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Chapter 1

Preface

I am a mathematics professor at the University of Massachusetts Low-
ell. For the past twenty years I have also collaborated with researchers at
the University of Massachusetts Medical School and elsewhere on medical
imaging and radiation therapy. My work involved developing mathematical
methods for generating pictures from x-ray, PET and MRI scanning data
and algorithms for intensity-modulated radiation therapy. After twenty
years, the fundamental formulas in this field had become old friends. When
I was diagnosed with lymphoma, in March of 2011, I suddenly found myself
on the other side of the scanners and began to see these old mathematical
friends in a new and unexpected light. My friend David Barton helped me
to find the words to describe this new view.

Cancer patients often turn to meditation, music, or art for help in deal-
ing with the disease. In the recent Brush Gallery exhibition On and Off
the Wall, the Lowell artist and cancer survivor David Barton introduced
the visitors to his fierce defenders, surreal humanoid sculptures horrible
enough to confront any invading cancer cells. His artist’s vision of sur-
rounding himself with monsters for protection is a bit like the way certain
cultures like to place carved lions and dragons on their front steps. I real-
ized that David’s idea of having defenders was also the way I was starting to
feel. My defenders, mathematicians, physicists, and their equations, may
not look quite so horrible, but they are real and quite powerful.

After I saw David Barton’s fierce creatures in the On and Off the Wall
show at the Brush a few months back, and read in his artist’s statement
how he regards these creatures as his protectors, I began to see that I now
regarded familiar equations as weapons to be brandished against an evil
invader. I began trying to experience each equation visually, rather than
mathematically, its fierce, forbidding, powerful, even otherworldly, hiero-
glyphics a talisman capable of tracking down the menacing foe and exposing
it to deadly attack. The scientists who had developed these weapons, not as
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2 CHAPTER 1. PREFACE

horrible-looking as David’s creature in Figure 1.1, were now my protectors,
as well as yours.

Figure 1.1: One of David Barton’s protectors.

In the few pages that follow I will introduce you to several of the most
powerful of these weapons and to the superheroes who forged them. The
point is not to understand the mathematics, any more than the point of
David’s work is to understand the physiology of his creature’s respiratory
system. Try to view the strangeness of the equations as a source of their
power, as you would David’s monsters.

My ignorance of biology, chemistry and medicine prevents me from
discussing those superheroes who invented Rituxan and the other miracle
drugs and who provided the diagnoses and treatment that have made me
cancer-free. I apologize to them if I appear to minimize their roles.



Chapter 2

Paul Dirac and His
Equation

The famous physicist Eugene Wigner once wrote that what struck him as
the most remarkable thing he had encountered during his life as a scientist
was, as he called it, the “unreasonable effectiveness of mathematics”. Why
is it that, when we attempt to understand the workings of nature through
mathematical models like differential equations, we often succeed? The
story of Paul Dirac and his famous equation illustrates quite well the point
Wigner was making.

The man in Figure 2.1 is the mathematician Paul Dirac, often called
“the British Einstein” . He doesn’t look too fierce. But he is definitely one
of our protectors. Almost all of us cancer survivors have had a PET scan,
a marvelous invention that owes its existence to the genius of this man.
Those who knew him often remarked on his “strangeness” ; recent studies
have suggested that both Dirac and his father were autistic.

Look at this equation:
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It looks pretty fierce, and it is. Admit it! When you first looked at it,
you wanted to run away and hide; that is certainly the way I feel when
I see it. Imagine how a cancer cell must feel! This is Dirac’s Equation
from quantum mechanics, which predicted the existence of the positron
and eventually led to PET scans.

In 1930 Dirac added his equation, now inscribed on the wall of Westmin-
ster Abbey, to the developing field of quantum mechanics. This equation
agreed remarkably well with experimental data on the behavior of electrons
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in electric and magnetic fields, but it also seemed to allow for nonsensical
solutions, such as spinning electrons with negative energy.

