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1 Background

We begin by recalling the solution of the vibrating string problem and Sturm-Liouville

problems.

1.1 The Vibrating String

When we solve the problem of the vibrating string using the technique of separation

of variables, the differential equation involving the space variable x, and assuming

constant mass density, is

y′′(x) +
ω2

c2
y(x) = 0, (1.1)

which we can write as an eigenvalue problem

y′′(x) + λy(x) = 0. (1.2)

The solutions to Equation (1.1) are

y(x) = α sin
(ω

c
x

)

.

In the vibrating string problem, the string is fixed at both ends, x = 0 and x = L, so

that

φ(0, t) = φ(L, t) = 0,

for all t. Therefore, we must have y(0) = y(L) = 0, so that the eigenfunction solution

that corresponds to the eigenvalue λm =
(

πm
L

)

2

must have the form

y(x) = Am sin
(ωm

c
x

)

= Am sin
(πm

L
x

)

,
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where ωm = πcm
L

, for any positive integer m. Therefore, the boundary conditions

limit the choices for the separation constant ω.

We then discover that the eigenfunction solutions corresponding to different λ are

orthogonal, in the sense that

∫ L

0

sin
(πm

L
x

)

sin
(πn

L
x

)

dx = 0,

for m 6= n.

1.2 The Sturm-Liouville Problem

The general form for the Sturm-Liouville Problem is

d

dx

(

p(x)y′(x)
)

+ λw(x)y(x) = 0. (1.3)

As with the one-dimensional wave equation, boundary conditions, such as y(a) =

y(b) = 0, where a = −∞ and b = +∞ are allowed, restrict the possible eigenvalues λ

to an increasing sequence of positive numbers λm. The corresponding eigenfunctions

ym(x) will be w(x)-orthogonal, meaning that

0 =
∫ b

a
ym(x)yn(x)w(x)dx,

for m 6= n. For various choices of w(x) and p(x) and various choices of a and b, we

obtain several famous sets of “orthogonal” functions.

Well known examples of Sturm-Liouville problems include

• Legendre:
d

dx

(

(1 − x2)
dy

dx

)

+ λy = 0;

• Chebyshev:
d

dx

(√
1 − x2

dy

dx

)

+ λ(1 − x2)−1/2y = 0;

• Hermite:
d

dx

(

e−x2 dy

dx

)

+ λe−x2

y = 0;

and

• Laguerre:
d

dx

(

xe−x dy

dx

)

+ λe−xy = 0.

Each of these examples involves an inner product space and an orthogonal basis

for that space.
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2 The Complex Vector Dot Product

An inner product is a generalization of the notion of the dot product between two

complex vectors.

2.1 The Two-Dimensional Case

Let u = (a, b) and v = (c, d) be two vectors in two-dimensional space. Let u make

the angle α > 0 with the positive x-axis and v the angle β > 0. Let ||u|| =
√

a2 + b2

denote the length of the vector u. Then a = ||u|| cos α, b = ||u|| sin α, c = ||v|| cos β

and d = ||v|| sin β. So u · v = ac + bd = ||u||||v||(cos α cos β + sin α sin β =

||u|| ||v|| cos(α − β). Therefore, we have

u · v = ||u|| ||v|| cos θ, (2.1)

where θ = α − β is the angle between u and v. Cauchy’s inequality is

|u · v| ≤ ||u|| ||v||,

with equality if and only if u and v are parallel. From Equation (2.1) we know that

the dot product u · v is zero if and only if the angle between these two vectors is a

right angle; we say then that u and v are mutually orthogonal.

Cauchy’s inequality extends to complex vectors u and v:

u · v =
N

∑

n=1

unvn, (2.2)

and Cauchy’s Inequality still holds.

Proof of Cauchy’s inequality: To prove Cauchy’s inequality for the complex vector

dot product, we write u · v = |u · v|eiθ. Let t be a real variable and consider

0 ≤ ||e−iθu − tv||2 = (e−iθu − tv) · (e−iθu − tv)

= ||u||2 − t[(e−iθu) · v + v · (e−iθu)] + t2||v||2

= ||u||2 − t[(e−iθu) · v + (e−iθu) · v] + t2||v||2

= ||u||2 − 2Re(te−iθ(u · v)) + t2||v||2

= ||u||2 − 2Re(t|u · v|) + t2||v||2 = ||u||2 − 2t|u · v| + t2||v||2.

