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1 Overview

Medical imaging is a broad field and we shall focus here primarily on only two ar-
eas: x-ray transmission tomography (CAT-scans); and emission tomography (PET and
SPECT scans). We use transmission tomography to illustrate the non-iterative filtered-
backprojection (FBP) approach to imaging, and emission tomography, mainly single-
photon emission computed tomography (SPECT), to illustrate iterative methods. The
topics we shall consider in this article are as follows:

[y

e |. transmission tomography and non-iterative filtered backprojection;

[\

e 2. discretization and iteration- ART and MART;

. emission tomography and iterative likelihood maximization;
. the EMML algorithm for emission tomography;

. acceleration through block-iterative methods;

. iterative entropy maximization;

. the split feasibility problem and the CQ algorithm;

o
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. intensity-modulated radiation therapy (IMRT).

2 Transmission Tomography

In transmission tomography, radiation, usually x-ray, is transmitted along many lines
through the object of interest and the initial and final intensities are measured. The
intensity drop associated with a given line indicates the amount of attenuation the ray
encountered as it passed along the line. It is this distribution of attenuating matter



within the patient, described by a function of two or three spatial variables, that is the
object of interest. Unexpected absence of attenuation can indicate a break in a bone, for
example. The data are usually modeled as line integrals of that function. The Radon
transform is the function that associates with each line its line integral.

2.1 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types of matter, such
as soft tissue, bone, ligaments, air, each weakening the beam to a greater or lesser
extent. If the intensity of the beam upon entry is I;,, and I,,; is its lower intensity after
passing through the body, then

Lot = Lipe™ 127, (1)

where f = f(x,y) > 0 is the attenuation function describing the two-dimensional
distribution of matter within the slice of the body being scanned and |’ 1, [ is the integral
of the function f over the line L along which the x-ray beam has passed.

To see why this is the case, imagine the line L parameterized by the variable s
and consider the intensity function I(s) as a function of s. For small As > 0, the
drop in intensity from the start to the end of the interval [s, s + As] is approximately
proportional to the intensity I(s), to the attenuation f(s) and to As, the length of the
interval; that is,

I(s) — I(s+ As) = f(s)I(s)As. )
Dividing by As and letting As approach zero, we get

I'(s) = = f(s)I(s). 3)

The solution to this differential equation is

u=s

I(s) = I(0) exp(— / F(u)du). 4

u=0

From knowledge of I;,, and I,,;, we can determine f I f. If we know f I f for every
line in the z, y-plane we can reconstruct the attenuation function f.

2.2 In Practice

In the real world we know line integrals only approximately and only for finitely many
lines. The goal in x-ray transmission tomography is to estimate the attenuation function
f(z,y) in the slice, from finitely many noisy measurements of the line integrals. We
usually have prior information about the values that f(x,y) can take on. We also
expect to find sharp boundaries separating regions where the function f(z,y) varies
only slightly. Therefore, we need algorithms capable of providing such images. As we
shall see, the line-integral data can be viewed as values of the Fourier transform of the
attenuation function.



2.3 Reconstruction from Line Integrals

We turn now to the underlying problem of reconstructing such functions from line-
integral data. Our goal is to reconstruct the function f(z,y) from line-integral data.
Let 6 be a fixed angle in the interval [0, 7). Form the ¢, s-axis system with the positive
t-axis making the angle § with the positive x-axis, as shown in Figure 1. Each point
(z,y) in the original coordinate system has coordinates (¢, s) in the second system,
where the ¢ and s are given by

t=xcosf + ysinb, 5)

and
s = —xsinf + ycosb. (6)
If we have the new coordinates (¢, s) of a point, the old coordinates are (x,y) given by
r =tcosf — ssinb, @)

and
y =tsinf + scosb. ®)

We can then write the function f as a function of the variables ¢ and s. For each fixed
value of ¢, we compute the integral

/f(m,y)ds:/f(tcos@—ssin@,tsinﬁ—i—scose)ds ©)
L

along the single line L corresponding to the fixed values of § and ¢. We repeat this
process for every value of ¢ and then change the angle 6 and repeat again. In this way
we obtain the integrals of f over every line L in the plane. We denote by 7¢(6,t) the
integral

rf(é’,t):/Lf(x,y)ds. 10)

The function 7 (6, t) is called the Radon transform of f.
For fixed 6 the function 7¢(6,t) is a function of the single real variable ¢; let
R (6,w) be its Fourier transform. Then

Ry (0,w) :/rf(e,t)eiwtdt (11)
= //f(tcos@ — ssinf, tsinf + s cos f)e'“ dsdt (12)
=//f(x,y)ei“(“c’swrysme)dxdy=F(wcosﬁ,wsin9), (13)



where F(wcosf,wsinf) is the two-dimensional Fourier transform of the function
f(z,y), evaluated at the point (w cos 6, w sin #); this relationship is called the Central
Slice Theorem.

