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Chapter 1: Complex Numbers

Exercise 1.1: Derive the formula for dividing one complex number in
rectangular form by another (non-zero) one.

Solution: For any complex numbers z = (a, b) its reciprocal z−1 = (c, d)
must satisfy the equation zz−1 = (1, 0) = 1. Therefore ac − bd = 1 and
ad + bc = 0. Multiplying the first equation by a and the second by b and
adding, we get (a2 + b2)c = a, so c = a/(a2 + b2). Inserting this in place
of c in the second equation gives d = −b/(a2 + b2). To divide any complex
number w by z we multiply w by z−1.

Exercise 1.2: Show that for any two complex numbers z and w we have

|zw| ≥ 1
2
(zw + zw).

Hint: Write |zw| as |zw|.

Solution: Using the polar form for z and w it is easy to see that |zw| =
|zw|. With v = zw the problem is now to show that |v| ≥ 1

2 (v + v), or
|v| ≥ Re(v), which is obvious.

Chapter 2: Complex Exponentials

Exercise 2.2: The Dirichlet kernel of size M is defined as

DM (x) =
∑M

m=−M
eimx.

Obtain the closed-form expression

DM (x) =
sin((M + 1

2 )x)
sin(x

2 )
;

note that DM (x) is real-valued.
Hint: Reduce the problem to that of Exercise 2.1 by factoring appropri-
ately.
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Solution: Factor out the term e−i(M+1)x to get

DM (x) = e−i(M+1)x
∑2M+1

m=1
eimx.

Now use the solution to the previous exercise.

Exercise 2.3: Use the formula for EM (x) to obtain the closed-form ex-
pressions ∑M

m=N
cos mx = cos(

M + N

2
x)

sin(M−N+1
2 x)

sin x
2

and ∑M

m=N
sinmx = sin(

M + N

2
x)

sin(M−N+1
2 x)

sin x
2

.

Hint: Recall that cos mx and sinmx are the real and imaginary parts of
eimx.

Solution: Begin with

S(x) =
∑M

m=N
eimx

and factor out ei(N−1)x to get

S(x) = ei(N−1)x
∑M−N+1

m=1
eimx.

Now apply the formula for EM (x). Finally, use the fact that the two sums
we seek are the real and imaginary parts of S(x).

Chapter 3: Hidden Periodicities

Exercise 3.1: Determine the formulas giving the horizontal and vertical
coordinates of the position of a particular rider at an arbitrary time t in
the time interval [0, T ].

Solution: Since the choice of the origin of our coordinate system is arbi-
trary, we take the origin (0, 0) to be the point on the ground directly under
the center of the wheel. The center of the wheel is then located at the point
(0, R + H). Let the rider be at the point (0 + R cos θ, R + H + R sin θ) at
time t = 0. Since the wheel turns with angular frequency ω the horizontal
position of the rider at any subsequent time will be

x(t) = 0 + R cos(θ + tω)

and the vertical position will be

y(t) = R + H + R sin(θ + tω).
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Note that we can represent the rider’s position as a complex number

0 + (R + H)i + Rei(θ+tω).

Exercise 3.2: Now find the formulas giving the horizontal and vertical
coordinates of the position of a particular rider at an arbitrary time t in
the time interval [0, T ].

Solution: The position of the center of the smaller wheel is the same as
that of the rider in the previous exercise; that is,

x(t) = 0 + R1 cos(θ1 + tω1)

and
y(t) = R1 + H + R1 sin(θ1 + tω1).

The rider’s position deviates from that of the center of the smaller wheel
in the same way that the rider’s position in the previous exercise deviated
from the center of the single large wheel. Therefore, the horizontal position
of the rider now is

x(t) = 0 + R1 cos(θ1 + tω1) + R2 cos(θ2 + tω2)

and the vertical position is

y(t) = R1 + H + R1 sin(θ1 + tω1) + R2 sin(θ2 + tω2).

Again, we can represent the position as a complex number:

0 + (R + H)i + R1e
i(θ1+tω1) + R2e

i(θ2+tω2).

Exercise 3.3: Repeat the previous exercise, but for the case of J nested
wheels.

Solution: Reasoning as above, and using the complex representation, we
find the position to be

0 + (R + H)i +
∑J

j=1
Rje

i(θj+tωj).

Chapter Five: Convolution and the Discrete Fourier Transform

Exercise 5.1: Let F = vDFTf and D = vDFTd. Define a third vector E
having for its k-th entry Ek = FkDk, for k = 0, ..., N − 1. Show that E is
the vDFT of the vector f ∗ d.
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Solution: For notational convenience we define dk−N = dk, for k =
0, 1, ..., N . Then we can write

(f ∗ d)n =
∑N−1

m=0
fmdn−m.

Using this extended notation we find that the sum∑N−1

n=0
dn−mei(n−m)2πk/N

does not depend on m and is equal to∑N−1

j=0
dje

2πjki/N ,

which is Dk. The vDFT of the vector f ∗ d has for its k-th entry the
quantity ∑N−1

n=0
(f ∗ d)ne2πink/N ,

which we write as the double sum∑N−1

n=0

∑N−1

m=0
fmdn−me2πink/N .

Now we simply reverse the order of summation, write

e2πink/N = e2πimk/Ne2πi(n−m)k/N

and use the fact already shown that the sum on n is independent of m. We
then have that the k-th entry is∑N−1

m=0
fme2πimk/N

∑N−1

j=0
dje

2πijk/N = FkDk.

Exercise 5.2: Let G be the N by N matrix whose entries are Gjk =
ei(j−1)(k−1)2π/N . The matrix G is sometimes called the DFT matrix. Show
that the inverse of G is G−1 = 1

N G†, where G† is the conjugate transpose
of the matrix G. Then f ∗ d = G−1E = 1

N G†E.

Solution: Compute the entry of the matrix G†G in the m-th row, n-th
column. Use the definition of matrix multiplication to express this entry
as a sum of the same type as in the definition of EM (x). Consider what
happens when m = n and when m 6= n.

Chapter 6: Inner Products

Exercise 6.1: Use Cauchy’s inequality to show that

||u + v|| ≤ ||u||+ ||v||;
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this is called the triangle inequality.

Solution: We have

||u + v||2 = (u + v) · (u + v) = u · u + u · v + v · u + v · v

= ||u||2 + ||v||2 + u · v + u · v = ||u||2 + ||v||2 + 2Re(u · v).

Also we have

(||u||+ ||v||)2 = ||u||2 + ||v||2 + 2||u|| ||v||.

Now use Cauchy’s inequality to conclude that

Re(u · v) ≤ |Re(u · v)| ≤ |u · v| ≤ ||u|| ||v||.

Exercise 6.2: Use the Gram-Schmidt approach to find a third vector in
R3 orthogonal to both (1, 1, 1) and (1, 0,−1).

