Ax = b does not have
solutions, the least-squares solutions of Ax = b, which need not be unique,
but usually are, and the least-squares solutions of WAx = Wb need not
be identical. In the typical case in which A†A is invertible, the unique
least-squares solution of Ax = b is

(A†A)−1A†b, (8.19)

while the unique least-squares solution of WAx = Wb is

(A†W †WA)−1A†W †b, (8.20)

and these need not be the same.
A simple example is the following. Consider the system

x = 1

x = 2, (8.21)

which has the unique least-squares solution x = 1.5, and the system

2x = 2

x = 2, (8.22)

which has the least-squares solution x = 1.2.

8.4. REGULARIZED ART 101

Definition 8.1 The geometric least-squares solution of Ax = b is the least-
squares solution of WAx = Wb, for W the diagonal matrix whose entries
are the reciprocals of the Euclidean lengths of the rows of A.

In our example above, the geometric least-squares solution for the first
system is found by using W11 = 1 = W22, so is again x = 1.5, while the
geometric least-squares solution of the second system is found by using
W11 = 0.5 and W22 = 1, so that the geometric least-squares solution is
x = 1.5, not x = 1.2.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?

There is a partial answer to the second question. In [37] (see also
[47]) it was shown that if the system Ax = b has no exact solution, and if
I = J+1, then the vectors of the limit cycle lie on a sphere in J-dimensional
space having the least-squares solution at its center. This is not true more
generally, however.

8.4 Regularized ART

If the entries of b are noisy but the system Ax = b remains consistent (which
can easily happen in the underdetermined case, with J > I), the ART
begun at x0 = 0 converges to the solution having minimum Euclidean norm,
but this norm can be quite large. The resulting solution is probably useless.
Instead of solving Ax = b, we regularize by minimizing, for example, the
function

Fε(x) = ||Ax− b||22 + ε2||x||22. (8.23)

The solution to this problem is the vector

x̂ε = (A†A + ε2I)−1A†b. (8.24)

However, we do not want to calculate A†A + ε2I when the matrix A is
large. Fortunately, there are ways to find x̂ε, using only the matrix A and
the ART algorithm.

We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is presented in [47], while the second one is due
to Eggermont, Herman, and Lent [83].

In our first method we use ART to solve the system of equations given
in matrix form by

[A† γI]
[

u
v

]
= 0. (8.25)

102CHAPTER 8. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −γx̂ε.

The method of Eggermont et al. is similar. In their method we use
ART to solve the system of equations given in matrix form by

[A γI]
[

x
v

]
= b. (8.26)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε as before, and that γv∞ = b−Ax̂ε.

Open Question: In both the consistent and inconsistent cases, the se-
quence {xk} of ART iterates is bounded, as Tanabe [144], and De Pierro
and Iusem [76] have shown. The proof is easy in the consistent case. Is
there an easy proof for the inconsistent case?

8.5 Avoiding the Limit Cycle

Generally, the greater the minimum value of ||Ax−b||22 the more the vectors
of the LC are distinct from one another. There are several ways to avoid
the LC in ART and to obtain a least-squares solution. One way is the
double ART (DART) [41]:

8.5.1 Double ART (DART)

We know that any b can be written as b = Ax̂ + ŵ, where AT ŵ = 0 and
x̂ is a minimizer of ||Ax − b||22. The vector ŵ is the orthogonal projection
of b onto the null space of the matrix transformation A†. Therefore, in
Step 1 of DART we apply the ART algorithm to the consistent system of
linear equations A†w = 0, beginning with w0 = b. The limit is w∞ = ŵ,
the member of the null space of A† closest to b. In Step 2, apply ART
to the consistent system of linear equations Ax = b − w∞ = Ax̂. The
limit is then the minimizer of ||Ax − b||2 closest to x0. Notice that we
could also obtain the least-squares solution by applying ART to the system
A†y = A†b, starting with y0 = 0, to obtain the minimum-norm solution,
which is y = Ax̂, and then applying ART to the system Ax = y.

8.5.2 Strongly Underrelaxed ART

Another method for avoiding the LC is strong underrelaxation, due to Cen-
sor, Eggermont and Gordon [52]. Let t > 0. Replace the iterative step in
ART with

xk+1
j = xk

j + tAij(bi − (Axk)i). (8.27)

8.5. AVOIDING THE LIMIT CYCLE 103

In [52] it is shown that, as t → 0, the vectors of the LC approach the geo-
metric least squares solution closest to x0; a short proof is in [37]. Bertsekas
[14] uses strong underrelaxation to obtain convergence of more general in-
cremental methods.

104CHAPTER 8. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

Chapter 9

Simultaneous and
Block-iterative ART

The ART is a sequential algorithm, using only a single equation from the
system Ax = b at each step of the iteration. In this chapter we consider
iterative procedures for solving Ax = b in which several or all of the equa-
tions are used at each step. Such methods are called block-iterative and
simultaneous algorithms, respectively. As before, we shall assume that the
equations have been normalized so that the rows of A have Euclidean length
one.

9.1 Cimmino’s Algorithm

The ART seeks a solution of Ax = b by projecting the current vector
xk orthogonally onto the next hyperplane H(ai(k), bi(k)) to get xk+1. In
Cimmino’s algorithm, we project the current vector xk onto each of the
hyperplanes and then average the result to get xk+1. The algorithm begins
with an arbitrary x0; the iterative step is then

xk+1 =
1
I

I∑
i=1

Pix
k, (9.1)

where Pi is the orthogonal projection onto H(ai, bi). The iterative step can
then be written as

xk+1 = xk +
1
I
A†(b−Axk). (9.2)

As we saw in our discussion of the ART, when the system Ax = b has
no solutions, the ART does not converge to a single vector, but to a limit

105

106 CHAPTER 9. SIMULTANEOUS AND BLOCK-ITERATIVE ART

cycle. One advantage of many simultaneous algorithms, such as Cimmino’s,
is that they do converge to the least squares solution in the inconsistent
case.

Cimmino’s algorithm has the form xk+1 = Txk, for the operator T
given by

Tx = (I − 1
I
A†A)x +

1
I
A†b.

Experience with Cimmino’s algorithm shows that it is slow to converge.
In the next section we consider how we might accelerate the algorithm.

9.2 The Landweber Algorithms

The Landweber algorithm [114, 13], with the iterative step

xk+1 = xk + γA†(b−Axk), (9.3)

converges to the least squares solution closest to the starting vector x0,
provided that 0 < γ < 2/λmax, where λmax is the largest eigenvalue of
the nonnegative-definite matrix A†A. Loosely speaking, the larger γ is, the
faster the convergence. However, precisely because A is large, calculating
the matrix A†A, not to mention finding its largest eigenvalue, can be pro-
hibitively expensive. The matrix A is said to be sparse if most of its entries
are zero. Useful upper bounds for λmax are then given by Theorem 4.1.

9.2.1 Finding the Optimum γ

The operator

Tx = x + γA†(b−Ax) = (I − γA†A)x + γA†b

is affine linear and is av if and only if its linear part, the Hermitian matrix

B = I − γA†A,

is av. To guarantee this we need 0 ≤ γ < 2/λmax. Should we always try to
take γ near its upper bound, or is there an optimum value of γ? To answer
this question we consider the eigenvalues of B for various values of γ.

Lemma 9.1 If γ < 0, then none of the eigenvalues of B is less than one.

Lemma 9.2 For

0 ≤ γ ≤ 2
λmax + λmin

, (9.4)

we have

ρ(B) = 1− γλmin; (9.5)

9.2. THE LANDWEBER ALGORITHMS 107

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (9.6)

and equals

λmax − λmin

λmax + λmin
. (9.7)

Similarly, for

γ ≥ 2
λmax + λmin

, (9.8)

we have

ρ(B) = γλmax − 1; (9.9)

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (9.10)

and equals

λmax − λmin

λmax + λmin
. (9.11)

We see from this lemma that, if 0 ≤ γ < 2/λmax, and λmin > 0, then
||B||2 = ρ(B) < 1, so that B is sc. We minimize ||B||2 by taking

γ =
2

λmax + λmin
, (9.12)

in which case we have

||B||2 =
λmax − λmin

λmax + λmin
=

c− 1
c + 1

, (9.13)

for c = λmax/λmin, the condition number of the positive-definite matrix
A†A. The closer c is to one, the smaller the norm ||B||2, and the faster the
convergence.

On the other hand, if λmin = 0, then ρ(B) = 1 for all γ in the interval
(0, 2/λmax). The matrix B is still av, but it is no longer sc. For example,
consider the orthogonal projection P0 onto the hyperplane H0 = H(a, 0),
where ||a||2 = 1. This operator can be written

P0 = I − aa†. (9.14)

The largest eigenvalue of aa† is λmax = 1; the remaining ones are zero.
The relaxed projection operator

B = I − γaa† (9.15)

has ρ(B) = 1 − γ > 1, if γ < 0, and for γ ≥ 0, we have ρ(B) = 1. The
operator B is av, in fact, it is fne, but it is not sc.

108 CHAPTER 9. SIMULTANEOUS AND BLOCK-ITERATIVE ART

9.2.2 The Projected Landweber Algorithm

When we require a nonnegative approximate solution x for the real system
Ax = b we can use a modified version of the Landweber algorithm, called
the projected Landweber algorithm [13], in this case having the iterative
step

xk+1 = (xk + γA†(b−Axk))+, (9.16)

where, for any real vector a, we denote by (a)+ the nonnegative vector
whose entries are those of a, for those that are nonnegative, and are zero
otherwise. The projected Landweber algorithm converges to a vector that
minimizes ||Ax− b||2 over all nonnegative vectors x, for the same values of
γ.

The projected Landweber algorithm is actually more general. For any
closed, nonempty convex set C in X, define the iterative sequence

xk+1 = PC(xk + γA†(b−Axk)). (9.17)

This sequence converges to a minimizer of the function ||Ax− b||2 over all
x in C, whenever such minimizers exist.

Both the Landweber and projected Landweber algorithms are special
cases of the CQ algorithm [44], which, in turn, is a special case of the
more general iterative fixed point algorithm, the Krasnoselskii/Mann (KM)
method, with convergence governed by the KM Theorem 5.2.

9.3 The Block-Iterative ART

The ART is generally faster than the simultaneous versions, particularly
when relaxation or random ordering of the equations is included. On the
other hand, the simultaneous methods, such as Landweber’s algorithm,
converge to an approximate solution in the inconsistent case, and lend
themselves to parallel processing. We turn now to block-iterative versions
of ART, which use several equations at each step of the iteration. The ART
can also be inefficient, in that it fails to make use of the way in which the
equations are actually stored and retrieved within the computer. Block-
iterative ART can be made more efficient than the ART, without much
loss of speed of convergence.

Let the index set {i = 1, ..., I} be partitioned into N subsets, or blocks,
B1,...,BN , for some positive integer N , with 1 ≤ N ≤ I. Let In be the
cardinality of Bn. Let An be the In by J matrix obtained from A by
discarding all rows except those whose index is in Bn. Similarly, let bn be
the In by 1 vector obtained from b. For k = 0, 1, ..., let n = k(modN) + 1.

9.4. THE RESCALED BLOCK-ITERATIVE ART 109

Algorithm 9.1 (Block-iterative ART) The block-iterative ART (BI-
ART) has the iterative step

xk+1 = xk +
1
In

A†
n(bn −Anxk). (9.18)

9.4 The Rescaled Block-Iterative ART

The use of the weighting 1/In in the block-iterative ART is not necessary;
we do have some choice in the selection of the weighting factor. The rescaled
BI-ART (RBI-ART) algorithm is the following:

Algorithm 9.2 Let x0 be arbitrary, and n = k(modN) + 1. Then let

xk+1 = xk + γnA†
n(bn −Anxk), (9.19)

for 0 < γn < 2/Ln, where Ln is the largest eigenvalue of the matrix A†
nAn.

How we select the blocks and the parameters γn will determine the speed
of convergence of RBI-ART

9.5 Convergence of the RBI-ART

Suppose now that the system is consistent and that Ax̂ = b. Then

||x̂− xk||22 − ||x̂− xk+1||22

= 2γnRe〈x̂− xk, A†
n(bn −Anxk)〉 − γ2

n||A†
n(bn −Anxk)||22

= 2γn||bn −Anxk||22 − γ2
n||A†

n(bn −Anxk)||22.

Therefore, we have

||x̂− xk||22 − ||x̂− xk+1||22 ≥ (2γn − γ2
nLn)||bn −Anxk||22. (9.20)

It follows that the sequence {||x̂−xk||22} is decreasing and that the sequence
{||bn − Anxk||22} converges to 0. The sequence {xk} is then bounded; let
x∗ be any cluster point of the subsequence {xmN}. Then let

x∗,n = x∗,n−1 + γnA†
n(bn −Anx∗,n−1),

for n = 1, 2, ..., N . It follows that x∗,n = x∗ for all n and that Ax∗ = b.
Replacing the arbitrary solution x̂ with x∗, we find that the sequence {||x∗−
xk||22} is decreasing; but a subsequence converges to zero. Consequently, the
sequence {||x∗ − xk||22} converges to zero. We can therefore conclude that
the RBI-ART converges to a solution, whenever the system is consistent.
In fact, since we have shown that the difference ||x̂−xk||22−||x̂−xk+1||22 is

110 CHAPTER 9. SIMULTANEOUS AND BLOCK-ITERATIVE ART

nonnegative and independent of the solution x̂ that we choose, we known
that the difference ||x̂−x0||22−||x̂−x∗||22 is also nonnegative and independent
of x̂. It follows that x∗ is the solution closest to x0.

From the Inequality (9.20) we see that we make progress toward a so-
lution to the extent that the right side of the inequality,

(2γn − γ2
nLn)||bn −Anxk||22,

is large. One conclusion we draw from this is that we want to avoid ordering
the blocks so that the quantity ||bn − Anxk||22 is small. We also want to
select γn reasonably large, subject to the bound γn < 2/Ln; the maximum
of 2γn−γ2

nLn is at γn = L−1
n . Because the rows of An have length one, the

trace of A†
nAn is In, the number of rows in An. Since Ln is not greater than

this trace, we have Ln ≤ In, so the choice of γn = 1/In used in BI-ART is
acceptable, but possibly far from optimal, particularly if An is sparse.

Inequality (9.20) can be used to give a rough measure of the speed of
convergence of RBI-ART. The term ||bn − Anxk||22 is on the order of In,
while the term 2γn − γ2

nLn has 1/Ln for its maximum, so, very roughly, is
on the order of 1/In. Consequently, the improvement made in one step of
BI-ART is on the order of one. One complete cycle of BI-ART, that is, one
complete pass through all the blocks, then corresponds to an improvement
on the order of N , the number of blocks. It is a “rule of thumb” that block-
iterative methods are capable of improving the speed of convergence by a
factor of the number of blocks, if unfortunate ordering of the blocks and
selection of the equations within the blocks are avoided, and the parameters
are well chosen.

To obtain good choices for the γn , we need to have a good estimate of
Ln. As we have seen, such estimates are available for sparse matrices.

9.6 Using Sparseness

Let snj be the number of non-zero elements in the j-th column of An, and
let sn be the maximum of the snj . We know then that Ln ≤ sn. Therefore,
we can choose γn < 2/sn.

Suppose, for the sake of illustration, that each column of A has s non-
zero elements, for some s < I, and we let r = s/I. Suppose also that
In = I/N and that N is not too large. Then sn is approximately equal
to rIn = s/N . On the other hand, unless An has only zero entries, we
know that sn ≥ 1. Therefore, it is no help to select N for which s/N <
1. For a given degree of sparseness s we need not select N greater than
s. The more sparse the matrix A, the fewer blocks we need to gain the
maximum advantage from the rescaling, and the more we can benefit from
parallelizability in the calculations at each step of the RBI-ART.

Chapter 10

Jacobi and Gauss-Seidel
Methods

Linear systems Ax = b need not be square but can be associated with
two square systems, A†Ax = A†b, the so-called normal equations, and
AA†z = b, sometimes called the Björck-Elfving equations [73]. In this chap-
ter we consider two well known iterative algorithms for solving square sys-
tems of linear equations, the Jacobi method and the Gauss-Seidel method.
Both these algorithms are easy to describe and to motivate. They both
require not only that the system be square, that is, have the same num-
ber of unknowns as equations, but satisfy additional constraints needed for
convergence.

Both the Jacobi and the Gauss-Seidel algorithms can be modified to
apply to any square system of linear equations, Sz = h. The resulting
algorithms, the Jacobi overrelaxation (JOR) and successive overrelaxation
(SOR) methods, involve the choice of a parameter. The JOR and SOR will
converge for more general classes of matrices, provided that the parameter
is appropriately chosen.

When we say that an iterative method is convergent, or converges, under
certain conditions, we mean that it converges for any consistent system of
the appropriate type, and for any starting vector; any iterative method will
converge if we begin at the right answer.

10.1 The Jacobi and Gauss-Seidel Methods:
An Example

Suppose we wish to solve the 3 by 3 system

S11z1 + S12z2 + S13z3 = h1

111

112 CHAPTER 10. JACOBI AND GAUSS-SEIDEL METHODS

S21z1 + S22z2 + S23z3 = h2

S31z1 + S32z2 + S33z3 = h3, (10.1)

which we can rewrite as

z1 = S−1
11 [h1 − S12z2 − S13z3]

z2 = S−1
22 [h2 − S21z1 − S23z3]

z3 = S−1
33 [h3 − S31z1 − S32z2], (10.2)

assuming that the diagonal terms Smm are not zero. Let z0 = (z0
1 , z0

2 , z0
3)T

be an initial guess for the solution. We then insert the entries of z0 on the
right sides and use the left sides to define the entries of the next guess z1.
This is one full cycle of Jacobi’s method.

The Gauss-Seidel method is similar. Let z0 = (z0
1 , z0

2 , z0
3)T be an initial

guess for the solution. We then insert z0
2 and z0

3 on the right side of the
first equation, obtaining a new value z1

1 on the left side. We then insert
z0
3 and z1

1 on the right side of the second equation, obtaining a new value
z1
2 on the left. Finally, we insert z1

1 and z1
2 into the right side of the third

equation, obtaining a new z1
3 on the left side. This is one full cycle of the

Gauss-Seidel (GS) method.

10.2 Splitting Methods

The Jacobi and the Gauss-Seidel methods are particular cases of a more
general approach, known as splitting methods. Splitting methods apply
to square systems of linear equations. Let S be an arbitrary N by N
square matrix, written as S = M−K. Then the linear system of equations
Sz = h is equivalent to Mz = Kz + h. If M is invertible, then we can also
write z = M−1Kz +M−1h. This last equation suggests a class of iterative
methods for solving Sz = h known as splitting methods. The idea is to
select a matrix M so that the equation

Mzk+1 = Kzk + h (10.3)

can be easily solved to get zk+1; in the Jacobi method M is diagonal, and
in the Gauss-Seidel method, M is triangular. Then we write

zk+1 = M−1Kzk + M−1h. (10.4)

From K = M − S, we can write Equation (14.37) as

zk+1 = zk + M−1(h− Szk). (10.5)

10.3. SOME EXAMPLES OF SPLITTING METHODS 113

Suppose that S is invertible and ẑ is the unique solution of Sz = h. The
error we make at the k-th step is ek = ẑ − zk, so that ek+1 = M−1Kek.
We want the error to decrease with each step, which means that we should
seek M and K so that ||M−1K|| < 1. If S is not invertible and there are
multiple solutions of Sz = h, then we do not want M−1K to be a strict
contraction, but only av or pc. The operator T defined by

Tz = M−1Kz + M−1h = Bz + d (10.6)

is an affine linear operator and will be a sc or av operator whenever B =
M−1K is.

It follows from our previous discussion concerning linear av operators
that, if B = B† is Hermitian, then B is av if and only if

−1 < λ ≤ 1, (10.7)

for all (necessarily real) eigenvalues λ of B.
In general, though, the matrix B = M−1K will not be Hermitian, and

deciding if such a non-Hermitian matrix is av is not a simple matter. We
do know that, if B is av, so is B†; consequently, the Hermitian matrix
Q = 1

2 (B +B†) is also av. Therefore, I−Q = 1
2 (M−1S +(M−1S)†) is ism,

and so is non-negative definite. We have −1 < λ ≤ 1, for any eigenvalue λ
of Q.

Alternatively, we can use Theorem 5.3. According to that theorem, if
B has a basis of eigenvectors, and |λ| < 1 for all eigenvalues λ of B that are
not equal to one, then {zk} will converge to a solution of Sz = h, whenever
solutions exist.

In what follows we shall write an arbitrary square matrix S as

S = L + D + U, (10.8)

where L is the strictly lower triangular part of S, D the diagonal part, and
U the strictly upper triangular part. When S is Hermitian, we have

S = L + D + L†. (10.9)

We list now several examples of iterative algorithms obtained by the split-
ting method. In the remainder of the chapter we discuss these methods in
more detail.

10.3 Some Examples of Splitting Methods

As we shall now see, the Jacobi and Gauss-Seidel methods, as well as their
overrelaxed versions, JOR and SOR, are splitting methods.

114 CHAPTER 10. JACOBI AND GAUSS-SEIDEL METHODS

Jacobi’s Method: Jacobi’s method uses M = D and K = −L−U , under
the assumption that D is invertible. The matrix B is

B = M−1K = −D−1(L + U). (10.10)

The Gauss-Seidel Method: The Gauss-Seidel (GS) method uses the
splitting M = D + L, so that the matrix B is

B = I − (D + L)−1S. (10.11)

The Jacobi Overrelaxation Method (JOR): The JOR uses the split-
ting

M =
1
ω

D (10.12)

and

K = M − S = (
1
ω
− 1)D − L− U. (10.13)

The matrix B is

B = M−1K = (I − ωD−1S). (10.14)

The Successive Overrelaxation Method (SOR): The SOR uses the
splitting M = (1

ω D + L), so that

B = M−1K = (D + ωL)−1[(1− ω)D − ωU] (10.15)

or

B = I − ω(D + ωL)−1S, (10.16)

or

B = (I + ωD−1L)−1[(1− ω)I − ωD−1U]. (10.17)

10.4 Jacobi’s Algorithm and JOR

The matrix B in Equation (10.10) is not generally av and the Jacobi iter-
ative scheme will not converge, in general. Additional conditions need to
be imposed on S in order to guarantee convergence. One such condition is
that S be strictly diagonally dominant. In that case, all the eigenvalues of
B = M−1K can be shown to lie inside the unit circle of the complex plane,
so that ρ(B) < 1. It follows from Lemma 4.6 that B is sc with respect to
some vector norm, and the Jacobi iteration converges. If, in addition, S is

10.4. JACOBI’S ALGORITHM AND JOR 115

Hermitian, the eigenvalues of B are in the interval (−1, 1), and so B is sc
with respect to the Euclidean norm.

Alternatively, one has the Jacobi overrelaxation (JOR) method, which
is essentially a special case of the Landweber algorithm and involves an
arbitrary parameter.

For S an N by N matrix, Jacobi’s method can be written as

znew
m = S−1

mm[hm −
∑
j 6=m

Smjz
old
j], (10.18)

for m = 1, ..., N . With D the invertible diagonal matrix with entries
Dmm = Smm we can write one cycle of Jacobi’s method as

znew = zold + D−1(h− Szold). (10.19)

The Jacobi overrelaxation (JOR) method has the following full-cycle iter-
ative step:

znew = zold + ωD−1(h− Szold); (10.20)

choosing ω = 1 we get the Jacobi method. Convergence of the JOR itera-
tion will depend, of course, on properties of S and on the choice of ω. When
S is Hermitian, nonnegative-definite, for example, S = A†A or S = AA†,
we can say more.

10.4.1 The JOR in the Nonnegative-definite Case

When S is nonnegative-definite and the system Sz = h is consistent the
JOR converges to a solution for any ω ∈ (0, 2/ρ(D−1/2SD−1/2)), where
ρ(Q) denotes the largest eigenvalue of the nonnegative-definite matrix Q.
For nonnegative-definite S, the convergence of the JOR method is implied
by the KM Theorem 5.2, since the JOR is equivalent to Landweber’s algo-
rithm in these cases.

The JOR method, as applied to Sz = AA†z = b, is equivalent to the
Landweber iterative method for Ax = b.

Lemma 10.1 If {zk} is the sequence obtained from the JOR, then the
sequence {A†zk} is the sequence obtained by applying the Landweber algo-
rithm to the system D−1/2Ax = D−1/2b, where D is the diagonal part of
the matrix S = AA†.

If we select ω = 1/I we obtain the Cimmino method. Since the trace of
the matrix D−1/2SD−1/2 equals I we know that ω = 1/I is not greater
than the largest eigenvalue of the matrix D−1/2SD−1/2 and so this choice

116 CHAPTER 10. JACOBI AND GAUSS-SEIDEL METHODS

of ω is acceptable and the Cimmino algorithm converges whenever there
are solutions of Ax = b. In fact, it can be shown that Cimmino’s method
converges to a least squares approximate solution generally.

Similarly, the JOR method applied to the system A†Ax = A†b is equiv-
alent to the Landweber algorithm, applied to the system Ax = b.

Lemma 10.2 Show that, if {zk} is the sequence obtained from the JOR,
then the sequence {D1/2zk} is the sequence obtained by applying the Landwe-
ber algorithm to the system AD−1/2x = b, where D is the diagonal part of
the matrix S = A†A.

10.5 The Gauss-Seidel Algorithm and SOR

In general, the full-cycle iterative step of the Gauss-Seidel method is the
following:

znew = zold + (D + L)−1(h− Szold), (10.21)

where S = D + L + U is the decomposition of the square matrix S into
its diagonal, lower triangular and upper triangular diagonal parts. The GS
method does not converge without restrictions on the matrix S. As with
the Jacobi method, strict diagonal dominance is a sufficient condition.

10.5.1 The Nonnegative-Definite Case

Now we consider the square system Sz = h, assuming that S = L+D+L† is
Hermitian and nonnegative-definite, so that x†Sx ≥ 0, for all x. It is easily
shown that all the entries of D are nonnegative. We assume that all the
diagonal entries of D are positive, so that D + L is invertible. The Gauss-
Seidel iterative step is zk+1 = Tzk, where T is the affine linear operator
given by Tz = Bz + d, for B = −(D + L)−1L† and d = (D + L)−1h.

Proposition 10.1 Let λ be an eigenvalue of B that is not equal to one.
Then |λ| < 1.

If B is diagonalizable, then there is a norm with respect to which T is
paracontractive, so, by the EKN Theorem 5.3, the GS iteration converges
to a solution of Sz = h, whenever solutions exist.

Proof of Proposition (10.1): Let Bv = λv, for v nonzero. Then −Bv =
(D + L)−1L†v = −λv, so that

L†v = −λ(D + L)v, (10.22)

10.5. THE GAUSS-SEIDEL ALGORITHM AND SOR 117

and

Lv = −λ(D + L)†v. (10.23)

Therefore,

v†L†v = −λv†(D + L)v. (10.24)

Adding v†(D + L)v to both sides, we get

v†Sv = (1− λ)v†(D + L)v. (10.25)

Since the left side of the equation is real, so is the right side. Therefore

(1− λ)(D + L)†v = (1− λ)v†(D + L)v

= (1− λ)v†Dv + (1− λ)v†Lv

= (1− λ)v†Dv − (1− λ)λv†(D + L)†v. (10.26)

So we have

[(1− λ) + (1− λ)λ]v†(D + L)†v = (1− λ)v†Dv, (10.27)

or

(1− |λ|2)v†(D + L)†v = (1− λ)v†Dv. (10.28)

Multiplying by (1− λ) on both sides, we get, on the left side,

(1− |λ|2)v†(D + L)†v − (1− |λ|2)λv†(D + L)†v, (10.29)

which is equal to

(1− |λ|2)v†(D + L)†v + (1− |λ|2)v†Lv, (10.30)

and, on the right side, we get

|1− λ|2v†Dv. (10.31)

Consequently, we have

(1− |λ|2)v†Sv = |1− λ|2v†Dv. (10.32)

Since v†Sv ≥ 0 and v†Dv > 0, it follows that 1− |λ|2 ≥ 0. If |λ| = 1, then
|1− λ|2 = 0, so that λ = 1. This completes the proof.

Note that λ = 1 if and only if Sv = 0. Therefore, if S is invertible,
the affine linear operator T is a strict contraction, and the GS iteration
converges to the unique solution of Sz = h.

118 CHAPTER 10. JACOBI AND GAUSS-SEIDEL METHODS

10.5.2 Successive Overrelaxation

The successive overrelaxation (SOR) method has the following full-cycle
iterative step:

znew = zold + (ω−1D + L)−1(h− Szold); (10.33)

the choice of ω = 1 gives the GS method. Convergence of the SOR iteration
will depend, of course, on properties of S and on the choice of ω.

Using the form

B = (D + ωL)−1[(1− ω)D − ωU] (10.34)

we can show that

|det(B)| = |1− ω|N . (10.35)

From this and the fact that the determinant of B is the product of its
eigenvalues, we conclude that ρ(B) > 1 if ω < 0 or ω > 2.

When S is Hermitian, nonnegative-definite, as, for example, when we
take S = A†A or S = AA†, we can say more.

10.5.3 The SOR for Nonnegative-Definite S

When S is nonnegative-definite and the system Sz = h is consistent the
SOR converges to a solution for any ω ∈ (0, 2). This follows from the
convergence of the ART algorithm, since, for such S, the SOR is equivalent
to the ART.

Now we consider the SOR method applied to the Björck-Elfving equa-
tions AA†z = b. Rather than count a full cycle as one iteration, we
now count as a single step the calculation of a single new entry. There-
fore, for k = 0, 1, ... the k + 1-st step replaces the value zk

i only, where
i = k(mod I) + 1. We have

zk+1
i = (1− ω)zk

i + ωD−1
ii (bi −

i−1∑
n=1

Sinzk
n −

I∑
n=i+1

Sinzk
n) (10.36)

and zk+1
n = zk

n for n 6= i. Now we calculate xk+1 = A†zk+1:

xk+1
j = xk

j + ωD−1
ii Aij(bi − (Axk)i). (10.37)

This is one step of the relaxed algebraic reconstruction technique (ART)
applied to the original system of equations Ax = b. The relaxed ART
converges to a solution, when solutions exist, for any ω ∈ (0, 2).

10.5. THE GAUSS-SEIDEL ALGORITHM AND SOR 119

When Ax = b is consistent, so is AA†z = b. We consider now the
case in which S = AA† is invertible. Since the relaxed ART sequence
{xk = A†zk} converges to a solution x∞, for any ω ∈ (0, 2), the sequence
{AA†zk} converges to b. Since S = AA† is invertible, the SOR sequence
{zk} then converges to S−1b.

120 CHAPTER 10. JACOBI AND GAUSS-SEIDEL METHODS

Chapter 11

Conjugate-Direction
Methods in Optimization

Finding the least-squares solution of a possibly inconsistent system of linear
equations Ax = b is equivalent to minimizing the quadratic function f(x) =
1
2 ||Ax − b||22 and so can be viewed within the framework of optimization.
Iterative optimization methods can then be used to provide, or at least
suggest, algorithms for obtaining the least-squares solution. The conjugate
gradient method is one such method.

11.1 Iterative Minimization

Iterative methods for minimizing a real-valued function f(x) over the vector
variable x usually take the following form: having obtained xk−1, a new
direction vector dk is selected, an appropriate scalar αk > 0 is determined
and the next member of the iterative sequence is given by

xk = xk−1 + αkdk. (11.1)

Ideally, one would choose the αk to be the value of α for which the function
f(xk−1+αdk) is minimized. It is assumed that the direction dk is a descent
direction; that is, for small positive α the function f(xk−1 +αdk) is strictly
decreasing. Finding the optimal value of α at each step of the iteration is
difficult, if not impossible, in most cases, and approximate methods, using
line searches, are commonly used.

Lemma 11.1 For each k we have

∇f(xk) · dk = 0. (11.2)

121

122CHAPTER 11. CONJUGATE-DIRECTION METHODS IN OPTIMIZATION

Proof: Differentiate the function f(xk−1+αdk) with respect to the variable
α.

Since the gradient ∇f(xk) is orthogonal to the previous direction vector
dk and also because −∇f(x) is the direction of greatest decrease of f(x),
the choice of dk+1 = −∇f(xk) as the next direction vector is a reasonable
one. With this choice we obtain Cauchy’s steepest descent method [122]:

Algorithm 11.1 (Steepest Descent)Let x0 be arbitrary. Then let

xk+1 = xk − αk+1∇f(xk). (11.3)

The steepest descent method need not converge in general and even when
it does, it can do so slowly, suggesting that there may be better choices
for the direction vectors. For example, the Newton-Raphson method [129]
employs the following iteration:

xk+1 = xk −∇2f(xk)−1∇f(xk), (11.4)

where ∇2f(x) is the Hessian matrix for f(x) at x. To investigate further
the issues associated with the selection of the direction vectors, we consider
the more tractable special case of quadratic optimization.

11.2 Quadratic Optimization

Let A be an arbitrary real I by J matrix. The linear system of equations
Ax = b need not have any solutions, and we may wish to find a least-squares
solution x = x̂ that minimizes

f(x) =
1
2
||b−Ax||22. (11.5)

The vector b can be written

b = Ax̂ + ŵ, (11.6)

where AT ŵ = 0 and a least squares solution is an exact solution of the
linear system Qx = c, with Q = AT A and c = AT b. We shall assume
that Q is invertible and there is a unique least squares solution; this is the
typical case.

We consider now the iterative scheme described by Equation (11.1) for
f(x) as in Equation (11.5). For this f(x) the gradient becomes

∇f(x) = Qx− c. (11.7)

The optimal αk for the iteration can be obtained in closed form.

11.2. QUADRATIC OPTIMIZATION 123

Lemma 11.2 The optimal αk is

αk =
rk · dk

dk ·Qdk
, (11.8)

where rk = c−Qxk−1.

Lemma 11.3 Let ||x||2Q = x · Qx denote the square of the Q-norm of x.
Then

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0 (11.9)

for any direction vectors dk.

If the sequence of direction vectors {dk} is completely general, the iter-
ative sequence need not converge. However, if the set of direction vectors
is finite and spans RJ and we employ them cyclically, convergence follows.

Theorem 11.1 Let {d1, ..., dJ} be any finite set whose span is all of RJ .
Let αk be chosen according to Equation (11.8). Then, for k = 0, 1, ...,
j = k(modJ) + 1, and any x0, the sequence defined by

xk = xk−1 + αkdj (11.10)

converges to the least squares solution.

Proof: The sequence {||x̂−xk||2Q} is decreasing and, therefore, the sequence
{(rk · dk)2/dk · Qdk must converge to zero. Therefore, the vectors xk are
bounded, and for each j = 1, ..., J , the subsequences {xmJ+j , m = 0, 1, ...}
have cluster points, say x∗,j with

x∗,j = x∗,j−1 +
(c−Qx∗,j−1) · dj

dj ·Qdj
dj . (11.11)

Since

rmJ+j · dj → 0, (11.12)

it follows that, for each j = 1, ..., J ,

(c−Qx∗,j) · dj = 0. (11.13)

Therefore,

x∗,1 = ... = x∗,J = x∗ (11.14)

124CHAPTER 11. CONJUGATE-DIRECTION METHODS IN OPTIMIZATION

with Qx∗ = c. Consequently, x∗ is the least squares solution and the
sequence {||x∗−xk||Q} is decreasing. But a subsequence converges to zero;
therefore, {||x∗ − xk||Q} → 0. This completes the proof.

There is an interesting corollary to this theorem that pertains to a mod-
ified version of the ART algorithm. For k = 0, 1, ... and i = k(modM) + 1
and with the rows of A normalized to have length one, the ART iterative
step is

xk+1 = xk + (bi − (Axk)i)ai, (11.15)

where ai is the ith column of AT . When Ax = b has no solutions, the
ART algorithm does not converge to the least-squares solution; rather,
it exhibits subsequential convergence to a limit cycle. However, using the
previous theorem, we can show that the following modification of the ART,
which we shall call the least squares ART (LS-ART), converges to the least-
squares solution for every x0:

xk+1 = xk +
rk+1 · ai

ai ·Qai
ai. (11.16)

In the quadratic case the steepest descent iteration has the form

xk = xk−1 +
rk · rk

rk ·Qrk
rk. (11.17)

We have the following result.

Theorem 11.2 The steepest descent method converges to the least-squares
solution.

Proof: As in the proof of the previous theorem, we have

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0, (11.18)

where now the direction vectors are dk = rk. So, the sequence {||x̂−xk||2Q}
is decreasing, and therefore the sequence {(rk ·rk)2/rk ·Qrk} must converge
to zero. The sequence {xk} is bounded; let x∗ be a cluster point. It follows
that c − Qx∗ = 0, so that x∗ is the least-squares solution x̂. The rest of
the proof follows as in the proof of the previous theorem.

11.3. CONJUGATE BASES FOR RJ 125

11.3 Conjugate Bases for RJ

If the set {v1, ..., vJ} is a basis for RJ , then any vector x in RJ can be
expressed as a linear combination of the basis vectors; that is, there are
real numbers a1, ..., aJ for which

x = a1v
1 + a2v

2 + ... + aJvJ . (11.19)

For each x the coefficients aj are unique. To determine the aj we write

x · vm = a1v
1 · vm + a2v

2 · vm + ... + aJvJ · vm, (11.20)

for m = 1, ...,M . Having calculated the quantities x · vm and vj · vm, we
solve the resulting system of linear equations for the aj .

If the set {u1, ..., uM} is an orthogonal basis, that is, then uj · um = 0,
unless j = m, then the system of linear equations is now trivial to solve.
The solution is aj = x · uj/uj · uj , for each j. Of course, we still need to
compute the quantities x · uj .

The least-squares solution of the linear system of equations Ax = b is

x̂ = (AT A)−1AT b = Q−1c. (11.21)

To express x̂ as a linear combination of the members of an orthogonal basis
{u1, ..., uJ} we need the quantities x̂ ·uj , which usually means that we need
to know x̂ first. For a special kind of basis, a Q-conjugate basis, knowing x̂
ahead of time is not necessary; we need only know Q and c. Therefore, we
can use such a basis to find x̂. This is the essence of the conjugate gradient
method (CGM), in which we calculate a conjugate basis and, in the process,
determine x̂.

11.3.1 Conjugate Directions

From Equation (11.2) we have

(c−Qxk+1) · dk = 0, (11.22)

which can be expressed as

(x̂− xk+1) ·Qdk = (x̂− xk+1)T Qdk = 0. (11.23)

Definition 11.1 Two vectors x and y are said to be Q-orthogonal (or Q-
conjugate, or just conjugate), if x ·Qy = 0.

So, the least-squares solution that we seek lies in a direction from xk+1 that
is Q-orthogonal to dk. This suggests that we can do better than steepest
descent if we take the next direction to be Q-orthogonal to the previous one,
rather than just orthogonal. This leads us to conjugate direction methods.

126CHAPTER 11. CONJUGATE-DIRECTION METHODS IN OPTIMIZATION

Lemma 11.4 Say that the set {p1, ..., pn} is a conjugate set for RJ if
pi · Qpj = 0 for i 6= j. Any conjugate set that does not contain zero is
linearly independent. If pn 6= 0 for n = 1, ..., J , then the least-squares
vector x̂ can be written as

x̂ = a1p
1 + ... + aJpJ , (11.24)

with aj = c · pj/pj ·Qpj for each j.

Proof: Use the Q-inner product 〈x, y〉Q = x ·Qy.

Therefore, once we have a conjugate basis, computing the least squares
solution is trivial. Generating a conjugate basis can obviously be done
using the standard Gram-Schmidt approach.

11.3.2 The Gram-Schmidt Method

Let {v1, ..., vJ} be a linearly independent set of vectors in the space RM ,
where J ≤ M . The Gram-Schmidt method uses the vj to create an or-
thogonal basis {u1, ..., uJ} for the span of the vj . Begin by taking u1 = v1.
For j = 2, ..., J , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1. (11.25)

To apply this approach to obtain a conjugate basis, we would simply replace
the dot products uk · vj and uk · uk with the Q-inner products, that is,

pj = vj − p1 ·Qvj

p1 ·Qp1
p1 − ...− pj−1 ·Qvj

pj−1 ·Qpj−1
pj−1. (11.26)

Even though the Q-inner products can always be written as x·Qy = Ax·Ay,
so that we need not compute the matrix Q, calculating a conjugate basis
using Gram-Schmidt is not practical for large J . There is a way out,
fortunately.

If we take p1 = v1 and vj = Qpj−1, we have a much more efficient
mechanism for generating a conjugate basis, namely a three-term recursion
formula [122]. The set {p1, Qp1, ..., QpJ−1} need not be a linearly indepen-
dent set, in general, but, if our goal is to find x̂, and not really to calculate
a full conjugate basis, this does not matter, as we shall see.

Theorem 11.3 Let p1 6= 0 be arbitrary. Let p2 be given by

p2 = Qp1 − Qp1 ·Qp1

p1 ·Qp1
p1, (11.27)

11.4. THE CONJUGATE GRADIENT METHOD 127

so that p2 ·Qp1 = 0. Then, for n ≥ 2, let pn+1 be given by

pn+1 = Qpn − Qpn ·Qpn

pn ·Qpn
pn − Qpn−1 ·Qpn

pn−1 ·Qpn−1
pn−1. (11.28)

Then, the set {p1, ..., pJ} is a conjugate set for RJ . If pn 6= 0 for each n,
then the set is a conjugate basis for RJ .

Proof: We consider the induction step of the proof. Assume that {p1, ..., pn}
is a Q-orthogonal set of vectors; we then show that {p1, ..., pn+1} is also,
provided that n ≤ J − 1. It is clear from Equation (11.28) that

pn+1 ·Qpn = pn+1 ·Qpn−1 = 0. (11.29)

For j ≤ n− 2, we have

pn+1 ·Qpj = pj ·Qpn+1 = pj ·Q2pn − apj ·Qpn − bpj ·Qpn−1, (11.30)

for constants a and b. The second and third terms on the right side are
then zero because of the induction hypothesis. The first term is also zero
since

pj ·Q2pn = (Qpj) ·Qpn = 0 (11.31)

because Qpj is in the span of {p1, ..., pj+1}, and so is Q-orthogonal to pn.

The calculations in the three-term recursion formula Equation (11.28)
also occur in the Gram-Schmidt approach in Equation (11.26); the point is
that Equation (11.28) uses only the first three terms, in every case.

11.4 The Conjugate Gradient Method

The main idea in the conjugate gradient method (CGM) is to build the
conjugate set as we calculate the least squares solution using the iterative
algorithm

xn = xn−1 + αnpn. (11.32)

The αn is chosen so as to minimize the function of α defined by f(xn−1 +
αpn), and so we have

αn =
rn · pn

pn ·Qpn
, (11.33)

where rn = c − Qxn−1. Since the function f(x) = 1
2 ||Ax − b||22 has for

its gradient ∇f(x) = AT (Ax − b) = Qx − c, the residual vector rn =

128CHAPTER 11. CONJUGATE-DIRECTION METHODS IN OPTIMIZATION

c − Qxn−1 is the direction of steepest descent from the point x = xn−1.
The CGM combines the use of the negative gradient directions from the
steepest descent method with the use of a conjugate basis of directions, by
using the rn+1 to construct the next direction pn+1 in such a way as to
form a conjugate set {p1, ..., p

J}.
As before, there is an efficient recursive formula that provides the next

direction: let p1 = r1 = (c−Qx0) and

pn+1 = rn+1 − rn+1 ·Qpn

pn ·Qpn
pn. (11.34)

Since the αn is the optimal choice and

rn+1 = −∇f(xn), (11.35)

we have, according to Equation (11.2),

rn+1 · pn = 0. (11.36)

Lemma 11.5 For all n, rn+1 = 0 whenever pn+1 = 0, in which case we
have c = Qxn, so that xn is the least-squares solution.

In theory, the CGM converges to the least squares solution in finitely
many steps, since we either reach pn+1 = 0 or n + 1 = J . In practice, the
CGM can be employed as a fully iterative method by cycling back through
the previously used directions.

An induction proof similar to the one used to prove Theorem 11.3 es-
tablishes that the set {p1, ..., pJ} is a conjugate set [122, 129]. In fact, we
can say more.

Theorem 11.4 For n = 1, 2, ..., J and j = 1, ..., n−1 we have a) rn·rj = 0;
b) rn · pj = 0; and c) pn ·Qpj = 0.

The proof presented here through a series of lemmas is based on that given
in [129].

The proof uses induction on the number n. Throughout the following
lemmas assume that the statements in the theorem hold for some n < J .
We prove that they hold also for n + 1.

Lemma 11.6 The vector Qpj is in the span of the vectors rj and rj+1.

Proof: Use the fact that

rj+1 = rj − αjQpj . (11.37)

Lemma 11.7 For each n, rn+1 · rn = 0.

11.4. THE CONJUGATE GRADIENT METHOD 129

Proof: Establish that

αn =
rn · rn

pn ·Qpn
. (11.38)

Lemma 11.8 For j = 1, ..., n− 1, rn+1 · rj = 0.

Proof: Use the induction hypothesis.

Lemma 11.9 For j = 1, ..., n, rn+1 · pj = 0.

Proof: First, establish that

pj = rj − βj−1p
j−1, (11.39)

where

βj−1 =
rj ·Qpj−1

pj−1 ·Qpj−1
, (11.40)

and

rn+1 = rn − αnQpn. (11.41)

Lemma 11.10 For j = 1, ..., n− 1, pn+1 ·Qpj = 0.

Proof: Use

Qpj = α−1
j (rj − rj+1). (11.42)

The final step in the proof is contained in the following lemma.

Lemma 11.11 For each n, we have pn+1 ·Qpn = 0.

Proof: Establish that

βn = −rn+1 · rn+1

rn · rn
. (11.43)

The convergence rate of the CGM depends on the condition number of
the matrix Q, which is the ratio of its largest to its smallest eigenvalues.
When the condition number is much greater than one convergence can be

130CHAPTER 11. CONJUGATE-DIRECTION METHODS IN OPTIMIZATION

accelerated by preconditioning the matrix Q; this means replacing Q with
P−1/2QP−1/2, for some positive-definite approximation P of Q (see [4]).

There are versions of the CGM for the minimization of nonquadratic
functions. In the quadratic case the next conjugate direction pn+1 is built
from the residual rn+1 and pn. Since, in that case, rn+1 = −∇f(xn), this
suggests that in the nonquadratic case we build pn+1 from −∇f(xn) and
pn. This leads to the Fletcher-Reeves method. Other similar algorithms,
such as the Polak-Ribiere and the Hestenes-Stiefel methods, perform better
on certain problems [129].

Part V

Positivity in Linear
Systems

131

Chapter 12

The Multiplicative ART
(MART)

The multiplicative ART (MART) [93] is an iterative algorithm closely re-
lated to the ART. It applies to systems of linear equations Ax = b for which
the bi are positive and the Aij are nonnegative; the solution x we seek will
have nonnegative entries. It is not so easy to see the relation between ART
and MART if we look at the most general formulation of MART. For that
reason, we begin with a simpler case, in which the relation is most clearly
visible.

12.1 A Special Case of MART

We begin by considering the application of MART to the transmission
tomography problem. For i = 1, ..., I, let Li be the set of pixel indices j
for which the j-th pixel intersects the i-th line segment, and let |Li| be the
cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xk

j +
1
|Li|

(bi − (Axk)i), (12.1)

for j in Li, and

xk+1
j = xk

j , (12.2)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

133

134 CHAPTER 12. THE MULTIPLICATIVE ART (MART)

Suppose, now, that each bi is positive, and we know in advance that the
desired image we wish to reconstruct must be nonnegative. We can begin
with x0 > 0, but as we compute the ART steps, we may lose nonnegativity.
One way to avoid this loss is to correct the current xk multiplicatively,
rather than additively, as in ART. This leads to the multiplicative ART
(MART).

The MART, in this case, has the iterative step

xk+1
j = xk

j

(bi

(Axk)i

)
, (12.3)

for those j in Li, and

xk+1
j = xk

j , (12.4)

otherwise. Therefore, we can write the iterative step as

xk+1
j = xk

j

(bi

(Axk)i

)Aij

. (12.5)

12.2 MART in the General Case

Taking the entries of the matrix A to be either one or zero, depending on
whether or not the j-th pixel is in the set Li, is too crude. The line Li

may just clip a corner of one pixel, but pass through the center of another.
Surely, it makes more sense to let Aij be the length of the intersection of
line Li with the j-th pixel, or, perhaps, this length divided by the length of
the diagonal of the pixel. It may also be more realistic to consider a strip,
instead of a line. Other modifications to Aij may made made, in order to
better describe the physics of the situation. Finally, all we can be sure of
is that Aij will be nonnegative, for each i and j. In such cases, what is the
proper form for the MART?

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration.

Algorithm 12.1 (MART) Let x0 be any positive vector, and i = k(mod I)+
1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xk

j

(bi

(Axk)i

)m−1
i

Aij

, (12.6)

where mi = max {Aij |j = 1, 2, ..., J}.

Some treatments of MART leave out the mi, but require only that the
entries of A have been rescaled so that Aij ≤ 1 for all i and j. The mi is
important, however, in accelerating the convergence of MART.

The MART can be accelerated by relaxation, as well.

12.3. ART AND MART AS SEQUENTIAL PROJECTION METHODS135

Algorithm 12.2 (Relaxed MART) Let x0 be any positive vector, and
i = k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xk

j

(bi

(Axk)i

)γim
−1
i

Aij

, (12.7)

where γi is in the interval (0, 1).

As with ART, finding the best relaxation parameters is a bit of an art.
In the consistent case, by which we mean that Ax = b has nonnegative

solutions, we have the following convergence theorem for MART.

Theorem 12.1 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 KL(xj , x

0
j) is

minimized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =
J∑

j=1

xj log xj − xj . (12.8)

As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of
a limit cycle for MART.

12.3 ART and MART as Sequential Projec-
tion Methods

We know from our discussion of the ART that the iterative ART step can
be viewed as the orthogonal projection of the current vector, xk, onto Hi,
the hyperplane associated with the i-th equation. Can we view MART in a
similar way? Yes, but we need to consider a different measure of closeness
between nonnegative vectors.

12.3.1 Cross-Entropy or the Kullback-Leibler Distance

For positive numbers u and v, the Kullback-Leibler distance [113] from u
to v is

KL(u, v) = u log
u

v
+ v − u. (12.9)

136 CHAPTER 12. THE MULTIPLICATIVE ART (MART)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL
distance is extended to nonnegative vectors component-wise, so that for
nonnegative vectors x and z we have

KL(x, z) =
J∑

j=1

KL(xj , zj). (12.10)

One of the most useful facts about the KL distance is contained in the
following lemma.

Lemma 12.1 For non-negative vectors x and z, with z+ =
∑J

j=1 zj > 0,
we have

KL(x, z) = KL(x+, z+) + KL(x,
x+

z+
z). (12.11)

Given the vector xk, we find the vector z in Hi for which the KL distance
f(z) = KL(xk, z) is minimized; this z will be the KL projection of xk onto
Hi. Using a Lagrange multiplier, we find that

0 =
∂f

∂zj
(z)− λiAij , (12.12)

for some constant λi, so that

0 = −
xk

j

zj
+ 1− λiAij , (12.13)

for each j. Multiplying by zj , we get

zj − xk
j = zjAijλi. (12.14)

For the special case in which the entries of Aij are zero or one, we can
solve Equation (12.14) for zj . We have

zj − xk
j = zjλi, (12.15)

for each j ∈ Li, and zj = xk
j , otherwise. Multiply both sides by Aij and

sum on j to get

bi(1− λi) = (Axk)i. (12.16)

Therefore,

zj = xk
j

bi

(Axk)i
, (12.17)

which is clearly xk+1
j . So, at least in the special case we have been dis-

cussing, MART consists of projecting, in the KL sense, onto each of the
hyperplanes in succession.

12.3. ART AND MART AS SEQUENTIAL PROJECTION METHODS137

12.3.2 Weighted KL Projections

For the more general case in which the entries Aij are arbitrary nonnegative
numbers, we cannot directly solve for zj in Equation (12.14). There is an
alternative, though. Instead of minimizing KL(x, z), subject to (Az)i = bi,
we minimize the weighted KL distance

J∑
j=1

AijKL(xj , zj), (12.18)

subject to the same constraint on z. The optimal z is Qe
i x, which we

shall denote here by Qix, the weighted KL projection of x onto the ith
hyperplane. Again using a Lagrange multiplier approach, we find that

0 = −Aij(
xj

zj
+ 1)−Aijλi, (12.19)

for some constant λi. Multiplying by zj , we have

Aijzj −Aijxj = Aijzjλi. (12.20)

Summing over the index j, we get

bi − (Ax)i = biλi, (12.21)

from which it follows that

1− λi = (Ax)i/bi. (12.22)

Substituting for λi in equation (12.20), we obtain

zj = (Qix)j = xj
bi

(Ax)i
, (12.23)

for all j for which Aij 6= 0.
Note that the MART step does not define xk+1 to be this weighted KL

projection of xk onto the hyperplane Hi; that is,

xk+1
j 6= (Qix

k)j , (12.24)

except for those j for which Aij

mi
= 1. What is true is that the MART step

involves relaxation. Writing

xk+1
j = (xk

j)1−m−1
i

Aij

(
xk

j

bi

(Axk)i

)m−1
i

Aij

, (12.25)

we see that xk+1
j is a weighted geometric mean of xk

j and (Qix
k)j .

138 CHAPTER 12. THE MULTIPLICATIVE ART (MART)

12.4 Proof of Convergence for MART

We assume throughout this proof that x̂ is a nonnegative solution of Ax = b.
For i = 1, 2, ..., I, let

Gi(x, z) = KL(x, z) + m−1
i KL((Ax)i, bi)−m−1

i KL((Ax)i, (Az)i).
(12.26)

Lemma 12.2 For all i, we have Gi(x, z) ≥ 0 for all x and z.

Proof: Use Equation (12.11).
Then Gi(x, z), viewed as a function of z, is minimized by z = x, as we

see from the equation

Gi(x, z) = Gi(x, x) + KL(x, z)−m−1
i KL((Ax)i, (Az)i). (12.27)

Viewed as a function of x, Gi(x, z) is minimized by x = z′, where

z′j = zj

(bi

(Az)i

)m−1
i

Aij

, (12.28)

as we see from the equation

Gi(x, z) = Gi(z′, z) + KL(x, z′). (12.29)

We note that xk+1 = (xk)′.
Now we calculate Gi(x̂, xk) in two ways, using, first, the definition, and,

second, Equation (12.29). From the definition, we have

Gi(x̂, xk) = KL(x̂, xk)−m−1
i KL(bi, (Axk)i). (12.30)

From Equation (12.29), we have

Gi(x̂, xk) = Gi(xk+1, xk) + KL(x̂, xk+1). (12.31)

Therefore,

KL(x̂, xk)−KL(x̂, xk+1) = Gi(xk+1, xk) + m−1
i KL(bi, (Axk)i). (12.32)

From Equation (12.32) we can conclude several things:

1) the sequence {KL(x̂, xk)} is decreasing;

2) the sequence {xk} is bounded, and therefore has a cluster point, x∗; and
3) the sequences {Gi(xk+1, xk)} and {m−1

i KL(bi, (Axk)i)} converge de-
creasingly to zero, and so bi = (Ax∗)i for all i.

