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Abstract

The multiple-sets split feasibility problem requires finding a point closest to a
family of closed convex sets in one space such that its image under a linear
transformation will be closest to another family of closed convex sets in the
image space. It can be a model for many inverse problems where constraints
are imposed on the solutions in the domain of a linear operator as well as in
the operator’s range. It generalizes the convex feasibility problem as well as
the two-sets split feasibility problem. We propose a projection algorithm that
minimizes a proximity function that measures the distance of a point from
all sets. The formulation, as well as the algorithm, generalize earlier work
on the split feasibility problem. We offer also a generalization to proximity
functions with Bregman distances. Application of the method to the inverse
problem of intensity-modulated radiation therapy treatment planning is studied
in a separate companion paper and is here only described briefly.

1. Introduction

In this, somewhat lengthy, introduction we define the new multiple-sets split feasibility problem
as a generalization of the well-known convex feasibility problem and as a generalization of
the two-sets split feasibility problem. We briefly explain the, in principle, advantage of
applying projection methods to such problems and mention the inverse problem of intensity-
modulated radiation therapy as the real-world application that inspired the present work. We
must emphasize though that, in spite of the general statements that we make below about
the computational advantages of projection algorithms in other fields where huge-sized real-
world problems need to be solved, our development of the multiple-sets split feasibility
problem formulation and algorithm are not computation cost driven. Even in the inverse
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problem of intensity-modulated radiation therapy (IMRT) that inspired our work (see section 3)
we do not yet have enough computational experience that would support computational cost-
effectiveness claims. What our study does, therefore, offer, both in IMRT and for other inverse
problems, is a mathematically valid framework for applying projection algorithms to inverse
problems where constraints are imposed on the solutions in the domain of a linear operator as
well as in the operator’s range.

1.1. Feasibility problems

Given closed convex sets C; € RY,i = 1,2, ...,t, and closed convex sets 0; c RM, Jj=
1,2, ..., r, inthe N- and M-dimensional Euclidean spaces, respectively, the multiple-sets split
feasibility problem, proposed and studied here, is to find a vector x* for which

x*eC:=nN_C suchthat Ax* € Q:=N,_,0;, 1)

where A is a given M x N real matrix. This can serve as a model for many inverse problems
where constraints are imposed on the solutions in the domain of a linear operator as well as
in the operator’s range. The multiple-sets split feasibility problem extends the well-known
convex feasibility problem which is obtained from (1) when there are no matrix A and sets Q ;
present at all, or put differently, when Q = RY. For information on the convex feasibility
problem see, e.g., Bauschke and Borwein [4], Combettes [20], or Censor and Zenios [19].
Systems of linear equations, linear inequalities or convex inequalities are all encompassed by
the convex feasibility problem which has broad applicability in many areas of mathematics and
the physical and engineering sciences. These include, among others, optimization theory (see,
e.g., Eremin [23] and Censor and Lent [18]), approximation theory (see, e.g., Deutsch [21] and
references therein) and image reconstruction from projections in computerized tomography
(see, e.g., Herman [25, 26], Censor [13]).

1.2. Projection methods and their advantage

Projections onto sets are used in a wide variety of methods in optimization theory but not every
method that uses projections really belongs to the class of projection methods. Projection
methods are iterative algorithms that use projections onto sets while relying on the general
principle that when a family of (usually closed and convex) sets is present then projections onto
the given individual sets are easier to perform than projections onto other sets (intersections,
image sets under some transformation, etc) that are derived from the given individual sets.

A projection algorithm reaches its goal that is related to the whole family of sets by
performing projections onto the individual sets. Projection algorithms employ projections
onto convex sets in various ways. They may use different kinds of projections and, sometimes,
even use different projections within the same algorithm. They serve to solve a variety of
problems which are either of the feasibility or the optimization types. They have different
algorithmic structures, of which some are particularly suitable for parallel computing, and they
demonstrate nice convergence properties and/or good initial behaviour patterns. This class
of algorithms has witnessed great progress in recent years and its member algorithms have
been applied with success to fully-discretized models of problems in image reconstruction and
image processing (see, e.g., Stark and Yang [32], Bauschke and Borwein [4] and Censor and
Zenios [19]).

