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Abstract. Iterative algorithms for image reconstruction often involve minimizing some cost
function h(x) that measures the degree of agreement between the measured data and a theoretical
parametrized model. In addition, one may wish to have x satisfy certain constraints. It is usually
the case that the cost function is the sum of simpler functions:

h(x) =
I∑
i=1

hi(x).

Partitioning the set {i = 1, . . . , I } as the union of the disjoint sets Bn, n = 1, . . . , N , we let
hn(x) =

∑
i∈Bn

hi(x).

The method presented here is block iterative, in the sense that at each step only the gradient of a
single hn(x) is employed. Convergence can be significantly accelerated, compared to that of the
single-block (N = 1) method, through the use of appropriately chosen scaling factors.

The algorithm is an interior point method, in the sense that the images xk+1 obtained at each
step of the iteration satisfy the desired constraints. Here the constraints are imposed by having the
next iterate xk+1 satisfy the gradient equation

∇F(xk+1) = ∇F(xk)− tn∇hn(xk),
for appropriate scalars tn, where the convex function F is defined and differentiable only on vectors
satisfying the constraints.

Special cases of the algorithm that apply to tomographic image reconstruction, and permit
inclusion of upper and lower bounds on individual pixels, are presented. The focus here is on the
development of the underlying convergence theory of the algorithm. Behaviour of special cases
has been considered elsewhere.

1. Introduction

Inverse problems commonly involve the estimation or reconstruction of a mathematical object
x from partial information about that object. The object x is usually a vector or a function
that can be considered as an ‘image’ and the problem is to reconstruct that image from both
limited measurement data and prior information. In this paper x will be a vector in the real
J -dimensional space RJ . If we can formulate the problem as a convex feasibility problem
(CFP), the constraints on x are interpreted as saying that x is a member of certain convex
subsets of RJ ; the objective is then to find a member of the intersection of these sets. The
‘projection onto convex sets’ (POCS) method [18] is an iterative procedure for solving the CFP.
A variant of POCS, called the ‘multiple-distance successive generalized projection’ (MSGP)
method [7, 8], involves generalized projections based on a family of distances.
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In the typical case in which the measured data are noisy, there may be no x satisfying both
the data constraints and those based on prior information about acceptable reconstructions.
The convex sets may, therefore, have empty intersection and the CFP no solution. In these
circumstances, we may seek an x that minimizes some cost function that measures the average
distance from x to each of the convex sets; such functions are often called proximity functions.
More generally, we may seek an x that optimizes a certain function constructed from the data
and the prior information. In [6] we presented the iterative ‘AB methods’ for reconstructing
images that optimized certain functions and imposed prior upper and lower bounds on the
values of the individual pixels.

In this paper we extend the AB methods in [6] to permit greater choice in the selection
of the functions to be optimized and to remove limitations on the data values that limited the
usefulness of the AB methods.

The algorithm we present here minimizes a convex function h(x), subject to the restriction
that x lie within the set on which a second convex function F(x) takes finite values. The
function h will typically incorporate the measured data in some way, while the function F will
be selected so that its essential domain domF , the set of all x at which F(x) is finite, contains
only those x satisfying the prior constraints. Our method is an interior point algorithm (IPA)
in that at each step of the iteration the current vector, xk , will be within int domF , the interior
of the essential domain of F .

Image reconstruction methods based on the minimization of some cost function typically
seek to minimize functions of the form

h(x) =
I∑
i=1

hi(x), (1.1)

where hi(x) measures the extent to which the (vectorized) image x is consistent with one of
the measured data values. For example, suppose that the data pertaining to x are the linear
functional measurements 〈ai, x〉 = bi , for i = 1, . . . , I . Let A be the I by J matrix whose ith
row is the transpose of the column vector ai ; then Axi = (Ax)i = 〈ai, x〉, for i = 1, . . . , I .
We may then want to minimize h(x) = ‖Ax − b‖2, over those vectors x satisfying certain
constraints. With hi(x) = |〈ai, x〉−bi |2 we have h(x) = ∑I

i=1 hi(x). Because I , the number
of measurements, is usually quite large, minimization methods that use the gradient of h at
each step must calculate a large sum,

∇h(xk) =
I∑
i=1

∇hi(xk) (1.2)

for each k = 0, 1, 2, . . . . The conjugate gradient method can be somewhat faster [17], but is
still too slow for the sort of problem involving large data sets that one typically encounters in
image reconstruction; unless the matrices involved are highly structured, determining suitable
preconditioners is difficult. To reduce the computational load one may employ block-iterative
algorithms [5] (also called incremental algorithms in the optimization literature [2]), in which
the sum over i = 1, . . . , I in (1.2) is replaced by a sum over i in some predetermined subset
that varies with each step. Recent examination of such methods has found that they can often
produce useful reconstructed images in an order of magnitude fewer iterations. We shall
consider algorithm acceleration by means of such block-iterative methods.

We assume that the set {i = 1, . . . , I } is partitioned into N disjoint subsets, {Bn, n =
1, . . . , N}. Denote by hn(x) the sum

hn(x) =
∑
i∈Bn

hi(x), (1.3)

so that h(x) = ∑N
n=1 h

n(x). Denote by
∑n the sum over those i in Bn.
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Our IPA is the following.

