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Abstract—Viewed abstractly, all the algorithms considered  The notion ofcross-entropy or theKullback-Leibler distance
here are designed to provide a nonnegative solution: to the [8] is central to our discussion. For positive numberandb
system of linear equationsy = Pz, where y is a vector with
positive entries and P a matrix whose entries are nonnegative a
and with no purely zero columns. The expectation maximization KL(a,b)=alog—-+b—a;
maximum likelihood (EMML) method as it occurs in emission b

tomography and the simultaneous multiplicative algebraic recon- also let K L(a,0) = +oo and KL(0,b) = b. It is easily seen

struction technique (SMART) are slow to converge on large .
data sets: accelerating convergence through the use of block-that K L(a,b) > 0 unlessa = b. We extend this Kullback-

iterative or ordered subset versions of these algorithms is a topic Leibler distance component-wise to vectorsand z with
of considerable interest. These block-iterative versions involve nonnegative entries:

relaxation and normalization parameters the correct selection of

which may not be obvious to all users. The algorithms are not J

faster merely by virtue of being block-iterative; the correct choice KL(z,z) = Z KL(xj,z;). (1.2)
of the parameters is crucial. Through a detailed discussion of =1

the theoretical foundations of these methods we come to a better

understanding of the precise roles these parameters play. The KL distance is also often called Csiszar's I-divergence,
Index Terms— block-iterative algorithms, image reconstruc- denotedl(al|b) [9], [10]. Note thatK L(z,z) and K L(z, )
tion, ordered subsets,. are generally not the same. While the KL distance is not

a metric in the usual sense it does have certain properties
) involving best approximation that are similar to those of the
I I'ntroduction square of the Euclidean metric.

MAGE reconstruction problems in tomography are often The methods based on cross-entropy, such as the multi-
I formulated as statistical likelihood maximization problemBlicative version of thealgebraic reconstruction technique

in which the pixel values of the desired image play the rof@RT), the MART [11], its simultaneous version, SMART,
of parameters. Iterative algorithms based on cross-entrdp¢ €xpectation maximization maximum likelihood method
minimization, such as thexpectation maximization maximum MML) and all block-iterative versions of these algorithms
likelihood (EMML) method [1] and thesimultaneous muiti- @PPly to nonnegative systems that we denotefy = v,
plicative algebraic reconstruction technique (SMART) [2], [3], whe_rey is a vector of positive entries? is a matr}x with

[4], [5], [6] can be used to solve such problems. Because tBtriesF;; > 0 such that for eachj the sums; = >, P;;
EMML and SMART are slow to converge for the large dati Positive and we seel_< a solutianwith nonnegative entrie_s.
sets typical in imaging problems acceleration of the algorithrisNO nonnegativer satisfiesy = Pz we say the system is
using blocks of data or ordered subsets has become popuffonsstent.

There are a number of different ways to formulate these Simultaneous iterative algorithms employ all of the equa-
block-iterative versions of EMML and SMART, involving thetions at each step of the iteration; block-iterative methods
choice of certain normalization and relaxation parametefQ not. For the latter methods we assume that the index set
These methods are not faster merely because they are bldék= 1.....I} is the (not necessarily disjoint) union of the
iterative; the correct choice of the parameters is crucial. TRé sets orblocks B,,, n = 1,...,N. We shall require that
purpose of this paper is to discuss these different formulationsi = >_;cp, Fi; > 0 for eachn and eachyj. Block-iterative

in detail sufficient to reveal the precise roles played by tHgethods like ART and MART for which each block consists
parameters and to guide the user in choosing them. ThisOfsPprecisely one element are calledw-action or sequential

not a survey of the field of iterative algorithms and no attemptethods. We begin our discussion with the SMART and the
has been made to give complete references for each algorithMML method.

mentioned here. The reader should consult the editorial [7] for

a fuller list of references to the literature.
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SMART: OSEM:

I k41 k_—1 Yi

X _ Yi xi =xys, P ——. (2.3)
:L'?H = mé‘ exp (sj ! E P;jlog W> (2.1) J 7o = T (Px*);
i=1

The OSSMART has the following iterati tep:
while that for the EMML method is © as the foflowing lterative step

EMML OSSMART:
: . _ Yi
s 4 x;?-ﬁ-l = z¥exp (snjl Z P;jlog (P:czk)Z) (2.4)
azf“ = mfsj_l Pijyilk, 2.2) €8,
i=1 (Pzk); In general we do not expect block-iterative algorithms to

The following theorem summarizes what we know of SMARTFONverge in the mcpnsstent case, but to. exfsbiisequential
from the references above. convergence to alimit cycle, as we shall discuss later. We do,

Theorem 2.1: In the consistent case the SMART convergegowever’ want them to converge to a solution in the consistent
to the unique nonnegative solution gf— Pz for which the case: the OSEM and OSSMART do this when the maifix

distance>>’_, s, K L(x;,+°) is minimized. In the inconsistent 81d the set of block§B,,, n = 1, ..., N} satisfy the condition
o=l A : inimizer GROWN assubset balance, which means that the sums,;

case it converges to the unique nonnegative minimizer : ' : J

the distancek L(Px,y) for which Z"]—l s; K L(z;,2°) is depend only oy and notprn, but no.t ggnerally. Whllg subset '

minimized: if P and every matrix derived fron® by deleting Palance may be approximately valid in some special cases it

columns has full rank then there is a unique nonnegati{/%overly restrictive, eliminating, for example, almost every set
minimizer of K L(Px,y) and at most — 1 of its entries are of blocks whose cardinalities are not all the same. When the

NONZEro OSEM does well in practice in medical imaging it is probably
' because thé/ is not large and only a few iterations are carried
The next theorem summarizes what we know of the EMMEU_:_'h . ith the OSEM . h
method from the references above. € expenence wi € was encouraging, however,
and strongly suggested that an equally fast, but mathematically

Theorem 2.2: In the consistent case the EMML algorithm : . ) )
converges to a nonnegative solution gf = Pa. In the correct, block-iterative version of EMML could be found;

inconsistent case it converges to a nonnegative minimizer%‘ctS is therescaled block-iterative EMML (RBI-EMML)[13).

: . : . th RBI-EMML and an analogous corrected version of
the distance L(y, Px); if P and every matrix derived from )
P by deleting columns has full rank then there is a uniqu%SSMART‘ the RBI-SMART, provide fast convergence to a

. S : solution in the consistent case, for any choice of blocks.
nonnegative minimizer oK L(y, Pz) and at most —1 of its Both the EMML and SMART are related to likelihood
entries are nonzero.

maximization. Minimizing the functiods L(y, Px) is equiva-

. . lent to maximizing the likelihood when thg; are taken to
In the consistent case there may be multiple nonnegatiye 9 Gi

. ) 4 > b€ measurements of independent Poisson random variables
sqluhons and the one gbtamed using th_e EMML algog'thnﬂaving meangPx);. The entries of: are the parameters to be
WIII depend on the starting vectar’; how it depends O  determined. This situation arises in emission tomography. So
is an open question. These theorems are special cases of MLCEMML is a likelihood maximizer. as its name suggests
general results on block-iterative methods that we shall ProVer, o onnection between SMART :';md likelihood maximizé-

later in this paper. oo .
.__ tion is a bit more convoluted. Suppose that= 1 for each
Those who have used the SMART or the EMML on sizable To minimize K L(z, 2°) subject toy — Pz we form the

problems have certainly noticed that they are both slowif) :
) . ; agrangian
converge. An important issue, therefore, is how to accelerate
convergence. One popular method is through the ugbook- 0 !
iterative (or ordered subset) methods. KL(z,27) + Z Ailys — (Px)i), (2.5)
To illustrate block-iterative methods and to motivate our =1
subsequent discussion we consider nowdtuered subset EM ~ and set to zero the partial derivatives with respect to the entries
algorithm (OSEM)[12], which is a popular technique in somef z. From this we see that the solution necessarily has the
areas of medical imaging, as well as an analogous versionf@fm