Apart from theoretical interest, the main advantage of projection methods which makes
them successful in real-world applications is computational. They commonly have the ability
to handle huge-size problems of dimensions beyond which other, more sophisticated currently
available, methods cease to be efficient. This is so because the building bricks of a projection
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algorithm are the projections onto the given individual sets (assumed and actually easy to
perform) and the algorithmic structure is either sequential or simultaneous (or in-between).
Sequential algorithmic structures cater for the row-action approach (see Censor [13]) while
simultaneous algorithmic structures favour parallel computing platforms (see, e.g., Censor,
Gordon and Gordon [17]).

1.3. The split feasibility problem

The special case when there is only one set in each space, i.e.,t = r = 1 in (1), was proposed
by Censor and Elfving in [ 16] and termed the split feasibility problem (because of the limitation
to one set in each space we will call this from now on the two-sets split feasibility problem).
There we used our simultaneous multiprojections algorithm (see also [19, subsection 5.9.3])
to obtain an iterative algorithm whose iterative step has the form

X = ATH I+ AAT) TN AP () + AAT Po(AxY)) 2)

to solve the two-sets split feasibility problem. Here x* and x**! are the current and the next

iteration vectors, respectively, T stands for matrix transposition, / is the unit matrix and P¢ and
Py denote the orthogonal projections onto C and Q, respectively. That solution was restricted
to the case when M = N and to the feasible case, i.e., when Q N A(C) # . Byrne and
Censor investigated this further in [11, section 5]. Recognizing the potential difficulties with
calculating inverses of matrices, or, equivalently, solving a linear system in each iterative step,
particularly when the dimensions are large, Byrne [9] devised the CQ-algorithm which uses
the iterative step

= Pe(xf + y AT (Py — 1) AxY), 3)

where y € (0,2/L) and L is the largest eigenvalue of the matrix AT A.

One might wonder why not solve one of the convex feasibility problems of finding a
point in Q N A(C) or of finding a point in C N A~!(Q) instead of using the CQ-algorithm?
Examples of situations when this would not be recommended can occur when, due to the
underlying specific data of the real-world problem, it is not easy to perform projections onto
the sets A(C) and/or A~'(Q). Other examples might occur when the dimensions M and N are
very different from each other and choosing one of those convex feasibility problems would
cost us in calculating projections for one of the sets in a much larger dimensional space than
if we perform projections in each space separately onto the given individual sets. Similar
arguments apply to the multiple-sets split feasibility problem.

Our aim in this paper is to present, motivate and study the multiple-sets split feasibility
problem. We devise, in section 2, a projection method that obeys the general paradigm
of projection algorithms, described above, namely, it performs projections onto the given
individual sets to reach the overall goal of the problem, and which reduces precisely to
Byrne’s CQ-algorithm in the two-sets split feasibility situation. In order to cover the feasible
and the infeasible cases for our problem, we handle it with a proximity function minimization
approach. We apply to this proximity function a gradient projection algorithmic scheme and
study conditions that guarantee its convergence.

While the multiple-sets split feasibility problem is potentially useful for a variety of
inversion problems that can be formulated so, we describe briefly, in section 3, a specific
application in IMRT that motivates our interest in the multiple-sets split feasibility problem
and which is presented in detail in a separate companion article [14]. In the appendix we supply
a list of definitions and results that we use in our work. The recent work of Yang [36] on the
two-sets split feasibility problem and the CQ-algorithm will be mentioned in the following.
Related to the two-sets split feasibility problem are also the recent papers of Zhao and Yang [37]
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and Qu and Xiu [30]. The linear case for the two-sets split feasibility problem is discussed by
Cegielski [12].