Algorithm 1.1 (The IPA). For k = 0, 1, . . . , and n = k(modN) + 1 and having determined
xk , let xk+1 be the unique solution of the gradient equation

∇F(xk+1) = ∇F(xk)− tn

n∑
∇hi(xk), (1.4)

where tn > 0 is chosen so that f n(x) = F(x)− tn
∑n

hi(x) is convex.

To provide a solid theoretical framework within which to prove convergence theorems,
we shall require, at certain points of the discussion, that a function be a Bregman–Legendre
function, in the sense of Bauschke and Borwein [1]. Details concerning Bregman–Legendre
functions are to be found in the appendix.

Throughout this paper we shall employ the notational conventions that Ax = b denote a
general system of (real) linear equations, normalized so that the rows of the I by J matrix A
have unit norm, and that Px = y denote a system of linear equations for which the entries of
the vector y are positive, the entries of the I by J matrix P are non-negative and the columns
of P each sum to one.

Before we present our theorem concerning the IPA, let us consider two examples.

2. Two examples

In this section we consider two examples of the IPA.

2.1. The algebraic reconstruction technique

As an example, let us consider the algebraic reconstruction technique (ART), due to Gordon
et al [11]. In this case the function we wish to minimize is h(x) = 1

2‖Ax − b‖2. Wishing to
place no constraints on the acceptable x, we select as the second function F(x) = 1

2‖x‖2. We
assume that the matrix A has been normalized so that the Euclidean norm of each of its rows is
unity. To obtain the ART we take N = I and hi(x) = 1

2 ((Ax)i − bi)
2. Note that the functions

fi(x) = F(x)− hi(x) are convex since ‖x − z‖2 � |(Ax)i − (Az)i |2, for all vectors x and z.

The ART. For k = 0, 1, . . . and i = k(mod I ) + 1 set

xk+1
j = xkj + Aij (bi − (Axk)i). (2.1)

A simultaneous version of the ART (SART) is the following.

The SART. For k = 0, 1, . . . let

xk+1
j = xkj + t

I∑
i=1

Aij (bi − (Axk)i), (2.2)

where t > 0 is chosen so that I − tAT A is a positive-definite matrix. Block-iterative variations
are also possible, in which the sum in the iterative step is taken only over a subset of the set
{i = 1, . . . , I }.

When there are solutions of the system Ax = b then both ART and SART converge to the
solution of Ax = b closest to the initial vector x0, according to the Euclidean distance. When
there are no solutions of Ax = b SART converges to the least-squares solution closest to x0,
while ART fails to converge. Instead, for each fixed i, as m → +∞, the ART subsequences
{xmI+i} converge to distinct vectors x∞,i ; we call this set of vectors the limit cycle (LC). The
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greater the minimum value of ‖Ax − b‖2 the more the vectors of the LC are distinct from one
another.

There are several ways to avoid the LC in ART and to obtain the least-squares solution.
One way, which does not easily generalize to other algorithms, is what we call double ART
(DART).

The DART. In step 1 apply the ART algorithm to the consistent system of linear equations
ATw = 0, beginning with w0 = b. The limit is w∞, the member of the null space of AT

closest to b. In step 2, apply ART to the consistent system of linear equations Ax = b−w∞.
The limit is then the least-squares solution of Ax = b. Another method for avoiding the LC
is strong underrelaxation [9].

Strongly underrelaxed ART. Let t > 0. Replace the iterative step in ART with

xk+1
j = xkj + tAij (bi − (Axk)i). (2.3)

As t → 0, the vectors of the LC approach the least-squares solution.
In practical situations, one may use only a few iterations of an algorithm and be less

concerned with the limiting vector (or vectors) than with the behaviour of the iterates for small
values of k. When the minimum value of ‖Ax−b‖2 is not too large (that is, the measured data
are not too noisy), the ART has been shown to provide usable reconstructions with very few
iterations, particularly when the equations are carefully ordered and some underrelaxation is
used [13]. In contrast, the SART is typically quite slow to converge.

2.2. The multiplicative algebraic reconstruction technique (MART)

As a second example, we consider the MART, also due to Gordon et al [11].
The function to be minimized is now h(x) = KL(Px, y); hereKL(x, z) is the Kullback–

Leibler (or cross-entropy) distance, defined for non-negative vectors x and z by

KL(x, z) =
J∑

j=1

KL(xj , zj ), (2.4)

where KL(a, b) = a log a
b

+ b− a, KL(0, b) = b and KL(a, 0) = +∞ for positive scalars a
and b.