Solution: Let the third vector be v = (a, b, c). Notice that any vector that
can be written as α(1, 1, 1)+β(1, 0,−1) must have the form (α+β, α, α−β),
so that the second entry is the average of the first and third entries. Now
take any vector that does not have this property; for example, let’s take
(1, 2, 2). We know that we can write (1, 2, 2) as

(1, 2, 2) = α(1, 1, 1) + β(1, 0,−1) + γ(a, b, c),

for some choices of α, β and γ. Let’s find α and β. Take the dot product
of both sides of the last equation with the vector (1, 1, 1) to get

5 = (1, 1, 1) · (1, 2, 2) = α(1, 1, 1) · (1, 1, 1) = 3α.

So α = 5/3. Now take the inner product of both sides with (1, 0,−1) to
get

−1 = (1, 0,−1) · (1, 2, 2) = β(1, 0,−1) · (1, 0,−1) = 2β.

Therefore, β = −1/2. So we now have

(1, 2, 2)− 5
3
(1, 1, 1) +

1
2
(1, 0,−1) = (−1

6
,
1
3
,−1

6
) =

−1
6

(1,−2, 1).

We can then take γ = −1
6 and v = (a, b, c) = (1,−2, 1).

Exercise 6.3: Find polynomial functions f(x), g(x) and h(x) that are or-
thogonal on the interval [0, 1] and have the property that every polynomial
of degree two or less can be written as a linear combination of these three
functions.
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Solution: Let’s find f(x) = a, g(x) = bx+ c and h(x) = dx2 + ex+ k that
do the job. Clearly, we can start by taking f(x) = 1. Then

0 =
∫ 1

0

1g(x)dx = b

∫ 1

0

xdx + c =
b

2
+ c

says that b = −2c. Let c = 1 so that b = −2 and g(x) = −2x + 1. Then

0 =
∫ 1

0

1h(x)dx =
d

3
+

e

2
+ k

and

0 =
∫ 1

0

g(x)h(x)dx =
∫ 1

0

(−2x + 1)(dx2 + ex + k)dx.

Therefore we have

0 =
−2
4

d +
−2
3

e +
−2
2

k +
d

3
+

e

2
+ k.

We can let d = 6, from which it follows that e = −6 and k = 1. So the
three polynomials are f(x) = 1, g(x) = −2x + 1 and h(x) = 6x2 − 6x + 1.
To show that any quadratic polynomial can be written as a sum of these
three, take an arbitrary quadratic, ax2 + bx + c and write

ax2 + bx + c = αf(x) + βg(x) + γh(x).

Then show that you can solve for the α, β and γ in terms of the a, b and
c.

Exercise 6.4: Show that the functions einx, n an integer, are orthogonal
on the interval [−π, π]. Let f(x) have the Fourier expansion

f(x) =
∑∞

n=−∞
aneinx, |x| ≤ π.

Use orthogonality to find the coefficients an.

Solution: Compute the integral∫ π

−π

einxe−imxdx

and show that it is zero for m 6= n. To find the coefficients multiply both
sides by e−imx and integrate; on the left we get

∫ π

−π
f(x)e−imxdx and on

the right we get 2πam.

Chapter 7: Discrete Linear Filters
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Exercise 7.1: Show that F (ω) = G(ω)H(ω) for all ω.

Solution: Using the definition of F (ω) and fn we write

F (ω) =
∞∑

n=−∞

∞∑
m=−∞

gmhn−meiωmeiω(n−m)

=
∞∑

m=−∞
gm[

∞∑
n=−∞

hn−meiω(n−m)] eiωm.

Since the inner sum

∞∑
n=−∞

hn−meiω(n−m) =
∞∑

k=−∞

hkeiωk

does not really depend on the index m it can be taken outside the sum over
that index.

Exercise 7.2: The three-point moving average filter is defined as follows:
given the input sequence {hn, n = −∞, ...,∞} the output sequence is
{fn, n = −∞, ...,∞}, with

fn = (hn−1 + hn + hn+1)/3.

Let gk = 1/3, if k = 0, 1,−1 and gk = 0, otherwise. Then we have

fn =
∞∑

k=−∞

gkhn−k,

so that f is the discrete convolution of h and g. Let

F (ω) =
∞∑

n=−∞
fneinω,

for ω in the interval [−π, π], be the Fourier series for the sequence f ; sim-
ilarly define G and H. To recover h from f we might proceed as follows:
calculate F , then divide F by G to get H, then compute h from H; does
this always work? If we let h be the sequence {..., 1, 1, 1, ...} then f = h;
if we take h to be the sequence {..., 3, 0, 0, 3, 0, 0, ...} then we again get
f = {..., 1, 1, 1, ...}. Therefore, we cannot expect to recover h from f in
general. We know that G(ω) = 1

3 (1 + 2 cos(ω)); what does this have to do
with the problem of recovering h from f?
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Solution: If the input sequence is h = {..., 2,−1,−1, 2,−1,−1, ...} then
the output sequence is f = {..., 0, 0, 0, 0, 0, ...}. Since

G(ω) =
1
3
(1 + 2 cos(ω)),

the zeros of G(ω) are at ω = 2π
3 and ω = − 2π

3 . Consider the sequence
defined by

hn = ein 2π
3 + e−in 2π

3 ;

this is the sequence {..., 2,−1,−1, 2,−1,−1, ...}. This sequence consists
of two complex exponential components, with associated frequencies at
precisely the roots of G(ω). The three-point moving average has the output
of all zeros because the function G(ω) has nulled out the only two sinusoidal
components in h.

Exercise 7.3: Let f be the autocorrelation sequence for g. Show that
f−n = fn and f0 ≥ |fn| for all n.

Solution: The first part follows immediately from the definition of the
autocorrelation. The second part is a consequence of the Cauchy-Schwarz
inequality for infinite sequences.

Exercise 7.7: Let f(t) = e−iωt for some fixed real number ω. Let h = Tf ,
where T is linear and time-invariant.‘Show that there is a constant c so that
h(t) = cf(t). Since the constant c may depend on ω we rewrite c as G(ω).

Solution: Using the hint, we differentiate h(t). Since T is time-invariant,

h(t + ∆t) = h∆t(t) = (Tf)∆t(t) = T (f∆t)(t).

Since T is linear, and f∆t(s) = e−iω∆te−iωs, we have

T (f∆t)(t) = e−iω∆tT (f)(t) = e−iω∆th(t).

Therefore,
h(t + ∆t)− h(t)

∆t
= h(t)

e−iω∆t − 1
∆t

;

the limit, as ∆t → 0, is −iωh(t). Consequently, we know that h′(t) =
−iωh(t), from which it follows that h(t) = ce−iωt = cf(t), for some con-
stant c.

Chapter 8: Fourier Transforms and Fourier Series

Exercise 8.1: Use the orthogonality of the functions eimω on [−π, π] to
establish Parseval’s equation:

〈f, g〉 =
∑∞

m=−∞
fmgm =

∫ π

−π

F (ω)G(ω)dω/2π,
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from which it follows that

〈f, f〉 =
∫ ∞

−∞
|F (ω)|2dω/2π.