Since b = Ax∗, we can use x∗ in place of the arbitrary solution x̂ to
conclude that the sequence {KL(x∗, xk)} is decreasing. But, a subsequence

12.5. COMMENTS ON THE RATE OF CONVERGENCE OF MART 139

converges to zero, so the entire sequence must converge to zero, and there-
fore {xk} converges to x∗. Finally, since the right side of Equation (12.32) is
independent of which solution x̂ we have used, so is the left side. Summing
over k on the left side, we find that

KL(x̂, x0)−KL(x̂, x∗) (12.33)

is independent of which x̂ we use. We can conclude then that minimizing
KL(x̂, x0) over all solutions x̂ has the same answer as minimizing KL(x̂, x∗)
over all such x̂; but the solution to the latter problem is obviously x̂ = x∗.
This concludes the proof.

12.5 Comments on the Rate of Convergence
of MART

We can see from Equation (12.32),

KL(x̂, xk)−KL(x̂, xk+1) = Gi(xk+1, xk) + m−1
i KL(bi, (Axk)i), (12.34)

that the decrease in distance to a solution that occurs with each step of
MART depends on m−1

i and on KL(bi, (Axk)i); the latter measures the
extent to which the current vector xk solves the current equation. We see
then that it is reasonable to select mi as we have done, namely, as the
smallest positive number ci for which Aij/ci ≤ 1 for all j. We also see that
it is helpful if the equations are ordered in such a way that KL(bi, (Axk)i)
is fairly large, for each k. It is not usually necessary to determine an
optimal ordering of the equations; the important thing is to avoid ordering
the equations so that successive hyperplanes have nearly parallel normal
vectors.

140 CHAPTER 12. THE MULTIPLICATIVE ART (MART)

Chapter 13

Rescaled Block-Iterative
(RBI) Methods

Image reconstruction problems in tomography are often formulated as sta-
tistical likelihood maximization problems in which the pixel values of the
desired image play the role of parameters. Iterative algorithms based on
cross-entropy minimization, such as the expectation maximization maxi-
mum likelihood (EMML) method and the simultaneous multiplicative alge-
braic reconstruction technique (SMART) can be used to solve such prob-
lems. Because the EMML and SMART are slow to converge for large
amounts of data typical in imaging problems acceleration of the algorithms
using blocks of data or ordered subsets has become popular. There are
a number of different ways to formulate these block-iterative versions of
EMML and SMART, involving the choice of certain normalization and
regularization parameters. These methods are not faster merely because
they are block-iterative; the correct choice of the parameters is crucial. The
purpose of this chapter is to discuss these different formulations in detail
sufficient to reveal the precise roles played by the parameters and to guide
the user in choosing them.

13.1 Overview

The algorithms we discuss here have interesting histories, which we sketch
in this section.

13.1.1 The SMART and its variants

Like the ART, the MART has a simultaneous version, called the SMART.
Like MART, SMART applies only to nonnegative systems of equations.

141

142CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

Unlike MART, SMART is a simultaneous algorithm that uses all equations
in each step of the iteration. The SMART was discovered in 1972, indepen-
dently, by Darroch and Ratcliff, working in statistics, [72] and by Schmidlin
[139] in medical imaging; neither work makes reference to MART. Darroch
and Ratcliff do consider block-iterative versions of their algorithm, in which
only some of the equations are used at each step, but their convergence
proof involves unnecessary restrictions on the system matrix. Censor and
Segman [58] seem to be the first to present the SMART and its block-
iterative variants explicitly as generalizations of MART.

13.1.2 The EMML and its variants

The expectation maximization maximum likelihood (EMML) method turns
out to be closely related to the SMART, although it has quite a different
history. The EMML algorithm we discuss here is actually a special case
of a more general approach to likelihood maximization, usually called the
EM algorithm [74]; the book by McLachnan and Krishnan [124] is a good
source for the history of this more general algorithm.

It was noticed by Rockmore and Macovski [138] that the image recon-
struction problems posed by medical tomography could be formulated as
statistical parameter estimation problems. Following up on this idea, Shepp
and Vardi [141] suggested the use of the EM algorithm for solving the re-
construction problem in emission tomography. In [115], Lange and Carson
presented an EM-type iterative method for transmission tomographic im-
age reconstruction, and pointed out a gap in the convergence proof given in
[141] for the emission case. In [147], Vardi, Shepp and Kaufman repaired
the earlier proof, relying on techniques due to Csiszár and Tusnády [69].
In [116] Lange, Bahn and Little improve the transmission and emission
algorithms, by including regularization to reduce the effects of noise. The
question of uniqueness of the solution in the inconsistent case was resolved
in [33].

The MART and SMART were initially designed to apply to consistent
systems of equations. Darroch and Ratcliff did not consider what happens
in the inconsistent case, in which the system of equations has no non-
negative solutions; this issue was resolved in [33], where it was shown that
the SMART converges to a non-negative minimizer of the Kullback-Leibler
distance KL(Ax, b). The EMML, as a statistical parameter estimation
technique, was not originally thought to be connected to any system of lin-
ear equations. In [33], it was shown that the EMML leads to a non-negative
minimizer of the Kullback-Leibler distance KL(b, Ax), thereby exhibiting
a close connection between the SMART and the EMML methods. Conse-
quently, when the non-negative system of linear equations Ax = b has a
non-negative solution, the EMML converges to such a solution.

13.2. THE SMART AND THE EMML METHOD 143

13.1.3 Block-iterative Versions of SMART and EMML

As we have seen, Darroch and Ratcliff included what are now called block-
iterative versions of SMART in their original paper [72]. Censor and Seg-
man [58] viewed SMART and its block-iterative versions as natural exten-
sion of the MART. Consequently, block-iterative variants of SMART have
been around for some time. The story with the EMML is quite different.

The paper of Holte, Schmidlin, et al. [104] compares the performance of
Schmidlin’s method of [139] with the EMML algorithm. Almost as an aside,
they notice the accelerating effect of what they call projection interleaving,
that is, the use of blocks. This paper contains no explicit formulas, however,
and presents no theory, so one can only make educated guesses as to the
precise iterative methods employed. Somewhat later, Hudson, Hutton and
Larkin [105, 106] observed that the EMML can be significantly accelerated
if, at each step, one employs only some of the data. They referred to this
approach as the ordered subset EM method (OSEM). They gave a proof
of convergence of the OSEM, for the consistent case. The proof relied on
a fairly restrictive relationship between the matrix A and the choice of
blocks, called subset balance. In [36] a revised version of the OSEM, called
the rescaled block-iterative EMML (RBI-EMML), was shown to converge,
in the consistent case, regardless of the choice of blocks.

13.1.4 Basic assumptions

Methods based on cross-entropy, such as the MART, SMART, EMML and
all block-iterative versions of these algorithms apply to nonnegative sys-
tems that we denote by Ax = b, where b is a vector of positive entries, A is
a matrix with entries Aij ≥ 0 such that for each j the sum sj =

∑I
i=1 Aij

is positive and we seek a solution x with nonnegative entries. If no non-
negative x satisfies b = Ax we say the system is inconsistent.

Simultaneous iterative algorithms employ all of the equations at each
step of the iteration; block-iterative methods do not. For the latter methods
we assume that the index set {i = 1, ..., I} is the (not necessarily disjoint)
union of the N sets or blocks Bn, n = 1, ..., N . We shall require that
snj =

∑
i∈Bn

Aij > 0 for each n and each j. Block-iterative methods like
ART and MART for which each block consists of precisely one element are
called row-action or sequential methods. We begin our discussion with the
SMART and the EMML method.

13.2 The SMART and the EMML method

Both the SMART and the EMML method provide a solution of b = Ax
when such exist and (distinct) approximate solutions in the inconsistent
case. The SMART algorithm is the following:

144CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

Algorithm 13.1 (SMART) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xk

j exp
(
s−1

j

I∑
i=1

Aij log
bi

(Axk)i

)
. (13.1)

The exponential and logarithm in the SMART iterative step are compu-
tationally expensive. The EMML method is similar to the SMART, but
somewhat less costly to compute.

Algorithm 13.2 (EMML) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xk

j s−1
j

I∑
i=1

Aij
bi

(Axk)i
. (13.2)

The main results concerning the SMART are given by the following theo-
rem.

Theorem 13.1 In the consistent case the SMART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 sjKL(xj , x

0
j)

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Ax, y) for which

∑J
j=1 sjKL(xj , x

0
j) is

minimized; if A and every matrix derived from A by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Ax, y) and
at most I − 1 of its entries are nonzero.

For the EMML method the main results are the following.

Theorem 13.2 In the consistent case the EMML algorithm converges to
nonnegative solution of b = Ax. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(y, Ax); if A and every matrix
derived from A by deleting columns has full rank then there is a unique
nonnegative minimizer of KL(y, Ax) and at most I − 1 of its entries are
nonzero.

In the consistent case there may be multiple nonnegative solutions and the
one obtained by the EMML algorithm will depend on the starting vector
x0; how it depends on x0 is an open question.

These theorems are special cases of more general results on block-
iterative methods that we shall prove later in this chapter.

Both the EMML and SMART are related to likelihood maximization.
Minimizing the function KL(y, Ax) is equivalent to maximizing the like-
lihood when the bi are taken to be measurements of independent Poisson
random variables having means (Ax)i. The entries of x are the parameters

13.2. THE SMART AND THE EMML METHOD 145

to be determined. This situation arises in emission tomography. So the
EMML is a likelihood maximizer, as its name suggests.

The connection between SMART and likelihood maximization is a bit
more convoluted. Suppose that sj = 1 for each j. The solution of b = Ax
for which KL(x, x0) is minimized necessarily has the form

xj = x0
j exp

(I∑
i=1

Aijλi

)
(13.3)

for some vector λ with entries λi. This log linear form also arises in trans-
mission tomography, where it is natural to assume that sj = 1 for each j
and λi ≤ 0 for each i. We have the following lemma that helps to connect
the SMART algorithm with the transmission tomography problem:

Lemma 13.1 Minimizing KL(d, x) over x as in Equation (13.3) is equiv-
alent to minimizing KL(x, x0), subject to Ax = Pd.

The solution to the latter problem can be obtained using the SMART.
With x+ =

∑J
j=1 xj the vector A with entries pj = xj/x+ is a probabil-

ity vector. Let d = (d1, ..., dJ)T be a vector whose entries are nonnegative
integers, with K =

∑J
j=1 dj . Suppose that, for each j, pj is the probability

of index j and dj is the number of times index j was chosen in K trials.
The likelihood function of the parameters λi is

L(λ) =
J∏

j=1

p
dj

j (13.4)

so that the log-likelihood function is

LL(λ) =
J∑

j=1

dj log pj . (13.5)

Since A is a probability vector, maximizing L(λ) is equivalent to minimizing
KL(d, p) with respect to λ, which, according to the lemma above, can
be solved using SMART. In fact, since all of the block-iterative versions
of SMART have the same limit whenever they have the same starting
vector, any of these methods can be used to solve this maximum likelihood
problem. In the case of transmission tomography the λi must be non-
positive, so if SMART is to be used, some modification is needed to obtain
such a solution.

Those who have used the SMART or the EMML on sizable problems
have certainly noticed that they are both slow to converge. An important
issue, therefore, is how to accelerate convergence. One popular method is
through the use of block-iterative (or ordered subset) methods.

146CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

13.3 Ordered-Subset Versions

To illustrate block-iterative methods and to motivate our subsequent dis-
cussion we consider now the ordered subset EM algorithm (OSEM), which is
a popular technique in some areas of medical imaging, as well as an anal-
ogous version of SMART, which we shall call here the OSSMART. The
OSEM is now used quite frequently in tomographic image reconstruction,
where it is acknowledged to produce usable images significantly faster then
EMML. From a theoretical perspective both OSEM and OSSMART are
incorrect. How to correct them is the subject of much that follows here.

The idea behind the OSEM (OSSMART) is simple: the iteration looks
very much like the EMML (SMART), but at each step of the iteration
the summations are taken only over the current block. The blocks are
processed cyclically.

The OSEM iteration is the following: for k = 0, 1, ... and n = k(modN)+
1, having found xk let

OSEM:

xk+1
j = xk

j s−1
nj

∑
i∈Bn

Aij
bi

(Axk)i
. (13.6)

The OSSMART has the following iterative step:

OSSMART

xk+1
j = xk

j exp
(
s−1

nj

∑
i∈Bn

Aij log
bi

(Axk)i

)
. (13.7)

In general we do not expect block-iterative algorithms to converge in the
inconsistent case, but to exhibit subsequential convergence to a limit cycle,
as we shall discuss later. We do, however, want them to converge to a
solution in the consistent case; the OSEM and OSSMART fail to do this
except when the matrix A and the set of blocks {Bn, n = 1, ..., N} satisfy
the condition known as subset balance, which means that the sums snj

depend only on j and not on n. While this may be approximately valid in
some special cases, it is overly restrictive, eliminating, for example, almost
every set of blocks whose cardinalities are not all the same. When the
OSEM does well in practice in medical imaging it is probably because the
N is not large and only a few iterations are carried out.

The experience with the OSEM was encouraging, however, and strongly
suggested that an equally fast, but mathematically correct, block-iterative
version of EMML was to be had; this is the rescaled block-iterative EMML
(RBI-EMML). Both RBI-EMML and an analogous corrected version of
OSSMART, the RBI-SMART, provide fast convergence to a solution in
the consistent case, for any choice of blocks.

13.4. THE RBI-SMART 147

13.4 The RBI-SMART

We turn next to the block-iterative versions of the SMART, which we shall
denote BI-SMART. These methods were known prior to the discovery of
RBI-EMML and played an important role in that discovery; the importance
of rescaling for acceleration was apparently not appreciated, however.

We start by considering a formulation of BI-SMART that is general
enough to include all of the variants we wish to discuss. As we shall see,
this formulation is too general and will need to be restricted in certain ways
to obtain convergence. Let the iterative step be

xk+1
j = xk

j exp
(
βnj

∑
i∈Bn

αniAij log
(bi

(Axk)i

))
, (13.8)

for j = 1, 2, ..., J , n = k(modN) + 1 and βnj and αni positive. As we
shall see, our convergence proof will require that βnj be separable, that is,
bnj = γjδn for each j and n and that

γjδnσnj ≤ 1, (13.9)

for σnj =
∑

i∈Bn
αniAij . With these conditions satisfied we have the fol-

lowing result.

Theorem 13.3 Let x be a nonnegative solution of b = Ax. For any posi-
tive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the sequence
{xk} given by Equation (13.8) converges to the unique solution of b = Ax

for which the weighted cross-entropy
∑J

j=1 γ−1
j KL(xj , x

0
j) is minimized.

The inequality in the following lemma is the basis for the convergence proof.

Lemma 13.2 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (13.8) we have

J∑
j=1

γ−1
j KL(xj , x

k
j)−

J∑
j=1

γ−1
j KL(xj , x

k+1
j) ≥ (13.10)

δn

∑
i∈Bn

αniKL(bi, (Axk)i). (13.11)

Proof: First note that

xk+1
j = xk

j exp
(
γjδn

∑
i∈Bn

αniAij log
(bi

(Axk)i

))
, (13.12)

and

exp
(
γjδn

∑
i∈Bn

αniAij log
(bi

(Axk)i

))
(13.13)

148CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

can be written as

exp
(
(1− γjδnσnj) log 1 + γjδn

∑
i∈Bn

αniAij log
(bi

(Axk)i

))
, (13.14)

which, by the convexity of the exponential function, is not greater than

(1− γjδnσnj) + γjδn

∑
i∈Bn

αniAij
bi

(Axk)i
. (13.15)

It follows that

J∑
j=1

γ−1
j (xk

j − xk+1
j) ≥ δn

∑
i∈Bn

αni((Axk)i − bi). (13.16)

We also have

log(xk+1
j /xk

j) = γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
. (13.17)

Therefore

J∑
j=1

γ−1
j KL(xj , x

k
j)−

J∑
j=1

γ−1
j KL(xj , x

k+1
j) (13.18)

=
J∑

j=1

γ−1
j (xj log(xk+1

j /xk
j) + xk

j − xk+1
j) (13.19)

=
J∑

j=1

xjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xk

j − xk+1
j) (13.20)

= δn

∑
i∈Bn

αni(
J∑

j=1

xjAij) log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xk

j − xk+1
j) (13.21)

≥ δn

(∑
i∈Bn

αni(bi log
bi

(Axk)i
+ (Axk)i − bi)

)
= δn

∑
i∈Bn

αniKL(bi, (Axk)i).

(13.22)

This completes the proof of the lemma.

13.4. THE RBI-SMART 149

From the inequality (13.11) we conclude that the sequence

{
J∑

j=1

γ−1
j KL(xj , x

k
j)} (13.23)

is decreasing, that {xk} is therefore bounded and the sequence

{
∑

i∈Bn

αniKL(bi, (Axk)i)} (13.24)

is converging to zero. Let x∗ be any cluster point of the sequence {xk}.
Then it is not difficult to show that b = Ax∗. Replacing x with x∗ we
have that the sequence {

∑J
j=1 γ−1

j KL(x∗j , x
k
j)} is decreasing; since a sub-

sequence converges to zero, so does the whole sequence. Therefore x∗ is
the limit of the sequence {xk}. This proves that the algorithm produces
a solution of b = Ax. To conclude further that the solution is the one
for which the quantity

∑J
j=1 γ−1

j KL(xj , x
0
j) is minimized requires further

work to replace the inequality (13.11) with an equation in which the right
side is independent of the particular solution x chosen; see the final section
of this chapter for the details.

We see from the theorem that how we select the γj is determined by
how we wish to weight the terms in the sum

∑J
j=1 γ−1

j KL(xj , x
0
j). In

some cases we want to minimize the cross-entropy KL(x, x0) subject to
b = Ax; in this case we would select γj = 1. In other cases we may
have some prior knowledge as to the relative sizes of the xj and wish to
emphasize the smaller values more; then we may choose γj proportional to
our prior estimate of the size of xj . Having selected the γj , we see from
the inequality (13.11) that convergence will be accelerated if we select δn

as large as permitted by the condition γjδnσnj ≤ 1. This suggests that we
take

δn = 1/ min{σnjγj , j = 1, ..., J}. (13.25)

The rescaled BI-SMART (RBI-SMART) as presented in [35, 37, 38] uses
this choice, but with αni = 1 for each n and i. For each n = 1, ..., N let

mn = max{snjs
−1
j |j = 1, ..., J}. (13.26)

The original RBI-SMART is as follows:

Algorithm 13.3 (RBI-SMART) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = xk

j exp
(
m−1

n s−1
j

∑
i∈Bn

Aij log
(bi

(Axk)i

))
. (13.27)

150CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

Notice that Equation (13.27) can be written as

log xk+1
j = (1−m−1

n s−1
j snj) log xk

j + m−1
n s−1

j

∑
i∈Bn

Aij log
(
xk

j

bi

(Axk)i

)
,

(13.28)

from which we see that xk+1
j is a weighted geometric mean of xk

j and the
weighted KL projections (Qix

k)j , for i ∈ Bn. This will be helpful in
deriving block-iterative versions of the EMML algorithm.

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSSMART does not generally satisfy the re-
quirements, since in (13.7) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSSMART.

In [58] Censor and Segman make the choices βnj = 1 and αni > 0 such
that σnj ≤ 1 for all n and j. In those cases in which σnj is much less than
1 for each n and j their iterative scheme is probably excessively relaxed; it
is hard to see how one might improve the rate of convergence by altering
only the weights αni, however. Limiting the choice to γjδn = 1 reduces our
ability to accelerate this algorithm.

The original SMART in Equation (13.1) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (13.9) is satisfied; in fact it becomes
an equality now.

For the row-action version of SMART, the multiplicative ART (MART),
due to Gordon, Bender and Herman [93], we take N = I and Bn = Bi = {i}
for i = 1, ..., I. The MART has the iterative

xk+1
j = xk

j

(bi

(Axk)i

)m−1
i

Aij

, (13.29)

for j = 1, 2, ..., J , i = k(mod I) + 1 and mi > 0 chosen so that m−1
i Aij ≤ 1

for all j. The smaller mi is the faster the convergence, so a good choice
is mi = max{Aij |, j = 1, ..., J}. Although this particular choice for mi is
not explicitly mentioned in the various discussions of MART I have seen,
it was used in implementations of MART from the beginning [102].

Darroch and Ratcliff included a discussion of a block-iterative version of
SMART in their 1972 paper [72]. Close inspection of their version reveals
that they require that snj =

∑
i∈Bn

Aij = 1 for all j. Since this is unlikely
to be the case initially, we might try to rescale the equations or unknowns
to obtain this condition. However, unless snj =

∑
i∈Bn

Aij depends only
on j and not on n, which is the subset balance property used in [106], we
cannot redefine the unknowns in a way that is independent of n.

13.5. THE RBI-EMML 151

The MART fails to converge in the inconsistent case. What is always
observed, but for which no proof exists, is that, for each fixed i = 1, 2, ..., I,
as m → +∞, the MART subsequences {xmI+i} converge to separate limit
vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to a
single vector whenever there is a nonnegative solution of b = Ax. The
greater the minimum value of KL(Ax, y) the more distinct from one an-
other the vectors of the limit cycle are. An analogous result is observed for
BI-SMART.

13.5 The RBI-EMML

As we did with SMART, we consider now a formulation of BI-EMML that
is general enough to include all of the variants we wish to discuss. Once
again, the formulation is too general and will need to be restricted in certain
ways to obtain convergence. Let the iterative step be

xk+1
j = xk

j (1− βnjσnj) + xk
j βnj

∑
i∈Bn

αniAij
bi

(Axk)i
, (13.30)

for j = 1, 2, ..., J , n = k(modN)+1 and βnj and αni positive. As in the case
of BI-SMART, our convergence proof will require that βnj be separable,
that is,

bnj = γjδn (13.31)

for each j and n and that the inequality (13.9) hold. With these conditions
satisfied we have the following result.

Theorem 13.4 Let x be a nonnegative solution of b = Ax. For any
positive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the se-
quence {xk} given by Equation (13.8) converges to a nonnegative solution
of b = Ax.

When there are multiple nonnegative solutions of b = Ax the solution
obtained by BI-EMML will depend on the starting point x0, but precisely
how it depends on x0 is an open question. Also, in contrast to the case of
BI-SMART, the solution can depend on the particular choice of the blocks.
The inequality in the following lemma is the basis for the convergence proof.

Lemma 13.3 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (13.30) we have

J∑
j=1

γ−1
j KL(xj , x

k
j)−

J∑
j=1

γ−1
j KL(xj , x

k+1
j) ≥ (13.32)

152CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

δn

∑
i∈Bn

αniKL(bi, (Axk)i). (13.33)

Proof: From the iterative step

xk+1
j = xk

j (1− γjδnσnj) + xk
j γjδn

∑
i∈Bn

αniAij
bi

(Axk)i
(13.34)

we have

log(xk+1
j /xk

j) = log
(
(1− γjδnσnj) + γjδn

∑
i∈Bn

αniAij
bi

(Axk)i

)
. (13.35)

By the concavity of the logarithm we obtain the inequality

log(xk+1
j /xk

j) ≥
(
(1− γjδnσnj) log 1 + γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i

)
,

(13.36)

or

log(xk+1
j /xk

j) ≥ γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
. (13.37)

Therefore

J∑
j=1

γ−1
j xj log(xk+1

j /xk
j) ≥ δn

∑
i∈Bn

αni(
J∑

j=1

xjAij) log
bi

(Axk)i
. (13.38)

Note that it is at this step that we used the separability of the βnj . Also

J∑
j=1

γ−1
j (xk+1

j − xk
j) = δn

∑
i∈Bn

((Axk)i − bi). (13.39)

This concludes the proof of the lemma.
From the inequality in (13.33) we conclude, as we did in the BI-SMART

case, that the sequence {
∑J

j=1 γ−1
j KL(xj , x

k
j)} is decreasing, that {xk} is

therefore bounded and the sequence {
∑

i∈Bn
αniKL(bi, (Axk)i)} is con-

verging to zero. Let x∗ be any cluster point of the sequence {x}. Then it is
not difficult to show that b = Ax∗. Replacing x with x∗ we have that the
sequence {

∑J
j=1 γ−1

j KL(x∗j , x
k
j)} is decreasing; since a subsequence con-

verges to zero, so does the whole sequence. Therefore x∗ is the limit of
the sequence {xk}. This proves that the algorithm produces a nonnegative
solution of b = Ax. We are now unable to replace the inequality in (13.33)

13.5. THE RBI-EMML 153

with an equation in which the right side is independent of the particular
solution x chosen.

Having selected the γj , we see from the inequality in (13.33) that con-
vergence will be accelerated if we select δn as large as permitted by the
condition γjδnσnj ≤ 1. This suggests that once again we take

δn = 1/ min{σnjγj , j = 1, ..., J}. (13.40)

The rescaled BI-EMML (RBI-EMML) as presented in [35, 37, 38] uses this
choice, but with αni = 1 for each n and i. The original motivation for the
RBI-EMML came from consideration of Equation (13.28), replacing the
geometric means with arithmetic means. This RBI-EMML is as follows:

Algorithm 13.4 (RBI-EMML) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = (1−m−1

n s−1
j snj)xk

j + m−1
n s−1

j xk
j

∑
i∈Bn

(Aij
bi

(Axk)i
). (13.41)

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSEM does not generally satisfy the require-
ments, since in (13.6) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSEM.

The original EMML in Equation (13.2) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (13.9) is satisfied; in fact it becomes
an equality now.

Notice that the calculations required to perform the BI-SMART are
somewhat more complicated than those needed in BI-EMML. Because the
MART converges rapidly in most cases there is considerable interest in the
row-action version of EMML. It was clear from the outset that using the
OSEM in a row-action mode does not work. We see from the formula for
BI-EMML that the proper row-action version of EMML, which we call the
EM-MART, is the following:

Algorithm 13.5 (EM-MART) Let x0be an arbitrary positive vector and
i = k(mod I) + 1. Then let

xk+1
j = (1− δiγjαiiAij)xk

j + δiγjαiiAij
bi

(Axk)i
, (13.42)

with

γjδiαiiAij ≤ 1 (13.43)

for all i and j.

154CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

The optimal choice would seem to be to take δiαii as large as possible;
that is, to select δiαii = 1/ max{γjAij , j = 1, ..., J}. With this choice the
EM-MART is called the rescaled EM-MART (REM-MART).

The EM-MART fails to converge in the inconsistent case. What is
always observed, but for which no proof exists, is that, for each fixed i =
1, 2, ..., I, as m → +∞, the EM-MART subsequences {xmI+i} converge to
separate limit vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I}
reduces to a single vector whenever there is a nonnegative solution of b =
Ax. The greater the minimum value of KL(y, Ax) the more distinct from
one another the vectors of the limit cycle are. An analogous result is
observed for BI-EMML.

We must mention a method that closely resembles the REM-MART, the
row-action maximum likelihood algorithm (RAMLA), which was discovered
independently by Browne and De Pierro [20]. The RAMLA avoids the limit
cycle in the inconsistent case by using strong underrelaxation involving
a decreasing sequence of relaxation parameters λk. The RAMLA is the
following:

Algorithm 13.6 (RAMLA) Let x0 be an arbitrary positive vector, and
n = k(modN) + 1. Let the positive relaxation parameters λk be chosen to
converge to zero and

∑+∞
k=0 λk = +∞. Then,

xk+1
j = (1− λk

∑
i∈Bn

Aij)xk
j + λkxk

j

∑
i∈Bn

Aij

(bi

(Axk)i

)
, (13.44)

13.6 RBI-SMART and Entropy Maximization

As we stated earlier, in the consistent case the sequence {xk} generated by
the BI-SMART algorithm and given by Equation (13.12) converges to the
unique solution of b = Ax for which the distance

∑J
j=1 γ−1

j KL(xj , x
0
j) is

minimized. In this section we sketch the proof of this result as a sequence
of lemmas, each of which is easily established.

Lemma 13.4 For any nonnegative vectors a and b with a+ =
∑M

m=1 am

and b+ =
∑M

m=1 bm > 0 we have

KL(a, b) = KL(a+, b+) + KL(a+,
a+

b+
b). (13.45)

For nonnegative vectors x and z let

Gn(x, z) =
J∑

j=1

γ−1
j KL(xj , zj) (13.46)

13.6. RBI-SMART AND ENTROPY MAXIMIZATION 155

+δn

∑
i∈Bn

αni[KL((Ax)i, bi)−KL((Ax)i, (Az)i)]. (13.47)

It follows from Lemma 13.45 and the inequality

γ−1
j − δnσnj ≥ 1 (13.48)

that Gn(x, z) ≥ 0 in all cases.

Lemma 13.5 For every x we have

Gn(x, x) = δn

∑
i∈Bn

αniKL((Ax)i, bi) (13.49)

so that

Gn(x, z) = Gn(x, x) +
J∑

j=1

γ−1
j KL(xj , zj) (13.50)

−δn

∑
i∈Bn

αniKL((Ax)i, (Az)i). (13.51)

Therefore the distance Gn(x, z) is minimized, as a function of z, by z = x.
Now we minimize Gn(x, z) as a function of x. The following lemma shows
that the answer is

xj = z′j = zj exp
(
γjδn

∑
i∈Bn

αniAij log
bi

(Az)i

)
. (13.52)

Lemma 13.6 For each x and z we have

Gn(x, z) = Gn(z′, z) +
J∑

j=1

γ−1
j KL(xj , z

′
j). (13.53)

It is clear that (xk)′ = xk+1 for all k.
Now let b = Pu for some nonnegative vector u. We calculate Gn(u, xk)

in two ways: using the definition we have

Gn(u, xk) =
J∑

j=1

γ−1
j KL(uj , x

k
j)− δn

∑
i∈Bn

αniKL(bi, (Axk)i), (13.54)

while using Lemma 13.53 we find that

Gn(u, xk) = Gn(xk+1, xk) +
J∑

j=1

γ−1
j KL(uj , x

k+1
j). (13.55)

156CHAPTER 13. RESCALED BLOCK-ITERATIVE (RBI) METHODS

Therefore

J∑
j=1

γ−1
j KL(uj , x

k
j)−

J∑
j=1

γ−1
j KL(uj , x

k+1
j) (13.56)

= Gn(xk+1, xk) + δn

∑
i∈Bn

αniKL(bi, (Axk)i). (13.57)

We conclude several things from this.
First, the sequence {

∑J
j=1 γ−1

j KL(uj , x
k
j)} is decreasing, so that the

sequences {Gn(xk+1, xk)} and {δn

∑
i∈Bn

αniKL(bi, (Axk)i)} converge to
zero. Therefore the sequence {xk} is bounded and we may select an arbi-
trary cluster point x∗. It follows that b = Ax∗. We may therefore replace
the generic solution u with x∗ to find that {

∑J
j=1 γ−1

j KL(x∗j , x
k
j)} is a de-

creasing sequence; but since a subsequence converges to zero, the entire
sequence must converge to zero. Therefore {xk} converges to the solution
x∗.

Finally, since the right side of Equation (13.57) does not depend on
the particular choice of solution we made, neither does the left side. By
telescoping we conclude that

J∑
j=1

γ−1
j KL(uj , x

0
j)−

J∑
j=1

γ−1
j KL(uj , x

∗
j) (13.58)

is also independent of the choice of u. Consequently, minimizing the func-
tion

∑J
j=1 γ−1

j KL(uj , x
0
j) over all solutions u is equivalent to minimizing∑J

j=1 γ−1
j KL(uj , x

∗
j) over all solutions u; but the solution to the latter

problem is obviously u = x∗. This completes the proof.

Part VI

Stability

157

Chapter 14

Sensitivity to Noise

When we use an iterative algorithm, we want it to solve our problem.
We also want the solution in a reasonable amount of time, and we want
slight errors in the measurements to cause only slight perturbations in the
calculated answer. We have already discussed the use of block-iterative
methods to accelerate convergence. Now we turn to regularization as a
means of reducing sensitivity to noise. Because a number of regularization
methods can be derived using a Bayesian maximum a posteriori approach,
regularization is sometimes treated under the heading of MAP methods
(see, for example, [47]).

14.1 Where Does Sensitivity Come From?

We illustrate the sensitivity problem that can arise when the inconsistent
system Ax = b has more equations than unknowns. We take A to be I by
J and we calculate the least-squares solution,

xLS = (A†A)−1A†b, (14.1)

assuming that the J by J Hermitian, nonnegative-definite matrix Q =
(A†A) is invertible, and therefore positive-definite.

The matrix Q has the eigenvalue/eigenvector decomposition

Q = λ1u1u
†
1 + · · ·+ λJuJu†J , (14.2)

where the (necessarily positive) eigenvalues of Q are

λ1 ≥ λ2 ≥ · · · ≥ λJ > 0, (14.3)

and the vectors uj are the corresponding orthonormal eigenvectors.

159

160 CHAPTER 14. SENSITIVITY TO NOISE

14.1.1 The Singular-Value Decomposition of A

The square roots
√

λj are called the singular values of A. The singular-
value decomposition (SVD) of A is similar to the eigenvalue/eigenvector
decomposition of Q: we have

A =
√

λ1u1v
†
1 + · · ·+

√
λIuJv†J , (14.4)

where the vj are particular eigenvectors of AA†. We see from the SVD that
the quantities

√
λj determine the relative importance of each term ujv

†
j .

The SVD is commonly used for compressing transmitted or stored im-
ages. In such cases, the rectangular matrix A is a discretized image. It
is not uncommon for many of the lowest singular values of A to be nearly
zero, and to be essentially insignificant in the reconstruction of A. Only
those terms in the SVD for which the singular values are significant need
to be transmitted or stored. The resulting images may be slightly blurred,
but can be restored later, as needed.

When the matrix A is a finite model of a linear imaging system, there
will necessarily be model error in the selection of A. Getting the dominant
terms in the SVD nearly correct is much more important (and usually much
easier) than getting the smaller ones correct. The problems arise when we
try to invert the system, to solve Ax = b for x.

14.1.2 The Inverse of Q = A†A

The inverse of Q can then be written

Q−1 = λ−1
1 u1u

†
1 + · · ·+ λ−1

J uJu†J , (14.5)

so that, with A†b = c, we have

xLS = λ−1
1 (u†1c)u1 + · · ·+ λ−1

J (u†Jc)uJ . (14.6)

Because the eigenvectors are orthonormal, we can express ||A†b||22 = ||c||22
as

||c||22 = |u†1c|2 + · · ·+ |u†Jc|2, (14.7)

and ||xLS ||22 as

||xLS ||22 = λ−1
1 |u†1c|2 + · · ·+ λ−1

J |u†Jc|2. (14.8)

It is not uncommon for the eigenvalues of Q to be quite distinct, with some
of them much larger than the others. When this is the case, we see that
||xLS ||2 can be much larger than ||c||2, because of the presence of the terms
involving the reciprocals of the small eigenvalues. When the measurements

14.1. WHERE DOES SENSITIVITY COME FROM? 161

b are essentially noise-free, we may have |u†jc| relatively small, for the indices
near J , keeping the product λ−1

j |u†jc|2 reasonable in size, but when the b
becomes noisy, this may no longer be the case. The result is that those
terms corresponding to the reciprocals of the smallest eigenvalues dominate
the sum for xLS and the norm of xLS becomes quite large. The least-
squares solution we have computed is essentially all noise and useless.

In our discussion of the ART, we saw that when we impose a non-
negativity constraint on the solution, noise in the data can manifest itself
in a different way. When A has more columns than rows, but Ax = b has
no non-negative solution, then, at least for those A having the full-rank
property, the non-negatively constrained least-squares solution has at most
I − 1 non-zero entries. This happens also with the EMML and SMART
solutions. As with the ART, regularization can eliminate the problem.

14.1.3 Reducing the Sensitivity to Noise

As we just saw, the presence of small eigenvalues for Q and noise in b can
cause ||xLS ||2 to be much larger than ||A†b||2, with the result that xLS is
useless. In this case, even though xLS minimizes ||Ax− b||2, it does so by
overfitting to the noisy b. To reduce the sensitivity to noise and thereby
obtain a more useful approximate solution, we can regularize the problem.

It often happens in applications that, even when there is an exact so-
lution of Ax = b, noise in the vector b makes such as exact solution unde-
sirable; in such cases a regularized solution is usually used instead. Select
ε > 0 and a vector p that is a prior estimate of the desired solution. Define

Fε(x) = (1− ε)‖Ax− b‖2
2 + ε‖x− p‖2

2. (14.9)

Lemma 14.1 The function Fε always has a unique minimizer x̂ε, given
by

x̂ε = ((1− ε)A†A + εI)−1((1− ε)A†b + εp); (14.10)

this is a regularized solution of Ax = b. Here, p is a prior estimate of the
desired solution. Note that the inverse above always exists.

Note that, if p = 0, then

x̂ε = (A†A + γ2I)−1A†b, (14.11)

for γ2 = ε
1−ε . The regularized solution has been obtained by modifying

the formula for xLS , replacing the inverse of the matrix Q = A†A with
the inverse of Q + γ2I. When ε is near zero, so is γ2, and the matrices

162 CHAPTER 14. SENSITIVITY TO NOISE

Q and Q + γ2I are nearly equal. What is different is that the eigenvalues
of Q + γ2I are λi + γ2, so that, when the eigenvalues are inverted, the
reciprocal eigenvalues are no larger than 1/γ2, which prevents the norm of
xε from being too large, and decreases the sensitivity to noise.

Lemma 14.2 Let ε be in (0, 1), and let I be the identity matrix whose
dimensions are understood from the context. Then

((1− ε)AA† + εI)−1A = A((1− ε)A†A + εI)−1, (14.12)

and, taking conjugate transposes,

A†((1− ε)AA† + εI)−1 = ((1− ε)A†A + εI)−1A†. (14.13)

Proof: Use the identity

A((1− ε)A†A + εI) = ((1− ε)AA† + εI)A. (14.14)

Lemma 14.3 Any vector p in RJ can be written as p = A†q + r, where
Ar = 0.

What happens to x̂ε as ε goes to zero? This will depend on which case
we are in:

Case 1: J ≤ I, and we assume that A†A is invertible; or

Case 2: J > I, and we assume that AA† is invertible.

Lemma 14.4 In Case 1, taking limits as ε → 0 on both sides of the expres-
sion for x̂ε gives x̂ε → (A†A)−1A†b, the least squares solution of Ax = b.

We consider Case 2 now. Write p = A†q + r, with Ar = 0. Then

x̂ε = A†((1− ε)AA† + εI)−1((1− ε)b + εq) + ((1− ε)A†A + εI)−1(εr).(14.15)

Lemma 14.5 (a) We have

((1− ε)A†A + εI)−1(εr) = r, (14.16)

for all ε ∈ (0, 1). (b) Taking the limit of x̂ε, as ε → 0, we get x̂ε →
A†(AA†)−1b + r. This is the solution of Ax = b closest to p.

Proof: For part (a) let

tε = ((1− ε)A†A + εI)−1(εr). (14.17)

Then, multiplying by A gives

Atε = A((1− ε)A†A + εI)−1(εr). (14.18)

Now show that Atε = 0. For part (b) draw a diagram for the case of one
equation in two unknowns.

14.2. ITERATIVE REGULARIZATION 163

14.2 Iterative Regularization

It is often the case that the entries of the vector b in the system Ax = b
come from measurements, so are usually noisy. If the entries of b are noisy
but the system Ax = b remains consistent (which can easily happen in the
underdetermined case, with J > I), the ART begun at x0 = 0 converges
to the solution having minimum norm, but this norm can be quite large.
The resulting solution is probably useless. Instead of solving Ax = b, we
regularize by minimizing, for example, the function Fε(x) given in Equation
(14.9). For the case of p = 0, the solution to this problem is the vector x̂ε

in Equation (14.11). However, we do not want to calculate A†A + γ2I, in
order to solve

(A†A + γ2I)x = A†b, (14.19)

when the matrix A is large. Fortunately, there are ways to find x̂ε, using
only the matrix A. We saw previously how this might be accomplished
using the ART; now we show how the Landweber algorithm can be used
to calculate this regularized solution.

14.2.1 Iterative Regularization with Landweber’s Al-
gorithm

Our goal is to minimize the function in Equation (14.9). Notice that this
function can be written as

Fε(x) = ||Bx− c||22, (14.20)

for

B =
[

A
γ2I

]
, (14.21)

and

c =
[

b
0

]
, (14.22)

where 0 denotes a column vector with all entries equal to zero. The Landwe-
ber iteration for the problem Bx = c is

xk+1 = xk + αBT (c−Bxk), (14.23)

for 0 < α < 2/ρ(BT B), where ρ(BT B) is the spectral radius of BT B.
Equation (14.23) can be written as

xk+1 = (1− αγ2)xk + αAT (b−Axk). (14.24)

We see from Equation (14.24) that the Landweber algorithm for solving
the regularized least squares problem amounts to a relaxed version of the
Landweber algorithm applied to the original least squares problem.

164 CHAPTER 14. SENSITIVITY TO NOISE

14.3 A Bayesian View of Reconstruction

The EMML iterative algorithm maximizes the likelihood function for the
case in which the entries of the data vector b = (b1, ..., bI)T are assumed
to be samples of independent Poisson random variables with mean val-
ues (Ax)i; here, A is an I by J matrix with nonnegative entries and
x = (x1, ..., xJ)T is the vector of nonnegative parameters to be estimated.
Equivalently, it minimizes the Kullback-Leibler distance KL(b, Ax). This
situation arises in single photon emission tomography, where the bi are the
number of photons counted at each detector i, x is the vectorized image
to be reconstructed and its entries xj are (proportional to) the radionu-
clide intensity levels at each voxel j. When the signal-to-noise ratio is low,
which is almost always the case in medical applications, maximizing like-
lihood can lead to unacceptably noisy reconstructions, particularly when
J is larger than I. One way to remedy this problem is simply to halt the
EMML algorithm after a few iterations, to avoid over-fitting the x to the
noisy data. A more mathematically sophisticated remedy is to employ a
Bayesian approach and seek a maximum a posteriori (MAP) estimate of x.

In the Bayesian approach we view x as an instance of a random vector
having a probability density function f(x). Instead of maximizing the like-
lihood given the data, we now maximize the posterior likelihood, given both
the data and the prior distribution for x. This is equivalent to minimizing

F (x) = KL(b, Ax)− log f(x). (14.25)

The EMML algorithm is an example of an optimization method based on
alternating minimization of a function H(x, z) > 0 of two vector variables.
The alternating minimization works this way: let x and z be vector vari-
ables and H(x, z) > 0. If we fix z and minimize H(x, z) with respect to x,
we find that the solution is x = z, the vector we fixed; that is,

H(x, z) ≥ H(z, z) (14.26)

always. If we fix x and minimize H(x, z) with respect to z, we get something
new; call it Tx. The EMML algorithm has the iterative step xk+1 = Txk.

Obviously, we can’t use an arbitrary function H; it must be related to
the function KL(b, Ax) that we wish to minimize, and we must be able to
obtain each intermediate optimizer in closed form. The clever step is to
select H(x, z) so that H(x, x) = KL(b, Ax), for any x. Now see what we
have so far:

KL(b, Axk) = H(xk, xk) ≥ H(xk, xk+1) (14.27)

≥ H(xk+1, xk+1) = KL(b, Axk+1). (14.28)

14.4. THE GAMMA PRIOR DISTRIBUTION FOR X 165

That tells us that the algorithm makes KL(b, Axk) decrease with each
iteration. The proof doesn’t stop here, but at least it is now plausible that
the EMML iteration could minimize KL(b, Ax).

The function H(x, z) used in the EMML case is the KL distance

H(x, z) = KL(r(x), q(z)) =
I∑

i=1

J∑
j=i

KL(r(x)ij , q(z)ij); (14.29)

we define, for each nonnegative vector x for which (Ax)i =
∑J

j=1 Aijxj > 0,
the arrays r(x) = {r(x)ij} and q(x) = {q(x)ij} with entries

r(x)ij = xjAij
bi

(Ax)i
(14.30)

and

q(x)ij = xjAij . (14.31)

With x = xk fixed, we minimize with respect to z to obtain the next
EMML iterate xk+1. Having selected the prior pdf f(x), we want an itera-
tive algorithm to minimize the function F (x) in Equation (14.25). It would
be a great help if we could mimic the alternating minimization formulation
and obtain xk+1 by minimizing

KL(r(xk), q(z))− log f(z) (14.32)

with respect to z. Unfortunately, to be able to express each new xk+1 in
closed form, we need to choose f(x) carefully.

14.4 The Gamma Prior Distribution for x

In [116] Lange et al. suggest viewing the entries xj as samples of indepen-
dent gamma-distributed random variables. A gamma-distributed random
variable x takes positive values and has for its pdf the gamma distribution
defined for positive x by

γ(x) =
1

Γ(α)
(
α

β
)αxα−1e−αx/β , (14.33)

where α and β are positive parameters and Γ denotes the gamma function.
The mean of such a gamma-distributed random variable is then µ = β and
the variance is σ2 = β2/α.

166 CHAPTER 14. SENSITIVITY TO NOISE

Lemma 14.6 If the entries zj of z are viewed as independent and gamma-
distributed with means µj and variances σ2

j , then minimizing the function
in line (14.32) with respect to z is equivalent to minimizing the function

KL(r(xk), q(z)) +
J∑

j=1

δjKL(γj , zj), (14.34)

for

δj =
µj

σ2
j

, γj =
µ2

j − σ2
j

µj
, (14.35)

under the assumption that the latter term is positive.

The resulting regularized EMML algorithm is the following:

Algorithm 14.1 (γ-prior Regularized EMML) Let x0 be an arbitrary
positive vector. Then let

xk+1
j =

δj

δj + sj
γj +

1
δj + sj

xk
j

I∑
i=1

Aijbi/(Axk)i, (14.36)

where sj =
∑I

i=1 Aij.

We see from Equation (14.36) that the MAP iteration using the gamma
priors generates a sequence of estimates each entry of which is a convex
combination or weighted arithmetic mean of the result of one EMML step
and the prior estimate γj . Convergence of the resulting iterative sequence
is established by Lange, Bahn and Little in [116]; see also [33].

14.5 The One-Step-Late Alternative

It may well happen that we do not wish to use the gamma priors model
and prefer some other f(x). Because we will not be able to find a closed
form expression for the z minimizing the function in line (14.32), we need
some other way to proceed with the alternating minimization. Green [94]
has offered the one-step-late (OSL) alternative.

When we try to minimize the function in line (14.32) by setting the
gradient to zero we replace the variable z that occurs in the gradient of the
term − log f(z) with xk, the previously calculated iterate. Then, we can
solve for z in closed form to obtain the new xk+1. Unfortunately, negative
entries can result and convergence is not guaranteed. There is a sizable
literature on the use of MAP methods for this problem. In [42] an interior
point algorithm (IPA) is presented that avoids the OSL issue. In [128] the
IPA is used to regularize transmission tomographic images.

14.6. REGULARIZING THE SMART 167

14.6 Regularizing the SMART

The SMART algorithm is not derived as a maximum likelihood method, so
regularized versions do not take the form of MAP algorithms. Neverthe-
less, in the presence of noisy data, the SMART algorithm suffers from the
same problem that afflicts the EMML, overfitting to noisy data resulting
in an unacceptably noisy image. As we saw earlier, there is a close con-
nection between the EMML and SMART algorithms. This suggests that a
regularization method for SMART can be developed along the lines of the
MAP with gamma priors used for EMML. Since the SMART is obtained by
minimizing the function KL(q(z), r(xk)) with respect to z to obtain xk+1,
it seems reasonable to attempt to derive a regularized SMART iterative
scheme by minimizing

KL(q(z), r(xk)) +
J∑

j=1

δjKL(zj , γj), (14.37)

as a function of z, for selected positive parameters δj and γj . This leads to
the following algorithm:

Algorithm 14.2 (Regularized SMART) Let x0 be an arbitrary positive
vector. Then let

log xk+1
j =

δj

δj + sj
log γj +

1
δj + sj

xk
j

I∑
i=1

Aij log[bi/(Axk)i]. (14.38)

In [33] it was shown that this iterative sequence converges to a minimizer
of the function

KL(Ax, y) +
J∑

j=1

δjKL(xj , γj). (14.39)

It is useful to note that, although it may be possible to rederive this min-
imization problem within the framework of Bayesian MAP estimation by
carefully selecting a prior pdf for the vector x, we have not done so. The
MAP approach is a special case of regularization through the use of penalty
functions. These penalty functions need not arise through a Bayesian for-
mulation of the parameter-estimation problem.

14.7 De Pierro’s Surrogate-Function Method

In [75] De Pierro presents a modified EMML algorithm that includes reg-
ularization in the form of a penalty function. His objective is the same as
ours was in the case of regularized SMART: to embed the penalty term

168 CHAPTER 14. SENSITIVITY TO NOISE

in the alternating minimization framework in such a way as to make it
possible to obtain the next iterate in closed form. Because his surrogate
function method has been used subsequently by others to obtain penalized
likelihood algorithms [61], we consider his approach in some detail.

Let x and z be vector variables and H(x, z) > 0. Mimicking the be-
havior of the function H(x, z) used in Equation (14.29), we require that
if we fix z and minimize H(x, z) with respect to x, the solution should be
x = z, the vector we fixed; that is, H(x, z) ≥ H(z, z) always. If we fix
x and minimize H(x, z) with respect to z, we should get something new;
call it Tx. As with the EMML, the algorithm will have the iterative step
xk+1 = Txk.

Summarizing, we see that we need a function H(x, z) with the properties
(1) H(x, z) ≥ H(z, z) for all x and z; (2) H(x, x) is the function F (x) we
wish to minimize; and (3) minimizing H(x, z) with respect to z for fixed x
is easy.

The function to be minimized is

F (x) = KL(b, Ax) + g(x), (14.40)

where g(x) ≥ 0 is some penalty function. De Pierro uses penalty functions
g(x) of the form

g(x) =
p∑

l=1

fl(〈sl, x〉). (14.41)

Let us define the matrix S to have for its lth row the vector sT
l . Then

〈sl, x〉 = (Sx)l, the lth entry of the vector Sx. Therefore,

g(x) =
p∑

l=1

fl((Sx)l). (14.42)

Let λlj > 0 with
∑J

j=1 λlj = 1, for each l.
Assume that the functions fl are convex. Therefore, for each l, we have

fl((Sx)l) = fl(
J∑

j=1

Sljxj) = fl(
J∑

j=1

λlj(Slj/λlj)xj) (14.43)

≤
J∑

j=1

λljfl((Slj/λlj)xj). (14.44)

Therefore,

g(x) ≤
p∑

l=1

J∑
j=1

λljfl((Slj/λlj)xj). (14.45)

14.8. BLOCK-ITERATIVE REGULARIZATION 169

So we have replaced g(x) with a related function in which the xj occur
separately, rather than just in the combinations (Sx)l. But we aren’t quite
done yet.

We would like to take for De Pierro’s H(x, z) the function used in the
EMML algorithm, plus the function

p∑
l=1

J∑
j=1

λljfl((Slj/λlj)zj). (14.46)

But there is one slight problem: we need H(z, z) = F (z), which we don’t
have yet. De Pierro’s clever trick is to replace fl((Slj/λlj)zj) with

fl((Slj/λlj)zj − (Slj/λlj)xj + (Sx)l). (14.47)

So, De Pierro’s function H(x, z) is the sum of the H(x, z) used in the
EMML case and the function

p∑
l=1

J∑
j=1

λljfl((Slj/λlj)zj − (Slj/λlj)xj + (Sx)l). (14.48)

Now he has the three properties he needs. Once he has computed xk, he
minimizes H(xk, z) by taking the gradient and solving the equations for
the correct z = Txk = xk+1. For the choices of fl he discusses, these
intermediate calculations can either be done in closed form (the quadratic
case) or with a simple Newton-Raphson iteration (the logcosh case).

14.8 Block-Iterative Regularization

We saw previously that it is possible to obtain a regularized least-squares
solution x̂ε, and thereby avoid the limit cycle, using only the matrix A and
the ART algorithm. This prompts us to ask if it is possible to find regular-
ized SMART solutions using block-iterative variants of SMART. Similarly,
we wonder if it is possible to do the same for EMML.

Open Question: Can we use the MART to find the minimizer of the
function

KL(Ax, b) + εKL(x, p)? (14.49)

More generally, can we obtain the minimizer using RBI-SMART?

Open Question: Can we use the RBI-EMML methods to obtain the
minimizer of the function

KL(b, Ax) + εKL(p, x)? (14.50)

170 CHAPTER 14. SENSITIVITY TO NOISE

There have been various attempts to include regularization in block-
iterative methods, to reduce noise sensitivity and avoid limit cycles, but all
of these approaches have been ad hoc, with little or no theoretical basis.
Typically, they simply modify each iterative step by including an additional
term that appears to be related to the regularizing penalty function. The
case of the ART is instructive, however. In that case, we obtained the
desired iterative algorithm by using an augmented set of variables, not
simply by modifying each step of the original ART algorithm. How to do
this for the MART and the other block-iterative algorithms is not obvious.

Recall that the RAMLA method in Equation (13.44) is similar to the
RBI-EMML algorithm, but employs a sequence of decreasing relaxation
parameters, which, if properly chosen, will cause the iterates to converge
to the minimizer of KL(b, Ax), thereby avoiding the limit cycle. In [77]
De Pierro and Yamaguchi present a regularized version of RAMLA, but
without guaranteed convergence.

Chapter 15

Feedback in
Block-Iterative
Reconstruction

When the nonnegative system of linear equations Ax = b has no nonnega-
tive solutions we say that we are in the inconsistent case. In this case the
SMART and EMML algorithms still converge, to a nonnegative minimizer
of KL(Ax, b) and KL(b, Ax), respectively. On the other hand, the rescaled
block-iterative versions of these algorithms, RBI-SMART and RBI-EMML,
do not converge. Instead they exhibit cyclic subsequential convergence; for
each fixed n = 1, ..., N , with N the number of blocks, the subsequence
{xmN+n} converges to their own limits. These limit vectors then consti-
tute the limit cycle (LC). The LC for RBI-SMART is not the same as for
RBI-EMML, generally, and the LC varies with the choice of blocks. Our
problem is to find a way to calculate the SMART and EMML limit vec-
tors using the RBI methods. More specifically, how can we calculate the
SMART and EMML limit vectors from their associated RBI limit cycles?