This is a nonnegative quadratic polynomial in the variable t, so it cannot have two

distinct real roots. Therefore, the discriminant 4|u · v|2 − 4||v||2||u||2 must be non-

positive; that is, |u · v|2 ≤ ||u||2||v||2. This is Cauchy’s inequality.
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A careful examination of the proof just presented shows that we did not explicitly

use the definition of the complex vector dot product, but only some of its properties.

This suggested to mathematicians the possibility of abstracting these properties and

using them to define a more general concept, an inner product, between objects more

general than complex vectors, such as infinite sequences, random variables, and ma-

trices. Such an inner product can then be used to define the norm of these objects

and thereby a distance between such objects. Once we have an inner product defined,

we also have available the notions of orthogonality and best approximation.

2.2 Orthogonality

Consider the problem of writing the two-dimensional real vector (3, −2) as a linear

combination of the vectors (1, 1) and (1, −1); that is, we want to find constants a and

b so that (3, −2) = a(1, 1) + b(1, −1). One way to do this, of course, is to compare

the components: 3 = a + b and −2 = a − b; we can then solve this simple system for

the a and b. In higher dimensions this way of doing it becomes harder, however. A

second way is to make use of the dot product and orthogonality.

The dot product of two vectors (x, y) and (w, z) in R2 is (x, y) · (w, z) = xw + yz.

If the dot product is zero then the vectors are said to be orthogonal; the two vectors

(1, 1) and (1, −1) are orthogonal. We take the dot product of both sides of (3, −2) =

a(1, 1) + b(1, −1) with (1, 1) to get

1 = (3, −2) · (1, 1) = a(1, 1) · (1, 1) + b(1, −1) · (1, 1) = a(1, 1) · (1, 1) + 0 = 2a,

so we see that a = 1

2
. Similarly, taking the dot product of both sides with (1, −1)

gives

5 = (3, −2) · (1, −1) = a(1, 1) · (1, −1) + b(1, −1) · (1, −1) = 2b,

so b = 5

2
. Therefore, (3, −2) = 1

2
(1, 1)+ 5

2
(1, −1). The beauty of this approach is that

it does not get much harder as we go to higher dimensions.

Since the cosine of the angle θ between vectors u and v is

cos θ = u · v/||u|| ||v||,

where ||u||2 = u · u, the projection of vector v on to the line through the origin

parallel to u is

Proj
u
(v) =

u · v
u · uu.

Therefore, the vector v can be written as

v = Proj
u
(v) + (v − Proj

u
(v)),
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where the first term on the right is parallel to u and the second one is orthogonal to

u.

How do we find vectors that are mutually orthogonal? Suppose we begin with

(1, 1). Take a second vector, say (1, 2), that is not parallel to (1, 1) and write it as we

did v earlier, that is, as a sum of two vectors, one parallel to (1, 1) and the second

orthogonal to (1, 1). The projection of (1, 2) onto the line parallel to (1, 1) passing

through the origin is

(1, 1) · (1, 2)

(1, 1) · (1, 1)
(1, 1) =

3

2
(1, 1) = (

3

2
,
3

2
)

so

(1, 2) = (
3

2
,
3

2
) + ((1, 2) − (

3

2
,
3

2
)) = (

3

2
,
3

2
) + (−1

2
,
1

2
).

The vectors (−1

2
, 1

2
) = −1

2
(1, −1) and, therefore, (1, −1) are then orthogonal to (1, 1).

This approach is the basis for the Gram-Schmidt method for constructing a set of

mutually orthogonal vectors.

