
Matrix Games and Optimization

The theory of two-person games is largely the work of John von Neumann, and was

developed somewhat later by von Neumann and Morgenstern [3] as a tool for economic

analysis. Two-person zero-sum games provide a nice example of optimization and an

opportunity to apply some of the linear algebra.

A two-person game is called a constant-sum game if the total payout is the same,

each time the game is played. In such cases, we can subtract half the total payout

from the payout to each player and record only the difference. Then the total payout

appears to be zero, and such games are called zero-sum games. We can then suppose

that whatever one player wins is paid by the other player. Except for the final section,

we shall consider only two-person, zero-sum games.

1 Deterministic Solutions

In this two-person game, the first player, call him P1, selects a row of the I by J

real matrix A, say i, and the second player selects a column of A, say j. The second

player, call her P2, pays the first player Aij. If some Aij < 0, then this means that the

first player pays the second. Since whatever the first player wins, the second loses,

and vice versa, we need only one matrix to summarize the situation.

1.1 Optimal Pure Strategies

In our first example, the matrix is

A =
[

7 8 4
4 7 2

]

. (1.1)

The first player notes that by selecting row i = 1, he will get at least 4, regardless

of which column the second player plays. The second player notes that, by playing

column j = 3, she will pay the first player no more than 4, regardless of which row

the first player plays. If the first player then begins to play i = 1 repeatedly, and the

second player notices this consistency, she will still have no motivation to play any

column except j = 3, because the other pay-outs are both worse than 4. Similarly,

so long as the second player is playing j = 3 repeatedly, the first player has no

motivation to play anything other than i = 1, since he will be paid less if he switches.

Therefore, both players adopt a pure strategy of i = 1 and j = 3. This game is said to

be deterministic and the entry A1,3 = 4 is a saddle-point because it is the maximum

of its column and the minimum of its row. We then have

max
i

min
j

Aij = 4 = min
j

max
i

Aij.

Not all such two-person games have saddle-points, however.



1.2 Optimal Randomized Strategies

Consider now the two-person game with pay-off matrix

A =
[

4 1
2 3

]

. (1.2)

The first player notes that by selecting row i = 2, he will get at least 2, regardless

of which column the second player plays. The second player notes that, by playing

column j = 2, she will pay the first player no more than 3, regardless of which row

the first player plays. If both begin by playing in this conservative manner, the first

player will play i = 2 and the second player will play j = 2.

If the first player plays i = 2 repeatedly, and the second player notices this consis-

tency, she will be tempted to switch to playing column j = 1, thereby losing only 2,

instead of 3. If she makes the switch and the first player notices, he will be motivated

to switch his play to row i = 1, to get a pay-off of 4, instead of 2. The second player

will then soon switch to playing j = 2 again, hoping that the first player sticks with

i = 1. But the first player is not stupid, and quickly returns to playing i = 2. There

is no saddle-point in this game.

For such games, it makes sense for both players to select their play at random,

with the first player playing i = 1 with probability p and i = 2 with probability

1 − p, and the second player playing column j = 1 with probability q and j = 2 with

probability 1 − q. These are called randomized strategies.

When the first player plays i = 1, he expects to get 4q + (1 − q) = 3q + 1, and

when he plays i = 2 he expects to get 2q +3(1− q) = 3− q. Since he plays i = 1 with

probability p, he expects to get

p(3q + 1) + (1 − p)(3 − q) = 4pq − 2p − q + 3 = (4p − 1)q + 3 − 2p.

He notices that if he selects p = 1

4
, then he expects to get 5

2
, regardless of what the

second player does. If he plays something other than p = 1

4
, his expected winnings

will depend on what the second player does. If he selects a value of p less than 1

4
, and

q = 1 is selected, then he wins 2p + 2, but this is less than 5

2
. If he selects p > 1

4
and

q = 0 is selected, then he wins 3 − 2p, which again is less than 5

2
. The maximum of

these minimum pay-offs occurs when p = 1

4
and the max-min win is 5

2
.

Similarly, the second player, noticing that

p(3q + 1) + (1 − p)(3 − q) = (4q − 2)p + 3 − q,

sees that she will pay out 5

2
if she takes q = 1

2
. If she selects a value of q less than 1

2
,

and p = 0 is selected, then she pays out 3 − q, which is more than 5

2
. If, on the other

hand, she selects a value of q that is greater than 1

2
, and p = 1 is selected, then she



will pay out 3q +1, which again is greater than 5

2
. The only way she can be certain to

pay out no more than 5

2
is to select q = 1

2
. The minimum of these maximum pay-outs

occurs when she chooses q = 1

2
, and the min-max pay-out is 5

2
.

