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Abstract
Let T be a (possibly nonlinear) continuous operator on Hilbert space H. If, for
some starting vector x , the orbit sequence {T k x, k = 0, 1, . . .} converges, then
the limit z is a fixed point of T ; that is, T z = z. An operator N on a Hilbert
space H is nonexpansive (ne) if, for each x and y in H,

‖Nx − Ny‖ � ‖x − y‖.
Even when N has fixed points the orbit sequence {Nk x} need not converge;
consider the example N = −I , where I denotes the identity operator. However,
for any α ∈ (0, 1) the iterative procedure defined by

xk+1 = (1 − α)xk + αNxk

converges (weakly) to a fixed point of N whenever such points exist. This is
the Krasnoselskii–Mann (KM) approach to finding fixed points of ne operators.

A wide variety of iterative procedures used in signal processing and image
reconstruction and elsewhere are special cases of the KM iterative procedure,for
particular choices of the ne operator N . These include the Gerchberg–Papoulis
method for bandlimited extrapolation, the SART algorithm of Anderson and
Kak, the Landweber and projected Landweber algorithms, simultaneous and
sequential methods for solving the convex feasibility problem, the ART and
Cimmino methods for solving linear systems of equations, the CQ algorithm for
solving the split feasibility problem and Dolidze’s procedure for the variational
inequality problem for monotone operators.

1. Introduction and overview

Many well-known algorithms in signal processing and image reconstruction are iterative in
nature. The projection onto convex sets (POCS) methods and iterative optimization procedures,
such as entropy or likelihood maximization, are the primary examples. The editorial [49]
provides a brief introduction to many of the recent efforts in medical imaging. The purpose of
this paper is to give a unified treatment of several of these algorithms.
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The iterative methods we shall consider have the form

xk+1 = T xk, (1.1)

for k = 0, 1, . . . , where T is a linear or nonlinear continuous operator on a real (possibly
infinite dimensional) Hilbert space H and x0 is an arbitrary starting vector. For any operator
T on H the fixed point set of T is

Fix(T ) = {z|T z = z}.
If the iterative sequence defined by equation (1.1) converges then the limit is a member of
Fix(T ).

A wide variety of problems can be solved by finding a fixed point of a particular operator,
and algorithms for finding such points play a prominent role in a number of applications. The
paper [61] is an excellent source of background on these topics, particularly as they apply to
signal and image processing. The present paper can perhaps be viewed as a sequel to [61]. The
more recent article by Bauschke and Borwein [4] is also quite helpful. The book by Borwein
and Lewis [9] is also an important reference.

In the algorithms of interest here the operator T is selected so that the set Fix(T ) contains
those vectors z that possess the properties we desire in a solution to the original signal processing
or image reconstruction problem; finding a fixed point of the iteration leads to a solution of
our problem.

To illustrate, suppose that C is a closed convex set in H, such as the nonnegative vectors
in RN . The metric projection operator PC associates with every x in H the point PC x in C
that is nearest to x . If C1 and C2 are two such sets the fixed points of the operator T = PC2 PC1

are the vectors in the intersection C = C1 ∩ C2, if C is nonempty; then the sequence {T k x0}
converges to a member of C . The convergence is generally in the weak sense, for infinite
dimensional spaces. Finding points in the intersection of convex sets is called the convex
feasibility problem (CFP).

Some applications involve constrained optimization, in which we seek a vector x in a
given convex set C that minimizes a certain function f . For suitable γ > 0 the fixed points
of the operator T = PC(I − γ∇ f ) will solve this problem; under conditions to be discussed
below the sequence {T k x} will converge to a solution.

Our concern here is with properties of the operator T sufficient to guarantee convergence
of the sequence {T k x} whenever fixed points of T exist. Most studies of iterative fixed point
algorithms begin with the class of nonexpansive (ne) maps and we shall do the same.

A (possibly nonlinear) operator N on H is called ne if, for all x and y in H,

‖Nx − Ny‖ � ‖x − y‖.
The identity map I x = x for all x is clearly ne; more generally, for any fixed vector w in H the
maps Nx = x + w and Nx = −x + w are ne. As the example Nx = −x shows, convergence
of the sequence {Nk x} is not guaranteed for ne operators, even when Fix(N) is nonempty.

The Krasnoselskii–Mann (KM) [51] approach to finding fixed points of a ne operator N
is quite simple, yet remarkably useful. Given a ne operator N , let

T = (1 − α)I + αN

for some α ∈ (0, 1). The operator T is then said to be averaged (av); note that T is then also ne.
The KM theorem discussed below tells us that the sequence defined by equation (1.1) then
converges (weakly) to a fixed point of N whenever such points exist. As will be discussed
and shown below, the operators PC are av, as are the operators (I − γ∇ f ) if ∇ f is Lipschitz
continuous and the parameter γ is appropriately chosen; the product of finitely many av
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operators is av, so the operators PC2 PC1 and PC (I − γ∇ f ) are also av. Consequently, fixed
points of such operators are limits of the sequence defined by equation (1.1).

We begin, in the next section, with a detailed discussion of av operators, followed by
an examination of the proof of the KM theorem. We then consider constrained optimization
and convex feasibility generally, followed by examples from signal processing and image
reconstruction. In the final sections we broaden the discussion to include projecting onto
convex sets using more general notions of distance, such as cross-entropy, as well as operators
that are somewhat weaker than av.