For fixed 6, as we change the value of w, we obtain the values of the function F'
along the points of the line making the angle 6 with the horizontal axis. As 6 varies in
[0, ), we get all the values of the function F. Once we have F, we can obtain f using
the formula for the two-dimensional inverse Fourier transform. We conclude that we
are able to determine f from its line integrals.

The Fourier-transform inversion formula for two-dimensional functions tells us that
the function f(x,y) can be obtained as

f(xay) = 47;_2 //F(u, U)e_i(ﬂfu"ryv)dudv_ (]4)

The filtered backprojection methods commonly used in the clinic [28, 29] are derived
from different ways of calculating the double integral in Equation (14).
2.3.1 Ramp Filter then Backproject

Expressing the double integral in polar coordinates (w, ), with w > 0, u = wcos ¥,
and v = wsin #, we get

21 fe%s)
flz,y) = 4%/ / F(u,v)e @) ydwdd,
™ Jo 0

or
1 Y e )
flz,y) = m/o / F(u,v)e” @) 4| dwdd.

Now write
F(u,v) = F(wcosf,wsinf) = R;(0,w),

where Ry (6,w) is the FT with respect to t of 7¢(6, t) so that

/ F(u,v)e” @ty |y dw = / Ry (0,w)|wle” ! dw.

— 00 — 00

The function h (6, t) defined for t = x cos 6 + ysin 6 by
1 [ ,
hy(0,xcosf+ysinf) = 2—/ Ry (0, w)|wle” ™ dw (15)
™ — 00

is the result of a linear filtering of r(6,¢) using a ramp filter with transfer function
G(w) = |w|. Then,

f(z,y) = QL/ hy(0,xcosf + ysind)dd (16)
T Jo

gives f(x,y) as the result of a backprojection operator; for every fixed value of (6,t)
add hy(6,t) to the current value at the point (z,y) for all (x,y) lying on the straight



line determined by # and ¢ by ¢t = z cosf + ysinf. The final value at a fixed point
(x,y) is then the average of all the values hz(6,t) for those (6,t) for which (z,y) is
on the line t = x cosf + ysinf. It is therefore said that f(z,y) can be obtained by
filtered backprojection (FBP) of the line-integral data.

Knowing that f(x,y) is related to the complete set of line integrals by filtered
backprojection suggests that, when only finitely many line integrals are available, a
similar ramp filtering and backprojection can be used to estimate f(z,y); in the clinic
this is the most widely used method for the reconstruction of tomographic images.

2.3.2 Backproject then Ramp Filter

There is a second way to recover f(x,y) using backprojection and filtering, this time
in the reverse order; that is, we backproject the Radon transform and then ramp filter
the resulting function of two variables. We begin again with the relation

2m
flx,y) = ) / (u, v)e @Y ydwdd,
7r

which we write as

27 [e’e)
Flu,v) VuZ + v2ei@utyn) L d,d0
f(z,y) 4772/ . \/u2—+v2 us + vee wdw

27
/ Gu,v)Vu2+wv 20~ H@utYY) 4 dude, an

4772
using
F(u,v)
Vu? +v?
for (u,v) # (0,0). Equation (17) expresses f(z,y) as the result of ramp filtering

g(z,y), the inverse Fourier transform of G(u,v). We show now that g(z,y) is the
backprojection of the function r ¢ (w, t); that is, we show that

G(u,v) =

1 v
g(z,y) = o /Tf(&,xcos0+ysin0)d9.
v

From the central slice theorem we know that g(x, y) can be written as

1

g(x,y) = %/0 hg(8,x cos 6 + ysin §)db,

where

hg(8,xcosb + ysinh) = / R,(0 w)|w|e—w($0059+ysm9)dw

Since
R,(8,w) = G(wcosh,wsinb),



we have

1 L ] .
g(m,y) = m/0 / G(w COSG,wSine)|w|€—1w($COS9+y51n€)dwd9
— 00

1 T oo ) )
= —/ / F(wcos #,wsin f)ew(@cosOysing) 4,49
4m? 0 —0o0
- 1 T OOR 0 )—iu(gccose+ysin9)d do
=13 o) (6, w)e w
1 T .
= — (0, xcosf + ysin0)do,
2 0

as required.