SMART, which we shall call here the OSSMART. The OSEM !
algorithm is now used quite frequently in tomographic image Tj = I(]) exp (sz‘j/\i) (2.6)
reconstruction, where it is acknowledged to produce usable i=1
images significantly faster then EMML method. for some vector\ with entries \;. This log linear form

The idea behind the OSEM (OSSMART) is simple: thalso arises in transmission tomography, where it is natural to
iteration looks very much like the EMML (SMART), but atassume that; = 1 for eachj and \; < 0 for eachi. We
each step of the iteration the summations are taken only ovave the following lemma from [2] that helps to connect the
the current block. The blocks are processed cyclically. SMART algorithm with the transmission tomography problem:

The OSEM iteration is the following: fok = 0,1, ... and Lemma 2.1: Minimizing KL(d,z) over z as in (2.6) is
n = k(mod N) + 1, having foundz* let equivalent to minimizingK L(z, 2°), subject toPx = Pd.



With =, = ijl xz; > 0 the vectorp with entries Theorem 3.1: Let there be nonnegative solutions pf=
p; = xzj/x is a probability vector. Led = (di,...,d;)” Puz. For any positive vector” and any collection of blocks
be a vector whose entries are nonnegative integers, Mith {B,, n = 1,..., N} the sequencgz”} given by (3.2) con-
Z 1 d;. Suppose that, for each p; is the probability of verges to the unique solution @f = Pz for which the
mdex; andd is the number of times index was chosen in weighted cross- entropEJ 15 'KL(zj,x 29) is minimized.
K trials. The likelihood function of the parametexsis
J The inequality in the following lemma is the basis for the
_ H pr{j (2.7) convergence proof.
J Lemma 3.1: Let 8,; = ~v;6, andy = Pz for some

nonnegativer. Then for {z*} as in (3.2) we have
S0 that the log-likelihood function is g {z"} (3.2)
J

J 1 1 k+1
KL( KL(
A) = d;logp;. (2.8) Z” (w5:2;) Z% (e 2577) 2

Sincep is a probability vector, maximizind.(\) is equivalent 5, Z aniK L(ys, (P2F),). (3.4)

to minimizing K L(d, p) with respect to\, which, according

to the lemma above, can be solved using SMART. In fad®roof: Note that the guantity

since all of the block-iterative versions of SMART have the "

same limit whenever they have the same starting vector, any of €xp (’Yj(sn Z i Pijlog ((ka) , ))

these methods can be used to solve this maximum likelihood i€Bn '

problem. In the case of transmission tomographyXhenust in equation (3.2) can be written as

be non-positive, so if SMART is to be used, some modification "

is needed to obtain such a solution. exp ( (1 =7;0n0p;)log 1 +7;0n Z i Pij log (W»v
We turn next to the block-iterative versions of the SMART, ’

which we shall denote BI-SMART. These methods wenghich, by the convexity of the exponentlal function, is not

known prior to the discovery of RBI-EMML and played angreater than

important role in that discovery; the importance of rescaling n

for acceleration was apparently not appreciated, however. The (1 =76n0n;) + 70n Z i Pij (Pz k)

SMART was discovered in 1972, independently, by Darroch i€Bn

and Ratcliff [2], working in statistics, and by Schmidlin [3]It follows that

in medical imaging. Block-iterative versions of SMART are s

also treated in [2], but they also insist on subset balance; the27 (2 — xk+1) > 6, ani(Pz®); —y5).  (3.5)

inconsistent case was not considered. j=1 i€Bh,
) ) Note that it is at this step that we have used the separability
[11. Block-iterative SMART of A,;. We also have
We start by considering a formulation of BI-SMART that
is general enough to include all of the variants we wish log(x k+1/x ) =70 Z i Pijlog (P k) (3.6)
to discuss. As we shall see, this formulation is too general i€Bn

and will need to be restricted in certain ways to obtaiMherefore
convergence. Let the BI-SMART iterative step be defined as