2. Averaged nonexpansive operators

As we have seen, the fact that a ne operator N has fixed points is not sufficient to guarantee
convergence of the orbit sequence {Nk x}; additional conditions are needed. An operator S on
H is said to be a strict contraction (sc) if there is σ ∈ (0, 1) such that, for all x and y in H,

‖Sx − Sy‖ � σ‖x − y‖.
The well known Banach–Picard theorem [35] assures us that the operator S has a unique
fixed point, to which the orbit sequence {Sk x} converges, for any starting point x . Requiring
the operator to be a sc is quite restrictive; most of the operators we are interested in here
have multiple fixed points, so are not sc. The KM theorem suggests strongly that we should
concentrate on av operators. We have the following result.

Theorem 2.1. Let T be an av operator on H and let Fix(T ) be nonempty. Then the orbit
sequence {T k x} converges weakly to a member of Fix(T ), for any x.

We include a proof of this theorem, for the finite dimensional case, in a later section.
Many of the iterative methods used in signal and image processing are special cases of the KM
approach. A somewhat more general result is the following [31].

Theorem 2.2. Let N be a ne operator on H. For k = 0, 1, . . . let αk ∈ (0, 1). Then the
sequence {xk} defined by the iterative step

xk+1 = (1 − αk)xk + αk Nxk

converges weakly to a fixed point of N, provided
∑∞

k=0 αk(1−αk) = +∞, whenever such fixed
points exist.

An operator G : H → H is monotone [56, 62, 38] if, for all x and y,

〈Gx − Gy, x − y〉 � 0. (2.1)

To illustrate, suppose that g(·) is a convex, differentiable real-valued function on H. Then

〈∇g(y), x − y〉 � g(x) − g(y)

and

〈∇g(x), y − x〉 � g(y) − g(x).

Adding, we obtain

〈∇g(x) − ∇g(y), x − y〉 � 0.

Therefore the derivative of convex function g(·) is a monotone operator. If ĉ minimizes the
function g(·) over the closed convex set C , then

〈∇g(ĉ), c − ĉ〉 � 0
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for all c ∈ C . For general monotone operator G the variational inequality problem (VIP) with
respect to G and C , denoted VIP(G, C), is to find ĉ in C with

〈Gĉ, c − ĉ〉 � 0,

for all c ∈ C [62, 30, 60]. Subject to certain restrictions on G and γ , the sequence defined by
the iterative step

xk+1 = PC(I − γ G)xk (2.2)

will converge to a solution of the VIP(G, C), if solutions exist.
For each x ∈ H the metric projection PC x is that member of C closest to x and is

characterized as the unique element of C for which

〈c − PC x, PC x − x〉 � 0, (2.3)

for all c ∈ C (see [61, p 33], or [57, p 43]). Therefore ĉ = PC(I − γ G)ĉ if and only if

〈c − ĉ, ĉ − (ĉ − γ Gĉ)〉 = γ 〈c − ĉ, Gĉ〉 � 0,

for all c ∈ C . Consequently, the vector ĉ solves the VIP(G, C) if and only if ĉ is a fixed point
of the operator PC(I − γ G). This is the motivation for considering the iteration in (2.2).

As we shall see now, in seeking fixed points for an operator T it is helpful to consider
properties of its complement, I − T . The following identity relates an operator T to its
complement G = I − T :

‖x − y‖2 − ‖T x − T y‖2 = 2〈Gx − Gy, x − y〉 − ‖Gx − Gy‖2. (2.4)

An operator G on H is called ν-inverse strongly monotone (ν-ism) [38, 60] (also called
co-coercive in [31]) if there is ν > 0 such that

〈Gx − Gy, x − y〉 � ν‖Gx − Gy‖2.

From equation (2.4) we see immediately that N is ne if and only if its complement G = I − N
is 1

2 -ism. If G is ν-ism and γ > 0 then the operator γ G is ν
γ

-ism.

Lemma 2.1. An operator A is av if and only if its complement G = I − A is ν-ism for some
ν > 1

2 .

Proof. We assume first that A is av. Then there is α ∈ (0, 1) and ne operator N such that
A = (1 − α)I + αN , and so G = I − A = α(I − N). Since N is ne, I − N is 1

2 -ism and
G = α(I − N) is 1

2α
-ism. Conversely, assume that G is ν-ism for some ν > 1

2 . Let α = 1
2ν

and write A = (1 − α)I + αN for N = I − 1
α

G. Since I − N = 1
α

G, I − N is αν-ism.
Consequently I − N is 1

2 -ism and N is ne. Therefore, A is av. �

Lemma 2.2. Let T = (1 − α)A + αN for some α ∈ (0, 1). If A is av and N is ne then T is av.

Proof. Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M . Let 1 − γ =
(1 − α)(1 − β). Then we have

T = (1 − γ )I + γ [(1 − α)βγ −1 M + αγ −1 N].

Since the operator K = (1 − α)βγ −1 M + αγ −1 N is easily shown to be ne and the convex
combination of two ne operators is again ne, T is av. �

An operator F on H is called firmly nonexpansive (fne) [61, 4] if it is 1-ism.