3 The Discrete Model

The estimated attenuation function will ultimately be reduced to a finite array of num-
bers prior to display. This discretization can be performed at the end, or can be made
part of the problem model from the start. In the latter case, the attenuation function is
assumed to be constant over small pixels or voxels; these constants are the object of in-
terest now. The problem has been reduced to solving a large system of linear equations,
possibly subject to non-negativity or other constraints.

If the physical nature of the radiation is described using a statistical model, then the
pixel values can be viewed as parameters to be estimated. The well-known maximum
likelihood parameter estimation method can then be employed to obtain these pixel
values. This involves a large-scale optimization of the likelihood function.

3.1 Discretization

For j = 1,...,J, let x; be the unknown constant value of the attenuation function
within the jth pixel or voxel (see Figure 2). For ¢ = 1,...,1, let L; be the set of
pixel indices j for which the j-th pixel intersects the i-th line segment, let |L;| be the
cardinality of the set L;, and b; > 0 the measured approximation of the line integral of
falong L;. Let A;; = 1 for jin L;, and A;; = 0 otherwise. The problem is then to
solve Ax = b, perhaps with the added constraint that the vector « be non-negative.

3.2 ART and MART

The ART and MART algorithms are due to Gordon, Bender, and Herman [19] (see also
[20]). With ¢ = k(mod I) + 1, the iterative step of the ART algorithm is

1
et =af + 7k (Az")y), (18)

for j in L;, and
et =2k, (19)



if j is notin L;. In each step of ART, we take the error, b; — (Ax’“)l-, associated with the
current ¥ and the i-th equation, and distribute it equally over each of the pixels that
intersects L;. For the ART we do not require that the A;;, b; or the x; be non-negative.

3.2.1 Solving Ax = b with the ART

The ART can be used to solve any system of linear equations Ax = b. The iterative
step of ART is
k 1

7= e e (A" @0)

where a® denotes the ith column of AT. When Az = b has solutions, the sequence
{x*} converges to the solution closest to z¥, as shown in Figure 3. When Az = b has
no solutions, the sequence {z*} does not converge; however, subsequences converge
to distinct vectors forming a limit cycle, as shown in Figure 4.

Suppose, now, that we have A;; > 0, b; > 0 and we know that the desired image
we wish to reconstruct must be nonnegative. We can begin with 2° > 0, but as we
compute the ART steps, we may lose nonnegativity. One way to avoid this loss is to
correct the current x* multiplicatively, rather than additively, as in ART. This leads to
the multiplicative ART (MART).

The MART, in this case, has the iterative step

b
k+1 _ k i
YT ((Aa:k)i)’ @
for those j in L;, and
k+1 _ k
T =y, (22)

otherwise. Therefore, we can write the iterative step as

b; Aij
k+1 _ _k 7
o *‘Tf((Axk)i) . 23)

3.2.2 Solving y = Pz using MART

The MART can be used to solve systems of the form y = Px, where y has positive
entries, P has non-negative entries, and we seek a non-negative solution. The iterative
step of MART is

bl _ k(Y ) K 24
A =2 (o : 24)
where m; = max{P; ;|j = 1,...,J}. If y = Px has non-negative solutions, then
MART converges to such a solution; if not, MART exhibits subsequential convergence
to a limit cycle, similar to ART.



4 Using Prior Knowledge

In the tomography problems, as in many other instances of remote sensing, the image
to be reconstructed represents a function of two or three continuous variables, and we
have finitely many measurements pertaining to this function. Therefore, these prob-
lems are always under-determined and there are infinitely many solutions consistent
with the measured data. How are we to obtain an accurate reconstruction under these
circumstances? A partial answer is that we need to have some idea of what a good
reconstruction should look like, and, if possible, make that prior knowledge part of the
reconstruction method. In this section we illustrate this point, using weighted least-
squares reconstruction.

