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Choosing parameters in block-iterative or ordered
subset reconstruction algorithms

Charles Byrne,Senior member, IEEE,

Abstract—Viewed abstractly, all the algorithms considered
here are designed to provide a nonnegative solutionx to the
system of linear equationsy = Px, where y is a vector with
positive entries and P a matrix whose entries are nonnegative
and with no purely zero columns. Theexpectation maximization
maximum likelihood (EMML) method as it occurs in emission
tomography and the simultaneous multiplicative algebraic recon-
struction technique (SMART) are slow to converge on large
data sets; accelerating convergence through the use of block-
iterative or ordered subset versions of these algorithms is a topic
of considerable interest. These block-iterative versions involve
relaxation and normalization parameters the correct selection of
which may not be obvious to all users. The algorithms are not
faster merely by virtue of being block-iterative; the correct choice
of the parameters is crucial. Through a detailed discussion of
the theoretical foundations of these methods we come to a better
understanding of the precise roles these parameters play.

Index Terms— block-iterative algorithms, image reconstruc-
tion, ordered subsets,.

I. Introduction

I MAGE reconstruction problems in tomography are often
formulated as statistical likelihood maximization problems

in which the pixel values of the desired image play the role
of parameters. Iterative algorithms based on cross-entropy
minimization, such as theexpectation maximization maximum
likelihood (EMML) method [1] and thesimultaneous multi-
plicative algebraic reconstruction technique (SMART) [2], [3],
[4], [5], [6] can be used to solve such problems. Because the
EMML and SMART are slow to converge for the large data
sets typical in imaging problems acceleration of the algorithms
using blocks of data or ordered subsets has become popular.
There are a number of different ways to formulate these
block-iterative versions of EMML and SMART, involving the
choice of certain normalization and relaxation parameters.
These methods are not faster merely because they are block-
iterative; the correct choice of the parameters is crucial. The
purpose of this paper is to discuss these different formulations
in detail sufficient to reveal the precise roles played by the
parameters and to guide the user in choosing them. This is
not a survey of the field of iterative algorithms and no attempt
has been made to give complete references for each algorithm
mentioned here. The reader should consult the editorial [7] for
a fuller list of references to the literature.
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The notion ofcross-entropy or theKullback-Leibler distance
[8] is central to our discussion. For positive numbersa andb
let

KL(a, b) = a log
a

b
+ b − a;

also letKL(a, 0) = +∞ andKL(0, b) = b. It is easily seen
that KL(a, b) > 0 unlessa = b. We extend this Kullback-
Leibler distance component-wise to vectorsx and z with
nonnegative entries:

KL(x, z) =

J
∑

j=1

KL(xj , zj). (1.1)

The KL distance is also often called Csiszár’s I-divergence,
denotedI(a||b) [9], [10]. Note thatKL(x, z) and KL(z, x)
are generally not the same. While the KL distance is not
a metric in the usual sense it does have certain properties
involving best approximation that are similar to those of the
square of the Euclidean metric.

The methods based on cross-entropy, such as the multi-
plicative version of thealgebraic reconstruction technique
(ART), the MART [11], its simultaneous version, SMART,
the expectation maximization maximum likelihood method
(EMML) and all block-iterative versions of these algorithms
apply to nonnegative systems that we denote byPx = y,
where y is a vector of positive entries,P is a matrix with
entriesPij ≥ 0 such that for eachj the sumsj =

∑I

i=1
Pij

is positive and we seek a solutionx with nonnegative entries.
If no nonnegativex satisfiesy = Px we say the system is
inconsistent.

Simultaneous iterative algorithms employ all of the equa-
tions at each step of the iteration; block-iterative methods
do not. For the latter methods we assume that the index set
{i = 1, ..., I} is the (not necessarily disjoint) union of the
N sets orblocks Bn, n = 1, ..., N . We shall require that
snj =

∑

i∈Bn
Pij > 0 for eachn and eachj. Block-iterative

methods like ART and MART for which each block consists
of precisely one element are calledrow-action or sequential
methods. We begin our discussion with the SMART and the
EMML method.