$§+1 = 3?? eXp (ﬁn] Z aniPij log ((Pylk) ))’ (3.1) ZWJ KL -7777
)i
i€By,

vy 'K L(xj,2hh) =

IIM&

for j = 1,2,...,J, n = k(modN) + 1 and 3,; and a;
positive. As we shall see, our convergence proof will require
that 3,; be separable, that is,

Brj = Vjon ijé Z o, Pijlog ——— P k + Z’yj xf“) =

for eachj andn so that (3.1) becomes i€Bn

2H = 2k exp (Wsn 3" Py log (ﬁ)) G2 5,3 aw Zx Py)log —Yi (P - +Z% ok — 2+ >

i€EB, 1€B,,

Yz log(xfﬂ/x?) +af — x?“) =

<.
i Mk
I,

2,

We also require

On ani(yilog . (Pz"); —yi)) =
’YJ(snO'nJ < ].7 (33) (iEZBn (Pl‘k)i )

for o, = > icp, aniPij. With these conditions satisfied we S Z ani K L(ys, (Pz%);).
have the following result. i€B,,



This completes the proof of the lemma. I step

From (3.4) the sequencgy”]_,v; 'K L(z; =)} is de-
creasing, from which we concludé both that its differencEn® MART:
sequence, the left side of inequality (3.4), converges to zero kil ok Ui m; ! Pij
and that the sequencir*} is bounded. Since the left side Ti = ((Pl.k)i) ’ (3.8)
of inequality (3.4) dominates the right side, the nonnegative ]
sequence{ZieBn aniK L(y;, (Pz*);)} is also converging to for j = 17,12,...,J, 1 = k(m’odI) +1andm; > 0 chosen
zero. Letr* be any cluster point of the sequence®}. Then it so thatm,” P;; < 1 for all j. Convergence of the MART IS
is not difficult to show thayy = Pz*. Replacingr with z* we generally faster for smallem;, so a good choice isn; =

have that the sequemﬁgj'.]_1 v 'K L(x%, 2%)} is decreasing; ma}f{Pij" J :_1_’ s J ) AIthoug_h this pa_rticular_ choic_e for
I ) VA Aids not explicitly mentioned in the various discussions of

since a subsequence converges to zero, so does the w ) L )
sequence. Therefore' is the limit of the sequencgr”}. This 'k\)/leAg;Tr;i:gV\[lfg] used in implementations of MART from the

proves that the algorithm produces a solutionyof Pz. To e . .
conclude further that the solution is the one for which the P&roch and Ratcliff included a discussion of a block-
quantityz;.]:ﬂj_lKL(xj,xQ) is minimized requires further iterative version of SMART in their 1972 paper [2]. Close

J H H i i i _
work to replace (3.4) with equation (5.10) in which the righ{’SPection of their version reveals that they require that=
ien, Pij = 1 forall j. Since this is unlikely to be the case

side is independent of the particular solutioghosen; see the i X ;
initially, we might try to rescale the equations or unknowns

final section for the details. . 2
to obtain this condition. However, unless; = >, P;;

We see from the theorem that how we select theis q | - and hich is thesubedt bai
determined by how we wish to weight the terms in the Suﬂ]epen s only op and not ony, which is thesubset balance

Z}; 7;1KL(mj7x?)_ In some cases we want to minimizeP ePerty l_Jst_-:-d in [12], we cannot redefine the unknowns in a
way that is independent of.