The next year, Dirac realized that what the equation was calling for
was anti-matter, a particle with the same mass as the electron, but with
a positive charge. In the summer of 1932, Carl Anderson, working at Cal
Tech, presented clear evidence for the existence of such a particle, which
we now call the positron. What seemed like the height of science fiction in
1930 has become commonplace today.

When a positron collides with an electron their masses vanish and two
gamma ray photons of pure energy are produced. These photons then
move off in opposite directions. In positron emission tomography (PET)
certain positron-emitting chemicals, such as glucose with radioactive flu-
orine chemically attached, are injected into the patient. When the PET
scanner detects two photons arriving at the two ends of a line segment at
(almost) the same time, called coincidence detection, it concludes that a
positron was emitted somewhere along that line. This is repeated thou-
sands of times. Once all this data has been collected, the mathematicians
take over and use these clues to reconstruct an image of where the glucose
is in the body. It is this image that the doctor sees.

We are able to see tumors using PET scans because most tumors, par-
ticularly the fast-growing ones, gobble up most of the glucose before their
slower-growing neighbors have a chance. Most of the glucose, and therefore
most of the radioactivity, resides then in the cancerous cells. A picture of
where the radioactivity is will then be a picture of where the cancer is.

The same idea lies behind chemotherapy. Aggressive cancers, as well
as other healthy, but fast-growing, cells, like hair cells and taste buds, eat
more of the chemicals than do their slower-growing neighbors. The cancer
cells die, you lose your hair and food starts to taste awful, but the rest of
you survives.
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Figure 2.1: Paul Dirac: his equation predicted positrons.
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Figure 2.2: A pet getting a PET scan? Not quite.



Chapter 3

Allan Cormack and His
CAT Scan

Look at the photo in Figure 3.1. He doesn’t look so horrible, but the
weapon he invented is fierce; it has changed medical diagnostics forever.
My wife Eileen and I once shared a Chinese meal with him in the 1980’s
and I am sure that nobody else in the restaurant had any idea who he
was. The man is Allan Cormack. He shared the Nobel Prize in 1979 for
inventing the CAT scan.

Originally from South Africa, Allan Cormack was, for much of his adult
life, a professor at Tufts. In the mid-1950’s Cormack worked on radiation
therapy in Cape Town. The main problem, then as now, is how to guide
the radiation beams and adjust their strengths to have the desired effects
without damaging the healthy organs of the patient. Cormack realized
that, if he could get a look at the insides of the patient, he could improve
the radiation treatment.

X-rays are weakened as they pass through the body of the patient. The
degree of weakening tells us something about the amount of material that
got in the way of the beam along its journey, but does not, by itself, tell us
precisely where on that journey the weakening happened. You may think
of arriving three hours late after a road trip and blaming it on traffic. Your
listener now knows that there was a certain amount of traffic along your
route, but does not know precisely where you encountered it.

To figure out just where the material, the “stuff” , is inside the patient,
we pass many such beams through the patient, at many different angles.
The weakening associated with each of the beams provides many clues
about the distribution of material within the patient. Mathematics can
then put all these clues together and give us a picture of just where the
material is concentrated. This is the CAT scan image.
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To get a feel for the problem that must be solved, imagine a checker
board on which I have written a number in each of the sixty-four squares;
your job is to figure out what numbers I have written. You can’t see the
numbers, but I tell you the sums of the numbers along each of the rows
and along each of the columns. This is your data, from which you must
figure out what I wrote in the squares. In CAT, each of the squares – and
many more than sixty-four are used – are the pixels of the picture, the
numbers tell us how much “stuff” resides within each pixel, and the sums
correspond to the measured weakening of the x-ray beams as they pass
through the patient.

It is common today to speak of all kinds of scans, PET scans, SPECT
scans, CT, MRI, and ultrasound, as CAT scans, but originally a CAT, or
CT, scan meant using x-rays in computer-assisted tomography. The word
“tomography” comes from the Greek work “tomos” , meaning part or slice;
our word “atom” means “without parts” .