4.1 An Example

If we take J, the number of pixels, to be larger than I, the number of measurements,
then we have an under-determined problem, with multiple solutions. In such cases,
prior knowledge can be used effectively to produce a reasonable reconstruction. Figure
5 illustrates this point.

The original image on the upper right of Figure 5 is a discrete rectangular array
of intensity values simulating a slice of a head. The data was obtained by taking the
two-dimensional discrete Fourier transform of the original image, and then discard-
ing, that is, setting to zero, all these spatial frequency values, except for those in a
smaller rectangular region around the origin. The problem then is under-determined.
A minimum-norm solution would seem to be a reasonable reconstruction method.

4.2 The Minimum-Norm Reconstruction

The minimum-norm solution is shown on the lower right. It is calculated simply by per-
forming an inverse discrete Fourier transform on the array of modified discrete Fourier
transform values. The original image has relatively large values where the skull is lo-
cated, but the minimum-norm reconstruction does not want such high values; the norm
involves the sum of squares of intensities, and high values contribute disproportionately
to the norm. Consequently, the minimum-norm reconstruction chooses instead to con-
form to the measured data by spreading what should be the skull intensities throughout
the interior of the skull. The minimum-norm reconstruction does tell us something
about the original; it tells us about the existence of the skull itself, which, of course,
is indeed a prominent feature of the original. However, in all likelihood, we would
already know about the skull; it would be the interior that we want to know about.

4.3 Using a Prior Estimate as a Weight

Using our knowledge of the presence of a skull, which we might have obtained from
the minimum-norm reconstruction itself, we construct the prior estimate shown in the
upper left. Now we use the same data as before, and calculate a minimum-weighted-
norm reconstruction, using as the weight vector the reciprocals of the values of the
prior image. This minimum-weighted-norm reconstruction is shown on the lower left;



it is clearly almost the same as the original image. The calculation of the minimum-
weighted norm solution can be done iteratively using the ART algorithm [33].

4.4 Why it Works

When we weight the skull area with the inverse of the prior image, we allow the recon-
struction to place higher values there without having much of an affect on the overall
weighted norm. In addition, the reciprocal weighting in the interior makes spreading
intensity into that region costly, so the interior remains relatively clear, allowing us to
see what is really present there.

When we try to reconstruct an image from limited data, it is easy to assume that
the information we seek has been lost, particularly when a reasonable reconstruction
method fails to reveal what we want to know. As this example, and many others, show,
the information we seek is often still in the data, but needs to be brought out in a more
subtle way.

4.5 The Burrito Test

Years ago, [ went with a colleague to lunch at a Mexican restaurant. He had never been
to one before and was not a fan of “exotic” cuisine, in general. I suggested he order
a combination plate, so he might find something he liked. When he bit into his first
burrito, he looked at me and asked “How do they know when they have made a bad
one?” This is a question we should remember to ask when we reconstruct an image
from limited data; this is the burrito test. It is usually possible to fit limited data to
almost any finite-parameter model, if there are enough parameters. Mere consistency
with the measured data will not be enough to give us a good reconstruction, in general.
We should have some way to find out if we have made a bad one.

In the case of the minimum-weighted-norm reconstruction above, an obvious ques-
tion is how our choice of prior affects the final answer. Although there is no foolproof
way to know when the prior is good and when it is bad, there is something we can
check. If the prior is inappropriate, the reconstruction will be consistent with the data
and have the minimum weighted norm among all images consistent with the data, but
that minimum weighted norm can still be very large. The size of this minimum value
is an indicator of how suitable the prior estimate is. For example, if we make the
skull a bit too large, the minimum weighted norm itself will probably not be large, but
if we make the skull too small, this norm will probably be much larger. This is an
ill-conditioning effect (see [33]).

4.6 The Phase Problem

It is often the case that the prior weighting function is appropriate when the data is
noise-free, but not otherwise. For safety, one should never take a prior that is precisely
zero outside some small region, but one that takes on a small but positive value there.
In [4], this sensitivity to errors in the data was used to solve the phase problem. In that
problem one has only finitely many values of the magnitude of the complex-valued



function; the phase is lost. When grossly incorrect phases are assumed, the minimum-
norm solution consistent with the support and this data will have an unrealistically large
norm. Only when we have succeeded in approximating the true phases will the norm
of the reconstruction be reasonable. By monitoring the norm of the reconstructions, we
are led to an appropriate choice of phases and to an acceptable reconstruction.