Solution: Since we have

F (ω) =
∑∞

m=−∞
fmeimω, |ω| ≤ π,

with a similar expression for G(ω), we have

〈F,G〉 =
∫ π

−π

F (ω)G(ω)dω/2π

=
∫ π

−π

∑∞

m=−∞
fmeimω

∑∞

n=−∞
gne−inωdω/2π

=
∑∞

m=−∞

∑∞

n=−∞
fmgn

∫ π

−π

ei(n−m)ωdω/2π,

which equals ∑∞

m=−∞
fmgm = 〈f, g〉

because the integral is zero unless m = n.

Exercise 8.2: Let f(x) be defined for all real x and let F (ω) be its FT.
Let

g(x) =
∞∑

k=−∞

f(x + 2πk),

assuming the sum exists. Show that g is a 2π -periodic function. Compute
its Fourier series and use it to derive the Poisson summation formula:

∞∑
k=−∞

f(2πk) =
1
2π

∞∑
n=−∞

F (n).

Solution: Clearly g(x + 2π) = g(x) for all x, so g(x) is 2π-periodic. The
Fourier series for g(x) is

g(x) =
∑∞

n=−∞
aneinx,

where

an =
∫ π

−π

g(x)e−inxdx/2π
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=
∫ π

−π

∞∑
k=−∞

f(x + 2πk)e−inxdx/2π

=
∞∑

k=−∞

∫ π

−π

f(x + 2πk)e−inxdx/2π

=
∞∑

k=−∞

ei2πnk

∫ π

−π

f(t)e−intdt/2π

=
∞∑

k=−∞

∫ π

−π

f(t)e−in(t−2πk)dt/2π

=
∞∑

k=−∞

∫ π+2πk

−π+2πk

f(t)e−intdt/2π

=
∫ ∞

−∞
f(t)e−intdt/2π =

1
2π

F (−n).

Therefore
g(x) =

1
2π

∑∞

n=−∞
F (−n)einx.

Now let x = 0 to get

g(0) =
∞∑

k=−∞

f(2πk) =
1
2π

∑∞

n=−∞
F (−n).

Chapter 10: Fourier-Transform Pairs

Exercise 10.1: Let F (ω) be the FT of the function f(x). Use the defini-
tions of the FT and IFT to establish the following basic properties of the
Fourier transform operation:

Differentiation: The FT of the n-th derivative, f (n)(x) is (−iω)nF (ω).
The IFT of F (n)(ω) is (ix)nf(x).

Solution: Begin with the inverse FT equation

f(x) =
∫

F (ω)e−ixωdω/2π

and differentiate with respect to x inside the integral sign n times.

Convolution in x: Let f, F , g,G and h, H be FT pairs, with

h(x) =
∫

f(y)g(x− y)dy,
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so that h(x) = (f ∗g)(x) is the convolution of f(x) and g(x). Then H(ω) =
F (ω)G(ω).

Solution: From the definitions of F (ω) and G(ω) we have

F (ω)G(ω) =
∫

f(y)eiyωdy

∫
g(t)eitωdt

=
∫ ∫

f(y)g(t)ei(y+t)ωdy dt.

Changing variables by setting x = y + t, so t = x− y and dt = dx we get

=
∫ ∫

f(y)g(x− y)eixωdydx

=
∫

[
∫

f(y)g(x− y)dy] eixωdx =
∫

h(x)eixωdx = H(ω).

Exercise 10.2 Show that if T is a linear, time-invariant operator, then T
is a convolution operator.

Solution: When the input is the function f(t) = e−iωt, the output is
T (f)(t) = G(ω)e−iωt. So with

f(t) =
1
2π

∫
F (ω)e−iωtdω,

we have
T (f)(t) =

1
2π

∫
F (ω)G(ω)e−iωtdω.

So the Fourier transform of the function T (f)(t) is F (ω)G(ω), which tells
us that T (f)(t) is the convolution of f(t) and g(t).

Exercise 10.3: Show that the Fourier transform of f(x) = e−α2x2
is

F (ω) =
√

π
α e−( ω

2α )2 .

Solution: From the FT formula

F (ω) =
∫

f(x)eixωdx =
∫

e−α2x2
eixωdx

we have
F ′(ω) =

∫
ixe−α2x2

eixωdx.

Integrating by parts gives

F ′(ω) = − ω

2α2
F (ω),
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so that

F (ω) = c exp(− ω2

4α2
).

To find c we set ω = 0. Then

c = F (0) =
∫

e−α2x2
dx =

√
π

α
.

This last integral occurs frequently in texts on probability theory, in the
discussion of normal random variables and is obtained by using a trick
involving polar coordinates. We calculate the square of this integral as∫

e−α2x2
dx

∫
e−α2y2

dy =
∫ ∫

e−α2(x2+y2)dxdy =
∫ 2π

0

∫ ∞

0

e−α2r2
rdrdθ

=
2π

2
−1
α2

e−α2r2
|∞0 =

2π

2α2
=

π

α2
.

There is a second approach that we can use to solve this problem. We know
that

f ′(x) = −2α2xf(x),

and that ixf(x) is the inverse Fourier transform of F ′(ω). Therefore, f ′(x)
is the inverse Fourier transform of 2iα2F ′(ω). But f ′(x) is also the inverse
Fourier transform of −iωF (ω). It follows that

ωF (ω) + 2α2F ′(ω) = 0.

We solve this first-order linear differential equation and proceed as above.

Exercise 10.4: Calculate the FT of the function f(x) = u(x)e−ax, where
a is a positive constant.

Solution: We have

F (ω) =
∫ ∞

0

e−axeixωdx =
∫ ∞

0

e(iω−a)xdx

=
1

iω − a
[ lim
X→+∞

(e(iω−a)X)− e(iω−a)(0)] =
1

a− iω
.

Exercise 10.5: Calculate the FT of f(x) = χX(x).

Solution: We now have

F (ω) =
∫ X

−X

eixωdx =
∫ X

−X

cos(xω)dx

=
2
ω

sin(Xω).
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Exercise 10.7: Use the fact that sgn(x) = 2u(x) − 1 and the previous
exercise to show that f(x) = u(x) has the FT F (ω) = i/ω + πδ(ω).

Solution: From the previous exercise we know that the FT of f(x) =
sgn(x) is F (ω) = 2i

ω . We also know that the FT of the function f(x) = 1
is F (ω) = 2πδ(ω). Writing

u(x) =
1
2
(sgn(x) + 1)

we find that the FT of u(x) is i
ω + πδ(ω).

Exercise 10.8: Let F (ω) = R(ω)+ iX(ω), where R and X are real-valued
functions, and similarly, let f(x) = f1(x) + if2(x), where f1 and f2 are
real-valued. Find relationships between the pairs R,X and f1,f2.