To impose non-negativity of the entries of the vector x we use the function F(x) = E(x)

where E(x) is defined for all x with non-negative entries as

E(x) =
J∑

j=1

xj log xj − xj . (2.5)

If, for each j , we have αj < βj , then we can enforce the constraints that x be such that
αj � xj � βj by taking F(x) = Fαβ(x), defined by

Fαβ(x) =
J∑

j=1

(xj − αj ) log(xj − αj ) + (βj − xj ) log(βj − xj ). (2.6)

The MART. The MART [11] begins with a strictly positive vector x0 and has the iterative
step

xk+1
j = xkj

(
yi

(P xk)i

)Pij
, (2.7)

for j = 1, 2, . . . , J and i = k(mod I ) + 1.
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The SMART. The simultaneous MART (SMART) [4] begins with a strictly positive vector
x0 and has the iterative step

xk+1
j = xkj

I∏
i=1

(
yi

(P xk)i

)Pij
, (2.8)

for j = 1, 2, . . . , J .
In the consistent case, that is, when there are vectors x � 0 with y = Px then both MART

and SMART converge to the non-negative solution that minimizesKL(x, x0). When there are
no such non-negative vectors, the SMART converges to the unique non-negative minimizer
of KL(Px, y) for which KL(x, x0) is minimized. The MART, however, fails to converge.
What is observed always (but for which no proof exists) is that, for each fixed i = 1, 2, . . . , I ,
as m → +∞, the subsequences {xmI+i} converge to separate limit vectors, say x∞,i . This LC
= {x∞,i |i = 1, . . . , I } reduces to a single vector whenever there is a non-negative solution of
y = Px. The greater the minimum value of KL(Px, y) the more distinct from one another
the vectors of the LC are.

The MART will converge, in the consistent case, provided that 0 � Pij � 1, for all i
and j ; this condition holds here since we have assumed that the columns of P sum to one.
Since I is typically quite large, the Pij are likely to be a great deal smaller than one. We
can accelerate the convergence of MART by rescaling the equations, obtaining what we have
called the REMART.

The REMART. The rescaled multiplicative algebraic reconstruction technique (RE-
MART) [5] begins with a strictly positive vector x0 and has the iterative step

xk+1
j = xkj

(
yi

(P xk)i

)m−1
i Pij

, (2.9)

for j = 1, 2, . . . , J and i = k(mod I ) + 1, with mi = max{Pij |j = 1, . . . , J }.
With h(x) = KL(Px, y), hi(x) = KL((Px)i, yi) and F(x) = E(x) it is clear that xk+1

in (2.9) is the solution of the gradient equation

∇F(xk+1) = ∇F(xk)−m−1
i ∇hi(xk). (2.10)

Although the importance of the rescaling for accelerating MART was not remarked upon in
earlier papers on MART, the rescaling was often a part of actual implementations [12]. We
see that MART and REMART converge whenever there is a common non-negative minimizer
of the functions hi(x), i = 1, . . . , I . When there is no such vector, we obtain an LC.

For each i the function fi(x) = F(x) = hi(x) = E(x)−m−1
i KL((Px)i − yi) is convex;

this follows from the inequality KL(x, z) � KL(x+, z+), where x+ = ∑J
j=1 xj ; in fact, the

value ti = m−1
i is the largest for which the function E(x) − tiKL((Px)i − yi) is convex. As

we shall see in the proof of convergence of the IPA, larger values of ti (or of tn) lead to faster
convergence.

When applied in the case of a single block, the convergence theorem for the IPA is
somewhat stronger than that for the general case of multiple blocks. We therefore consider the
two cases separately.

3. Convergence of the IPA: the case of N = 1

Let D be a convex set in RJ with nonempty interior, intD. Let h(x) be differentiable on intD
and convex and continuous on the closure of D, D. We want to minimize h over D, if such
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minimizers exist. Since we are only interested in the behaviour of h on the set D, we assume
that h takes the value +∞ outside this set. Then h is a closed, proper convex function on RJ ,
as defined by Rockafellar [16].

Let f be a function that is differentiable on intD and convex and continuous on D. Let
F(x) = f (x) + h(x). The IPA for the case of a single block is the following.

Algorithm 3.1 (The IPA). Let x0 be arbitrary in intD. Having calculated xk in intD we solve

∇F(xk+1) = ∇F(xk)− ∇h(xk) (3.1)

for xk+1 in intD.

In what follows we shall assume that the gradient equation (3.1) can be solved for xk+1 in intD
at every step. Let h = inf{h(x)|x ∈ D} � −∞, which is then the infimum of h on all of RJ .

The convexity of the functions h and F–h forces the sequence {h(xk)} to be decreasing.
Rewriting (3.1) using f (x) = F(x)− h(x) we have

∇f (xk)− ∇f (xk+1) = ∇h(xk+1). (3.2)

Therefore

0 � 〈∇f (xk)− ∇f (xk+1), xk − xk+1〉 = 〈∇h(xk+1), xk − xk+1〉 � h(xk)− h(xk+1). (3.3)

Therefore, we have h(xk) → ĥ, for some ĥ � h. In fact, we can show the following.

Proposition 3.1. ĥ = h.

Proof. Suppose not; let ĥ = h + δ, for some δ > 0. Select zn ∈ D such that h(zn) → h,
as n → +∞; without loss of generality, we assume that h(zn) � h + δ/2, for all n. Then
h(xk) � h(zn) + δ/2, for all k and all n. Let n be fixed. Then we have

Df (z
n, xk)−Df (z

n, xk+1) = Df (x
k+1, xk) + 〈∇h(xk+1), xk+1 − zn〉,

whereDf denotes the Bregman distance, as discussed in the appendix. Since, by the convexity
of the function h, we have

〈∇h(xk+1), xk+1 − zn〉 � h(xk+1)− h(zn),

we know

Df (z
n, xk)−Df (z

n, xk+1) � Df (x
k+1, xk) + (h(xk+1)− h(zn)) > 0.