Both PET and SPECT scans rely on metabolism and so must be per-
formed on living beings, principally people and small animals. The pig in
Figure 2.2 is having his heart imaged using SPECT, as part of a research
effort to study the effectiveness of certain SPECT imaging algorithms. The
hearts of pigs are similar to our own, which makes the pig a good subject
for this study.

Unlike PET and SPECT, x-ray tomography CT can be used on corpses
(King Tut has had a CT scan) and in industry. For such uses the dosages
can be much higher than is safe for people and the quality of the images
much greater.

I nearly had an industrial-strength CT scan once. My colleague Yair
Censor and I were working on a Saturday in a building next to a construc-
tion site. As it happened, one of us moved the window shade. Within a
minute or two, security folk descended on us; it turned out that x-ray CT
was about to be used on the beam welds next door and our building should
have been evacuated.

Once we have the data from the scanner, we have many choices of
which mathematical algorithms to use to reconstruct the picture. Some
algorithms do better than others, and generally we try to select an algo-
rithm that is known to work well on the kind of image we are dealing with.
In Figure 3.2 we see an original (simulated) head slice in the upper right
and two different reconstructions in the lower row, both obtained using
the same data, but different algorithms. The difference is that the recon-
struction on the left also made use of prior information that the picture we
expected to see looked somewhat like the one in the upper left.
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Figure 3.1: Allan Cormack, who won the Nobel Prize for the CAT scan.
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Figure 3.2: Extracting information in image reconstruction.
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Raymond Damadian and
His MRI

One of the first things you get after a cancer diagnosis, usually after the
biopsy, is an MRI scan. This leads us to another of the mathematical
weapons in the arsenal:

S(t) = eiω0t

∫ ∫
ρ(x, y)eiγGyyT eiγGxxtdxdy.

This equation describes the signals received by a magnetic-resonance imag-
ing (MRI) scanner. The gentleman in Figure 4.1 is Raymond Damadian,
who invented the MRI and should have received the Nobel prize in 2004.

In much of MRI, it is the distribution of hydrogen in water molecules
that is the object of interest, although the imaging of phosphorus to study
energy transfer in biological processing is also important. Because the
magnetic properties of blood change when the blood is oxygenated, in-
creased activity in parts of the brain can be imaged through functional
MRI (fMRI). Non-radioactive isotopes of gadolinium are often injected as
contrast agents because of their ability to modify the magnetic properties
of tissues.

The hydrogen atoms act like little tops, spinning in all directions. When
a very strong magnetic field is turned on, enough of these spinning tops
line up so that a detectable signal is received when the magnetic field is
changed. The MRI machine picks up these signals and mathematics is used
to determine just where the signals originated. The result is a picture of
the distribution of these molecules, as in Figure 4.2. Regions with more
water show up brighter than others, soft tissue and tumors brighter than
bone or air.
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A recent article in The Boston Globe describes a new application of
MRI, as a guide for the administration of ultra-sound to kill tumors and
perform bloodless surgery. In MRI-guided focused ultra-sound, the sound
waves are focused to heat up the regions to be destroyed and real-time MRI
imaging shows the doctor where this region is located and if the sound waves
are having the desired effect. The use of this technique in other areas is also
being studied: to open up the blood-brain barrier to permit chemo-therapy
for brain cancers; to cure hand tremors, chronic pain, and some effects of
stroke, epilepsy, and Parkinson’s disease; and to remove uterine fibroids.
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Figure 4.1: Raymond Damadian: inventor of MRI.
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Figure 4.2: An MRI head scan. Check out the eyeballs.