Solution: From F (ω) = R(ω) + iX(ω) and

F (ω) =
∫

f(x)eixωdx =
∫

(f1(x) + if2(x))eixωdx

we get

R(ω) =
∫

f1(x) cos(xω)− f2(x) sin(xω)dx

and
X(ω) =

∫
f1(x) sin(xω) + f2(x) cos(xω)dx.

Exercise 10.9: Let f, F be a FT pair. Let g(x) =
∫ x

−∞ f(y)dy. Show that

the FT of g(x) is G(ω) = πF (0)δ(ω) + F (ω)
iω .

Solution: Since g(x) is the convolution of f(x) and the Heaviside function
u(x) it follows that

G(ω) = F (ω)(
i

ω
+ πδ(ω))

= i
F (ω)

ω
+ πF (0)δ(ω).

Exercise 10.10: Let f(x), F (ω) and g(x), G(ω) be Fourier transform pairs.
Establish the Parseval-Plancherel equation

〈f, g〉 =
∫

f(x)g(x)dx =
1
2π

∫
F (ω)G(ω)dω.

Solution: Begin by inserting

f(x) =
∫

F (ω)e−ixωdω/2π
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and
g(x) =

∫
G(α)e−ixαdα/2π

into ∫
f(x)g(x)dx

and interchanging the order of integration to get∫
f(x)g(x)dx = (

1
2π

)2
∫ ∫

F (ω)G(α)[
∫

eix(ω−α)dx]dωdα.

The innermost integral is∫
eix(ω−α)dx = δ(ω − α)

so we get∫
f(x)g(x)dx = (

1
2π

)2
∫

F (ω)[
∫

G(α)δ(ω − α)dα/2π]dω/2π

=
∫

F (ω)G(ω)dω/2π.

Exercise 10.11: Show that, if f is causal, then R and X are related;
specifically, show that X is the Hilbert transform of R, that is,

X(ω) = 2
∫ ∞

−∞

R(α)
ω − α

dα.

Solution: Since f(x) = 0 for x < 0 we have f(x)sgn(x) = f(x). Taking
the FT of both sides and applying the convolution theorem, we get

F (ω) = 2i

∫
F (α)

1
ω − α

dα/2π.

Now compute the real and imaginary parts of both sides.

Exercise 10.12: Compute F(z) for f(x) = u(x), the Heaviside function.
Compare F(−iω) with the FT of u.

Solution: Let z = a + bi, where a > 0. For f(x) = u(x) the integral
becomes

F(z) =
∫ ∞

0

e−zxdx =
−1
z

[0− 1] =
1
z
.
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Inserting z = −iω we get

i

ω
= F(−iω) =

∫
u(x)eixωdx.

The integral is the Fourier transform of the Heaviside function u(x), which
is not quite equal to 1

ω . The point here is that we erroneously evaluated
the Laplace transform integral at a point z whose real part is not positive.

Exercise 10.13: Show that if f is radial then its FT F is also radial. Find
the FT of the radial function f(x, y) = 1√

x2+y2
.

Solution: Inserting f(r, θ) = g(r) in the equation for F (ρ, ω) we obtain

F (ρ, ω) =
∫ ∞

0

∫ π

−π

g(r)eirρ cos(θ−ω)rdrdθ

or
F (ρ, ω) =

∫ ∞

0

rg(r)[
∫ π

−π

eirρ cos(θ−ω)dθ]dr.

Although it does not appear to be, the inner integral is independent of
ω; if we replace the variable θ − ω with θ we have cos θ is the exponent,
d(θ − ω) = dθ remains unchanged, and the limits of integration become
−π + ω to π + ω. But since the integrand is 2π-periodic, this integral is
the same as the one from −π to π.

To find the FT of the radial function f(x, y) = 1√
x2+y2

, we write it in

polar coordinates as f(r, θ) = g(r) = 1/r. Then

H(ρ) = 2π

∫ ∞

0

J0(rρ)dr =
2π

ρ

∫ ∞

0

J0(rρ)ρdr =
2π

ρ
,

since
∫

J0(x)dx = 1; the basic facts about the Bessel function J0(x) can be
found in most texts on differential equations. So, for the two-dimensional
case, the radial function f(r, θ) = g(r) = 1

r is, except for a scaling, its own
Fourier transform, as is the case for the standard Gaussian function in one
dimension.

Chapter 11: The Uncertainty Principle

Exercise 11.1: Show that, if the inequality is an equation for some f ,
then f ′(x) = kxf(x), so that f(x) = e−α2x2

for some α > 0.

Solution: We get equality in the Cauchy-Schwarz inequality if and only if

f ′(x) = cxf(x),
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for some constant. Solving this differential equation by separation of vari-
ables we obtain the solution

f(x) = K exp(
c

2
x2).

Since we want
∫

f(x)dx to be finite, we must select c < 0.

Chapter 18: Wavelets

Exercise 18.1: Let u(x) = 1 for 0 ≤ x < 1
2 , u(x) = −1 for 1

2 ≤ x < 1 and
zero otherwise. Show that the functions ujk(x) = u(2jx− k) are mutually
orthogonal on the interval [0, 1], where j = 0, 1, ... and k = 0, 1, ..., 2j − 1.

Solution: Consider ujk and umn, where m ≥ j. If m = j and k 6= n
then the supports are disjoint and the functions are orthogonal. If m > j
and the supports are disjoint, then, again, the functions are orthogonal. So
suppose that m > j and the supports are not disjoint. Then the support
of umn is a subset of the support of ujk. On that subset ujk(x) is constant,
while umn(x) is that constant for half of the x and is the negative of that
constant for the other half; therefore the inner product is zero.

Chapter 21: Fourier Transform Estimation

Exercise 21.1: Use the orthogonality principle to show that the DFT
minimizes the distance∫ π

−π

|F (ω)−
∑M

m=1
ameimω|2dω.

Solution: The orthogonality principle asserts that, for the optimal choice
of the an, we have∫ π

−π

(F (ω)−
∑M

m=1
ameimω)e−inωdω = 0,

for n = 1, ...,M . It follows, much as in the previous exercise, that an =
f(n).

Exercise 21.2: Suppose that 0 < Ω and F (ω) = 0 for |ω| > Ω. Let
f(x) be the inverse Fourier transform of F (ω) and suppose that the data is
f(xm), m = 1, ...,M . Use the orthogonality principle to find the coefficients
am that minimize the distance∫ Ω

−Ω

|F (ω)−
∑M

m=1
ameixmω|2dω.
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Show that the resulting estimate of F (ω) is consistent with the data.

Solution: The orthogonality principle tells us that, for the optimal choice
of the am, we have∫ Ω

−Ω

(F (ω −
∑M

m=1
ameixmω)e−ixnωdω = 0,

for n = 1, 2, ...,M . This says that, for these n,

f(xn) =
∑M

m=1
am

∫ Ω

−Ω

ei(xm−xn)ωdω/2π

or

f(xn) =
∑M

m=1
am

sinΩ(xm − xn)
π(xm − xn)

.