the cross-entropys L(x, 2°) subject toy = Px; in this case . . . .
we would selecty; = 1. In other cases we may have some The MART fails to converge in the inconsistent case. What

prior knowledge as to the relative sizes of theand wish to is always observed, but for which no proof exists, is that,
; . for each fixedi = 1,2,...,I, asm — +oo, the MART

emphasize the smaller values more; then we may chgpse It ’ D

proportional to our prior estimate of the size ®f. Having S‘;beeqff”f?e?” I} cgnvergeozcz _f,eparate limit v((jactors, say

selected they;, we see from (3.4) that convergence will" - This limit cycle LC = {z**|¢ = 1,..., I} reduces to

be accelerated if we seleét, as large as permitted by the? single vector whenever there is a nonnegative solution of

condition~;é,0,; < 1. This suggests that we take Y= Px_' '_I'he greater the minimum value de(Px’z./) _the
- more distinct from one another the vectors of the limit cycle

6 = 1/ max{oy;vj, j=1,...,J}. (3.7) are. An analogous result is observed for BI-SMART.

The rescaled BI-SMART (RBI-SMART) as presented in [13], : ,

[14], [15] uses this choice, but witlk,; = 1 for eachn IV Block-iterative EML

andi. Let's look now at some of the other choices for these As we did with SMART, we consider now a formulation

parameters that have been considered in the literature. ~ Of BI-EMML that is general enough to include all of the
First, we notice that the OSSMART does not generaljariants we wish to discuss. Once again, the formulation is

Satisfy the requirementsy since in (24) the Choicem;e: 1 too general and will need to be restricted in certain ways to
and3,; = s, 1; the only times this is acceptable is if the; obtain convergence. Let the iterative step of the BI-EMML be

are separabIJe; that is,,; = r;t, for somer; andt,. This defined as

is slightly more general than the condition of subset balancex+1 & k Yi

and is sufficient for convergence of OSSMART, since, for 7 25 (1= Bnomg) + 5 5n; Z o (Px*);’ 1)
v = an; = 1 andd, as in (3.7), the BI-SMART reduces

to the OSSMART. for j = 1,2,...,J, n = k(modN) + 1 and 3,; and a,;

In [4] Censor and Segman make the Cho|¢a§ =1 and pOS|t|VeAS in the case Of Bl-SMART, qur Convergence pI’OOf
i > 0 such thato,,; < 1 for all n andj. In those cases in Will require that(3,,; be separable, that is,
which o,,; is much less than for eachn andj their iterative
scheme is probably excessively relaxed; it is hard to see how
one might improve the rate of convergence by altering onfgr eachj and n and that (3.3) hold. The BI-EMML then
the weightsa,,;, however. Limiting the choice to;0, = 1 becomes
reduces our ability to accelerate this algorithm. ‘ ;

The original SMART in (2.1) usesV = 1, ; = 57" and it = 2l (1= 95000m5) + 257500 ) asz’jﬁ»(“-z)
an; = oy = 1. Clearly (3.3) is satisfied; in fact it becomes an i€Bn
equality now. With these conditions satisfied we have the following result.

For the row-action version of SMART, thewultiplicative Theorem 4.1: Let there be nonnegative solutions gf=
ART (MART), due to Gordon, Bender and Herman [11], wePz. For any positive vector® and any collection of blocks
take N =T andB,, = B; = {i} fori = 1,...,1. The MART {B,,n = 1,.., N} the sequencdx*} given by (4.2) con-
begins with a strictly positive vectar® and has the iterative verges to a nonnegative solution 9f= Pz.

i€By

Brj = Vj0n



When there are multiple nonnegative solutionsyof Px  the algorithm produces a nonnegative solutiony ef Px. We
the solution obtained by BI-EMML will depend on the startindiave been unable to replace (4.3) with an equation in which the
point z°, but precisely how it depends on’ is an open right side is independent of the particular solutierchosen;
guestion. Also, in contrast to the case of BI-SMART, théor that reason we can say no more about the solution that has
solution can depend on the particular choice of the blockseen obtained.
The inequality in the following lemma is the basis for the Having selected the;, we see from (4.3) that convergence