II. The SMART and the EMML methods

Both the SMART and the EMML method provide a solution
of y = Px when such exist and (distinct) approximate
solutions in the inconsistent case. Both begin with an arbitrary
positive vectorx0. Having foundxk the iterative step for the
SMART is defined to be
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SMART:

xk+1

j = xk
j exp

(

s−1

j

I
∑

i=1

Pij log
yi

(Pxk)i

)

(2.1)

while that for the EMML method is

EMML:

xk+1

j = xk
j s−1

j

I
∑

i=1

Pij

yi

(Pxk)i

. (2.2)

The following theorem summarizes what we know of SMART
from the references above.

Theorem 2.1: In the consistent case the SMART converges
to the unique nonnegative solution ofy = Px for which the
distance

∑J

j=1
sjKL(xj , x

0
j ) is minimized. In the inconsistent

case it converges to the unique nonnegative minimizer of
the distanceKL(Px, y) for which

∑J

j=1
sjKL(xj , x

0
j ) is

minimized; if P and every matrix derived fromP by deleting
columns has full rank then there is a unique nonnegative
minimizer of KL(Px, y) and at mostI − 1 of its entries are
nonzero.

The next theorem summarizes what we know of the EMML
method from the references above.

Theorem 2.2: In the consistent case the EMML algorithm
converges to a nonnegative solution ofy = Px. In the
inconsistent case it converges to a nonnegative minimizer of
the distanceKL(y, Px); if P and every matrix derived from
P by deleting columns has full rank then there is a unique
nonnegative minimizer ofKL(y, Px) and at mostI −1 of its
entries are nonzero.

In the consistent case there may be multiple nonnegative
solutions and the one obtained using the EMML algorithm
will depend on the starting vectorx0; how it depends onx0

is an open question. These theorems are special cases of more
general results on block-iterative methods that we shall prove
later in this paper.

Those who have used the SMART or the EMML on sizable
problems have certainly noticed that they are both slow to
converge. An important issue, therefore, is how to accelerate
convergence. One popular method is through the use ofblock-
iterative (or ordered subset) methods.

To illustrate block-iterative methods and to motivate our
subsequent discussion we consider now theordered subset EM
algorithm (OSEM)[12], which is a popular technique in some
areas of medical imaging, as well as an analogous version of
SMART, which we shall call here the OSSMART. The OSEM
algorithm is now used quite frequently in tomographic image
reconstruction, where it is acknowledged to produce usable
images significantly faster then EMML method.

The idea behind the OSEM (OSSMART) is simple: the
iteration looks very much like the EMML (SMART), but at
each step of the iteration the summations are taken only over
the current block. The blocks are processed cyclically.

The OSEM iteration is the following: fork = 0, 1, ... and
n = k(modN) + 1, having foundxk let

OSEM:

xk+1

j = xk
j s−1

nj

∑

i∈Bn

Pij

yi

(Pxk)i

. (2.3)

The OSSMART has the following iterative step:

OSSMART:

xk+1

j = xk
j exp

(

s−1

nj

∑

i∈Bn

Pij log
yi

(Pxk)i

)

. (2.4)

In general we do not expect block-iterative algorithms to
converge in the inconsistent case, but to exhibitsubsequential
convergence to a limit cycle, as we shall discuss later. We do,
however, want them to converge to a solution in the consistent
case; the OSEM and OSSMART do this when the matrixP
and the set of blocks{Bn, n = 1, ..., N} satisfy the condition
known as subset balance, which means that the sumssnj

depend only onj and not onn, but not generally. While subset
balance may be approximately valid in some special cases it
is overly restrictive, eliminating, for example, almost every set
of blocks whose cardinalities are not all the same. When the
OSEM does well in practice in medical imaging it is probably
because theN is not large and only a few iterations are carried
out.

The experience with the OSEM was encouraging, however,
and strongly suggested that an equally fast, but mathematically
correct, block-iterative version of EMML could be found;
this is therescaled block-iterative EMML (RBI-EMML)[13].
Both RBI-EMML and an analogous corrected version of
OSSMART, the RBI-SMART, provide fast convergence to a
solution in the consistent case, for any choice of blocks.

Both the EMML and SMART are related to likelihood
maximization. Minimizing the functionKL(y, Px) is equiva-
lent to maximizing the likelihood when theyi are taken to
be measurements of independent Poisson random variables
having means(Px)i. The entries ofx are the parameters to be
determined. This situation arises in emission tomography. So
the EMML is a likelihood maximizer, as its name suggests.