3 Generalizing the Dot Product: Inner Products

The proof of Cauchy’s Inequality rests not on the actual definition of the complex

vector dot product, but rather on four of its most basic properties. We use these

properties to extend the concept of the complex vector dot product to that of inner

product. Later in this chapter we shall give several examples of inner products, applied

to a variety of mathematical objects, including infinite sequences, functions, random

variables, and matrices. For now, let us denote our mathematical objects by u and

v and the inner product between them as 〈u,v〉 . The objects will then be said to

be members of an inner-product space. We are interested in inner products because

they provide a notion of orthogonality, which is fundamental to best approximation

and optimal estimation.

3.1 Defining an Inner Product and Norm

The four basic properties that will serve to define an inner product are:

• 1: 〈u,u〉 ≥ 0, with equality if and only if u = 0;

• 2: 〈v,u〉 = 〈u,v〉 ;

• 3: 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉;
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• 4: 〈cu,v〉 = c〈u,v〉 for any complex number c.

The inner product is the basic ingredient in Hilbert space theory. Using the inner

product, we define the norm of u to be

||u|| =
√

〈u,u〉

and the distance between u and v to be ||u − v||.

The Cauchy-Schwarz inequality: Because these four properties were all we needed

to prove the Cauchy inequality for the complex vector dot product, we obtain the

same inequality whenever we have an inner product. This more general inequality is

the Cauchy-Schwarz inequality:

|〈u,v〉| ≤
√

〈u,u〉
√

〈v,v〉

or

|〈u,v〉| ≤ ||u|| ||v||,

with equality if and only if there is a scalar c such that v = cu. We say that the

vectors u and v are orthogonal if 〈u,v〉 = 0. We turn now to some examples.

3.2 Some Examples of Inner Products

Here are several examples of inner products.

• Inner product of infinite sequences: Let u = {un} and v = {vn} be infinite

sequences of complex numbers. The inner product is then

〈u,v〉 =
∑

unvn,

and

||u|| =

√

∑

|un|2.

The sums are assumed to be finite; the index of summation n is singly or doubly

infinite, depending on the context. The Cauchy-Schwarz inequality says that

|
∑

unvn| ≤
√

∑

|un|2
√

∑

|vn|2.
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• Inner product of functions: Now suppose that u = f(x) and v = g(x).

Then,

〈u,v〉 =
∫

f(x)g(x)dx

and

||u|| =

√

∫

|f(x)|2dx.

The integrals are assumed to be finite; the limits of integration depend on the

support of the functions involved. The Cauchy-Schwarz inequality now says

that

|
∫

f(x)g(x)dx| ≤
√

∫

|f(x)|2dx

√

∫

|g(x)|2dx.

• Inner product of random variables: Now suppose that u = X and v = Y

are random variables. Then,

〈u,v〉 = E(XY )

and

||u|| =
√

E(|X|2),

which is the standard deviation of X if the mean of X is zero. The expected

values are assumed to be finite. The Cauchy-Schwarz inequality now says that

|E(XY )| ≤
√

E(|X|2)
√

E(|Y |2).

If E(X) = 0 and E(Y ) = 0, the random variables X and Y are orthogonal if

and only if they are uncorrelated.

• Inner product of complex matrices: Now suppose that u = A and v = B

are complex matrices. Then,

〈u,v〉 = trace(B†A)

and

||u|| =
√

trace(A†A),

where the trace of a square matrix is the sum of the entries on the main diagonal.

As we shall see later, this inner product is simply the complex vector dot prod-

uct of the vectorized versions of the matrices involved. The Cauchy-Schwarz

inequality now says that

|trace(B†A)| ≤
√

trace(A†A)
√

trace(B†B).
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• Weighted inner product of complex vectors: Let u and v be complex

vectors and let Q be a Hermitian positive-definite matrix; that is, Q† = Q and

u†Qu > 0 for all nonzero vectors u. The inner product is then

〈u,v〉 = v†Qu

and

||u|| =
√

u†Qu.

We know from the eigenvector decomposition of Q that Q = C†C for some

matrix C. Therefore, the inner product is simply the complex vector dot product

of the vectors Cu and Cv. The Cauchy-Schwarz inequality says that

|v†Qu| ≤
√

u†Qu
√

v†Qv.

• Weighted inner product of functions: Now suppose that u = f(x) and

v = g(x) and w(x) > 0. Then define

〈u,v〉 =
∫

f(x)g(x)w(x)dx

and

||u|| =

√

∫

|f(x)|2w(x)dx.