Lemma 2.3. An operator F is fne if and only if its complement I − F is fne. If F is fne then
F is av.
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Proof. For any operator F with G = I − F we have

〈Fx − Fy, x − y〉 − ‖Fx − Fy‖2 = 〈Gx − Gy, x − y〉 − ‖Gx − Gy‖2.

The left-hand side is nonnegative if and only if the right-hand side is. Finally, if F is fne then
I − F is fne, so I − F is ν-ism for ν = 1. Therefore F is av by lemma 2.1. �

Corollary 2.1. Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne and N is ne then T
is av.

Since the metric projection of x onto C is characterized by the inequalities

〈c − PC x, PC x − x〉 � 0

for all c ∈ C , we have

〈PC y − PC x, PC x − x〉 � 0

and

〈PC x − PC y, PC y − y〉 � 0.

Adding, we find that

〈PC x − PC y, x − y〉 � ‖PC x − PC y‖2;
the operator PC is fne, and therefore also av.

The product of finitely many ne operators is again ne, while the product of finitely many
fne operators, even metric projections, need not be fne. It is a helpful fact that the product of
finitely many av operators is again av.

If A = (1 −α)I + αN is av and B is av then T = AB has the form T = (1 −α)B + αN B .
Since B is av and N B is ne, it follows from lemma 2.1 that T is av. Summarizing, we have

Proposition 2.1. If A and B are av, then T = AB is av.

Combining this proposition with theorem 2.1 we obtain Dolidze’s theorem [34, 38]:

Theorem 2.3. Let G be ν-ism and γ ∈ (0, 2ν). Then, for any x, the sequence {(PC(I −
γ G))k x} converges weakly to a solution of VIP(G,C), whenever solutions exist.

Proof. The operator γ G is 1
2α

-ism, so I − γ G and PC(I − γ G) are av. �
It is possible for Fix(AB) to be nonempty while Fix(A) ∩ Fix(B) is empty; however, if

the latter is nonempty, it must coincide with Fix(AB) [4]:

Proposition 2.2. Let A and B be av operators and suppose that Fix(A)∩Fix(B) is nonempty.
Then Fix(A) ∩ Fix(B) = Fix(AB) = Fix(B A).

Proof. Let I − A be νA-ism and I − B be νB -ism, where both νA and νB are taken greater
than 1

2 . Let z be in Fix(A) ∩ Fix(B) and x in Fix(B A). Then

‖z − x‖2 � ‖z − Ax‖2 + (2νA − 1)‖Ax − x‖2

� ‖z − B Ax‖2 + (2νB − 1)‖B Ax − Ax‖2 + (2νA − 1)‖Ax − x‖2

= ‖z − x‖2 + (2νB − 1)‖B Ax − Ax‖2 + (2νA − 1)‖Ax − x‖2.

Therefore ‖Ax − x‖ = 0 and ‖B Ax − Ax‖ = ‖Bx − x‖ = 0. �
If A1, . . . , AM are av operators, then so are the operators A = 1

M

∑M
m=1 Am and

B = AM AM−1 · · · A1. The orbit sequence {Ak x} will converge weakly whenever Fix(A)
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is nonempty; such an iterative scheme is sometimes called a simultaneous method. If the
operators Am have common fixed points, then the orbit sequence {Bkx} will convergeweakly to
such a common fixed point; such methods are sometimes called sequential methods. If Fix(B)
is nonempty, but the Am have no common fixed point, then the sequence {Bkx} converges
to a fixed point z0 such that, with z1 = A1z, z2 = A2z1, . . . , zM−1 = AM−1zM−2, we have
AM zM−1 = z0. Such a set of M vectors is called a limit cycle.

In the next section we examine the proof of theorem 2.1, in order to better understand the
advantages of sequential methods over simultaneous ones.

3. The proof of theorem 2.1

In the previous section we noted that, given av operators Am, m = 1, . . . , M , we can
iterate using either of two av operators, the operator A = 1

M

∑M
m=1 Am or the operator

B = AM AM−1 · · · A1. Now we examine the proof of theorem 2.1 to see what the advantages
of these two choices might be. Although the theorem holds for infinite dimensional H using
weak convergence, we limit the discussion here to the finite dimensional case.

Let z be a fixed point of ne operator N and let α ∈ (0, 1). Let T = (1 − α)I + αN , so the
iterative step becomes

xk+1 = T xk = (1 − α)xk + αNxk . (3.1)

The identity in equation (2.4) is the key to proving theorem 2.1.
Using T z = z and (I − T )z = 0 and setting G = I − T we have

‖z − xk‖2 − ‖T z − xk+1‖2 = 2〈Gz − Gxk, z − xk〉 − ‖Gz − Gxk‖2.

Since, by lemma 2.1, G is 1
2α

-ism, we have

‖z − xk‖2 − ‖z − xk+1‖2 �
(

1

α
− 1

)
‖xk − xk+1‖2. (3.2)

Consequently the sequence {xk} is bounded, the sequence {‖z − xk‖} is decreasing and the
sequence {‖xk − xk+1‖} converges to zero. Let x∗ be a cluster point of {xk}. Then we have
T x∗ = x∗, so we may use x∗ in place of the arbitrary fixed point z. It follows then that the
sequence {‖x∗−xk‖} is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete. �

Equation (3.2) provides an estimate of the improvement we make in approaching the set
Fix(T ) at each step of the iteration. We now apply this equation to T = A and B .