2. A projection algorithm for the multiple-sets split feasibility problem

2.1. The algorithm

Consider the multiple-sets split feasibility problem defined in section 1. For notational
convenience reasons we consider an additional closed convex set € RY and further define
the constrained multiple-sets split feasibility problem as the problem

find x* € € such that x* solves (1). 4)

Denoting by P the orthogonal projection onto the closed convex set appearing in its subscript,
we define a proximity function on R for this problem by

p() = (1/2) Y 0| Pe,(x) — x1+ (1/2) Y Bl Po, (Ax) — Ax[®. (5

i—1 j=1

where o; > Oforalli, 8; > Oforall j. An additional condition like Zle o +er:1 Bj =1is
sometimes very useful in practical application to real-world problems when the «; and §; are
weights of importance attached to the constraints. But this condition is not necessary for our
analysis below since p(x) is convex by being a linear positive combination of convex terms.
This proximity function ‘measures’ the ‘distance’ of a point to all sets of (1) for which the
coefficient o; or B; is positive. If the problem (1) is feasible then unconstrained minimization
of p(x) will yield the value zero, otherwise it will, in the infeasible (i.e., inconsistent) case
find a point which is least violating the feasibility in the sense of being ‘closest’ to all sets, as
‘measured’ by p(x). Note that with the choice t = r = 1, C; = RN and Q| = {b} we retrieve
the classical Tikhonov regularization, namely, p(x) = (1/2); llx]1% + 1/2)B:1b — Ax|)?. In
order to find a solution of the constrained multiple-sets split feasibility problem we consider
the minimization problem

min{p(x) | x € Q} 6)
and propose the following algorithm.
Algorithm 1.

Initialization: let x° be arbitrary.
Iterative step: for k > 0, given the current iterate x* calculate the next iterate x**' by

t r

= Py b as | Y i (Po (6f) = xb) + Y BiAT (P, (Ax*) — Ax¥) | ¢ (7)
i=1 j=1

where s is a positive scalar such that 0 < s < 2/L and L is the Lipschitz constant of the

gradient V p(x) of the proximity function in (5).

2.2. Convergence analysis

We address the convergence question of algorithm 1 with two different tools. One is based on
the constant stepsize lemma for gradient projection methods (lemma 12 in the appendix). The
other is based on Dolidze’s theorem (theorem 13 in the appendix) and is inspired by the work
of Byrne [10].
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Theorem 2. Let C = N._,C; and Q = N;_,Q; be intersections of nonempty closed convex
sets in RN and RM, respectively, let @ C RN be a nonempty closed convex set, let A be an
M x N real matrix and let p(x) be as in (5) with «; and B; positive scalars. Then

(i) the gradient V p(x) of the proximity function (5) is Lipschitz continuous and
t r
L= ai+p(AT4)) B ®)
i=1 j=1

is a Lipschitz constant for it, where p(AT A) is the spectral radius of AT A, and

(ii) if s is a positive scalar such that 0 < s < 2/L, where L is a Lipschitz constant of V p(x),
then every limit point of any sequence {xk},fio, generated by algorithm 1, is a stationary
point of the function p(x) over 2.

Proof. (i) If F(x) = (1/2)|| Po(x) — x||> where Pg(x) is the projection of x onto some closed
convex set © then, by Aubin and Cellina [2, proposition 1, p 24], VF (x) = x — Pg(x). Using
the chain rule (see, e.g., [31, theorem 23.9]) V. (F(Ax)) = ATVyF(y)|y:AX, where V, and
V, are the gradients with respect to the subscript variable, respectively, we obtain

V((1/2) [ Po(Ax) — Ax|*) = AT(I — Pe)Ax. )

Applying this to p(x) we get
t r
Vpa) =Y ai(I = Pc)x+ Y B;AT(I — Pg)Ax. (10)
i=1 j=1

LetT; ;=1 — Pc, and S; := I — Pp,. Since an orthogonal projector is firmly nonexpansive,
see, e.g., [4, fact 1.5], both 7; and S; are firmly nonexpansive by lemma 10 in the appendix,
thus, nonexpansive. From (10) we have

t r
Vp() = Vp(y) = Y ai(Tix = Try) + Y BjAT(S;Ax — S;Ay). (1)
i=1 j=1
Hence,

t r
IVp(x) = VpWI < Zaillx —yli+ ZﬂjllATll AN llx =yl 12)
i=1 Jj=1

By choosing the two-norm, and observing that |AT ||, - |Al, = [|[AT Al = p(AT A) the

expression (8) follows.
(i1) Algorithm 1 is of the form (A.4)—(A.5) for r; = 1 and s; = s, for all k > 0, with the
proximity function p(x) of (5) playing the role of f(x). Using lemma 12 in the appendix we
get the required result. ]

This theorem does not guarantee convergence of sequences generated by the algorithm
though. Therefore, our second convergence result is as follows.