It follows that the sequence {Df (z
n, xk)} is decreasing and, therefore, that the sequence

{h(xk+1) − h(zn)} → 0. But this is a contradiction, since h(xk+1) − h(zn) � δ/2. We
conclude that ĥ = h. �

Whether or not the sequence {xk} converges will depend on other factors. We have the
following useful result, which appears as corollary 8.7.1 in [16].

Proposition 3.2. Let G be a closed proper convex function on RJ . If the level set Lα =
{x|G(x) � α} is nonempty and bounded for a single value of α, then it is bounded for every α.

Our theorem is the following.

Theorem 3.1. Let there be a point x̂ ∈ D, with h(x̂) = h. If x̂ is uniquely defined by these
properties, then the sequence {xk} converges to x̂. If x̂ is not necessarily unique, but can be
chosen in D, then the sequences {Df (x̂, x

k)} and {DF(x̂, x
k)} are decreasing. If, in addition,

DF has bounded level sets, that is, if property (B1) holds, then the sequence {xk} is bounded
and h(x∗) = h(x̂) for every cluster point x∗ ∈ D. If either f or F is a Bregman–Legendre
function with essential domain D then x∗ is in D and the sequence {xk} converges to x∗.
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Proof of the theorem. Let x̂ ∈ D satisfyh(x̂) = h. If x̂ is uniquely defined by these properties,
then, applying proposition 3.2 and using the fact that the sequence {h(xk)} is decreasing, we
conclude that the sequence {xk} is bounded; let x∗ ∈ D be any cluster point. By the continuity
of h we have h(x∗) = h(x̂) for all cluster points. Therefore x∗ = x̂ and the sequence {xk}
converges to x̂. Now consider the case in which x̂ is not necessarily unique, but can be chosen
in D.

Because h is convex, we know that, for any z ∈ intD,

〈∇h(z), z − x̂〉 � h(z)− h(x̂) � 0. (3.4)

Taking x̂ in D, we have

Df (x̂, x
k)−Df (x̂, x

k+1) = Df (x
k+1, xk) + 〈∇h(xk+1), xk+1 − x̂〉 � 0 (3.5)

and

DF(x̂, x
k)−DF(x̂, x

k+1) = Df (x
k+1, xk) + [Dh(x

k+1, xk) + 〈∇h(xk), xk+1 − x̂〉]
= Df (x

k+1, xk) + [h(xk+1)− h(xk) + 〈∇h(xk), xk − x̂〉]
� Df (x

k+1, xk) + [h(xk+1)− h(x̂)] � 0. (3.6)

Consequently, we can conclude that the sequences {Df (x̂, x
k)} and {DF(x̂, x

k)} are decreasing
and that the sequences {Df (x

k+1, xk)} and {h(xk+1) − h(x̂)} are converging to zero. Then,
assuming property (B1) of the appendix applied to DF , the sequence {xk} is bounded and, by
the continuity of h, we have h(x∗) = h = h(x̂) for each cluster point x∗ of the sequence {xk}.
Now we assume that one of f or F is a Bregman–Legendre function.

For simplicity, we assume in what follows thatf is Bregman–Legendre; the same argument
holds ifF is, instead. If x̂ is not in the interior of the setD, we apply property (B2) of Bregman–
Legendre functions to conclude that x∗ is in D and that a sub-sequence of {Df (x

∗, xk)}
converges to zero. It follows that the entire sequence {Df (x

∗, xk)} converges to zero, for
every cluster point of the sequence {xk}. On the other hand, if x̂ ∈ intD, then by result (R2)
of the appendix we know that x∗ ∈ intD, for all cluster points x∗ of the sequence {xk}. Since
h(x∗) = h(x̂) and x∗ ∈ D, we can replace x̂ with x∗, to obtain that the sequence {Df (x

∗, xk)}
is decreasing. By result (R1), we know that a subsequence of {Df (x

∗, xk)} converges to zero;
therefore {Df (x

∗, xk)} → 0. Using result (R5), we conclude that {xk} → x∗. The proof of
the theorem is complete. �

4. Convergence of the IPA: the case of N > 1

In this section we consider the convergence of the IPA for the more general case of multiple
blocks.

From our earlier examination of the two examples we expect that the IPA will converge
to a single limiting vector only if the functions hn(x) have a common minimizer. In general,
this is not likely, although, as we have seen, for functions such as ‖Ax − b‖2 and KL(Px, y)

it simply means that the systems of equations have feasible solutions.
Write h(x) = ∑I

i=1 hi(x) for convex functions hi(x) and hn(x) = ∑
i∈Bn

hi(x). Assume
that f n = F(x)− tnh

n(x) is differentiable on intD and convex and continuous on D.
Our theorem is the following.