The connection between SMART and likelihood maximiza-
tion is a bit more convoluted. Suppose thatsj = 1 for each
j. To minimize KL(x, x0) subject toy = Px we form the
Lagrangian

KL(x, x0) +

I
∑

i=1

λi(yi − (Px)i), (2.5)

and set to zero the partial derivatives with respect to the entries
of x. From this we see that the solution necessarily has the
form

xj = x0
j exp

(

I
∑

i=1

Pijλi

)

(2.6)

for some vectorλ with entries λi. This log linear form
also arises in transmission tomography, where it is natural to
assume thatsj = 1 for eachj and λi ≤ 0 for eachi. We
have the following lemma from [2] that helps to connect the
SMART algorithm with the transmission tomography problem:

Lemma 2.1: Minimizing KL(d, x) over x as in (2.6) is
equivalent to minimizingKL(x, x0), subject toPx = Pd.
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With x+ =
∑J

j=1
xj > 0 the vector p with entries

pj = xj/x+ is a probability vector. Letd = (d1, ..., dJ)T

be a vector whose entries are nonnegative integers, withK =
∑J

j=1
dj . Suppose that, for eachj, pj is the probability of

index j anddj is the number of times indexj was chosen in
K trials. The likelihood function of the parametersλi is

L(λ) =

J
∏

j=1

p
dj

j (2.7)

so that the log-likelihood function is

LL(λ) =

J
∑

j=1

dj log pj . (2.8)

Sincep is a probability vector, maximizingL(λ) is equivalent
to minimizing KL(d, p) with respect toλ, which, according
to the lemma above, can be solved using SMART. In fact,
since all of the block-iterative versions of SMART have the
same limit whenever they have the same starting vector, any of
these methods can be used to solve this maximum likelihood
problem. In the case of transmission tomography theλi must
be non-positive, so if SMART is to be used, some modification
is needed to obtain such a solution.

We turn next to the block-iterative versions of the SMART,
which we shall denote BI-SMART. These methods were
known prior to the discovery of RBI-EMML and played an
important role in that discovery; the importance of rescaling
for acceleration was apparently not appreciated, however. The
SMART was discovered in 1972, independently, by Darroch
and Ratcliff [2], working in statistics, and by Schmidlin [3]
in medical imaging. Block-iterative versions of SMART are
also treated in [2], but they also insist on subset balance; the
inconsistent case was not considered.

III. Block-iterative SMART

We start by considering a formulation of BI-SMART that
is general enough to include all of the variants we wish
to discuss. As we shall see, this formulation is too general
and will need to be restricted in certain ways to obtain
convergence. Let the BI-SMART iterative step be defined as

xk+1

j = xk
j exp

(

βnj

∑

i∈Bn

αniPij log
( yi

(Pxk)i

))

, (3.1)

for j = 1, 2, ..., J , n = k(modN) + 1 and βnj and αni

positive. As we shall see, our convergence proof will require
that βnj be separable, that is,

βnj = γjδn

for eachj andn so that (3.1) becomes

xk+1

j = xk
j exp

(

γjδn

∑

i∈Bn

αniPij log
( yi

(Pxk)i

))

. (3.2)

We also require

γjδnσnj ≤ 1, (3.3)

for σnj =
∑

i∈Bn
αniPij . With these conditions satisfied we

have the following result.

Theorem 3.1: Let there be nonnegative solutions ofy =
Px. For any positive vectorx0 and any collection of blocks
{Bn, n = 1, ..., N} the sequence{xk} given by (3.2) con-
verges to the unique solution ofy = Px for which the
weighted cross-entropy

∑J

j=1
γ−1

j KL(xj , x
0
j ) is minimized.

The inequality in the following lemma is the basis for the
convergence proof.

Lemma 3.1: Let βnj = γjδn and y = Px for some
nonnegativex. Then for{xk} as in (3.2) we have

J
∑

j=1

γ−1

j KL(xj , x
k
j ) −

J
∑

j=1

γ−1

j KL(xj , x
k+1

j ) ≥

δn

∑

i∈Bn

αniKL(yi, (Pxk)i). (3.4)

Proof: Note that the quantity

exp
(

γjδn

∑

i∈Bn

αniPij log
( yi

(Pxk)i

))

in equation (3.2) can be written as

exp
(

(1− γjδnσnj) log 1+ γjδn

∑

i∈Bn

αniPij log
( yi

(Pxk)i

))

,

which, by the convexity of the exponential function, is not
greater than

(1 − γjδnσnj) + γjδn

∑

i∈Bn

αniPij

yi

(Pxk)i

.