S Emission Tomography

In emission tomography [36], a carefully designed chemical tagged with a radioisotope
is introduced into the body of the patient. The chemical is selected to accumulate in a
specific organ or region of the body, such as the brain, or the heart wall. On the basis
of emissions from the radioisotope that are detected outside the body, the distribution
of the chemical within the body is estimated. Unexpected absence of the radionuclide
from a given region, or a higher than expected concentration, can indicate a medical
problem.

5.1 SPECT and PET

There are two basic types of emission tomography: single photon emission computed
tomography (SPECT); and positron emission tomography (PET). In SPECT the ra-
dioisotope emits a single photon, while in PET a positron is emitted, which shortly
meets an electron and the resulting annihilation produces two gamma-ray photons trav-
eling in essentially opposite directions.

In both SPECT and PET the data can be approximated as integrals along lines
through the body and image reconstruction performed using FBP. However, more so-
phisticated models that more accurately describe the physics of the situation are pre-
ferred. The photons that travel through the body toward the external detectors are
sometimes absorbed by the body itself and not detected. The probability of being de-
tected depends on the attenuation presented by the body. This attenuation, while not
the object of interest now, is an important part of the physical model and needs to be
included in the reconstruction method. The randomness inherent in emission can also
be included, leading once again to probabilistic models and a maximum likelihood
approach to reconstruction.

Although in both transmission and emission medical tomography the dosage to
the patient is restricted, thereby decreasing the signal-to-noise ratio, the amount of
data is still considerable and the need to produce the reconstructed image in a few
minutes paramount. Much work has gone into methods for accelerating the iterative
reconstruction algorithms.

5.2 The Poisson Model in SPECT
The discrete model for emission tomography is the following:

e forj = 1,...,J, z; > 0is the unknown expected number of photons emitted
from the jth pixel during the scan;

10



e fori=1,...,1, y; > 01is the number of photons detected at the ith detector;

e P;; > 0is the probability that a photon emitted at j will be detected at 4, which
we will assume is known,;

® 5 = Z;.Tzl P;; is the sensitivity to j, that is, the probability that a photon emitted
at 7 will be detected;

e the y; are realizations of independent Poisson random variables with expected
J
values (Pzx); = 35, Pija;.

5.3 Likelihood Maximization in SPECT

We view the unknown values z; > 0 as parameters to be estimated. To within a
constant, the log of the likelihood function is then

I
LL(z) = yilog(Pz); — (Px);. (25)
=1

The EMML algorithm ([32, 35, 27]) for maximizing LL(x) over 2 > 0 has the iterative
step

I

oyt =afs Y Py (ﬁ) o
i=1

5.4 Problems with the EMML Algorithm

Although the EMML algorithm allows for more accurate description of the physical sit-
uation, there are several disadvantages that must be removed before the EM algorithm
can be a useful clinical tool:

e Calculating (Pz*); = Zj:l Pyjak, for each i, at each step of the iteration is
expensive, since I and J can be in the tens of thousands;

e The sequence {x*} usually converges quite slowly to the maximizer of LL(x);

e The maximum-likelihood (ML) solution will be a non-negative solution of y =
Pz, in the consistent case, that is, if such solutions exist, so may overfit noisy
data;

e The ML solution may not be a good choice, in the inconsistent case, either.

5.5 Controlling Noise

It can be shown that, when the system y = Pz has no non-negative solutions, the
maximum-likelihood solution will have at most I — 1 non-zero pixel values, so, if
J is greater than I, the ML solution may be useless. To control noise and obtain a
useful image, one usually uses regularization, which means maximizing the sum of
the likelihood function and another penalty function that is larger when the image is
smooth [18, 26, 5].
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5.6 Acceleration

In the early 1990’s it was noticed that if, when performing one step of the EM iteration,
one summed only over some of the detector indices, instead of over all of them, one
could usually obtain a useful reconstruction more quickly [21, 22, 23].

5.6.1 The OSEM

Suppose that we take a partition By UByU---UBy of theset {i = 1,..., I}, let s, ; =
D ic 5, Pij> and at the kth step of the iteration, we use only B,,, forn = k(mod N)+1,
and compute

k+1 _ k-1 . Yi
;T =S, P (7(ka)) 27)
i€B, ¢

This is the ordered-subset EM (OSEM) algorithm [22, 23]. Although its mathematical
foundations are a bit shaky, it has proven to be a useful clinical tool.