This leads us to the question of whether or not there will always be probability

vectors for the players that will lead to the equality of the max-min win and the

min-max pay-out.

Exercise 1.1 Suppose that there are two strains of flu virus and two types of vaccine.

The first vaccine, call it V1, is 0.85 effective against the first strain (F1) and 0.70

against the second (F2), while the second vaccine (V2) is 0.60 effective against F1 and

0.90 effective against F2. The public health service is the first player, P1, and nature

is the second player, P2. The service has to decide what percentage of the vaccines

manufactured and made available to the public are of type V1 and what percentage

are of type V2, while not knowing what percentage of the flu virus is F1 and what

percentage is F2. Set this up as a matrix game and determine how the public health

service should proceed.

We make a notational change at this point. From now on the letters p and q will

denote probability column vectors, and not individual probabilities, as in this section.

1.3 The Min-Max Theorem

Let A be an I by J pay-off matrix. Let

P = {p = (p1, ..., pI) | pi ≥ 0,
I

∑

i=1

pi = 1},

Q = {q = (q1, ..., qJ) | qj ≥ 0,
J

∑

j=1

qj = 1},

and

R = A(Q) = {Aq |q ∈ Q}.

The first player selects a vector p in P and the second selects a vector q in Q. The

expected pay-off to the first player is

E = 〈p, Aq〉 = pT Aq.

Let

m0 = max
r∈R

min
p∈P

〈p, r〉,

and

m0 = min
p∈P

max
r∈R

〈p, r〉.



Clearly, we have

min
p∈P

〈p, r〉 ≤ 〈p, r〉 ≤ max
r∈R

〈p, r〉,

for all p ∈ P and r ∈ R. It follows that m0 ≤ m0. The Min-Max Theorem, also

known as the Fundamental Theorem of Game Theory, asserts that m0 = m0.

Theorem 1.1 The Fundamental Theorem of Game Theory Let A be an arbi-

trary real I by J matrix. Then there are vectors p̂ in P and q̂ in Q such that

pT Aq̂ ≤ p̂T Aq̂ ≤ p̂T Aq, (1.3)

for all p in P and q in Q.

The quantity ω = p̂T Aq̂ is called the value of the game. Notice that if P1 knows

that P2 plays according to the mixed-strategy vector q̂, P1 could examine the entries

(Aq̂)i, which are his expected pay-offs should he play strategy i, and select the one

for which this expected pay-off is largest. It follows from the inequalities in (1.3) that

(Aq̂)i ≤ ω

for all i, and

(Aq̂)i = ω

for all i for which p̂i > 0. However, if P2 notices what P1 is doing, she can abandon

q̂ to her advantage.

2 Non-Constant-Sum Games

In this section we consider non-constant-sum games. These are more complicated and

the mathematical results more difficult to obtain than in the constant-sum games.

Such non-constant-sum games can be used to model situations in which the players

may both gain by cooperation, or, when speaking of economic actors, by collusion [1].

We begin with the most famous example of a non-constant-sum game, the Prisoners’

Dilemma.

2.1 The Prisoners’ Dilemma

Imagine that you and your partner are arrested for robbing a bank and both of you

are guilty. The two of you are held in separate rooms and given the following options

by the district attorney: (1) if you confess, but your partner does not, you go free,

while he gets three years in jail; (2) if he confesses, but you do not, he goes free

and you get the three years; (3) if both of you confess, you each get two years; (4)



if neither of you confesses, each of you gets one year in jail. Let us call you player

number one, and your partner player number two. Let strategy one be to remain

silent, and strategy two be to confess.

Your pay-off matrix is

A =
[

−1 −3
0 −2

]

, (2.4)

so that, for example, if you remain silent, while your partner confesses, your pay-off

is A1,2 = −3, where the negative sign is used because jail time is undesirable. From

your perspective, the game has a deterministic solution; you should confess, assuring

yourself of no more than two years in jail. Your partner views the situation the

same way and also should confess. However, when the game is viewed, not from one

individual’s perspective, but from the perspective of the pair of you, we see that by

sticking together you each get one year in jail, instead of each of you getting two

years; if you cooperate, you both do better.

2.2 Two Pay-Off Matrices Needed

In the case of non-constant-sum games, one pay-off matrix is not enough to capture

the full picture. Consider the following example of a non-constant-sum game. Let

the matrix

A =
[

5 4
3 6

]

(2.5)

be the pay-off matrix for Player One (P1), and

B =
[

5 6
7 2

]

(2.6)

be the pay-off matrix for Player Two (P2); that is, A1,2 = 4 and B2,1 = 7 means that

if P1 plays the first strategy and P2 plays the second strategy, then P1 gains four and

P2 gains seven. Notice that the total pay-off for each play of the game is not constant,

so we require two matrices, not one.