convergence proof. will be accelerated if we seled, as large as permitted by
Lemma 4.1: Lety = Px for some nonnegative. Then for the conditiony;é,0,; < 1. This suggests that once again we
{z*} as in (4.2) we have taked,, as in (3.7). Theescaled BI-EMML (RBI-EMML) as
J J presented in [13], [14], [15] uses this choice, but withy = 1
Z’Va 'K L(zj,x Z S KL(zj,® §+1) > for eachn andq. Let's look now at some of the other choices
= = for these parameters that have been considered in the literature.
First, we notice that the OSEM does not generally satisfy
5 Z ani K L(yi, (P25),). (4.3) the requirements since in (2.3) the choices@rg = 1 and
Pl Bnj = sn] ; the only times this is acceptable is if thg; are
Proof: From the iterative step separable; that iss,; = r;t, for somer; andt,. This is
b1 _ i slightly more general than the condition of subset balance and
T 25 (1= 7j6nom;) + 5700 Z o Py (Pah); is sufficient for convergence of OSEM, since, fgr= a,,; =
i€Bn 1 and§, as in (3.7), the BI-EMML reduces to the OSEM .
we havelog(zh*! /ak) = The original EMML in (2.2) usesV = 1, v; = s; ' and
‘ an; = a; = 1. Clearly (3.3) is satisfied; in fact it becomes an
log ((1 - wjénanj) + ’}/j(sn Z Ozmpmyilk) equality now.
i€B, (Pat); Notice that the calculations required to perform the BI-

By the concavity of the logarithm we obtain the inequality SMART are somewhat more complicated than those needed
in BI-EMML. Because the MART converges rapidly in most

1og(x’?“/x’?) > cases there is considerable interest in the row-action version
B of EMML. It was clear from the outset that using the OSEM
(( —0n0n) log 1 + ;6 Z i Pijlog —~— ) in a row-action mode does not work. We see from the formula
i€B, (P )i for BI-EMML that the proper row-action version of EMML,
or which we call the EM-MART, has the iterative step
Ek+1 9,k Yi
log (™" /) > 7,0y Z o Pyjlog s .
i€B, EM-MART:
Therefore J ot = (1= 6iyj0ui Py )2l + ot 6Z7ja“P”7(Pyik) ., (4.6)
_ ")
Sy e log(a /) >
j=1 with
Yj0i0i Py < 1
J
S Qni ZxJ i) log P - (4.4) for all i and j. The optimal choice would seem to be to
i€B, j=1 ( ) take 9;a;; as Iarge as possible; that is, to selégt;; =
Note that it is at this step that we used the separability of thé max{7;Fi;,j =1, ..., J}. With this choice the EM-MART
Bpj- Also is called ther@caled EM MART (REM-MART).

The EM-MART fails to converge in the inconsistent case.
_ What is always observed, but for which no proof exists, is that,
ZVJ (@ ;CH 73) = 5”, ((Pa®)i = 2)- (45 for each fixedi — 1,2,...,1, asm — +oo, the EM-MART
=t 1€ subsequencege™ !} converge to separate limit vectors, say
Since the left sides and right sides of inequalities (4.4) ande-i, This limit cycle LC = {2>i|i = 1,...,1} reduces to
(4.5) add to the left side and right side of inequality (4.3} single vector whenever there is a nonnegative solution of
respectively, this concludes the proof of the lemma. | y = Pz. The greater the minimum value & L(y, Pz) the
From (4.3) we conclude, as we did in the BI-SMARTmore distinct from one another the vectors of the limit cycle
case, that the sequen({EJ 17; 'K L(xz;,z%)} is decreas- are. An analogous result is observed for BI-EMML.
ing, that {«z*} is therefore bounded and the sequence We must mention a method that closely resembles the
{2ien, ani K L(yi, (Px*);)} is converging to zero. Let* be REM-MART, the row-action maximum likelihood algorithm
any cluster point of the sequenge®}. Then it is not difficult (RAMLA), which was discovered independently by Browne
to show thaty = Pz*. Replacinga: with z* we have that and De Pierro [17]. The RAMLA avoids the limit cycle in
the sequencegzj 17 1KL(:z: T )} is decreasing; since athe inconsistent case by using strong underrelaxation involv-
subsequence converges to zero so does the whole sequengea decreasing sequence of relaxation parametgrsrhe
Thereforer* is the limit of the sequencgr”}. This proves that RAMLA has the following iterative step:

J



RAMLA: for eachz.