Theorem 4.1. Let there be a point x̂ ∈ D, that is a common minimizer of each of the functions
hn(x). Then the sequence {DF(x̂, x

k)} is decreasing. If, in addition,DF has bounded level sets,
that is, if property (B1) holds, then the sequence {xk} is bounded. If f n is a Bregman–Legendre
function, then hn(x∗) = hn(x̂) for every cluster point x∗ ∈ D. If F is a Bregman–Legendre
function with essential domain D then x∗ is in D and the sequence {xk} converges to x∗.
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Proof of the theorem. Let x̂ ∈ D be a common minimizer of the functions hn(x). Let
n = k(modN) + 1. We have

DF(x̂, x
k)−DF(x̂, x

k+1) = DF(x
k+1, xk) + tn〈∇hn(xk), xk+1 − xk〉

= Dfn(xk+1, xk) + tn[hn(xk+1)− hn(xk)− 〈∇hn(xk), x̂ − xk〉]
� Dfn(xk+1, xk) + tn[hn(xk+1)− hn(x̂)] � 0,

since 〈∇hn(xk), x̂ − xk〉 � hn(x̂)− hn(xk) by the convexity of the functions hn(x).
Consequently, we can conclude that the sequence {DF(x̂, x

k)} is decreasing and that the
sequences {Dfn(xk+1, xk)} and {hn(xk+1) − hn(x̂)} are converging to zero. Then, assuming
property (B1) of the appendix, applied to DF , the sequence {xk} is bounded.

Consider the bounded sequence {xmN+1|m = 1, 2, . . .}. Let {xmrN+1|r = 1, 2, . . .} be a
subsequence converging to x∗,1. Then extract a subsequence of the sequence {xmrN+2|r =
1, 2, . . .} converging to x∗,2. Continuing in this manner, we obtain N subsequences
{xmtN+n|t = 1, 2, . . .} of the original sequence with {xmtN+n} → x∗,n for each n. It follows
that hn+1(x∗,n) = hn+1(x̂) for each n. Since {Dfn(xk+1, xk)} → 0 for each n, it follows that
x∗,n = x∗,n+1 = x∗ for all n.

If x̂ is not in int domF , then, applying property (B2) of the appendix to the Bregman–
Legendre function F , we find that x∗ is in domF . Using x∗ in place of x̂ now, we find that
DF(x

∗, xk) is decreasing, but, because a subsequence converges to zero, we conclude that
DF(x

∗, xk) → 0, which implies that xk → x∗.
If x̂ is in int domF then x∗ is also in int domF , by result (R2) of the appendix, applied to

the function F . By result (R1) DF(x
∗, xk) → 0 so that xk → x∗ by result (R5). �

We emphasize that we expect the simultaneous version of the IPA, for which N = 1, to
converge slowly; this is what is always observed in special cases that have been considered so
far. It is for this reason that we employ the block-iterative approach in the IPA. When N > 1
the inequality

DF(x̂, x
k)−DF(x̂, x

k+1) � Dfn(xk+1, xk) + tn[hn(xk+1)− hn(x̂)] � 0,

derived in the proof just presented, suggests that larger values of tn might lead to faster
convergence of the algorithm; indeed this is what we observe in practice. This is precisely the
difference between the MART and REMART algorithms, as discussed earlier. We select
the scalars tn as large as possible, subject to the constraints that the functions f n(x) =
F(x) − tnh

n(x) be Bregman–Legendre functions; in particular, they must be strictly convex
on the interior of the domain of F .

5. An application of the IPA to transmission tomography image reconstruction

We consider now the application of the IPA to transmission tomography image reconstruction
(see [14]). In this case the function h(x) we wish to minimize is usually taken to be the
regularized negative log-likelihood function associated with a Poisson model, given, to within
an additive constant, by the Kullback–Leibler distance (see (2.4))

h(x) =
∑
i

KL(yi, ci exp(−(Lx)i)). (5.1)

Here yi denotes the count associated with the ith line segment through the object, the entry
Lij of the matrix L is the length of the intersection of the ith line segment with the j th pixel
and constant ci > 0 denotes the input intensity of the radiation along the ith line segment. Let
hi(x) = KL(yi, ci exp(−(Lx)i)) and hn(x) = ∑n

hi(x).
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With the selection of the functionF(x)we impose desired constraints on the reconstructed
image. In order to obtain reconstructed images x = (x1, . . . , xJ )

T with 0 � αj � xj � βj ,
for j = 1, . . . , J , we shall use the Bregman–Legendre function F(x) = Fαβ(x) defined in
(2.6). The essential domain of F is the set D = {x|αj � xj � βj , j = 1, . . . , J }. Then, at
the kth step, we solve

∇F(xk+1) = ∇F(xk)− tn∇hn(xk), (5.2)

where tn > 0 is to be chosen so that the function f n(x) = F(x) − tnh
n(x) is convex. The

algorithm we obtain is the following: having calculated xk , let xk+1 be determined by (5.2).
Then we have the following.