We begin with T = A. By lemma 2.1 the operator I − Am is 1
2αm

-ism for each m, where, in
most applications, the αm is determined by the selection of a parameter. Therefore, we assume
that each of αm is equal to α. The improvement after one step is ( 1

α
−1)‖xk−xk+1‖2. For T = B

we see that we could make roughly the same order of magnitude improvement after applying
only a single one of the operators Am , and after applying all M operators that make up B our
improvement could be of the order of M times that obtained by one iteration using A. This order
of magnitude acceleration in convergence using sequential methods is commonly seen with
the ART, MART and RBI-EMML algorithms discussed below, particularly if the operators Am

are randomly ordered [41]. If the calculation needed to compute Ax is roughly M times that
required to calculate Am x for a single value of m, then the sequential method will converge,
when there are common fixed points, about M times as fast as the simultaneous method.
Of course, if we begin with an av operator T and define Am = 1

M T , for m = 1, 2, . . . , M ,
then calculating T x is the same as calculating a single Am x , so no acceleration is achieved.
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To illustrate, suppose Am = PCm for m = 1, 2, . . . , M , where Cm are closed nonempty
convex subsets. If the sets are distinct, then calculating all the M projections PCm x requires
M times the computation needed to calculate a single projection, more or less.

4. Constrained optimization algorithms

Algorithms for signal and image processing are often iterative constrained optimization
procedures designed to minimize a convex differentiable function f (x) over a closed convex
set C in H.

If the gradient operator ∇ f is λ-Lipschitz continuous, that is, for each x and y in H we
have

‖∇ f (x) − ∇ f (y)‖ � λ‖x − y‖,
then the operator ∇ f is 1

λ
-ism [3]. If γ ∈ (0, 2

λ
) then the operator G = γ∇ f is 1

2α
-ism and the

operators A = I − γ∇ f and PC A are av. From theorem 2.1 we then conclude the following.

Corollary 4.1. Let f be convex and differentiable on an open set D containing the closed
convex set C ⊆ H. If ∇ f is a λ-Lipschitz continuous operator on D and γ ∈ (0, 2

λ
), then the

sequence defined by xk+1 = PC(xk −γ∇ f (xk)) converges weakly to a minimizer of f relative
to the set C, whenever such minimizers exist, for any starting vector x0.

In the sections to follow we consider a number of special cases of orbit sequences of av
operators arising in signal and image processing.

5. The convex feasibility problem

Let C1, . . . , CM be closed nonempty convex subsets of Hilbert space H. The CFP is to find a
member of their intersection, if such elements exist [4, 29]. Problems in image reconstruction
are sometimes formulated in this way, with the elements of the Hilbert space H = RN

corresponding to vectorized images and the convex sets representing various constraints to
be placed on the reconstructed images. For example, we may have measured data in the form
of linear functional values associated with the image, say bm = 〈am, x〉, m = 1, 2, . . . , M ,
where the am denote fixed vectors. The set Cm might then be the set of all vectors w with
〈am, w〉 = bm . We may wish to impose the condition that the entries of x be nonnegative, in
which case we would include the nonnegative cone of RN as one of the convex sets. Methods
involving the metric projection operators are usually termed POCS methods [61, 57].

The proximity function associated with C1, . . . , CM is

f (x) = 1

2M

M∑
m=1

‖PCm x − x‖2. (5.1)

The gradient of f is

∇ f (x) = x − 1

M

∑M

m=1
PCm x;

see [2]. A minimizer of f is a zero of ∇ f , which is a fixed point of the av operator A given by

A = 1

M

∑M

m=1
PCm .

If the intersection C of the sets C1, . . . , CM is nonempty, then Fix(A) = C and the orbit
sequence {Ak x} converges weakly to a member of C; if C is empty, the sequence converges
weakly to a minimizer of f . In the latter case the limit need not be a member of any of the Cm .
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If we wish to minimize f relative to vectors x in closed nonempty convex set K , then we use
the iterative scheme defined by

xk+1 = PK (Axk).

The operator PK A is also av, so this sequence converges, for any starting vector x0, provided
f has a minimum relative to K .

The methods just described are often called simultaneous because we compute the metric
projections onto each of the sets Cm at each step of the iteration. We may also proceed
sequentially, as follows.

Since each of the operators PCm is av, so is their product. We can therefore consider the
sequence

xk+1 = PCm(k)
xk,

where k = 0, 1, . . . and m(k) = k(mod M) + 1. If the intersection C is nonempty, then the
sequence {xk} converges to a member of C . If C is empty, the sequence {xk} will not converge.
Because the product of the operators PCm is also av, the subsequences {x j M+m| j = 1, 2, . . .}
will converge weakly, for each fixed m, but to distinct limit points, provided the product
operator has fixed points. Sequential methods are closely related to incremental methods [8].

6. Cimmino’s method and the algebraic reconstruction technique

To illustrate the simultaneous and sequential methods just described, we consider the problem
of solving a system of linear equations Ax = b, where A is a real M by N matrix.
For m = 1, . . . , M let am be the mth column of AT, so that bm = 〈am, x〉, and let
Cm = {w|〈am, w〉 = bm}. Assume for notational convenience that the rows of A have length
one. Then we have

PCm x = x + (bm − 〈am, x〉)am .