As is often the case with the algorithms based on the KL distance, we
can turn to the ART algorithm for guidance. What happens with the ART
algorithm in the inconsistent case is often closely related to what happens
with RBI-SMART and RBI-EMML, although proofs for the latter methods
are more difficult to obtain. For example, when the system Ax = b has no
solution we can prove that ART exhibits cyclic subsequential convergence
to a limit cycle. The same behavior is seen with the RBI methods, but no
one knows how to prove this. When the system Ax = b has no solution
we usually want to calculate the least squares (LS) approximate solution.
The problem then is to use the ART to find the LS solution. There are
several ways to do this, as discussed in [37, 47]. We would like to be able

171

172CHAPTER 15. FEEDBACK IN BLOCK-ITERATIVE RECONSTRUCTION

to borrow some of these methods and apply them to the RBI problem. In
this section we focus on one specific method that works for ART and we
try to make it work for RBI; it is the feedback approach.

15.1 Feedback in ART

Suppose that the system Ax = b has no solution. We apply the ART and
get the limit cycle {z1, z2, ..., zI}, where I is the number of equations and
z0 = zI . We assume that the rows of A have been normalized so that their
lengths are equal to one. Then the ART iterative step gives

zi
j = zi−1

j + Aij(bi − (Azi−1)j) (15.1)

or

zi
j − zi−1

j = Aij(bi − (Azi−1)j). (15.2)

Summing over the index i and using z0 = zI we obtain zero on the left
side, for each j. Consequently A†b = A†c, where c is the vector with entries
ci = (Azi−1)i. It follows that the systems Ax = b and Ax = c have the
same LS solutions and that it may help to use both b and c to find the LS
solution from the limit cycle. The article [37] contains several results along
these lines. One approach is to apply the ART again to the system Ax = c,
obtaining a new LC and a new candidate for the right side of the system
of equations. If we repeat this feedback procedure, each time using the
LC to define a new right side vector, does it help us find the LS solution?
Yes, as Theorem 4 of [37] shows. Our goal in this section is to explore the
possibility of using the same sort of feedback in the RBI methods. Some
results in this direction are in [37]; we review those now.

15.2 Feedback in RBI methods

One issue that makes the KL methods more complicated than the ART is
the support of the limit vectors, meaning the set of indices j for which the
entries of the vector are positive. In [33] it was shown that when the system
Ax = b has no nonnegative solutions and A has the full rank property there
is a subset S of {j = 1, ..., J} with cardinality at most I−1, such that every
nonnegative minimizer of KL(Ax, b) has zero for its j-th entry whenever j
is not in S. It follows that the minimizer is unique. The same result holds
for the EMML, although it has not been proven that the set S is the same
set as in the SMART case. The same result holds for the vectors of the LC
for both RBI-SMART and RBI-EMML.

15.2. FEEDBACK IN RBI METHODS 173

A simple, yet helpful, example to refer to as we proceed is the following.

A =
[

1 .5
0 .5

]
, b =

[
.5
1

]
. (15.3)

There is no nonnegative solution to this system of equations and the sup-
port set S for SMART, EMML and the RBI methods is S = {j = 2}.

15.2.1 The RBI-SMART

Our analysis of the SMART and EMML methods has shown that the the-
ory for SMART is somewhat nicer than that for EMML and the resulting
theorems for SMART are a bit stronger. The same is true for RBI-SMART,
compared to RBI-EMML. For that reason we begin with RBI-SMART.

Recall that the iterative step for RBI-SMART is

xk+1
j = xk

j exp(m−1
n s−1

j

∑
i∈Bn

Aij log(bi/(Axk)i)), (15.4)

where n = k(modN) + 1, sj =
∑I

i=1 Aij , snj =
∑

i∈Bn
Aij and mn =

max{snj/sj , j = 1, ..., J}.
For each n let

Gn(x, z) =

J∑
j=1

sjKL(xj , zj)−m−1
n

∑
i∈Bn

KL((Ax)i, (Az)i) + m−1
n

∑
i∈Bn

KL((Ax)i, bi).(15.5)

Lemma 15.1 For each non-negative x and z,

J∑
j=1

sjKL(xj , zj)−m−1
n

∑
i∈Bn

KL((Ax)i, (Az)i) ≥ 0, (15.6)

so that Gn(x, z) ≥ 0.

Lemma 15.2 For each non-negative x and z,

Gn(x, z) = Gn(z′, z) +
J∑

j=1

sjKL(xj , z
′
j), (15.7)

where

z′j = zj exp(m−1
n s−1

j

∑
i∈Bn

Aij log(bi/(Az)i). (15.8)

174CHAPTER 15. FEEDBACK IN BLOCK-ITERATIVE RECONSTRUCTION

We assume that there are no nonnegative solutions to the nonnegative sys-
tem Ax = b. We apply the RBI-SMART and get the limit cycle {z1, ..., zN},
where N is the number of blocks. We also let z0 = zN and for each i let
ci = (Azn−1)i where i ∈ Bn, the n-th block. Prompted by what we learned
concerning the ART, we ask if the nonnegative minimizers of KL(Ax, b)
and KL(Ax, c) are the same. This would be the correct question to ask if
we were using the slower unrescaled block-iterative SMART, in which the
mn are replaced by one. For the rescaled case it turns out that the proper
question to ask is: Are the nonnegative minimizers of the functions

N∑
n=1

m−1
n

∑
i∈Bn

KL((Ax)i, bi) (15.9)

and

N∑
n=1

m−1
n

∑
i∈Bn

KL((Ax)i, ci) (15.10)

the same? The answer is ”Yes, probably.” The difficulty has to do with
the support of these minimizers; specifically: Are the supports of both
minimizers the same as the support of the LC vectors? If so, then we can
prove that the two minimizers are identical. This is our motivation for the
feedback approach.

The feedback approach is the following: beginning with b0 = b we apply
the RBI-SMART and obtain the LC, from which we extract the vector c,
which we also call c0. We then let b1 = c0 and apply the RBI-SMART to
the system b1 = Ax. From the resulting LC we extract c1 = b2, and so on.
In this way we obtain an infinite sequence of data vectors {bk}. We denote
by {zk,1, ..., zk,N} the LC we obtain from the system bk = Ax, so that

bk+1
i = (Azk,n)i, for i ∈ Bn. (15.11)

One issue we must confront is how we use the support sets. At the first step
of feedback we apply RBI-SMART to the system b = b0 = Ax, beginning
with a positive vector x0. The resulting limit cycle vectors are supported
on a set S0 with cardinality less than I. At the next step we apply the
RBI-SMART to the system b1 = Ax. Should we begin with a positive
vector (not necessarily the same x0 as before) or should our starting vector
be supported on S0?

Lemma 15.3 The RBI-SMART sequence {xk} is bounded.

Proof: For each j let Mj = max{bi/Aij , |Aij > 0} and let Cj = max{x0
j ,Mj}.

Then xk
j ≤ Cj for all k.

15.2. FEEDBACK IN RBI METHODS 175

Lemma 15.4 Let S be the support of the LC vectors. Then

N∑
n=1

m−1
n

∑
i∈Bn

Aij log(bi/ci) ≤ 0 (15.12)

for all j, with equality for those j ∈ S. Therefore,

N∑
n=1

m−1
n

∑
i∈Bn

KL((Ax)i, bi)−
N∑

n=1

m−1
n

∑
i∈Bn

KL((Ax)i, ci) ≥

N∑
n=1

m−1
n

∑
i∈Bn

(bi − ci), (15.13)

with equality if the support of the vector x lies within the set S.

Proof: For j ∈ S consider log(zn
j /zn−1

j) and sum over the index n, using
the fact that zN = z0. For general j assume there is a j for which the
inequality does not hold. Then there is M and ε > 0 such that for m ≥ M

log(x(m+1)N
j /xmN

j) ≥ ε. (15.14)

Therefore, the sequence {xmN
j } is unbounded.

Lemma 15.5 We have

N∑
n=1

Gn(zk,n, zk,n−1) =
N∑

n=1

m−1
n

∑
i∈Bn

(bk
i − bk+1

i), (15.15)

so that the sequence {
∑N

n=1 m−1
n (
∑

i∈Bn
bk
i)} is decreasing and that the

sequence {
∑N

n=1 Gn(zk,n, zk,n−1)} → 0 as k →∞.

Proof: Calculate Gn(zk,n, zk,n−1) using Lemma (15.2).

Lemma 15.6 For all vectors x ≥ 0, the sequence

{
N∑

n=1

m−1
n

∑
i∈Bn

KL((Ax)i, b
k
i)} (15.16)

is decreasing and the sequence

N∑
n=1

m−1
n

∑
i∈Bn

(bk
i − bk+1

i) → 0, (15.17)

as k →∞.

176CHAPTER 15. FEEDBACK IN BLOCK-ITERATIVE RECONSTRUCTION

Proof: Calculate

{
N∑

n=1

m−1
n

∑
i∈Bn

KL((Ax)i, b
k
i)} − {

N∑
n=1

m−1
n

∑
i∈Bn

KL((Ax)i, b
k+1
i)}(15.18)

and use the previous lemma.

Lemma 15.7 For each fixed n, the sequence {zk,n} is bounded.

Since the sequence {zk,0} is bounded there is a subsequence {zkt,0}
converging to a limit vector z∗,0. Since the sequence {zkt,1} is bounded
there is subsequence converging to some vector z∗,1. Proceeding in this
way we find subsequences {zkm,n} converging to z∗,n for each fixed n. Our
goal is to show that, with certain restrictions on A, z∗,n = z∗ for each
n. We then show that the sequence {bk} converges to Az∗ and that z∗

minimizes

N∑
n=1

m−1
n

∑
i∈Bn

KL((Ax)i, bi). (15.19)

It follows from Lemma (15.5) that

{
N∑

n=1

Gn(z∗,n, z∗,n−1)} = 0. (15.20)

Open Question: Can we find suitable restrictions on the matrix A that
permit us to conclude that z∗,n = z∗,n−1 = z∗ for each n.

Lemma 15.8 The sequence {bk} converges to Az∗.

Proof: Since the sequence {
∑N

n=1 m−1
n

∑
i∈Bn

KL((Az∗)i, b
k
i)} is decreas-

ing and a subsequence converges to zero, it follows that the whole sequence
converges to zero.

Open Question: Can we use Lemma (15.4) to obtain conditions that
permit us to conclude that the vector z∗ is a nonnegative minimizer of the
function

N∑
n=1

m−1
n

∑
i∈Bn

KL((Ax)i, bi)? (15.21)

15.2. FEEDBACK IN RBI METHODS 177

15.2.2 The RBI-EMML

We turn now to the RBI-EMML method, having the iterative step

xk+1
j = (1−m−1

n s−1
j snj)xk

j + m−1
n s−1

j xk
j

∑
i∈Bn

Aijbi/(Axk)i, (15.22)

with n = k(modN) + 1. As we warned earlier, developing the theory for
feedback with respect to the RBI-EMML algorithm appears to be more
difficult than in the RBI-SMART case.

Applying the RBI-EMML algorithm to the system of equations Ax = b
having no nonnegative solution, we obtain the LC {z1, ..., zN}. As before,
for each i we let ci = (Azn−1)i where i ∈ Bn. There is a subset S of
{j = 1, ..., J} with cardinality less than I such that for all n we have
zn
j = 0 if j is not in S.

The first question that we ask is: Are the nonnegative minimizers of
the functions

N∑
n=1

m−1
n

∑
i∈Bn

KL(bi, (Ax)i) (15.23)

and

N∑
n=1

m−1
n

∑
i∈Bn

KL(ci, (Ax)i) (15.24)

the same?
As before, the feedback approach involves setting b0 = b, c0 = c = b1

and for each k defining bk+1 = ck, where ck is extracted from the limit
cycle

LC(k) = {zk,1, ..., zk,N = zk,0} (15.25)

obtained from the system bk = Ax as ck
i = (Azk,n−1)i where n is such

that i ∈ Bn. Again, we must confront the issue of how we use the support
sets. At the first step of feedback we apply RBI-EMML to the system
b = b0 = Ax, beginning with a positive vector x0. The resulting limit cycle
vectors are supported on a set S0 with cardinality less than I. At the next
step we apply the RBI-EMML to the system b1 = Ax. Should we begin
with a positive vector (not necessarily the same x0 as before) or should our
starting vector be supported on S0? One approach could be to assume first
that J < I and that S = {j = 1, ..., J} always and then see what can be
discovered.

178CHAPTER 15. FEEDBACK IN BLOCK-ITERATIVE RECONSTRUCTION

Some Conjectures:

Our conjectures, subject to restrictions involving the support sets, are as
follows:
1: The sequence {bk} converges to a limit vector b∞;
2: The system b∞ = Ax has a nonnegative solution, say x∞;
3: The LC obtained for each k converge to the singleton x∞;
4: The vector x∞ minimizes the function

N∑
n=1

m−1
n

∑
i∈Bn

KL(bi, (Ax)i) (15.26)

over nonnegative x.
Some results concerning feedback for RBI-EMML were presented in

[37]. We sketch those results now. We have that

J∑
j=1

sj

N∑
n=1

(zk,n
j − zk,n−1

j) = 0. (15.27)

We then rewrite it in terms of bk and bk+1, and conclude that the quantity

N∑
n=1

m−1
n

∑
i∈Bn

bk
i (15.28)

is the same for k = 0, 1, There is a constant B > 0 such that zk,n
j ≤ B

for all k, n and j.
We use the convexity of the log function and the fact that the terms

1−m−1
n snj and m−1

n Aij , i ∈ Bn sum to one, to show that

sj log(zk,n−1
j /zk,n

j) ≤ m−1
n

∑
i∈Bn

Aij log(bk+1
i /bk

i). (15.29)

It follows that the sequence

{
N∑

n=1

m−1
n

∑
i∈Bn

KL((Ax)i, b
k
i)} (15.30)

is decreasing for each nonnegative vector x and the sequence

{
N∑

n=1

m−1
n

∑
i∈Bn

Aij log(bk
i)} (15.31)

is increasing.

Part VII

Optimization

179

Chapter 16

Iterative Optimization

Optimization means finding a maximum or minimum value of a real-valued
function of one or several variables. Constrained optimization means that
the acceptable solutions must satisfy some additional restrictions, such as
being nonnegative. Even if we know equations that optimal points must
satisfy, solving these equations is often difficult and usually cannot be done
algebraically. In this chapter we sketch the conditions that must hold in
order for a point to be an optimum point, and then use those conditions
to motivate iterative algorithms for finding the optimum points. We shall
consider only minimization problems, since any maximization problem can
be converted into a minimization problem by changing the sign of the
function involved.

16.1 Functions of a Single Real Variable

If f(x) is a continuous, real-valued function of a real variable x and we
want to find an x for which the function takes on its minimum value, then
we need only examine those places where the derivative, f ′(x), is zero,
and those places where f ′(x) does not exist; of course, without further
assumptions, there is no guarantee that a minimum exists. Therefore, if
f(x) is differentiable at all x, and if its minimum value occurs at x∗, then
f ′(x∗) = 0. If the problem is a constrained minimization, that is, if the
allowable x lie within some interval, say, [a, b], then we must also examine
the end-points, x = a and x = b. If the constrained minimum occurs at
x∗ = a and f ′(a) exists, then f ′(a) need not be zero; however, we must
have f ′(a) ≥ 0, since, if f ′(a) < 0, we could select x = c slightly to the
right of x = a with f(c) < f(a). Similarly, if the minimum occurs at
x = b, and f ′(b) exists, we must have f ′(b) ≤ 0. We can combine these
end-point conditions by saying that if the minimum occurs at one of the

181

182 CHAPTER 16. ITERATIVE OPTIMIZATION

two end-points, moving away from the minimizing point into the interval
[a, b] cannot result in the function growing smaller. For functions of several
variables similar conditions hold, involving the partial derivatives of the
function.

16.2 Functions of Several Real Variables

Suppose, from now on, that f(x) = f(x1, ..., xN) is a continuous, real-
valued function of the N real variables x1, ..., xN and that x = (x1, ..., xN)T

is the column vector of unknowns, lying in the N -dimensional space RN .
When the problem is to find a minimum (or a maximum) of f(x), we call
f(x) the objective function. As in the case of one variable, without addi-
tional assumptions, there is no guarantee that a minimum (or a maximum)
exists.

16.2.1 Cauchy’s Inequality for the Dot Product

For any two vectors v and w in RN the dot product is defined to be

v · w =
N∑

n=1

vnwn. (16.1)

Cauchy’s inequality tells us that |v · w| ≤ ||v||2||w||2, with equality if and
only if w = αv for some real number α. In the multi-variable case we speak
of the derivative of a function at a point, in the direction of a given vector;
these are the directional derivatives and their definition involves the dot
product.

16.2.2 Directional Derivatives

If f : D ⊆ RN → R and, for some z in the interior of D and some h, the
limit

Dhf(z) = lim
t→0

(f(z + th)− f(z)) (16.2)

exists, then Dhf(z) is the Gateaux differential of f , at z, with respect to
h [?]. The partial derivatives of f at the point z, denoted ∂f

∂xn
(z), at z are

the Gateaux differentials with respect to the unit vectors in the coordinate
directions. If Dhf(z) is linear in the vector h, which happens, for example,
if the first partial derivatives of f at z are continuous, then f is said to be
Gateaux differentiable at z. In that case, for any unit vector, that is, for
any vector u = (u1, ..., uN)T with its Euclidean norm

||u||2 =
√

u2
1 + ... + u2

N , (16.3)

16.2. FUNCTIONS OF SEVERAL REAL VARIABLES 183

equal to one, Duf(z) is the directional derivative of f , at the point x = z,
in the direction of u, and

Duf(z) =
∂f

∂x1
(z)u1 + ... +

∂f

∂xN
(z)uN . (16.4)

Notice that this directional derivative is the dot product of u with the
gradient of f(x) at x = z, defined by

∇f(z) = (
∂f

∂x1
(z), ...,

∂f

∂xN
(z))T . (16.5)

According to Cauchy’s inequality, the dot product ∇f(z) ·u will take on
its maximum value when u is a positive multiple of ∇f(z), and therefore,
its minimum value when u is a negative multiple of ∇f(z). Consequently,
the gradient of f at x = z points in the direction, from x = z, of the
greatest increase in the function f . This suggests that, if we are trying to
minimize f , and we are currently at x = z, we should consider moving in
the direction of −∇f(z); this leads to Cauchy’s iterative method of steepest
descent, which we shall discuss in more detail later.

If the minimum value of f(x) occurs at x = x∗, then either all the
directional derivatives are zero at x = x∗, in which case ∇f(z) = 0, or at
least one directional derivative does not exist. But, what happens when
the problem is a constrained minimization?

16.2.3 Constrained Minimization

Unlike the single-variable case, in which constraining the variable simply
meant requiring that it lie within some interval, in the multi-variable case
constraints can take many forms. For example, we can require that each
of the entries xn be nonnegative, or that each xn lie within an interval
[an, bn] that depends on n, or that the norm of x, defined by ||x||2 =√

x2
1 + ... + x2

N , which measures the distance from x to the origin, does
not exceed some bound. In fact, for any set C in N -dimensional space, we
can pose the problem of minimizing f(x), subject to the restriction that x
be a member of the set C. In place of end-points, we have what are called
�boundary-points of C, which are those points in C that are not entirely
surrounded by other points in C. For example, in the one-dimensional
case, the points x = a and x = b are the boundary-points of the set
C = [a, b]. If C = RN

+ is the subset of N -dimensional space consisting of
all the vectors x whose entries are nonnegative, then the boundary-points
of C are all nonnegative vectors x having at least one zero entry.

Suppose that C is arbitrary in RN and the point x = x∗ is the solution
to the problem of minimizing f(x) over all x in the set C. Assume also
that all the directional derivatives of f(x) exist at each x. If x∗ is not a

184 CHAPTER 16. ITERATIVE OPTIMIZATION

boundary-point of C, then all the directional derivatives of f(x), at the
point x = x∗, must be nonnegative, in which case they must all be zero,
so that we must have ∇f(z) = 0. On the other hand, speaking somewhat
loosely, if x∗ is a boundary-point of C, then it is necessary only that the
directional derivatives of f(x), at the point x = x∗, in directions that point
back into the set C, be nonnegative.

16.2.4 An Example

To illustrate these concepts, consider the problem of minimizing the func-
tion of two variables, f(x1, x2) = x1 + 3x2, subject to the constraint that
x = (x1, x2) lie within the unit ball C = {x = (x1, x2)|x2

1 + x2
2 ≤ 1}.

With the help of simple diagrams we discover that the minimizing point
x∗ = (x∗1, x

∗
2) is a boundary-point of C, and that the line x1+3x2 = x∗1+3x∗2

is tangent to the unit circle at x∗. The gradient of f(x), at x = z, is
∇f(z) = (1, 3)T , for all z, and is perpendicular to this tangent line. But,
since the point x∗ lies on the unit circle, the vector (x∗1, x

∗
2)

T is also per-
pendicular to the line tangent to the circle at x∗. Consequently, we know
that (x∗1, x

∗
2)

T = α(1, 3)T , for some real α. From x2
1 + x2

2 = 1, it follows
that |α| =

√
10. This gives us two choices for x∗: either x∗ = (

√
10, 3

√
10),

or x∗ = (−
√

10,−3
√

10). Evaluating f(x) at both points reveals that f(x)
attains its maximum at the first, and its minimum at the second.

Every direction vector u can be written in the form u = β(1, 3)T +
γ(−3, 1)T , for some β and γ. The directional derivative of f(x), at x = x∗,
in any direction that points from x = x∗ back into C, must be nonnega-
tive. Such directions must have a nonnegative dot product with the vector
(−x∗1,−x∗2)

T , which tells us that

0 ≤ β(1, 3)T · (−x∗1,−x∗2)
T + γ(−3, 1)T · (−x∗1, x

∗
2)

T , (16.6)

or

0 ≤ (3γ − β)x∗1 + (−3β − γ)x∗2. (16.7)

Consequently, the gradient (1, 3)T must have a nonnegative dot product
with every direction vector u that has a nonnegative dot product with
(−x∗1,−x∗2)

T . For the dot product of (1, 3)T with any u to be nonnegative
we need β ≥ 0. So we conclude that β ≥ 0 for all β and γ for which

0 ≤ (3γ − β)x∗1 + (−3β − γ)x∗2. (16.8)

Saying this another way, if β < 0 then

(3γ − β)x∗1 + (−3β − γ)x∗2 < 0, (16.9)

for all γ. Taking the limit, as β → 0 from the left, it follows that

3γx∗1 − γx∗2 ≤ 0, (16.10)

16.3. GRADIENT DESCENT OPTIMIZATION 185

for all γ. The only way this can happen is if 3x∗1 − x∗2 = 0. Therefore,
our optimum point must satisfy the equation x∗2 = 3x∗1, which is what we
found previously.

We have just seen the conditions necessary for x∗ to minimize f(x),
subject to constraints, be used to determine the point x∗ algebraically.
In more complicated problems we will not be able to solve for x∗ merely
by performing simple algebra. But we may still be able to find x∗ using
iterative optimization methods.

16.3 Gradient Descent Optimization

Suppose that we want to minimize f(x), over all x, without constraints.
Begin with an arbitrary initial guess, x = x0. Having proceeded to xk, we
show how to move to xk+1. At the point x = xk, the direction of greatest
rate of decrease of f(x) is u = −∇f(xk). Therefore, it makes sense to move
from xk in the direction of −∇f(xk), and to continue in that direction until
the function stops decreasing. In other words, we let

xk+1 = xk − αk∇f(xk), (16.11)

where αk ≥ 0 is the step size, determined by the condition

f(xk − αk∇f(xk)) ≤ f(xk − α∇f(xk)), (16.12)

for all α ≥ 0. This iterative procedure is Cauchy’s steepest descent method.
To establish the convergence of this algorithm to a solution requires ad-
ditional restrictions on the function f ; we shall not consider these issues
further. Our purpose here is merely to illustrate an iterative minimization
philosophy that we shall recall in various contexts.

If the problem is a constrained minimization, then we must proceed
more carefully. One method, known as interior-point iteration, begins with
x0 within the constraint set C and each subsequent step is designed to pro-
duce another member of C; if the algorithm converges, the limit is then
guaranteed to be in C. For example, if C = RN

+ , the nonnegative cone
in RN , we could modify the steepest descent method so that, first, x0 is
a nonnegative vector, and second, the step from xk in C is restricted so
that we stop before xk+1 ceases to be nonnegative. A somewhat different
modification of the steepest descent method would be to take the full step
from xk to xk+1, but then to take as the true xk+1 that vector in C nearest
to what would have been xk+1, according to the original steepest descent
algorithm; this new iterative scheme is the projected steepest descent al-
gorithm. It is not necessary, of course, that every intermediate vector xk

be in C; all we want is that the limit be in C. However, in applications,
iterative methods must always be stopped before reaching their limit point,

186 CHAPTER 16. ITERATIVE OPTIMIZATION

so, if we must have a member of C for our (approximate) answer, then we
would need xk in C when we stop the iteration.

16.4 The Newton-Raphson Approach

The Newton-Raphson approach to minimizing a real-valued function f :
RJ → R involves finding x∗ such that ∇f(x∗) = 0.

16.4.1 Functions of a Single Variable

We begin with the problem of finding a root of a function g : R → R. If x0

is not a root, compute the line tangent to the graph of g at x = x0 and let
x1 be the point at which this line intersects the horizontal axis; that is,

x1 = x0 − g(x0)/g′(x0). (16.13)

Continuing in this fashion, we have

xk+1 = xk − g(xk)/g′(xk). (16.14)

This is the Newton-Raphson algorithm for finding roots. Convergence,
when it occurs, is more rapid than gradient descent, but requires that
x0 be sufficiently close to the solution.

Now suppose that f : R → R is a real-valued function that we wish
to minimize by solving f ′(x) = 0. Letting g(x) = f ′(x) and applying the
Newton-Raphson algorithm to g(x) gives the iterative step

xk+1 = xk − f ′(xk)/f ′′(xk). (16.15)

This is the Newton-Raphson optimization algorithm. Now we extend these
results to functions of several variables.

16.4.2 Functions of Several Variables

The Newton-Raphson algorithm for finding roots of functions g : RJ → RJ

has the iterative step

xk+1 = xk − [J (g)(xk)]−1g(xk), (16.16)

where J (g)(x) is the Jacobian matrix of first partial derivatives, ∂gm

∂xj
(xk),

for g(x) = (g1(x), ..., gJ(x))T .
To minimize a function f : RJ → R, we let g(x) = ∇f(x) and find a

root of g. Then the Newton-Raphson iterative step becomes

xk+1 = xk − [∇2f(xk)]−1∇f(xk), (16.17)

where ∇2f(x) = J (g)(x) is the Hessian matrix of second partial derivatives
of f .

16.5. OTHER APPROACHES 187

16.5 Other Approaches

Choosing the negative of the gradient as the next direction makes good
sense in minimization problems, but it is not the only, or even the best, way
to proceed. For least squares problems the method of conjugate directions
is a popular choice (see [47]). Other modifications of the gradient can also
be used, as, for example, in the EMML algorithm.

188 CHAPTER 16. ITERATIVE OPTIMIZATION

Chapter 17

Convex Sets and Convex
Functions

In this chapter we consider several algorithms pertaining to convex sets and
convex functions, whose convergence is a consequence of the KM theorem.

17.1 Optimizing Functions of a Single Real
Variable

Let f : R → R be a differentiable function. From the Mean-Value Theorem
we know that

f(b) = f(a) + f ′(c)(b− a), (17.1)

for some c between a and b. If there is a constant L with |f ′(x)| ≤ L for
all x, that is, the derivative is bounded, then we have

|f(b)− f(a)| ≤ L|b− a|, (17.2)

for all a and b; functions that satisfy Equation (17.2) are said to be L-
Lipschitz.

Suppose g : R → R is differentiable and attains its minimum value. We
want to minimize the function g(x). Solving g′(x) = 0 to find the optimal
x = x∗ may not be easy, so we may turn to an iterative algorithm for
finding roots of g′(x), or one that minimizes g(x) directly. In the latter
case, we may consider a steepest descent algorithm of the form

xk+1 = xk − γg′(xk), (17.3)

for some γ > 0. We denote by T the operator

Tx = x− γg′(x). (17.4)

189

190 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

Then, using g′(x∗) = 0, we find that

|x∗ − xk+1| = |Tx∗ − Txk|. (17.5)

We would like to know if there are choices for γ that make T an av operator.
For functions g(x) that are convex, the answer is yes.

17.1.1 The Convex Case

A function g : R → R is called convex if, for each pair of distinct real
numbers a and b, the line segment connecting the two points A = (a, g(a))
and B = (b, g(b)) is on or above the graph of g(x). The function g(x) = x2

is a simple example of a convex function.

Proposition 17.1 The following are equivalent:
1) g(x) is convex;
2) for all points a < x < b

g(x) ≤ g(b)− g(a)
b− a

(x− a) + g(a); (17.6)

3) for all points a < x < b

g(x) ≤ g(b)− g(a)
b− a

(x− b) + g(b); (17.7)

4) for all points a and b and for all α in the interval (0, 1)

g((1− α)a + αb) ≤ (1− α)g(a) + αg(b). (17.8)

It follows from Proposition 17.1 that, if g(x) is convex, then, for every
triple of points a < x < b, we have

g(x)− g(a)
x− a

≤ g(b)− g(a)
b− a

≤ g(b)− g(x)
b− x

. (17.9)

If g(x) is a differentiable function, then convexity can be expressed
in terms of properties of the derivative, g′(x); for every triple of points
a < x < b, we have

g′(a) ≤ g(b)− g(a)
b− a

≤ g′(b). (17.10)

If g(x) is differentiable and convex, then g′(x) is an increasing function.
In fact, the converse is also true, as we shall see shortly.

Recall that the line tangent to the graph of g(x) at the point x = a has
the equation

y = g′(a)(x− a) + g(a). (17.11)

17.1. OPTIMIZING FUNCTIONS OF A SINGLE REAL VARIABLE191

Theorem 17.1 For the differentiable function g(x), the following are equiv-
alent:
1) g(x) is convex;
2) for all a and x we have

g(x) ≥ g(a) + g′(a)(x− a); (17.12)

3) the derivative, g′(x), is an increasing function, or, equivalently,

(g′(x)− g′(a))(x− a) ≥ 0, (17.13)

for all a and x.

Proof: Assume that g(x) is convex. If x > a, then

g′(a) ≤ g(x)− g(a)
x− a

, (17.14)

while, if x < a, then

g(a)− g(x)
a− x

≤ g′(a). (17.15)

In either case, the inequality in (17.12) holds. Now, assume that the in-
equality in (17.12) holds. Then

g(x) ≥ g′(a)(x− a) + g(a), (17.16)

and

g(a) ≥ g′(x)(a− x) + g(x). (17.17)

Adding the two inequalities, we obtain

g(a) + g(x) ≥ (g′(x)− g(a))(a− x) + g(a) + g(x), (17.18)

from which we conclude that

(g(x)− g(a))(x− a) ≥ 0. (17.19)

So g′(x) is increasing. Finally, we assume the derivative is increasing and
show that g(x) is convex. If g(x) is not convex, then there are points a < b
such that, for all x in (a, b),

g(x)− g(a)
x− a

>
g(b)− g(a)

b− a
. (17.20)

By the Mean Value Theorem there is c in (a, b) with

g′(c) =
g(b)− g(a)

b− a
. (17.21)

192 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

Select x in the interval (a, c). Then there is d in (a, x) with

g′(d) =
g(x)− g(a)

x− a
. (17.22)

Then g′(d) > g′(c), which contradicts the assumption that g′(x) is increas-
ing. This concludes the proof.

If g(x) is twice differentiable, we can say more.

Theorem 17.2 If g(x) is twice differentiable, then g(x) is convex if and
only if g′′(x) ≥ 0, for all x.

Proof: According to the Mean Value Theorem, as applied to the function
g′(x), for any points a < b there is c in (a, b) with g′(b)−g′(a) = g′′(c)(b−a).
If g′′(x) ≥ 0, the right side of this equation is nonnegative, so the left side
is also. Now assume that g(x) is convex, which implies that g′(x) is an
increasing function. Since g′(x+h)−g′(x) ≥ 0 for all h > 0, it follows that
g′′(x) ≥ 0.

Suppose that g(x) is convex and the function f(x) = g′(x) is L-Lipschitz.
If g(x) is twice differentiable, this would be the case if

0 ≤ g′′(x) ≤ L, (17.23)

for all x. As we shall see, if γ is in the interval (0, 2
L), then T is an av

operator and the iterative sequence converges to a minimizer of g(x). In
this regard, we have the following result.

Theorem 17.3 Let h(x) be convex and differentiable and h′(x) non-expansive,
that is,

|h′(b)− h′(a)| ≤ |b− a|, (17.24)

for all a and b. Then h′(x) is firmly non-expansive, which means that

(h′(b)− h′(a))(b− a) ≥ (h′(b)− h′(a))2. (17.25)

Proof: Since h(x) is convex and differentiable, the derivative, h′(x), must
be increasing. Therefore, if b > a, then |b− a| = b− a and

|h′(b)− h(a)| = h′(b)− h′(a). (17.26)

If g(x) is convex and f(x) = g′(x) is L-Lipschitz, then 1
Lg′(x) is ne, so

that 1
Lg′(x) is fne and g′(x) is 1

L -ism. Then, for γ > 0, γg′(x) is 1
γL -ism,

which tells us that the operator

Tx = x− γg′(x) (17.27)

17.2. OPTIMIZING FUNCTIONS OF SEVERAL REAL VARIABLES193

is av whenever 0 < γ < 2
L . It follows from the KM Theorem that the

iterative sequence xk+1 = Txk = xk − γg′(xk) converges to a minimizer of
g(x).

In the next section we extend these results to functions of several vari-
ables.

17.2 Optimizing Functions of Several Real Vari-
ables

Let F : RJ → RN be a RN -valued function of J real variables. The
function F (x) is said to be differentiable at the point x0 if there is an N
by J matrix F ′(x0) such that

lim
h→0

1
||h||2

[F (x0 + h)− F (x0)− F ′(x0)h] = 0. (17.28)

It can be shown that, if F is differentiable at x = x0, then F is continuous
there as well [87].

If f : RJ → R is differentiable, then f ′(x0) = ∇f(x0), the gradient
of f at x0. The function f(x) is differentiable if each of its first partial
derivatives is continuous. If the derivative f ′ : RJ → RJ is, itself, differ-
entiable, then f ′′ : RJ → RJ , and f ′′(x) = H(x) = ∇2f(x), the Hessian
matrix whose entries are the second partial derivatives of f . The function
f(x) will be twice differentiable if each of the second partial derivatives is
continuous. In that case, the mixed second partial derivatives are indepen-
dent of the order of the variables, the Hessian matrix is symmetric, and
the chain rule applies.

Let f : RJ → R be a differentiable function. From the Mean-Value
Theorem ([87], p. 41) we know that, for any two points a and b, there is α
in (0, 1) such that

f(b) = f(a) + 〈∇f((1− α)a + αb), b− a〉. (17.29)

If there is a constant L with ||∇f(x)||2 ≤ L for all x, that is, the gradient
is bounded in norm, then we have

|f(b)− f(a)| ≤ L||b− a||2, (17.30)

for all a and b; functions that satisfy Equation (17.30) are said to be L-
Lipschitz.

In addition to real-valued functions f : RJ → R, we shall also be
interested in functions F : RJ → RJ , such as F (x) = ∇f(x), whose range
is RJ , not R. We say that F : RJ → RJ is L-Lipschitz if there is L > 0
such that

||F (b)− F (a)||2 ≤ L||b− a||2, (17.31)

194 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

for all a and b.
Suppose g : RJ → R is differentiable and attains its minimum value.

We want to minimize the function g(x). Solving ∇g(x) = 0 to find the
optimal x = x∗ may not be easy, so we may turn to an iterative algorithm
for finding roots of ∇g(x), or one that minimizes g(x) directly. In the latter
case, we may again consider a steepest descent algorithm of the form

xk+1 = xk − γ∇g(xk), (17.32)

for some γ > 0. We denote by T the operator

Tx = x− γ∇g(x). (17.33)

Then, using ∇g(x∗) = 0, we find that

||x∗ − xk+1||2 = ||Tx∗ − Txk||2. (17.34)

We would like to know if there are choices for γ that make T an av operator.
As in the case of functions of a single variable, for functions g(x) that are
convex, the answer is yes.

17.2.1 The Convex Case

We begin with some definitions.

Definition 17.1 The function g(x) : RJ → R is said to be convex if, for
each pair of distinct vectors a and b and for every α in the interval (0, 1)
we have

g((1− α)a + αb) ≤ (1− α)g(a) + αg(b). (17.35)

The function g(x) is convex if and only if, for every x and z in RJ and
real t, the function f(t) = g(x + tz) is a convex function of t. Therefore,
the theorems for the multi-variable case can also be obtained from previous
results for the single-variable case.

Definition 17.2 A convex function g : RJ → [−∞,+∞] is proper if there
is no x with g(x) = −∞ and some x with g(x) < +∞.

Definition 17.3 The essential domain of g is D = {x|g(x) < +∞}.

Definition 17.4 A proper convex function g is closed if it is lower semi-
continuous, that is, if g(x) = lim inf g(y), as y → x.

Definition 17.5 The subdifferential of g at x is the set

∂g(x) = {x∗|〈x∗, z − x〉 ≤ g(z)− g(x), for all z}. (17.36)

The domain of ∂g is the set dom ∂g = {x|∂g(x) 6= ∅}.

17.2. OPTIMIZING FUNCTIONS OF SEVERAL REAL VARIABLES195

If g is differentiable, then the subdifferential contains only the gradient,
that is,

∂g(x) = {∇g(x)}. (17.37)

In this chapter we shall focus on the optimization of differentiable func-
tions g, leaving to a later chapter the non-differentiable, or non-smooth,
case. If g(x) is a differentiable function, then convexity can be expressed in
terms of properties of the derivative, ∇g(x). Note that, by the chain rule,
f ′(t) = ∇g(x + tz) · z.

Theorem 17.4 For the differentiable function g(x), the following are equiv-
alent:
1) g(x) is convex;
2) for all a and b we have

g(b) ≥ g(a) + 〈∇g(a), b− a〉 ; (17.38)

3) for all a and b we have

〈∇g(b)−∇g(a), b− a〉 ≥ 0. (17.39)

As in the case of functions of a single variable, we can say more when the
function g(x) is twice differentiable. To guarantee that the second deriva-
tive matrix is symmetric, we assume that the second partial derivatives are
continuous. Note that, by the chain rule again, f ′′(t) = zT∇2g(x + tz)z.

Theorem 17.5 Let each of the second partial derivatives of g(x) be contin-
uous, so that g(x) is twice continuously differentiable. Then g(x) is convex
if and only if the second derivative matrix ∇2g(x) is non-negative definite,
for each x.

Suppose that g(x) : RJ → R is convex and the function F (x) = ∇g(x)
is L-Lipschitz. As we shall see, if γ is in the interval (0, 2

L), then the
operator T = I − γF defined by

Tx = x− γ∇g(x), (17.40)

is an av operator and the iterative sequence converges to a minimizer of
g(x). In this regard, we have the following analog of Theorem 17.3.

Theorem 17.6 Let h(x) be convex and differentiable and its derivative,
∇h(x), non-expansive, that is,

||∇h(b)−∇h(a)||2 ≤ ||b− a||2, (17.41)

for all a and b. Then ∇h(x) is firmly non-expansive, which means that

〈∇h(b)−∇h(a), b− a〉 ≥ ||∇h(b)−∇h(a)||22. (17.42)

196 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

Unlike the proof of Theorem 17.3, the proof of this theorem is not
trivial. In [92] Golshtein and Tretyakov prove the following theorem, from
which Theorem 17.6 follows immediately.

Theorem 17.7 Let g : RJ → R be convex and differentiable. The follow-
ing are equivalent:

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (17.43)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
1
2
||∇g(x)−∇g(y)||22; (17.44)

and

〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22. (17.45)

Proof: The only difficult step in the proof is showing that Inequality
(17.43) implies Inequality (17.44). To prove this part, let x(t) = (1−t)y+tx,
for 0 ≤ t ≤ 1. Then

g′(x(t)) = 〈∇g(x(t)), x− y〉, (17.46)

so that∫ 1

0

〈∇g(x(t))−∇g(y), x− y〉dt = g(x)− g(y)− 〈∇g(y), x− y〉. (17.47)

Therefore,
g(x)− g(y)− 〈∇g(y), x− y〉 ≤

∫ 1

0

||∇g(x(t))−∇g(y)||2||x(t)− y||2dt (17.48)

≤
∫ 1

0

||x(t)− y||22dt =
∫ 1

0

||t(x− y)||22dt =
1
2
||x− y||22, (17.49)

according to Inequality (17.43). Therefore,

g(x) ≤ g(y) + 〈∇g(y), x− y〉+
1
2
||x− y||22. (17.50)

Now let x = y −∇g(y), so that

g(y −∇g(y)) ≤ g(y) + 〈∇g(y),∇g(y)〉+
1
2
||∇g(y)||22. (17.51)

17.2. OPTIMIZING FUNCTIONS OF SEVERAL REAL VARIABLES197

Consequently,

g(y −∇g(y)) ≤ g(y)− 1
2
||∇g(y)||22. (17.52)

Therefore,

inf g(x) ≤ g(y)− 1
2
||∇g(y)||22, (17.53)

or

g(y) ≥ inf g(x) +
1
2
||∇g(y)||22. (17.54)

Now fix y and define the function h(x) by

h(x) = g(x)− g(y)− 〈∇g(y), x− y〉. (17.55)

Then h(x) is convex, differentiable, and non-negative,

∇h(x) = ∇g(x)−∇g(y), (17.56)

and h(y) = 0, so that h(x) attains its minimum at x = y. Applying
Inequality (17.54) to the function h(x), with z in the role of x and x in the
role of y, we find that

inf h(z) = 0 ≤ h(x)− 1
2
||∇h(x)||22. (17.57)

From the definition of h(x), it follows that

0 ≤ g(x)− g(y)− 〈∇g(y), x− y〉 − 1
2
||∇g(x)−∇g(y)||22. (17.58)

This completes the proof of the implication.

If g(x) is convex and f(x) = ∇g(x) is L-Lipschitz, then 1
L∇g(x) is ne,

so that 1
L∇g(x) is fne and ∇g(x) is 1

L -ism. Then for γ > 0, γ∇g(x) is
1

γL -ism, which tells us that the operator

Tx = x− γ∇g(x) (17.59)

is av whenever 0 < γ < 2
L . It follows from the KM Theorem that the

iterative sequence xk+1 = Txk = xk − γ∇g(xk) converges to a minimizer
of g(x), whenever minimizers exist.

198 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

17.3 Convex Feasibility

The convex feasibility problem (CFP) is to find a point in the non-empty
intersection C of finitely many closed, convex sets Ci in RJ . The successive
orthogonal projections (SOP) method [95] is the following. Begin with an
arbitrary x0. For k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1 = Pix
k, (17.60)

where Pix denotes the orthogonal projection of x onto the set Ci. Since
each of the operators Pi is firmly non-expansive, the product

T = PIPI−1 · · · P2P1 (17.61)

is averaged. Since C is not empty, T has fixed points. By the KM Theorem,
the sequence {xk} converges to a member of C. It is useful to note that
the limit of this sequence will not generally be the point in C closest to x0;
it is if the Ci are hyperplanes, however.

17.3.1 The CFP in Linear Programming

Following Rockafellar [137], we define a real interval to be any non-empty
closed convex subset of the real line. Let I1, ..., IJ be real intervals and
L a non-empty subspace of RJ . Is there a vector x = (x1, ..., xJ)T in L,
with xj in Ij , for each j? This is an example of a CFP. To see this, let
C =

∏J
j=1 Ij be the set of all x in RJ with xj in Ij , for each j. Then C

is a non-empty closed convex set. The problem then is to find x in C ∩ L.
According to Theorem 22.6 of [137], there will be such an x unless there is
z = (z1, ..., zJ)T in L⊥ with

∑J
j=1 zjcj > 0, for all cj in Ij , for j = 1, ..., J .

17.3.2 The SOP for Hyperplanes

For any x, Pix, the orthogonal projection of x onto the closed, convex set
Ci, is the unique member of Ci for which

〈Pix− x, y − Pix〉 ≥ 0, (17.62)

for every y in Ci. It follows from this characterization that

||y − Pix||22 + ||Pix− x||22 ≤ ||y − x||22, (17.63)

for all x and for all y in Ci.
When the Ci are hyperplanes, we can say more.

Lemma 17.1 If Ci is a hyperplane, then

〈Pix− x, y − Pix〉 = 0, (17.64)

for all y in Ci.

17.3. CONVEX FEASIBILITY 199

Since both Pix and y are in Ci, so is Pix + t(y−Pix), for every real t. We
can use Lemma 17.1 to show that

||y − Pix||22 + ||Pix− x||22 = ||y − x||22, (17.65)

for every y in the hyperplane Ci.

Theorem 17.8 When the Ci are hyperplanes, the SOP algorithm does
converge to the member of the intersection that is closest to x0.

Proof: Let the Ci be hyperplanes with C their non-empty intersection.
Let ĉ be in C. For xk+1 = Pix

k, where i = k(mod I) + 1, we have

||ĉ− xk||22 − ||ĉ− xk+1||22 = ||xk − xk+1||22. (17.66)

It follows that the sequence {||ĉ − xk||2} is decreasing and that the
sequence {||xk − xk+1||22} converges to zero. Therefore, the sequence {xk}
is bounded, so has a cluster point, x∗, and the cluster point must be in
C. Therefore, replacing ĉ with x∗, we find that the sequence {||x∗ − xk||22}
converges to zero, which means that {xk} converges to x∗. Summing over
k on both sides of Equation (17.66), we get

||ĉ− x∗||22 − ||ĉ− x0||22 (17.67)

on the left side, while on the right side we get a quantity that does not
depend on which ĉ in C we have selected. It follows that minimizing ||ĉ−
x0||22 over ĉ in C is equivalent to minimizing ||ĉ − x∗||22 over ĉ in C; the
minimizer of the latter problem is clearly ĉ = x∗.

Note that the SOP is the ART algorithm, for the case of hyperplanes.

17.3.3 The SOP for Half-Spaces

If the Ci are half-spaces, that is, there is some I by J matrix A and vector
b so that

Ci = {x|(Ax)i ≥ bi}, (17.68)

then the SOP becomes the Agmon-Motzkin-Schoenberg algorithm. When
the intersection is non-empty, the algorithm converges, by the KM Theo-
rem, to a member of that intersection. When the intersection is empty, we
get subsequential convergence to a limit cycle.

17.3.4 The SOP when C is empty

When the intersection C of the sets Ci, i = 1, ..., I is empty, the SOP cannot
converge. Drawing on our experience with two special cases of the SOP,

200 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

the ART and the AMS algorithms, we conjecture that, for each i = 1, ..., I,
the subsequences {xnI+i} converge to c∗,i in Ci, with Pic

∗,i−1 = c∗,i for
i = 2, 3, ..., I, and P1c

∗,I = c∗,1; the set {c∗,i} is then a limit cycle. For the
special case of I = 2 we can prove this.

Theorem 17.9 Let C1 and C2 be nonempty, closed convex sets in X , with
C1 ∩ C2 = ∅. Assume that there is a unique ĉ2 in C2 minimizing the
function f(x) = ||c2 − P1c2||2, over all c2 in C2. Let ĉ1 = P1ĉ2. Then
P2ĉ1 = ĉ2. Let z0 be arbitrary and, for n = 0, 1, ..., let

z2n+1 = P1z
2n, (17.69)

and

z2n+2 = P2z
2n+1. (17.70)

Then

{z2n+1} → ĉ1, (17.71)

and

{z2n} → ĉ2. (17.72)

Proof: We apply the CQ algorithm, with the iterative step given by Equa-
tion (6.28), with C = C2, Q = C1, and the matrix A = I, the identity
matrix. The CQ iterative step is now

xk+1 = P2(xk + γ(P1 − I)xk). (17.73)

Using the acceptable choice of γ = 1, we have

xk+1 = P2P1x
k. (17.74)

This CQ iterative sequence then converges to ĉ2, the minimizer of the
function f(x). Since z2n = xn, we have {z2n} → ĉ2. Because

||P2ĉ1 − ĉ1||2 ≤ ||ĉ2 − ĉ1||2, (17.75)

it follows from the uniqueness of ĉ2 that P2ĉ1 = ĉ2. This completes the
proof.

The paper of De Pierro and Iusem includes related results [76].

17.4 Optimization over a Convex Set

Suppose now that g : RJ → R is a convex, differentiable function and
we want to find a minimizer of g(x) over a closed, convex set C, if such

17.5. GEOMETRY OF CONVEX SETS 201

minimizers exists. We saw earlier that, if ∇g(x) is L-Lipschitz, and γ is
in the interval (0, 2/L), then the operator Tx = x − γ∇g(x) is averaged.
Since PC , the orthogonal projection onto C, is also averaged, their product,
S = PCT , is averaged. Therefore, by the KM Theorem 5.2, the sequence
{xk+1 = Sxk} converges to a fixed point of S, whenever such fixed points
exist. Note that x̂ is a fixed point of S if and only if x̂ minimizes g(x) over
x in C.

17.4.1 Linear Optimization over a Convex Set

Suppose we take g(x) = dT x, for some fixed vector d. Then ∇g(x) = d for
all x, and ∇g(x) is L-Lipschitz for every L > 0. Therefore, the operator
Tx − x − γd is averaged, for any positive γ. Since PC is also averaged,
the product, S = PCT is averaged and the iterative sequence xk+1 = Sxk

converges to a minimizer of g(x) = dT x over C, whenever minimizers exist.
For example, suppose that C is the closed, convex region in the plane

bounded by the coordinate axes and the line x + y = 1. Let dT = (1,−1).
The problem then is to minimize the function g(x, y) = x − y over C.
Let γ = 1 and begin with x0 = (1, 1)T . Then x0 − d = (0, 2)T and
x1 = PC(0, 2)T = (0, 1)T , which is the solution.

For this algorithm to be practical, PCx must be easy to calculate. In
those cases in which the set C is more complicated than in the example,
other algorithms, such as the simplex algorithm, will be preferred. We con-
sider these ideas further, when we discuss the linear programming problem.

17.5 Geometry of Convex Sets

Definition 17.6 A point x in a convex set C is said to be an extreme point
of C if the set obtained by removing x from C remains convex.

Said another way, x ∈ C is an extreme point of C if x cannot be written as

x = (1− α)y + αz, (17.76)

for y, z 6= x and α ∈ (0, 1). For example, the point x = 1 is an extreme
point of the convex set C = [0, 1]. Every point on the boundary of a sphere
in RJ is an extreme point of the sphere. The set of all extreme points of a
convex set is denoted Ext(C).

A non-zero vector d is said to be a direction of unboundedness of a
convex set C if, for all x in C and all γ ≥ 0, the vector x + γd is in C.
For example, if C is the non-negative orthant in RJ , then any non-negative
vector d is a direction of unboundedness.

The fundamental problem in linear programming is to minimize the
function

f(x) = cT x, (17.77)

202 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

over the feasible set F , that is, the convex set of all x ≥ 0 withAx = b. In
a later chapter we present an algebraic description of the extreme points
of the feasible set F , in terms of basic feasible solutions, show that there
are at most finitely many extreme points of F and that every member of
F can be written as a convex combination of the extreme points, plus a
direction of unboundedness. These results will be used to prove the basic
theorems about the primal and dual linear programming problems and to
describe the simplex algorithm.

17.6 Projecting onto Convex Level Sets

Suppose that f : RJ → R is a convex function and C = {x|f(x) ≤ 0}.
Then C is a convex set. A vector t is said to be a subgradient of f at x if,
for all z, we have

f(z)− f(x) ≥ 〈t, z − x〉. (17.78)

Such subgradients always exist, for convex functions. If f is differentiable
at x, then f has a unique subgradient, namely, its gradient, t = ∇f(x).

Unless f is a linear function, calculating the orthogonal projection,
PCz, of z onto C requires the solution of an optimization problem. For
that reason, closed-form approximations of PCz are often used. One such
approximation occurs in the cyclic subgradient projection (CSP) method.
Given x not in C, let

ΠCx = x− αt, (17.79)

where t is any subgradient of f at x and α = f(x)
||t||2 > 0.

Proposition 17.2 For any c in C, ||c−ΠCx||22 < ||c− x||22.

Proof: Since x is not in C, we know that f(x) > 0. Then,

||c−ΠCx||22 = ||c− x + αt||22 (17.80)

= ||c− x||22 + 2α〈c− x, t〉 + αf(x). (17.81)

Since t is a subgradient, we know that

〈c− x, t〉 ≤ f(c)− f(x), (17.82)

so that

||c−ΠCx||22 − ||c− x||22 ≤ 2α(f(c)− f(x)) + αf(x) < 0. (17.83)

The CSP method is a variant of the SOP method, in which PCi
is

replaced with ΠCi .

17.7. PROJECTING ONTO THE INTERSECTION OF CONVEX SETS203

17.7 Projecting onto the Intersection of Con-
vex Sets

As we saw previously, the SOP algorithm need not converge to the point in
the intersection closest to the starting point. To obtain the point closest to
x0 in the intersection of the convex sets Ci, we can use Dykstra’s algorithm,
a modification of the SOP method [82]. For simplicity, we shall discuss only
the case of C = A ∩B, the intersection of two closed, convex sets.

17.7.1 A Motivating Lemma

The following lemma will help to motivate Dykstra’s algorithm.

Lemma 17.2 If x = c + p + q, where c = PA(c + p) and c = PB(c + q),
then c = PCx.

Proof: Let d be arbitrary in C. Then

〈c− (c + p), d− c〉 ≥ 0, (17.84)

since d is in A, and

〈c− (c + q), d− c〉 ≥ 0, (17.85)

since d is in B. Adding the two inequalities, we get

〈−p− q, d− c〉 ≥ 0. (17.86)

But

−p− q = c− x, (17.87)

so

〈c− x, d− c〉 ≥ 0, (17.88)

for all d in C. Therefore, c = PCx.