BHL (1) Pk + At P(yi> 4.7
i ( r Z i9)T5 + Ak Z Y\ (Pz*); (4.7) It is clear that(z*)" = z**! for all k; this lemma motivates

i B’!L B'n. . e . . .
ze . ' the definition of the iterative step in the BI-SMART.
where the positive relaxation parametexg are chosen to

oo Now let y = Pu for some nonnegative vectar. We
converge to zero anli_; =) Ax = +o0. calculateG,, (u, =) in two ways. Using the definition we have
Gr(u,2%) =

V. Proof of convergence of Bl - SMART

As we stated earlier, in the consistent case the sequenci ‘1KL (u;

{x*} generated by the BI-SMART algorithm and given by 7 J

equation (3.2) converges to the unique solutionyof Pax

for which the dis:tanceZ‘j]:1 v; 'K L(z;,49) is minimized. while using (5.6) we find that

In this section we sketch the proof of this result through a J

sequence of lemmas, each of which is easily established. ¢ (y 2%) = @, (251, 2%) + ZV 'K L(uj,2*). (5.9)
Lemma 5.1: For any nonnegative vectossandb with a = ’ i

—6n > aniKL(y;, (P*);), (5.8)

1€B,

SM a4, andby =32 b, >0 we have !
m=1m * m=1om . Therefore
KL(a,b) = KL(ay,by) + KL(a, b—*b). (5.1) 7 J
+ -1 71 okl
~v: K L(uj, K L(uy, )=
so thatK L(a,b) > KL(a,,by). ]Z; ! 23) z:: 7%
For nonnegative vectors and z let
g ° Go(@™1,2%) + 6, 3 aniKL(ys, (P2"),).  (5.10)
i€By,
Gnlz,2) =Y 7 'KL(zj, 2)+ '
; ! Y We conclude several things from this.

First, the sequence {Y7_,~;'KL(uj,x j)} is
S Z ani[KL((Pz)i,y;) — KL((Px);, (Pz);)]. (5.2) decreasing, so that the sequencé&(x k+1 2R} and
ieB, {60 > i, ani K L(yi, (Pz*);)} converge to zero. Therefore
the sequencéz*} is bounded and we may select an arbitrary
cluster pointz*. It follows thaty = Pz*. We may therefore
,yj—1 — 0pop; > 1 replace the generic solutiom with z* to find that the
that sequence[zjz.1 yjflKL(;?;f,x.’;)} is decreasir_1g; but since a
subsequence is converging to zero, the entire sequence must

J . 4
Zvj’lKL(:cjwj) s Z i K L((P2)s, (P2):) > 0(5.3) ggnverge to zero. Thereforgz®} converges to the solution

It follows from (5.1) and the inequality

7= _ i€Bn Finally, since the right side of (5.10) does not depend on
and soG,(z,z) > 0 in all cases. the particular choice of solution we have made, neither does
Lemma 5.2: For everyz we have the left side. Bytelescoping, that is, by summing o on both
Go(z,) = 6 Z i K L((P)i, y5) (5.4) sides, we conclude that
i€B, J J
1 71
so that ZVJ K L(uj, 25) Z K L(uj, a7)
Gn(z,2) = Gp(z,2)+ =1 i=1

is also mdependent of the choicewfConsequently, minimiz-

ing ZJ 175 1KL(u],x§?) over all solutionsu is equivalent

to m|n|m|2|ngz i—17; K L(uj, %) over all solutionsu; but

the solution to the Iatter problem is obviously= x*. This
Therefore the distancé’, (z, z) is minimized, as a function completes the proof.
of z, by z = .

J
S 0 KL, 2) = 60 S anKL(Pa)i, (P2);). (5.5)

j=1 i€Bn
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