The simultaneous algorithm now takes the form

xk+1 = xk +
1

M

M∑
m=1

(bm − 〈am, xk〉)am

or

xk+1 = xk +
1

M
AT(b − Axk).

This method is sometimes called Cimmino’s method (see [29]). The sequential method has
the iterative step

xk+1 = xk + (bm(k) − 〈am(k), xk〉)am(k),

for m(k) = k(mod M) + 1. This method, originally due to Kaczmarz [44], is called the
algebraic reconstruction technique (ART) [39, 41]. It has been shown by Tanabe [58] that the
product of the metric projections has fixed points in this case (see also [40]).

When the system Ax = b has multiple solutions both Cimmino’s method and the ART
converge to that solution closest to the starting vector x0.

7. Bandlimited extrapolation methods

In this section we consider the bandlimited extrapolation problem as an illustration
of alternating POCS. The resulting iterative algorithm is the Gerchberg–Papoulis (GP)
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method [37, 55]. As we shall see, the method can be implemented in a noniterative manner,
leading to more general linear and nonlinear extrapolation procedures that have been used for
image and array processing.

The continuous formulation of the bandlimited extrapolation problem is the following:
let f (t) and F(ω) be a Fourier transform pair, where t and ω are real variables and

F(ω) =
∫ ∞

−∞
f (t)eitω dt, (7.1)

f (t) =
∫ ∞

−∞
F(ω)e−itω dω/2π. (7.2)

We assume that F(ω) = 0, for |ω| > 	, where 	 is a positive quantity. The function f (t) is
then said to be 	-bandlimited. If we know f (t) for t in some bounded interval of the real line,
then these data determine F(ω) uniquely, by analyticity; the extension of f (t) to complex z,
given by

f (z) =
∫ ∞

−∞
F(ω)e−izω dω/2π, (7.3)

can be differentiated under the integral sign, since the limits of integration are finite. Therefore,
the known values of f (t) determine f (z) for all other values of z; we can, in theory, extrapolate
f outside the data window.

In practice, we have only finitely many values of f (t) and these are typically noisy. We
shall not address the noise problem here, except to say that it is usually handled by including
regularization in the solving of each of the systems of linear equations we encounter in what
follows.

The finitely many values of f , say f (t1), . . . , f (tN ), may be obtained at irregularly spaced
sample points {tn} but often correspond to uniformly spaced sampling points {tn = a + n
}.
We consider the latter case here.

For the remainder of this section we assume that the function F(ω) is supported on the
interval [−	,	], for some 	 < π . The sequence of Fourier coefficients of F is denoted f .
Our data are the Fourier coefficients f (n), for n ∈ {M, M + 1, . . . , N}, forming the vector d .
For any function G(ω) let 	G(ω) be the function that equals G(ω) for |ω| � 	 and equals zero
otherwise. For any sequence of Fourier coefficients g = {g(n)} let Dg denote the sequence
whose terms are g(n) for n ∈ {M, M + 1, . . . , N} and zero otherwise. Let Fg = G be the
operator taking a sequence of Fourier coefficients g into the function

G(ω) =
+∞∑

n=−∞
g(n) exp(inω),

for ω ∈ (−π, π).
LetH = L2(−π, π), C1 = L2(−	,	) and C2 be the set of all members G(ω) ofHwhose

Fourier coefficients satisfy g(n) = f (n) for n = M, M + 1, . . . , N . The metric projection of
a function G(ω) ∈ H onto C1 is 	G(ω). The metric projection onto C2 is implemented by
passing from G(ω) to the sequence of its Fourier coefficients F−1G = g, then replacing those
coefficients for n = M, M + 1, . . . , N with f (n) and calculating the resulting Fourier series;
that is, the metric projection of G onto C2 is F(D f + (I − D)F−1G).

We begin the GP iteration with the function F0(ω) = 0 for all ω ∈ (−π, π). For
k = 0, 1, . . ., having calculated Fk with f k its sequence of Fourier coefficients, we define
Fk+1 by

Fk+1 = 	F(D f + (I − D)F−1 Fk).
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It would appear that, in order to implement this algorithm, we must calculate the entries of the
sequence {(I − D)F−1 Fk} for all integers n not in the set {M, M + 1, . . . , N}; this is not the
case, fortunately. Note that

Fk+1 − Fk = 	FD( f − f k) = 	Fak,

where the entries of the sequence D( f − f k) = ak are zero, except for n = M, . . . , N . Since
F0 = 0 it follows that each Fk has the form Fk = 	Fbk, for some sequence bk with bk(n) = 0
for n not in the set {M, M + 1, . . . , N}. From this we conclude that the limit F∞ has the form

F∞(ω) = 	
∑N

n=M
cn exp(inω)

for appropriate cn . The coefficients cn can then be determined by equating the Fourier
coefficients of both sides of this equation. To do this we must solve the finite system of
linear equations

f (m) =
N∑

n=M

cn
sin 	(m − n)

π(m − n)
, (7.4)

where m = M, . . . , N . This, of course, can also be done iteratively, if we desire.
A different approach is frequently used, resulting in a slightly different extrapolation. This

second approach formulates the problem entirely in terms of finite vectors and interprets the
Fourier transform as a linear transformation between finite vectors, as is done with the fast
Fourier transform (FFT) algorithm.