It follows that
J

∑

j=1

γ−1

j (xk
j − xk+1

j ) ≥ δn

∑

i∈Bn

αni((Pxk)i − yi). (3.5)

Note that it is at this step that we have used the separability
of βnj . We also have

log(xk+1

j /xk
j ) = γjδn

∑

i∈Bn

αniPij log
yi

(Pxk)i

. (3.6)

Therefore
J

∑

j=1

γ−1

j KL(xj , x
k
j ) −

J
∑

j=1

γ−1

j KL(xj , x
k+1

j ) =

J
∑

j=1

γ−1

j (xj log(xk+1

j /xk
j ) + xk

j − xk+1

j ) =

J
∑

j=1

xjδn

∑

i∈Bn

αniPij log
yi

(Pxk)i

+

J
∑

j=1

γ−1

j (xk
j − xk+1

j ) =

δn

∑

i∈Bn

αni(

J
∑

j=1

xjPij) log
yi

(Pxk)i

+

J
∑

j=1

γ−1

j (xk
j − xk+1

j ) ≥

δn

(

∑

i∈Bn

αni(yi log
yi

(Pxk)i

+ (Pxk)i − yi)
)

=

δn

∑

i∈Bn

αniKL(yi, (Pxk)i).
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This completes the proof of the lemma.

From (3.4) the sequence{
∑J

j=1
γ−1

j KL(xj , x
k
j )} is de-

creasing, from which we conclude both that its difference
sequence, the left side of inequality (3.4), converges to zero
and that the sequence{xk} is bounded. Since the left side
of inequality (3.4) dominates the right side, the nonnegative
sequence{

∑

i∈Bn
αniKL(yi, (Pxk)i)} is also converging to

zero. Letx∗ be any cluster point of the sequence{xk}. Then it
is not difficult to show thaty = Px∗. Replacingx with x∗ we
have that the sequence{

∑J

j=1
γ−1

j KL(x∗

j , x
k
j )} is decreasing;

since a subsequence converges to zero, so does the whole
sequence. Thereforex∗ is the limit of the sequence{xk}. This
proves that the algorithm produces a solution ofy = Px. To
conclude further that the solution is the one for which the
quantity

∑J

j=1
γ−1

j KL(xj , x
0
j ) is minimized requires further

work to replace (3.4) with equation (5.10) in which the right
side is independent of the particular solutionx chosen; see the
final section for the details.

We see from the theorem that how we select theγj is
determined by how we wish to weight the terms in the sum
∑J

j=1
γ−1

j KL(xj , x
0
j ). In some cases we want to minimize

the cross-entropyKL(x, x0) subject toy = Px; in this case
we would selectγj = 1. In other cases we may have some
prior knowledge as to the relative sizes of thexj and wish to
emphasize the smaller values more; then we may chooseγj

proportional to our prior estimate of the size ofxj . Having
selected theγj , we see from (3.4) that convergence will
be accelerated if we selectδn as large as permitted by the
conditionγjδnσnj ≤ 1. This suggests that we take

δn = 1/ max{σnjγj , j = 1, ..., J}. (3.7)

The rescaled BI-SMART (RBI-SMART) as presented in [13],
[14], [15] uses this choice, but withαni = 1 for each n
and i. Let’s look now at some of the other choices for these
parameters that have been considered in the literature.

First, we notice that the OSSMART does not generally
satisfy the requirements, since in (2.4) the choices areαni = 1
andβnj = s−1

nj ; the only times this is acceptable is if thesnj

are separable; that is,snj = rjtn for somerj and tn. This
is slightly more general than the condition of subset balance
and is sufficient for convergence of OSSMART, since, for
γj = αni = 1 and δn as in (3.7), the BI-SMART reduces
to the OSSMART.

In [4] Censor and Segman make the choicesβnj = 1 and
αni > 0 such thatσnj ≤ 1 for all n and j. In those cases in
which σnj is much less than1 for eachn andj their iterative
scheme is probably excessively relaxed; it is hard to see how
one might improve the rate of convergence by altering only
the weightsαni, however. Limiting the choice toγjδn = 1
reduces our ability to accelerate this algorithm.

The original SMART in (2.1) usesN = 1, γj = s−1

j and
αni = αi = 1. Clearly (3.3) is satisfied; in fact it becomes an
equality now.