Algorithm 5.1. Let α < x0 < β be chosen. For k = 0, 1, 2, . . . and n = k(modN) + 1, let

xk+1
j = ωk

jαj + (1 − ωk
j )βj , (5.3)

where

ωk
j = (βj − xkj )

/[
(βj − xkj ) + (xkj − αj ) exp

(
−tn ∂h

n

∂xj
(xk)

)]
(5.4)

Using as h the function defined in (5.1) we obtain the transmission AB algorithm (TAB) with

ωk
j = (βj − xkj )

/[
(βj − xkj ) + (xkj − αj ) exp

(
− tn

n∑
(Lij (yi − ci exp(−(Lxk)i)))

)]
;(5.5)

the iterative step is

xk+1
j = ωk

jαj + (1 − ωk
j )βj . (5.6)

The theory of the IPA tells us that we will have convergence to a constrained minimizer
of the function h(x) provided we choose tn so that the function F(x) − tnh

n(x) is a convex
function. We shall obtain an upper limit on the acceptable values of tn by considering the
Hessian matrix of the function f n.

With F(x) = Fαβ(x) and hn(x) = ∑n
KL(yi, ci exp(−(Lx)i)) we find that the Hessian

matrix of F(x) is

∇2F(x) = diag{(xj − αj )
−1 + (βj − xj )

−1}. (5.7)

The Hessian matrix of hn(x) is

∇2hn(x) = LTWL, (5.8)

whereW is the diagonal matrix withWii = ci exp(−(Lx)i), for i ∈ Bn andWii = 0 otherwise.
The smallest eigenvalue of ∇2F(x) is the minimum, over all j , of (xj − αj )

−1 + (βj − xj )
−1.

Since

(xj − αj )
−1 + (βj − xj )

−1 � 4

βj − αj
, (5.9)

we know that the smallest eigenvalue of ∇2F(x) is not smaller than the minimum, over all j ,
of 4

βj−αj .

The trace of the matrix ∇2hn(x), which is the sum of its eigenvalues, is

trace∇2hn(x) =
n∑ ( ∑

j

L2
ij

)
ci exp(−(Lx)i). (5.10)

Therefore, the Hessian of f n(x) = F(x)− γnh
n(x) will be positive definite, for all x ∈ intD,

if the constant tn > 0 satisfies the inequality

tn � 4 min
j

{
1

βj − αj

} / n∑ ( ∑
j

L2
ij

)
ci exp(−(Lα)i), (5.11)

where α = (α1, . . . , αJ )
T .

This algorithm and related methods are discussed in the context of medical imaging in [15].
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6. Minimizing KL(Px, y) for α � x � β

Suppose now that we wish to minimize the functionKL(Px, y), where the entries of the matrix
P and the vector x are non-negative and the entries of y are positive. Suppose, in addition,
that we wish to impose the constraints αj � xj � βj , or, in vector notation, α � x � β or
x ∈ [α, β], where 0 < αj < βj , for j = 1, . . . , J . Clearly, if there is a solution x ∈ [α, β]
with y = Px, then, from the positivity of the entries of P , we know that y ∈ [Pα, Pβ]. Unlike
the algorithms given in [6], the method we present in this section does not restrict the entries
of y in this way, thereby permitting its application to the important case in which the vector
y consists of noisy measurement data. A related optimization algorithm is applied to medical
imaging in [15].

We let h(x) = KL(Px, y) and F(x) = Fαβ(x). The following proposition will be
helpful.

Proposition 6.1. For all vectors x and z with α � x, z � β we have

DF(x, z) � KL(x, z) = DE(x, z) � Dh(x, z) = KL(Px, P z). (6.1)

Proof. Since the functions F(x) andE(x) are separable, it suffices to prove the first inequality
for the case of J = 1. For real numbers x in (α, β) consider the function

g(x) = (x − α) log(x − α) + (β − x) log(β − x)− x log x + x.

We show that this function is strictly convex. The second derivative of g is

g′′(x) = 1

x − α
+

1

β − x
− 1

x
,

which is easily shown to be positive for α < x < β. It follows that

DF(x, z)−KL(x, z) � g(x)− g(z)− 〈∇g(z), x − z〉 � 0,

for all vectors x and z with α < x, z < β. The second inequality in (6.1) follows from the
inequality KL(x, z) � KL(x+, z+) and the fact that the columns of P sum to unity. This
completes the proof. �

The convexity of f n(x) = F(x) − t−1
n hn(x) follows immediately, where hn(x) =∑n

KL(Pxi, yi) and tn = max{∑n
Pij |j = 1, . . . , J }. Applying the IPA, we find that

the iterative step of the algorithm involves solving

log
xk+1
j − αj

βj − xk+1
j

= log
xkj − αj

βj − xkj
+ t−1

n

n∑
Pij log

yi

(P xk)i
(6.2)

for xk+1
j . Our algorithm then is the following.

Algorithm 6.1. Let α < x0 < β be chosen. For k = 0, 1, 2, . . . let

xk+1
j = ωk

jαj + (1 − ωk
j )βj , (6.3)

where

ωk
j = (βj − xkj )

/[
(βj − xkj ) + (xkj − αj )

(
t−1
n

n∑
Pij log

yi

(P xk)i

)]
. (6.4)

We have the following convergence result.