From the discussion above we see that for an arbitrary data vector d and an arbitrary
choice of the band [−	,	] in [−π, π] there is a function F	(ω) supported on [−	,	] that
is consistent with the data in the vector d . The function F	 has the form

F	(ω) = 	

N∑
n=M

cn exp(inω). (7.5)

The coefficients cn solve the equation (7.4). To perform data extrapolation one now evaluates
the Fourier transform of F	 at the desired points. Note that this method applies equally to
uniformly and nonuniformly spaced data and is easily extended to higher dimensions. This
noniterative implementation of the GP extrapolation is not new; it was presented in [23], and
has been rediscovered several times since then (see [57, p 209]).

The form of the estimator in equation (7.5) suggests an extension, called the PDFT
estimator, involving the use of a prior estimate, P(ω) � 0, of the magnitude function |F(ω)|.
Suppose now that the data that comprise the vector d are the values f (tn), n = 1, . . . , N , for
some possibly nonequispaced points tn . The PDFT estimate, FPDFT(ω), has the form

FPDFT(ω) = P(ω)

N∑
n=1

an exp(itnω), (7.6)

where the coefficients an solve the system of equations Pa = d , with P the matrix whose entries
are p(tm − tn), the Fourier transform of P(ω) evaluated at the points tm − tn, m, n = 1, . . . , N .
This estimate, which can also be viewed as a data extrapolation method, was first discussed
in [24]. The PDFT was applied to image processing in [25] and to phase retrieval in [27].
Variants of the PDFT that are nonlinear in the data and related to maximum entropy and
maximum likelihood estimation were discussed in [26].

The PDFT estimate of F is the unique function G consistent with the data that minimizes
the weighted energy∫

|G(ω)|2 P(ω)−1 dω.
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If the data are equispaced and 	 = π then the PDFT becomes the well known discrete-
time Fourier transform (DFT). The PDFT can be implemented iteratively by discretizing the
function to be estimated and representing the Fourier transform by means of a matrix. The
prior profile P(ω) then becomes a finite vector of weights. The ART method can then be used
to calculate a minimum weighted norm solution. This approach is particularly useful for large
data sets encountered in image reconstruction.

We turn now to a special case of the CFP, called the split feasibility problem.

8. The split feasibility problem

The split feasibility problem (SFP) [28] is to find c ∈ C with Ac ∈ Q, if such points exist,
where A is a real M by N matrix and C and Q are nonempty, closed convex sets in RN and RM ,
respectively. In [21] the CQ algorithm for solving the SFP was presented. The CQ algorithm
has the iterative step

xk+1 = PC(xk − γ AT(I − PQ)Axk), (8.1)

where γ ∈ (0, 2/ρ(AT A)), for ρ(AT A) the spectral radius of the matrix AT A, which is also
its largest eigenvalue.

The CQ algorithm converges to a solution of the SFP, for any starting vector x0, whenever
the SFP has solutions. When the SFP has no solutions, the CQ algorithm converges to a
minimizer of the function

f (x) = 1
2 ‖PQ Ax − Ax‖2

over the set C , provided such constrained minimizers exist. Therefore the CQ algorithm is
an iterative constrained optimization method. In fact, convergence of the CQ algorithm is a
consequence of theorem 2.1.

The function f (x) is convex and differentiable on RN and its derivative is the operator

∇ f (x) = AT(I − PQ)Ax;
see [2].

Lemma 8.1. The derivative operator ∇ f is λ-Lipschitz continuous for λ = ρ(AT A), therefore
it is ν-ism for ν = 1

λ
.

Proof. We have

‖∇ f (x) − ∇ f (y)‖2 = ‖AT(I − PQ)Ax − AT(I − PQ)Ay‖2

� λ‖(I − PQ)Ax − (I − PQ)Ay‖2.

Also

‖(I − PQ)Ax − (I − PQ)Ay‖2 = ‖Ax − Ay‖2 + ‖PQ Ax − PQ Ay‖2

− 2〈PQ Ax − PQ Ay, Ax − Ay〉
and, since PQ is fne,

〈PQ Ax − PQ Ay, Ax − Ay〉 � ‖PQ Ax − PQ Ay‖2.

Therefore,

‖∇ f (x) − ∇ f (y)‖2 � λ(‖Ax − Ay‖2 − ‖PQ Ax − PQ Ay‖2)

� λ‖Ax − Ay‖2 � λ2‖x − y‖2.

This completes the proof. �
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If γ ∈ (0, 2/λ) then B = PC(I − γ AT(I − PQ)A) is av and, by Dolidze’s theorem 2.3,
the orbit sequence {Bk x} converges weakly to a fixed point of B , whenever such points exist.
If z is a fixed point of B , then z = PC(z − γ AT(I − PQ)Az). Therefore, for any c in C we
have

〈c − z, z − (z − γ AT(I − PQ)Az)〉 � 0.

This tells us that

〈c − z, AT(I − PQ)Az〉 � 0,

which means, according to the characterization in (2.3), that z minimizes f (x) relative to the
set C .