For the row-action version of SMART, themultiplicative
ART (MART), due to Gordon, Bender and Herman [11], we
takeN = I andBn = Bi = {i} for i = 1, ..., I. The MART
begins with a strictly positive vectorx0 and has the iterative

step

The MART:

xk+1

j = xk
j

( yi

(Pxk)i

)m
−1

i
Pij

, (3.8)

for j = 1, 2, ..., J , i = k(mod I) + 1 and mi > 0 chosen
so thatm−1

i Pij ≤ 1 for all j. Convergence of the MART is
generally faster for smallermi, so a good choice ismi =
max{Pij |, j = 1, ..., J}. Although this particular choice for
mi is not explicitly mentioned in the various discussions of
MART, it was used in implementations of MART from the
beginning [16].

Darroch and Ratcliff included a discussion of a block-
iterative version of SMART in their 1972 paper [2]. Close
inspection of their version reveals that they require thatsnj =
∑

i∈Bn
Pij = 1 for all j. Since this is unlikely to be the case

initially, we might try to rescale the equations or unknowns
to obtain this condition. However, unlesssnj =

∑

i∈Bn
Pij

depends only onj and not onn, which is thesubset balance
property used in [12], we cannot redefine the unknowns in a
way that is independent ofn.

The MART fails to converge in the inconsistent case. What
is always observed, but for which no proof exists, is that,
for each fixedi = 1, 2, ..., I, as m → +∞, the MART
subsequences{xmI+i} converge to separate limit vectors, say
x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to
a single vector whenever there is a nonnegative solution of
y = Px. The greater the minimum value ofKL(Px, y) the
more distinct from one another the vectors of the limit cycle
are. An analogous result is observed for BI-SMART.

IV. Block-iterative EMML

As we did with SMART, we consider now a formulation
of BI-EMML that is general enough to include all of the
variants we wish to discuss. Once again, the formulation is
too general and will need to be restricted in certain ways to
obtain convergence. Let the iterative step of the BI-EMML be
defined as

xk+1

j = xk
j (1 − βnjσnj) + xk

j βnj

∑

i∈Bn

αniPij

yi

(Pxk)i

, (4.1)

for j = 1, 2, ..., J , n = k(modN) + 1 and βnj and αni

positive. As in the case of BI-SMART, our convergence proof
will require thatβnj be separable, that is,

βnj = γjδn

for each j and n and that (3.3) hold. The BI-EMML then
becomes

xk+1

j = xk
j (1 − γjδnσnj) + xk

j γjδn

∑

i∈Bn

αniPij

yi

(Pxk)i

, (4.2)

With these conditions satisfied we have the following result.
Theorem 4.1: Let there be nonnegative solutions ofy =

Px. For any positive vectorx0 and any collection of blocks
{Bn, n = 1, ..., N} the sequence{xk} given by (4.2) con-
verges to a nonnegative solution ofy = Px.
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When there are multiple nonnegative solutions ofy = Px
the solution obtained by BI-EMML will depend on the starting
point x0, but precisely how it depends onx0 is an open
question. Also, in contrast to the case of BI-SMART, the
solution can depend on the particular choice of the blocks.
The inequality in the following lemma is the basis for the
convergence proof.

Lemma 4.1: Let y = Px for some nonnegativex. Then for
{xk} as in (4.2) we have

J
∑

j=1

γ−1

j KL(xj , x
k
j ) −

J
∑

j=1

γ−1

j KL(xj , x
k+1

j ) ≥

δn

∑

i∈Bn

αniKL(yi, (Pxk)i). (4.3)

Proof: From the iterative step

xk+1

j = xk
j (1 − γjδnσnj) + xk

j γjδn

∑

i∈Bn

αniPij

yi

(Pxk)i

we havelog(xk+1

j /xk
j ) =

log
(

(1 − γjδnσnj) + γjδn

∑

i∈Bn

αniPij

yi

(Pxk)i

)

.

By the concavity of the logarithm we obtain the inequality

log(xk+1

j /xk
j ) ≥

(

(1 − γjδnσnj) log 1 + γjδn

∑

i∈Bn

αniPij log
yi

(Pxk)i

)

,

or
log(xk+1

j /xk
j ) ≥ γjδn

∑

i∈Bn

αniPij log
yi

(Pxk)i

.