17.7.2 Dykstra’s Algorithm

Dykstra’s algorithm is the following:

Algorithm 17.1 (Dykstra) Let b0 = x, and p0 = q0 = 0. Then let

an = PA(bn−1 + pn−1), (17.89)

bn = PB(an + qn−1), (17.90)

and define pn and qn by

x = an + pn + qn−1 = bn + pn + qn. (17.91)

204 CHAPTER 17. CONVEX SETS AND CONVEX FUNCTIONS

Uing the algorithm, we construct two sequences, {an} and {bn}, both con-
verging to c = PCx, along with two other sequences, {pn} and {qn}. Usu-
ally, but not always, {pn} converges to p and {qn} converges to q, so that

x = c + p + q, (17.92)

with

c = PA(c + p) = PB(c + q). (17.93)

Generally, however, {pn + qn} converges to x− c.
In [17], Bregman considers the problem of minimizing a convex function

f : RJ → R over the intersection of half-spaces, that is, over the set of
points x for which Ax =≥ b. His approach is a primal-dual algorithm
involving the notion of projecting onto a convex set, with respect to a
generalized distance constructed from f . Such generalized projections have
come to be called Bregman projections. In [57], Censor and Reich extend
Dykstra’s algorithm to Bregman projections, and, in [18], Bregman, Censor
and Reich show that the extended Dykstra algorithm of [57] is the natural
extension of Bregman’s primal-dual algorithm to the case of intersecting
convex sets. We shall consider these results in more detail in a subsequent
chapter.

17.7.3 The Halpern-Lions-Wittmann-Bauschke Algo-
rithm

There is yet another approach to finding the orthogonal projection of the
vector x onto the nonempty intersection C of finitely many closed, convex
sets Ci, i = 1, ..., I.

Algorithm 17.2 (HLWB) Let x0 be arbitrary. Then let

xk+1 = tkx + (1− tk)PCix
k, (17.94)

where PCi
denotes the orthogonal projection onto Ci, tk is in the interval

(0, 1), and i = k(mod I) + 1.

Several authors have proved convergence of the sequence {xk} to PCx,
with various conditions imposed on the parameters {tk}. As a result, the
algorithm is known as the Halpern-Lions-Wittmann-Bauschke (HLWB) al-
gorithm, after the names of several who have contributed to the evolution
of the theorem; see also Corollary 2 in Reich’s paper [136]. The conditions
imposed by Bauschke [7] are {tk} → 0,

∑
tk = ∞, and

∑
|tk−tk+I | < +∞.

The HLWB algorithm has been extended by Deutsch and Yamada [78] to
minimize certain (possibly non-quadratic) functions over the intersection
of fixed point sets of operators more general than PCi

.

Chapter 18

Generalized Projections
onto Convex Sets

The convex feasibility problem (CFP) is to find a member of the nonempty
set C =

⋂I
i=1 Ci, where the Ci are closed convex subsets of RJ . In most

applications the sets Ci are more easily described than the set C and al-
gorithms are sought whereby a member of C is obtained as the limit of an
iterative procedure involving (exact or approximate) orthogonal or gener-
alized projections onto the individual sets Ci.

In his often cited paper [17] Bregman generalizes the SOP algorithm
for the convex feasibility problem to include projections with respect to a
generalized distance, and uses this successive generalized projections (SGP)
method to obtain a primal-dual algorithm to minimize a convex function
f : RJ → R over the intersection of half-spaces, that is, over x with Ax ≥ b.
The generalized distance is built from the function f , which then must
exhibit additional properties, beyond convexity, to guarantee convergence
of the algorithm

18.1 Bregman Functions and Bregman Dis-
tances

The class of functions f that are used to define the generalized distance
have come to be called Bregman functions; the associated generalized dis-
tances are then Bregman distances, which are used to define generalized
projections onto closed convex sets (see the book by Censor and Zenios
[60] for details). In [10] Bauschke and Borwein introduce the related class
of Bregman-Legendre functions and show that these functions provide an
appropriate setting in which to study Bregman distances and generalized

205

206CHAPTER 18. GENERALIZED PROJECTIONS ONTO CONVEX SETS

projections associated with such distances. For further details concerning
Bregman and Bregman-Legendre functions, see the appendix.

Bregman’s successive generalized projection (SGP) method uses pro-
jections with respect to Bregman distances to solve the convex feasibility
problem. Let f : RJ → (−∞,+∞] be a closed, proper convex function,
with essential domain D = domf = {x|f(x) < +∞} and ∅ 6= int D. Denote
by Df (·, ·) : D × intD → [0,+∞) the Bregman distance, given by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉 (18.1)

and by P f
Ci

the Bregman projection operator associated with the convex
function f and the convex set Ci; that is

P f
Ci

z = arg minx∈Ci∩DDf (x, z). (18.2)

The Bregman projection of x onto C is characterized by Bregman’s Inequal-
ity:

〈∇f(P f
Cx)−∇f(x), c− P f

C〉 ≥ 0, (18.3)

for all c in C.

18.2 The Successive Generalized Projections
Algorithm

Bregman considers the following generalization of the SOP algorithm:

Algorithm 18.1 Bregman’s method of Successive Generalized Pro-
jections (SGP): Beginning with x0 ∈ int domf , for k = 0, 1, ..., let i =
i(k) := k(mod I) + 1 and

xk+1 = P f
Ci(k)

(xk). (18.4)

He proves that the sequence {xk} given by (18.4) converges to a member
of C ∩ domf , whenever this set is nonempty and the function f is what
came to be called a Bregman function ([17]). Bauschke and Borwein [10]
prove that Bregman’s SGP method converges to a member of C provided
that one of the following holds: 1) f is Bregman-Legendre; 2) C∩ intD 6= ∅
and dom f∗ is open; or 3) dom f and dom f∗ are both open, with f∗ the
function conjugate to f .

In [17] Bregman goes on to use the SGP to find a minimizer of a Breg-
man function f(x) over the set of x such that Ax = b. Each hyperplane
associated with a single equation is a closed, convex set. The SGP finds
the Bregman projection of the starting vector onto the intersection of the
hyperplanes. If the starting vector has the form x0 = AT d, for some vector
d, then this Bregman projection also minimizes f(x) over x in the inter-
section. Alternating Bregman projections also appears in Reich’s paper
[135].

18.3. BREGMAN’S PRIMAL-DUAL ALGORITHM 207

18.3 Bregman’s Primal-Dual Algorithm

The problem is to minimize f : RJ → R over the set of all x for which
Ax ≥ b. Begin with x0 such that x0 = AT u0, for some u0 ≥ 0. For
k = 0, 1, ..., let i = k(mod I) + 1. Having calculated xk, there are three
possibilities:

a) if (Axk)i < bi, then let xk+1 be the Bregman projection onto the hyper-
plane Hi = {x|(Ax)i = bi}, so that

∇f(xk+1) = ∇f(xk) + λkai, (18.5)

where ai is the ith column of AT . With ∇f(xk) = AT uk, for uk ≥ 0,
update uk by

uk+1
i = uk

i + λk, (18.6)

and

uk+1
m = uk

m, (18.7)

for m 6= i.

b) if (Axk)i = bi, or (Axk)i > bi and uk
i = 0, then xk+1 = xk, and

uk+1 = uk.

c) if (Axk)i > bi and uk
i > 0, then let µk be the smaller of the numbers µ′k

and µ′′k , where

∇f(y) = ∇f(xk)− µ′kai (18.8)

puts y in Hi, and

µ′′k = uk
i . (18.9)

Then take xk+1 with

∇f(xk+1) = ∇f(xk)− µkai. (18.10)

With appropriate assumptions made about the function f , the sequence
{xk} so defined converges to a minimizer of f(x) over the set of x with
Ax ≥ b. For a detailed proof of this result, see [60].

Bregman also suggests that this primal-dual algorithm be used to find
approximate solutions for linear programming problems, where the problem
is to minimize a linear function cT x, subject to constraints. His idea is to
replace the function cT x with h(x) = cT x + εf(x), and then apply his
primal-dual method to h(x).

208CHAPTER 18. GENERALIZED PROJECTIONS ONTO CONVEX SETS

18.4 Dykstra’s Algorithm for Bregman Pro-
jections

We are concerned now with finding the Bregman projection of x onto the
intersection C of finitely many closed convex sets, Ci. The problem can be
solved by extending Dykstra’s algorithm to include Bregman projections.

18.4.1 A Helpful Lemma

The following lemma helps to motivate the extension of Dykstra’s algo-
rithm.

Lemma 18.1 Suppose that

∇f(c)−∇f(x) = ∇f(c)−∇f(c + p) +∇f(c)−∇f(c + q), (18.11)

with c = P f
A(c + p) and c = P f

B(c + q). Then c = P f
Cx.

Proof: Let d be arbitrary in C. We have

〈∇f(c)−∇f(c + p), d− c〉 ≥ 0, (18.12)

and

〈∇f(c)−∇f(c + q), d− c〉 ≥ 0. (18.13)

Adding, we obtain

〈∇f(c)−∇f(x), d− c〉 ≥ 0. (18.14)

This suggests the following algorithm for finding c = P f
Cx, which turns

out to be the extension of Dykstra’s algorithm to Bregman projections.

Algorithm 18.2 (Bregman-Dykstra) Begin with b0 = x, p0 = q0 = 0.
Define

bn−1 + pn−1 = ∇f−1(∇f(bn−1) + rn−1), (18.15)

an = P f
A(bn−1 + pn−1), (18.16)

rn = ∇f(bn−1) + rn−1 −∇f(an), (18.17)

∇f(an + qn−1) = ∇f(an) + sn−1, (18.18)

bn = P f
B(an + qn−1), (18.19)

and

sn = ∇f(an) + sn−1 −∇f(bn). (18.20)

18.4. DYKSTRA’S ALGORITHM FOR BREGMAN PROJECTIONS209

In place of

∇f(c + p)−∇f(c) +∇f(c + q)−∇f(c), (18.21)

we have

[∇f(bn−1) + rn−1]−∇f(bn−1) + [∇f(an) + sn−1]−∇f(an) = rn−1 + sn−1,(18.22)

and also

[∇f(an) + sn−1]−∇f(an) + [∇f(bn) + rn]−∇f(bn) = rn + sn−1.(18.23)

But we also have

rn−1 + sn−1 = ∇f(x)−∇f(bn−1), (18.24)

and

rn + sn−1 = ∇f(x)−∇f(an). (18.25)

Then the sequences {an} and {bn} converge to c. For further details, see
the papers of Censor and Reich [57] and Bauschke and Lewis [12].

In [18] Bregman, Censor and Reich show that the extension of Dyk-
stra’s algorithm to Bregman projections can be viewed as an extension of
Bregman’s primal-dual algorithm to the case in which the intersection of
half-spaces is replaced by the intersection of closed convex sets.

210CHAPTER 18. GENERALIZED PROJECTIONS ONTO CONVEX SETS

Chapter 19

The Split Feasibility
Problem

The split feasibility problem (SFP) [53] is to find c ∈ C with Ac ∈ Q, if such
points exist, where A is a real I by J matrix and C and Q are nonempty,
closed convex sets in RJ and RI , respectively. In this chapter we discuss
the CQ algorithm for solving the SFP, as well as recent extensions and
applications.

19.1 The CQ Algorithm

In [44] the CQ algorithm for solving the SFP was presented, for the real
case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (19.1)

where I is the identity operator and γ ∈ (0, 2/ρ(AT A)), for ρ(AT A) the
spectral radius of the matrix AT A, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (19.2)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1
2
||PQAx−Ax||22 (19.3)

211

212 CHAPTER 19. THE SPLIT FEASIBILITY PROBLEM

over the set C, provided such constrained minimizers exist. Therefore the
CQ algorithm is an iterative constrained optimization method. As shown
in [45], convergence of the CQ algorithm is a consequence of Theorem 5.2.

The function f(x) is convex and differentiable on RJ and its derivative
is the operator

∇f(x) = AT (I − PQ)Ax; (19.4)

see [3].

Lemma 19.1 The derivative operator ∇f is λ-Lipschitz continuous for
λ = ρ(AT A), therefore it is ν-ism for ν = 1

λ .

Proof: We have

||∇f(x)−∇f(y)||22 = ||AT (I − PQ)Ax−AT (I − PQ)Ay||22 (19.5)

≤ λ||(I − PQ)Ax− (I − PQ)Ay||22. (19.6)

Also

||(I − PQ)Ax− (I − PQ)Ay||22 = ||Ax−Ay||22 (19.7)

+||PQAx− PQAy||22 − 2〈PQAx− PQAy, Ax−Ay〉 (19.8)

and, since PQ is fne,

〈PQAx− PQAy, Ax−Ay〉 ≥ ||PQAx− PQAy||22. (19.9)

Therefore,

||∇f(x)−∇f(y)||22 ≤ λ(||Ax−Ay||22 − ||PQAx− PQAy||22) (19.10)

≤ λ||Ax−Ay||22 ≤ λ2||x− y||22. (19.11)

This completes the proof.

If γ ∈ (0, 2/λ) then B = PC(I − γAT (I −PQ)A) is av and, by Theorem
5.2, the orbit sequence {Bkx} converges to a fixed point of B, whenever
such points exist. If z is a fixed point of B, then z = PC(z − γAT (I −
PQ)Az). Therefore, for any c in C we have

〈c− z, z − (z − γAT (I − PQ)Az)〉 ≥ 0. (19.12)

This tells us that

〈c− z,AT (I − PQ)Az〉 ≥ 0, (19.13)

19.2. PARTICULAR CASES OF THE CQ ALGORITHM 213

which means that z minimizes f(x) relative to the set C.
The CQ algorithm employs the relaxation parameter γ in the interval

(0, 2/L), where L is the largest eigenvalue of the matrix AT A. Choosing
the best relaxation parameter in any algorithm is a nontrivial procedure.
Generally speaking, we want to select γ near to 1/L. We saw a simple
estimate for L in our discussion of singular values of sparse matrices: if
A is normalized so that each row has length one, then the spectral radius
of AT A does not exceed the maximum number of nonzero elements in any
column of A. A similar upper bound on ρ(AT A) was obtained for non-
normalized, ε-sparse A.

19.2 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C ⊆ RJ and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RJ , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. Generally,
we cannot solve the SFP in closed form and iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber
[114] and projected Landweber methods (see [13]), are particular cases of
the CQ algorithm.

19.2.1 The Landweber algorithm

With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b−Axk). (19.1)

This is the Landweber algorithm.

19.2.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ..., the
projected Landweber method for finding a solution of Ax = b in C has the
iterative step

xk+1 = PC(xk + γAT (b−Axk)). (19.2)

19.2.3 Convergence of the Landweber Algorithms

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever

214 CHAPTER 19. THE SPLIT FEASIBILITY PROBLEM

such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution
of Ax = b, while the projected Landweber algorithm will converge to a
minimizer, over the set C, of the function ||b − Ax||2, whenever such a
minimizer exists.

19.2.4 The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous algebraic recon-
struction technique (SART) of Anderson and Kak for solving Ax = b, for
nonnegative matrix A [2]. Let A be an I by J matrix with nonnegative
entries. Let Ai+ > 0 be the sum of the entries in the ith row of A and
A+j > 0 be the sum of the entries in the jth column of A. Consider the
(possibly inconsistent) system Ax = b.

Algorithm 19.1 (SART) Let x0 be arbitrary. Then let

xk+1
j = xk

j +
1

A+j

∑I

i=1
Aij(bi − (Axk)i)/Ai+. (19.3)

We make the following changes of variables:

Bij = Aij/(Ai+)1/2(A+j)1/2, (19.4)

zj = xj(A+j)1/2, (19.5)

and

ci = bi/(Ai+)1/2. (19.6)

Then the SART iterative step can be written as

zk+1 = zk + BT (c−Bzk). (19.7)

This is a particular case of the Landweber algorithm, with γ = 1. The
convergence of SART follows from Theorem 5.2, once we know that the
largest eigenvalue of BT B is less than two; in fact, we show that it is one
[44].

If BT B had an eigenvalue greater than one and some of the entries of A
are zero, then, replacing these zero entries with very small positive entries,
we could obtain a new A whose associated BT B also had an eigenvalue
greater than one. Therefore, we assume, without loss of generality, that A
has all positive entries. Since the new BT B also has only positive entries,
this matrix is irreducible and the Perron-Frobenius Theorem applies. We
shall use this to complete the proof.

19.2. PARTICULAR CASES OF THE CQ ALGORITHM 215

Let u = (u1, ..., uJ)T with uj = (A+j)1/2 and v = (v1, ..., vI)T , with vi =
(Ai+)1/2. Then we have Bu = v and BT v = u; that is, u is an eigenvector
of BT B with associated eigenvalue equal to one, and all the entries of u
are positive, by assumption. The Perron-Frobenius Theorem applies and
tells us that the eigenvector associated with the largest eigenvalue has all
positive entries. Since the matrix BT B is symmetric its eigenvectors are
orthogonal; therefore u itself must be an eigenvector associated with the
largest eigenvalue of BT B. The convergence of SART follows.

19.2.5 Application of the CQ Algorithm in Dynamic
ET

To illustrate how an image reconstruction problem can be formulated as
a SFP, we consider briefly emission computed tomography (ET) image re-
construction. The objective in ET is to reconstruct the internal spatial
distribution of intensity of a radionuclide from counts of photons detected
outside the patient. In static ET the intensity distribution is assumed con-
stant over the scanning time. Our data are photon counts at the detectors,
forming the positive vector b and we have a matrix A of detection proba-
bilities; our model is Ax = b, for x a nonnegative vector. We could then
take Q = {b} and C = RN

+ , the nonnegative cone in RN .
In dynamic ET [85] the intensity levels at each voxel may vary with

time. The observation time is subdivided into, say, T intervals and one
static image, call it xt, is associated with the time interval denoted by t,
for t = 1, ..., T . The vector x is the concatenation of these T image vectors
xt. The discrete time interval at which each data value is collected is also
recorded and the problem is to reconstruct this succession of images.

Because the data associated with a single time interval is insufficient, by
itself, to generate a useful image, one often uses prior information concern-
ing the time history at each fixed voxel to devise a model of the behavior
of the intensity levels at each voxel, as functions of time. One may, for
example, assume that the radionuclide intensities at a fixed voxel are in-
creasing with time, or are concave (or convex) with time. The problem
then is to find x ≥ 0 with Ax = b and Dx ≥ 0, where D is a matrix chosen
to describe this additional prior information. For example, we may wish to
require that, for each fixed voxel, the intensity is an increasing function of
(discrete) time; then we want

xt+1
j − xt

j ≥ 0, (19.8)

for each t and each voxel index j. Or, we may wish to require that the
intensity at each voxel describes a concave function of time, in which case
nonnegative second differences would be imposed:

(xt+1
j − xt

j)− (xt+2
j − xt+1

j) ≥ 0. (19.9)

216 CHAPTER 19. THE SPLIT FEASIBILITY PROBLEM

In either case, the matrix D can be selected to include the left sides of
these inequalities, while the set Q can include the nonnegative cone as one
factor.

19.2.6 Related Methods

One of the obvious drawbacks to the use of the CQ algorithm is that we
would need the projections PC and PQ to be easily calculated. Several
authors have offered remedies for that problem, using approximations of the
convex sets by the intersection of hyperplanes and orthogonal projections
onto those hyperplanes [151].

In a recent paper [54] Censor et al discuss the application of the CQ al-
gorithm to the problem of intensity-modulated radiation therapy treatment
planning. Details concerning this application are in a later chapter.

The split feasibility problem can be formulated as an optimization prob-
lem, namely, to minimize

h(x) = ιC(x) + ιQ(Ax), (19.10)

where ιC(x) is the indicator function of the set C. The CQ algorithm solves
the more general problem of minimizing the function

f(x) = ιC(x) + ||PQAx−Ax||22. (19.11)

The second term in f(x) is differentiable, allowing us to apply the forward-
backward splitting method of Combettes and Wajs [68], to be discussed
in a subsequent chapter. The CQ algorithm is then a special case of their
method.

Chapter 20

Non-smooth Optimization

In this chapter we consider the problem of optimizing functions f that are
convex, but possibly non-differentiable.

Let f : RJ → (−∞,+∞] be a closed, proper, convex function. When
f is differentiable, we can find minimizers of f using techniques such as
gradient descent. When f is not necessarily differentiable, the minimization
problem is more difficult. One approach is to augment the function f and
to convert the problem into one of minimizing a differentiable function.
Moreau’s approach uses Euclidean distances to augment f , leading to the
definition of proximity operators [137, 68]. More general methods, using
Bregman distances to augment f , have been considered by Teboulle [145]
and by Censor and Zenios [59].

The interior-point algorithm (IPA) is an iterative method for minimizing
a convex function f : RJ → (−∞,+∞] over the set D, the closure of the
essential domain of a second convex function h : RJ → (−∞,+∞], where
D is the set of all x for which h(x) is finite. The IPA is an interior-
point algorithm, in the sense that each iterate lies within the interior of D.
The IPA generalizes the PMD algorithm of Censor and Zenios [59] and is
related to the proximity operators of Moreau and to the entropic proximal
mappings of Teboulle [145].

20.1 Moreau’s Proximity Operators

The Moreau envelope of the function f is the function

mf (z) = inf
x
{f(x) +

1
2
||x− z||22}, (20.1)

which is also the infimal convolution of the functions f(x) and 1
2 ||x||

2
2. It

can be shown that the infimum is uniquely attained at the point denoted

217

218 CHAPTER 20. NON-SMOOTH OPTIMIZATION

x = proxfz (see [137]). The function mf (z) is differentiable and ∇mf (z) =
z− proxfz. The point x = proxfz is characterized by the property z−x ∈
∂f(x). Consequently, x is a global minimizer of f if and only if x = proxfx.

For example, consider the indicator function of the convex set C, f(x) =
ιC(x) that is zero if x is in the closed convex set C and +∞ otherwise. Then
mfz is the minimum of 1

2 ||x− z||22 over all x in C, and proxfz = PCz, the
orthogonal projection of z onto the set C.

If f : R → R is f(t) = ω|t|, then

proxf (t) = t− t

|t|
ω, (20.2)

for |t| ≤ ω, and equals zero, otherwise.
The operators proxf : z → proxfz are proximal operators. These oper-

ators generalize the projections onto convex sets, and, like those operators,
are firmly non-expansive [68].

The conjugate function associated with f is the function f∗(x∗) =
supx(〈x∗, x〉 − f(x)). In similar fashion, we can define mf∗z and proxf∗z.
Both mf and mf∗ are convex and differentiable.

The support function of the convex set C is σC(x) = supu∈C〈x, u〉. It
is easy to see that σC = ι∗C . For f∗(z) = σC(z), we can find mf∗z using
Moreau’s Theorem ([137], p.338).

Moreau’s Theorem generalizes the decomposition of members of RJ

with respect to a subspace.

Theorem 20.1 (Moreau’s Theorem) Let f be a closed, proper, convex
function. Then

mfz + mf∗z =
1
2
||z||2; (20.3)

and

proxfz + proxf∗z = z. (20.4)

In addition, we have

proxf∗z ∈ ∂f(proxfz),

proxf∗z = ∇mf (z), and

proxfz = ∇mf∗(z). (20.5)

Since σC = ι∗C , we have

proxσC
z = z − proxιC

z = z − PCz. (20.6)

The following proposition illustrates the usefulness of these concepts.

20.2. FORWARD-BACKWARD SPLITTING 219

Proposition 20.1 The minimizers of mf and the minimizers of f are the
same.

Proof: From Moreau’s Theorem we know that

∇mf (z) = proxf∗z = z − proxfz, (20.7)

so ∇mfz = 0 is equivalent to z = proxfz.
Because the minimizers of mf are also minimizers of f , we can find

global minimizers of f using gradient descent iterative methods on mf .

Algorithm 20.1 (Proximal Minimization) Let x0 be arbitrary. Then
let

xk+1 = xk − γk∇mf (xk). (20.8)

We know from Moreau’s Theorem that

∇mfz = proxf∗z = z − proxfz, (20.9)

so that Equation (20.8) can be written as

xk+1 = xk − γk(xk − proxfxk)

= (1− γk)xk + γkproxfxk. (20.10)

Because

xk − proxfxk ∈ ∂f(proxfxk), (20.11)

the iteration in Equation (20.10) has the increment

xk+1 − xk ∈ −γk∂f(xk+1), (20.12)

in contrast to what we would have with the usual gradient descent method
for differentiable f :

xk+1 − xk = −γk∇f(xk). (20.13)

It follows from the definition of ∂f(xk+1) that f(xk) ≥ f(xk+1) for the
iteration in Equation (20.10).

20.2 Forward-Backward Splitting

In [68] Combettes and Wajs consider the problem of minimizing the func-
tion f = f1 + f2, where f2 is differentiable and its gradient is λ-Lipschitz
continuous. The function f is minimized at the point x if and only if

0 ∈ ∂f(x) = ∂f1(x) +∇f2(x), (20.14)

220 CHAPTER 20. NON-SMOOTH OPTIMIZATION

so we have

−γ∇f2(x) ∈ γ∂f1(x), (20.15)

for any γ > 0. Therefore

x− γ∇f2(x)− x ∈ γ∂f1(x). (20.16)

From Equation (20.16) we conclude that

x = proxγf1
(x− γ∇f2(x)). (20.17)

This suggests an algorithm, called the forward-backward splitting for mini-
mizing the function f(x).

Algorithm 20.2 (Forward-Backward Splitting)Beginning with an ar-
bitrary x0, and having calculated xk, we let

xk+1 = proxγf1
(xk − γ∇f2(xk)), (20.18)

with γ chosen to lie in the interval (0, 2/λ).

The operator I−γ∇f2 is then averaged. Since the operator proxγf1
is firmly

non-expansive, we know from the KM Theorem 5.2 that the sequence {xk}
converges to a minimizer of the function f(x), whenever minimizers exist.
It is also possible to allow γ to vary with the k.

Recall that the split-feasibility problem (SFP) is to find x in C with Ax
in Q. The CQ algorithm minimizes the function

g(x) = ||PQAx−Ax||22, (20.19)

over x ∈ C, whenever such minimizers exist, and so solves the SFP when-
ever it has solutions. The CQ algorithm minimizes the function

f(x) = ιC(x) + g(x), (20.20)

where ιC is the indicator function of the set C. With f1(x) = ιC(x) and
f2(x) = g(x), the function f(x) has the form considered by Combettes
and Wajs, and the CQ algorithm becomes a special case of their forward-
backward splitting method.

20.3 Proximity Operators using Bregman Dis-
tances

Several authors have extended Moreau’s results by replacing the Euclidean
squared distance with a Bregman distance. Let h be a closed proper convex

20.3. PROXIMITY OPERATORS USING BREGMAN DISTANCES221

function that is differentiable on the nonempty set intD. The corresponding
Bregman distance Dh(x, z) is defined for x ∈ RJ and z ∈ intD by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (20.21)

Note that Dh(x, z) ≥ 0 always and that Dh(x, z) = +∞ is possible. If h is
essentially strictly convex then Dh(x, z) = 0 implies that x = z.

Teboulle [145] considers the function

R(x, z) = f(x) + Dh(x, z), (20.22)

and shows that, with certain restrictions on f and h, the function R(·, z)
attains its minimum value at a unique x = Eh(f, z). The operator Eh(f, ·)
is then shown to have properties analogous to the proximity operators
proxf (·). He then shows that several nonlinear programming problems can
be formulated using such functions R(x, z).

Censor and Zenios [59] also consider R(x, z). They are less interested in
the properties of the operator Eh(f, ·) and more interested in the behavior
of their PMD iterative algorithm:

Algorithm 20.3 (PMD) Let x0 be in the zone of the Bregman function
h. Then let

xk+1 = argmin
(
f(x) + Dh(x, xk)

)
. (20.23)

In their work, the function h is a Bregman function with zone S. They
show that, subject to certain assumptions, if the function f has a mini-
mizer within the closure of S, then the PMD iterates converge to such a
minimizer. It is true that their method and results are somewhat more
general. in that they consider also the minimizers of R(x, z) over another
closed convex set X; however, this set X is unrelated to the function h.

The interior-point algorithm (IPA) presented in this chapter has the
same iterative step as the PMD method of Censor and Zenios. However, the
assumptions about f and h are different, and our theorem asserts conver-
gence of the iterates to a constrained minimizer of f over D, whenever such
a minimizer exists. In other words, we solve a constrained minimization
problem, whereas Censor and Zenios solve the unconstrained minimization
problem, under a restrictive assumption on the location of minimizers of
f .

Algorithm 20.4 (IPA) For each k, the next IPA iterate, xk+1, minimizes
the function R(x, xk), as given in Equation (20.22).

Then xk+1 satisfies the inclusion

∇h(xk)−∇h(xk+1) ∈ ∂f(xk+1),

where ∂f(x) is the subdifferential of f at x. In order to prove convergence
of the IPA, we restrict h to the class of Bregman-Legendre functions.

222 CHAPTER 20. NON-SMOOTH OPTIMIZATION

20.4 The Interior-Point Algorithm (IPA)

The objective is to minimize the convex function f : RJ → R, over D,
the closure of the essential domain D of the Bregman-Legendre function
h : RJ → R. We assume throughout this chapter that there is x̂ in D with
f(x̂) ≤ f(x) for all x in D.

In order for the iterative scheme to be well defined, we need assume
that xk+1 is again in int(D) for each k. It follows then that

∇h(xk)−∇h(xk+1) ∈ ∂f(xk+1). (20.24)

Since

f(xk+1) + Dh(xk+1, xk) ≤ f(xk), (20.25)

it follows immediately that the sequence {f(xk)} is decreasing. Since the
sequence {f(xk)} is bounded below by f(x̂), the sequence {Dh(xk+1, xk)}
converges to zero and the sequence {f(xk)} converges to some value f̂ ≥
f(x̂).

Proposition 20.2 For every initial vector x0, f̂ = f(x̂).

Proof: Suppose not; let f̂ − f(x̂) = δ > 0. Since x̂ ∈ D, there is z ∈ D
with f(z) < f(x̂) + δ/2. Then

Dh(z, xk)−Dh(z, xk+1) =

Dh(xk+1, xk) + 〈∇h(xk)−∇h(xk+1), xk+1 − z〉. (20.26)

Using Equation (20.24) and the definition of the subdifferential, we find
that

Dh(z, xk)−Dh(z, xk+1) ≥

Dh(xk+1, xk) + f(xk+1)− f(z) ≥ Dh(xk+1, xk) + δ/2. (20.27)

Consequently, the sequence {Dh(z, xk)} is decreasing, and the right side of
Equation (20.27) must converge to zero. But, this cannot happen, unless
δ = 0.

In the discussion that follows we shall indicate the properties of the
function h(x) needed at each step. This will be helpful in the following
section.

Suppose now that x̂ is a unique minimizer of f(x) over x ∈ D, then the
function g(x) = f(x) + ιD(x) is a closed, proper convex function and the
level set

{x|g(x) ≤ g(x̂)} = {x̂}

20.5. COMPUTING THE ITERATES 223

is non-empty and bounded. It follows from Corollary 8.7.1 of [137] that
every set of the form

{x|g(x) ≤ α}

is then bounded. We conclude that the sequence {xk} is bounded, and,
furthermore, that it converges to x̂.

If x̂ is not unique, but can be chosen in D, then, mimicking the proof
of the proposition, we can show that the sequence {Dh(x̂, xk)} is decreas-
ing. If, in addition, the function Dh(x̂, ·) has bounded level sets, then,
once again, we can conclude that the sequence {xk} is bounded, has a
subsequence {xkn} converging to x∗, f(x∗) = f(x̂), and {Dh(x∗, xk)} is
decreasing.

Finally, if h is a Bregman-Legendre function, {Dh(x∗, xkn)} → 0. Since
{Dh(x∗, xk)} is decreasing, it follows that {Dh(x∗, xk)} → 0. From this,
we can conclude that xk → x∗.

In summary, we have the following theorem.

Theorem 20.2 Let h be a Bregman-Legendre function. For any initial
vector x0, the sequence {xk} converges to a minimizer of the function f(x),
over x in the set D, provided that such minimizers exist.

20.5 Computing the Iterates

As we have seen, the point xk+1 has the property that

∇h(xk)−∇h(xk+1) ∈ ∂f(xk+1). (20.28)

Even when f is differentiable, and so

∇h(xk)−∇h(xk+1) = ∇f(xk+1), (20.29)

it is not obvious how we might calculate xk+1 efficiently. In this section we
consider a trick that is sometimes helpful.

The function h is chosen because we are interested in D, not specifically
in h itself. When f is differentiable on RJ , the functions F (x) = f(x)+h(x)
and h(x) will have the same D, and

DF (x, z) ≥ Df (x, z), (20.30)

for all x in D and z in int(D). We can rewrite Equation (20.29) as

∇F (xk+1) = ∇F (xk)−∇f(xk). (20.31)

Our approach is then the following: having selected D, we attempt to find
a function F (x) with D = dom(F) and DF (x, z) ≥ Df (x, z), and for which
Equation (20.31) can be solved easily for xk+1. Since we start with f and

224 CHAPTER 20. NON-SMOOTH OPTIMIZATION

D and then select F , we do not have an explicit description of h. It was
for this reason that we introduced the properties of h as needed, in the
previous section. We do know that h = F − f will be convex, and if f is
differentiable over D, then F and h will have the same essential domain.

In the next section we give several examples of this approach.

20.6 Some Examples

A useful property of the KL distance is given by the following lemma.

Lemma 20.1 For any c > 0, with a ≥ c and b ≥ c, we have KL(a− c, b−
c) ≥ KL(a, b).

Proof: Let g(c) = KL(a − c, b − c) and differentiate with respect to c, to
obtain

g′(c) =
a− c

b− c
− 1− log(

a− c

b− c
) ≥ 0. (20.32)

We see then that the function g(c) is increasing with c.
In the examples in this section, we seek to minimize the function KL(Px, y),

where y = (y1, ..., yI)T is a vector with positive entries, P = (Pij) is
an I by J matrix with Pij ≥ 0, and sj =

∑I
i=1 Pij > 0, for each j,

and the vector x is in X , where X is the set of all vectors x such that
(Px)i =

∑J
j=1 Pijxj > 0, for each i.

20.6.1 Minimizing KL(Px, y) over x ≥ 0

In our first example, we seek to minimize f(x) = KL(Px, y) over vectors
x with non-negative entries. We take F (x) to be the function

F (x) =
J∑

j=1

tjxj log xj , (20.33)

with tj ≥ sj . Then

DF (x, z) =
J∑

j=1

tjKL(xj , zj), (20.34)

and

Df (x, z) = KL(Px, Pz). (20.35)

Lemma 20.2 DF (x, z) ≥ Df (x, z).

20.6. SOME EXAMPLES 225

Proof: We have

DF (x, z) ≥
J∑

j=1

sjKL(xj , zj) ≥
J∑

j=1

I∑
i=1

KL(Pijxj , Pijzj)

≥
I∑

i=1

KL((Px)i, (Pz)i) = KL(Px, Pz). (20.36)

The gradient of F (x) has entries

∇F (x)j = tj log xj , (20.37)

and the gradient of f(x) has entries

∇f(x)j =
I∑

i=1

Pij log((Px)i/yi). (20.38)

Solving Equation (20.31) we find

tj log xk+1
j = tj log xk

j +
I∑

i=1

Pij log(yi/(Pxk)i), (20.39)

so that

xk+1
j = xk

j exp
(
t−1
j

I∑
i=1

Pij log(yi/(Pxk)i)
)
. (20.40)

If tj = sj , we get the SMART iterative algorithm for minimizing KL(Px, y)
over non-negative x [33, 46].

20.6.2 Minimizing KL(Px, y) with bounds on x

Let aj < bj , for each j. Let Xab be the set of all vectors x such that
aj ≤ xj ≤ bj , for each j. Now, we seek to minimize f(x) = KL(Px, y),
over all vectors x in X ∩ Xab. We let

F (x) =
J∑

j=1

tj

(
(xj − aj) log(xj − aj) + (bj − xj) log(bj − xj)

)
. (20.41)

Then we have

DF (x, z) =
J∑

j=1

tj

(
KL(xj − aj , zj − aj) + KL(bj − xj , bj − zj)

)
,(20.42)

226 CHAPTER 20. NON-SMOOTH OPTIMIZATION

and, as before,

Df (x, z) = KL(Px, Pz). (20.43)

As a corollary of Lemma 20.1, we have

Lemma 20.3 Let a = (a1, ..., aJ)T , and x and z in X with (Px)i ≥ (Pa)i,
(Pz)i ≥ (Pa)i, for each i. Then KL(Px, Pz) ≤ KL(Px− Pa, Pz − Pa).

Lemma 20.4 DF (x, z) ≥ Df (x, z).

Proof: We can easily show that DF (x, z) ≥ KL(Px − Pa, Pz − Pa) +
KL(Pb−Px, Pb−Pz), along the lines used previously. Then, from Lemma
20.3, we have KL(Px− Pa, Pz − Pa) ≥ KL(Px, Pz) = Df (x, z).

The iterative step of the algorithm is obtained by solving for xk+1
j in

Equation 20.31.

Algorithm 20.5 (IPA-AB) Let x0 be an arbitrary vector with aj ≤ x0
j ≤

bj, for each j. Then let

xk+1
j = αk

j aj + (1− αk
j)bj , (20.44)

where

(αk
j)−1 = 1 +

(xk
j − aj

bj − xk
j

)
exp

(I∑
i=1

Pij log(yi/(Pxk)i)
)
. (20.45)

This algorithm is closely related to those presented in [39] and discussed in
the next chapter.

In this chapter, the IPA was presented as an extension of the PMD
method, and in the context of proximal minimization. In the next chap-
ter, we present the original derivation of the IPA, as a special case of the
multidistance generalized sequential projection (MSGP) algorithm.

Chapter 21

An Interior-Point
Optimization Method

Investigations in [36] into several well known iterative algorithms, includ-
ing the ‘expectation maximization maximum likelihood’ (EMML) method,
the ‘multiplicative algebraic reconstruction technique’ (MART) as well as
block-iterative and simultaneous versions of MART, revealed that the it-
erative step of each algorithm involved weighted arithmetic or geometric
means of Bregman projections onto hyperplanes; interestingly, the projec-
tions involved were associated with Bregman distances that differed from
one hyperplane to the next. This representation of the EMML algorithm
as a weighted arithmetic mean of Bregman projections provided the key
step in obtaining block-iterative and row-action versions of EMML. Be-
cause it is well known that convergence is not guaranteed if one simply
extends Bregman’s algorithm to multiple distances by replacing the single
distance Df in Equation (18.4) with multiple distances Dfi

, the appear-
ance of distinct distances in these algorithms suggested that a somewhat
more sophisticated algorithm employing multiple Bregman distances might
be possible.

21.1 Multiprojection Successive Generalized
Projection

In [40] such an iterative multiprojection method for solving the CFP,
called the multidistance successive generalized projection method (MSGP),
was presented in the context of Bregman functions, and subsequently,
in the framework of Bregman-Legendre functions [42]; see the Appendix
on Bregman functions for definitions and details concerning these func-

227

228CHAPTER 21. AN INTERIOR-POINT OPTIMIZATION METHOD

tions. The MSGP extends Bregman’s SGP method by allowing the Breg-
man projection onto each set Ci to be performed with respect to a Breg-
man distance Dfi

derived from a Bregman-Legendre function fi. The
MSGP method depends on the selection of a super-coercive Bregman-
Legendre function h whose Bregman distance Dh satisfies the inequality
Dh(x, z) ≥ Dfi(x, z) for all x ∈ dom h ⊆

⋂I
i=1 dom fi and all z ∈ int dom h,

where dom h = {x|h(x) < +∞}. By using different Bregman distances for
different convex sets, we found that we can sometimes calculate the desired
Bregman projections in closed form, thereby obtaining computationally
tractable iterative algorithms (see [36]).

21.2 An Interior-Point Algorithm (IPA)

Consideration of a special case of the MSGP, involving only a single convex
set C1, leads us to an interior-point optimization method. If I = 1 and
f := f1 has a unique minimizer x̂ in int dom h, then the MSGP iteration
using C1 = {x̂} is

∇h(xk+1) = ∇h(xk)−∇f(xk). (21.1)

This suggests an interior-point algorithm (IPA) that could be applied more
broadly to minimize a convex function f over the closure of dom h. This
is the IPA method discussed previously. In this chapter, we present its
original derivation, as suggested by the MSGP.

First, we present the MSGP method and prove convergence, in the
context of Bregman-Legendre functions. Then we investigate the IPA sug-
gested by the MSGP algorithm.

21.3 The MSGP Algorithm

We begin by setting out the assumptions we shall make and the notation
we shall use in this section.

21.3.1 Assumptions and Notation

We make the following assumptions throughout this section. Let C =
∩I

i=1Ci be the nonempty intersection of closed convex sets Ci. The func-
tion h is super-coercive and Bregman-Legendre with essential domain D =
dom h and C ∩ dom h 6= ∅. For i = 1, 2, ..., I the function fi is also
Bregman-Legendre, with D ⊆ dom fi, so that int D ⊆ int dom fi; also
Ci ∩ int dom fi 6= ∅. For all x ∈ dom h and z ∈ int dom h we have
Dh(x, z) ≥ Dfi(x, z), for each i.

21.3. THE MSGP ALGORITHM 229

21.3.2 The MSGP Algorithm

Algorithm 21.1 The MSGP algorithm: Let x0 ∈ int dom h be arbi-
trary. For k = 0, 1, ... and i(k) := k(mod I) + 1 let

xk+1 = ∇h−1
(
∇h(xk)−∇fi(k)(xk) +∇fi(k)(P

fi(k)

Ci(k)
(xk))

)
. (21.2)

21.3.3 A Preliminary Result

For each k = 0, 1, ... define the function Gk(·) : dom h → [0,+∞) by

Gk(x) = Dh(x, xk)−Dfi(k)(x, xk) + Dfi(k)(x, P
fi(k)

Ci(k)
(xk)). (21.3)

The next proposition provides a useful identity, which can be viewed as an
analogue of Pythagoras’ theorem. The proof is not difficult and we omit
it.

Proposition 21.1 For each x ∈ dom h, each k = 0, 1, ..., and xk+1 given
by (21.2) we have

Gk(x) = Gk(xk+1) + Dh(x, xk+1). (21.4)

Consequently, xk+1 is the unique minimizer of the function Gk(·).

This identity (21.4) is the key ingredient in the convergence proof for the
MSGP algorithm.

21.3.4 The MSGP Convergence Theorem

We shall prove the following convergence theorem:

Theorem 21.1 Let x0 ∈ int dom h be arbitrary. Any sequence xk obtained
from the iterative scheme given by Algorithm 21.1 converges to x∞ ∈ C ∩
dom h. If the sets Ci are hyperplanes, then x∞ minimizes the function
Dh(x, x0) over all x ∈ C∩dom h; if, in addition, x0 is the global minimizer
of h, then x∞ minimizes h(x) over all x ∈ C ∩ dom h.

Proof: All details concerning Bregman functions are in a separate chapter.
Let c be a member of C ∩ dom h. From the Pythagorean identity (21.4) it
follows that

Gk(c) = Gk(xk+1) + Dh(c, xk+1). (21.5)

Using the definition of Gk(·), we write

Gk(c) = Dh(c, xk)−Dfi(k)(c, x
k) + Dfi(k)(c, P

fi(k)

Ci(k)
(xk)). (21.6)

230CHAPTER 21. AN INTERIOR-POINT OPTIMIZATION METHOD

From Bregman’s Inequality (18.3) we have that

Dfi(k)(c, x
k)−Dfi(k)(c, P

fi(k)

Ci(k)
(xk)) ≥ Dfi(k)(P

fi(k)

Ci(k)
(xk), xk). (21.7)

Consequently, we know that

Dh(c, xk)−Dh(c, xk+1) ≥ Gk(xk+1) + Dfi(k)(P
fi(k)

Ci(k)
(xk), xk) ≥ 0. (21.8)

It follows that {Dh(c, xk)} is decreasing and finite and the sequence {xk}
is bounded. Therefore, {Dfi(k)(P

fi(k)

Ci(k)
(xk), xk)} → 0 and {Gk(xk+1)} → 0;

from the definition of Gk(x) it follows that {Dfi(k)(x
k+1, P

fi(k)

Ci(k)
(xk))} → 0

as well. Using the Bregman inequality we obtain the inequality

Dh(c, xk) ≥ Dfi(k)(c, x
k) ≥ Dfi(k)(c, P

fi(k)

Ci(k)
(xk)), (21.9)

which tells us that the sequence {P fi(k)

Ci(k)
(xk)} is also bounded. Let x∗ be an

arbitrary cluster point of the sequence {xk} and let {xkn} be a subsequence
of the sequence {xk} converging to x∗.

We first show that x∗ ∈ dom h and {Dh(x∗, xk)} → 0. If x∗ is in
int dom h then our claim is verified, so suppose that x∗ is in bdry dom h. If
c is in dom h but not in int dom h, then, applying B2 of the Appendix on
Bregman functions, we conclude that x∗ ∈ dom h and {Dh(x∗, xk)} → 0.
If, on the other hand, c is in int dom h then by R2 x∗ would have to be in
int dom h also. It follows that x∗ ∈ dom h and {Dh(x∗, xk)} → 0. Now we
show that x∗ is in C.

Label x∗ = x∗0. Since there must be at least one index i that occurs
infinitely often as i(k), we assume, without loss of generality, that the subse-
quence {xkn} has been selected so that i(k) = 1 for all n = 1, 2, Passing
to subsequences as needed, we assume that, for each m = 0, 1, 2, ..., I − 1,
the subsequence {xkn+m} converges to a cluster point x∗m, which is in
dom h, according to the same argument we used in the previous paragraph.
For each m the sequence {Dfm(c, P fm

Cm
(xkn+m−1))} is bounded, so, again,

by passing to subsequences as needed, we assume that the subsequence
{P fm

Cm
(xkn+m−1)} converges to c∗m ∈ Cm ∩ dom fm.

Since the sequence {Dfm(c, P fm

Cm
(xkn+m−1)} is bounded and c ∈ dom fm,

it follows, from either B2 or R2, that c∗m ∈ dom fm. We know that

{Dfm
(P fm

Cm
(xkn+m−1), xkn+m−1)} → 0 (21.10)

and both P fm

Cm
(xkn+m−1) and xkn+m−1 are in int dom fm. Applying R1, B3

or R3, depending on the assumed locations of c∗m and x∗m−1, we conclude
that c∗m = x∗m−1.

21.4. THE INTERIOR-POINT ALGORITHM FOR ITERATIVE OPTIMIZATION231

We also know that

{Dfm(xkn+m, P fm

Cm
(xkn+m−1))} → 0, (21.11)

from which it follows, using the same arguments, that x∗m = c∗m. Therefore,
we have x∗ = x∗m = c∗m for all m; so x∗ ∈ C.

Since x∗ ∈ C ∩ dom h, we may now use x∗ in place of the generic c,
to obtain that the sequence {Dh(x∗, xk)} is decreasing. However, we also
know that the sequence {Dh(x∗, xkn)} → 0. So we have {Dh(x∗, xk)} → 0.
Applying R5, we conclude that {xk} → x∗.

If the sets Ci are hyperplanes, then we get equality in Bregman’s in-
equality (18.3)and so

Dh(c, xk)−Dh(c, xk+1) = Gk(xk+1) + Dfi(k)(P
fi(k)

Ci(k)
(xk), xk). (21.12)

Since the right side of this equation is independent of which c we have
chosen in the set C∩ dom h, the left side is also independent of this choice.
This implies that

Dh(c, x0)−Dh(c, xM) = Dh(x∗, x0)−Dh(x∗, xM), (21.13)

for any positive integer M and any c ∈ C ∩ dom h. Therefore

Dh(c, x0)−Dh(x∗, x0) = Dh(c, xM)−Dh(x∗, xM). (21.14)

Since {Dh(x∗, xM)} → 0 as M → +∞ and {Dh(c, xM)} → α ≥ 0, we have
that Dh(c, x0)−Dh(x∗, x0) ≥ 0. This completes the proof.

21.4 The Interior-Point Algorithm for Itera-
tive Optimization

We consider now the interior-point algorithm (IPA) for iterative optimiza-
tion. This algorithm was first presented in [41] and applied to transmission
tomography in [128]. The IPA is suggested by a special case of the MSGP,
involving functions h and f := f1.

21.4.1 Assumptions

We assume, for the remainder of this section, that h is a super-coercive
Legendre function with essential domain D = dom h. We also assume that
f is continuous on the set D, takes the value +∞ outside this set and
is differentiable in intD. Thus, f is a closed, proper convex function on
RJ . We assume also that x̂ = argminx∈D f(x) exists, but not that it is
unique. As in the previous section, we assume that Dh(x, z) ≥ Df (x, z) for
all x ∈ dom h and z ∈ int dom h. As before, we denote by h∗ the function
conjugate to h.

232CHAPTER 21. AN INTERIOR-POINT OPTIMIZATION METHOD

21.4.2 The IPA

The IPA is an iterative procedure that, under conditions to be described
shortly, minimizes the function f over the closure of the essential domain
of h, provided that such a minimizer exists.

Algorithm 21.2 (IPA) Let x0 be chosen arbitrarily in int D. For k =
0, 1, ... let xk+1 be the unique solution of the equation

∇h(xk+1) = ∇h(xk)−∇f(xk). (21.15)

Note that Equation (21.15) can also be written as

xk+1 = ∇h−1(∇h(xk)−∇f(xk)) = ∇h∗(∇h(xk)−∇f(xk)). (21.16)

21.4.3 Motivating the IPA

As already noted, the IPA was originally suggested by consideration of a
special case of the MSGP. Suppose that x ∈ dom h is the unique global
minimizer of the function f , and that ∇f(x) = 0. Take I = 1 and C =
C1 = {x}. Then P f

C1
(xk) = x always and the iterative MSGP step becomes

that of the IPA. Since we are assuming that x is in dom h, the convergence
theorem for the MSGP tells us that the iterative sequence {xk} converges
to x.

In most cases, the global minimizer of f will not lie within the essential
domain of the function h and we are interested in the minimum value of
f on the set D, where D = dom h; that is, we want x̂ = argminx∈D f(x),
whenever such a minimum exists. As we shall see, the IPA can be used
to advantage even when the specific conditions of the MSGP do not hold.
Two aspects of the IPA suggest strongly that it may converge under more
general conditions than those required for convergence of the MSGP. The
sequence {xk} defined by (21.15) is entirely within the interior of dom h.
In addition, as we showed previously, the sequence {f(xk)} is decreasing.

Chapter 22

Linear and Convex
Programming

The term linear programming (LP) refers to the problem of optimizing a
linear function of several variables over linear equality or inequality con-
straints. In this chapter we present the problem and establish the basic
facts. For a much more detailed discussion, consult [129].

22.1 Primal and Dual Problems

Associated with the basic problem in LP, called the primary problem, there
is a second problem, the dual problem. Both of these problems can be
written in two equivalent ways, the canonical form and the standard form.

22.1.1 Canonical and Standard Forms

Let b and c be fixed vectors and A a fixed matrix. The problem

minimize z = cT x, subject to Ax ≥ b, x ≥ 0 (PC) (22.1)

is the so-called primary problem of LP, in canonical form. The dual problem
in canonical form is

maximize w = bT y, subject toAT y ≤ c, y ≥ 0. (DC) (22.2)

The primary problem, in standard form, is

minimize z = cT x, subject to Ax = b, x ≥ 0 (PS) (22.3)

with the dual problem in standard form given by

maximize w = bT y, subject to AT y ≤ c. (DS) (22.4)

233

234 CHAPTER 22. LINEAR AND CONVEX PROGRAMMING

Notice that the dual problem in standard form does not require that y be
nonnegative. Note also that the standard problems make sense only if the
system Ax = b is under-determined and has infinitely many solutions. For
that reason, we shall assume, for the standard problems, that the I by J
matrix A has more columns than rows, so J > I, and has full row rank.

If we are given the primary problem in canonical form, we can convert
it to standard form by augmenting the variables, that is, by defining

ui = (Ax)i − bi, (22.5)

for i = 1, ..., I, and rewriting Ax ≥ b as

Ãx̃ = b, (22.6)

for Ã = [A −I] and x̃ = [xT uT]T .

22.1.2 Weak Duality

Consider the problems (PS) and (DS). Say that x is feasible if x ≥ 0 and
Ax = b. Let F be the set of feasible x. Say that y is feasible if AT y ≤ c.
The Weak Duality Theorem is the following:

Theorem 22.1 Let x and y be feasible vectors. Then

z = cT x ≥ bT y = w. (22.7)

Corollary 22.1 If z is not bounded below, then there are no feasible y.

Corollary 22.2 If x and y are both feasible, and z = w, then both x and
y are optimal for their respective problems.

The proof of the theorem and its corollaries are left as exercises.
The nonnegative quantity cT x − bT y is called the duality gap. The

complementary slackness condition says that, for optimal x and y, we have

xj(cj − (AT y)j) = 0, (22.8)

for each j, which says that the duality gap is zero. Primal-dual algorithms
for solving linear programming problems are based on finding sequences
{xk} and {yk} that drive the duality gap down to zero [129].

22.1.3 Strong Duality

The Strong Duality Theorem makes a stronger statement.

Theorem 22.2 If one of the problems (PS) or (DS) has an optimal solu-
tion, then so does the other and z = w for the optimal vectors.

22.1. PRIMAL AND DUAL PROBLEMS 235

Before we consider the proof of the theorem, we need a few preliminary
results.

Definition 22.1 A point x in F is said to be a basic feasible solution if the
columns of A corresponding to positive entries of x are linearly independent.

Denote by B an invertible matrix obtained by deleting from A columns as-
sociated with zero entries of x. The entries of an arbitrary x corresponding
to the columns not deleted are called the basic variables. Then, assuming
that the columns of B are the first I columns of A, we write xT = (xT

B , xT
N),

and

A = [B N] , (22.9)

so that Ax = BxB = b, and xB = B−1b. The following theorems are taken
from the book by Nash and Sofer [129]. We begin with a characterization
of the extreme points of F (recall Definition 17.6).

Theorem 22.3 A point x is in Ext(F) if and only if x is a basic feasible
solution.

Proof: Suppose that x is a basic feasible solution, and we write xT =
(xT

B , 0T), A = [B N]. If x is not an extreme point of F , then there are
y 6= x and z 6= x in F , and α in (0, 1), with

x = (1− α)y + αz. (22.10)

Then yT = (yT
B , yT

N), zT = (zT
B , zT

N), and yN ≥ 0, zN ≥ 0. From

0 = xN = (1− α)yN + (α)zN (22.11)

it follows that

yN = zN = 0, (22.12)

and b = ByB = BzB = BxB . But, since B is invertible, we have xB =
yB = zB . This is a contradiction, so x must be in Ext(F).