Theorem 3. If the assumptions of theorem 2 hold then any sequence {xk},fio, generated by
algorithm 1, converges to a solution of the constrained multiple-sets split feasibility problem,
if a solution exists.

Proof. Since p(x) is convex and its gradient has a Lipschitz constant L (theorem 2) Vp is a
v-ism (see definition 8 in the appendix) with

v:l/L:l/ > ai+p(ATA)Y B |- (13)
i=1 j=1
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This follows from Baillon and Haddad [3, corollary 10] and can also be deduced from
[24, lemma 6.7, p 98]. Using Dolidze’s theorem (theorem 13 in the appendix) it follows that
for the gradient in (10) and for y € (0, 2/L), any sequence generated by the iterative step

K = Po(I — yG)x*, (14)

converges to a solution of the variational inequality problem VIP(G, 2) (see problem 7 in
the appendix), if a solution exists. Since y € (0,2/L) the operator B = Pqo(I — yG) is
averaged and, by Dolidze’s theorem, the orbit sequence {B*x}?°,, converges to a fixed point
of B, whenever such points exist. If z is a fixed point of B, then z = P (z — ¥ Gz). Therefore,
for any c € €,

(c—z,z—(z—vG2z)) = 0. (15)
which means that

(c—1z,Gz) 20, (16)
implying that z minimizes p(x) over the set 2. ]

Remark 4. Byme’s CQ-algorithm (3) and its convergence results follow from the above
analysis by taking Q = C, no sets C; at all and a single set Q1 = Q. A further potentially
useful modification that we proposed in [14], but which does not yet have a mathematical
validation, is the replacement of the orthogonal projections onto the sets in each of the spaces
by subgradient projections, see, e.g., Censor and Lent [18] or [19, subsection 5.3]. These are
‘projections’ which do not require the iterative minimization of distance between the point and
the set but are rather given by closed-form analytical expressions. Recently, Yang [36] proved
that replacement of orthogonal projections by subgradient projections is permissible, without
ruining the convergence of the CQ-algorithm, for the two-sets split feasibility problem under
the assumption of consistency.

2.3. A generalized proximity function

The formula VF(x) = x — Pg(x), mentioned above from [2, proposition 1, p 24], has
been recently generalized to cover Bregman functions, distance and projections by Censor,
De Pierro and Zaknoon [15] after an earlier generalization to the entropy case was done by
Butnariu, Censor and Reich [8]. The Bregman directed distance d({; (x) of a point x from a set
® with respect to the Bregman function f is defined [15, equation (44)] by

dx) == D (PS(x), x) = f(PE() = f(x) = (V). PEx) —x) (A7)

where P(g (x) is the Bregman projection of x onto ® with respect to the Bregman function
f and D(y, x) is the Bregman distance between y and x. See, e.g., [19, chapter 2] for
definitions, basic properties and references. Proposition 12 in [15] gives precise conditions
under which the formula

V(d () = V2 F0)(x — P () (18)

holds. In this formula V? f (x) is the Hessian matrix of f at x. The availability of this formula
enables us to calculate the gradient of a generalized proximity function p r(x), with respect to
a Bregman function f, for the multiple-sets split feasibility problem, which will have the form

pr(x) =Y a;Ds(PL(x), x)+ > B;Ds (P} (Ax), Ax). (19)

i=1 j=1
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Using (18) and the chain rule in the proof of theorem 2, we find that

Vps) =Y V2 f)(I = PL)x+Y_ BATV2 f(Ax)(I — P} )Ax. (20)

i=1 j=1

For the special Bregman function f(x) = (1/2)||x||2 (see, e.g., [19, example 2.1.1])
the Hessians are V2 f(x) = V2 f(Ax) = I, Bregman projections are orthogonal projections
and the proximity function (5) is recovered. For the entropy case the Bregman function
is f(x) = —entx, where entx is Shannon’s entropy function which maps the nonnegative
orthant R7 into R according to

entx::—ijlong. (21
j=1

Here ‘log’ denotes the natural logarithms and, by definition, 0log 0 = 0. See [19, example 2.1.2
and lemma 2.13] for a verification that f(x) is a Bregman function with zone