Theorem 6.1. For N = 1 the sequence {xk} defined by (6.3) converges to x∞, minimizing
the function KL(Px, y) over all x in [α, β]. For N � 1, if there is a vector x in [α, β] with
y = Px, then, for any initial vector x0 with α < x0 < β, the sequence {xk} converges to x∞;
we have y = Px∞ and α � x∞ � β. Also, x∞ is the unique such solution for which the
function DF(x, x

0) is minimized.

In the next section we obtain a similar theorem for the general linear system Ax = b.
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7. Minimizing ‖Ax − b‖2 subject to α � x � β

In this section we consider the minimization of ‖Ax− b‖2, subject to upper and lower bounds
on the values of the entries of the vector x; specifically, we seek x ∈ [α, β]. As before, we
employ the Bregman–Legendre function F(x) = Fαβ , given by equation (2.6). The essential
domain of this function is a compact set. Let B = max{ 1

4 (βj −αj )}, with the maximum taken
over the indices j . We let h(x) = ‖Ax − b‖2. Our algorithm is the following.

Algorithm 7.1. Let x0 be chosen so that, for all j = 1, . . . , J , we have αj < x0
j < βj . For

k = 0, 1, . . . set

xk+1
j = ωk

jαj + (1 − ωk
j )βj , (7.1)

where

ωk
j = (βj − xkj )

/(
(βj − xkj ) + (xkj − αj ) exp

(
1

2BIn

( n∑
Aij (bi − (Axk)i)

)
j

))
(7.2)

and In = ∑n
(AAT )ii .

We have the following result.

Theorem 7.1. Let x0 be chosen so that, for all j = 1, . . . , J , we have αj < x0
j < βj . Let

B = max{ 1
4 (βj − αj )}, with the maximum taken over the indices j . Then, for N = 1,

the iterative sequence {xk} given by (7.1) converges to a minimizer of ‖Ax − b‖2 for
αj � xj � βj , j = 1, . . . , J . For N � 1, if there is an exact solution of Ax = b then
the sequence {xk} converges to the one for which the distance DF(x, x

0) is minimized.

8. Summary and conclusions

We have presented a new iterative interior point algorithm, called the IPA, for minimizing a
convex differentiable function over certain convex sets. The IPA applies when the associated
convex set C is the essential domain of a Bregman–Legendre function f . The IPA is related to
interior point methods recently proposed by Censor et al [10]. In the special case of minimizing
a convex differentiable function over a convex set, the IPA, for the case of a single block, is a
descent method.

The IPA is a block-iterative method, special cases of which have been shown to provide
useful reconstructed tomographic images with few iterations. Our focus in this paper has been
on the theoretical aspects of the method; simulations involving special cases of the IPA have
appeared elsewhere.

As is the case with all block-iterative methods that do not employ strong underrelaxation,
in the inconsistent case we obtain convergence not to a single vector, but to an LC. No proof
of this has been obtained, except for the case of ART, but this is what has been consistently
observed. For moderate levels of noise in the data, the images of the LC will still prove useful.
For problems involving large data sets, only a few iterations will be performed, typically, so
limiting behaviour is less important than providing reasonable reconstructions early in the
iterative sequence.

In several of the examples presented here we use the interior point approach to incorporate
upper and lower bounds on the individual pixels of the reconstructed image. It is possible to
enforce such constraints merely by clipping the image at each step of an iteration procedure. In
applications, however, the constraints used are typically conservatively chosen. Clipping tends
to produce images with numerous values equal to the bounds. One benefit of the IPA approach
is that the images truly lie within the interior of the constraint set, to the extent permitted by
the data.
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Appendix. Bregman–Legendre functions and Bregman projections

In [1] Bauschke and Borwein show convincingly that the Bregman–Legendre functions provide
the proper context for the discussion of Bregman projections onto closed convex sets. The
summary here follows closely the discussion given in [1].

A.1. Essential smoothness and essential strict convexity

A convex function f : RJ → [−∞,+∞] is proper if there is no x with f (x) = −∞
and some x with f (x) < +∞. The essential domain of f is D = {x|f (x) < +∞}. A
proper convex function f is closed if it is lower semi-continuous. The subdifferential of f
at x is the set ∂f (x) = {x∗|〈x∗, z − x〉 � f (z) − f (x), for all z}. The domain of ∂f is
the set dom∂f = {x|∂f (x) �= ∅}. The conjugate function associated with f is the function
f ∗(x∗) = supz(〈x∗, z〉 − f (z)).

Following [16] we say that a closed proper convex function f is essentially smooth if intD
is not empty, f is differentiable on intD and xn ∈ intD, with xn → x ∈ bdD, implies that
‖∇f (xn)‖ → +∞. Here intD and bdD denote the interior and boundary of the set D.

A closed proper convex function f is essentially strictly convex if f is strictly convex on
every convex subset of dom∂f .

The closed proper convex function f is essentially smooth if and only if the subdifferential
∂f (x) is empty for x ∈ bdD and is {∇f (x)} for x ∈ intD (so f is differentiable on intD) if
and only if the function f ∗ is essentially strictly convex.