The C Q algorithm employs the relaxation parameter γ in the interval (0, 2/L), where L
is the largest eigenvalue of the matrix AT A. Choosing the best relaxation parameter in any
algorithm is a nontrivial procedure. Generally speaking, we want to select γ near to 1/L. In
practice, it would be helpful to have a quick method for estimating L. In [21] we presented
such a method, particularly useful for sparse matrices.

In image reconstruction from projections the matrix A is quite large and ε-sparse; that
is, most of its elements do not exceed ε in absolute value, where ε denotes a small positive
quantity. In [21] it was shown that if A is normalized so that each row has length one, then
the spectral radius of AT A does not exceed the maximum number of nonzero elements in
any column of A. A similar upper bound on ρ(AT A) can be obtained for nonnormalized,
ε-sparse A.

Let A be an M by N matrix. For each n = 1, . . . , N , let sn > 0 be the number of nonzero
entries in the nth column of A and let s be the maximum of the sn . Let G be the M by N
matrix with entries

Gmn = Amn

/( N∑
l=1

sl A2
ml

)1/2

.

Lent has shown that the eigenvalues of the matrix GTG do not exceed one [50]. This result
suggested the following proposition, whose proof was given in [21].

Proposition 8.1. Let A be an M by N matrix. For each m = 1, . . . , M let νm = ∑N
n=1 A2

mn >

0. For each n = 1, . . . , N let σn = ∑M
m=1 emnνm, where emn = 1 if Amn �= 0 and emn = 0

otherwise. Let σ denote the maximum of the σn. Then the eigenvalues of the matrix AT A do
not exceed σ . If A is normalized so that the Euclidean length of each of its rows is one, then the
eigenvalues of AT A do not exceed s, the maximum number of nonzero elements in any column
of A.

If we normalize A so that its rows have length one, then the trace of the matrix AAT is
tr(AAT) = M , which is also the sum of the eigenvalues of AT A. Consequently, the maximum
eigenvalue of AT A does not exceed M; the result above improves that considerably, if A is
sparse and so s � M .

In image reconstruction from projection data that includes scattering we often encounter
matrices A most of whose entries are small, if not exactly zero. A slight modification of the
proof above provides us with a useful upper bound for L, the largest eigenvalue of AT A, in
such cases. We assume that the rows of A have been normalized to have length one. For ε > 0
let s be the largest number, in any column of A, of entries whose magnitudes exceed ε. Then
we have

L � s + M Nε2 + 2ε(M Ns)1/2 .

The proof of this result is similar to that for the proposition above.
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9. The Landweber algorithms

It is easy to find important examples of the SFP: if C ⊆ RN and Q = {b} then solving the
SFP amounts to solving the linear system of equations Ax = b; if C is a proper subset of RN ,
such as the nonnegative cone, then we seek solutions of Ax = b that lie within C , if there are
any. The SFP is currently of some interest in dynamic PET medical image reconstruction, for
reasons discussed in detail in [21]. Generally, we cannot solve the SFP in closed form and
iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber [46] and projected
Landweber methods (see [7]), are particular cases of the CQ algorithm.

The Landweber algorithm. With x0 arbitrary and k = 0, 1, . . . let

xk+1 = xk + γ AT(b − Axk). (9.1)

For general nonempty closed convex C we obtain the projected Landweber method for finding
a solution of Ax = b in C:

The projected Landweber algorithm. For x0 arbitrary and k = 0, 1, . . . let

xk+1 = PC(xk + γ AT(b − Axk)). (9.2)

From the convergence theorem for the CQ algorithm it follows that the Landweber
algorithm converges to a solution of Ax = b and the projected Landweber algorithm converges
to a solution of Ax = b in C , whenever such solutions exist. When there are no solutions of
the desired type, the Landweber algorithm converges to a least squares approximate solution
of Ax = b, while, by corollary 4.1, the projected Landweber method will converge to a
minimizer, over the set C , of the function ‖b − Ax‖, whenever such a minimizer exists. The
GP iterative procedure for bandlimited extrapolation and super-resolution is an example of the
Landweber algorithm.

Another example of the Landweber method is the simultaneous algebraic reconstruction
technique (SART) [1] for solving Ax = b, for nonnegative matrix A. Let A be an M by N
matrix with nonnegative entries. Let Ai+ > 0 be the sum of the entries in the i th row of A and
A+ j > 0 be the sum of the entries in the j th column of A. Consider the (possibly inconsistent)
system Ax = b. The SART algorithm has the following iterative step:

xk+1
j = xk

j +
1

A+ j

M∑
i=1

(bi − (Axk)i )/Ai+.

We make the following changes of variables:

Bi j = Ai j/(Ai+)
1/2(A+ j)

1/2,

z j = x j(A+ j)
1/2,

and

ci = bi/(Ai+)
1/2.

Then the SART iterative step can be written as

zk+1 = zk + BT(c − Bzk).

This is a particular case of the Landweber algorithm, with γ = 1. The convergence of SART
follows from theorem 2.1, once we know that the largest eigenvalue of BT B is less than two;
in fact, we showed it is one [21].
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10. Generalized projections onto convex sets

There is a large amount of literature dealing with iterative algorithms based on other measures
of distance between vectors; these so-called generalized or Bregman distances take the form

D f (x, y) = f (x) − f (y) − 〈∇ f (y), x − y〉,
where f is a convex differentiable function endowed with other properties that permit the
development of a satisfactory theory [10, 5, 29]. Given a closed nonempty convex set C
contained within the domain of f and a vector x in the domain of ∇ f , the projection of x onto
C , relative to D f , denoted P f

C x , minimizes the function D f (c, x) over all c ∈ C . Assuming
these projections can be defined, the operators P f

C can then be used in much the same way as
the metric projections to create iterative algorithms [29].