Se:={xeR"|x; >0, forall 1 < j <nj (22)
and that
Dyx,y) =Y x;j(log(x;/y;) — D+ > yj. (23)
j=1 j=1
The Hessian of f
+ 0 0
o * 0

V2f() = V2D xjlogx; | = 24)
j=1 . . .

o o ... 4L
is always a positive semi-definite matrix on S, x S, [15, lemma 22].

In the general case, we make the additional assumption of boundedness of the Hessians,
i.e., that [|[V2f(x)|| < x; for all x €  and that ||V f(Ax)|| < x> for all Ax € A(RQ), for
some constants x; and x,. Then we can show, in a similar manner to what has been done in
the proof of theorem 2, that

IVpr(x) =VprI < Zaillvzf(X)ll +ZﬂjllATI| AL IV FADN ] lIx =yl
i=1

j=1
(25)

so that
t r
L=x1y ai+p(A" A B (26)
i=1 j=1

is a Lipschitz constant for Vp,(x) and a theorem that generalizes theorem 2 to the case
of generalized proximity functions follows. The generalized projection algorithm, for the
multiple-sets split feasibility problem, that uses Bregman projections takes the following
form.
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Algorithm 5.
Initialization: let x° be arbitrary.
Iterative step: for k > 0, given the current iterate x* calculate the next iterate x**' by

K = Po(x* + sT(x5)), (27)

where

1 r
Pk =Y e V2R (PLES =2 + ) ﬂjATVZf(Axk)(Péf (Ax*) — Ax*) (28)
i=1 j=1
and s is a positive scalar such that 0 < s < 2/L and L is the Lipschitz constant of the gradient
Vpr(x) of the generalized proximity function in (19).

3. The multiple-sets split feasibility problem in intensity-modulated radiation therapy

In our companion article [14] the multiple-sets split feasibility problem is applied to the inverse
problem of intensity-modulated radiation therapy. In IMRT, see, e.g., Palta and Mackie [29],
beams of penetrating radiation are directed at the lesion (tumour) from external sources. Based
on understanding of the physics and biology of the situation, there are two principal aspects
of radiation teletherapy that call for computational modelling.

The first aspect is the calculation of dose. The dose is a measure of the actual energy
absorbed per unit mass everywhere in the irradiated tissue. This yields a dose function (also
called dose map or dose distribution) whose values are the dose absorbed as a function of
location inside the irradiated body. This dose calculation is the forward problem of IMRT.

The second aspect is the inverse problem of the first. In addition to the physical and
biological parameters of the irradiated object that were assumed known for the dose calculation,
we assume here that information about the capabilities and specifications of the available
treatment machine (i.e., radiation source) is given. Based on medical diagnosis, knowledge
and experience, the physician prescribes desired upper and lower dose bounds to the treatment
planning case. The output of a solution method for the inverse problem is a radiation intensity
function (also called intensity map). Its values are the radiation intensities at the sources,
as a function of source location, that would result in a dose function which agrees with the
prescribed dose bounds.

To be of practical value, this radiation intensity function must be deliverable on the
available treatment machine. The set of deliverable intensity maps is convex because for any
two deliverable intensity maps (intensity vectors in the fully-discretized model) x' and x? the
(nonnegative) linear combination a;x' + a,x? is also deliverable: simply deliver x! for a time
fraction a; and x? for a time fraction a; (here we disregard the fact that in practice the treatment
time often has to be an integer multiple of a ‘monitor unit’). An important delivery constraint
is nonnegativity, namely, we can never deliver negative intensities. Hence, all deliverable
intensity vectors must belong to the nonnegative orthant. Another physical/technical issue
that needs to be considered in this context is leakage radiation, which always accompanies
any primary radiation. Depending on the technical equipment used to deliver the treatment,
there are also other delivery constraints. An orthogonal projector can easily be found for
simple delivery constraints such as nonnegativity. For other delivery constraints, calculating
projections might involve an inner-loop optimization process of minimizing the distance from
a point to the set in each iteration.