Conversely, suppose that x is in Ext(F). Since it is in F , we know that
Ax = b and x ≥ 0. By reordering the variables if necessary, we may assume
that xT = (xT

B , xT
N), with xB > 0 and xN = 0; we do not know that xB is

a vector of length I, however, so when we write A = [B N], we do not
know that B is square. If B is invertible, then x is a basic feasible solution.
If not, we shall construct y 6= x and z 6= x in F , such that

x =
1
2
y +

1
2
z. (22.13)

236 CHAPTER 22. LINEAR AND CONVEX PROGRAMMING

If {B1, B2, ..., BK} are the columns of B and are linearly dependent,
then there are constants p1, p2, ..., pK , not all zero, with

p1B1 + ... + pKBK = 0. (22.14)

With pT = (p1, ..., pK), we have

B(xB + αp) = B(xB − αp) = BxB = b, (22.15)

for all α ∈ (0, 1). We then select α so small that both xB + αp > 0 and
xB − αp > 0. Let

yT = (xT
B + αpT , xT

N) (22.16)

and

zT = (xT
B − αpT , xT

N). (22.17)

This completes the proof.

22.1 Show that there are at most finitely many basic feasible solutions, so
there are at most finitely many members of Ext(F).

Theorem 22.4 If F is not empty, then Ext(F) is not empty. In that case,
let {v1, ..., vK} be the members of Ext(F). Every x in F can be written as

x = d + α1v
1 + ... + αKvK , (22.18)

for some αk ≥ 0, with
∑K

k=1 αk = 1, and some direction of unboundedness,
d.

Proof: We consider only the case in which F is bounded, so there is no
direction of unboundedness; the unbounded case is similar. Let x be a
feasible point. If x is an extreme point, fine. If not, then x is not a basic
feasible solution. The columns of A that correspond to the positive entries
of x are not linearly independent. Then we can find a vector p such that
Ap = 0 and pj = 0 if xj = 0. If |ε| is small, x + εp ≥ 0 and (x + εp)j = 0 if
xj = 0, then x + εp is in F . We can alter ε in such a way that eventually
y = x + εp has one more zero entry than x has, and so does z = x − εp.
Both y and z are in F and x is the average of these points. If y and z are
not basic, repeat the argument on y and z, each time reducing the number
of positive entries. Eventually, we will arrive at the case where the number
of non-zero entries is I, and so will have a basic feasible solution.

Proof of the Strong Duality Theorem: Suppose now that x∗ is a
solution of the problem (PS) and z∗ = cT x∗. Without loss of generality,

22.1. PRIMAL AND DUAL PROBLEMS 237

we may assume that x∗ is a basic feasible solution, hence an extreme point
of F . Then we can write

xT
∗ = ((B−1b)T , 0T), (22.19)

cT = (cT
B , cT

N), (22.20)

and A = [B N]. Every feasible solution has the form

xT = ((B−1b)T , 0T) + ((B−1Nv)T , vT), (22.21)

for some v ≥ 0. From cT x ≥ cT x∗ we find that

(cT
N − cT

BB−1N)(v) ≥ 0, (22.22)

for all v ≥ 0. It follows that

cT
N − cT

BB−1N = 0. (22.23)

Nw let y∗ = (B−1)T cB , or yT
∗ = cT

BB−1. We show that y∗ is feasible for
(DS); that is, we show that

AT y∗ ≤ cT . (22.24)

Since

yT
∗ A = (yT

∗ B, yT
∗ N) = (cT

B , yT
∗ N) = (cT

B , cT
BB−1N) (22.25)

and

cT
N ≥ cT

BB−1N, (22.26)

we have

yT
∗ A ≤ cT , (22.27)

so y∗ is feasible for (DS). Finally, we show that

cT x∗ = yT
∗ b. (22.28)

We have

yT
∗ b = cT

BB−1b = cT x∗. (22.29)

This completes the proof.

238 CHAPTER 22. LINEAR AND CONVEX PROGRAMMING

22.2 The Simplex Method

In this section we sketch the main ideas of the simplex method. For further
details see [129].

Begin with a basic feasible solution of (PS), say

xT = (b̂T , 0T) = ((B−1b)T , 0T). (22.30)

Compute the vector yT = cT
BB−1. If

ĉT
N = cT

N − yT N ≥ 0, (22.31)

then x is optimal. Otherwise, select a entering variable xj such that

(ĉN)j < 0. (22.32)

Compute âj = B−1aj , where aj is the jth column of A. Find an index s
such that

b̂s

(âj)s
= min

1≤i≤I
{ b̂i

(âj)i
: (âj)i > 0}. (22.33)

If there are no such positive denominators, the problem is unbounded.
Then xs is the leaving variable, replacing xj . Redefine B and the basic
variables xB accordingly.

22.3 Convex Programming

Let f and gi, i = 1, ..., I, be convex functions defined on C, a non-empty
closed, convex subset of RJ . The primal problem in convex programming is
the following:

minimize f(x), subject to gi(x) ≤ 0, for i = 1, ..., I. (P) (22.34)

The Lagrangian is

L(x, λ) = f(x) +
I∑

i=1

λigi(x). (22.35)

The corresponding dual problem is

maximize h(λ) = inf
x∈C

L(x, λ), for λ ≥ 0. (D) (22.36)

22.3. CONVEX PROGRAMMING 239

22.3.1 An Example

Let f(x) = 1
2 ||x||

2
2. The primary problem is to minimize f(x) over all x for

which Ax ≥ b. Then gi = bi − (Ax)i, for i = 1, ..., I, and the set C is all of
RJ . The Lagrangian is then

L(x, λ) =
1
2
||x||22 − λT Ax + λT b. (22.37)

The infimum over x occurs when x = AT λ and so

h(λ) = λT b− 1
2
||AT λ||22. (22.38)

For any x satisfying Ax ≥ b and any λ ≥ 0 we have h(λ) ≤ f(x). If x∗ is
the unique solution of the primal problem and λ∗ any solution of the dual
problem, we have f(x∗) = h(λ∗). The point here is that the constraints
in the dual problem are easier to implement in an iterative algorithm, so
solving the dual problem is the simpler task.

22.3.2 An Iterative Algorithm for the Dual Problem

In [119] Lent and Censor present the following sequential iterative algo-
rithm for solving the dual problem above. At each step only one entry of
the current λ is altered.

Algorithm 22.1 (Lent-Censor) Let ai denote the i-th row of the matrix
A. Having calculated xk and λk > 0, let i = k(mod I) + 1. Then let

θ = (bi − (ai)T xk)/aT
i ai, (22.39)

δ = max{−λk
i , ωθ}, (22.40)

and set

λk+1
i = λk

i + δ, (22.41)

and

xk+1 = xk + δai. (22.42)

240 CHAPTER 22. LINEAR AND CONVEX PROGRAMMING

Chapter 23

Systems of Linear
Inequalities

Designing linear discriminants for pattern classification involves the prob-
lem of solving a system of linear inequalities Ax ≥ b. In this chapter we
discuss the iterative Agmon-Motzkin-Schoenberg (AMS) algorithm [1, 127]
for solving such problems. We prove convergence of the AMS algorithm,
for both the consistent and inconsistent cases, by mimicking the proof for
the ART algorithm. Both algorithms are examples of the method of pro-
jection onto convex sets. The AMS algorithm is a special case of the cyclic
subgradient projection (CSP) method, so that convergence of the AMS,
in the consistent case, follows from the convergence theorem for the CSP
algorithm.

23.1 Projection onto Convex Sets

In [153] Youla suggests that problems in image restoration might be viewed
geometrically and the method of projection onto convex sets (POCS) em-
ployed to solve such inverse problems. In the survey paper [152] he ex-
amines the POCS method as a particular case of iterative algorithms for
finding fixed points of nonexpansive mappings. This point of view is in-
creasingly important in applications such as medical imaging and a number
of recent papers have addressed the theoretical and practical issues involved
[9], [11], [8], [40], [44], [50], [64], [65], [67].

In this geometric approach the restored image is a solution of the convex
feasibility problem (CFP), that is, it lies within the intersection of finitely
many closed nonempty convex sets Ci, i = 1, ..., I, in RJ (or sometimes, in
infinite dimensional Hilbert space). For any nonempty closed convex set
C, the metric projection of x onto C, denoted PCx, is the unique member

241

242 CHAPTER 23. SYSTEMS OF LINEAR INEQUALITIES

of C closest to x. The iterative methods used to solve the CFP employ
these metric projections. Algorithms for solving the CFP are discussed in
the papers cited above, as well as in the books by Censor and Zenios [60],
Stark and Yang [143] and Borwein and Lewis [15].

The simplest example of the CFP is the solving of a system of linear
equations Ax = b. Let A be an I by J real matrix and for i = 1, ..., I let
Bi = {x|(Ax)i = bi}, where bi denotes the i-th entry of the vector b. Now
let Ci = Bi. Any solution of Ax = b lies in the intersection of the Ci; if
the system is inconsistent then the intersection is empty. The Kaczmarz
algorithm [109] for solving the system of linear equations Ax = b has the
iterative step

xk+1
j = xk

j + Ai(k)j(bi(k) − (Axk)i(k)), (23.1)

for j = 1, ..., J , k = 0, 1, ... and i(k) = k(mod I) + 1. This algorithm
was rediscovered by Gordon, Bender and Herman [93], who called it the
algebraic reconstruction technique (ART). This algorithm is an example
of the method of successive orthogonal projections (SOP) [95] whereby we
generate the sequence {xk} by taking xk+1 to be the point in Ci(k) closest to
xk. Kaczmarz’s algorithm can also be viewed as a method for constrained
optimization: whenever Ax = b has solutions, the limit of the sequence
generated by Equation (23.1) minimizes the function ||x − x0||2 over all
solutions of Ax = b.

In the example just discussed the sets Ci are hyperplanes in RJ ; sup-
pose now that we take the Ci to be half-spaces and consider the prob-
lem of finding x such that Ax ≥ b. For each i let Hi be the half-space
Hi = {x|(Ax)i ≥ bi}. Then x will be in the intersection of the sets Ci = Hi

if and only if Ax ≥ b. Methods for solving this CFP, such as Hildreth’s
algorithm, are discussed in the book by Censor and Zenios [60]. Of partic-
ular interest for us here is the behavior of the Agmon-Motzkin-Schoenberg
(AMS) algorithm (AMS) algorithm [1] [127] for solving such systems of
inequalities Ax ≥ b.

Algorithm 23.1 (Agmon-Motzkin-Schoenberg) Let x0 be arbitrary.
Having found xk, define

xk+1
j = xk

j + Ai(k)j(bi(k) − (Axk)i(k))+. (23.2)

The AMS algorithm converges to a solution of Ax ≥ b, if there are solutions.
If there are no solutions the AMS algorithm converges cyclically, that is,
subsequences associated with the same m converge, as has been shown by
De Pierro and Iusem [76], and by Bauschke, Borwein and Lewis [11]. We
present an elementary proof of this result in this chapter.

Algorithms for solving the CFP fall into two classes: those that employ
all the sets Ci at each step of the iteration (the so-called simultaneous meth-
ods) and those that do not (the row-action algorithms or, more generally,
block-iterative methods).

23.1. PROJECTION ONTO CONVEX SETS 243

In the consistent case, in which the intersection of the convex sets Ci

is nonempty, all reasonable algorithms are expected to converge to a mem-
ber of that intersection; the limit may or may not be the member of the
intersection closest to the starting vector x0.

In the inconsistent case, in which the intersection of the Ci is empty,
simultaneous methods typically converge to a minimizer of a proximity
function [50], such as

f(x) =
∑I

i=1
||x− PCi

x||22, (23.3)

if a minimizer exists.

Methods that are not simultaneous cannot converge in the inconsistent
case, since the limit would then be a member of the (empty) intersection.
Such methods often exhibit what is called cyclic convergence; that is, sub-
sequences converge to finitely many distinct limits comprising a limit cycle.
Once a member of this limit cycle is reached, further application of the al-
gorithm results in passing from one member of the limit cycle to the next.
Proving the existence of these limit cycles seems to be a difficult problem.

Tanabe [144] showed the existence of a limit cycle for Kaczmarz’s algo-
rithm (see also [73]), in which the convex sets are hyperplanes. The SOP
method may fail to have a limit cycle for certain choices of the convex
sets. For example, if, in R2, we take C1 to be the lower half-plane and
C2 = {(x, y)|x > 0, y ≥ 1/x}, then the SOP algorithm fails to produce a
limit cycle. However, Gubin, Polyak and Riak [95] prove weak convergence
to a limit cycle for the method of SOP in Hilbert space, under the assump-
tion that at least one of the Ci is bounded, hence weakly compact. In [11]
Bauschke, Borwein and Lewis present a wide variety of results on the ex-
istence of limit cycles. In particular, they prove that if each of the convex
sets Ci in Hilbert space is a convex polyhedron, that is, the intersection of
finitely many half-spaces, then there is a limit cycle and the subsequential
convergence is in norm. This result includes the case in which each Ci is a
half-space, so implies the existence of a limit cycle for the AMS algorithm.
In this chapter we give a proof of existence of a limit cycle for the AMS
algorithm using a modification of our proof for the ART.

In the next section we consider the behavior of the ART for solving Ax =
b. The proofs given by Tanabe and Dax of the existence of a limit cycle for
this algorithm rely heavily on aspects of the theory of linear algebra, as did
the proof given in an earlier chapter here. Our goal now is to obtain a more
direct proof that can be easily modified to apply to the AMS algorithm.

We assume throughout this chapter that the real I by J matrix A has
full rank and its rows have Euclidean length one.

244 CHAPTER 23. SYSTEMS OF LINEAR INEQUALITIES

23.2 Solving Ax = b

For i = 1, 2, ..., I let Ki = {x|(Ax)i = 0}, Bi = {x|(Ax)i = bi} and
pi be the metric projection of x = 0 onto Bi. Let vr

i = (AxrI+i−1)i

and vr = (vr
1, ..., v

r
I)T , for r = 0, 1, We begin with some basic facts

concerning the ART.
Fact 1:

||xk||22 − ||xk+1||22 = (A(xk)i(k))2 − (bi(k))2. (23.4)

Fact 2:

||xrI ||22 − ||x(r+1)I ||22 = ||vr||22 − ||b||22. (23.5)

Fact 3:

||xk − xk+1||22 = ((Axk)i(k) − bi(k))2. (23.6)

Fact 4: There exists B > 0 such that, for all r = 0, 1, ..., if ||vr||2 ≤ ||b||2
then ||xrI ||2 ≥ ||x(r+1)I ||2 −B.

Fact 5: Let x0 and y0 be arbitrary and {xk} and {yk} the sequences gen-
erated by applying the ART. Then

||x0 − y0||22 − ||xI − yI ||22 =
∑I

i=1
((Axi−1)i − (Ayi−1)i)2. (23.7)

23.2.1 When the System Ax = b is Consistent

In this subsection we give a proof of the following result.

Theorem 23.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (23.1). Then the sequence {||x̂−xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

Proof: Let Ax̂ = b. It follows from Fact 5 that the sequence {||x̂−xrI ||2}
is decreasing and the sequence {vr − b} → 0. So {xrI} is bounded; let x∗,0

be a cluster point. Then, for i = 1, 2, ..., I let x∗,i be the successor of x∗,i−1

using the ART. It follows that (Ax∗,i−1)i = bi for each i, from which we
conclude that x∗,0 = x∗,i for all i and that Ax∗,0 = b. Using x∗,0 in place of
x̂, we have that {||x∗,0−xk||2} is decreasing. But a subsequence converges
to zero, so {xk} converges to x∗,0. By Fact 5 the difference ||x̂ − xk||22 −
||x̂ − xk+1||22 is independent of which solution x̂ we pick; consequently, so
is ||x̂−x0||22− ||x̂−x∗,0||22. It follows that x∗,0 is the solution closest to x0.
This completes the proof.

23.2. SOLVING AX = B 245

23.2.2 When the System Ax = b is Inconsistent

In the inconsistent case the sequence {xk} will not converge, since any
limit would be a solution. However, for each fixed i ∈ {1, 2, ..., I}, the
subsequence {xrI+i} converges [144], [73]; in this subsection we prove this
result and then, in the next section, we extend the proof to get cyclic
convergence for the AMS algorithm. We start by showing that the sequence
{xrI} is bounded. We assume that I > J and A has full rank.

Proposition 23.1 The sequence {xrI} is bounded.

Proof: Assume that the sequence {xrI} is unbounded. We first show that
we can select a subsequence {xrtI} with the properties ||xrtI ||2 ≥ t and
||vrt ||2 < ||b||2, for t = 1, 2,

Assume that we have selected xrtI , with the properties ||xrtI ||2 ≥ t and
||vrt ||2 < ||b||2; we show how to select xrt+1I . Pick integer s > 0 such that

||xsI ||2 ≥ ||xrtI ||2 + B + 1, (23.8)

where B > 0 is as in Fact 4. With n + rt = s let m ≥ 0 be the smallest
integer for which

||x(rt+n−m−1)I ||2 < ||xsI ||2 ≤ ||x(rt+n−i)I ||2. (23.9)

Then ||vrt+n−m−1||2 < ||b||2. Let xrt+1I = x(rt+n−m−1)I . Then we have

||xrt+1I ||2 ≥ ||x(rt+n−m)I ||2 −B

≥ ||xsI ||2 −B ≥ ||xrtI ||2 + B + 1−B ≥ t + 1. (23.10)

This gives us the desired subsequence.
For every k = 0, 1, ... let zk+1 = xk+1 − pi(k). Then zk+1 ∈ Ki(k).

For zk+1 6= 0 let uk+1 = zk+1/||zk+1||2. Since the subsequence {xrtI}
is unbounded, so is {zrtI}, so for sufficiently large t the vectors urtI are
defined and on the unit sphere. Let u∗,0 be a cluster point of {urtI};
replacing {xrtI} with a subsequence if necessary, assume that the sequence
{urtI} converges to u∗,0. Then let u∗,1 be a subsequence of urtI+1}; again,
assume the sequence {urtI+1} converges to u∗,1. Continuing in this manner,
we have {urtI+τ} converging to u∗,τ for τ = 0, 1, 2, We know that {zrtI}
is unbounded and since ||vrt ||2 < ||b||2, we have, by Fact 3, that {zrtI+i−1−
zrtI+i} is bounded for each i. Consequently {zrtI+i} is unbounded for each
i.

Now we have
||zrtI+i−1 − zrtI+i||2

≥ ||zrtI+i−1||2 ||urtI+i−1 − 〈urtI+i−1, urtI+i〉urtI+i||2. (23.11)

246 CHAPTER 23. SYSTEMS OF LINEAR INEQUALITIES

Since the left side is bounded and ||zrtI+i−1||2 has no infinite bounded
subsequence, we conclude that

||urtI+i−1 − 〈urtI+i−1, urj+I+i〉urtI+i||2 → 0. (23.12)

It follows that u∗,0 = u∗,i or u∗,0 = −u∗,i for each i = 1, 2, ..., I. Therefore
u∗,0 is in Ki for each i; but, since the null space of A contains only zero,
this is a contradiction. This completes the proof of the proposition.
Now we give a proof of the following result.

Theorem 23.2 Let A be I by J , with I > J and A with full rank. If
Ax = b has no solutions, then, for any x0 and each fixed i ∈ {0, 1, ..., I},
the subsequence {xrI+i} converges to a limit x∗,i. Beginning the iteration
in Equation (23.1) at x∗,0, we generate the x∗,i in turn, with x∗,I = x∗,0.

Proof: Let x∗,0 be a cluster point of {xrI}. Beginning the ART at x∗,0 we
obtain x∗,n, for n = 0, 1, 2, It is easily seen that

||x(r−1)I − xrI ||22 − ||xrI − x(r+1)I ||22 =

∑I

i=1
((Ax(r−1)I+i−1)i − (AxrI+i−1)i)2. (23.13)

Therefore the sequence {||x(r−1)I − xrI ||2} is decreasing and

{
∑I

i=1
((Ax(r−1)I+i−1)i − (AxrI+i−1)i)2} → 0. (23.14)

Therefore (Ax∗,i−1)i = (Ax∗,I+i−1)i for each i.
For arbitrary x we have

||x− x∗,0||2 − ||x− x∗,I ||22 =

∑I

i=1
((Ax)i − (Ax∗,i−1)i)2 −

∑I

i=1
((Ax)i − bi)2, (23.15)

so that

||x− x∗,0||22 − ||x− x∗,I ||22 = ||x− x∗,I ||22 − ||x− x∗,2I ||22. (23.16)

Using x = x∗,I we have

||x∗,I − x∗,0||2 = −||x∗,I − x∗,2I ||2, (23.17)

from which we conclude that x∗,0 = x∗,I . From Fact 5 it follows that the
sequence {||x∗,0 − xrI ||2} is decreasing; but a subsequence converges to
zero, so the entire sequence converges to zero and {xrI} converges to x∗,0.
This completes the proof.

Now we turn to the problem Ax ≥ b.

23.3. THE AGMON-MOTZKIN-SCHOENBERG ALGORITHM 247

23.3 The Agmon-Motzkin-Schoenberg algo-
rithm

In this section we are concerned with the behavior of the Agmon-Motzkin-
Schoenberg (AMS) algorithm for finding x such that Ax ≥ b, if such x
exist. We begin with some basic facts concerning the AMS algorithm.

Let wr
i = min{(AxrI+i−1)i, bi} and wr = (wr

1, ..., w
r
I)

T , for r = 0, 1,
The following facts are easily established.
Fact 1a:

||xrI+i−1||22 − ||xrI+i||22 = (wr
i)

2 − (bi)2. (23.18)

Fact 2a:

||xrI ||22 − ||x(r+1)I ||22 = ||wr||22 − ||b||22. (23.19)

Fact 3a:

||xrI+i−1 − xrI+i||22 = (wr
i − bi)2. (23.20)

Fact 4a: There exists B > 0 such that, for all r = 0, 1, ..., if ||wr||2 ≤ ||b||2
then ||xrI ||2 ≥ ||x(r+1)I ||2 −B.

Fact 5a: Let x0 and y0 be arbitrary and {xk} and {yk} the sequences
generated by applying the AMS algorithm. Then
||x0 − y0||22 − ||xI − yI ||22 =∑I

i=1
((Axi−1)i − (Ayi−1)i)2− (23.21)

∑I

i=1
(((Axi−1)i − bi)+ − ((Ayi−1)i − bi)+)2 ≥ 0. (23.22)

Consider for a moment the elements of the second sum in the inequality
above. There are four possibilities:
1) both (Axi−1)i− bi and (Ayi−1)i− bi are nonnegative, in which case this
term becomes ((Axi−1)i − (Ayi−1)i)2 and cancels with the same term in
the previous sum;
2) neither (Axi−1)i− bi nor (Ayi−1)i− bi is nonnegative, in which case this
term is zero;
3) precisely one of (Axi−1)i − bi and (Ayi−1)i − bi is nonnegative; say it is
(Axi−1)i − bi, in which case the term becomes ((Axi−1)i − bi)2.
Since we then have

(Ayi−1)i ≤ bi < (Axi−1)i (23.23)

248 CHAPTER 23. SYSTEMS OF LINEAR INEQUALITIES

it follows that

((Axi−1)i − (Ayi−1)i)2 ≥ ((Axi−1)i − bi)2. (23.24)

We conclude that the right side of the equation in Fact 5a is nonnegative,
as claimed.

It will be important in subsequent discussions to know under what
conditions the right side of this equation is zero, so we consider that now.
We then have

((Axi−1)i − (Ayi−1)i)2 − (((Axi−1)i − bi)+ − ((Ayi−1)i − bi)+)2 = 0
(23.25)

for each m separately, since each of these terms is nonnegative, as we have
just seen.

In case 1) above this difference is already zero, as we just saw. In case
2) this difference reduces to ((Axi−1)i − (Ayi−1)i)2, which then is zero
precisely when (Axi−1)i = (Ayi−1)i. In case 3) the difference becomes

((Axi−1)i − (Ayi−1)i)2 − ((Axi−1)i − bi)2, (23.26)

which equals

((Axi−1)i − (Ayi−1)i + (Axi−1)i − bi)(bi − (Ayi−1)i). (23.27)

Since this is zero, it follows that (Ayi−1)i = bi, which contradicts our
assumptions in this case. We conclude therefore that the difference of
sums in Fact 5a is zero if and only if, for all i, either both (Axi−1)i ≥ bi

and (Ayi−1)i ≥ bi or (Axi−1)i = (Ayi−1)i < bi.

23.3.1 When Ax ≥ b is Consistent

We now prove the following result.

Theorem 23.3 Let Ax̂ ≥ b. Let x0 be arbitrary and let {xk} be generated
by equation (23.2). Then the sequence {||x̂ − xk||2} is decreasing and the
sequence {xk} converges to a solution of Ax ≥ b.

Proof: Let Ax̂ ≥ b. When we apply the AMS algorithm beginning at x̂
we obtain x̂ again at each step. Therefore, by Fact 5a and the discussion
that followed, with y0 = x̂, we have
||xk − x̂||22 − ||xk+1 − x̂||22 =

((Axk)i − (Ax̂)i)2 − (((Axk)i − bi)+ − (Ax̂)i + bi)2 ≥ 0. (23.28)

Therefore the sequence {||xk − x̂||2} is decreasing and so {xk} is bounded;
let x∗,0 be a cluster point.

23.3. THE AGMON-MOTZKIN-SCHOENBERG ALGORITHM 249

The sequence defined by the right side of Equation (23.28) above con-
verges to zero. It follows from the discussion following Fact 5a that Ax∗,0 ≥
b. Continuing as in the case of Ax = b, we have that the sequence {xk}
converges to x∗,0. In general it is not the case that x∗,0 is the solution of
Ax ≥ b closest to x0.

Now we turn to the inconsistent case.

23.3.2 When Ax ≥ b is Inconsistent

In the inconsistent case the sequence {xk} will not converge, since any limit
would be a solution. However, we do have the following result.

Theorem 23.4 Let A be I by J , with I > J and A with full rank. Let
x0 be arbitrary. The sequence {xrI} converges to a limit x∗,0. Beginning
the AMS algorithm at x∗,0 we obtain x∗,k, for k = 1, 2, For each fixed
i ∈ {0, 1, 2, ..., I}, the subsequence {xrI+i} converges to x∗,i and x∗,I = x∗,0.

We start by showing that the sequence {xrI} is bounded.

Proposition 23.2 The sequence {xrI} is bounded.

Proof: Assume that the sequence {xrI} is unbounded. We first show that
we can select a subsequence {xrtI} with the properties ||xrtI ||2 ≥ t and
||wrt ||2 < ||b||2, for t = 1, 2,

Assume that we have selected xrtI , with the properties ||xrtI ||2 ≥ t and
||wrt ||2 < ||b||2; we show how to select xrt+1I . Pick integer s > 0 such that

||xsI ||2 ≥ ||xrtI ||2 + B + 1, (23.29)

where B > 0 is as in Fact 4a. With n + rt = s let m ≥ 0 be the smallest
integer for which

||x(rt+n−m−1)I ||2 < ||xsI ||2 ≤ ||x(rt+n−m)I ||2. (23.30)

Then ||wrt+n−m−1||2 < ||b||2. Let xrt+1I = x(rt+n−m−1)I . Then we have

||xrt+1I ||2 ≥ ||x(rt+n−m)I ||2 −B

≥ ||xsI ||2 −B ≥ ||xrtI ||2 + B + 1−B ≥ t + 1. (23.31)

This gives us the desired subsequence.
For every k = 0, 1, ... let zk+1 be the metric projection of xk+1 onto

the hyperplane Ki(k). Then zk+1 = xk+1 − pi(k) if (Axk)i ≤ bi and
zk+1 = xk+1 − (Axk)iA

i if not; here Ai is the i-th column of AT . Then
zk+1 ∈ Ki(k). For zk+1 6= 0 let uk+1 = zk+1/||zk+1||2. Let u∗,0 be a cluster

250 CHAPTER 23. SYSTEMS OF LINEAR INEQUALITIES

point of {urtI}; replacing {xrtI} with a subsequence if necessary, assume
that the sequence {urtI} converges to u∗,0. Then let u∗,1 be a subsequence
of {urtI+1}; again, assume the sequence {urtI+1} converges to u∗,1. Contin-
uing in this manner, we have {urtI+m} converging to u∗,m for m = 0, 1, 2,
Since ||wrt ||2 < ||b||2, we have, by Fact 3a, that {zrtI+i−1 − zrtI+i} is
bounded for each i. Now we have

||zrtI+i−1 − zrtI+i||2

≥ ||zrtI+i−1||2 ||urtI+i−1 − 〈urtI+i−1, urt+I+i〉urtI+i||2. (23.32)

The left side is bounded. We consider the sequence ||zrtI+i−1||2 in two
cases: 1) the sequence is unbounded; 2) the sequence is bounded.

In the first case, it follows, as in the case of Ax = b, that u∗,i−1 = u∗,i

or u∗,i−1 = −u∗,i. In the second case we must have (AxrtI+i−1)i > bi for t
sufficiently large, so that, from some point on, we have xrtI+i−1 = xrtI+i,
in which case we have u∗,i−1 = u∗,i. So we conclude that u∗,0 is in the
null space of A, which is a contradiction. This concludes the proof of the
proposition.

Proof of Theorem 23.4: Let x∗,0 be a cluster point of {xrI}. Beginning
the AMS iteration (23.2) at x∗,0 we obtain x∗,m, for m = 0, 1, 2, From
Fact 5a it is easily seen that the sequence {||xrI − x(r+1)I ||2} is decreasing
and that the sequence

{
∑I

i=1
((Ax(r−1)I+i−1)i − (AxrI+i−1)i)2− (23.33)

∑I

i=1
(((Ax(r−1)I+i−1)i − bi)+ − ((AxrI+i−1)i − bi)+)2} → 0. (23.34)

Again, by the discussion following Fact 5a, we conclude one of two things:
either Case (1): (Ax∗,i−1)i = (Ax∗,jI+i−1)i for each j = 1, 2, ... or Case
(2): (Ax∗,i−1)i > bi and, for each j = 1, 2, ..., (Ax∗,jI+i−1)i > bi. Let
Ai denote the i-th column of AT . As the AMS iteration proceeds from
x∗,0 to x∗,I , from x∗,I to x∗,2I and, in general, from x∗,jI to x∗,(j+1)I we
have either x∗,i−1 − x∗,i = 0 and x∗,jI+i−1 − x∗,jI+i = 0, for each j =
1, 2, ..., which happens in Case (2), or x∗,i−1 − x∗,i = x∗,jI+i−1 − x∗,jI+i =
(bi − (Ax∗,i−1)i)Ai, for j = 1, 2, ..., which happens in Case (1). It follows,
therefore, that

x∗,0 − x∗,I = x∗,jI − x∗,(j+1)I (23.35)

for j = 1, 2, Since the original sequence {xrI} is bounded, we have

||x∗,0 − x∗,jI ||2 ≤ ||x∗,0||2 + ||x∗,jI ||2 ≤ K (23.36)

23.3. THE AGMON-MOTZKIN-SCHOENBERG ALGORITHM 251

for some K and all j = 1, 2, But we also have

||x∗,0 − x∗,jI ||2 = j||x∗,0 − x∗,I ||2. (23.37)

We conclude that ||x∗,0 − x∗,I ||2 = 0 or x∗,0 = x∗,I .
From Fact 5a, using y0 = x∗,0, it follows that the sequence {||x∗,0 −

xrI ||2} is decreasing; but a subsequence converges to zero, so the entire
sequence converges to zero and {xrI} converges to x∗,0. This completes
the proof of Theorem 23.4.

252 CHAPTER 23. SYSTEMS OF LINEAR INEQUALITIES

Chapter 24

Constrained Iteration
Methods

The ART and its simultaneous and block-iterative versions are designed to
solve general systems of linear equations Ax = b. The SMART, EMML
and RBI methods require that the entries of A be nonnegative, those of b
positive and produce nonnegative x. In this chapter we present variations
of the SMART and EMML that impose the constraints uj ≤ xj ≤ vj ,
where the uj and vj are selected lower and upper bounds on the individual
entries xj . These algorithms were applied to transmission tomography
image reconstruction in [128].

24.1 Modifying the KL distance

The SMART, EMML and RBI methods are based on the Kullback-Leibler
distance between nonnegative vectors. To impose more general constraints
on the entries of x we derive algorithms based on shifted KL distances, also
called Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) + KL(v − x, v − z)

is restricted to those xand z whose entries xj and zj lie in the interval
[uj , vj]. Our objective is to mimic the derivation of the SMART, EMML
and RBI methods, replacing KL distances with shifted KL distances, to
obtain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each j.
The algorithms that result are the ABMART and ABEMML block-iterative

253

254 CHAPTER 24. CONSTRAINED ITERATION METHODS

methods. These algorithms were originally presented in [39], in which the
vectors u and v were called a and b, hence the names of the algorithms.
Throughout this chapter we shall assume that the entries of the matrix A
are nonnegative. We shall denote by Bn, n = 1, ..., N a partition of the
index set {i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN)+1.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.

24.2 The ABMART Algorithm

We assume that (Au)i ≤ bi ≤ (Av)i and seek a solution of Ax = b with
uj ≤ xj ≤ vj , for each j.

Algorithm 24.1 (ABMART)Select x0 satisfying uj ≤ x0
j ≤ vj, for each

j. Having calculated xk, we take

xk+1
j = αk

j vj + (1− αk
j)uj , (24.1)

with n = n(k),

αk
j =

ck
j

∏n(dk
i)Aij

1 + ck
j

∏n(dk
i)Aij

, (24.2)

ck
j =

(xk
j − uj)

(vj − xk
j)

, (24.3)

and

dk
j =

(bi − (Au)i)((Av)i − (Axk)i)
((Av)i − bi)((Axk)i − (Au)i)

, (24.4)

where
∏n denotes the product over those indices i in Bn(k).

Notice that, at each step of the iteration, xk
j is a convex combination of

the endpoints uj and vj , so that xk
j lies in the interval [uj , vj].

We have the following theorem concerning the convergence of the AB-
MART algorithm:

24.3. THE ABEMML ALGORITHM 255

Theorem 24.1 If there is a solution of the system Ax = b that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
blocks Bn, the ABMART sequence converges to that constrained solution
of Ax = b for which the Fermi-Dirac generalized entropic distance from x
to x0,

KL(x− u, x0 − u) + KL(v − x, v − x0),

is minimized. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to the minimizer of

KL(Ax−Au, b−Au) + KL(Av −Ax,Av − b)

for which
KL(x− u, x0 − u) + KL(v − x, v − x0)

is minimized.

The proof is similar to that for RBI-SMART and is found in [39].

24.3 The ABEMML Algorithm

We make the same assumptions as in the previous section.

Algorithm 24.2 Select x0 satisfying uj ≤ x0
j ≤ vj, for each j. Having

calculated xk, let

xk+1
j = αk

j vj + (1− αk
j)uj , (24.5)

where

αk
j = γk

j /dk
j , (24.6)

γk
j = (xk

j − uj)ek
j , (24.7)

βk
j = (vj − xk

j)fk
j , (24.8)

dk
j = γk

j + βk
j , (24.9)

ek
j =

(
1−

∑
i∈Bn

Aij

)
+
∑

i∈Bn

Aij

(
bi − (Au)i

(Axk)i − (Au)i

)
, (24.10)

and

fk
j =

(
1−

∑
i∈Bn

Aij

)
+
∑

i∈Bn

Aij

(
(Av)i − bi

(Av)i − (Axk)i

)
. (24.11)

256 CHAPTER 24. CONSTRAINED ITERATION METHODS

We have the following theorem concerning the convergence of the ABE-
MML algorithm:

Theorem 24.2 If there is a solution of the system Ax = b that satisfies
the constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice
of the blocks Bn, the ABEMML sequence converges to such a constrained
solution of Ax = b. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to a constrained minimizer of

KL(Ax−Au, b−Au) + KL(Av −Ax, Av − b).

The proof is similar to that for RBI-EMML and is to be found in [39]. In
contrast to the ABMART theorem, this is all we can say about the limits
of the ABEMML sequences.

Open Question: How does the limit of the ABEMML iterative sequence
depend, in the consistent case, on the choice of blocks, and, in general, on
the choice of x0?

Chapter 25

Fourier Transform
Estimation

In many remote-sensing problems, the measured data is related to the func-
tion to be imaged by Fourier transformation. In the Fourier approach to
tomography, the data are often viewed as line integrals through the object
of interest. These line integrals can then be converted into values of the
Fourier transform of the object function. In magnetic-resonance imaging
(MRI), adjustments to the external magnetic field cause the measured data
to be Fourier-related to the desired proton-density function. In such appli-
cations, the imaging problem becomes a problem of estimating a function
from finitely many noisy values of its Fourier transform. To overcome these
limitations, one can use iterative and non-iterative methods for incorporat-
ing prior knowledge and regularization; data-extrapolation algorithms form
one class of such methods.

We focus on the use of iterative algorithms for improving resolution
through extrapolation of Fourier-transform data. The reader should con-
sult the appendices for brief discussion of some of the applications of these
methods.

25.1 The Limited-Fourier-Data Problem

For notational convenience, we shall discuss only the one-dimensional case,
involving the estimation of the (possibly complex-valued) function f(x) of
the real variable x, from finitely many values F (ωn), n = 1, ..., N of its
Fourier transform. Here we adopt the definitions

F (ω) =
∫

f(x)eixωdx, (25.1)

257

258 CHAPTER 25. FOURIER TRANSFORM ESTIMATION

and

f(x) =
1
2π

∫
F (ω)e−ixωdω. (25.2)

Because it is the case in the applications of interest to us here, we shall
assume that the object function has bounded support, that is, there is
A > 0, such that f(x) = 0 for |x| > A.

The values ω = ωn at which we have measured the function F (ω) may
be structured in some way; they may be equi-spaced along a line, or, in the
higher-dimensional case, arranged in a cartesian grid pattern, as in MRI.
According to the Central Slice Theorem, the Fourier data in tomography
lie along rays through the origin. Nevertheless, in what follows, we shall
not assume any special arrangement of these data points.

Because the data are finite, there are infinitely many functions f(x)
consistent with the data. We need some guidelines to follow in selecting
a best estimate of the true f(x). First, we must remember that the data
values are noisy, so we want to avoid over-fitting the estimate to noisy
data. This means that we should include regularization in whatever method
we adopt. Second, the limited data are often insufficient to provide the
desired resolution, so we need to incorporate additional prior knowledge
about f(x), such as non-negativity, upper and lower bounds on its values,
its support, its overall shape, and so on. Third, once we have selected
prior information to include, we should be conservative in choosing an
estimate consistent with that information. This may involve the use of
constrained minimum-norm solutions. Fourth, we should not expect our
prior information to be perfectly accurate, so our estimate should not be
overly sensitive to slight changes in the prior information. Finally, the
estimate we use will be one for which there are good algorithms for its
calculation.

25.2 Minimum-Norm Estimation

To illustrate the notion of minimum-norm estimation, we begin with the
finite-dimensional problem of solving an underdetermined system of linear
equations, Ax = b, where A is a rea I by J matrix with J > I and AAT is
invertible.

25.2.1 The Minimum-Norm Solution of Ax = b

Each equation can be written as

bi = (ai)T x = 〈x, ai〉, (25.3)

where the vector ai is the ith column of the matrix AT and 〈u, v〉 denoted
the inner, or dot product of the vectors u and v.

25.2. MINIMUM-NORM ESTIMATION 259

Lemma 25.1 Every vector x in RJ can be written as

x = AT z + w, (25.4)

with Aw = 0 and

||x||22 = ||AT z||22 + ||w||22. (25.5)

Consequently, Ax = b if and only if A(AT z) = b and AT z is the solution
having the smallest norm. This minimum-norm solution x̂ = AT z can be
found explicitly; it is

x̂ = AT z = AT (AAT)−1b. (25.6)

Proof: Multiply both sides of Equation (25.4) by A and solve for z.
It follows from Lemma 25.1 that the minimum-norm solution x̂ of Ax =

b has the form x̂ = AT z, which means that x̂ is a linear combination of the
ai:

x̂ =
I∑

i=1

zia
i. (25.7)

25.2.2 Minimum-Weighted-Norm Solution of Ax = b

As we shall see later, it is sometimes convenient to introduce a new norm
for the vectors. Let Q be a J by J symmetric positive-definite matrix and
define

||x||2Q = xT Qx. (25.8)

With Q = CT C, where C is the positive-definite symmetric square-root of
Q, we can write

||x||2Q = ||y||22, (25.9)

for y = Cx. Now suppose that we want to find the solution of Ax = b for
which ||x||2Q is minimum. We write

Ax = b (25.10)

as

AC−1y = b, (25.11)

260 CHAPTER 25. FOURIER TRANSFORM ESTIMATION

so that, from Equation (25.6), we find that the solution y with minimum
norm is

ŷ = (AC−1)T (AC−1(AC−1)T)−1b, (25.12)

or

ŷ = (AC−1)T (AQ−1AT)−1b, (25.13)

so that the x̂Q with minimum weighted norm is

x̂Q = C−1ŷ = Q−1AT (AQ−1AT)−1b, (25.14)

Notice that, writing

〈u, v〉Q = uT Qv, (25.15)

we find that

bi = 〈Q−1ai, x̂Q〉Q, (25.16)

and the minimum-weighted-norm solution of Ax = b is a linear combination
of the columns gi of Q−1AT , that is,

x̂Q =
I∑

i=1

dig
i, (25.17)

where

di = ((AQ−1AT)−1b)i, (25.18)

for each i = 1, ..., I.

25.3 Fourier-Transform Data

Returning now to the case in which we have finitely many values of the
Fourier transform of f(x), we write

F (ω) =
∫

f(x)eixωdx = 〈eω, f〉 , (25.19)

where eω(x) = e−ixω and

〈g, h〉 =
∫

g(x)h(x)dx. (25.20)

The norm of a function f(x) is then

||f ||2 =
√
〈f, f〉 =

√∫
|f(x)|2dx. (25.21)

25.3. FOURIER-TRANSFORM DATA 261

25.3.1 The Minimum-Norm Estimate

Arguing as we did in the finite-dimensional case, we conclude that the
minimum-norm solution of the data-consistency equations

F (ωn) = 〈eωn
, f〉 , n = 1, ..., N, (25.22)

has the form

f̂(x) =
N∑

n=1

ane−ixωn . (25.23)

If the integration assumed to extend over the whole real line, the functions
eω(x) are mutually orthogonal and so

an =
1
2π

F (ωn). (25.24)

In most applications, however, the function f(x) is known to have finite
support.

Lemma 25.2 If f(x) = 0 for x outside the interval [a, b], then the coeffi-
cients an satisfy the system of linear equations

F (ωn) =
N∑

m=1

Gnmam, (25.25)

with

Gnm =
∫ b

a

eix(ωn−ωm)dx. (25.26)

For example, suppose that [a, b] = [−π, π] and

ωn = −π +
2π

N
n, (25.27)

for n = 1, ..., N

Lemma 25.3 In this example, Gnn = 2π and Gnm = 0, for n 6= m.
Therefore, for this special case, we again have

an =
1
2π

F (ωn). (25.28)

262 CHAPTER 25. FOURIER TRANSFORM ESTIMATION

25.3.2 Minimum-Weighted-Norm Estimates

Let p(x) ≥ 0 be a weight function. Let

〈g, h〉p =
∫

g(x)h(x)p(x)−1dx, (25.29)

with the understanding that p(x)−1 = 0 outside of the support of p(x).
The associated weighted norm is then

||f ||p =

√∫
|f(x)|2p(x)−1dx. (25.30)

We can then write

F (ωn) = 〈peω, f〉p =
∫

(p(x)e−ixω)f(x)p(x)−1dx. (25.31)

It follows that the function consistent with the data and having the mini-
mum weighted norm has the form

f̂p(x) = p(x)
N∑

n=1

bne−ixωn . (25.32)

Lemma 25.4 The coefficients bn satisfy the system of linear equations

F (ωn) =
N∑

m=1

bmPnm, (25.33)

with

Pnm =
∫

p(x)eix(ωn−ωm)dx, (25.34)

for m,n = 1, ..., N .

Whenever we have prior information about the support of f(x), or about
the shape of |f(x)|, we can incorporate this information through our choice
of the weight function p(x). In this way, the prior information becomes
part of the estimate, through the first factor in Equation (25.32), with the
second factor providing information gathered from the measurement data.
This minimum-weighted-norm estimate of f(x) is called the PDFT, and is
discussed in more detail in [47].

Once we have f̂p(x), we can take its Fourier transform, F̂p(ω), which
is then an estimate of F (ω). Because the coefficients bn satisfy Equations
(25.33), we know that

F̂p(ωn) = F (ωn), (25.35)

25.4. THE DISCRETE PDFT (DPDFT) 263

for n = 1, ..., N . For other values of ω, the estimate F̂p(ω) provides an
extrapolation of the data. For this reason, methods such as the PDFT are
sometimes called data-extrapolation methods. If f(x) is supported on an
interval [a, b], then the function F (ω) is said to be band-limited. If [c, d] is
an interval containing [a, b] and p(x) = 1, for x in [c, d], and p(x) = 0 other-
wise, then the PDFT estimate is a non-iterative version of the Gerchberg-
Papoulis band-limited extrapolation estimate of f(x) (see [47]).

25.3.3 Implementing the PDFT

The PDFT can be extended easily to the estimation of functions of several
variables. However, there are several difficult steps that can be avoided
by iterative implementation. Even in the one-dimensional case, when the
values ωn are not equispaced, the calculation of the matrix P can be messy.
In the case of higher dimensions, both calculating P and solving for the
coefficients can be expensive. In the next section we consider an iterative
implementation that solves both of these problems.

25.4 The Discrete PDFT (DPDFT)

The derivation of the PDFT assumes a function f(x) of one or more con-
tinuous real variables, with the data obtained from f(x) by integration.
The discrete PDFT (DPDFT) begins with f(x) replaced by a finite vector
f = (f1, ..., fJ)T that is a discretization of f(x); say that fj = f(xj) for
some point xj . The integrals that describe the Fourier transform data can
be replaced by finite sums,

F (ωn) =
J∑

j=1

fjEnj , (25.36)

where Enj = eixjωn . We have used a Riemann-sum approximation of the
integrals here, but other choices are also available. The problem then is to
solve this system of equations for the fj .

Since the N is fixed, but the J is under our control, we select J > N ,
so that the system becomes under-determined. Now we can use minimum-
norm and minimum-weighted-norms solutions of the finite-dimensional prob-
lem to obtain an approximate, discretized PDFT solution.

Since the PDFT is a minimum-weighted norm solution in the continous-
variable formulation, it is reasonable to let the DPDFT be the correspond-
ing minimum-weighted-norm solution obtained with the positive-definite
matrix Q the diagonal matrix having for its jth diagonal entry

Qjj = 1/p(xj), (25.37)

if p(xj) > 0, and zero, otherwise.

264 CHAPTER 25. FOURIER TRANSFORM ESTIMATION

25.4.1 Calculating the DPDFT

The DPDFT is a minimum-weighted-norm solution, which can be calcu-
lated using, say, the ART algorithm. We know that, in the underdeter-
mined case, the ART provides the the solution closest to the starting vector,
in the sense of the Eucliean distance. We therefore reformulate the system,
so that the minimum-weighted norm solution becomes a minimum-norm
solution, as we did earlier, and then begin the ART iteration with zero.

25.4.2 Regularization

We noted earlier that one of the principles guiding the estimation of f(x)
from Fourier transform data should be that we do not want to overfit the
estimate to noisy data. In the PDFT, this can be avoided by adding a small
positive quantity to the main diagonal of the matrix P . In the DPDFT,
implemented using ART, we regularize the ART algorthm, as we discussed
earlier.

Part VIII

Applications

265

Chapter 26

Tomography

In this chapter we present a brief overview of transmission and emission
tomography. These days, the term tomography is used by lay people and
practitioners alike to describe any sort of scan, from ultrasound to magnetic
resonance. It has apparently lost its association with the idea of slicing, as
in the expression three-dimensional tomography. In this chapter we focus on
two important modalities, transmission tomography and emission tomog-
raphy. An x-ray CAT scan is an example of the first, a positron-emission
(PET) scan is an example of the second.

26.1 X-ray Transmission Tomography

Computer-assisted tomography (CAT) scans have revolutionized medical
practice. One example of CAT is x-ray transmission tomography. The
goal here is to image the spatial distribution of various matter within the
body, by estimating the distribution of x-ray attenuation. In the continuous
formulation, the data are line integrals of the function of interest.

When an x-ray beam travels along a line segment through the body it
becomes progressively weakened by the material it encounters. By com-
paring the initial strength of the beam as it enters the body with its final
strength as it exits the body, we can estimate the integral of the attenuation
function, along that line segment. The data in transmission tomography
are these line integrals, corresponding to thousands of lines along which
the beams have been sent. The image reconstruction problem is to cre-
ate a discrete approximation of the attenuation function. The inherently
three-dimensional problem is usually solved one two-dimensional plane, or
slice, at a time, hence the name tomography [98].

The beam attenuation at a given point in the body will depend on the
material present at that point; estimating and imaging the attenuation as a

267

268 CHAPTER 26. TOMOGRAPHY

function of spatial location will give us a picture of the material within the
body. A bone fracture will show up as a place where significant attenuation
should be present, but is not.

26.1.1 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types of
matter, such as soft tissue, bone, ligaments, air, each weakening the beam
to a greater or lesser extent. If the intensity of the beam upon entry is Iin

and Iout is its lower intensity after passing through the body, then

Iout = Iine
−
∫

L
f
, (26.1)

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being scanned
and

∫
L

f is the integral of the function f over the line L along which the
x-ray beam has passed. To see why this is the case, imagine the line L
parameterized by the variable s and consider the intensity function I(s)
as a function of s. For small ∆s > 0, the drop in intensity from the start
to the end of the interval [s, s + ∆s] is approximately proportional to the
intensity I(s), to the attenuation f(s) and to ∆s, the length of the interval;
that is,

I(s)− I(s + ∆s) ≈ f(s)I(s)∆s. (26.2)

Dividing by ∆s and letting ∆s approach zero, we get

I ′(s) = −f(s)I(s). (26.3)

The solution to this differential equation is

I(s) = I(0) exp(−
∫ u=s

u=0

f(u)du). (26.4)

From knowledge of Iin and Iout, we can determine
∫

L
f . If we know

∫
L

f
for every line in the x, y-plane we can reconstruct the attenuation function
f . In the real world we know line integrals only approximately and only
for finitely many lines. The goal in x-ray transmission tomography is to
estimate the attenuation function f(x, y) in the slice, from finitely many
noisy measurements of the line integrals. We usually have prior informa-
tion about the values that f(x, y) can take on. We also expect to find
sharp boundaries separating regions where the function f(x, y) varies only
slightly. Therefore, we need algorithms capable of providing such images.
As we shall see, the line-integral data can be viewed as values of the Fourier
transform of the attenuation function.

26.1. X-RAY TRANSMISSION TOMOGRAPHY 269

26.1.2 Reconstruction from Line Integrals

We turn now to the underlying problem of reconstructing such functions
from line-integral data. Our goal is to reconstruct the function f(x, y) from
line-integral data. Let θ be a fixed angle in the interval [0, π). Form the
t, s-axis system with the positive t-axis making the angle θ with the positive
x-axis. Each point (x, y) in the original coordinate system has coordinates
(t, s) in the second system, where the t and s are given by

t = x cos θ + y sin θ, (26.5)

and

s = −x sin θ + y cos θ. (26.6)

If we have the new coordinates (t, s) of a point, the old coordinates are
(x, y) given by

x = t cos θ − s sin θ, (26.7)

and

y = t sin θ + s cos θ. (26.8)

We can then write the function f as a function of the variables t and s.
For each fixed value of t, we compute the integral∫

f(x, y)ds =
∫

f(t cos θ − s sin θ, t sin θ + s cos θ)ds (26.9)

along the single line L corresponding to the fixed values of θ and t. We
repeat this process for every value of t and then change the angle θ and
repeat again. In this way we obtain the integrals of f over every line L in
the plane. We denote by rf (θ, t) the integral

rf (θ, t) =
∫

L

f(x, y)ds. (26.10)

The function rf (θ, t) is called the Radon transform of f .
For fixed θ the function rf (θ, t) is a function of the single real variable

t; let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =
∫

rf (θ, t)eiωtdt (26.11)

=
∫ ∫

f(t cos θ − s sin θ, t sin θ + s cos θ)eiωtdsdt (26.12)

270 CHAPTER 26. TOMOGRAPHY

=
∫ ∫

f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ), (26.13)

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the Central Slice Theorem. For fixed θ, as we change the value
of ω, we obtain the values of the function F along the points of the line
making the angle θ with the horizontal axis. As θ varies in [0, π), we get all
the values of the function F . Once we have F , we can obtain f using the
formula for the two-dimensional inverse Fourier transform. We conclude
that we are able to determine f from its line integrals.

The Fourier-transform inversion formula for two-dimensional functions
tells us that the function f(x, y) can be obtained as

f(x, y) =
1

4π2

∫ ∫
F (u, v)e−i(xu+yv)dudv. (26.14)

The filtered backprojection methods commonly used in the clinic are derived
from different ways of calculating the double integral in Equation (26.14).

26.1.3 The Algebraic Approach

Although there is some flexibility in the mathematical description of the
image reconstruction problem in transmission tomography, one popular
approach is the algebraic formulation of the problem. In this formulation,
the problem is to solve, at least approximately, a large system of linear
equations, Ax = b.

The attenuation function is discretized, in the two-dimensional case, by
imagining the body to consist of finitely many squares, or pixels, within
which the function has a constant, but unknown, value. This value at
the j-th pixel is denoted xj . In the three-dimensional formulation, the
body is viewed as consisting of finitely many cubes, or voxels. The beam
is sent through the body along various lines and both initial and final
beam strength is measured. From that data we can calculate a discrete
line integral along each line. For i = 1, ..., I we denote by Li the i-th line
segment through the body and by bi its associated line integral. Denote by
Aij the length of the intersection of the j-th pixel with Li; therefore, Aij

is nonnegative. Most of the pixels do not intersect line Li, so A is quite
sparse. Then the data value bi can be described, at least approximately, as

bi =
J∑

j=1

Aijxj . (26.15)

Both I, the number of lines, and J , the number of pixels or voxels, are
quite large, although they certainly need not be equal, and are typically
unrelated.