5.6.2 Limit Cycles

Without strong under-relaxation [17, 3], algorithms such as ART, MART and the
OSEM that use only some of the data at each step of the iteration cannot converge
to a single vector in the inconsistent case. For MART and OSEM this means there is
no non-negative solution of y = Pz, while for ART it simply means Ax = b has no
solution. Instead, these algorithms exhibit subsequential convergence to a limit cycle
of (usually) N distinct vectors. Proving that a limit cycle exists seems to be a difficult
problem; existence has been shown for ART [34], but not for these other methods. One
problem with OSEM is that it sometimes produces a limit cycle, even when there is
a non-negative solution of y = Px. This makes the OSEM images noisier than they
need to be, when the data is noisy.

5.6.3 Rescaled Block-Iterative Reconstruction

The rescaled block-iterative EMML (RBI-EMML) [6, 9] is similar to the OSEM, but
converges to a non-negative solution of y = Pz, whenever such solutions exist, for
every starting vector z° > 0 and every choice of blocks. Let 2¥ be an arbitrary positive
vector. For k = 0,1, ..., let n = k(mod N) + 1. Then let

k -1 - 1 - Yi
.%‘j+1 = (1 - mnlsj 15n¢j)x? + mnlsj 1:6? Z (Pij (ka:).)’ (28)
i€B, !

with
my, = max{smjsj_1 li=1,..,J}

The RBI-EMML is also related to the RAMLA method of [3].

12



6 Entropy Maximization

When there are multiple non-negative solutions of y = Pz, it makes sense to select the
solution closest to a prior estimate of x, according to some measure of distance. The
cross-entropy or Kullback-Leibler distance [24] is frequently used. As we shall see,
this distance is also closely related to the EMML algorithm.

6.1 The Kullback-Leibler Distance

The Kullback-Leibler distance between positive numbers « and [ is

KL(a, ) = alog%

We also define K L(a,0) = +oo and KL(0,3) = (. Extending to non-negative
vectors a = (ay,...,ay)T and b = (b, ...,bs)T, we have

J J
:ZK (aj,b; Z(ajlog jfaj>.
j=1 j

Jj=1

+ 8 —a.

Witha, =37

i—1a;,and by > 0, we have

KL(a,b) = KL(ay,by) + K L(a, Z—*b). (29)
+

6.2 The EMML and Simultaneous MART
The EMML algorithm has the iterative step

o = ok —12 p”( ka ) (30)

It is interesting to compare this iteration with that of the simultaneous MART (SMART)[ 16,
31, 141

£ = g exp[ ZP” log( =31 )] G1)

We have the following result [32, 27, 35, 5]:

Theorem 1. The SMART sequence {x*} converges to the non-negative minimizer of
K L(Px,y) for which K L(z,2°) is minimized, for any choice of z° > 0. The EMML
sequence {x*} converges to a non-negative minimizer of K L(y, Px), for any choice
of 1% > 0.

It is an open question to which minimizer the EMML sequence converges. In the
consistent case, the limit is a non-negative solution of y = Pz. If there are multiple
non-negative solutions of y = Pz, the limit will depend on 2% > 0, but we do not

know how it depends on z°.

13



6.3 SMART and Shannon Entropy

When y = Px has non-negative solutions, the SMART and MART algorithms produce
sequences that converge to the unique non-negative solution that minimizes K L(z, z"),
for any 2% > 0. If 2° is the vector whose entries are all one, then minimizing
K L(z,2°) is equivalent to maximizing the Shannon entropy

J
SE(x) = Z:cj(log xj) — ;.
j=1
So the SMART and MART can be used to maximize entropy.

7 The Split Feasibility Problem and the CQ Algorithm

Finally, we consider the split feasibility problem (SFP), the iterative CQ algorithm for
solving the SFP [7, 8], and the application of the CQ algorithm to radiation therapy
[12, 13].

7.1 The Split Feasibility Problem

Let A be areal I by .J matrix, and C and @) non-empty closed, convex sets in R and
R, respectively. The split feasibility problem (SFP) is to find a vector z in C, such
that Az is in Q. When the SFP has no solution, it is sensible to seek a minimizer of the
function

1
f(x) = 5| [PoAw — Au[3, (32)
over z in C; P denotes the orthogonal projection onto Q).