An example of a constraint set C; in the space of radiation intensity vectors is the
smoothness constraint. Smoothness of intensity maps is desirable because it permits more
efficient and robust delivery of IMRT with a multileaf collimator (MLC), see Webb, Convery
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and Evans [34], Alber and Niisslin [1] and Kessen, Grosser and Bortfeld [28]. Smoothness
constraints may be either convex or non-convex. One example of a convex smoothness
constraint is the bandlimited constraint. Its associated orthogonal projector is an ideal low-
pass filter with a given cut-off frequency.

For the sets Q;, in the dose space, we already mentioned the commonly-used minimum
and maximum dose constraints as examples. More recently the concept of equivalent uniform
dose (EUD) was introduced to describe dose distributions with a higher clinical relevance
(see, e.g., [14] for references). It has been used in IMRT optimization by Thieke et al [33]
and by Wu et al [35]. EUD constraints are defined for tumours as the biological equivalent
dose that, if given uniformly, will lead to the same cell-kill in the tumour volume as the actual
non-uniform dose distribution. They could also be defined for normal tissues. Following the
recent work of Thieke et al [33] who derived an approximately orthogonal EUD projector, we
develop, study and test experimentally in [14] a unified theory that enables treatment of both
EUD constraints and physical dose constraints.

The unified new model relies on the multiple-sets split feasibility problem formulation,
developed here, and it accommodates the specific IMRT situation. The constraints are
formulated in two different Euclidean vector spaces. The delivery constraints are formulated as
sets in the Euclidean vector space of radiation intensity vectors (i.e., vectors whose components
are radiation intensities) and the dimensionality of this space equals the total number of
discretized radiation sources.

The basic linear feasibility problem associated with recovering the radiation intensity
vector x is the following.

N
0< 1, <Y dijxj, forall ieS™™, v=1,2,...,T, (29)
j=1
N
0< ) dijx; <uy, forall ie SR, v=1,2,...,0, (30)
j=1
x; =20, forall j=1,2,...,N, 31D

where SPTV are the planning target volumes (PTVs), S9AR are organs at risk (OARs) and /,
and u,, are lower and upper bounds, respectively, on the required or permitted doses to organs.
The system (29)—(31) can be rewritten in the general form

M
0< L <Y dijxj <uy, forall i=1,2,...,1, (32)
j=1

where [; and u; are correctly identified with the [/, and u,,, according to the organ to which the
ith voxel belongs, and by appropriately defining additional lower and upper bounds.

The EUD constraints are formulated in the Euclidean vector space of dose vectors (i.e.,
vectors whose components are the doses in each voxel) and the dimensionality of this space
equals the total number of voxels. The EUD constraints refer to individual organs, thus to
individual subsets of voxels. To simplify notations in the following let us count all PTVs and
OARs sequentially by S, u = 1,2,..., T, T +1,..., T + Q, where the first T structures
S, represent the sets S‘ijrv’ v=1,2,...,T, and the next Q structures §,, represent the sets
SVOAR, v=12,..., Q. Also, let us denote for now by J,, the number of voxels in structure S,,.
With these notations let 2 = (h;);es, , be the J,th dimensional (i.e., K" € R”/*) sub-vector
(of the vector i) whose coordinates are the doses absorbed in the voxels of the uth structure
S,.. Alternatively, we say that A is the uth block of the vector h. For each structure S,,,
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w=12...,T,T+1,...,T+Q, we define areal-valued function E,, ,, : R’ — R, called
the EUD function, by

l/a
Epoh) =700 ()| (33)
ieS,

Each E,, , maps the dose sub-vector of the uth structure S, into a single real number via
(33). The parameter « is a tissue-specific number which is negative for PTVs and positive for
OARs. For o = 1 the EUD function is precisely the mean dose of the organ for which it is
calculated.