The inverse Fourier transform of the function

FΩ(ω) = χΩ(ω)
∑M

m=1
ameixmω

is

fΩ(x) =
∑M

m=1
am

sinΩ(xm − x)
π(xm − x)

;

setting x = xn we see that fΩ(xn) = f(xn), for n = 1, ...,M , so the optimal
estimate is data consistent.

Chapter 22: More on Bandlimited Extrapolation

Exercise 22.1: The purpose of this exercise is to show that, for an Her-
mitian nonnegative-definite M by M matrix Q, a norm-one eigenvector u1

of Q associated with its largest eigenvalue, λ1, maximizes the quadratic
form a†Qa over all vectors a with norm one. Let Q = ULU† be the
eigenvector decomposition of Q, where the columns of U are mutually or-
thogonal eigenvectors un with norms equal to one, so that U†U = I, and
L = diag{λ1, ..., λM} is the diagonal matrix with the eigenvalues of Q as
its entries along the main diagonal. Assume that λ1 ≥ λ2 ≥ ... ≥ λM .
Then maximize

a†Qa =
M∑

n=1

λn |a†un|2,

subject to the constraint

a†a = a†U†Ua =
M∑

n=1

|a†un|2 = 1.
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Solution: Since we have ∑M

n=1
|a†un|2 = 1

the sum
M∑

n=1

λn |a†un|2

is a convex combination of the nonnegative numbers λn. Such a convex
combination must be no greater than the greatest λn, which is λ1. But it
can equal λ1 if we select the unit vector a to be a = u1. So the greatest
value a†Qa can attain is λ1.

Exercise 22.2: Show that for the sinc matrix QΩ the quadratic form a†Qa
in the previous exercise becomes

a†QΩa =
1
2π

∫ Ω

−Ω

|
∑M

n=1
aneinω|2dω.

Show that the norm of the vector a is the integral

1
2π

∫ π

−π

|
∑M

n=1
aneinω|2dω.

Solution: Write

|
∑M

n=1
aneinω|2 =

∑M

n=1

∑M

m=1
anamei(n−m)ω.

Exercise 22.3: For M = 30 compute the eigenvalues of the matrix QΩ for
various choices of Ω, such as Ω = π

k , for k = 2, 3, ..., 10. For each k arrange
the set of eigenvalues in decreasing order and note the proportion of them
that are not near zero. The set of eigenvalues of a matrix is sometimes
called its eigenspectrum and the nonnegative function χΩ(ω) is a power
spectrum; here is one time in which different notions of a spectrum are
related.

Solution: We find that the eigenvalues separate, more or less, into two
groups: those near one and those near zero. The number of eigenvalues in
the first group is roughly 30Ω/π.

Exercise 22.5: Show that the MDFT estimator given by Equation (21.7)
can be written as

FΩ(ω) = χΩ(ω)
∑M

m=1

1
λm

(um)†dUm(ω),
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where d is the data vector.

Solution: Expand Q−1f using the eigenvector/eigenvalue expression for
Q−1.

Exercise 22.6: Show that the DFT estimate of F (ω), restricted to the
interval [−Ω,Ω], is

FDFT (ω) = χΩ(ω)
∑M

m=1
(um)†dUm(ω).

Solution: Use the fact that the identity matrix can be written as I = UU†.

Chapter 23: The PDFT

Exercise 23.1: Show that the cm must satisfy the equations

f(xn) =
∑M

m=1
cmp(xn − xm), n = 1, ...,M,

where p(x) is the inverse Fourier transform of P (ω).

Solution: The inverse FT of the function FPDFT (ω) is

fPDFT (x) =
∑M

m=1
cmp(x− xm).

In order for fPDFT (x) to be data consistent we must have

fPDFT (xn) =
∑M

m=1
cmp(xn − xm)

for n = 1, ...,M .

Exercise 23.2: Show that the estimate FPDFT (ω) minimizes the distance∫
|F (ω)− P (ω)

∑M

m=1
am exp(ixmω)|2P (ω)−1dω

over all choices of the coefficients am.

Solution: According to the orthogonality principle the optimal choice
am = cm must satisfy

0 =
∫

(F (ω)− P (ω)
∑M

m=1
cm exp(ixmω))P (ω)e−ixnωP (ω)−1dω,
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for n = 1, ...,M . Therefore

0 =
∫

(F (ω)− P (ω)
∑M

m=1
cm exp(ixmω))e−ixnωdω,

which tells us that

f(xn) =
∑M

m=1
cmp(xn − xm)

for n = 1, ...,M .

Chapter 24: A Little Matrix Theory

Exercise 24.1: Show that if z = (z1, ..., zN )T is a column vector with
complex entries and H = H† is an N by N Hermitian matrix with complex
entries then the quadratic form z†Hz is a real number. Show that the
quadratic form z†Hz can be calculated using only real numbers. Let z =
x + iy, with x and y real vectors and let H = A + iB, where A and B are
real matrices. Then show that AT = A, BT = −B, xT Bx = 0 and finally,

z†Hz = [xT yT ]
[

A −B
B A

] [
x
y

]
.

Use the fact that z†Hz is real for every vector z to conclude that the
eigenvalues of H are real.

Solution: The quadratic form z†Hz is a complex number and also the
product of three matrices. Its conjugate transpose is simply its complex
conjugate, since it is only 1 by 1; but

(z†Hz)† = z†H†(z†)† = z†Hz

since H is Hermitian. The complex conjugate of z†Hz is itself, so it must
be real. We have

A + iB = H = H† = AT − iBT ,

so that A = AT and BT = −B.
Writing z†Qz in terms of A, B, x and y we get

z†Qz = (xT − iyT )(A + iB)(x + iy) = (xT − iyT )(Ax−By + i(Bx + Ay)

= xT Ax− xT By + yT Bx + yT Ay + i(xT Bx + xT Ay − yT Ax + yT By)

= xT Ax + yT Ay − xT By + yT Bx

since
xT Bx = (xT Bx)T = xT BT x = −xT Bx
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implies that xT Bx = 0 and, similarly, yT By = 0.
Let λ be an eigenvalue of H associated with eigenvector u. Then

u†Hu = u†(λu) = λu†u = λ.

Since u†Hu is real, so is λ.

Exercise 24.2: Let A be an M by N matrix with complex entries. View A
as a linear function with domain CN , the space of all N -dimensional com-
plex column vectors, and range contained within CM , via the expression
A(x) = Ax. Suppose that M > N . The range of A, denoted R(A), cannot
be all of CM . Show that every vector z in CM can be written uniquely in
the form z = Ax + w, where A†w = 0. Show that ‖z‖2 = ‖Ax‖2 + ‖w‖2,
where ‖z‖2 denotes the square of the norm of z. Hint: If z = Ax + w then
consider A†z. Assume A†A is invertible.