7.2 The CQ Algorithm

For arbitrary x° and k = 0, 1, ..., and 7 in the interval (0,2/p(AT A)), where p(AT A)
denotes the largest eigenvalue of the matrix A7 A, let

2"t = Po(ab — yAT (I — Pg) Az®). (33)
This is the CQ algorithm [7, 8]. The CQ algorithm converges to a solution of the SFP,

whenever solutions exist. When there are no solutions of the SFP, the CQ algorithm
converges to a minimizer, over x in C, of the function

1
f@) = 5lIPoAx — Au[3, (34)

whenever such minimizers exist.
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7.3 Estimating p(AT A)

The CQ algorithm employs the relaxation parameter - in the interval (0,2/p(AT A)),
where p(AT A) is the largest eigenvalue of the matrix AT A. Choosing the best relax-
ation parameter in any algorithm is a nontrivial procedure. Generally speaking, we
want to select y near to 1/p(AT A). A simple estimate for p(AT A) that is particularly
useful when A is sparse is the following: if A is normalized so that each row has length
one, then the spectral radius of A” A does not exceed the maximum number of nonzero
elements in any column of A. A similar upper bound on p(A” A) was obtained for
non-normalized, e-sparse A [7].

7.4 Intensity-Modulated Radiation Therapy

Recently, Censor, Elfving, Kopf and Bortfeld [12] have extended the CQ algorithm to
the case in which the sets C' and @) are the intersections of finitely many other convex
sets. The new algorithm employs the orthogonal projections onto these other convex
sets.

In [13] Censor, Bortfeld, Martin, and Trofimov use this new algorithm to determine
intensity-modulation protocols for radiation therapy. The issue here is to determine the
intensities of the radiation sources external to the patient, subject to constraints on how
spatially varying the machinery permits these intensities to be, on the maximum dosage
directed to healthy areas, and on the minimum dosage directly to the targets.

8 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C = R/ and QQ = {b} then solving
the SFP amounts to solving the linear system of equations Az = b; if C' is a proper
subset of R7, such as the nonnegative cone, then we seek solutions of Az = b that
lie within C, if there are any. Generally, we cannot solve the SFP in closed form and
iterative methods are needed.

8.1 Landweber and Projected Landweber

A number of well known iterative algorithms, such as the Landweber [25] and projected
Landweber methods (see [2]), are particular cases of the CQ algorithm.

8.1.1 The Landweber Algorithm

With 20 arbitrary and k = 0,1, ..., the Landweber algorithm for finding a (possibly
least-squares) solution of Az = b has the iterative step

af =gk AT (b — Awk). 335)
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8.1.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, z¥ arbitrary, and k¥ = 0,1, ..., the pro-
jected Landweber algorithm for finding a (possibly constrained least-squares) solution
of Az = bin C has the iterative step

2F T = Po(aF + v AT (b — Az)). (36)

8.1.3 The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous algebraic reconstruction
technique (SART) of Anderson and Kak [1] for solving Ax = b, for nonnegative matrix
A . Let Abe an M by N matrix with nonnegative entries. Let A,,,+ > 0 be the sum
of the entries in the mth row of A and A, > 0 be the sum of the entries in the nth
column of A. Consider the (possibly inconsistent) system Az = b. For x° arbitrary
and kK =0,1,..., let

1 M
k+1 _ .k - .
x x, + Zm:l Amn (bm (AT )7TL)/A77L+ . (37)

n - n A
+n

This is the SART algorithm. With a change of variables, the SART becomes a particular
case of the Landweber iteration.
We make the following changes of variables:

an = Amn/(Am—i-)l/z (A+7L)1/27 (38)
Zn = T (Apn)'/?, (39)

and
Cm = by /(A i)Y (40)

Then the SART iterative step can be written as

A+ 2k | BT(c— B2b), @n
This is a particular case of the Landweber algorithm, with v = 1. The convergence of
SART follows, once we know that the largest eigenvalue of BT B is less than two; in
fact, it is one [7].

9 Proximal Minimization

The CQ algorithm is a particular case of an iterative algorithm based on Moreau’s
notion of proximity operator.
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9.1 Proximity Operators

The Moreau envelope of a convex function f is the function

my(z) = mf{ () + 5l — 2|3}, @2)

which is also the infimal convolution of the functions f(z) and §||z||3. It can be shown
that the infimum is uniquely attained at the point denoted x = prox ;z (see Rockafellar
[30]). The function m(z) is differentiable and Vimy(z) = z — prox;z. The point
T = prox;z is characterized by the property z — z € Jf (z). Consequently, = is a
global minimizer of f if and only if z = prox .