For each PTV structure S, u = 1,2, ..., T, the parameter « is chosen negative and the
EUD constraint is described by the set
Q, = {h" e RM|E < Eyo(h™), and o < 0}, (34)
where EL“fE is given, for each PTV structure, by the treatment planner. For each OAR
Sy,m=T+1,T+2,..., T+ Q, the parameter is chosen « > 1 and the EUD constraint can
be described by the set
T, ={h" € R | E,o(h") < EJ%, anda > 1}, (35)

where EJ is given, for each OAR, by the treatment planner. These sets have been shown to
be convex. Thus, our unified model for physical dose and EUD constraints takes the form of a
multiple-sets split feasibility problem where some constraints are formulated in the radiation
intensities space R" and other constraints are formulated in the dose space R™ and the two
spaces are related by a (known) linear transformation D (the dose matrix). The problem then
becomes

findx* € Nj_,C; such thath* = Dx*and h* € N 'O, (36)
where C; represent the hyperslabs of (32) and ©, are generically describing the EUD
constraints of (34) and (35) in the dose space RM. The work presented here allows us
to accommodate such constraints in a valid logical framework for performing an iterative
solution process that iterates in each of the two spaces and correctly passes back and forth
between the spaces during iterations. There are other inversion problems within IMRT and in
other fields of applications that can be cast into a multiple-sets split feasibility problem and
treated by the projection algorithmic approach presented here.

4. Conclusions

We propose the multiple-sets split feasibility problem as a generalization of both the convex
feasibility problem and the two-sets split feasibility problem. This constitutes a mathematically
valid framework for applying projection algorithms to inverse problems where constraints are
imposed on the solutions in the domain of a linear operator as well as in the operator’s range.
We explain, in general terms, the advantages of projection methods and develop a simultaneous
projection algorithm that minimizes a proximity function in order to reach a solution of the
multiple-sets split feasibility problem. We offer an additional extension of the theory via using
Bregman distances and Bregman projections in the proximity function and in the algorithm.

A specific inverse problem in IMRT, where both physical dose constraints, EUD
(nonlinear) constraints and nonnegativity constraints must all be satisfied to obtain a solution,
is our inspiration for the work presented here. Our companion IMRT-oriented paper will be
published elsewhere [14].
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Appendix

In this appendix we give some definitions and mathematical tools that we use. We denote
the inner product in R" by (x, y) and the Euclidean norm by ||x||. Given a nonempty closed
convex set 2 C R" and a point x € R", an orthogonal projection of x onto 2, denoted by
Pq(x), is a point in © which is closest to x, i.e., Po(x) € €2, such that

lx = Po(x)|l = min{|lx — y[l | y € 2}. (A1)

When the set 2 is closed and convex then existence and uniqueness of Pg(x) are guaranteed.
Projections belong to the broader class of nonexpansive operators. A (possibly nonlinear)
operator T on a closed convex set 2 € RY is called nonexpansive if, for all x and y in Q

ITx =Tyl < llx =yl (A2)

If © is a nonempty closed convex subset of RV, then || Po(x) — Po()|| < |lx — |, for
all x,y € RV, see, e.g., Bertsekas [6, proposition 2.2.1, p 88]. Combining nonexpansive
operators is done by composition or by convex combination as the following well-known
result states.

Proposition 6. If Ty, T5, . . ., T,, are nonexpansive operators then the composition T,, - - - T, Ty
is nonexpansive. If w € R™ is a weight vector (i.e., w; > 0and Z;"zl w; = 1) then Z;”zl w; T;
LS nonexpansive.

Given a nonexpansive operator U, the operator T := (1 —«)I +a U, for some « € (0, 1),
where [ is the unit operator, is called averaged or averaging. Such an operator is obviously
also nonexpansive. A condition of the form

IVfx) = VI < Llx—yl, forall x,ye R", (A.3)

for some constant L > 0, is called a Lipschitz continuity condition on V f. The projection
operators P are averaged, as are the operators of the form (I — yV f) if V f is Lipschitz
continuous and the parameter y is appropriately chosen. The product of finitely many averaged
operators is averaged, so the operators Pg, Pg, and Po(I — YV f) are also averaged.