Solution: We assume that A†A is invertible. If z = Ax + v with A†v = 0
then A†z = A†Ax, so that x = (A†A)−1A†z. Then

v = z−A(A†A)−1A†z

and we see easily that A†v = 0. Then we have

||z||2 = ||Ax + v||2 = x†A†Ax + x†A†v + v†Ax + v†v = ||Ax||2 + ||v||2.

Exercise 24.5: Show that the nonzero eigenvalues of A and B are the
same.

Solution: Let λ be a nonzero eigenvalue of A, with Au = λu for some
nonzero vector u. Then CAu = λCu or (CC†)Cu = BCu = λCu; with
Cu = v we have Bv = λv. Since B is invertible v is not the zero vector.
So λ is an eigenvalue of B.

Conversely, let λ 6= 0 be an eigenvalue of B, with Bv = λv for some
nonzero v. Then Bv = CC†v = λv and so C†Bv = (C†C)C†v = AC†v =
λC†v. We need to show that w = C†v is not the zero vector. If 0 = w =
C†v then 0 = Cw = CC†v = Bv. But B is invertible and v is nonzero;
this is a contradiction, so we conclude that w 6= 0.

Exercise 24.6: Show that UMV † equals C.

Solution: The first N columns of the matrix UM form the matrix

ULL−1/2 = BUL−1/2
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and the remaining columns are zero. Consider the product V (UM)†. The
first N columns of V form the matrix C†UL−1/2 so

V (UM)† = C†UL−1U†B = C†B−1B = C†

and so UMV † = C.

Exercise 24.7: If N > K the system Cx = d probably has no exact
solution. Show that C∗ = (C†C)−1C† so that the vector x = C∗d is the
least squares approximate solution.

Solution: Show that (C†C)C∗ = C† = V MT U†.

Exercise 24.8: If N < K the system Cx = d probably has infinitely
many solutions. Show that the pseudo-inverse is now C∗ = C†(CC†)−1,
so that the vector x = C∗d is the exact solution of Cx = d closest to the
origin; that is, it is the minimum norm solution.

Solution: Show that C∗(CC†) = C†.

Exercise 24.9: Show that the vector x = (x1, ..., xN )T minimizes the
mean squared error

‖Ax− b‖2 =
N∑

m=1

(Axm − bm)2,

if and only if x satisfies the system of linear equations AT (Ax − b) =
0, where Axm = (Ax)m =

∑N
n=1 Amnxn. Hint: calculate the partial

derivative of ‖Ax− b‖2 with respect to each xn.

Solution: The partial derivative of ‖Ax− b‖2 with respect to xn is

2
∑M

m=1
Amn(Axm − bm).

Setting each of these partial derivatives equal to zero gives

AT (Ax− b) = 0.

Exercise 24.11: Show that any vector p can be written as p = AT q + r,
where Ar = 0.

Solution: If M ≤ N , then, by our assumption, AAT is invertible. If the
decomposition of p does hold,, we can calculate the q and r as follows.
Multiply both sides of the equation by A, to obtain Ap = AAT q + Ar =



23

AAT q. Solving for q, we have q = (AAT )−1Ap. It follows that r =
p− AT (AAT )−1Ap, which clearly has the property Ar = 0. Now without
assuming the truth of the statement, we can still write any p as

p = AT (AAT )−1Ap + p−AT (AAT )−1Ap.

If M > N , then, since we are assuming that A has full rank, the range of
AT must be all of RN , so every p in RN has the form p = AT q, for some
q.

Exercise 24.12: Show that Fε always has a unique minimizer x̂ε given by

x̂ε = ((1− ε)AT A + εI)−1((1− ε)AT b + εp);

this is a regularized solution of Ax = b. Here p is a prior estimate of the
desired solution. Note that the inverse above always exists.

Solution: Set to zero the partial derivatives with respect to each of the
variables xn. Show that the second derivative matrix is AT A+ εI, which is
positive-definite; therefore the partial derivatives are zero at a minimum.

Exercise 24.13: Show that, in Case 1, taking limits as ε → 0 on both
sides of the expression for x̂ε gives x̂ε → (AT A)−1AT b, the least squares
solution of Ax = b.

Solution: In this case we can simply set ε = 0, since the inverse (AT A)−1

exists.

Exercise 24.14: Show that

((1− ε)AT A + εI)−1(εr) = r,∀ε.

Solution: As in the hint, let

tε = ((1− ε)AT A + εI)−1(εr).

Then multiplying by A gives

Atε = A((1− ε)AT A + εI)−1(εr).

Now it follows from Ar = 0 and

((1− ε)AAT + εI)−1A = A((1− ε)AT A + εI)−1

that Atε = 0. Now multiply both sides of the equation

tε = ((1− ε)AT A + εI)−1(εr)
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by (1− ε)AT A + εI to get εtε = εr. Now we take the limit of x̂ε, as ε → 0,
by setting ε = 0, to get x̂ε → AT (AAT )−1b + r = x̂.

Now we show that x̂ is the solution of Ax = b closest to p. By the
orthogonality theorem it must then be the case that 〈p− x̂,x− x̂〉 = 0 for
every x with Ax = b. Since p− x̂ = AT q−AT (AAT )−1b we have

〈p− x̂,x− x̂〉 = 〈q− (AAT )−1b, Ax−Ax̂〉 = 0.

Chapter 25: Matrix and Vector Differentiation

Exercise 25.1: Let y be a fixed real column vector and z = f(x) = yT x.
Show that

∂z

∂x
= y.

Solution: We write
z = yT x =

∑N

n=1
xnyn

so that
∂z

∂xn
= yn

for each n.

Exercise 25.2: Let Q be a real symmetric nonnegative definite matrix
and let z = f(x) = xT Qx. Show that the gradient of this quadratic form
is

∂z

∂x
= 2Qx.

Solution: Following the hint, we write Q as a linear combination of dyads
involving the eigenvectors; that is

Q =
∑N

m=1
λmum(um)†.

Then
z = xT Qx =

∑N

m=1
λm(xT um)2

so that
z =

∑N

m=1
λm(

∑N

n=1
xnum

n )2.

Therefore, the partial derivative of z with respect to xn is

∂z

∂xn
= 2

∑N

m=1
λn(xnun

m)un
m,
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which can then be written as

∂z

∂x
= 2Qx.

Exercise 25.3: Let z = ||Ax− b||2. Show that

∂z

∂x
= 2AT Ax− 2AT b.

Solution: Using z = (Ax− b)T (Ax− b) we get

z = xT AT Ax− bT Ax− xT AT b + bT b.

Then it follows from the two previous exercises that

∂z

∂x
= 2AT Ax− 2AT b.