26.2. EMISSION TOMOGRAPHY 271

The matrix A is large and rectangular. The system Ax = b may or may
not have exact solutions. We are always free to select J , the number of
pixels, as large as we wish, limited only by computation costs. We may also
have some choice as to the number I of lines, but within the constraints
posed by the scanning machine and the desired duration and dosage of
the scan. When the system is underdetermined (J > I), there may be
infinitely many exact solutions; in such cases we usually impose constraints
and prior knowledge to select an appropriate solution. As we mentioned
earlier, noise in the data, as well as error in our model of the physics of
the scanning procedure, may make an exact solution undesirable, anyway.
When the system is overdetermined (J < I), we may seek a least-squares
approximate solution, or some other approximate solution. We may have
prior knowledge about the physics of the materials present in the body
that can provide us with upper bounds for xj , as well as information about
body shape and structure that may tell where xj = 0. Incorporating such
information in the reconstruction algorithms can often lead to improved
images [128].

26.2 Emission Tomography

In single-photon emission tomography (SPECT) and positron emission to-
mography (PET) the patient is injected with, or inhales, a chemical to which
a radioactive substance has been attached. The recent book edited by Wer-
nick and Aarsvold [148]describes the cutting edge of emission tomography.
The particular chemicals used in emission tomography are designed to be-
come concentrated in the particular region of the body under study. Once
there, the radioactivity results in photons that travel through the body
and, at least some of the time, are detected by the scanner. The function
of interest is the actual concentration of the radioactive material at each
spatial location within the region of interest. Learning what the concen-
trations are will tell us about the functioning of the body at the various
spatial locations. Tumors may take up the chemical (and its radioactive
passenger) more avidly than normal tissue, or less avidly, perhaps. Mal-
functioning portions of the brain may not receive the normal amount of the
chemical and will, therefore, exhibit an abnormal amount of radioactivity.

As in the transmission tomography case, this nonnegative function is
discretized and represented as the vector x. The quantity bi, the i-th entry
of the vector b, is the photon count at the i-th detector; in coincidence-
detection PET a detection is actually a nearly simultaneous detection of
a photon at two different detectors. The entry Aij of the matrix A is the
probability that a photon emitted at the j-th pixel or voxel will be detected
at the i-th detector.

In [138], Rockmore and Macovski suggest that, in the emission tomog-

272 CHAPTER 26. TOMOGRAPHY

raphy case, one take a statistical view, in which the quantity xj is the
expected number of emissions at the j-th pixel during the scanning time,
so that the expected count at the i-th detector is

E(bi) =
J∑

j=1

Aijxj . (26.16)

They further suggested that the problem of finding the xj be viewed as a
parameter-estimation problem, for which a maximum-likelihood technique
might be helpful. These suggestions inspired work by Shepp and Vardi
[141], Lange and Carson [115], Vardi, Shepp and Kaufman [147], and others,
and led to the expectation maximization maximum likelihood (EMML)
method for reconstruction.

The system of equations Ax = b is obtained by replacing the expected
count, E(bi), with the actual count, bi; obviously, an exact solution of the
system is not needed in this case. As in the transmission case, we seek an
approximate, and nonnegative, solution of Ax = b, where, once again, all
the entries of the system are nonnegative.

26.2.1 Maximum-Likelihood Parameter Estimation

The measured data in tomography are values of random variables. The
probabilities associated with these random variables are used in formulating
the image reconstruction problem as one of solving a large system of linear
equations. We can also use the stochastic model of the data to formulate
the problem as a statistical parameter-estimation problem, which suggests
the image be estimated using likelihood maximization. When formulated
that way, the problem becomes a constrained optimization problem. The
desired image can then be calculated using general-purpose iterative opti-
mization algorithms, or iterative algorithms designed specifically to solve
the particular problem.

26.3 Image Reconstruction in Tomography

Image reconstruction from tomographic data is an increasingly important
area of applied numerical linear algebra, particularly for medical diagno-
sis. For in-depth discussion of these issues, the reader should consult the
books by Herman [93, 98], Kak and Slaney [110], Natterer [130], Natterer
and Wübbeling [131], and Wernick and Aarsvold [148] . In the algebraic
approach, the problem is to solve, at least approximately, a large system
of linear equations, Ax = b. The vector x is large because it is usually
a vectorization of a discrete approximation of a function of two or three
continuous spatial variables. The size of the system necessitates the use

26.3. IMAGE RECONSTRUCTION IN TOMOGRAPHY 273

of iterative solution methods [117]. Because the entries of x usually repre-
sent intensity levels, of beam attenuation in transmission tomography, and
of radionuclide concentration in emission tomography, we require x to be
nonnegative; the physics of the situation may impose additional constraints
on the entries of x. In practice, we often have prior knowledge about the
function represented, in discrete form, by the vector x and we may wish to
include this knowledge in the reconstruction. In tomography the entries of
A and b are also nonnegative. Iterative algorithms tailored to find solutions
to these special, constrained problems may out-perform general iterative
solution methods [128]. To be medically useful in the clinic, the algorithms
need to produce acceptable reconstructions early in the iterative process.

The Fourier approach to tomographic image reconstruction maintains,
at least initially, the continuous model for the attenuation function. The
data are taken to be line integrals through the attenuator, that is, val-
ues of its so-called x-ray transform, which, in the two-dimensional case, is
the Radon transform. The Central Slice Theorem then relates the Radon-
transform values to values of the Fourier transform of the attenuation func-
tion. Image reconstruction then becomes estimation of the (inverse) Fourier
transform. In magnetic-resonance imaging (MRI), we again have the mea-
sured data related to the function we wish to image, the proton density
function, by a Fourier relation.

In the transmission and emission tomography, the data are photon
counts, so it is natural to adopt a statistical model and to convert the
image reconstruction problem into a statistical parameter-estimation prob-
lem. The estimation can be done using maximum likelihood (ML) or max-
imum a posteriori (MAP) Bayesian methods, which then require iterative
optimization algorithms.

274 CHAPTER 26. TOMOGRAPHY

Chapter 27

Intensity-Modulated
Radiation Therapy

In [54] Censor et al. extend the CQ algorithm to solve what they call
the multiple-set split feasibility problem (MSSFP) . In the sequel [55] this
extended CQ algorithm is used to determine dose intensities for intensity-
modulated radiation therapy (IMRT) that satisfy both dose constraints and
radiation-source constraints.

27.1 The Extended CQ Algorithm

For n = 1, ..., N , let Cn be a nonempty, closed convex subset of RJ . For
m = 1, ...,M , let Qm be a nonempty, closed convex subset of RI . Let D be
a real I by J matrix. The MSSFP is to find a member x of C = ∩N

n=1Cn

for which h = Dx is a member of Q = ∩M
m=1Qm. A somewhat more general

problem is to find a minimizer of the proximity function

p(x) =
1
2

N∑
n=1

αn||PCn
x− x||22 +

1
2

M∑
m=1

βm||PQm
Dx−Dx||22, (27.1)

with respect to the nonempty, closed convex set Ω ⊆ RN , where αn and
βm are positive and

N∑
n=1

αn +
M∑

m=1

βm = 1.

They show that ∇p(x) is L-Lipschitz, for

L =
N∑

n=1

αn + ρ(DT D)
M∑

m=1

βm.

275

276CHAPTER 27. INTENSITY-MODULATED RADIATION THERAPY

The algorithm given in [54] has the iterative step

xk+1 = PΩ

(
xk + s

(N∑
n=1

αn(PCn
xk − xk) +

M∑
m=1

βmDT (PQm
Dxk −Dxk)

))
,

(27.2)

for 0 < s < 2/L. This algorithm converges to a minimizer of p(x) over
Ω, whenever such a minimizer exists, and to a solution, within Ω, of the
MSSFP, whenever such solutions exist.

27.2 Intensity-Modulated Radiation Therapy

For i = 1, ..., I, and j = 1, ..., J , let hi ≥ 0 be the dose absorbed by the i-th
voxel of the patient’s body, xj ≥ 0 be the intensity of the j-th beamlet of
radiation, and Dij ≥ 0 be the dose absorbed at the i-th voxel due to a unit
intensity of radiation at the j-th beamlet. In intensity space, we have the
obvious constraints that xj ≥ 0. In addition, there are implementation con-
straints; the available treatment machine will impose its own requirements,
such as a limit on the difference in intensities between adjacent beamlets.
In dosage space, there will be a lower bound on the dosage delivered to
those regions designated as planned target volumes (PTV), and an upper
bound on the dosage delivered to those regions designated as organs at risk
(OAR).

27.3 Equivalent Uniform Dosage Functions

Suppose that St is either a PTV or a OAR, and suppose that St contains
Nt voxels. For each dosage vector h = (h1, ..., hI)T define the equivalent
uniform dosage (EUD) function et(h) by

et(h) = (
1
Nt

∑
i∈St

(hi)α)1/α, (27.3)

where 0 < α < 1 if St is a PTV, and α > 1 if St is an OAR. The function
et(h) is convex, for h nonnegative, when St is an OAR, and −et(h) is
convex, when St is a PTV. The constraints in dosage space take the form

et(h) ≤ at,

when St is an OAR, and
−et(h) ≤ bt,

when St is a PTV. Therefore, we require that h = Dx lie within the
intersection of these convex sets.

27.4. THE ALGORITHM 277

27.4 The Algorithm

The constraint sets are convex sets of the form {x|f(x) ≤ 0}, for particular
convex functions f . Therefore, the cyclic subgradient projection (CSP)
method is used to find the solution to the MSSFP.

278CHAPTER 27. INTENSITY-MODULATED RADIATION THERAPY

Chapter 28

Magnetic-Resonance
Imaging

Fourier-transform estimation and extrapolation techniques play a major
role in the rapidly expanding field of magnetic-resonance imaging (MRI)[96].

28.1 An Overview of MRI

Protons have spin, which, for our purposes here, can be viewed as a charge
distribution in the nucleus revolving around an axis. Associated with the
resulting current is a magnetic dipole moment collinear with the axis of the
spin. In elements with an odd number of protons, such as hydrogen, the
nucleus itself will have a net magnetic moment. The objective in MRI is
to determine the density of such elements in a volume of interest within
the body. This is achieved by forcing the individual spinning nuclei to
emit signals that, while too weak to be detected alone, are detectable in
the aggregate. The signals are generated by the precession that results
when the axes of the magnetic dipole moments are first aligned and then
perturbed.

In much of MRI, it is the distribution of hydrogen in water molecules
that is the object of interest, although the imaging of phosphorus to study
energy transfer in biological processing is also important. There is ongoing
work using tracers containing fluorine, to target specific areas of the body
and avoid background resonance.

279

280 CHAPTER 28. MAGNETIC-RESONANCE IMAGING

28.2 Alignment

In the absence of an external magnetic field, the axes of these magnetic
dipole moments have random orientation, dictated mainly by thermal ef-
fects. When an external magnetic field is introduced, it induces a small
fraction, about one in 105, of the dipole moments to begin to align their
axes with that of the external magnetic field. Only because the number
of protons per unit of volume is so large do we get a significant number
of moments aligned in this way. A strong external magnetic field, about
20, 000 times that of the earth’s, is required to produce enough alignment
to generate a detectable signal.

When the axes of the aligned magnetic dipole moments are perturbed,
they begin to precess, like a spinning top, around the axis of the external
magnetic field, at the Larmor frequency, which is proportional to the in-
tensity of the external magnetic field. If the magnetic field intensity varies
spatially, then so does the Larmor frequency. Each precessing magnetic
dipole moment generates a signal; taken together, they contain informa-
tion about the density of the element at the various locations within the
body. As we shall see, when the external magnetic field is appropriately
chosen, a Fourier relationship can be established between the information
extracted from the received signal and this density function.

28.3 Slice Isolation

When the external magnetic field is the static field B0k, that is, the mag-
netic field has strength B0 and axis k = (0, 0, 1), then the Larmor fre-
quency is the same everywhere and equals ω0 = γB0, where γ is the gy-
romagnetic constant. If, instead, we impose an external magnetic field
(B0 +Gz(z−z0))k, for some constant Gz, then the Larmor frequency is ω0

only within the plane z = z0. This external field now includes a gradient
field.

28.4 Tipping

When a magnetic dipole moment that is aligned with k is given a compo-
nent in the x, y-plane, it begins to precess around the z-axis, with frequency
equal to its Larmor frequency. To create this x, y-plane component, we ap-
ply a radio-frequency field (rf field)

H1(t)(cos(ωt)i + sin(ωt)j). (28.1)

The function H1(t) typically lasts only for a short while, and the effect
of imposing this rf field is to tip the aligned magnetic dipole moment axes

28.5. IMAGING 281

away from the z-axis, initiating precession. Those dipole axes that tip most
are those whose Larmor frequency is ω. Therefore, if we first isolate the
slice z = z0 and then choose ω = ω0, we tip primarily those dipole axes
within the plane z = z0. The dipoles that have been tipped ninety degrees
into the x, y-plane generate the strongest signal. How much tipping occurs
also depends on H1(t), so it is common to select H1(t) to be constant over
the time interval [0, τ], and zero elsewhere, with integral π

2γ . This H1(t)
is called a π

2 -pulse, and tips those axes with Larmor frequency ω0 into the
x, y-plane.

28.5 Imaging

The information we seek about the proton density function is contained
within the received signal. By carefully adding gradient fields to the ex-
ternal field, we can make the Larmor frequency spatially varying, so that
each frequency component of the received signal contains a piece of the
information we seek. The proton density function is then obtained through
Fourier transformations.

28.5.1 The Line-Integral Approach

Suppose that we have isolated the plane z = z0 and tipped the aligned axes
using a π

2 -pulse. After the tipping has been completed, we introduce an
external field (B0 + Gxx)k, so that now the Larmor frequency of dipoles
within the plane z = z0 is ω(x) = ω0 + γGxx, which depends on the x-
coordinate of the point. The result is that the component of the received
signal associated with the frequency ω(x) is due solely to those dipoles
having that x coordinate. Performing an FFT of the received signal gives
us line integrals of the density function along lines in the x, y-plane having
fixed x-coordinate.

More generally, if we introduce an external field (B0+Gxx+Gyy)k, the
Larmor frequency is constant at ω(x, y) = ω0 + γ(Gxx + Gyy) = ω0 + γs
along lines in the x, y-plane with equation

Gxx + Gyy = s. (28.2)

Again performing an FFT on the received signal, we obtain the integral of
the density function along these lines. In this way, we obtain the three-
dimensional Radon transform of the desired density function. The central
slice theorem for this case tells us that we can obtain the Fourier transform
of the density function by performing a one-dimensional Fourier transform
with respect to the variable s. For each fixed (Gx, Gy) we obtain this
Fourier transform along a ray through the origin. By varying the (Gx, Gy)
we get the entire Fourier transform. The desired density function is then
obtained by Fourier inversion.

282 CHAPTER 28. MAGNETIC-RESONANCE IMAGING

28.5.2 Phase Encoding

In the line-integral approach, the line-integral data is used to obtain values
of the Fourier transform of the density function along lines through the
origin in Fourier space. It would be more convenient to have Fourier-
transform values on the points of a rectangular grid. We can obtain this
by selecting the gradient fields to achieve phase encoding.

Suppose that, after the tipping has been performed, we impose the
external field (B0+Gyy)k for T seconds. The effect is to alter the precession
frequency from ω0 to ω(y) = ω0 + γGyy. A harmonic eiω0t is changed to

eiω0teiγGyyt, (28.3)

so that, after T seconds,we have

eiω0T eiγGyyT . (28.4)

For t ≥ T , the harmonic eiω0t returns, but now it is

eiω0teiγGyyT . (28.5)

The effect is to introduce a phase shift of γGyyT . Each point with the
same y-coordinate has the same phase shift.

After time T , when this gradient field is turned off, we impose a second
external field, (B0 + Gxx)k. Because this gradient field alters the Larmor
frequencies, at times t ≥ T the harmonic eiω0teiγGyyT is transformed into

eiω0teiγGyyT eiγGxxt. (28.6)

The received signal is now

S(t) = eiω0t

∫ ∫
ρ(x, y)eiγGyyT eiγGxxtdxdy, (28.7)

where ρ(x, y) is the value of the proton density function at (x, y). Removing
the eiω0t factor, we have∫ ∫

ρ(x, y)eiγGyyT eiγGxxtdxdy, (28.8)

which is the Fourier transform of ρ(x, y) at the point (γGxt, γGyT). By
selecting equi-spaced values of t and altering the Gy, we can get the Fourier
transform values on a rectangular grid.

28.6 The General Formulation

The external magnetic field generated in the MRI scanner is generally de-
scribed by

H(r, t) = (H0 + G(t) · r)k + H1(t)(cos(ωt)i + sin(ωt)j). (28.9)

28.7. THE RECEIVED SIGNAL 283

The vectors i, j, and k are the unit vectors along the coordinate axes,
and r = (x, y, z). The vector-valued function G(t) = (Gx(t), Gy(t), Gz(t))
produces the gradient field

G(t) · r. (28.10)

The magnetic field component in the x, y plane is the radio frequency (rf)
field.

If G(t) = 0, then the Larmor frequency is ω0 everywhere. Using ω = ω0

in the rf field, with a π
2 -pulse, will then tip the aligned axes into the x, y-

plane and initiate precession. If G(t) = θ, for some direction vector θ, then
the Larmor frequency is constant on planes θ · r = s. Using an rf field
with frequency ω = γ(H0 + s) and a π

2 -pulse will then tip the axes in this
plane into the x, y-plane. The strength of the received signal will then be
proportional to the integral, over this plane, of the proton density function.
Therefore, the measured data will be values of the three-dimensional Radon
transform of the proton density function, which is related to its three-
dimensional Fourier transform by the Central Slice Theorem. Later, we
shall consider two more widely used examples of G(t).

28.7 The Received Signal

We assume now that the function H1(t) is a short π
2 -pulse, that is, it has

constant value over a short time interval [0, τ] and has integral π
2γ . The

received signal produced by the precessing magnetic dipole moments is
approximately

S(t) =
∫

R3
ρ(r) exp(−iγ(

∫ t

0

G(s)ds) · r) exp(−t/T2)dr, (28.11)

where ρ(r) is the proton density function, and T2 is the transverse or spin-
spin relaxation time. The vector integral in the exponent is∫ t

0

G(s)ds = (
∫ t

0

Gx(s)ds,

∫ t

0

Gy(s)ds,

∫ t

0

Gz(s)ds). (28.12)

Now imagine approximating the function Gx(s) over the interval [0, t] by
a step function that is constant over small subintervals, that is, Gx(s)
is approximately Gx(n∆) for s in the interval [n∆, (n + 1)∆), with n =
1, ..., N and ∆ = t

N . During the interval [n∆, (n + 1)∆), the presence of
this gradient field component causes the phase to change by the amount
xγGx(n∆)∆, so that by the time we reach s = t the phase has changed by

x
N∑

n=1

Gx(n∆)∆, (28.13)

which is approximately x
∫ t

0
Gx(s)ds.

284 CHAPTER 28. MAGNETIC-RESONANCE IMAGING

28.7.1 An Example of G(t)

Suppose now that g > 0 and θ is an arbitrary direction vector. Let

G(t) = gθ, for τ ≤ t, (28.14)

and G(t) = 0 otherwise. Then the received signal S(t) is

S(t) =
∫

R3
ρ(r) exp(−iγg(t− τ)θ · r)dr (28.15)

= (2π)3/2ρ̂(γg(t− τ)θ), (28.16)

for τ ≤ t << T2, where ρ̂ denotes the three-dimensional Fourier transform
of the function ρ(r).

From Equation (28.16) we see that, by selecting different direction vec-
tors and by sampling the received signal S(t) at various times, we can
obtain values of the Fourier transform of ρ along lines through the origin
in the Fourier domain, called k-space. If we had these values for all θ and
for all t we would be able to determine ρ(r) exactly. Instead, we have much
the same problem as in transmission tomography; only finitely many θ and
only finitely many samples of S(t). Noise is also a problem, because the
resonance signal is not strong, even though the external magnetic field is.

We may wish to avoid having to estimate the function ρ(r) from finitely
many noisy values of its Fourier transform. We can do this by selecting the
gradient field G(t) differently.

28.7.2 Another Example of G(t)

The vector-valued function G(t) can be written as

G(t) = (G1(t), G2(t), G3(t)). (28.17)

Now we let

G2(t) = g2, (28.18)

and

G3(t) = g3, (28.19)

for 0 ≤ t ≤ τ , and zero otherwise, and

G1(t) = g1, (28.20)

for τ ≤ t, and zero otherwise. This means that only H0k and the rf field
are present up to time τ , and then the rf field is shut off and the gradient
field is turned on. Then, for t ≥ τ , we have

S(t) = (2π)3/2M̂0(γ(t− τ)g1, γτg2, γτg3). (28.21)

28.7. THE RECEIVED SIGNAL 285

By selecting

tn = n∆t + τ, for n = 1, ..., N, (28.22)

g2k = k∆g, (28.23)

and

g3i = i∆g, (28.24)

for i, k = −m, ...,m we have values of the Fourier transform, M̂0, on a
Cartesian grid in three-dimensional k-space. The proton density function,
ρ, can then be approximated using the fast Fourier transform.

286 CHAPTER 28. MAGNETIC-RESONANCE IMAGING

Chapter 29

Hyperspectral Imaging

Hyperspectral image processing provides an excellent example of the need
for estimating Fourier transform values from limited data. In this chapter
we describe one novel approach, due to Mooney et al. [126]; the presenta-
tion here follows [19].

29.1 Spectral Component Dispersion

In this hyperspectral-imaging problem the electromagnetic energy reflected
or emitted by a point, such as light reflected from a location on the earth’s
surface, is passed through a prism to separate the components as to their
wavelengths. Due to the dispersion of the different frequency components
caused by the prism, these components are recorded in the image plane
not at a single spatial location, but at distinct points along a line. Since
the received energy comes from a region of points, not a single point, what
is received in the image plane is a superposition of different wavelength
components associated with different points within the object. The first
task is to reorganize the data so that each location in the image plane is
associated with all the components of a single point of the object being
imaged; this is a Fourier-transform estimation problem, which we can solve
using band-limited extrapolation.

The points of the image plane are in one-to-one correspondence with
points of the object. These spatial locations in the image plane and in
the object are discretized into finite two-dimensional grids. Once we have
reorganized the data we have, for each grid point in the image plane, a
function of wavelength, describing the intensity of each component of the
energy from the corresponding grid point on the object. Practical con-
siderations limit the fineness of the grid in the image plane; the resulting
discretization of the object is into pixels. In some applications, such as

287

288 CHAPTER 29. HYPERSPECTRAL IMAGING

satellite imaging, a single pixel may cover an area several meters on a
side. Achieving subpixel resolution is one goal of hyperspectral imaging;
capturing other subtleties of the scene is another.

Within a single pixel of the object, there may well be a variety of ob-
ject types, each reflecting or emitting energy differently. The data we now
have corresponding to a single pixel are therefore a mixture of the ener-
gies associated with each of the subobjects within the pixel. With prior
knowledge of the possible types and their reflective or emissive properties,
we can separate the mixture to determine which object types are present
within the pixel and to what extent. This mixture problem can be solved
using the RBI-EMML method.

29.2 A Single Point Source

From an abstract perspective the problem is the following: F and f are a
Fourier-transform pair, as are G and g; F and G have finite support. We
measure G and want F ; g determines some, but not all, of the values of
f . We will have, of course, only finitely many measurements of G from
which to estimate values of g. Having estimated finitely many values of g,
we have the corresponding estimates of f . We apply band-limited extrap-
olation of these finitely many values of f to estimate F . In fact, once we
have estimated values of F , we may not be finished; each value of F is a
mixture whose individual components may be what we really want. For
this unmixing step we use the RBI-EMML algorithm.

The region of the object that we wish to image is described by the two-
dimensional spatial coordinate x = (x1, x2). For simplicity, we take these
coordinates to be continuous, leaving until the end the issue of discretiza-
tion. We shall also denote by x the point in the image plane corresponding
to the point x on the object; the units of distance between two such points
in one plane and their corresponding points in the other plane may, of
course, be quite different. For each x we let F (x, λ) denote the intensity
of the component at wavelength λ of the electromagnetic energy that is
reflected from or emitted by location x. We shall assume that F (x, λ) = 0
for (x, λ) outside some bounded portion of three-dimensional space.

Consider, for a moment, the case in which the energy sensed by the
imaging system comes from a single point x. If the dispersion axis of the
prism is oriented according to the unit vector pθ, for some θ ∈ [0, 2π),
then the component at wavelength λ of the energy from x on the object
is recorded not at x in the image plane but at the point x + µ(λ− λ0)pθ.
Here, µ > 0 is a constant and λ0 is the wavelength for which the component
from point x of the object is recorded at x in the image plane.

29.3. MULTIPLE POINT SOURCES 289

29.3 Multiple Point Sources

Now imagine energy coming to the imaging system for all the points within
the imaged region of the object. Let G(x, θ) be the intensity of the energy
received at location x in the image plane when the prism orientation is θ.
It follows from the description of the sensing that

G(x, θ) =
∫ +∞

−∞
F (x− µ(λ− λ0)pθ, λ)dλ. (29.1)

The limits of integration are not really infinite due to the finiteness of the
aperture and the focal plane of the imaging system. Our data will consist
of finitely many values of G(x, θ), as x varies over the grid points of the
image plane and θ varies over some finite discretized set of angles.

We begin the image processing by taking the two-dimensional inverse
Fourier transform of G(x, θ) with respect to the spatial variable x to get

g(y, θ) =
1

(2π)2

∫
G(x, θ) exp(−ix · y)dx. (29.2)

Inserting the expression for G in Equation (29.1) into Equation (29.2), we
obtain

g(y, θ) = exp(iµλ0pθ · y)
∫

exp(−iµλpθ · y)f(y, λ)dλ, (29.3)

where f(y, λ) is the two-dimensional inverse Fourier transform of F (x, λ)
with respect to the spatial variable x. Therefore,

g(y, θ) = exp(iµλ0pθ · y)F(y, γθ), (29.4)

where F(y, γ) denotes the three-dimensional inverse Fourier transform of
F (x, λ) and γθ = µpθ · y. We see then that each value of g(y, θ) that we
estimate from our measurements provides us with a single estimated value
of F .

We use the measured values of G(x, θ) to estimate values of g(y, θ)
guided by the discussion in our earlier chapter on discretization. Having
obtained finitely many estimated values of F , we use the support of the
function F (x, λ) in three-dimensional space to perform a band-limited ex-
trapolation estimate of the function F .

Alternatively, for each fixed y for which we have values of g(y, θ) we
use the PDFT or MDFT to solve Equation (29.3), obtaining an estimate
of f(y, λ) as a function of the continuous variable λ. Then, for each fixed
λ, we again use the PDFT or MDFT to estimate F (x, λ) from the values
of f(y, λ) previously obtained.

290 CHAPTER 29. HYPERSPECTRAL IMAGING

29.4 Solving the Mixture Problem

Once we have the estimated function F (x, λ) on a finite grid in three-
dimensional space, we can use the RBI-EMML method, as in [125], to solve
the mixture problem and identify the individual object types contained
within the single pixel denoted x. For each fixed x corresponding to a pixel,
denote by b = (b1, ..., bI)T the column vector with entries bi = F (x, λi),
where λi, i = 1, ..., I constitute a discretization of the wavelength space
of those λ for which F (x, λ) > 0. We assume that this energy intensity
distribution vector b is a superposition of those vectors corresponding to a
number of different object types; that is, we assume that

b =
J∑

j=1

ajqj , (29.5)

for some aj ≥ 0 and intensity distribution vectors qj , j = 1, ..., J . Each
column vector qj is a model for what b would be if there had been only
one object type filling the entire pixel. These qj are assumed to be known
a priori. Our objective is to find the aj .

With Q the I by J matrix whose jth column is qj and a the column
vector with entries aj we write Equation (29.5) as b = Qa. Since the
entries of Q are nonnegative, the entries of b are positive, and we seek
a nonnegative solution a, we can use any of the entropy-based iterative
algorithms discussed earlier. Because of its simplicity of form and speed
of convergence our preference is the RBI-EMML algorithm. The recent
master’s thesis of E. Meidunas [125] discusses just such an application.

Chapter 30

Planewave Propagation

In this chapter we demonstrate how the Fourier transform arises naturally
as we study the signals received in the farfield from an array of tranmitters
or reflectors. We restrict our attention to single-frequency, or narrowband,
signals.

30.1 Transmission and Remote-Sensing

For pedagogical reasons, we shall discuss separately what we shall call the
transmission and the remote-sensing problems, although the two problems
are opposite sides of the same coin, in a sense. In the one-dimensional
transmission problem, it is convenient to imagine the transmitters located
at points (x, 0) within a bounded interval [−A,A] of the x-axis, and the
measurements taken at points P lying on a circle of radius D, centered
at the origin. The radius D is large, with respect to A. It may well be
the case that no actual sensing is to be performed, but rather, we are
simply interested in what the received signal pattern is at points P distant
from the transmitters. Such would be the case, for example, if we were
analyzing or constructing a transmission pattern of radio broadcasts. In the
remote-sensing problem, in contrast, we imagine, in the one-dimensional
case, that our sensors occupy a bounded interval of the x-axis, and the
transmitters or reflectors are points of a circle whose radius is large, with
respect to the size of the bounded interval. The actual size of the radius
does not matter and we are interested in determining the amplitudes of the
transmitted or reflected signals, as a function of angle only. Such is the case
in astronomy, farfield sonar or radar, and the like. Both the transmission
and remote-sensing problems illustrate the important role played by the
Fourier transform.

291

292 CHAPTER 30. PLANEWAVE PROPAGATION

30.2 The Transmission Problem

We identify two distinct transmission problems: the direct problem and
the inverse problem. In the direct transmission problem, we wish to deter-
mine the farfield pattern, given the complex amplitudes of the transmitted
signals. In the inverse transmission problem, the array of transmitters or
reflectors is the object of interest; we are given, or we measure, the farfield
pattern and wish to determine the amplitudes. For simplicity, we consider
only single-frequency signals.

We suppose that each point x in the interval [−A,A] transmits the
signal f(x)eiωt, where f(x) is the complex amplitude of the signal and
ω > 0 is the common fixed frequency of the signals. Let D > 0 be large,
with respect to A, and consider the signal received at each point P given
in polar coordinates by P = (D, θ). The distance from (x, 0) to P is
approximately D − x cos θ, so that, at time t, the point P receives from
(x, 0) the signal f(x)eiω(t−(D−x cos θ)/c), where c is the propagation speed.
Therefore, the combined signal received at P is

B(P, t) = eiωte−iωD/c

∫ A

−A

f(x)eix ω cos θ
c dx. (30.1)

The integral term, which gives the farfield pattern of the tranmission, is

F (
ω cos θ

c
) =

∫ A

−A

f(x)eix ω cos θ
c dx, (30.2)

where F (γ) is the Fourier transform of f(x), given by

F (γ) =
∫ A

−A

f(x)eixγdx. (30.3)

How F (ω cos θ
c) behaves, as a function of θ, as we change A and ω, is dis-

cussed in some detail in Chapter 12 of [47].
Consider, for example, the function f(x) = 1, for |x| ≤ A, and f(x) = 0,

otherwise. The Fourier transform of f(x) is

F (γ) = 2Asinc(Aγ), (30.4)

where sinc(t) is defined to be

sinc(t) =
sin(t)

t
, (30.5)

for t 6= 0, and sinc(0) = 1. Then F (ω cos θ
c) = 2A when cos θ = 0, so when

θ = π
2 and θ = 3π

2 . We will have F (ω cos θ
c) = 0 when Aω cos θ

c = π, or
cos θ = πc

Aω . Therefore, the transmission pattern has no nulls if πc
Aω > 1. In

30.3. RECIPROCITY 293

order for the transmission pattern to have nulls, we need A > λ
2 , where λ =

2πc
ω is the wavelength. This rather counterintuitive fact, namely that we

need more signals transmitted in order to receive less at certain locations,
illustrates the phenomenon of destructive interference.

30.3 Reciprocity

For certain remote-sensing applications, such as sonar and radar array pro-
cessing and astronomy, it is convenient to switch the roles of sender and
receiver. Imagine that superimposed planewave fields are sensed at points
within some bounded region of the interior of the sphere, having been
transmitted or reflected from the points P on the surface of a sphere whose
radius D is large with respect to the bounded region. The reciprocity prin-
ciple tells us that the same mathematical relation holds between points P
and (x, 0), regardless of which is the sender and which the receiver. Con-
sequently, the data obtained at the points (x, 0) are then values of the
inverse Fourier transform of the function describing the amplitude of the
signal sent from each point P .

30.4 Remote Sensing

A basic problem in remote sensing is to determine the nature of a distant
object by measuring signals transmitted by or reflected from that object.
If the object of interest is sufficiently remote, that is, is in the farfield, the
data we obtain by sampling the propagating spatio-temporal field is related,
approximately, to what we want by Fourier transformation. The problem
is then to estimate a function from finitely many (usually noisy) values
of its Fourier transform. The application we consider here is a common
one of remote-sensing of transmitted or reflected waves propagating from
distant sources. Examples include optical imaging of planets and asteroids
using reflected sunlight, radio-astronomy imaging of distant sources of radio
waves, active and passive sonar, and radar imaging.

30.5 The Wave Equation

In many areas of remote sensing, what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u, (30.6)

294 CHAPTER 30. PLANEWAVE PROPAGATION

where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More
complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.

We use the method of separation of variables at this point, to get some
idea about the nature of solutions of the wave equation. Assume, for the
moment, that the solution u(t, x, y, z) has the simple form

u(t, x, y, z) = f(t)g(x, y, z). (30.7)

Inserting this separated form into the wave equation, we get

f ′′(t)g(x, y, z) = c2f(t)∇2g(x, y, z) (30.8)

or

f ′′(t)/f(t) = c2∇2g(x, y, z)/g(x, y, z). (30.9)

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

f ′′(t) + ω2f(t) = 0, (30.10)

and

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0. (30.11)

Equation (30.11) is the Helmholtz equation.
Equation (30.10) has for its solutions the functions f(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions f(t) = eiωt

and f(t) = e−iωt. Functions u(t, x, y, z) = f(t)g(x, y, z) with such time
dependence are called time-harmonic solutions.

30.6 Planewave Solutions

Suppose that, beginning at time t = 0, there is a localized disturbance.
As time passes, that disturbance spreads out spherically. When the radius
of the sphere is very large, the surface of the sphere appears planar, to
an observer on that surface, who is said then to be in the far field. This
motivates the study of solutions of the wave equation that are constant on
planes; the so-called planewave solutions.

30.7. SUPERPOSITION AND THE FOURIER TRANSFORM 295

Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Then we can show
that u satisfies the wave equation utt = c2∇2u for any real vector k, so long
as ||k||2 = ω2/c2. This solution is a planewave associated with frequency
ω and wavevector k; at any fixed time the function u(s, t) is constant on
any plane in three-dimensional space having k as a normal vector.

In radar and sonar, the field u(s, t) being sampled is usually viewed as
a discrete or continuous superposition of planewave solutions with various
amplitudes, frequencies, and wavevectors. We sample the field at various
spatial locations s, for various times t. Here we simplify the situation a
bit by assuming that all the planewave solutions are associated with the
same frequency, ω. If not, we can perform an FFT on the functions of time
received at each sensor location s and keep only the value associated with
the desired frequency ω.

30.7 Superposition and the Fourier Transform

In the continuous superposition model, the field is

u(s, t) = eiωt

∫
F (k)eik·sdk. (30.12)

Our measurements at the sensor locations s give us the values

f(s) =
∫

F (k)eik·sdk. (30.13)

The data are then Fourier transform values of the complex function F (k);
F (k) is defined for all three-dimensional real vectors k, but is zero, in
theory, at least, for those k whose squared length ||k||2 is not equal to
ω2/c2. Our goal is then to estimate F (k) from measured values of its
Fourier transform. Since each k is a normal vector for its planewave field
component, determining the value of F (k) will tell us the strength of the
planewave component coming from the direction k.

30.7.1 The Spherical Model

We can imagine that the sources of the planewave fields are the points P
that lie on the surface of a large sphere centered at the origin. For each
P , the ray from the origin to P is parallel to some wavevector k. The
function F (k) can then be viewed as a function F (P) of the points P . Our
measurements will be taken at points s inside this sphere. The radius of
the sphere is assumed to be orders of magnitude larger than the distance
between sensors. The situation is that of astronomical observation of the
heavens using ground-based antennas. The sources of the optical or electro-
magnetic signals reaching the antennas are viewed as lying on a large sphere

296 CHAPTER 30. PLANEWAVE PROPAGATION

surrounding the earth. Distance to the sources is not considered now, and
all we are interested in are the amplitudes F (k) of the fields associated
with each direction k.

30.8 Sensor Arrays

In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays.

30.8.1 The Two-Dimensional Array

Suppose now that the sensors are in locations s = (x, y, 0), for various x
and y; then we have a planar array of sensors. Then the dot product s · k
that occurs in Equation (30.13) is

s · k = xk1 + yk2; (30.14)

we cannot see the third component, k3. However, since we know the size
of the vector k, we can determine |k3|. The only ambiguity that remains
is that we cannot distinguish sources on the upper hemisphere from those
on the lower one. In most cases, such as astronomy, it is obvious in which
hemisphere the sources lie, so the ambiguity is resolved.

The function F (k) can then be viewed as F (k1, k2), a function of the
two variables k1 and k2. Our measurements give us values of f(x, y), the
two-dimensional Fourier transform of F (k1, k2). Because of the limitation
||k|| = ω

c , the function F (k1, k2) has bounded support. Consequently, its
Fourier transform cannot have bounded support. As a result, we can never
have all the values of f(x, y), and so cannot hope to reconstruct F (k1, k2)
exactly, even for noise-free data.

30.8.2 The One-Dimensional Array

If the sensors are located at points s having the form s = (x, 0, 0), then we
have a line array of sensors. The dot product in Equation (30.13) becomes

s · k = xk1. (30.15)

Now the ambiguity is greater than in the planar array case. Once we have
k1, we know that

k2
2 + k2

3 = (
ω

c
)2 − k2

1, (30.16)

which describes points P lying on a circle on the surface of the distant
sphere, with the vector (k1, 0, 0) pointing at the center of the circle. It

30.9. THE REMOTE-SENSING PROBLEM 297

is said then that we have a cone of ambiguity. One way to resolve the
situation is to assume k3 = 0; then |k2| can be determined and we have
remaining only the ambiguity involving the sign of k2. Once again, in many
applications, this remaining ambiguity can be resolved by other means.

Once we have resolved any ambiguity, we can view the function F (k)
as F (k1), a function of the single variable k1. Our measurements give us
values of f(x), the Fourier transform of F (k1). As in the two-dimensional
case, the restriction on the size of the vectors k means that the function
F (k1) has bounded support. Consequently, its Fourier transform, f(x),
cannot have bounded support. Therefore, we shall never have all of f(x),
and so cannot hope to reconstruct F (k1) exactly, even for noise-free data.

30.8.3 Limited Aperture

In both the one- and two-dimensional problems, the sensors will be placed
within some bounded region, such as |x| ≤ A, |y| ≤ B for the two-
dimensional problem, or |x| ≤ A for the one-dimensional case. These
bounded regions are the apertures of the arrays. The larger these apertures
are, in units of the wavelength, the better the resolution of the reconstruc-
tions.

In digital array processing there are only finitely many sensors, which
then places added limitations on our ability to reconstruction the field
amplitude function F (k).

30.9 The Remote-Sensing Problem

We shall begin our discussion of the remote-sensing problem by consid-
ering an extended object transmitting or reflecting a single-frequency, or
narrowband, signal. The narrowband, extended-object case is a good place
to begin, since a point object is simply a limiting case of an extended ob-
ject, and broadband received signals can always be filtered to reduce their
frequency band.

30.9.1 The Solar-Emission Problem

In [16] Bracewell discusses the solar-emission problem. In 1942, it was
observed that radio-wave emissions in the one-meter wavelength range were
arriving from the sun. Were they coming from the entire disk of the sun
or were the sources more localized, in sunspots, for example? The problem
then was to view each location on the sun’s surface as a potential source of
these radio waves and to determine the intensity of emission corresponding
to each location.

For electromagnetic waves the propagation speed is the speed of light
in a vacuum, which we shall take here to be c = 3× 108 meters per second.

298 CHAPTER 30. PLANEWAVE PROPAGATION

The wavelength λ for gamma rays is around one Angstrom, which is 10−10

meters; for x-rays it is about one millimicron, or 10−9 meters. The visi-
ble spectrum has wavelengths that are a little less than one micron, that
is, 10−6 meters. Shortwave radio has a wavelength around one millime-
ter; microwaves have wavelengths between one centimeter and one meter.
Broadcast radio has a λ running from about 10 meters to 1000 meters,
while the so-called long radio waves can have wavelengths several thousand
meters long.

The sun has an angular diameter of 30 min. of arc, or one-half of a
degree, when viewed from earth, but the needed resolution was more like
3 min. of arc. As we shall see shortly, such resolution requires a radio
telescope 1000 wavelengths across, which means a diameter of 1km at a
wavelength of 1 meter; in 1942 the largest military radar antennas were
less than 5 meters across. A solution was found, using the method of
reconstructing an object from line-integral data, a technique that surfaced
again in tomography. The problem here is inherently two-dimensional, but,
for simplicity, we shall begin with the one-dimensional case.

30.10 Sampling

In the one-dimensional case, the signal received at the point (x, 0, 0) is
essentially the inverse Fourier transform f(x) of the function F (k1); for
notational simplicity, we write k = k1. The F (k) supported on a bounded
interval |k| ≤ ω

c , so f(x) cannot have bounded support. As we noted
earlier, to determine F (k) exactly, we would need measurements of f(x)
on an unbounded set. But, which unbounded set?

Because the function F (k) is zero outside the interval [−ω
c , ω

c], the func-
tion f(x) is band-limited. The Nyquist spacing in the variable x is therefore

∆x =
πc

ω
. (30.17)

The wavelength λ associated with the frequency ω is defined to be

λ =
2πc

ω
, (30.18)

so that

∆x =
λ

2
. (30.19)

The significance of the Nyquist spacing comes from Shannon’s Sampling
Theorem, which says that if we have the values f(m∆x), for all integers m,
then we have enough information to recover F (k) exactly. In practice, of
course, this is never the case.

30.11. THE LIMITED-APERTURE PROBLEM 299

30.11 The Limited-Aperture Problem

In the remote-sensing problem, our measurements at points (x, 0, 0) in the
farfield give us the values f(x). Suppose now that we are able to take
measurements only for limited values of x, say for |x| ≤ A; then 2A is the
aperture of our antenna or array of sensors. We describe this by saying that
we have available measurements of f(x)h(x), where h(x) = χA(x) = 1, for
|x| ≤ A, and zero otherwise. So, in addition to describing blurring and
low-pass filtering, the convolution-filter model can also be used to model
the limited-aperture problem. As in the low-pass case, the limited-aperture
problem can be attacked using extrapolation, but with the same sort of risks
described for the low-pass case. A much different approach is to increase
the aperture by physically moving the array of sensors, as in synthetic
aperture radar (SAR).

Returning to the farfield remote-sensing model, if we have Fourier trans-
form data only for |x| ≤ A, then we have f(x) for |x| ≤ A. Using
h(x) = χA(x) to describe the limited aperture of the system, the point-
spread function is H(γ) = 2Asinc(γA), the Fourier transform of h(x). The
first zeros of the numerator occur at |γ| = π

A , so the main lobe of the
point-spread function has width 2π

A . For this reason, the resolution of such
a limited-aperture imaging system is said to be on the order of 1

A . Since
|k| ≤ ω

c , we can write k = ω
c cos θ, where θ denotes the angle between

the positive x-axis and the vector k = (k1, k2, 0); that is, θ points in the
direction of the point P associated with the wavevector k. The resolution,
as measured by the width of the main lobe of the point-spread function
H(γ), in units of k, is 2π

A , but, the angular resolution will depend also on
the frequency ω. Since k = 2π

λ cos θ, a distance of one unit in k may corre-
spond to a large change in θ when ω is small, but only to a relatively small
change in θ when ω is large. For this reason, the aperture of the array is
usually measured in units of the wavelength; an aperture of A = 5 meters
may be acceptable if the frequency is high, so that the wavelength is small,
but not if the radiation is in the one-meter-wavelength range.

30.12 Resolution

If F (k) = δ(k) and h(x) = χA(x) describes the aperture-limitation of the
imaging system, then the point-spread function is H(γ) = 2Asinc(γA).
The maximum of H(γ) still occurs at γ = 0, but the main lobe of H(γ)
extends from − π

A to π
A ; the point source has been spread out. If the point-

source object shifts, so that F (k) = δ(k−a), then the reconstructed image
of the object is H(k−a), so the peak is still in the proper place. If we know
a priori that the object is a single point source, but we do not know its
location, the spreading of the point poses no problem; we simply look for

300 CHAPTER 30. PLANEWAVE PROPAGATION

the maximum in the reconstructed image. Problems arise when the object
contains several point sources, or when we do not know a priori what we
are looking at, or when the object contains no point sources, but is just a
continuous distribution.

Suppose that F (k) = δ(k − a) + δ(k − b); that is, the object consists
of two point sources. Then Fourier transformation of the aperture-limited
data leads to the reconstructed image

R(k) = 2A
(
sinc(A(k − a)) + sinc(A(k − b))

)
. (30.20)

If |b − a| is large enough, R(k) will have two distinct maxima, at approx-
imately k = a and k = b, respectively. For this to happen, we need π/A,
the width of the main lobe of the function sinc(Ak), to be less than |b−a|.
In other words, to resolve the two point sources a distance |b−a| apart, we
need A ≥ π/|b − a|. However, if |b − a| is too small, the distinct maxima
merge into one, at k = a+b

2 and resolution will be lost. How small is too
small will depend on both A and ω.

Suppose now that F (k) = δ(k − a), but we do not know a priori that
the object is a single point source. We calculate

R(k) = H(k − a) = 2Asinc(A(k − a)) (30.21)

and use this function as our reconstructed image of the object, for all k.
What we see when we look at R(k) for some k = b 6= a is R(b), which is
the same thing we see when the point source is at k = b and we look at
k = a. Point-spreading is, therefore, more than a cosmetic problem. When
the object is a point source at k = a, but we do not know a priori that it
is a point source, the spreading of the point causes us to believe that the
object function F (k) is nonzero at values of k other than k = a. When we
look at, say, k = b, we see a nonzero value that is caused by the presence
of the point source at k = a.

Suppose now that the object function F (k) contains no point sources,
but is simply an ordinary function of k. If the aperture A is very small, then
the function H(k) is nearly constant over the entire extent of the object.
The convolution of F (k) and H(k) is essentially the integral of F (k), so
the reconstructed object is R(k) =

∫
F (k)dk, for all k.

Let’s see what this means for the solar-emission problem discussed ear-
lier.

30.12.1 The Solar-Emission Problem Revisited

The wavelength of the radiation is λ = 1 meter. Therefore, ω
c = 2π, and

k in the interval [−2π, 2π] corresponds to the angle θ in [0, π]. The sun
has an angular diameter of 30 minutes of arc, which is about 10−2 radians.
Therefore, the sun subtends the angles θ in [π

2 −(0.5)·10−2, π
2 +(0.5)·10−2],

30.13. DISCRETE DATA 301

which corresponds roughly to the variable k in the interval [−3 · 10−2, 3 ·
10−2]. Resolution of 3 minutes of arc means resolution in the variable k of
3 · 10−3. If the aperture is 2A, then to achieve this resolution, we need

π

A
≤ 3 · 10−3, (30.22)

or

A ≥ π

3
· 103 (30.23)

meters, or A not less than about 1000 meters.
The radio-wave signals emitted by the sun are focused, using a parabolic

radio-telescope. The telescope is pointed at the center of the sun. Because
the sun is a great distance from the earth and the subtended arc is small
(30 min.), the signals from each point on the sun’s surface arrive at the
parabola nearly head-on, that is, parallel to the line from the vertex to the
focal point, and are reflected to the receiver located at the focal point of
the parabola. The effect of the parabolic antenna is not to discriminate
against signals coming from other directions, since there are none, but to
effect a summation of the signals received at points (x, 0, 0), for |x| ≤ A,
where 2A is the diameter of the parabola. When the aperture is large, the
function h(x) is nearly one for all x and the signal received at the focal
point is essentially ∫

f(x)dx = F (0); (30.24)

we are now able to distinguish between F (0) and other values F (k). When
the aperture is small, h(x) is essentially δ(x) and the signal received at the
focal point is essentially∫

f(x)δ(x)dx = f(0) =
∫

F (k)dk; (30.25)

now all we get is the contribution from all the k, superimposed, and all
resolution is lost.

Since the solar emission problem is clearly two-dimensional, and we need
3 min. resolution in both dimensions, it would seem that we would need a
circular antenna with a diameter of about one kilometer, or a rectangular
antenna roughly one kilometer on a side. We shall return to this problem
later, once when we discuss multi-dimensional Fourier transforms, and then
again when we consider tomographic reconstruction of images from line
integrals.

30.13 Discrete Data

A familiar topic in signal processing is the passage from functions of con-
tinuous variables to discrete sequences. This transition is achieved by sam-

302 CHAPTER 30. PLANEWAVE PROPAGATION

pling, that is, extracting values of the continuous-variable function at dis-
crete points in its domain. Our example of farfield propagation can be used
to explore some of the issues involved in sampling.

Imagine an infinite uniform line array of sensors formed by placing
receivers at the points (n∆, 0, 0), for some ∆ > 0 and all integers n. Then
our data are the values f(n∆). Because we defined k = ω

c cos θ, it is clear
that the function F (k) is zero for k outside the interval [−ω

c , ω
c].

Our discrete array of sensors cannot distinguish between the signal ar-
riving from θ and a signal with the same amplitude, coming from an angle
α with

ω

c
cos α =

ω

c
cos θ +

2π

∆
m, (30.26)

where m is an integer. To resolve this ambiguity, we select ∆ > 0 so that

−ω

c
+

2π

∆
≥ ω

c
, (30.27)

or

∆ ≤ πc

ω
=

λ

2
. (30.28)

The sensor spacing ∆s = λ
2 is the Nyquist spacing.

In the sunspot example, the object function F (k) is zero for k outside
of an interval much smaller than [−ω

c , ω
c]. Knowing that F (k) = 0 for

|k| > K, for some 0 < K < ω
c , we can accept ambiguities that confuse

θ with another angle that lies outside the angular diameter of the object.
Consequently, we can redefine the Nyquist spacing to be

∆s =
π

K
. (30.29)

This tells us that when we are imaging a distant object with a small angular
diameter, the Nyquist spacing is greater than λ

2 . If our sensor spacing has
been chosen to be λ

2 , then we have oversampled. In the oversampled case,
band-limited extrapolation methods can be used to improve resolution (see
[47]).

30.13.1 Reconstruction from Samples

From the data gathered at our infinite array we have extracted the Fourier
transform values f(n∆), for all integers n. The obvious question is whether
or not the data is sufficient to reconstruct F (k). We know that, to avoid
ambiguity, we must have ∆ ≤ πc

ω . The good news is that, provided this
condition holds, F (k) is uniquely determined by this data and formulas
exist for reconstructing F (k) from the data; this is the content of the

30.14. THE FINITE-DATA PROBLEM 303

Shannon Sampling Theorem. Of course, this is only of theoretical interest,
since we never have infinite data. Nevertheless, a considerable amount of
traditional signal-processing exposition makes use of this infinite-sequence
model. The real problem, of course, is that our data is always finite.

30.14 The Finite-Data Problem

Suppose that we build a uniform line array of sensors by placing receivers
at the points (n∆, 0, 0), for some ∆ > 0 and n = −N, ..., N . Then our data
are the values f(n∆), for n = −N, ..., N . Suppose, as previously, that the
object of interest, the function F (k), is nonzero only for values of k in the
interval [−K, K], for some 0 < K < ω

c . Once again, we must have ∆ ≤ πc
ω

to avoid ambiguity; but this is not enough, now. The finite Fourier data
is no longer sufficient to determine a unique F (k). The best we can hope
to do is to estimate the true F (k), using both our measured Fourier data
and whatever prior knowledge we may have about the function F (k), such
as where it is nonzero, if it consists of Dirac delta point sources, or if it is
nonnegative. The data is also noisy, and that must be accounted for in the
reconstruction process.

In certain applications, such as sonar array processing, the sensors are
not necessarily arrayed at equal intervals along a line, or even at the grid
points of a rectangle, but in an essentially arbitrary pattern in two, or even
three, dimensions. In such cases, we have values of the Fourier transform
of the object function, but at essentially arbitrary values of the variable.
How best to reconstruct the object function in such cases is not obvious.

30.15 Functions of Several Variables

Fourier transformation applies, as well, to functions of several variables. As
in the one-dimensional case, we can motivate the multi-dimensional Fourier
transform using the farfield propagation model. As we noted earlier, the
solar emission problem is inherently a two-dimensional problem.

30.15.1 Two-Dimensional Farfield Object

Assume that our sensors are located at points s = (x, y, 0) in the x,y-plane.
As discussed previously, we assume that the function F (k) can be viewed
as a function F (k1, k2). Since, in most applications, the distant object has
a small angular diameter when viewed from a great distance - the sun’s is
only 30 minutes of arc - the function F (k1, k2) will be supported on a small
subset of vectors (k1, k2).

304 CHAPTER 30. PLANEWAVE PROPAGATION

30.15.2 Limited Apertures in Two Dimensions

Suppose we have the values of the Fourier transform, f(x, y), for |x| ≤ A
and |y| ≤ A. We describe this limited-data problem using the function
h(x, y) that is one for |x| ≤ A, and |y| ≤ A, and zero, otherwise. Then the
point-spread function is the Fourier transform of this h(x, y), given by

H(α, β) = 4ABsinc(Aα)sinc(Bβ). (30.30)

The resolution in the horizontal (x) direction is on the order of 1
A , and

1
B in the vertical, where, as in the one-dimensional case, aperture is best
measured in units of wavelength.

Suppose our aperture is circular, with radius A. Then we have Fourier
transform values f(x, y) for

√
x2 + y2 ≤ A. Let h(x, y) equal one, for√

x2 + y2 ≤ A, and zero, otherwise. Then the point-spread function of
this limited-aperture system is the Fourier transform of h(x, y), given by
H(α, β) = 2πA

r J1(rA), with r =
√

α2 + β2. The resolution of this system is
roughly the distance from the origin to the first null of the function J1(rA),
which means that rA = 4, roughly.

For the solar emission problem, this says that we would need a circular
aperture with radius approximately one kilometer to achieve 3 minutes of
arc resolution. But this holds only if the antenna is stationary; a moving
antenna is different! The solar emission problem was solved by using a
rectangular antenna with a large A, but a small B, and exploiting the
rotation of the earth. The resolution is then good in the horizontal, but bad
in the vertical, so that the imaging system discriminates well between two
distinct vertical lines, but cannot resolve sources within the same vertical
line. Because B is small, what we end up with is essentially the integral
of the function f(x, z) along each vertical line. By tilting the antenna, and
waiting for the earth to rotate enough, we can get these integrals along
any set of parallel lines. The problem then is to reconstruct F (k1, k2) from
such line integrals. This is also the main problem in tomography.