The gradient projection method is a feasible directions method whose iterative step has
the form

=Xk 3 = X0, (A4)
= Po(xf — s V£ (xh), (A.5)

where s; is a positive scalar, called stepsize, and the numbers r, € (0, 1] are relaxation
parameters.
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An operator G on a closed convex set Q2 C RY is monotone (see, e.g., [27, chapter A,
definition 4.1.3]) if for all x and y in @

(Gx — Gy, x —y) > 0. (A.6)

For example, if g(-) is a convex differentiable real-valued function on €2 then the gradient
Vg(-) is a monotone operator.

Problem 7 (the variational inequality problem). Let G be a monotone operator with respect
to a closed convex set Q@ € RN . The variational inequality problem with respect to G and S,
denoted by VIP(G, 2), is to find a point x* € Q for which (Gx*,x — x*) > 0 for all x € Q.

Subject to certain restrictions on G and y, a sequence {xk},fio, defined by the iterative
step

X = Po(I — yG)xk, (A.7)

will converge to a solution of the VIP(G, 2), if a solution exists. To see this observe
[10, theorem 2.1] that if G is an averaging operator on €2 and its fixed points set Fix(G) is
nonempty then the sequence {Gk)c}zo=0 converges to a member of Fix(G), for any x € Q. The
projection operator Pg, is averaging, and for each x € 2 the projection Pq(x) is characterized
by (see, e.g., [27, theorem 3.1.1, p 47])

(y — Pa(x), Pa(x) —x) >0, forall ye Q. (A.8)
Therefore, x* = Po(I — y G)x™ if and only if
(y —x*,x* — (x*—yGx®)) = y{y —x*, Gx™) > 0, forall y e Q. (A.9)

Consequently, the vector x* solves the VIP(G, 2) if and only if x* is a fixed point of the
operator Po(I — yG).

Definition 8 (See, e.g., Golshtein and Tretyakov [24, p 256]). An operator G on a closed
convex set Q@ C RV is called v-inverse strongly monotone (v-ism) if there is a v > 0 such that

(Gx — Gy, x —y) = v|Gx — Gy|?, forall x,y e Q. (A.10)

Definition 9. An operator G on Q C RV is called firmly nonexpansive if it is a 1-ism, i.e., if

(Gx — Gy, x—y) > ||Gx—Gy||2, forall x,y e Q. (A.11)

Lemma 10 [10, lemma 2.3]. An operator F is firmly nonexpansive if and only if its complement
1 — F is firmly nonexpansive. If F is firmly nonexpansive then F is averaged.

It is well-known that every firmly nonexpansive operator is nonexpansive and that a
convex combination of firmly nonexpansive operators is also a firmly nonexpansive operator.

Definition 11 [5, p 177]. Given a function f : R* — R and a set Q@ C R", a vector x* that
satisfies the condition
(Vf(x"), x —x*) >0, forall x €, (A.12)
is referred to as a stationary point of f over Q.
Condition (A.12) is an optimality condition. It is a necessary condition for x* to be a
local minimum of f over €2, and if f is convex over €2 then it is also sufficient for local

minimum at x* (see, e.g., [5, proposition 2.1.2, p 176]). It is known (see, e.g., [7, proposition
3.3(b), p 213]) that x* is a fixed point of the gradient projection mapping with constant stepsize
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Pqo(x — sV f(x)) if and only if it is a stationary point of f over 2. Furthermore, if f is convex
on the set 2 then the latter guarantees that x* minimizes f over 2. Note that if Q = R" or if
x* is an interior point of €2 then (A.12) reduces to the stationarity condition V f (x*) = 0.

Lemma 12 [5, proposition 2.3.2, pp 215-6] (constant stepsize). Let {x*}?° be a sequence,
generated by the gradient projection method (A.4)—(A.5) with r, = 1 and s, = s, for all
k > 0. Assume that for some constant L > 0, the gradient V f is Lipschitz continuous on Q.
If 0 <s < (2/L) then every limit point of {xk},i‘;o is a stationary point of f.

The theorem of Dolidze [22], as presented and proven in Byrne [10, theorem 2.3], can
also be found in [24] and is as follows.

Theorem 13 (Dolidze’s theorem). Let G be v-ism and let y € (0, 2v). Then, for any x € R",
the sequence {(Po(I — )/G))kx},f‘;0 converges to a solution of VIP(G, 2), whenever a solution
exists.
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