Therefore
J

∑

j=1

γ−1

j xj log(xk+1

j /xk
j ) ≥

δn

∑

i∈Bn

αni(

J
∑

j=1

xjPij) log
yi

(Pxk)i

. (4.4)

Note that it is at this step that we used the separability of the
βnj . Also

J
∑

j=1

γ−1

j (xk+1

j − xk
j ) = δn

∑

i∈Bn

((Pxk)i − yi). (4.5)

Since the left sides and right sides of inequalities (4.4) and
(4.5) add to the left side and right side of inequality (4.3),
respectively, this concludes the proof of the lemma.

From (4.3) we conclude, as we did in the BI-SMART
case, that the sequence{

∑J

j=1
γ−1

j KL(xj , x
k
j )} is decreas-

ing, that {xk} is therefore bounded and the sequence
{
∑

i∈Bn
αniKL(yi, (Pxk)i)} is converging to zero. Letx∗ be

any cluster point of the sequence{xk}. Then it is not difficult
to show thaty = Px∗. Replacingx with x∗ we have that
the sequence{

∑J

j=1
γ−1

j KL(x∗

j , x
k
j )} is decreasing; since a

subsequence converges to zero, so does the whole sequence.
Thereforex∗ is the limit of the sequence{xk}. This proves that

the algorithm produces a nonnegative solution ofy = Px. We
have been unable to replace (4.3) with an equation in which the
right side is independent of the particular solutionx chosen;
for that reason we can say no more about the solution that has
been obtained.

Having selected theγj , we see from (4.3) that convergence
will be accelerated if we selectδn as large as permitted by
the conditionγjδnσnj ≤ 1. This suggests that once again we
takeδn as in (3.7). Therescaled BI-EMML (RBI-EMML) as
presented in [13], [14], [15] uses this choice, but withαni = 1
for eachn andi. Let’s look now at some of the other choices
for these parameters that have been considered in the literature.

First, we notice that the OSEM does not generally satisfy
the requirements, since in (2.3) the choices areαni = 1 and
βnj = s−1

nj ; the only times this is acceptable is if thesnj are
separable; that is,snj = rjtn for somerj and tn. This is
slightly more general than the condition of subset balance and
is sufficient for convergence of OSEM, since, forγj = αni =
1 andδn as in (3.7), the BI-EMML reduces to the OSEM .

The original EMML in (2.2) usesN = 1, γj = s−1

j and
αni = αi = 1. Clearly (3.3) is satisfied; in fact it becomes an
equality now.

Notice that the calculations required to perform the BI-
SMART are somewhat more complicated than those needed
in BI-EMML. Because the MART converges rapidly in most
cases there is considerable interest in the row-action version
of EMML. It was clear from the outset that using the OSEM
in a row-action mode does not work. We see from the formula
for BI-EMML that the proper row-action version of EMML,
which we call the EM-MART, has the iterative step

EM-MART:

xk+1

j = (1 − δiγjαiiPij)x
k
j + xk

j δiγjαiiPij

yi

(Pxk)i

, (4.6)

with
γjδiαiiPij ≤ 1

for all i and j. The optimal choice would seem to be to
take δiαii as large as possible; that is, to selectδiαii =
1/ max{γjPij , j = 1, ..., J}. With this choice the EM-MART
is called therescaled EM-MART (REM-MART).

The EM-MART fails to converge in the inconsistent case.
What is always observed, but for which no proof exists, is that,
for each fixedi = 1, 2, ..., I, as m → +∞, the EM-MART
subsequences{xmI+i} converge to separate limit vectors, say
x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to
a single vector whenever there is a nonnegative solution of
y = Px. The greater the minimum value ofKL(y, Px) the
more distinct from one another the vectors of the limit cycle
are. An analogous result is observed for BI-EMML.

We must mention a method that closely resembles the
REM-MART, the row-action maximum likelihood algorithm
(RAMLA), which was discovered independently by Browne
and De Pierro [17]. The RAMLA avoids the limit cycle in
the inconsistent case by using strong underrelaxation involv-
ing a decreasing sequence of relaxation parametersλk. The
RAMLA has the following iterative step:
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RAMLA:

xk+1

j = (1 − λk

∑

i∈Bn

Pij)x
k
j + λkxk

j

∑

i∈Bn

Pij

( yi

(Pxk)i

)

,(4.7)

where the positive relaxation parametersλk are chosen to
converge to zero and

∑+∞

k=0
λk = +∞.