Exercise 25.4: Suppose (u, v) = (u(x, y), v(x, y)) is a change of variables
from the Cartesian (x, y) coordinate system to some other (u, v) coordinate
system. Let x = (x, y)T and z = (u(x), v(x))T .

a: Calculate the Jacobian for the rectangular coordinate system obtained
by rotating the (x, y) system through an angle of θ.

Solution: The equations for this change of coordinates are

u = x cos θ + y sin θ,

and
v = −x sin θ + y cos θ.

Then ux = cos θ, uy = sin θ, vx = − sin θ and vy = cos θ. The Jacobian is
therefore one.

b: Calculate the Jacobian for the transformation from the (x, y) system to
polar coordinates.

Solution: We have r =
√

x2 + y2 and tan θ = y
x . Writing r2 = x2 + y2,

we get 2rrx = 2x and 2rry = 2y, so that rx = x/r and ry = y/r. Also

(sec θ)2θx = −y/x2

and
(sec θ)2θy = 1/x.
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Since sec θ = r/x we get

θx =
x2

r2

−y

x2
=
−y

r2

and

θy =
x2

r2

1
x

=
x

r2
.

The Jacobian is therefore 1
r .

Exercise 25.6: Show that the derivative of z = trace (DAC) with respect
to A is

∂z

∂A
= DT CT .

Solution: Just write out the general term of DAC.

Exercise 25.7: Let z = trace (AT CA). Show that the derivative of z with
respect to the matrix A is

∂z

∂A
= CA + CT A.

Therefore, if C = Q is symmetric, then the derivative is 2QA.

Solution: Again, just write out the general term of AT CA.

Chapter 27: Discrete Random Processes

Exercise 27.1: Show that the autocorrelation matrix R is nonnegative
definite. Under what conditions can R fail to be positive-definite?

Solution: Let
A(ω) =

∑N+1

n=1
aneinω.

Then we have ∫
|A(ω)|2R(ω)dω = a†Ra ≥ 0.

If the quadratic form a†Ra = 0 for some vector a then the integral must
also be zero, which says that the power spectrum is nonzero only when the
polynomial is zero; that is, the power spectrum R(ω) is a sum of not more
than N delta functions.

Chapter 28: Best Linear Unbiased Estimation
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Exercise 28.1: Show that

E(|x̂− x|2) = traceK†QK.

Solution: Write the left side as

E(trace ((x̂− x)(x̂− x)†)).

Also use the fact that the trace and expected value operations commute.
Then

E(|x̂−x|2) = trace(E(K†zz†K−xz†K−K†zx†+xx†)) = E(K†zz†K)−xx†.

Notice that
zz† = Hxx†H† + Hxv† + vx†H† + vv†.

Therefore
E(K†zz†K) = K†Hxx†H†K + K†QK.

It follows that
E(|x̂− x|2) = traceK†QK.

Chapter 29: The BLUE and the Least Squares Estimators:

Exercise 29.4: Let Q be Hermitian. Show that Q(S)⊥ = Q−1(S⊥) for
every subspace S. If Q is also invertible then Q−1(S)⊥ = Q(S⊥). Find an
example of a non-invertible Q for which Q−1(S)⊥ and Q(S⊥) are different.

Solution: First, we show that Q(S)⊥ = Q−1(S⊥). Suppose that a ∈
Q(S)⊥. Then, a†Qs = 0, for all s ∈ S, so that a†Q†s = (Qa)†s = 0, for all
s ∈ S. Therefore, Qa ∈ S⊥ and a ∈ Q−1(S⊥). Conversely, if b ∈ Q−1(S⊥),
then Qb ∈ S⊥, or b ∈ Q−1(S⊥).

Now suppose that Q is invertible. Then we can use Q−1 in place of Q
in the first part of this exercise. The desired result follows immediately.
If Q is not invertible, however, the result may not hold, as the following
example proves.

Let Q be the matrix that transforms any vector (a, b, c)T ∈ R3 to the
vector (0, a, b)T ; this Q is not invertible. Let S be the subspace consisting of
all vectors of the form (0, b, c)T . Then, Q−1(S) = R3, so that Q−1(S)⊥ =
{0}. But, Q(S⊥) is the subspace of vectors of the form (0, a, 0)T .

Chapter 31: The Vector Wiener Filter

Exercise 31.1: Apply the vector Wiener filter to the simplest problem
discussed earlier. Here let K = 1 and NN† = Q.
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Solution: Let 1 = (1, 1, ..., 1)T , so that the signal vector is s = c1 for some
constant c and the data vector is z = c1 + v. Then SS† = 11T . We have

(Q + 11†)−1 = Q−1 − (1 + 1†Q−11)−1Q−111†Q−1,

so we get

ŝ =
1†Q−1z

1 + 1†Q−11
1,

and the estimate of the constant c is

ĉ =
1†Q−1z

1 + 1†Q−11
.

When the noise power is very low the denominator is dominated by the
second term and we get the BLUE estimate.

Exercise 31.3 Assume that E(xx†) = σ2I. Show that the mean squared
error for the VWF estimate is

E(|ŝ− s|2) = trace (H(H†Q−1H + σ−2I)−1H†).

Solution: We know from the calculations on p. 182 that, for any B,

E|ŝ− s|2 = trace (B†(Rs + Rv)B −RsB −B†Rs + Rs).

The optimal B is B = (Rs + Rv)−1Rs, so that, for this B, we have

E|ŝ− s|2 = trace (Rs −Rs(Rs + Rv)−1Rs).

With E(xx†) = σ2I, it follows that Rs = HH†. Let Q = Rv. Inserting the
optimal

B = (σ2I + Q)−1(σ2I) = σ2(σ2I + Q)−1,

we get

E|ŝ− s|2 = trace (σ2HH† − σ4HH†(Q + HH†)−1HH†).

Now use the identity

σ2H†(Q + σ2HH†)−1 = (H†Q−1H + σ−2I)−1H†Q−1,

and the fact that

(H†Q−1H + σ−2I)−1H†Q−1H

= (H†Q−1H + σ−2I)−1(H†Q−1H + σ−2I − σ−2I)

= I − σ−2(H†Q−1H + σ−2I)−1.
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Chapter 34: Entropy Maximization

Exercise 34.1 What happened in Figure 34.3?

Solution: The points on the horizontal axis that were used to make the
graph were not sufficiently dense to capture the very sharp peaks in the
actual answer. While this is not a common problem in practice, it can occur
in simulation studies, and may puzzle those not accustomed to graphing
high-resolution estimates.

Chapter 37: Eigenvector Methods

Exercise 37.2: Show that λm = σ2 for m = J + 1, ...,M , while λm > σ2

for m = 1, ..., J .

Solution: From Exercise 37.1 we conclude that, for any vector u the
quadratic form u†Ru is

u†Ru =
J∑

j=1

|Aj |2|u†ej |2 + σ2|u†u|2.