30.16 Broadband Signals

We have spent considerable time discussing the case of a distant point
source or an extended object transmitting or reflecting a single-frequency
signal. If the signal consists of many frequencies, the so-called broadband
case, we can still analyze the received signals at the sensors in terms of
time delays, but we cannot easily convert the delays to phase differences,
and thereby make good use of the Fourier transform. One approach is
to filter each received signal, to remove components at all but a single
frequency, and then to proceed as previously discussed. In this way we can
process one frequency at a time. The object now is described in terms of a

30.16. BROADBAND SIGNALS 305

function of both k and ω, with F (k, ω) the complex amplitude associated
with the wave vector k and the frequency ω. In the case of radar, the
function F (k, ω) tells us how the material at P reflects the radio waves at
the various frequencies ω, and thereby gives information about the nature
of the material making up the object near the point P .

There are times, of course, when we do not want to decompose a broad-
band signal into single-frequency components. A satellite reflecting a TV
signal is a broadband point source. All we are interested in is receiving the
broadband signal clearly, free of any other interfering sources. The direc-
tion of the satellite is known and the antenna is turned to face the satellite.
Each location on the parabolic dish reflects the same signal. Because of its
parabolic shape, the signals reflected off the dish and picked up at the focal
point have exactly the same travel time from the satellite, so they combine
coherently, to give us the desired TV signal.

306 CHAPTER 30. PLANEWAVE PROPAGATION

Chapter 31

Inverse Problems and the
Laplace Transform

In the farfield propagation examples considered previously, we found the
measured data to be related to the desired object function by a Fourier
transformation. The image reconstruction problem then became one of es-
timating a function from finitely many noisy values of its Fourier transform.
In this chapter we consider two inverse problems involving the Laplace
transform.

31.1 The Laplace Transform and the Ozone
Layer

The example is taken from Twomey’s book [146].

31.1.1 The Laplace Transform

The Laplace transform of the function f(x) defined for 0 ≤ x < +∞ is the
function

F(s) =
∫ +∞

0

f(x)e−sxdx. (31.1)

31.1.2 Scattering of Ultraviolet Radiation

The sun emits ultraviolet (UV) radiation that enters the Earth’s atmo-
sphere at an angle θ0 that depends on the sun’s position, and with intensity
I(0). Let the x-axis be vertical, with x = 0 at the top of the atmosphere

307

308CHAPTER 31. INVERSE PROBLEMS AND THE LAPLACE TRANSFORM

and x increasing as we move down to the Earth’s surface, at x = X. The
intensity at x is given by

I(x) = I(0)e−kx/ cos θ0 . (31.2)

Within the ozone layer, the amount of UV radiation scattered in the direc-
tion θ is given by

S(θ, θ0)I(0)e−kx/ cos θ0∆p, (31.3)

where S(θ, θ0) is a known parameter, and ∆p is the change in the pressure
of the ozone within the infinitesimal layer [x, x+∆x], and so is proportional
to the concentration of ozone within that layer.

31.1.3 Measuring the Scattered Intensity

The radiation scattered at the angle θ then travels to the ground, a distance
of X − x, weakened along the way, and reaches the ground with intensity

S(θ, θ0)I(0)e−kx/ cos θ0e−k(X−x)/ cos θ∆p. (31.4)

The total scattered intensity at angle θ is then a superposition of the in-
tensities due to scattering at each of the thin layers, and is then

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβdp, (31.5)

where

β = k[
1

cos θ0
− 1

cos θ
]. (31.6)

This superposition of intensity can then be written as

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβp′(x)dx. (31.7)

31.1.4 The Laplace Transform Data

Using integration by parts, we get∫ X

0

e−xβp′(x)dx = p(X)e−βX − p(0) + β

∫ X

0

e−βxp(x)dx. (31.8)

Since p(0) = 0 and p(X) can be measured, our data is then the Laplace
transform value ∫ +∞

0

e−βxp(x)dx; (31.9)

31.2. THE LAPLACE TRANSFORM AND ENERGY SPECTRAL ESTIMATION309

note that we can replace the upper limit X with +∞ if we extend p(x) as
zero beyond x = X.

The variable β depends on the two angles θ and θ0. We can alter θ as
we measure and θ0 changes as the sun moves relative to the earth. In this
way we get values of the Laplace transform of p(x) for various values of β.
The problem then is to recover p(x) from these values. Because the Laplace
transform involves a smoothing of the function p(x), recovering p(x) from
its Laplace transform is more ill-conditioned than is the Fourier transform
inversion problem.

31.2 The Laplace Transform and Energy Spec-
tral Estimation

In x-ray transmission tomography, x-ray beams are sent through the object
and the drop in intensity is measured. These measurements are then used
to estimate the distribution of attenuating material within the object. A
typical x-ray beam contains components with different energy levels. Be-
cause components at different energy levels will be attenuated differently,
it is important to know the relative contribution of each energy level to the
entering beam. The energy spectrum is the function f(E) that describes
the intensity of the components at each energy level E > 0.

31.2.1 The attenuation coefficient function

Each specific material, say aluminum, for example, is associated with at-
tenuation coefficients, which is a function of energy, which we shall denote
by µ(E). A beam with the single energy E passing through a thickness x of
the material will be weakened by the factor e−µ(E)x. By passing the beam
through various thicknesses x of aluminum and registering the intensity
drops, one obtains values of the absorption function

R(x) =
∫ ∞

0

f(E)e−µ(E)xdE. (31.10)

Using a change of variable, we can write R(x) as a Laplace transform.

31.2.2 The absorption function as a Laplace transform

For each material, the attenuation function µ(E) is a strictly decreasing
function of E, so µ(E) has an inverse, which we denote by g; that is,
g(t) = E, for t = µ(E). Equation (31.10) can then be rewritten as

R(x) =
∫ ∞

0

f(g(t))e−txg′(t)dt. (31.11)

310CHAPTER 31. INVERSE PROBLEMS AND THE LAPLACE TRANSFORM

We see then that R(x) is the Laplace transform of the function r(t) =
f(g(t))g′(t). Our measurements of the intensity drops provide values of
R(x), for various values of x, from which we must estimate the functions
r(t), and, ultimately, f(E).

Chapter 32

Detection and
Classification

In some applications of remote sensing, our goal is simply to see what is
“out there”; in sonar mapping of the sea floor, the data are the acoustic
signals as reflected from the bottom, from which the changes in depth can
be inferred. Such problems are estimation problems.

In other applications, such as sonar target detection or medical diag-
nostic imaging, we are looking for certain things, evidence of a surface
vessel or submarine, in the sonar case, or a tumor or other abnormality
in the medical case. These are detection problems. In the sonar case, the
data may be used directly in the detection task, or may be processed in
some way, perhaps frequency-filtered, prior to being used for detection. In
the medical case, or in synthetic-aperture radar (SAR), the data is usually
used to construct an image, which is then used for the detection task. In
estimation, the goal can be to determine how much of something is present;
detection is then a special case, in which we want to decide if the amount
present is zero or not.

The detection problem is also a special case of discrimination, in which
the goal is to decide which of two possibilities is true; in detection the
possibilities are simply the presence or absence of the sought-for signal.

More generally, in classification or identification, the objective is to
decide, on the basis of measured data, which of several possibilities is true.

311

312 CHAPTER 32. DETECTION AND CLASSIFICATION

32.1 Estimation

We consider only estimates that are linear in the data, that is, estimates
of the form

γ̂ = b†x =
N∑

n=1

bnxn, (32.1)

where b† denotes the conjugate transpose of the vector b = (b1, ..., bN)T .
The vector b that we use will be the best linear unbiased estimator (BLUE)
[47] for the particular estimation problem.

32.1.1 The simplest case: a constant in noise

We begin with the simplest case, estimating the value of a constant, given
several instances of the constant in additive noise. Our data are xn = γ+qn,
for n = 1, ..., N , where γ is the constant to be estimated, and the qn are
noises. For convenience, we write

x = γu + q, (32.2)

where x = (x1, ..., xN)T , q = (q1, ..., qN)T , u = (1, ..., 1)T , the expected
value of the random vector q is E(q) = 0, and the covariance matrix of q
is E(qqT) = Q. The BLUE employs the vector

b =
1

u†Q−1u
Q−1u. (32.3)

The BLUE estimate of γ is

γ̂ =
1

u†Q−1u
u†Q−1x. (32.4)

If Q = σ2I, for some σ > 0, with I the identity matrix, then the noise
q is said to be white. In this case, the BLUE estimate of γ is simply the
average of the xn.

32.1.2 A known signal vector in noise

Generalizing somewhat, we consider the case in which the data vector x
has the form

x = γs + q, (32.5)

where s = (s1, ..., sN)T is a known signal vector. The BLUE estimator is

b =
1

s†Q−1s
Q−1s (32.6)

32.1. ESTIMATION 313

and the BLUE estimate of γ is now

γ̂ =
1

s†Q−1s
s†Q−1x. (32.7)

In numerous applications of signal processing, the signal vectors take the
form of sampled sinusoids; that is, s = eθ, with

eθ =
1√
N

(e−iθ, e−2iθ, ..., e−Niθ)T , (32.8)

where θ is a frequency in the interval [0, 2π). If the noise is white, then the
BLUE estimate of γ is

γ̂ =
1√
N

N∑
n=1

xneinθ, (32.9)

which is the discrete Fourier transform (DFT) of the data, evaluated at
the frequency θ.

32.1.3 Multiple signals in noise

Suppose now that the data values are

xn =
M∑

m=1

γmsm
n + qn, (32.10)

where the signal vectors sm = (sm
1 , ..., sm

N)T are known and we want to
estimate the γm. We write this in matrix-vector notation as

x = Sc + q, (32.11)

where S is the matrix with entries Snm = sm
n , and our goal is to find

c = (γ1, ..., γM)T , the vector of coefficients. The BLUE estimate of the
vector c is

ĉ = (S†Q−1S)−1S†Q−1x, (32.12)

assuming that the matrix S†Q−1S is invertible, in which case we must have
M ≤ N .

If the signals sm are mutually orthogonal and have length one, then
S†S = I; if, in addition, the noise is white, the BLUE estimate of c is
ĉ = S†x, so that

ĉm =
N∑

n=1

xnsm
n . (32.13)

314 CHAPTER 32. DETECTION AND CLASSIFICATION

This case arises when the signals are sm = eθm , for θm = 2πm/M , for
m = 1, ...,M , in which case the BLUE estimate of cm is

ĉm =
1√
N

N∑
n=1

xne2πimn/M , (32.14)

the DFT of the data, evaluated at the frequency θm. Note that when
the frequencies θm are not these, the matrix S†S is not I, and the BLUE
estimate is not obtained from the DFT of the data.

32.2 Detection

As we noted previously, the detection problem is a special case of esti-
mation. Detecting the known signal s in noise is equivalent to deciding
if the coefficient γ is zero or not. The procedure is to calculate γ̂, the
BLUE estimate of γ, and say that s has been detected if |γ̂| exceeds a cer-
tain threshold. In the case of multiple known signals, we calculate ĉ, the
BLUE estimate of the coefficient vector c, and base our decisions on the
magnitudes of each entry of ĉ.

32.2.1 Parameterized signal

It is sometimes the case that we know that the signal s we seek to detect is
a member of a parametrized family, {sθ|θ ∈ Θ}, of potential signal vectors,
but we do not know the value of the parameter θ. For example, we may
be trying to detect a sinusoidal signal, s = eθ, where θ is an unknown
frequency in the interval [0, 2π). In sonar direction-of-arrival estimation,
we seek to detect a farfield point source of acoustic energy, but do not know
the direction of the source. The BLUE estimator can be extended to these
cases, as well [47]. For each fixed value of the parameter θ, we estimate γ
using the BLUE, obtaining the estimate

γ̂(θ) =
1

s†θQ
−1sθ

s†θQ
−1x, (32.15)

which is then a function of θ. If the maximum of the magnitude of this
function exceeds a specified threshold, then we may say that there is a
signal present corresponding to that value of θ.

Another approach would be to extend the model of multiple signals
to include a continuum of possibilities, replacing the finite sum with an
integral. Then the model of the data becomes

x =
∫

θ∈Θ

γ(θ)sθdθ + q. (32.16)

32.2. DETECTION 315

Let S now denote the integral operator

S(γ) =
∫

θ∈Θ

γ(θ)sθdθ (32.17)

that transforms a function γ of the variable θ into a vector. The adjoint
operator, S†, transforms any N -vector v into a function of θ, according to

S†(v)(θ) =
N∑

n=1

vn(sθ)n = s†θv . (32.18)

Consequently, S†Q−1S is the function of θ given by

g(θ) = (S†Q−1S)(θ) =
N∑

n=1

N∑
j=1

Q−1
nj (sθ)j(sθ)n, (32.19)

so

g(θ) = s†θQ
−1sθ. (32.20)

The generalized BLUE estimate of γ(θ) is then

γ̂(θ) =
1

g(θ)

N∑
j=1

aj(sθ)j =
1

g(θ)
s†θa , (32.21)

where x = Qa or

xn =
N∑

j=1

ajQnj , (32.22)

for j = 1, ..., N , and so a = Q−1x. This is the same estimate we obtained
in the previous paragraph. The only difference is that, in the first case, we
assume that there is only one signal active, and apply the BLUE for each
fixed θ, looking for the one most likely to be active. In the second case,
we choose to view the data as a noisy superposition of a continuum of the
sθ, not just one. The resulting estimate of γ(θ) describes how each of the
individual signal vectors sθ contribute to the data vector x. Nevertheless,
the calculations we perform are the same.

If the noise is white, we have aj = xj for each j. The function g(θ)
becomes

g(θ) =
N∑

n=1

|(sθ)n|2, (32.23)

316 CHAPTER 32. DETECTION AND CLASSIFICATION

which is simply the square of the length of the vector sθ. If, in addition,
the signal vectors all have length one, then the estimate of the function
γ(θ) becomes

γ̂(θ) =
N∑

n=1

xn(sθ)n = s†θx. (32.24)

Finally, if the signals are sinusoids sθ = eθ, then

γ̂(θ) =
1√
N

N∑
n=1

xneinθ, (32.25)

again, the DFT of the data vector.

32.3 Discrimination

The problem now is to decide if the data is x = s1 + q or x = s2 + q,
where s1 and s2 are known vectors. This problem can be converted into a
detection problem: Do we have x− s1 = q or x− s1 = s2 − s1 + q? Then
the BLUE involves the vector Q−1(s2− s1) and the discrimination is made
based on the quantity (s2 − s1)†Q−1x. If this quantity is near enough to
zero we say that the signal is s1; otherwise, we say that it is s2. The BLUE
in this case is sometimes called the Hotelling linear discriminant, and a
procedure that uses this method to perform medical diagnostics is called a
Hotelling observer.

More generally, suppose we want to decide if a given vector x comes
from class C1 or from class C2. If we can find a vector b such that bT x > a
for every x that comes from C1, and bT x < a for every x that comes from
C2, then the vector b is a linear discriminant for deciding between the
classes C1 and C2.

32.3.1 Channelized Observers

The N by N matrix Q can be quite large, particularly when x and q are
vectorizations of two-dimensional images. If, in additional, the matrix Q
is obtained from K observed instances of the random vector q, then for Q
to be invertible, we need K ≥ N . To avoid these and other difficulties, the
channelized Hotelling linear discriminant is often used. The idea here is
to replace the data vector x with Ux for an appropriately chosen J by N
matrix U , with J much smaller than N ; the value J = 3 is used by Gifford
et al. in [90], with the channels chosen to capture image information within
selected frequency bands.

32.4. CLASSIFICATION 317

32.3.2 An Example of Discrimination

Suppose that there are two groups of students, the first group denoted G1,
the second G2. The math SAT score for the students in G1 is always above
500, while their verbal scores are always below 500. For the students in G2

the opposite is true; the math scores are below 500, the verbal above. For
each student we create the two-dimensional vector x = (x1, x2)T of SAT
scores, with x1 the math score, x2 the verbal score. Let b = (1,−1)T . Then
for every student in G1 we have bT x > 0, while for those in G2, we have
bT x < 0. Therefore, the vector b provides a linear discriminant.

Suppose we have a third group, G3, whose math scores and verbal scores
are both below 500. To discriminate between members of G1 and G3 we
can use the vector b = (1, 0)T and a = 500. To discriminate between the
groups G2 and G3, we can use the vector b = (0, 1)T and a = 500.

Now suppose that we want to decide from which of the three groups
the vector x comes; this is classification.

32.4 Classification

The classification problem is to determine to which of several classes of
vectors a given vector x belongs. For simplicity, we assume all vectors
are real. The simplest approach to solving this problem is to seek linear
discriminant functions; that is, for each class we want to have a vector b
with the property that bT x > 0 if and only if x is in the class. If the vectors
x are randomly distributed according to one of the parametrized family of
probability density functions (pdf) p(x;ω) and the ith class corresponds
to the parameter value ωi then we can often determine the discriminant
vectors bi from these pdf. In many cases, however, we do not have the pdf
and the bi must be estimated through a learning or training step before
they are used on as yet unclassified data vectors. In the discussion that
follows we focus on obtaining b for one class, suppressing the index i.

32.4.1 The Training Stage

In the training stage a candidate for b is tested on vectors whose class
membership is known, say {x1, ..., xM}. First, we replace each vector xm

that is not in the class with its negative. Then we seek b such that bT xm > 0
for all m. With A the matrix whose mth row is (xm)T we can write the
problem as Ab > 0. If the b we obtain has some entries very close to zero
it might not work well enough on actual data; it is often better, then, to
take a vector ε with small positive entries and require Ab ≥ ε. When we
have found b for each class we then have the machinery to perform the
classification task.

318 CHAPTER 32. DETECTION AND CLASSIFICATION

There are several problems to be overcome, obviously. The main one is
that there may not be a vector b for each class; the problem Ab ≥ ε need
not have a solution. In classification this is described by saying that the
vectors xm are not linearly separable [80]. The second problem is finding
the b for each class; we need an algorithm to solve Ab ≥ ε.

One approach to designing an algorithm for finding b is the following: for
arbitrary b let f(b) be the number of the xm misclassified by vector b. Then
minimize f(b) with respect to b. Alternatively, we can minimize the func-
tion g(b) defined to be the sum of the values −bT xm, taken over all the xm

that are misclassified; the g(b) has the advantage of being continuously val-
ued. The batch Perceptron algorithm [80] uses gradient descent methods to
minimize g(b). Another approach is to use the Agmon-Motzkin-Schoenberg
(AMS) algorithm to solve the system of linear inequalities Ab ≥ ε [47].

When the training set of vectors is linearly separable, the batch Percep-
tron and the AMS algorithms converge to a solution, for each class. When
the training vectors are not linearly separable there will be a class for which
the problem Ab ≥ ε will have no solution. Iterative algorithms in this case
cannot converge to a solution. Instead, they may converge to an approxi-
mate solution or, as with the AMS algorithm, converge subsequentially to
a limit cycle of more than one vector.

32.4.2 Our Example Again

We return to the example given earlier, involving the three groups of stu-
dents and their SAT scores. To be consistent with the conventions of this
section, we define x = (x1, x2)T differently now. Let x1 be the math SAT
score, minus 500, and x2 be the verbal SAT score, minus 500. The vector
b = (1, 0)T has the property that bT x > 0 for each x coming from G1, but
bT x < 0 for each x not coming from G1. Similarly, the vector b = (0, 1)T

has the property that bT x > 0 for all x coming from G2, while bT x < 0 for
all x not coming from G2. However, there is no vector b with the property
that bT x > 0 for x coming from G3, but bT x < 0 for all x not coming
from G3; the group G3 is not linearly separable from the others. Notice,
however, that if we perform our classification sequentially, we can employ
linear classifiers. First, we use the vector b = (1, 0)T to decide if the vector
x comes from G1 or not. If it does, fine; if not, then use vector b = (0, 1)T

to decide if it comes from G2 or G3.

32.5 More realistic models

In many important estimation and detection problems, the signal vector s
is not known precisely. In medical diagnostics, we may be trying to detect
a lesion, and may know it when we see it, but may not be able to describe it

32.5. MORE REALISTIC MODELS 319

using a single vector s, which now would be a vectorized image. Similarly,
in discrimination or classification problems, we may have several examples
of each type we wish to identify, but will be unable to reduce these types to
single representative vectors. We now have to derive an analog of the BLUE
that is optimal with respect to the examples that have been presented for
training. The linear procedure we seek will be one that has performed best,
with respect to a training set of examples. The Fisher linear discriminant
is an example of such a procedure.

32.5.1 The Fisher linear discriminant

Suppose that we have available for training K vectors x1, ..., xK in RN ,
with vectors x1, ..., xJ in the class A, and the remaining K − J vectors in
the class B. Let w be an arbitrary vector of length one, and for each k let
yk = wT xk be the projected data. The numbers yk, k = 1, ..., J , form the
set YA, the remaining ones the set YB . Let

µA =
1
J

J∑
k=1

xk, (32.26)

µB =
1

K − J

K∑
k=J+1

xk, (32.27)

mA =
1
J

J∑
k=1

yk = wT µA, (32.28)

and

mB =
1

K − J

K∑
k=J+1

yk = wT µB . (32.29)

Let

σ2
A =

J∑
k=1

(yk −mA)2, (32.30)

and

σ2
B =

K∑
k=J+1

(yk −mB)2. (32.31)

320 CHAPTER 32. DETECTION AND CLASSIFICATION

The quantity σ2 = σ2
A +σ2

B is the total within-class scatter of the projected
data. Define the function F (w) to be

F (w) =
(mA −mB)2

σ2
. (32.32)

The Fisher linear discriminant is the vector w for which F (w) achieves its
maximum.

Define the scatter matrices SA and SB as follows:

SA =
J∑

k=1

(xk − µA)(xk − µA)T , (32.33)

and

SB =
K∑

k=J+1

(xk − µB)(xk − µB)T . (32.34)

Then

Swithin = SA + SB (32.35)

is the within-class scatter matrix and

Sbetween = (µA − µB)(µA − µB)T (32.36)

is the between-class scatter matrix. The function F (w) can then be written
as

F (w) = wT Sbetweenw/wT Swithinw. (32.37)

The w for which F (w) achieves its maximum value is then

w = S−1
within(µA − µB). (32.38)

This vector w is the Fisher linear discriminant. When a new data vector x
is obtained, we decide to which of the two classes it belongs by calculating
wT x.

Part IX

Appendicies

321

Chapter 33

Bregman-Legendre
Functions

In [10] Bauschke and Borwein show convincingly that the Bregman-Legendre
functions provide the proper context for the discussion of Bregman pro-
jections onto closed convex sets. The summary here follows closely the
discussion given in [10].

33.1 Essential Smoothness and Essential Strict
Convexity

Following [137] we say that a closed proper convex function f is essentially
smooth if intD is not empty, f is differentiable on intD and xn ∈ intD, with
xn → x ∈ bdD, implies that ||∇f(xn)|| → +∞. Here intD and bdD denote
the interior and boundary of the set D. A closed proper convex function f
is essentially strictly convex if f is strictly convex on every convex subset
of dom ∂f .

The closed proper convex function f is essentially smooth if and only if
the subdifferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD
(so f is differentiable on intD) if and only if the function f∗ is essentially
strictly convex.

Definition 33.1 A closed proper convex function f is said to be a Legendre
function if it is both essentially smooth and essentialy strictly convex.

So f is Legendre if and only if its conjugate function is Legendre, in which
case the gradient operator ∇f is a topological isomorphism with ∇f∗ as its
inverse. The gradient operator ∇f maps int dom f onto int dom f∗. If int
dom f∗ = RJ then the range of ∇f is RJ and the equation ∇f(x) = y can

323

324 CHAPTER 33. BREGMAN-LEGENDRE FUNCTIONS

be solved for every y ∈ RJ . In order for int dom f∗ = RJ it is necessary
and sufficient that the Legendre function f be super-coercive, that is,

lim
||x||→+∞

f(x)
||x||

= +∞. (33.1)

If the essential domain of f is bounded, then f is super-coercive and its
gradient operator is a mapping onto the space RJ .

33.2 Bregman Projections onto Closed Con-
vex Sets

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (33.2)

Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set with K ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto K, with respect to f , is

P f
K(z) = argminx∈K∩DDf (x, z). (33.3)

If f is essentially strictly convex, then P f
K(z) exists. If f is strictly convex

on D then P f
K(z) is unique. If f is Legendre, then P f

K(z) is uniquely defined
and is in intD; this last condition is sometimes called zone consistency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the
norm squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be
the set K = {(x1, x2)|x1 + x2 = 1}. The Bregman projection of (2, 1) onto
K is (1, 0), which is not in intD. The function f is not essentially smooth,
although it is essentially strictly convex. Its conjugate is the function f∗

that is equal to one-half the norm squared on D and equal to zero elsewhere;
it is essentially smooth, but not essentially strictly convex.

If f is Legendre, then P f
K(z) is the unique member of K∩intD satisfying

the inequality

〈∇f(P f
K(z))−∇f(z), P f

K(z)− c〉 ≥ 0, (33.4)

for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c, P f
K(z)) + Df (P f

K(z), z), (33.5)

for all c ∈ K.

33.3. BREGMAN-LEGENDRE FUNCTIONS 325

33.3 Bregman-Legendre Functions

Following Bauschke and Borwein [10], we say that a Legendre function f
is a Bregman-Legendre function if the following properties hold:

B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.
B2: if x is in D but not in intD, for each positive integer n, yn is in intD
with yn → y ∈ bdD and if {Df (x, yn)} remains bounded, then Df (y, yn) →
0, so that y ∈ D.
B3: if xn and yn are in intD, with xn → x and yn → y, where x and y
are in D but not in intD, and if Df (xn, yn) → 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges
to a member of K provided that one of the following holds: 1) f is Bregman-
Legendre; 2) K ∩ intD 6= ∅ and dom f∗ is open; or 3) dom f and dom f∗

are both open.

33.4 Useful Results about Bregman-Legendre
Functions

The following results are proved in somewhat more generality in [10].
R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, yn) → 0.
R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, yn) →
+∞.
R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅
and Df (xn, yn) → 0, then x = y and y ∈ int D.
R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and
Df (x, yn) → 0, then x = y.
As a consequence of these results we have the following.
R5: If {Df (x, yn)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, yn)} is eventually finite, we have x ∈ D. By
Property B1 above it follows that the sequence {yn} is bounded; without
loss of generality, we assume that {yn} → y, for some y ∈ D. If x is in int
D, then, by result R2 above, we know that y is also in int D. Applying
result R3, with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are
two cases to consider: 1) y is in int D; 2) y is not in int D. In case 1) we
have Df (x, yn) → Df (x, y) = 0, from which it follows that x = y. In case
2) we apply result R4 to conclude that x = y.

326 CHAPTER 33. BREGMAN-LEGENDRE FUNCTIONS

Chapter 34

Bregman-Paracontractive
Operators

In a previous chapter, we considered operators that are paracontractive,
with respect to some norm. In this chapter, we extend that discussion to
operators that are paracontractive, with respect to some Bregman distance.
Our objective here is to examine the extent to which the EKN Theorem
5.3 and its consequences can be extended to the broader class of Bregman
paracontractions. Typically, these operators are not defined on all of X ,
but on a restricted subset, such as the non-negative vectors, in the case of
entropy. For details concerning Bregman distances and related notions, see
the appendix.

34.1 Bregman Paracontractions

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉, (34.1)

where D = {x |f(x) < +∞} is the essential domain of f . When the domain
of f is not all of RJ , we define f(x) = +∞, for x outside its domain. Note
that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let C be a nonempty closed convex set with C ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto C, with respect to f , is

P f
C(z) = argminx∈C∩DDf (x, z). (34.2)

327

328 CHAPTER 34. BREGMAN-PARACONTRACTIVE OPERATORS

If f is essentially strictly convex, then P f
C(z) exists. If f is strictly convex

on D then P f
C(z) is unique. We assume that f is Legendre, so that P f

C(z)
is uniquely defined and is in intD; this last condition is sometimes called
zone consistency.

We shall make much use of the Bregman Inequality (33.5):

Df (c, z) ≥ Df (c, P f
Cz) + Df (P f

Cz, z). (34.3)

A continuous operator T : intD → intD is called a Bregman paracon-
traction (bpc) if, for every fixed point z of T , and for every x, we have

Df (z, Tx) < Df (z, x), (34.4)

unless Tx = x. In order for the Bregman distances Df (z, x) and Df (z, Tx)
to be defined, it is necessary that ∇f(x) and ∇f(Tx) be defined, and so
we need to restrict the domain and range of T in the manner above. This
can sometimes pose a problem, when the iterative sequence {xk+1 = Txk}
converges to a point on the boundary of the domain of f . This happens,
for example, in the EMML and SMART methods, in which each xk is
a positive vector, but the limit can have entries that are zero. One way
around this problem is to extend the notion of a fixed point: say that z is an
asymptotic fixed point of T if (z, z) is in the closure of the graph of T , that
is, (z, z) is the limit of points of the form (x, Tx). Theorems for iterative
methods involving Bregman paracontractions can then be formulated to
involve convergence to an asymptotic fixed point [40]. In our discussion
here, however, we shall not consider this more general situation.

34.1.1 Entropic Projections

As an example of a Bregman distance and Bregman paracontractions, con-
sider the function g(t) = t log(t) − t, with g(0) = 0, and the associated
Bregman-Legendre function

f(x) =
J∑

j=1

g(xj), (34.5)

defined for vectors x in the non-negative cone RJ
+. The corresponding

Bregman distance is the Kullback-Leibler, or cross-entropy, distance

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉 = KL(x, z). (34.6)

For any non-empty, closed, convex set C, the entropic projection operator
P e

C is defined by P e
Cz is the member x of C ∩ RJ

+ for which KL(x, z) is
minimized.

34.1. BREGMAN PARACONTRACTIONS 329

Theorem 34.1 The operator T = P e
C is bpc, with respect to the cross-

entropy distance.

Proof: The fixed points of T = P e
C are the vectors c in C ∩RJ

+. From the
Bregman Inequality (34.3) we have

Df (c, x)−Df (c, P e
Cx) ≥ Df (P e

Cx, x) ≥ 0, (34.7)

with equality if and only if Df (P e
Cx, x) = 0, in which case Tx = x.

34.1.2 Weighted Entropic Projections

Generally, we cannot exhibit the entropic projection onto a closed, convex
set C in closed form. When we consider the EMML and SMART algo-
rithms, we shall focus on non-negative systems Ax = b, in which the entries
of A are non-negative, those of b are positive, and we seek a non-negative
solution. For each i = 1, ..., I, let

Hi = {x ≥ 0|(Ax)i = bi}. (34.8)

We cannot write the entropic projection of z onto Hi in closed form, but,
for each positive vector z, the member of Hi that minimizes the weighted
cross-entropy,

J∑
j=1

AijKL(xj , zj) (34.9)

is

xj = (Qe
i z)j = zj

bi

(Az)i
. (34.10)

Lemma 34.1 The operator Qe
i is bpc, with respect to the Bregman distance

in Equation (34.9).

Proof: For each x in Hi,

J∑
j=1

AijKL(xj , zj)−
J∑

j=1

AijKL(xj , (Qe
i z)j) = KL(bi, (Az)i). (34.11)

With
∑I

i=1 Aij = 1, for each j, the iterative step of the EMML algo-
rithm can be written as xk+1 = Txk, for

(Tx)j =
I∑

i=1

Aij(Qe
i x)j , (34.12)

330 CHAPTER 34. BREGMAN-PARACONTRACTIVE OPERATORS

and that of the SMART is xk+1 = Txk, for

(Tx)j =
I∏

i=1

[(Qe
i x)j]Aij . (34.13)

It follows from the theory of these two algorithms that, in both cases, T is
bpc, with respect to the cross-entropy distance.

34.2 Extending the EKN Theorem

Now we present a generalization of the EKN Theorem.

Theorem 34.2 For i = 1, ..., I, let Ti be bpc, for the Bregman distance
Df . Let F = ∩I

i=1Fix(Ti) be non-empty. Let i(k) = k(mod I) + 1 and
xk+1 = Ti(k)x

k. Then the sequence {xk} converges to a member of F .

Proof: Let z be a member of F . We know that

Df (z, xk)−Df (z, xk+1) ≥ 0, (34.14)

so that the sequence {Df (z, xk} is decreasing, with limit d ≥ 0. Then the
sequence {xk} is bounded; select a cluster point, x∗. Then T1x

∗ is also a
cluster point, so we have

Df (z, x)−Df (z, T1x) = 0, (34.15)

from which we conclude that T1x = x. Similarly, T2T1x
∗ = T2x

∗ is a
cluster point, and T2x

∗ = x∗. Continuing in this manner, we show that x∗

is in F . Then {Df (x∗, xk)} → 0, so that {xk} → x∗.
We have the following generalization of Corollary 5.3:

Corollary 34.1 For i = 1, ..., I, let Ti be bpc, for the Bregman distance
Df . Let F = ∩I

i=1Fix(Ti) be non-empty. Let T = TITI−1 · · · T2T1. Then
the sequence {T kx0} converges to a member of F .

Proof: Let z be in F . Since Df (z, Tix) ≤ Df (z, x), for each i, it follows
that

Df (z, x)−Df (z, Tx) ≥ 0. (34.16)

If equality holds, then

Df (z, (TITI−1 · · · T1)x) = Df (z, (TI−1 · · · T1)x) (34.17)

... = Df (z, T1x) = Df (z, x), (34.18)

from which we can conclude that Tix = x, for each i. Therefore, Tx = x,
and T is bpc.

Corollary 34.2 If F is not empty, then F = Fix(T).

34.3. MULTIPLE BREGMAN DISTANCES 331

34.3 Multiple Bregman Distances

We saw earlier that both the EMML and the SMART algorithms involve
Bregman projections with respect to distances that vary with the sets
Ci = Hi. This suggests that Theorem 34.2 could be extended to include
continuous operators Ti that are bpc, with respect to Bregman distances
Dfi

that vary with i. However, there is a counter-example in [45] that
shows that the sequence {xk+1 = Ti(k)x

k} need not converge to a fixed
point of T . The problem is that we need some Bregman distance Dh that
is independent of i, with {Dh(z, xk} decreasing. The result we present now
is closely related to the MSGP algorithm.

34.3.1 Assumptions and Notation

We make the following assumptions throughout this section. The function h
is super-coercive and Bregman-Legendre with essential domain D = dom h.
For i = 1, 2, ..., I the function fi is also Bregman-Legendre, with D ⊆
dom fi, so that int D ⊆ int dom fi. For all x ∈ dom h and z ∈ int dom h we
have Dh(x, z) ≥ Dfi(x, z), for each i.

34.3.2 The Algorithm

The multi-distance extension of Theorem 34.2 concerns the algorithm with
the following iterative step:

xk+1 = ∇h−1
(
∇h(xk)−∇fi(k)(xk) +∇fi(k)(Ti(k)(xk))

)
. (34.19)

34.3.3 A Preliminary Result

For each k = 0, 1, ... define the function Gk(·) : dom h → [0,+∞) by

Gk(x) = Dh(x, xk)−Dfi(k)(x, xk) + Dfi(k)(x, Ti(k)(xk)). (34.20)

The next proposition provides a useful identity, which can be viewed as an
analogue of Pythagoras’ theorem. The proof is not difficult and we omit
it.

Proposition 34.1 For each x ∈ dom h, each k = 0, 1, ..., and xk+1 given
by Equation (34.19) we have

Gk(x) = Gk(xk+1) + Dh(x, xk+1). (34.21)

Consequently, xk+1 is the unique minimizer of the function Gk(·).

This identity (34.21) is the key ingredient in the proof of convergence of
the algorithm.

332 CHAPTER 34. BREGMAN-PARACONTRACTIVE OPERATORS

34.3.4 Convergence of the Algorithm

We shall prove the following convergence theorem:

Theorem 34.3 Let F be non-empty. Let x0 ∈ int dom h be arbitrary. Any
sequence xk obtained from the iterative scheme given by Equation (34.19)
converges to x∞ ∈ F ∩ dom h.

Proof: Let z be in F . Then it can be shown that

Dh(z, xk)−Dh(z, xk+1) = Gk(xk+1) + Dfi
(z, xk)−Dfi

(z, Ti(k)x
k).(34.22)

Therefore, the sequence {Dh(z, xk)} is decreasing, and the non-negative
sequences {Gk(xk+1)} and {Dfi(z, xk)−Dfi(z, Ti(k)x

k)} converge to zero.
The sequence {xmI} is then bounded and we can select a subsequence
{xmnI} with limit point x∗,0. Since the sequence {xmnI+1} is bounded, it
has a subsequence with limit x∗,1. But, since

Df1(z, xmnI)−Df1(z, xmnI+1) → 0, (34.23)

we conclude that T1x
∗,0 = x∗,0. Continuing in this way, we eventually

establish that Tix
∗,0 = x∗,0, for each i. So, x∗,0 is in F . Using x∗,0 in place

of z, we find that {Dh(x∗,0, xk)} is decreasing; but a subsequence converges
to zero, so the entire sequence converges to zero, and {xk} → x∗,0.

Chapter 35

The Fourier Transform

In this chapter we review the basic properties of the Fourier transform.

35.1 Fourier-Transform Pairs

Let f(x) be defined for the real variable x in (−∞,∞). The Fourier trans-
form of f(x) is the function of the real variable γ given by

F (γ) =
∫ ∞

−∞
f(x)eiγxdx. (35.1)

Precisely how we interpret the infinite integrals that arise in the discussion
of the Fourier transform will depend on the properties of the function f(x).
A detailed treatment of this issue, which is beyond the scope of this book,
can be found in almost any text on the Fourier transform (see, for example,
[88]).

35.1.1 Reconstructing from Fourier-Transform Data

Our goal is often to reconstruct the function f(x) from measurements of
its Fourier transform F (γ). But, how?

If we have F (γ) for all real γ, then we can recover the function f(x)
using the Fourier Inversion Formula:

f(x) =
1
2π

∫ ∞

−∞
F (γ)e−iγxdγ. (35.2)

The functions f(x) and F (γ) are called a Fourier-transform pair. Once
again, the proper interpretation of Equation (35.2) will depend on the
properties of the functions involved. If both f(x) and F (γ) are measurable
and absolutely integrable then both functions are continuous. To illustrate

333

334 CHAPTER 35. THE FOURIER TRANSFORM

some of the issues involved, we consider the functions in the Schwartz class
[88]

35.1.2 Functions in the Schwartz class

A function f(x) is said to be in the Schwartz class, or to be a Schwartz
function if f(x) is infinitely differentiable and

|x|mf (n)(x) → 0 (35.3)

as x goes to −∞ and +∞. Here f (n)(x) denotes the nth derivative of f(x).
An example of a Schwartz function is f(x) = e−x2

, with Fourier transform
F (γ) =

√
πe−γ2/4. If f(x) is a Schwartz function, then so is its Fourier

transform. To prove the Fourier Inversion Formula it is sufficient to show
that

f(0) =
∫ ∞

−∞
F (γ)dγ/2π. (35.4)

Write

f(x) = f(0)e−x2
+ (f(x)− f(0)e−x2

) = f(0)e−x2
+ g(x). (35.5)

Then g(0) = 0, so g(x) = xh(x), where h(x) = g(x)/x is also a Schwartz
function. Then the Fourier transform of g(x) is the derivative of the Fourier
transform of h(x); that is,

G(γ) = H ′(γ). (35.6)

The function H(γ) is a Schwartz function, so it goes to zero at the infini-
ties. Computing the Fourier transform of both sides of Equation (35.5), we
obtain

F (γ) = f(0)
√

πe−γ2/4 + H ′(γ). (35.7)

Therefore,∫ ∞

−∞
F (γ)dγ = 2πf(0) + H(+∞)−H(−∞) = 2πf(0). (35.8)

To prove the Fourier Inversion Formula, we let K(γ) = F (γ)e−ix0γ , for
fixed x0. Then the inverse Fourier transform of K(γ) is k(x) = f(x + x0),
and therefore ∫ ∞

−∞
K(γ)dγ = 2πk(0) = 2πf(x0). (35.9)

In the next subsection we consider a discontinuous f(x).

35.2. THE DIRAC DELTA 335

35.1.3 An Example

Consider the function f(x) = 1
2A , for |x| ≤ A, and f(x) = 0, otherwise.

The Fourier transform of this f(x) is

F (γ) =
sin(Aγ)

Aγ
, (35.10)

for all real γ 6= 0, and F (0) = 1. Note that F (γ) is nonzero throughout
the real line, except for isolated zeros, but that it goes to zero as we go
to the infinities. This is typical behavior. Notice also that the smaller the
A, the slower F (γ) dies out; the first zeros of F (γ) are at |γ| = π

A , so the
main lobe widens as A goes to zero. The function f(x) is not continuous,
so its Fourier transform cannot be absolutely integrable. In this case, the
Fourier Inversion Formula must be interpreted as involving convergence in
the L2 norm.

35.1.4 The Issue of Units

When we write cos π = −1, it is with the understanding that π is a mea-
sure of angle, in radians; the function cos will always have an independent
variable in units of radians. By extension, the same is true of the complex
exponential functions. Therefore, when we write eixγ , we understand the
product xγ to be in units of radians. If x is measured in seconds, then
γ is in units of radians per second; if x is in meters, then γ is in units of
radians per meter. When x is in seconds, we sometimes use the variable
γ
2π ; since 2π is then in units of radians per cycle, the variable γ

2π is in units
of cycles per second, or Hertz. When we sample f(x) at values of x spaced
∆ apart, the ∆ is in units of x-units per sample, and the reciprocal, 1

∆ ,
which is called the sampling frequency, is in units of samples per x-units.
If x is in seconds, then ∆ is in units of seconds per sample, and 1

∆ is in
units of samples per second.

35.2 The Dirac Delta

Consider what happens in the limit, as A → 0. Then we have an infinitely
high point source at x = 0; we denote this by δ(x), the Dirac delta. The
Fourier transform approaches the constant function with value 1, for all γ;
the Fourier transform of f(x) = δ(x) is the constant function F (γ) = 1, for
all γ. The Dirac delta δ(x) has the sifting property:∫

h(x)δ(x)dx = h(0), (35.11)

for each function h(x) that is continuous at x = 0.

336 CHAPTER 35. THE FOURIER TRANSFORM

Because the Fourier transform of δ(x) is the function F (γ) = 1, the
Fourier inversion formula tells us that

δ(x) =
1
2π

∫ ∞

−∞
e−iγxdγ. (35.12)

Obviously, this integral cannot be understood in the usual way. The inte-
gral in Equation (35.12) is a symbolic way of saying that∫

h(x)(
1
2π

∫ ∞

−∞
e−iγxdγ)dx =

∫
h(x)δ(x)dx = h(0), (35.13)

for all h(x) that are continuous at x = 0; that is, the integral in Equation
(35.12) has the sifting property, so it acts like δ(x). Interchanging the order
of integration in Equation (35.13), we obtain∫

h(x)(
1
2π

∫ ∞

−∞
e−iγxdγ)dx =

1
2π

∫ ∞

−∞
(
∫

h(x)e−iγxdx)dγ (35.14)

=
1
2π

∫ ∞

−∞
H(−γ)dγ =

1
2π

∫ ∞

−∞
H(γ)dγ = h(0). (35.15)

We shall return to the Dirac delta when we consider farfield point sources.
It may seem paradoxical that when A is larger, its Fourier transform

dies off more quickly. The Fourier transform F (γ) goes to zero faster for
larger A because of destructive interference. Because of differences in their
complex phases, the magnitude of the sum of the signals received from
various parts of the object is much smaller than we might expect, especially
when A is large. For smaller A the signals received at a sensor are much
more in phase with one another, and so the magnitude of the sum remains
large. A more quantitative statement of this phenomenon is provided by
the uncertainty principle (see [46]).

35.3 Practical Limitations

In actual remote-sensing problems, antennas cannot be of infinite extent.
In digital signal processing, moreover, there are only finitely many sensors.
We never measure the entire Fourier transform F (γ), but, at best, just part
of it; in the direct transmission problem we measure F (γ) only for γ = k,
with |k| ≤ ω

c . In fact, the data we are able to measure is almost never exact
values of F (γ), but rather, values of some distorted or blurred version. To
describe such situations, we usually resort to convolution-filter models.

35.3. PRACTICAL LIMITATIONS 337

35.3.1 Convolution Filtering

Imagine that what we measure are not values of F (γ), but of F (γ)H(γ),
where H(γ) is a function that describes the limitations and distorting effects
of the measuring process, including any blurring due to the medium through
which the signals have passed, such as refraction of light as it passes through
the atmosphere. If we apply the Fourier Inversion Formula to F (γ)H(γ),
instead of to F (γ), we get

g(x) =
1
2π

∫
F (γ)H(γ)e−iγxdx. (35.16)

The function g(x) that results is g(x) = (f ∗ h)(x), the convolution of the
functions f(x) and h(x), with the latter given by

h(x) =
1
2π

∫
H(γ)e−iγxdx. (35.17)

Note that, if f(x) = δ(x), then g(x) = h(x); that is, our reconstruction of
the object from distorted data is the function h(x) itself. For that reason,
the function h(x) is called the point-spread function of the imaging system.

Convolution filtering refers to the process of converting any given func-
tion, say f(x), into a different function, say g(x), by convolving f(x) with a
fixed function h(x). Since this process can be achieved by multiplying F (γ)
by H(γ) and then inverse Fourier transforming, such convolution filters are
studied in terms of the properties of the function H(γ), known in this con-
text as the system transfer function, or the optical transfer function (OTF);
when γ is a frequency, rather than a spatial frequency, H(γ) is called the
frequency-response function of the filter. The magnitude of H(γ), |H(γ)|,
is called the modulation transfer function (MTF). The study of convolu-
tion filters is a major part of signal processing. Such filters provide both
reasonable models for the degradation signals undergo, and useful tools for
reconstruction.

Let us rewrite Equation (35.16), replacing F (γ) and H(γ) with their
definitions, as given by Equation (35.1). Then we have

g(x) =
∫

(
∫

f(t)eiγtdt)(
∫

h(s)eiγsds)e−iγxdγ. (35.18)

Interchanging the order of integration, we get

g(x) =
∫ ∫

f(t)h(s)(
∫

eiγ(t+s−x)dγ)dsdt. (35.19)

Now using Equation (35.12) to replace the inner integral with δ(t + s− x),
the next integral becomes∫

h(s)δ(t + s− x)ds = h(x− t). (35.20)

338 CHAPTER 35. THE FOURIER TRANSFORM

Finally, we have

g(x) =
∫

f(t)h(x− t)dt; (35.21)

this is the definition of the convolution of the functions f and h.

35.3.2 Low-Pass Filtering

A major problem in image reconstruction is the removal of blurring, which
is often modelled using the notion of convolution filtering. In the one-
dimensional case, we describe blurring by saying that we have available
measurements not of F (γ), but of F (γ)H(γ), where H(γ) is the frequency-
response function describing the blurring. If we know the nature of the
blurring, then we know H(γ), at least to some degree of precision. We can
try to remove the blurring by taking measurements of F (γ)H(γ), dividing
these numbers by the value of H(γ), and then inverse Fourier transform-
ing. The problem is that our measurements are always noisy, and typical
functions H(γ) have many zeros and small values, making division by H(γ)
dangerous, except where the values of H(γ) are not too small. These values
of γ tend to be the smaller ones, centered around zero, so that we end up
with estimates of F (γ) itself only for the smaller values of γ. The result is
a low-pass filtering of the object f(x).

To investigate such low-pass filtering, we suppose that H(γ) = 1, for
|γ| ≤ Γ, and is zero, otherwise. Then the filter is called the ideal Γ-lowpass
filter. In the farfield propagation model, the variable x is spatial, and the
variable γ is spatial frequency, related to how the function f(x) changes
spatially, as we move x. Rapid changes in f(x) are associated with values of
F (γ) for large γ. For the case in which the variable x is time, the variable γ
becomes frequency, and the effect of the low-pass filter on f(x) is to remove
its higher-frequency components.

One effect of low-pass filtering in image processing is to smooth out the
more rapidly changing features of an image. This can be useful if these
features are simply unwanted oscillations, but if they are important de-
tail, the smoothing presents a problem. Restoring such wanted detail is
often viewed as removing the unwanted effects of the low-pass filtering; in
other words, we try to recapture the missing high-spatial-frequency val-
ues that have been zeroed out. Such an approach to image restoration is
called frequency-domain extrapolation . How can we hope to recover these
missing spatial frequencies, when they could have been anything? To have
some chance of estimating these missing values we need to have some prior
information about the image being reconstructed.

35.4. TWO-DIMENSIONAL FOURIER TRANSFORMS 339

35.4 Two-Dimensional Fourier Transforms

More generally, we consider a function f(x, z) of two real variables. Its
Fourier transformation is

F (α, β) =
∫ ∫

f(x, z)ei(xα+zβ)dxdz. (35.22)

For example, suppose that f(x, z) = 1 for
√

x2 + z2 ≤ R, and zero,
otherwise. Then we have

F (α, β) =
∫ π

−π

∫ R

0

e−i(αr cos θ+βr sin θ)rdrdθ. (35.23)

In polar coordinates, with α = ρ cos φ and β = ρ sinφ, we have

F (ρ, φ) =
∫ R

0

∫ π

−π

eirρ cos(θ−φ)dθrdr. (35.24)

The inner integral is well known;∫ π

−π

eirρ cos(θ−φ)dθ = 2πJ0(rρ), (35.25)

where J0 denotes the 0th order Bessel function. Using the identity∫ z

0

tnJn−1(t)dt = znJn(z), (35.26)

we have

F (ρ, φ) =
2πR

ρ
J1(ρR). (35.27)

Notice that, since f(x, z) is a radial function, that is, dependent only on
the distance from (0, 0) to (x, z), its Fourier transform is also radial.

The first positive zero of J1(t) is around t = 4, so when we measure
F at various locations and find F (ρ, φ) = 0 for a particular (ρ, φ), we can
estimate R ≈ 4/ρ. So, even when a distant spherical object, like a star,
is too far away to be imaged well, we can sometimes estimate its size by
finding where the intensity of the received signal is zero [112].

35.4.1 Two-Dimensional Fourier Inversion

Just as in the one-dimensional case, the Fourier transformation that pro-
duced F (α, β) can be inverted to recover the original f(x, y). The Fourier
Inversion Formula in this case is

f(x, y) =
1

4π2

∫ ∫
F (α, β)e−i(αx+βy)dαdβ. (35.28)

340 CHAPTER 35. THE FOURIER TRANSFORM

It is important to note that this procedure can be viewed as two one-
dimensional Fourier inversions: first, we invert F (α, β), as a function of,
say, β only, to get the function of α and y

g(α, y) =
1
2π

∫
F (α, β)e−iβydβ; (35.29)

second, we invert g(α, y), as a function of α, to get

f(x, y) =
1
2π

∫
g(α, y)e−iαxdα. (35.30)

If we write the functions f(x, y) and F (α, β) in polar coordinates, we obtain
alternative ways to implement the two-dimensional Fourier inversion. We
shall consider these other ways when we discuss the tomography problem
of reconstructing a function f(x, y) from line-integral data.

Chapter 36

The EM Algorithm

The so-called EM algorithm discussed by Dempster, Laird and Rubin [74], is
a general framework for deriving iterative methods for maximum-likelihood
parameter estimation. The book by McLachnan and Krishnan [124] is a
good source for the history of this general method. There is a problem
with the way the EM algorithm is usually described in the literature. That
description is fine for the case of discrete random vectors, but needs to be
modified to apply to continuous ones. We consider some of these issues in
this chapter. We begin with the usual formulation of the EM algorithm,
as it applies to the discrete case.

36.1 The Discrete Case

We denote by Z a random vector, taking values in RN , by h : RN → RI

a function from RN to RI , with N > I, and Y = h(Z) the corresponding
random vector taking values in RI . The random vector Z has probability
function f(z;x), where x is a parameter in the parameter space X . The
probability function associated with Y is then

g(y;x) =
∑

z∈h−1(y)

f(z;x) ≤ 1. (36.1)

The random vector Y is usually called the incomplete data, and Z the com-
plete data. The EM algorithm is typically used when maximizing f(z;x) is
easier than maximizing g(y;x), but we have only y, an instance of Y , and
not a value of Z.

The conditional probability function for Z, given Y = y and x, is

b(z; y, x) = f(z;x)/g(y;x), (36.2)

341

342 CHAPTER 36. THE EM ALGORITHM

for z ∈ h−1(y), and b(z; y, x) = 0, otherwise. The E-step of the EM algo-
rithm is to calculate the conditional expected value of the random variable
log f(Z;x), given y and the current estimate xk of x:

Q(x;xk) = E(log f(Z;x)|y, xk) =
∑

z∈h−1(y)

b(z; y, xk) log f(z;x). (36.3)

The M-step is to select xk+1 as a maximizer of Q(x;xk). Denote by H(x;xk)
the conditional expected value of the random variable log b(Z; y, x), given
y and xk:

H(x;xk) =
∑

z∈h−1(y)

b(z; y, xk) log b(z; y, x). (36.4)

Then, for all x ∈ X , we have

Q(x;xk) = H(x;xk) + L(x), (36.5)

for L(x) = log g(y;x).
For positive scalars a and b, let KL(a, b) denote the Kullback-Leibler

distance

KL(a, b) = a log
a

b
+ b− a. (36.6)

Also let KL(a, 0) = +∞ and KL(0, b) = b. Extend the KL distance
component-wise to vectors with non-negative entries. It follows from the
inequality log t ≤ t − 1 that KL(a, b) ≥ 0 and KL(a, b) = 0 if and only if
a = b. Then we have

Q(x;xk) = −KL(b(·; y, xk), f(·;x)), (36.7)

and

H(xk;xk) = H(x;xk) + KL(b(·; y, xk), b(·; y, x)), (36.8)

where

KL(b(·; y, xk), b(·; y, x)) =
∑

z

KL(b(z; y, xk), b(z; y, x)) ≥ 0. (36.9)

Therefore,

L(xk) = Q(xk;xk)−H(xk;xk) ≤ Q(xk+1;xk)−H(xk;xk) (36.10)

= Q(xk+1;xk)−H(xk+1;xk)−KL(b(xk), b(xk+1)) (36.11)

= L(xk+1)−KL(b(xk), b(xk+1)). (36.12)

36.2. THE CONTINUOUS CASE 343

The sequence {L(xk)} is increasing and non-positive, so convergent. The
sequence {KL(b(xk), b(xk+1))} converges to zero.