V. Proof of convergence of BI-SMART

As we stated earlier, in the consistent case the sequence
{xk} generated by the BI-SMART algorithm and given by
equation (3.2) converges to the unique solution ofy = Px
for which the distance

∑J

j=1
γ−1

j KL(xj , x
0
j ) is minimized.

In this section we sketch the proof of this result through a
sequence of lemmas, each of which is easily established.

Lemma 5.1: For any nonnegative vectorsa andb with a+ =
∑M

m=1
am andb+ =

∑M

m=1
bm > 0 we have

KL(a, b) = KL(a+, b+) + KL(a,
a+

b+

b). (5.1)

so thatKL(a, b) ≥ KL(a+, b+).

For nonnegative vectorsx andz let

Gn(x, z) =

J
∑

j=1

γ−1

j KL(xj , zj)+

δn

∑

i∈Bn

αni[KL((Px)i, yi) − KL((Px)i, (Pz)i)]. (5.2)

It follows from (5.1) and the inequality

γ−1

j − δnσnj ≥ 1

that
J

∑

j=1

γ−1

j KL(xj , zj) − δn

∑

i∈Bn

αniKL((Px)i, (Pz)i) ≥ 0(5.3)

and soGn(x, z) ≥ 0 in all cases.
Lemma 5.2: For everyx we have

Gn(x, x) = δn

∑

i∈Bn

αniKL((Px)i, yi) (5.4)

so that
Gn(x, z) = Gn(x, x)+

J
∑

j=1

γ−1

j KL(xj , zj) − δn

∑

i∈Bn

αniKL((Px)i, (Pz)i). (5.5)

Therefore the distanceGn(x, z) is minimized, as a function
of z, by z = x.

Now we minimizeGn(x, z) as a function ofx.
Lemma 5.3: For eachx andz we have

Gn(x, z) = Gn(z′, z) +

J
∑

j=1

γ−1

j KL(xj , z
′

j), (5.6)

where

z′

j = zj exp
(

γjδn

∑

i∈Bn

αniPij log
yi

(Pz)i

)

(5.7)

for eachz.

It is clear that(xk)′ = xk+1 for all k; this lemma motivates
the definition of the iterative step in the BI-SMART.

Now let y = Pu for some nonnegative vectoru. We
calculateGn(u, xk) in two ways. Using the definition we have
Gn(u, xk) =

J
∑

j=1

γ−1

j KL(uj , x
k
j ) − δn

∑

i∈Bn

αniKL(yi, (Pxk)i), (5.8)

while using (5.6) we find that

Gn(u, xk) = Gn(xk+1, xk) +

J
∑

j=1

γ−1

j KL(uj , x
k+1

j ). (5.9)

Therefore
J

∑

j=1

γ−1

j KL(uj , x
k
j ) −

J
∑

j=1

γ−1

j KL(uj , x
k+1

j ) =

Gn(xk+1, xk) + δn

∑

i∈Bn

αniKL(yi, (Pxk)i). (5.10)

We conclude several things from this.
First, the sequence {

∑J

j=1
γ−1

j KL(uj , x
k
j )} is

decreasing, so that the sequences{Gn(xk+1, xk)} and
{δn

∑

i∈Bn
αniKL(yi, (Pxk)i)} converge to zero. Therefore

the sequence{xk} is bounded and we may select an arbitrary
cluster pointx∗. It follows that y = Px∗. We may therefore
replace the generic solutionu with x∗ to find that the
sequence{

∑J

j=1
γ−1

j KL(x∗

j , x
k
j )} is decreasing; but since a

subsequence is converging to zero, the entire sequence must
converge to zero. Therefore{xk} converges to the solution
x∗.

Finally, since the right side of (5.10) does not depend on
the particular choice of solution we have made, neither does
the left side. Bytelescoping, that is, by summing onk on both
sides, we conclude that

J
∑

j=1

γ−1

j KL(uj , x
0
j ) −

J
∑

j=1

γ−1

j KL(uj , x
∗

j )

is also independent of the choice ofu. Consequently, minimiz-
ing

∑J

j=1
γ−1

j KL(uj , x
0
j ) over all solutionsu is equivalent

to minimizing
∑J

j=1
γ−1

j KL(uj , x
∗

j ) over all solutionsu; but
the solution to the latter problem is obviouslyu = x∗. This
completes the proof.
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