The norm-one eigenvectors of R associated with the J largest eigenvalues
will lie in the linear span of the vectors ej , j = 1, ..., J , while the remaining
M − J eigenvectors will be orthogonal to the ej . For these remaining
eigenvectors the quadratic form will have the value λm = σ2, since the
eigenvectors have norm equal to one. For the eigenvectors associated with
the J largest eigenvalues, the quadratic form will be greater than σ2, since
it will also involve a positive term coming from the sum.

Since M > J the M − J orthogonal eigenvectors um corresponding to
λm for m = J +1, ...,M will be orthogonal to each of the ej . Then consider
the quadratic forms u†mRum.

Chapter 39: Some Probability Theory

Exercise 39.1: Prove these two assertions.

Solution: The expected value of X is

E(X) =
1
N

N∑
n=1

E(Xn) =
1
N

N∑
n=1

µ = µ.

The variance of X is

E((X − µ)2) = E(X
2 − 2µX + µ2)
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= E(X
2
)− µ2.

Then

E(X
2
) =

1
N2

E(
N∑

n=1

Xn

N∑
m=1

Xm).

Now use the fact that E(XnXm) = E(Xn)E(Xm) = µ2 if m 6= n while
E(XnXn) = σ2 + µ2.

Exercise 39.3: Show that the sequence {pk}∞k=0 sums to one.

Solution: The Taylor series expansion of the function ex is

ex =
∑∞

k=0

xk

k!
,

so ∑∞

k=0
pk = e−λ

∑∞

k=0

λk

k!
= 1.

Exercise 39.4: Show that the expected value E(X) is λ, where the ex-
pected value in this case is

E(X) =
∑∞

k=0
kpk.

Solution: Note that
∞∑

k=0

kpk = e−λ
∞∑

k=1

λk

(k − 1)!

= e−λλ
∞∑

k=0

λk

k!
= λ.

Exercise 39.5: Show that the variance of X is also λ, where the variance
of X in this case is

var(X) =
∑∞

k=0
(k − λ)2pk.

Solution: Use

(k − λ)2 = k2 − 2kλ + λ2 = k(k − 1) + k − 2kλ + λ2.

Chapter 42: Signal Detection and Estimation
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Exercise 42.1: Use Cauchy’s inequality to show that, for any fixed vector
a, the choice b = βa maximizes the quantity |b†a|2/b†b, for any constant
β.

Solution: According to Cauchy’s inequality the quantity |b†a|2
b†b

does not
exceed a†a. The choice of b = βa makes the ratio equal to a†a, so maxi-
mizes the ratio.

Exercise 42.2: Use the definition of the correlation matrix Q to show that
Q is Hermitian and that, for any vector y, y†Qy ≥ 0. Therefore Q is a
nonnegative definite matrix and, using its eigenvector decomposition, can
be written as Q = CC†, for some invertible square matrix C.

Solution: The entry of Q in the m-th row and n-th column is Qmn =
E(zmzn), so Qnm = Qmn. For any vector y the quadratic form y†Qy =
E(|y†z|2) and the expected value of a nonnegative random variable is
nonnegative. Therefore Q is Hermitian and nonnegative-definite, so its
eigenvalues are nonnegative. The eigenvector/eigenvalue decomposition is
Q = ULU†, where L is the diagonal matrix with the eigenvalues on the
main diagonal. Since these eigenvalues are nonnegative, they have nonneg-
ative square roots. Make these the diagonal elements of the matrix L1/2

and write C = UL1/2U†. Then we have C = C† and CC† = C†C = Q.

Exercise 42.3: Consider now the problem of maximizing |b†s|2/b†Qb.
Using the two previous exercises, show that the solution is b = βQ−1s, for
some arbitrary constant β.

Solution: Write b†Qb = b†C†Cb = d†d, for d = Cb. We assume that
Q is invertible, so C is also. Write

b†s = b†C†(C†)−1s = d†e,

for e = (C†)−1s. So the problem now is to maximize the ratio |d†e|2
d†d

. By the
first exercise we know that this ratio is maximized when we select d = βe
for some constant β. This means that Cb = β(C†)−1s or b = βQ−1s.
Here the β is a free choice; we select it so that b†s = 1.

Chapter 47: A Tale of Two Algorithms

Exercise 47.1: Show that

KL(x, z) = KL(x+, z+) + KL(x,
x+

z+
z)

for any nonnegative vectors x and z, with x+ and z+ > 0 denoting the
sums of the entries of vectors x and z, respectively.
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Solution: Begin with KL(x, x+
z+

z) and write it out as

KL(x,
x+

z+
z) =

N∑
n=1

xn log(xn/
x+

z+
zn) +

x+

z+

N∑
n=1

zn −
N∑

n=1

xn

=
N∑

n=1

(xn log
xn

zn
+ zn − xn)−

N∑
n=1

(xn log
x+

z+
+ (

x+

z+
− 1)zn)

= KL(x, z)− x+ log
x+

z+
+ x+ − z+ = KL(x, z)−KL(x+, z+).

Chapter 50: The Algebraic Reconstruction Technique

Exercise 50.1: Establish the following facts concerning the ART.

Fact 1:
||xk||2 − ||xk+1||2 = (A(xk)m(k))2 − (bm(k))2.

Solution: Write ||xk+1||2 = ||xk + (xk+1 − xk)||2 and expand using the
complex dot product.

Fact 2:
||xrM ||2 − ||x(r+1)M ||2 = ||vr||2 − ||b||2.

Solution: The solution is similar to that of the previous exercise.

Fact 3:
||xk − xk+1||2 = ((Axk)m(k) − bm)2.

Solution: Easy.

Fact 4: There exists B > 0 such that, for all r = 0, 1, ..., if ||vr|| ≤ ||b||
then ||xrM || ≥ ||x(r+1)M || −B.

Solution: This is an application of the triangle inequality.

Fact 5: Let x0 and y0 be arbitrary and {xk} and {yk} the sequences
generated by applying the ART algorithm. Then

||x0 − y0||2 − ||xM − yM ||2 =
∑M

m=1
((Axm−1)m − (Aym−1)m)2.
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Solution: Calculate ||xm−ym||2−||xm+1−ym+1||2 for each m = 0, 1, ...,M−
1 and then add.

Exercise 50.3: Show that if we select B so that C is invertible and BT A =
0 then the exact solution of Cz = b is the concatenation of the least squares
solutions of Ax = b and By = b.

Solution: Calculate the solution of Cz = b as the least squares solution
of Cz = b.

Chapter 56: The Wave Equation

Exercise 1: Show that the radial function u(r, t) = 1
r h(r−ct) satisfies the

wave equation for any twice differentiable function h.

Solution: The partial derivatives are as follows:

ut = −c
1
r
h′(r − ct),

utt = c2 1
r
h′′(r − ct),

ur = − 1
r2

h(r − ct) +
1
r
h′(r − ct),

and
urr = 2

1
r3

h(r − ct)− 2
r2

h′(r − ct) +
1
r
h′′(r − ct).

The result follows immediately from these facts.