The conjugate function associated with f is the function f*(z*) = sup, ({«*, z) —
f(z)). In similar fashion, we can define m -z and prox;.z. Both my and m - are
convex and differentiable.

9.2 Moreau’s Theorem

Theorem 2. Let f be a closed, proper, convex function with conjugate f*. Then
Lo
myz+mp-z = Szl
ProxX 2 + ProX;«2z = z;
prox .z € 0f (prox;z);
prox;.z = Vmy(z), and
prox;z = Vmy«(z). (43)

9.2.1 An Example

For example, consider the indicator function of the convex set C, f(z) = tc(x) that is
zero if x is in the closed convex set C' and 400 otherwise. Then mz is the minimum
of 3|lz — z||3 over all z in C, and prox;z = Pcz, the orthogonal projection of z
onto the set C'. The operators prox; : z — proxyz are proximity operators. These
operators generalize the projections onto convex sets, and, like those operators, are
firmly non-expansive (see Combettes and Wajs [15]).

The support function of the convex set C' is o¢(x) = sup,co(z,u). Itis easy to
see that oo = 1. For f*(2) = o¢ (%), we can find m s+ z using Moreau’s Theorem:

prox, z =z — prox, z = z — Pgz. 44)

9.3 Using Moreau’s Theorem

The minimizers of m; and the minimizers of f are the same. From Moreau’s Theorem
we know that

Vmy(z) = prox;.z = z — prox;z, (45)
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so Vmyz = 0 is equivalent to z = proxz.

Because the minimizers of m are also minimizers of f, we can find global mini-
mizers of f using gradient descent iterative methods on m .

Let 20 be arbitrary. Then let

k+1

" = 2% — 3 Vg (2"). (46)

We know from Moreau’s Theorem that

Vmygz = proxs.z = z — prox;z, 7
so that Equation (46) can be written as
oFH =gk oy (aF — proxka)
= (1 —y)zk + ’ykproxka. (48)

It follows from the definition of 0 f(z**1) that f(x*) > f(z**!) for the iteration in
Equation (48).

10 The CQ Algorithm as Forward-Backward Splitting

In [15] Combettes and Wajs consider the problem of minimizing the function F'(z) =
f1(x)+ fo(x), where fo(x) is differentiable and its gradient is A-Lipschitz continuous.
The function F' is minimized at the point x if and only if

0 € OF(z) = df1(x) + Vfa(x), (49)
so we have
=V f2(x) € v0f1(), (50)
for any v > 0. Therefore
=V fa(z) -z € y0fi(x). (D
From Equation (51) we conclude that
z = prox, , (z — ¥V fa(x)). (52)

This suggests an algorithm, called the forward-backward splitting for minimizing the
function F'(z).

10.1 Forward-Backward Splitting
Beginning with an arbitrary 2°, and having calculated z*, we let
= prox, j, (" = 1V fa(a)), (53)

with «y chosen to lie in the interval (0,2/)). The operator I — vV f is then averaged.
Since the operator prox, ¢, is firmly non-expansive, the sequence {x*} converges to a
minimizer of the function F'(x), whenever minimizers exist. It is also possible to allow
v to vary with the k.
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10.2 The CQ Algorithm as Forward-Backward Splitting

Recall that the split-feasibility problem (SFP) is to find « in C with Az in Q). The CQ
algorithm minimizes the function

f(z) = ||PoAx — Ax|[3, (54)

over x € C, whenever such minimizers exist, and so solves the SFP whenever it has
solutions. The CQ algorithm therefore minimizes the function

F(x) = wo(x) + f(z), (55)

where (¢ is the indicator function of the set C. With f1(z) = tc(x) and fa(x) =
f(z), the function F'(z) has the form considered by Combettes and Wajs, and the CQ
algorithm becomes a special case of their forward-backward splitting method.
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Figure 1: The Radon transform of f at (¢, 0) is the line integral of f along line L.
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Figure 2: The Discrete Model.
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Figure 3: The ART in the consistent case.
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Figure 4: The ART in the inconsistent case.
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Figure 5: Minimum-norm reconstruction, with and without prior knowledge.
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