Player One, considering only the pay-off matrix A, discovers that the best strategy

is a randomized strategy, with the first strategy played three quarters of the time.

Then P1 has expected gain of 9

2
. Similarly, Player Two, applying the same analysis

to his pay-off matrix, B, discovers that he should also play a randomized strategy,

playing the first strategy five sixths of the time; he then has an expected gain of 16

3
.

However, if P1 switches and plays the first strategy all the time, while P2 continues

with his randomized strategy, P1 expects to gain 29

6
> 27

6
, while the expected gain of

P2 is unchanged. This is very different from what happens in the case of a constant-

sum game; there, the sum of the expected gains is constant, and equals zero for a



zero-sum game, so P1 would not be able to increase his expected gain, if P2 plays his

optimal randomized strategy.

2.3 An Example: Illegal Drugs in Sports

In a recent article in Scientific American [4], Michael Shermer uses the model of a non-

constant-sum game to analyze the problem of doping, or illegal drug use, in sports,

and to suggest a solution. He is a former competitive cyclist and his specific example

comes from the Tour de France. He is the first player, and his opponent the second

player. The choices are to cheat by taking illegal drugs or to stay within the rules.

The assumption he makes is that a cyclist who sticks to the rules will become less

competitive and will be dropped from his team.

Currently, the likelihood of getting caught is low, and the penalty for cheating is

not too high, so, as he shows, the rational choice is for everyone to cheat, as well as

for every cheater to lie. He proposes changing the pay-off matrices by increasing the

likelihood of being caught, as well as the penalty for cheating, so as to make sticking

to the rules the rational choice.

3 Learning the Game

In our earlier discussion we saw that the matrix game involving the pay-off matrix

A =
[

4 1
2 3

]

(3.7)

is not deterministic. The best thing the players can do is to select their play at ran-

dom, with the first player playing i = 1 with probability p and i = 2 with probability

1 − p, and the second player playing column j = 1 with probability q and j = 2 with

probability 1 − q. If the first player, call him P1, selects p = 1

4
, then he expects to

get 5

2
, regardless of what the second player, call her P2, does; otherwise his fortunes

depend on what P2 does. His optimal mixed-strategy (column) vector is [1/4, 3/4]T .

Similarly, the second player notices that the only way she can be certain to pay out

no more than 5

2
is to select q = 1

2
. The minimum of these maximum pay-outs occurs

when she chooses q = 1

2
, and the min-max pay-out is 5

2
.

Because the pay-off matrix is two-by-two, we are able to determine easily the opti-

mal mixed-strategy vectors for each player. When the pay-off matrix is larger, finding

the optimal mixed-strategy vectors is not a simple matter. As we have seen, one ap-

proach is to obtain these vectors by solving a related linear-programming problem.

In this section we consider other approaches to finding the optimal mixed-strategy

vectors.



3.1 An Iterative Approach

In [2] Gale presents an iterative approach to learning how best to play a matrix game.

The assumptions are that the game is to be played repeatedly and that the two players

adjust their play as they go along, based on the earlier plays of their opponent.

Suppose, for the moment, that P1 knows that P2 is playing the randomized strat-

egy q, where, as earlier, we denote by p and q probability column vectors. The entry

(Aq)i of the column vector Aq is the expected pay-off to P1 if he plays strategy i. It

makes sense for P1 then to find the index i for which this expected pay-off is largest

and to play that strategy every time. Of course, if P2 notices what P1 is doing, she

will abandon q to her advantage.

After the game has been played n times, the players can examine the previous

plays and make estimates of what the opponent is doing. Suppose that P1 has played

strategy i ni times, where ni ≥ 0 and n1 + n2 + ... + nI = n. Denote by pn the

probability column vector whose ith entry is ni/n. Similarly, calculate qn. These

two probability vectors summarize the tendencies of the two players over the first n

plays. It seems reasonable that an attempt to learn the game would involve these

probability vectors.

For example, P1 could see which entry of qn is the largest, assume that P2 is most

likely to play that strategy the next time, and play his best strategy against that

play of P2. However, if there are several strategies for P2 to choose, it is still unlikely

that P2 will choose this strategy the next time. Perhaps P1 could do better by

considering his long-run fortunes and examining the vector Aqn of expected pay-offs.

In the exercise below, you are asked to investigate this matter.

Exercise 3.1 Suppose that both players are attempting to learn how best to play the

game by examining the vectors pn and qn after n plays. Devise an algorithm for the

players to follow that will lead to optimal mixed strategies for both. Simulate repeated

play of a particular matrix game to see how your algorithm performs. If the algorithm

does its job, but does it slowly, that is, it takes many plays of the game for it to begin

to work, investigate how it might be speeded up.
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