An important example of a Bregman distance is the Kullback–Leibler distance [45] for
which f (x) is the Shannon entropy function, defined for nonnegative vectors x by

f (x) =
J∑

j=1

x j log x j − x j .

The associated Bregman distance is

D f (x, z) = K L(x, z) =
J∑

j=1

K L(x j , z j ),

where

K L(x j , z j ) = x j log
x j

z j
+ z j − x j .

Projections onto convex sets C using this distance are called entropic projections [6, 32, 36].
To illustrate the use of entropic projections we consider the problem of finding a

nonnegative solution to the system y = Px , where y is a vector with positive entries and
P is an I by J matrix with positive entries. For each i let Ci be the set of all nonnegative
vectors w with (Pw)i = yi . We cannot calculate the entropic projection onto Ci in closed
form, but if we use instead the distance defined by

Di (x, z) =
J∑

j=1

Pi j K L(x j , z j )

we find that the projection of x onto Ci relative to Di is the vector whose entries are
x j yi/(Px)i [18, 20, 22]. A simultaneous algorithm can then be formulated by taking at
each step the weighted arithmetic mean of these projections: with s j = ∑I

i=1 Pi j let

xk+1
j = xk

j s
−1
j

I∑
i=1

Pi j yi/(Pxk)i .

This algorithm is the expectation maximization maximum likelihood (EMML) method widely
studied in medical imaging [33, 47, 59, 48, 12–14, 52].

We can derive a second simultaneous algorithm by taking a weighted geometric mean:

log xk+1
j = log xk

j + s−1
j

I∑
i=1

Pi j log(yi/(Pxk)i).

This algorithm is the simultaneous multiplicative ART method (SMART) [42, 12].
The SMART algorithm minimizes the function K L(Px, y) over all nonnegative vectors

x , while the EMML algorithm minimizes the function K L(y, Px) over those same vectors.
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Whenever y = Px has nonnegative solutions the SMART algorithm converges to that solution
minimizing the function K L(x, x0); the EMML algorithm also converges to a solution, but no
characterization of the limit is known.

Sequential algorithms based on these projections have also been developed. The
multiplicative ART (MART) [39] has the following iterative step. For k = 0, 1, . . . and
i = i(k) = k(mod I ) + 1 let

xk+1
j = xk

j (yi/(Pxk)i)
s−1

j Pi j .

Whenever nonnegative solutions of y = Px exist the MART algorithm converges to the same
solution as the SMART, for the same x0. We can accelerate the convergence of MART in this
case by using the rescaled MART (RMART) iteration [16, 17]:

xk+1
j = xk

j (yi/(Pxk)i)
m−1

i s−1
j Pi j ,

with mi the maximum, over j , of the values s−1
j Pi j . The SMART is clearly the simultaneous

analogue of the MART, hence the name.
The accelerated sequential analogue of the EMML algorithm is the REMART

method [16, 17]:

xk+1
j = (1 − m−1

i s−1
j Pi j )xk

j + m−1
i s−1

j x k
j Pi j yi/(Pxk)i .

When there are nonnegative solutions of y = Px the REMART converges to a solution, not
necessarily the same one obtained by the EMML, even when the starting vectors are the same.

Between sequential and simultaneous methods are the so-called block-iterative algorithms,
in which only some of the equations (or convex sets) are employed at each step of the iteration.
A block-iterative version of the EMML, called the rescaled block-iterative EMML (RBI-
EMML) [15] has been applied recently to hyperspectral imaging [53]. Related procedures are
the RAMLA method of Browne and De Pierro [11] and the ordered subset method in [43].

11. Interior point optimization algorithms

The entropy-based methods discussed in the previous section are interior point methods in
that the vectors that occur in the calculations always lie within the positive cone of RJ . A
more general method of this sort is the interior point algorithm (IPA) [18–20]. The IPA is
designed to minimize a convex differentiable function f over the domain of a second convex
differentiable function h. The iterative step of the IPA is to solve

∇h(xk+1) = ∇h(xk) − γ∇ f (xk),

for xk+1, where γ > 0 is chosen so that the function h − γ f is convex. Note the similarities
between this iterative step and the iterative step

xk+1 = PC(xk − γ∇ f (xk))

of the algorithm we considered earlier. Other conditions are required for convergence; see [20]
for details. Applications of the IPA to medical imaging were discussed in [54].

12. Summary

A number of iterative algorithms used in signal processing and image reconstruction are
particular cases of the KM approach to finding fixed points of ne operators on Hilbert space.
These include GP bandlimited extrapolation, the Landweber methods for finding constrained
solutions of linear systems of equations, simultaneous and sequential methods for solving
the convex feasibility problem, the CQ algorithm for the split feasibility problem, Cimmino’s
method, the ART and the SART algorithm of Anderson and Kak. Similar algorithms can be
developed by employing generalized POCS. Algorithms based on entropic projections, such
as the EMML and MART, are obtained in this manner.
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