Chapter 5

John Tukey and His Fast
Fourier Transform (FFT)

The title of this chapter reminds me of the Tom Swift adventure books that
I read as a child in the 1950’s. They always had titles like “Tom Swift and
his Nuclear-Powered Backyard Swing Set” . But the Fast Fourier Transform
is real and it is fast. Co-invented by the mathematician John Tukey (see
Figure 5.1) and James Cooley in 1965, the Fast Fourier Transform, always
called the FFT, has revolutionized image processing; without it, all the
digital imaging that fills our modern world would be impossible. With
it, medical images can be created from scanning data in almost real time,
instead of weeks. Professor Tukey doesn’t look too fierce in the photo, but,
in person, he did bear some slight resemblance to one of David Barton’s
terrible creatures.

The key equations in the FFT are these:

Fk =

M−1∑
m=0

f2me
2πimk/M + e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M ,

and

Fk+M =

M−1∑
m=0

f2me
2πimk/M − e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M .

The main idea is that the calculations required to do image processing often
have a lot of hidden redundancy that the FFT avoids, thereby greatly
reducing the number of calculations and therefore the time required to
process the image.
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Figure 5.1: John Tukey: co-inventor of the FFT.



Chapter 6

A Personal View

Once I had my cancer diagnosis, I began to view even my own work in
medical imaging in a new light. For one thing, I felt that I was privileged
to apply to practical, and even personal, situations what is often abstract
and remote from daily concerns. As was the case with the other formulas
I talked about in the previous chapters, my own equations began to seem
like tools, weapons even, that might be used to ward off disease.

The software inside the scanners is not changed every time one of us
publishes a new paper. The researchers in the field are engaged in a con-
versation among themselves, each new idea suggested by what has come
before. Every so often, a company making scanners will adopt some re-
cently presented algorithms to include in its next line of products. Each of
us may have contributed some small piece to what ends up in the machines,
but we never really know for sure.

Here are two methods that were developed for producing medical im-
ages, both of which I have had the opportunity to work on. The first
is the “expectation maximization maximum likelihood” (EMML) method
and the second is the “simultaneous multiplicative algebraic reconstruction
technique” (SMART).

The iterative step for the EMML method is

xk+1
j = (xk)′j = xkj

I∑
i=1

Aij
bi

(Axk)i
.

The iterative step for the SMART is

xm+1
j = (xm)′′j = xmj exp

( I∑
i=1

Aij log
bi

(Axm)i

)
.
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One problem with both of these methods is that they can be very slow.
Figuring out how to modify these methods to make them faster was one of
my goals. In 1995 I found a way to do it, the RBI-EMML algorithm, and
added my own equation to the armory; here it is:

xk+1
j = (1 −m−1i Aij)x

k
j +m−1i Aij

(
xkj

bi
(Axk)i

)
.

About 2006 I found myself involved in intensity-modulated radiation
therapy (IMRT). The problem in radiation therapy, as Cormack knew in
the 1950’s, is how to adjust the intensities of the x-ray beams that enter the
patient undergoing therapy so that tumors are killed but healthy organs
are unharmed. A recent technique, known as IMRT, uses the mathematics
of optimization to solve this problem. The advantage of IMRT is that,
when done properly, higher doses of radiation can be used without risking
damage to healthy organs.

Yair Censor, shown in Figure 6.1, is a mathematician who has been
working in medical imaging and radiation therapy for over thirty years. I
first met Yair in 1992 at the University of Pennsylvania and we have worked
together ever since.

Figure 6.1: My colleague Yair Censor of the University of Haifa.
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In 2005 I discovered a mathematical algorithm for solving a general
optimization problem. Here it is:

xk+1 = PC(xk − γAT (I − PQ)Axk).

Yair, then working with radiation therapists at Massachusetts General
Hospital, modified my algorithm and showed how it could be used to de-
velop protocols for IMRT. The lesson I drew from this is that we can never
predict the possible uses of the mathematics we work on. I had chemother-
apy, but did not have radiation therapy. I once joked that, if radiation had
been needed, I would have rechecked my calculations.

I cannot pass up the only opportunity I will ever have to see my picture
in the same document with those of Dirac, Cormack, Damadian, and Tukey,
so I give you Figure 6.2.

Figure 6.2: Patient No. 5016259 in Mass General Hospital, summer of
2011.