A closed proper convex function f is said to be a Legendre function if it is both essentially
smooth and essentially strictly convex, so f is Legendre if and only if its conjugate function
is Legendre, in which case the gradient operator ∇f is a topological isomorphism with ∇f ∗

as its inverse. The gradient operator ∇f maps int domf onto int domf ∗. If int domf ∗ = RJ

then the range of ∇f is RJ and the equation ∇f (x) = y can be solved for every y ∈ RJ .
In order for int domf ∗ = RJ it is necessary and sufficient that the Legendre function f be
super-coercive, that is,

lim
‖x‖→+∞

f (x)

‖x‖ = +∞.

If the essential domain of f is bounded, then f is super-coercive and its gradient operator is a
mapping onto the space RJ .

A.2. Bregman projections onto closed convex sets

Let f be a closed proper convex function that is differentiable on the nonempty set intD. The
corresponding Bregman distance Df (x, z) is defined for x ∈ RJ and z ∈ intD by

Df (x, z) = f (x)− f (z)− 〈∇f (z), x − z〉.
Note that Df (x, z) � 0 always and that Df (x, z) = +∞ is possible. If f is essentially strictly
convex then Df (x, z) = 0 implies that x = z.
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Let K be a nonempty closed convex set with K ∩ intD �= ∅. Pick z ∈ intD. The Bregman
projection of z onto K , with respect to f , is

P
f

K (z) = argminx∈K∩DDf (x, z).

If f is essentially strictly convex, then Pf

K (z) exists. If f is strictly convex on D then Pf

K (z)

is unique. If f is Legendre, then Pf

K (z) is uniquely defined and is in intD; this last condition
is sometimes called zone consistency.

Example. Let J = 2 and f (x) be the function that is equal to one-half the norm squared on
D, the non-negative quadrant, +∞ elsewhere. Let K be the set K = {(x1, x2)|x1 + x2 = 1}.
The Bregman projection of (2, 1) onto K is (1, 0), which is not in intD. The function f is not
essentially smooth, although it is essentially strictly convex. Its conjugate is the function f ∗

that is equal to one-half the norm squared on D and equal to zero elsewhere; it is essentially
smooth, but not essentially strictly convex.

If f is Legendre, then Pf

K (z) is the unique member of K ∩ intD satisfying the inequality

〈∇f (P f

K (z))− ∇f (z), P f

K (z)− c〉 � 0,

for all c ∈ K . From this we obtain the Bregman inequality:

Df (c, z) � Df (c, P
f

K (z)) + Df (P
f

K (z), z),

for all c ∈ K .

A.3. Bregman’s sequential generalized projection algorithm

Let Ci, i = 1, . . . , I , be closed nonempty convex sets in RJ with nonempty intersection K .
Assume that Ci ∩ intD �= ∅, for all i, and that K ∩ D �= ∅. In [3] Bregman presents the
following sequential generalized projection (SGP) algorithm for finding a member of K .

Bregman’s SGP algorithm. For k = 0, 1, 2, . . . and i = k(mod I ) let

xk+1 = P
f

Ci
(xk).

In order for this algorithm to converge to a member ofK additional restrictions on the function
f are needed.

A.4. Bregman–Legendre functions

Following Bauschke and Borwein [1], we say that a Legendre function f is a Bregman–
Legendre function if the following properties hold.

(B1) For x in D and any a > 0 the set {z|Df (x, z) � a} is bounded.
(B2) If x is in D but not in intD, for each positive integer n, yn is in intD with yn → y ∈ bdD,

and if {Df (x, y
n)} remains bounded then Df (y, y

n) → 0, so that y ∈ D.
(B3) If xn and yn are in intD, with xn → x and yn → y, where x and y are in D but not in

intD, and if Df (x
n, yn) → 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges to a member
of K provided that one of the following holds: (1) f is Bregman–Legendre; (2) K ∩ intD �= ∅
and domf ∗ is open or (3) domf and domf ∗ are both open.
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A.5. Useful results about Bregman–Legendre functions

The following results are proved in somewhat more generality in [1].

(R1) If yn ∈ int domf and yn → y ∈ int domf , then Df (y, y
n) → 0.

(R2) If x and yn ∈ int domf and yn → y ∈ bd domf , then Df (x, y
n) → +∞.

(R3) If xn ∈ D, xn → x ∈ D, yn ∈ intD, yn → y ∈ D, {x, y} ∩ intD �= ∅ and
Df (x

n, yn) → 0, then x = y and y ∈ intD.
(R4) If x and y are in D, but are not in intD, yn ∈ intD, yn → y and Df (x, y

n) → 0, then
x = y.
As a consequence of these results we have the following.

(R5) If {Df (x, y
n)} → 0, for yn ∈ intD and x ∈ RJ , then {yn} → x.

Proof of (R5). Since {Df (x, y
n)} is eventually finite, we have x ∈ D. By property (B1)

above it follows that the sequence {yn} is bounded; without loss of generality, we assume that
{yn} → y, for some y ∈ D. If x is in intD, then, by result (R2) above, we know that y is also
in intD. Applying result (R3), with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in intD, then y is in D, by result (R2). There are two cases to consider:
(1) y is in intD; (2) y is not in intD. In case (1) we have Df (x, y

n) → Df (x, y) = 0, from
which it follows that x = y. In case (2) we apply result (R4) to conclude that x = y. �
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