The integrals are assumed to be finite; the limits of integration depend on

the support of the functions involved. This inner product is simply the inner

product of the functions f(x)
√

w(x) and g(x)
√

w(x). The Cauchy-Schwarz

inequality now says that

|
∫

f(x)g(x)w(x)dx| ≤
√

∫

|f(x)|2w(x)dx

√

∫

|g(x)|2w(x)dx.

Once we have an inner product defined, we can speak about orthogonality and best

approximation. Important in that regard is the orthogonality principle.

4 Best Approximation and the Orthogonality Prin-

ciple

Imagine that you are standing and looking down at the floor. The point B on the

floor that is closest to N , the tip of your nose, is the unique point on the floor such

that the vector from B to any other point A on the floor is perpendicular to the vector
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from N to B; that is, 〈BN, BA〉 = 0. This is a simple illustration of the orthogonality

principle. Whenever we have an inner product defined we can speak of orthogonality

and apply the orthogonality principle to find best approximations. For notational

simplicity, we shall consider only real inner product spaces.

4.1 Best Approximation

Let u and v1, ...,vN be members of a real inner-product space. For all choices of

scalars a1, ..., aN , we can compute the distance from u to the member a1v
1 + ...aNvN .

Then, we minimize this distance over all choices of the scalars; let b1, ..., bN be this

best choice.

The distance squared from u to a1v
1 + ...aNvN is

||u − (a1v
1 + ...aNvN)||2 = 〈u − (a1v

1 + ...aNvN),u − (a1v
1 + ...aNvN)〉,

= ||u||2 − 2〈u,
N

∑

n=1

anv
n〉 +

N
∑

n=1

N
∑

m=1

anam〈vnvm〉.

Setting the partial derivative with respect to an equal to zero, we have

〈u,vn〉 =
N

∑

m=1

am〈vmvn〉.

With a = (a1, ..., aN)T ,

d = (〈u,v1〉, ..., 〈u,vN〉)T

and V the matrix with entries

Vmn = 〈vmvn〉,

we find that we must solve the system of equations V a = d. When the vectors vn

are mutually orthogonal and each has norm equal to one, then V = I, the identity

matrix, and the desired vector a is simply d.

4.2 The Orthogonality Principle

The orthogonality principle provides another way to view the calculation of the best

approximation: let the best approximation of u be the vector

b1v
1 + ...bNvN .

Then

〈u − b1v
1 + ...bNvN ,vn〉 = 0,
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for n = 1, 2, ..., N . This leads directly to the system of equations

d = V b,

which, as we just saw, provides the optimal coefficients.

To see why the orthogonality principle is valid, fix a value of n and consider the

problem of minimizing the distance

||u − (b1v
1 + ...bNvN + αvn)||

as a function of α. Writing the norm squared in terms of the inner product, expanding

the terms, and differentiating with respect to α, we find that the minimum occurs

when

α = 〈u − b1v
1 + ...bNvN ,vn〉.

But we already know that the minimum occurs when α = 0. This completes the

proof of the orthogonality principle.

5 Gram-Schmidt Orthogonalization

We have seen that the best approximation is easily calculated if the vectors vn are

mutually orthogonal. But how to we get such a mutually orthogonal set, in general?

The Gram-Schmidt Orthogonalization Method is one way to proceed.

Let {v1, ...,vN} be a linearly independent set of vectors in the space RM , where

N ≤ M . The Gram-Schmidt method uses the vn to create an orthogonal basis

{u1, ...,uN} for the span of the vn. Begin by taking u1 = v1. For j = 2, ..., N , let

uj = vj − u1 · vj

u1 · u1
u1 − ... − uj−1 · vj

uj−1 · uj−1
uj−1. (5.1)

One obvious problem with this approach is that the calculations become increasingly

complicated and lengthy as the j increases. In many of the important examples

of orthogonal functions that we study in connection with Sturm-Liouville problems,

there is a two-term recursive formula that enables us to generate the next orthogonal

function from the two previous ones.
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