In the discrete case, the EM algorithm is an alternating minimization
method. The function KL(b(·; y, xk), f(·;x)) is minimized by the choice
x = xk+1, and the function KL(b(·; y, x), f(·;xk+1)) is minimized by the
choice x = xk+1. Therefore, the EM algorithm can be viewed as the result
of alternately minimizing KL(b(·; y, u), f(·; v)), first with respect to the
variable u, and then with respect to the variable v.

Without further assumptions, we can say no more; see [150]. We would
like to conclude that the sequence {xk} converges to a maximizer of L(x),
but we have no metric on the parameter space X . We need an identity
that relates the nonnegative quantity

KL(b(·; y, xk), f(·;x))−KL(b(·; y, xk), f(·;xk+1)) (36.13)

to the difference, in parameter space, between x and xk+1. For example,
for the EMML algorithm in the Poisson mixture case, we have

KL(b(·; y, xk), f(·;x))−KL(b(·; y, xk), f(·;xk+1)) = KL(xk+1, x).(36.14)

36.2 The Continuous Case

The usual approach to the EM algorithm in this case is to mimic the
discrete case. A problem arises when we try to define g(y;x) as

g(y;x) =
∫

z∈h−1(y)

f(z;x)dz; (36.15)

the set h−1(y) typically has measure zero in RN . We need a different
approach.

Suppose that there is a second function c : RN → RN−I such that
the function G(z) = G(h(z), c(z)) = (y, w) has inverse H(y, w) = z. Then,
given y, let W (y) = {w = c(z)|y = h(z)}. Then, with J(y, w) the Jacobian,
the pdf of the random vector Y is

g(y;x) =
∫

W (y)

f(H(y, w);x)J(y, w)dw, (36.16)

and the pdf for the random vector W = c(Z) is

b(H(y, w); y, x) = f(H(y, w);x)J(y, w)/g(y;x), (36.17)

for w ∈ W (y). Given y, and having found xk, we minimize

KL(b(H(y, w);xk), f(H(y, w);x)), (36.18)

with respect to x, to get xk+1.

344 CHAPTER 36. THE EM ALGORITHM

36.2.1 An Example

Suppose that Z1 and Z2 are independent and uniformly distributed on the
interval [0, x], where x > 0 is an unknown parameter. Let Y = Z1 + Z2.
Then

g(y;x) = y/x2, (36.19)

for 0 ≤ y ≤ x, and

g(y;x) = (2x− y)/x2, (36.20)

for x ≤ y ≤ 2x. Given y, the maximum likelihood estimate of x is y. The
pdf for the random vector Z = (Z1, Z2) is

f(z1, z2;x) =
1
x2

χ[0,x](z1)χ[0,x](z2). (36.21)

The conditional pdf of Z, given y and xk, is

b(z1, z2; y, xk) =
1
y
χ[0,xk](z1)χ[0,xk](z2), (36.22)

for 0 ≤ y ≤ xk, and for xk ≤ y ≤ 2xk it is

b(z1, z2; y, xk) =
1

2xk − y
χ[0,xk](z1)χ[0,xk](z2). (36.23)

Suppose that c(z) = c(z1, z2) = z2 and W = c(Z). Then W (y) = [0, y] and
the conditional pdf of W , given y and xk is b(y−w,w; y, xk). If we choose
x0 ≥ y, then x1 = y, which is the ML estimator. But, if we choose x0 in
the interval [y

2 , y], then x1 = x0 and the EM iteration stagnates. Note that
the function L(x) = log g(y;x) is continuous, but not differentiable. It is
concave for x in the interval [y

2 , y] and convex for x ≥ y.

Chapter 37

Using Prior Knowledge in
Remote Sensing

The problem is to reconstruct a (possibly complex-valued) function f :
RD → C from finitely many measurements gn, n = 1, ..., N , pertaining
to f . The function f(r) represents the physical object of interest, such
as the spatial distribution of acoustic energy in sonar, the distribution of
x-ray-attenuating material in transmission tomography, the distribution of
radionuclide in emission tomography, the sources of reflected radio waves
in radar, and so on. Often the reconstruction, or estimate, of the function
f takes the form of an image in two or three dimensions; for that reason,
we also speak of the problem as one of image reconstruction. The data
are obtained through measurements. Because there are only finitely many
measurements, the problem is highly under-determined and even noise-free
data are insufficient to specify a unique solution.

37.1 The Optimization Approach

One way to solve such under-determined problems is to replace f(r) with a
vector in CN and to use the data to determine the N entries of this vector.
An alternative method is to model f(r) as a member of a family of linear
combinations of N preselected basis functions of the multi-variable r. Then
the data is used to determine the coefficients. This approach offers the user
the opportunity to incorporate prior information about f(r) in the choice of
the basis functions. Such finite-parameter models for f(r) can be obtained
through the use of the minimum-norm estimation procedure, as we shall
see. More generally, we can associate a cost with each data-consistent
function of r, and then minimize the cost over all the potential solutions to
the problem. Using a norm as a cost function is one way to proceed, but

345

346CHAPTER 37. USING PRIOR KNOWLEDGE IN REMOTE SENSING

there are others. These optimization problems can often be solved only
through the use of discretization and iterative algorithms.

37.2 Introduction to Hilbert Space

In many applications the data are related linearly to f . To model the op-
erator that transforms f into the data vector, we need to select an ambient
space containing f . Typically, we choose a Hilbert space. The selection of
the inner product provides an opportunity to incorporate prior knowledge
about f into the reconstruction. The inner product induces a norm and
our reconstruction is that function, consistent with the data, for which this
norm is minimized. We shall illustrate the method using Fourier-transform
data and prior knowledge about the support of f and about its overall
shape.

Our problem, then, is to estimate a (possibly complex-valued) function
f(r) of D real variables r = (r1, ..., rD) from finitely many measurements,
gn, n = 1, ..., N . We shall assume, in this chapter, that these measurements
take the form

gn =
∫

S

f(r)hn(r)dr, (37.1)

where S denotes the support of the function f(r), which, in most cases, is
a bounded set. For the purpose of estimating, or reconstructing, f(r), it is
convenient to view Equation (37.1) in the context of a Hilbert space, and
to write

gn = 〈f, hn〉, (37.2)

where the usual Hilbert space inner product is defined by

〈f, h〉2 =
∫

S

f(r)h(r)dr, (37.3)

for functions f(r) and h(r) supported on the set S. Of course, for these
integrals to be defined, the functions must satisfy certain additional prop-
erties, but a more complete discussion of these issues is outside the scope
of this chapter. The Hilbert space so defined, denoted L2(S), consists
(essentially) of all functions f(r) for which the norm

||f ||2 =

√∫
S

|f(r)|2dr (37.4)

is finite.

37.2. INTRODUCTION TO HILBERT SPACE 347

37.2.1 Minimum-Norm Solutions

Our estimation problem is highly under-determined; there are infinitely
many functions in L2(S) that are consistent with the data and might be the
right answer. Such under-determined problems are often solved by acting
conservatively, and selecting as the estimate that function consistent with
the data that has the smallest norm. At the same time, however, we often
have some prior information about f that we would like to incorporate in
the estimate. One way to achieve both of these goals is to select the norm
to incorporate prior information about f , and then to take as the estimate
of f the function consistent with the data, for which the chosen norm is
minimized.

The data vector g = (g1, ..., gN)T is in CN and the linear operator H
from L2(S) to CN takes f to g; so we write g = Hf . Associated with the
mapping H is its adjoint operator, H†, going from CN to L2(S) and given,
for each vector a = (a1, ..., aN)T , by

H†a(r) = a1h1(r) + ... + aNhN (r). (37.5)

The operator from CN to CN defined by HH† corresponds to an N by
N matrix, which we shall also denote by HH†. If the functions hn(r)
are linearly independent, then this matrix is positive-definite, therefore
invertible.

Given the data vector g, we can solve the system of linear equations

g = HH†a (37.6)

for the vector a. Then the function

f̂(r) = H†a(r) (37.7)

is consistent with the measured data and is the function in L2(S) of least
norm for which this is true. The function w(r) = f(r) − f̂(r) has the
property Hw = 0. It is easy to see that

||f ||22 = ||f̂ ||22 + ||w||22 (37.8)

The estimate f̂(r) is the minimum-norm solution, with respect to the
norm defined in Equation (37.4). If we change the norm on L2(S), or, equiv-
alently, the inner product, then the minimum-norm solution will change.

For any continuous linear operator T on L2(S), the adjoint operator,
denoted T †, is defined by

〈T f, h〉2 = 〈f, T †h〉2. (37.9)

The adjoint operator will change when we change the inner product.

348CHAPTER 37. USING PRIOR KNOWLEDGE IN REMOTE SENSING

37.3 A Class of Inner Products

Let T be a continuous, linear and invertible operator on L2(S). Define the
T inner product to be

〈f, h〉T = 〈T −1f, T −1h〉2. (37.10)

We can then use this inner product to define the problem to be solved. We
now say that

gn = 〈f, tn〉T , (37.11)

for known functions tn(x). Using the definition of the T inner product, we
find that

gn = 〈f, hn〉2 = 〈T f, T hn〉T . (37.12)

The adjoint operator for T , with respect to the T -norm, is denoted T ∗,
and is defined by

〈T f, h〉T = 〈f, T ∗h〉T . (37.13)

Therefore,

gn = 〈f, T ∗T hn〉T . (37.14)

Lemma 37.1 We have T ∗T = T T †.

Consequently, we have

gn = 〈f, T T †hn〉T . (37.15)

37.4 Minimum-T -Norm Solutions

The function f̃ consistent with the data and having the smallest T -norm
has the algebraic form

f̂ =
N∑

m=1

amT T †hm. (37.16)

Applying the T -inner product to both sides of Equation (37.16), we get

gn = 〈f̂ , T T †hn〉T (37.17)

=
N∑

m=1

am〈T T †hm, T T †hn〉T . (37.18)

37.5. THE CASE OF FOURIER-TRANSFORM DATA 349

Therefore,

gn =
N∑

m=1

am〈T †hm, T †hn〉2. (37.19)

We solve this system for the am and insert them into Equation (37.16)
to get our reconstruction. The Gram matrix that appears in Equation
(37.19) is positive-definite, but is often ill-conditioned; increasing the main
diagonal by a percent or so usually is sufficient regularization.

37.5 The Case of Fourier-Transform Data

To illustrate these minimum-T -norm solutions, we consider the case in
which the data are values of the Fourier transform of f . Specifically, sup-
pose that

gn =
∫

S

f(x)e−iωnxdx, (37.20)

for arbitrary values ωn.

37.5.1 The L2(−π, π) Case

Assume that f(x) = 0, for |x| > π. The minimum-2-norm solution has the
form

f̂(x) =
N∑

m=1

ameiωmx, (37.21)

with

gn =
N∑

m=1

am

∫ π

−π

ei(ωm−ωn)xdx. (37.22)

For the equispaced values ωn = n we find that am = gm and the minimum-
norm solution is

f̂(x) =
N∑

n=1

gneinx. (37.23)

37.5.2 The Over-Sampled Case

Suppose that f(x) = 0 for |x| > A, where 0 < A < π. Then we use
L2(−A,A) as the Hilbert space. For equispaced data at ωn = n, we have

gn =
∫ π

−π

f(x)χA(x)e−inxdx, (37.24)

350CHAPTER 37. USING PRIOR KNOWLEDGE IN REMOTE SENSING

so that the minimum-norm solution has the form

f̂(x) = χA(x)
N∑

m=1

ameimx, (37.25)

with

gn = 2
N∑

m=1

am
sinA(m− n)

m− n
. (37.26)

The minimum-norm solution is support-limited to [−A,A] and consistent
with the Fourier-transform data.

37.5.3 Using a Prior Estimate of f

Suppose that f(x) = 0 for |x| > π again, and that p(x) satisfies

0 < ε ≤ p(x) ≤ E < +∞, (37.27)

for all x in [−π, π]. Define the operator T by (T f)(x) =
√

p(x)f(x). The
T -norm is then

〈f, h〉T =
∫ π

−π

f(x)h(x)p(x)−1dx. (37.28)

It follows that

gn =
∫ π

−π

f(x)p(x)e−inxp(x)−1dx, (37.29)

so that the minimum T -norm solution is

f̂(x) =
N∑

m=1

amp(x)eimx = p(x)
N∑

m=1

ameimx, (37.30)

where

gn =
N∑

m=1

am

∫ π

−π

p(x)ei(m−n)xdx. (37.31)

If we have prior knowledge about the support of f , or some idea of its shape,
we can incorporate that prior knowledge into the reconstruction through
the choice of p(x).

The reconstruction in Equation (37.30) was presented in [24], where
it was called the PDFT method. The PDFT was based on an earlier
non-iterative version of the Gerchberg-Papoulis bandlimited extrapolation

37.5. THE CASE OF FOURIER-TRANSFORM DATA 351

procedure [23]. The PDFT was then applied to image reconstruction prob-
lems in [25]. An application of the PDFT was presented in [28]. In [27] we
extended the PDFT to a nonlinear version, the indirect PDFT (IPDFT),
that generalizes Burg’s maximum entropy spectrum estimation method.
The PDFT was applied to the phase problem in [30] and in [31] both the
PDFT and IPDFT were examined in the context of Wiener filter approxi-
mation. More recent work on these topics is discussed in the book [47].

352CHAPTER 37. USING PRIOR KNOWLEDGE IN REMOTE SENSING

Chapter 38

Optimization in Remote
Sensing

Once again, the basic problem is to reconstruct or estimate a (possibly
complex-valued) function f0(r) of several real variables, from finitely many
measurements pertaining to f0(r). As previously, we shall assume that the
measurements gn take the form

gn =
∫

S

f0(r)hn(r)dr, (38.1)

for n = 1, ..., N . The problem is highly under-determined; there are in-
finitely many functions consistent with the data. One approach to solving
such problems is to select a cost function C(f) ≥ 0 and minimize C(f) over
all functions f(r) consistent with the measured data. As we saw previously,
cost functions that are Hilbert-space norms are reasonable choices. How
we might select the cost function is the subject of this chapter.

38.1 The General Form of the Cost Function

We shall consider cost functions of the form

C(f) =
∫

S

F (f(r), p(r))dr, (38.2)

where p(r) is a fixed prior estimate of the true f(r) and F (y, z) ≥ 0 is
to be determined. Such cost functions are viewed as measures of distance
between the functions f(r) and p(r). Therefore, we also write

D(f, p) =
∫

S

F (f(r), p(r))dr, (38.3)

353

354 CHAPTER 38. OPTIMIZATION IN REMOTE SENSING

Our goal is to impose reasonable conditions on these distances D(f, p)
sufficiently restrictive to eliminate all but a small class of suitable distances.

38.2 The Conditions

In order for D(f, p) to be viewed as a distance measure, we want D(f, f) = 0
for all appropriate f . Therefore, we require

Axiom 1: F (y, y) = 0, for all suitable y.

We also want D(f, p) ≥ D(p, p) for all appropriate f and p, so we
require

Axiom 2: Fy(y, y) = 0, for all suitable y.

To make D(f, p) strictly convex in f we impose

Axiom 3: Fy,y(y, z) > 0, for all suitable y and z.

Given p(r) and the data, we find our estimate by minimizing D(f, p)
over all appropriate f(r) consistent with the data. The Lagrangian is then

L(f, λ) = D(f, p) +
N∑

n=1

λn(gn −
∫

S

f(r)hn(r)dr). (38.4)

Taking the first partial derivative of L(f, λ) with respect to f gives the
Euler equation

Fy(f(r), p(r)) =
N∑

n=1

λnhn(r). (38.5)

Given the data, we must find the λn for which the resulting f(r) is consist
with the data.

As we vary the values of gn, the values of the λn will change also. The
functions t(r) satisfying

Fy(t(r), p(r)) =
N∑

n=1

λnhn(r), (38.6)

for some choice of the λn, will form the family denoted T . We see from
Equation (38.5) that our optimal f is a member of T . The functions
consistent with the data we denote by Q. We seek those functions F (y, z)
for which Axiom 4 holds:

38.2. THE CONDITIONS 355

Axiom 4: In all cases, the member of T that minimizes D(f0, t) is the
function f(r) in Q that minimizes D(f, p).

Our goal is to find an estimate f(r) that is close to the true f0(r). We
are relying on data consistency to provide such an estimate. At the very
least, we hope that data consistency produces the best approximation of
f0(r) within T . This will depend on our choice of the cost function. Axiom
4 says that, among all the functions in T , the one that is closest to the true
f0(r) is the one that is consistent with the data.

In [108] it was shown that the functions F (y, z) that satisfy these four
axioms must also have the property

Fz,y,y(y, z) = 0, (38.7)

for all suitable y and z. It follows that there is a strictly convex function
H(y) such that

F (y, z) = H(y)−H(z)−H ′(z)(y − z). (38.8)

As we saw in our discussion of Bregman-Legendre functions, the Bregman
distances have the form in Equation (38.8).

If f̂(r) is the member of Q that minimizes D(f, p), then

D(f, p) = D(f, f̂) + D(f̂ , p). (38.9)

There are many F that fit this description. If we impose one more axiom,
we can reduce the choice significantly.

Axiom 5: Let f̂ minimize D(f, p) over f in Q. Then, for any suitable
constant c, f̂ also minimizes D(f, cp), over f in Q.

Axiom 5’: Let f̂ minimize D(f, p) over f in Q. Then, for any suitable
constant c, cf̂ minimizes D(f, p), over f consistent with the data cgn.

If the function F satisfies either of these two additional axioms, for all
appropriate choices of p, then F is a positive multiple of the Kullback-
Leibler distance, that is,

F (y, z) = c2[y log
y

z
+ z − y], (38.10)

for y > 0 and z > 0.

356 CHAPTER 38. OPTIMIZATION IN REMOTE SENSING

Bibliography

[1] Agmon, S. (1954) “The relaxation method for linear inequalities” ,
Canadian Journal of Mathematics, 6, pp. 382–392.

[2] Anderson, A. and Kak, A. (1984) “Simultaneous algebraic reconstruc-
tion technique (SART): a superior implementation of the ART algo-
rithm” , Ultrasonic Imaging, 6 81–94.

[3] Aubin, J.-P., (1993) Optima and Equilibria: An Introduction to Non-
linear Analysis, Springer-Verlag.

[4] Axelsson, O. (1994) Iterative Solution Methods. Cambridge, UK:
Cambridge University Press.

[5] Baillon, J.-B., Bruck, R.E., and Reich, S. (1978) “On the asymp-
totic behavior of nonexpansive mappings and semigroups in Banach
spaces” , Houston Journal of Mathematics, 4, pp. 1–9.

[6] Baillon, J.-B., and Haddad, G. (1977) “Quelques proprietes des oper-
ateurs angle-bornes et n-cycliquement monotones” , Israel J. of Math-
ematics, 26 137-150.

[7] Bauschke, H. (1996) “The approximation of fixed points of composi-
tions of nonexpansive mappings in Hilbert space,”Journal of Mathe-
matical Analysis and Applications, 202, pp. 150–159.

[8] Bauschke, H. (2001) Projection algorithms: results and open problems,
in Inherently Parallel Algorithms in Feasibility and Optimization and
their Applications, Butnariu, D., Censor, Y. and Reich, S., editors,
Elsevier Publ., pp. 11–22.

[9] Bauschke, H., and Borwein, J. (1996) On projection algorithms for
solving convex feasibility problems, SIAM Review, 38 (3), pp. 367–
426.

[10] Bauschke, H., and Borwein, J. (1997) “Legendre functions and the
method of random Bregman projections.” Journal of Convex Analysis,
4, pp. 27–67.

357

358 BIBLIOGRAPHY

[11] Bauschke, H., Borwein, J., and Lewis, A. (1997) The method of cyclic
projections for closed convex sets in Hilbert space, Contemporary
Mathematics: Recent Developments in Optimization Theory and Non-
linear Analysis, 204, American Mathematical Society, pp. 1–38.

[12] Bauschke, H., and Lewis, A. (2000) “Dykstra’s algorithm with Breg-
man projections: a convergence proof.” Optimization, 48, pp. 409–
427.

[13] Bertero, M., and Boccacci, P. (1998) Introduction to Inverse Problems
in Imaging Bristol, UK: Institute of Physics Publishing.

[14] Bertsekas, D.P. (1997) “A new class of incremental gradient methods
for least squares problems.” SIAM J. Optim., 7, pp. 913-926.

[15] Borwein, J. and Lewis, A. (2000) Convex Analysis and Nonlinear Op-
timization. Canadian Mathematical Society Books in Mathematics,
New York: Springer-Verlag.

[16] Bracewell, R.C. (1979) “Image reconstruction in radio astronomy.” in
[98], pp. 81–104.

[17] Bregman, L.M. (1967) “The relaxation method of finding the common
point of convex sets and its application to the solution of problems in
convex programming.”USSR Computational Mathematics and Math-
ematical Physics 7: pp. 200–217.

[18] Bregman, L., Censor, Y., and Reich, S. (1999) “Dykstra’s algorithm as
the nonlinear extension of Bregman’s optimization method.” Journal
of Convex Analysis, 6 (2), pp. 319–333.

[19] Brodzik, A. and Mooney, J. (1999) “Convex projections algorithm
for restoration of limited-angle chromotomographic images.”Journal
of the Optical Society of America A 16 (2), pp. 246–257.

[20] Browne, J. and A. DePierro, A. (1996) “A row-action alternative to
the EM algorithm for maximizing likelihoods in emission tomogra-
phy.”IEEE Trans. Med. Imag. 15, pp. 687–699.

[21] Bruck, R.E., and Reich, S. (1977) “Nonexpansive projections and re-
solvents of accretive operators in Banach spaces” , Houston Journal of
Mathematics, 3, pp. 459–470.

[22] Burger, E., and Starbird, M. Coincidences, Chaos, and All That Math
Jazz New York: W.W. Norton, Publ.

[23] Byrne, C. and Fitzgerald, R. (1979) “A unifying model for spectrum
estimation” , in Proceedings of the RADC Workshop on Spectrum
Estimation- October 1979, Griffiss AFB, Rome, NY.

BIBLIOGRAPHY 359

[24] Byrne, C. and Fitzgerald, R. (1982) “Reconstruction from partial in-
formation, with applications to tomography.”SIAM J. Applied Math.
42(4), pp. 933–940.

[25] Byrne, C., Fitzgerald, R., Fiddy, M., Hall, T. and Darling, A. (1983)
“Image restoration and resolution enhancement.”J. Opt. Soc. Amer.
73, pp. 1481–1487.

[26] Byrne, C., and Wells, D. (1983) “Limit of continuous and discrete
finite-band Gerchberg iterative spectrum extrapolation.”Optics Let-
ters 8 (10), pp. 526–527.

[27] Byrne, C. and Fitzgerald, R. (1984) “Spectral estimators that extend
the maximum entropy and maximum likelihood methods.”SIAM J.
Applied Math. 44(2), pp. 425–442.

[28] Byrne, C., Levine, B.M., and Dainty, J.C. (1984) “Stable estimation
of the probability density function of intensity from photon frequency
counts.”JOSA Communications 1(11), pp. 1132–1135.

[29] Byrne, C., and Wells, D. (1985) “Optimality of certain iterative and
non-iterative data extrapolation procedures.”Journal of Mathematical
Analysis and Applications 111 (1), pp. 26–34.

[30] Byrne, C. and Fiddy, M. (1987) “Estimation of continuous object
distributions from Fourier magnitude measurements.”JOSA A 4, pp.
412–417.

[31] Byrne, C. and Fiddy, M. (1988) “Images as power spectra; reconstruc-
tion as Wiener filter approximation.”Inverse Problems 4, pp. 399–409.

[32] Byrne, C., Haughton, D., and Jiang, T. (1993) “High-resolution in-
version of the discrete Poisson and binomial transformations.”Inverse
Problems 9, pp. 39–56.

[33] Byrne, C. (1993) “Iterative image reconstruction algorithms based on
cross-entropy minimization.”IEEE Transactions on Image Processing
IP-2, pp. 96–103.

[34] Byrne, C. (1995) “Erratum and addendum to ‘Iterative image re-
construction algorithms based on cross-entropy minimization’.”IEEE
Transactions on Image Processing IP-4, pp. 225–226.

[35] Byrne, C. (1996) “Iterative reconstruction algorithms based on cross-
entropy minimization.”in Image Models (and their Speech Model
Cousins), S.E. Levinson and L. Shepp, editors, IMA Volumes in
Mathematics and its Applications, Volume 80, pp. 1–11. New York:
Springer-Verlag.

360 BIBLIOGRAPHY

[36] Byrne, C. (1996) “Block-iterative methods for image reconstruction
from projections.”IEEE Transactions on Image Processing IP-5, pp.
792–794.

[37] Byrne, C. (1997) “Convergent block-iterative algorithms for image
reconstruction from inconsistent data.”IEEE Transactions on Image
Processing IP-6, pp. 1296–1304.

[38] Byrne, C. (1998) “Accelerating the EMML algorithm and related it-
erative algorithms by rescaled block-iterative (RBI) methods.”IEEE
Transactions on Image Processing IP-7, pp. 100–109.

[39] Byrne, C. (1998) “Iterative deconvolution and deblurring with con-
straints”, Inverse Problems, 14, pp. 1455-1467.

[40] Byrne, C. (1999) “Iterative projection onto convex sets using multiple
Bregman distances.”Inverse Problems 15, pp. 1295–1313.

[41] Byrne, C. (2000) “Block-iterative interior point optimization methods
for image reconstruction from limited data.”Inverse Problems 16, pp.
1405–1419.

[42] Byrne, C. (2001) “Bregman-Legendre multidistance projection algo-
rithms for convex feasibility and optimization.”in Inherently Parallel
Algorithms in Feasibility and Optimization and their Applications,
Butnariu, D., Censor, Y., and Reich, S., editors, pp. 87–100. Amster-
dam: Elsevier Publ.,

[43] Byrne, C. (2001) “Likelihood maximization for list-mode emission
tomographic image reconstruction.”IEEE Transactions on Medical
Imaging 20(10), pp. 1084–1092.

[44] Byrne, C. (2002) “Iterative oblique projection onto convex sets and
the split feasibility problem.”Inverse Problems 18, pp. 441–453.

[45] Byrne, C. (2004) “A unified treatment of some iterative algorithms in
signal processing and image reconstruction.”Inverse Problems 20, pp.
103–120.

[46] Byrne, C. (2005) Choosing parameters in block-iterative or ordered-
subset reconstruction algorithms, IEEE Transactions on Image Pro-
cessing, 14 (3), pp. 321–327.

[47] Byrne, C. (2005) Signal Processing: A Mathematical Approach, AK
Peters, Publ., Wellesley, MA.

[48] Byrne, C. (2005) “Feedback in Iterative Algorithms” unpublished lec-
ture notes.

BIBLIOGRAPHY 361

[49] Byrne, C., and Ward, S. (2005) “Estimating the Largest Singular
Value of a Sparse Matrix” in preparation.

[50] Byrne, C. and Censor, Y. (2001) Proximity function minimization us-
ing multiple Bregman projections, with applications to split feasibility
and Kullback-Leibler distance minimization, Annals of Operations Re-
search, 105, pp. 77–98.

[51] Censor, Y. (1981) “Row-action methods for huge and sparse systems
and their applications.”SIAM Review, 23: 444–464.

[52] Censor, Y., Eggermont, P.P.B., and Gordon, D. (1983) “Strong
underrelaxation in Kaczmarz’s method for inconsistent sys-
tems.”Numerische Mathematik 41, pp. 83–92.

[53] Censor, Y. and Elfving, T. (1994) A multiprojection algorithm using
Bregman projections in a product space, Numerical Algorithms, 8
221–239.

[54] Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2006) “The
multiple-sets split feasibility problem and its application for inverse
problems.” Inverse Problems, to appear.

[55] Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. (2006) “A uni-
fied approach for inversion problems in intensity-modulated radiation
therapy.” , to appear.

[56] Censor, Y., and Reich, S. (1996) “Iterations of paracontractions and
firmly nonexpansive operators with applications to feasibility and op-
timization” , Optimization, 37, pp. 323–339.

[57] Censor, Y., and Reich, S. (1998) “The Dykstra algorithm for Bregman
projections” , Communications in Applied Analysis, 2, pp. 323–339.

[58] Censor, Y. and Segman, J. (1987) “On block-iterative maximiza-
tion.”J. of Information and Optimization Sciences 8, pp. 275–291.

[59] Censor, Y., and Zenois, S.A. (1992) “Proximal minimization algorithm
with D-functions” Journal of Optimization Theory and Applications,
73(3), pp. 451–464.

[60] Censor, Y. and Zenios, S.A. (1997) Parallel Optimization: Theory,
Algorithms and Applications. New York: Oxford University Press.

[61] Chang, J.-H., Anderson, J.M.M., and Votaw, J.R. (2004) “Regular-
ized image reconstruction algorithms for positron emission tomogra-
phy.”IEEE Transactions on Medical Imaging 23(9), pp. 1165–1175.

362 BIBLIOGRAPHY

[62] Cheney, W., and Goldstein, A. (1959) “Proximity maps for convex
sets.” Proc. Am. Math. Soc., 10, pp. 448–450.

[63] Cimmino, G. (1938) “Calcolo approssimato per soluzioni die sistemi
di equazioni lineari.”La Ricerca Scientifica XVI, Series II, Anno IX 1,
pp. 326–333.

[64] Combettes, P. (1993) The foundations of set theoretic estimation, Pro-
ceedings of the IEEE, 81 (2), pp. 182–208.

[65] Combettes, P. (1996) The convex feasibility problem in image recovery,
Advances in Imaging and Electron Physics, 95, pp. 155–270.

[66] Combettes, P. (2000) “Fejér monotonicity in convex optimization.”in
Encyclopedia of Optimization, C.A. Floudas and P. M. Pardalos, edi-
tors, Boston: Kluwer Publ.

[67] Combettes, P., and Trussell, J. (1990) Method of successive projec-
tions for finding a common point of sets in a metric space, Journal of
Optimization Theory and Applications, 67 (3), pp. 487–507.

[68] Combettes, P., and Wajs, V. (2005) Signal recovery by proxi-
mal forward-backward splitting, Multiscale Modeling and Simulation,
4(4), pp. 1168–1200.

[69] Csiszár, I. and Tusnády, G. (1984) “Information geometry and alter-
nating minimization procedures.”Statistics and Decisions Supp. 1,
pp. 205–237.

[70] Csiszár, I. (1989) “A geometric interpretation of Darroch and Rat-
cliff’s generalized iterative scaling.”The Annals of Statistics 17 (3),
pp. 1409–1413.

[71] Csiszár, I. (1991) “Why least squares and maximum entropy? An ax-
iomatic approach to inference for linear inverse problems.”The Annals
of Statistics 19 (4), pp. 2032–2066.

[72] Darroch, J. and Ratcliff, D. (1972) “Generalized iterative scaling for
log-linear models.”Annals of Mathematical Statistics 43, pp. 1470–
1480.

[73] Dax, A. (1990) “The convergence of linear stationary iterative pro-
cesses for solving singular unstructured systems of linear equations,”
SIAM Review, 32, pp. 611–635.

[74] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) “Maximum like-
lihood from incomplete data via the EM algorithm.”Journal of the
Royal Statistical Society, Series B 37, pp. 1–38.

BIBLIOGRAPHY 363

[75] De Pierro, A. (1995) “A modified expectation maximization algorithm
for penalized likelihood estimation in emission tomography.”IEEE
Transactions on Medical Imaging 14, pp. 132–137.

[76] De Pierro, A. and Iusem, A. (1990) “On the asymptotic behavior of
some alternate smoothing series expansion iterative methods.”Linear
Algebra and its Applications 130, pp. 3–24.

[77] De Pierro, A., and Yamaguchi, M. (2001) “Fast EM-like methods for
maximum ‘a posteriori’ estimates in emission tomography” Transac-
tions on Medical Imaging, 20 (4).

[78] Deutsch, F., and Yamada, I. (1998) “Minimizing certain convex func-
tions over the intersection of the fixed point sets of nonexpansive map-
pings” , Numerical Functional Analysis and Optimization, 19, pp. 33–
56.

[79] Devaney, R. (1989) An Introduction to Chaotic Dynamical Systems,
Addison-Wesley.

[80] Duda, R., Hart, P., and Stork, D. (2001) Pattern Classification, Wiley.

[81] Dugundji, J. (1970) Topology Boston: Allyn and Bacon, Inc.

[82] Dykstra, R. (1983) “An algorithm for restricted least squares regres-
sion” J. Amer. Statist. Assoc., 78 (384), pp. 837–842.

[83] Eggermont, P.P.B., Herman, G.T., and Lent, A. (1981) “Iterative algo-
rithms for large partitioned linear systems, with applications to image
reconstruction.”Linear Algebra and its Applications 40, pp. 37–67.

[84] Elsner, L., Koltracht, L., and Neumann, M. (1992) “Convergence of
sequential and asynchronous nonlinear paracontractions.” Numerische
Mathematik, 62, pp. 305–319.

[85] Farncombe, T. (2000) “Functional dynamic SPECT imaging using a
single slow camera rotation” , Ph.D. thesis, Dept. of Physics, Univer-
sity of British Columbia.

[86] Fessler, J., Ficaro, E., Clinthorne, N., and Lange, K. (1997) Grouped-
coordinate ascent algorithms for penalized-likelihood transmission im-
age reconstruction, IEEE Transactions on Medical Imaging, 16 (2),
pp. 166–175.

[87] Fleming, W. (1965) Functions of Several Variables, Addison-Wesley
Publ., Reading, MA.

[88] Gasquet, C. and Witomski, F. (1998) Fourier Analysis and Applica-
tions. Berlin: Springer-Verlag.

364 BIBLIOGRAPHY

[89] Geman, S., and Geman, D. (1984) “Stochastic relaxation, Gibbs dis-
tributions and the Bayesian restoration of images.”IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-6, pp. 721–741.

[90] Gifford, H., King, M., de Vries, D., and Soares, E. (2000) “Chan-
nelized Hotelling and human observer correlation for lesion detection
in hepatic SPECT imaging” Journal of Nuclear Medicine 41(3), pp.
514–521.

[91] Goebel, K., and Reich, S. (1984) Uniform Convexity, Hyperbolic ge-
ometry, and Nonexpansive Mappings, New York: Dekker.

[92] Golshtein, E., and Tretyakov, N. (1996) Modified Lagrangians and
Monotone Maps in Optimization. New York: John Wiley and Sons,
Inc.

[93] Gordon, R., Bender, R., and Herman, G.T. (1970) “Algebraic recon-
struction techniques (ART) for three-dimensional electron microscopy
and x-ray photography.”J. Theoret. Biol. 29, pp. 471–481.

[94] Green, P. (1990) “Bayesian reconstructions from emission tomography
data using a modified EM algorithm.”IEEE Transactions on Medical
Imaging 9, pp. 84–93.

[95] Gubin, L.G., Polyak, B.T. and Raik, E.V. (1967) The method of pro-
jections for finding the common point of convex sets, USSR Compu-
tational Mathematics and Mathematical Physics, 7: 1–24.

[96] Haacke, E., Brown, R., Thompson, M., and Venkatesan, R. (1999)
Magnetic Resonance Imaging. New York: Wiley-Liss.

[97] Hebert, T. and Leahy, R. (1989) “A generalized EM algorithm for 3-D
Bayesian reconstruction from Poisson data using Gibbs priors.”IEEE
Transactions on Medical Imaging 8, pp. 194–202.

[98] Herman, G.T. (ed.) (1979) “Image Reconstruction from Projections” ,
Topics in Applied Physics, Vol. 32, Springer-Verlag, Berlin.

[99] Herman, G.T., and Natterer, F. (eds.) “Mathematical Aspects of Com-
puterized Tomography”, Lecture Notes in Medical Informatics, Vol. 8,
Springer-Verlag, Berlin.

[100] Herman, G.T., Censor, Y., Gordon, D., and Lewitt, R. (1985) Com-
ment (on the paper [147]), Journal of the American Statistical Asso-
ciation 80, pp. 22–25.

[101] Herman, G. T. and Meyer, L. (1993) “Algebraic reconstruction tech-
niques can be made computationally efficient.”IEEE Transactions on
Medical Imaging 12, pp. 600–609.

BIBLIOGRAPHY 365

[102] Herman, G. T. (1999) private communication.

[103] Hildreth, C. (1957) A quadratic programming procedure, Naval Re-
search Logistics Quarterly, 4, pp. 79–85. Erratum, ibid., p. 361.

[104] Holte, S., Schmidlin, P., Linden, A., Rosenqvist, G. and Eriksson,
L. (1990) “Iterative image reconstruction for positron emission to-
mography: a study of convergence and quantitation problems.”IEEE
Transactions on Nuclear Science 37, pp. 629–635.

[105] Hudson, M., Hutton, B., and Larkin, R. (1992) “Accelerated EM
reconstruction using ordered subsets” Journal of Nuclear Medicine,
33, p.960.

[106] Hudson, H.M. and Larkin, R.S. (1994) “Accelerated image recon-
struction using ordered subsets of projection data.”IEEE Transactions
on Medical Imaging 13, pp. 601–609.

[107] Hutton, B., Kyme, A., Lau, Y., Skerrett, D., and Fulton, R. (2002)
“A hybrid 3-D reconstruction/registration algorithm for correction of
head motion in emission tomography.”IEEE Transactions on Nuclear
Science 49 (1), pp. 188–194.

[108] Jones, L., and Byrne, C. (1990) “ General entropy criteria for inverse
problems, with applications to data compression, pattern classifica-
tion, and cluster analysis.” IEEE Transactions on Information Theory
36 (1), pp. 23–30.

[109] Kaczmarz, S. (1937) “Angenäherte Auflösung von Systemen linearer
Gleichungen.”Bulletin de l’Academie Polonaise des Sciences et Lettres
A35, pp. 355–357.

[110] Kak, A., and Slaney, M. (2001) “Principles of Computerized Tomo-
graphic Imaging” , SIAM, Philadelphia, PA.

[111] Koltracht, L., and Lancaster, P. (1990) “Constraining strategies for
linear iterative processes.” IMA J. Numer. Anal., 10, pp. 555–567.

[112] Körner, T. (1988) Fourier Analysis. Cambridge, UK: Cambridge Uni-
versity Press.

[113] Kullback, S. and Leibler, R. (1951) “On information and suffi-
ciency.”Annals of Mathematical Statistics 22, pp. 79–86.

[114] Landweber, L. (1951) “An iterative formula for Fredholm integral
equations of the first kind.”Amer. J. of Math. 73, pp. 615–624.

366 BIBLIOGRAPHY

[115] Lange, K. and Carson, R. (1984) “EM reconstruction algorithms for
emission and transmission tomography.”Journal of Computer Assisted
Tomography 8, pp. 306–316.

[116] Lange, K., Bahn, M. and Little, R. (1987) “A theoretical study of
some maximum likelihood algorithms for emission and transmission
tomography.”IEEE Trans. Med. Imag. MI-6(2), pp. 106–114.

[117] Leahy, R. and Byrne, C. (2000) “Guest editorial: Recent development
in iterative image reconstruction for PET and SPECT.”IEEE Trans.
Med. Imag. 19, pp. 257–260.

[118] Leahy, R., Hebert, T., and Lee, R. (1989) “Applications of Markov
random field models in medical imaging.”in Proceedings of the Confer-
ence on Information Processing in Medical Imaging Lawrence-Berkeley
Laboratory, Berkeley, CA.

[119] Lent, A., and Censor, Y. (1980) Extensions of Hildreth’s row-action
method for quadratic programming, SIAM Journal on Control and
Optiization, 18, pp. 444–454.

[120] Levitan, E. and Herman, G. (1987) “A maximum a posteriori proba-
bility expectation maximization algorithm for image reconstruction in
emission tomography.”IEEE Transactions on Medical Imaging 6, pp.
185–192.

[121] Li, T., and Yorke, J.A. (1975) “Period Three Implies Chaos” Amer-
ican Mathematics Monthly, 82, pp. 985–992.

[122] Luenberger, D. (1969) Optimization by Vector Space Methods. New
York: John Wiley and Sons, Inc.

[123] Mann, W. (1953) “Mean value methods in iteration.”Proc. Amer.
Math. Soc. 4, pp. 506–510.

[124] McLachlan, G.J. and Krishnan, T. (1997) The EM Algorithm and
Extensions. New York: John Wiley and Sons, Inc.

[125] Meidunas, E. (2001) Re-scaled Block Iterative Expectation Max-
imization Maximum Likelihood (RBI-EMML) Abundance Estima-
tion and Sub-pixel Material Identification in Hyperspectral Imagery,
MS thesis, Department of Electrical Engineering, University of Mas-
sachusetts Lowell.

[126] Mooney, J., Vickers, V., An, M., and Brodzik, A. (1997) “High-
throughput hyperspectral infrared camera.”Journal of the Optical So-
ciety of America, A 14 (11), pp. 2951–2961.

BIBLIOGRAPHY 367

[127] Motzkin, T., and Schoenberg, I. (1954) The relaxation method for
linear inequalities, Canadian Journal of Mathematics, 6, pp. 393–404.

[128] Narayanan, M., Byrne, C. and King, M. (2001) “An interior point
iterative maximum-likelihood reconstruction algorithm incorporating
upper and lower bounds with application to SPECT transmission
imaging.”IEEE Transactions on Medical Imaging TMI-20 (4), pp.
342–353.

[129] Nash, S. and Sofer, A. (1996) Linear and Nonlinear Programming.
New York: McGraw-Hill.

[130] Natterer, F. (1986) Mathematics of Computed Tomography. New
York: John Wiley and Sons, Inc.

[131] Natterer, F., and Wübbeling, F. (2001) Mathematical Methods in
Image Reconstruction. Philadelphia, PA: SIAM Publ.

[132] Peressini, A., Sullivan, F., and Uhl, J. (1988) The Mathematics of
Nonlinear Programming. Berlin: Springer-Verlag.

[133] Pretorius, P., King, M., Pan, T-S, deVries, D., Glick, S., and Byrne,
C. (1998) Reducing the influence of the partial volume effect on
SPECT activity quantitation with 3D modelling of spatial resolution
in iterative reconstruction, Phys.Med. Biol. 43, pp. 407–420.

[134] Reich, S. (1979) “Weak convergence theorems for nonexpansive map-
pings in Banach spaces” ,Journal of Mathematical Analysis and Ap-
plications, 67, pp. 274–276.

[135] Reich, S. (1996) “A weak convergence theorem for the alternating
method with Bregman distances” , Theory and Applications of Non-
linear Operators, New York: Dekker.

[136] Reich, S. (1980) “Strong convergence theorems for resolvents of accre-
tive operators in Banach spaces,” , Journal of Mathematical Analysis
and Applications, pp. 287–292.

[137] Rockafellar, R. (1970) Convex Analysis. Princeton, NJ: Princeton
University Press.

[138] Rockmore, A., and Macovski, A. (1976) A maximum likelihood
approach to emission image reconstruction from projections, IEEE
Transactions on Nuclear Science, NS-23, pp. 1428–1432.

[139] Schmidlin, P. (1972) “Iterative separation of sections in tomographic
scintigrams.”Nucl. Med. 15(1).

368 BIBLIOGRAPHY

[140] Schroeder, M. (1991) Fractals, Chaos, Power Laws, W.H. Freeman,
New York.

[141] Shepp, L., and Vardi, Y. (1982) Maximum likelihood reconstruction
for emission tomography, IEEE Transactions on Medical Imaging, MI-
1, pp. 113–122.

[142] Soares, E., Byrne, C., Glick, S., Appledorn, R., and King, M. (1993)
Implementation and evaluation of an analytic solution to the photon
attenuation and nonstationary resolution reconstruction problem in
SPECT, IEEE Transactions on Nuclear Science, 40 (4), pp. 1231–
1237.

[143] Stark, H. and Yang, Y. (1998) Vector Space Projections: A Numerical
Approach to Signal and Image Processing, Neural Nets and Optics,
John Wiley and Sons, New York.

[144] Tanabe, K. (1971) “Projection method for solving a singular system
of linear equations and its applications.”Numer. Math. 17, pp. 203–
214.

[145] Teboulle, M. (1992) “Entropic proximal mappings with applications
to nonlinear programming” Mathematics of Operations Research,
17(3), pp. 670–690.

[146] Twomey, S. (1996) Introduction to the Mathematics of Inversion in
Remote Sensing and Indirect Measurement. New York: Dover Publ.

[147] Vardi, Y., Shepp, L.A. and Kaufman, L. (1985) “A statistical model
for positron emission tomography.”Journal of the American Statistical
Association 80, pp. 8–20.

[148] Wernick, M. and Aarsvold, J., editors (2004) Emission Tomography:
The Fundamentals of PET and SPECT. San Diego: Elsevier Academic
Press.

[149] Wright, G.A. (1997) “Magnetic Resonance Imaging” , IEEE Signal
Processing Magazine, 14 (1), pp. 56–66.

[150] Wu, C.F. (1983) “On the convergence properties of the EM algo-
rithm” , Annals of Statistics, 11, pp. 95–103.

[151] Yang, Q. (2004) “The relaxed CQ algorithm solving the split feasi-
bility problem.” Inverse Problems, 20, pp. 1261–1266.

[152] Youla, D.C. (1987) “Mathematical theory of image restoration by the
method of convex projections.”in Image Recovery: Theory and Appli-
cations, pp. 29–78, Stark, H., editor (1987) Orlando FL: Academic
Press.

BIBLIOGRAPHY 369

[153] Youla, D. (1978) Generalized image restoration by the method of
alternating projections, IEEE Transactions on Circuits and Systems,
CAS-25 (9), pp. 694–702.

[154] Young, R. (1992) Excursions in Calculus: An Interplay of the Con-
tinuous and Discrete, Dolciani Mathematical Expositions Number 13,
The Mathematical Association of America.

370 BIBLIOGRAPHY

Index

Q-conjugate, 125
Q-orthogonality, 125
X , 21
λmax, 106
λmax(S), 43
ν-ism, 55
ρ(S), 38

affine linear, 81
Agmon-Motzkin-Schoenberg algorithm,

88, 242
algebraic reconstruction technique, 64,

118
alternating minimization, 343
AMS algorithm, 88, 242
array aperture, 297, 299
array processing, 16
ART, 64, 96, 242
asymptoic fixed point, 328
av, 56
averaged, 28
averaged operator, 11, 56

Banach-Picard Theorem, 52
band-limited, 263
basic feasible solution, 202, 235
basic variable, 235
basic variables, 26
basin of attraction, 8
basis, 25
beam hardening, 15
best linear unbiased estimator, 312
BI-ART, 109
bi-section method, 10
Björck-Elfving equations, 111

block-iterative ART, 109
BLUE, 312
Bregman distance, 11, 206
Bregman function, 205
Bregman Inequality, 324, 328
Bregman paracontraction, 328
Bregman projection, 75, 204, 206
Bregman’s Inequality, 206

canonical form, 233
Cauchy’s Inequality, 23
Cauchy-Schwarz Inequality, 23
Central Slice Theorem, 270
CFP, 70, 198
channelized Hotelling observer, 316
Chaos Game, 9
Cimmino’s algorithm, 64, 105
classification, 311
closed convex function, 194
closed set, 24
co-coercive operator, 55
complementary slackness condition,

234
complete metric space, 36
condition number, 43, 107
conjugate gradient method, 121, 127
conjugate set, 126
conjugate transpose of a matrix, 21
constrained ART, 97
convergent sequence, 36
convex feasibility problem, 70, 198
convex function, 190
convex function of several variables,

194
convex programming, 238

371

372 INDEX

convex set, 24
convolution, 337
convolution filter, 336
CQ algorithm, 72, 211
CSP, 87, 202, 277
cyclic subgradient projection method,

87, 202, 277

DART, 102
data-extrapolation methods, 263
detection, 311
DFT, 313
diagonalizable matrix, 46
differentiable function of several vari-

ables, 193
Dirac delta, 335
direction of unboundedness, 201
directional derivative, 183
discrete Fourier transform, 313
discrimination, 311
distance from a point to a set, 24
double ART, 102
dual problem, 233
duality gap, 234
Dykstra’s algorithm, 73, 203
dynamic ET, 215

eigenvalue, 27
eigenvector, 27
eigenvector/eigenvalue decomposition,

38, 48
EKN Theorem, 60
EM-MART, 153
emission tomography, 16, 215
EMML, 142
EMML algorithm, 68
entropic projection, 328
essential domain, 194, 206
essentially smooth, 323
essentially strictly convex, 323
estimation, 311
ET, 215
Euclidean distance, 22
Euclidean length, 22

Euclidean norm, 22
expectation maximization maximum

likelihood, 68
expectation maximization maximum

likelihood method, 142
extreme point, 201

feasible set, 202
Fermi-Dirac generalized entropies, 253
firmly non-expansive, 55
Fisher linear discriminant, 319
fixed point, 11, 51
fne, 55
forward-backward splitting, 220
Fourier Inversion Formula, 333, 339
Fourier transform, 293, 333
Fourier-transform pair, 333
frequency-domain extrapolation, 338
frequency-response function, 337
full-cycle ART, 97
full-rank matrix, 39
full-rank property, 66, 161

gamma distribution, 165
Gateaux differentiable function, 182
Gateaux differential, 182
Gauss-Seidel method, 112
geometric least-squares solution, 101
Gerschgorin’s theorem, 47
gradient, 183
gradient field, 280
Gram-Schmidt method, 126

Halpern-Lions-Wittmann-Bauschke al-
gorithm, 73, 204

Helmholtz equation, 294
Hermitian matrix, 27
Hermitian square root, 39
Hessian matrix, 193
Hilbert space, 22, 346
HLWB algorithm, 73
Hotelling linear discriminant, 316
Hotelling observer, 316
hyperspectral imaging, 17

INDEX 373

identification, 311
IMRT, 17, 275
indicator function, 71
induced matrix norm, 42
inner product, 22
intensity-modulated radiation ther-

apy, 17, 275
interior-point algorithm, 221, 228
interior-point methods, 185
inverse Sir Pinski Game, 9
inverse strongly monotone, 55
IPA, 221, 228
ism operator, 55

Jacobi overrelaxation, 115
Jacobi’s method, 112
Jacobian matrix, 8
JOR, 114

KL distance, 67, 328
Kullback-Leibler distance, 67

Landweber algorithm, 65, 106, 213
Larmor frequency, 280
least squares ART, 124
least squares solution, 122
Legendre function, 323
line array, 296
linear independence, 25
linear programming, 233
Lipschitz continuity, 52
Lipschitz function, 189
Lipschitz function of several variables,

193
LS-ART, 124

magnetic-resonance imaging, 17, 279
MAP, 164
MART, 68
maximum a posteriori, 164
minimum-norm solution, 65, 347
mixture problem, 17
modulation transfer function, 337
monotone iteration, 74
monotone operators, 56

Moreau envelope, 70
MRI, 17, 279
MSGP, 227
MSSFP, 275
multidistance successive generalized

projection method, 227
multiple-distance SGP, 76
multiple-set split feasibility problem,

275
multiplicative ART, 68

narrowband signal, 297
ne, 54
Newton-Raphson algorithm, 7, 122,

186
non-expansive, 28, 54
norm, 37
normal equations, 111
Nyquist spacing, 302

optical transfer function, 337
ordered subset EM method, 143
orthogonal projection, 24, 54
orthonormal, 26
OSEM, 143

paracontractive, 58
paracontractive operator, 11, 87
Parallelogram Law, 24
pc, 58
PET, 16
phase encoding, 282
planar sensor array, 296
planewave, 294, 295
point-spread function, 337
positive-definite matrix, 39
positron emission tomography, 16
preconditioned conjugate gradient, 130
primal-dual algorithm, 204, 205
projected ART, 65
projected Cimmino algorithm, 65
projected gradient descent, 75
projected Landweber algorithm, 66,

213

374 INDEX

proper convex function, 194
proximity function, 70
proximity operator, 71, 217
pseudo-inverse of a matrix, 39

radio-frequency field, 280
Radon transform, 15, 269
rank of a matrix, 39
RBI-ART, 109
RBI-EMML, 143
reciprocity principle, 293
regularization, 69, 101, 163
relaxed ART, 97
remote sensing, 293
rescaled BI-ART, 109
rescaled block-iterative methods, 68,

143
rf field, 280
row-action method, 96

sampling, 302
sampling frequency, 335
SART, 214
sc, 52
Schwartz class, 334
Schwartz function, 334
semi-continuous convex function, 194
separation of variables, 294
SFP, 71
SGP, 75, 205, 206
Shannon Sampling Theorem, 298, 303
sifting property, 335
SIMOP, 72
simultaneous algebraic reconstruction

technique, 214
simultaneous MART, 141
simultaneous multiplicative ART, 68
simultaneous orthogonal projections,

72
sinc function, 292
single photon emission tomography,

16
singular-value decomposition, 39
Sir Pinski Game, 9

SMART, 141
SMART algorithm, 68, 143
SOP, 71, 198
SOR, 114
span, 25
SPECT, 16
spectral radius, 38
split feasibility problem, 71
splitting method, 67
stable fixed point, 7
standard form, 233
static field, 280
steepest descent method, 73, 122, 185
step-length parameter, 73
strict contraction, 52
strictly diagonally dominant, 47
Strong Duality Theorem, 234
strong underrelaxation, 102
sub-differential, 194
subgradient, 202
subspace, 24
successive generalized projection method,

75, 205, 206
successive orthogonal projection method,

71, 198
successive overrelaxation, 118
super-coercive, 324
surrogate function, 168
SVD, 39
symmetric matrix, 27
synthetic-aperture radar, 299
system transfer function, 337

transmission tomography, 15
transpose of a matrix, 21
Triangle Inequality, 24, 35

uniform line array, 302, 303

wave equation, 293
wavevector, 295
Weak Duality Theorem, 234
weighted KL projection, 137

About the Author

Charles Byrne has a B.A. from Georgetown University and an M.A. and
Ph.D. from the University of Pittsburgh, all in mathematics. From 1972 un-
til 1986, he was a member of the Department of Mathematics, The Catholic
University of America, Washington, D.C., serving as chairman of that de-
partment from 1983 to 1986. Since 1986, he has been with the Department
of Mathematical Sciences, University of Massachusetts Lowell, Lowell, MA,
chairing that department from 1987 to 1990. Throughout the 1980’s, he
consulted in the area of acoustic signal processing for the Naval Research
Laboratory and Office of Naval Research. Since 1990, he has been a con-
sultant in medical image reconstruction to the Department of Radiology,
University of Massachusetts Medical School, Worcester, MA. He is the au-
thor of Signal Processing: A Mathematical Approach, published by AK
Peters.

Most of his research papers are available as pdf files on his website,
http://faculty.uml.edu/cbyrne/cbyrne.html .

375

