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The Basic Problem

We want to reconstruct (estimate, approximate) a function
F : RJ → C, given limited noisy measurements pertaining to F ,
a (perhaps) simplified model of the measuring process, and
some vague prior knowledge of what F should be. There are
several issues to address:

1. continuous vs discrete F ;
2. physically realistic model vs easily computed estimate;
3. linear vs nonlinear data;
4. deterministic vs stochastic approach;
5. small vs large problem;
6. slow vs fast reconstruction.

Many such problems come from “remote sensing” : what we
want is not the same as what we can measure.



An Urns Model for Remote Sensing

We have J urns, each containing marbles of various colors. I
know the distribution of colors for each urn. There is a box with
many slips of paper, each one marked with one of the urn
numbers j = 1, ..., J. At each of many trials, my assistant
removes one slip of paper from the box, and without revealing
the urn number to me, takes one marble from the indicated urn
and announces the color. My data is a long list of colors, from
which I must estimate the distribution of the numbers j in the
box. Urns with nearly the same content are harder to
distinguish in a small number of trials: this is a resolution
problem.



The Urn Model and Positron Emission Tomography

Instead of urns we have pixels numbered j = 1, ..., J. Without
telling me, nature selects a pixel and has it release a positron. I
learn only the line of response (LOR), which is like learning
only the color of the drawn marble. I know the probability that
an emission at the j th pixel will lead to any particular LOR, just
like I know the probability that the j th urn will yield any
particular color of marble. From the list of LORs I must estimate
the number of times each pixel was chosen by nature, thereby
estimating the radionuclide concentration in each pixel. Nearby
pixels tend to have the same LOR probabilities, making them
hard to distinguish with relatively few emissions.



Fourier Transform as Data

Figure : Far-field Measurements. The distance from x to P is
approximately D − x cos θ.



Far-field Measurements

Each point x in [−L,L] sends out the signal

F (x) exp(iωt).

The known frequency ω is the same for each x . We must
estimate the function F (x), for |x | ≤ L. What a point P in the
far-field receives from each x is approximately

F (x) exp
(

ix
ω cos(θ)

c

)
,

for c the propagation speed, so our measurement at P provides
an approximation of∫ L

−L
F (x) exp

(
ix
ω cos(θ)

c

)
dx .

If we have
ω cos(θ)

c
=

nπ
L
,

then we have the nth Fourier coefficient of the function F (x).



The Limited-Data Problem

We can have
cos(θ) =

nπc
ωL

= n
λ

2L
,

where λ is the wavelength, if and only if

|n| ≤ 2L
λ
,

so we can measure only a limited number of the Fourier
coefficients of F (x). Note that the upper bound on |n| is the
length of the interval [−L,L] in units of wavelength.



Can We Get More Data?

Clearly, we can take our measurements at any point P on the
circle, not just at those satisfying the equation

cos(θ) =
nπc
ωL

= n
λ

2L
.

These measurements provide additional information about
F (x), but won’t be additional Fourier coefficients for the Fourier
series of F (x) on [−L,L]. How can we use these additional
measurements to improve our estimate of F (x)?



Over-Sampled Data

Suppose that we over-sample; let us take measurements at
points P such that the associated angle θ satisfies

cos(θ) =
nπc
ωKL

,

where K > 1 is a positive integer, instead of

cos(θ) =
nπc
ωL

.

Now we have Fourier coefficients for the function G(x) that is
F (x) for |x | ≤ L, and is zero on the remainder of the interval
[−KL,KL].



Using Support Information

Given our original limited data, we can calculate the orthogonal
projection of the zero function onto the subset of all functions
on [−L,L] consistent with this data; this is the minimum-norm
estimate of F (x), also called the discrete Fourier transform
(DFT) estimate, shown in the second graph below.
If we use the over-sampled data as Fourier coefficients for G(x)
on the interval [−KL,KL], we find that we haven’t improved our
estimate of F (x) for |x | ≤ L.
Instead, we calculate the orthogonal projection of the zero
function onto the subset of all functions on [−L,L] that are
consistent with the over-sampled data. This is sometimes
called the modified DFT (MDFT) estimate. The top graph below
shows the MDFT for a case of K = 30.



Two Minimum-Norm Estimates

Figure : The non-iterative band-limited extrapolation method (MDFT)
(top) and the DFT (bottom); 30 times over-sampled.



Over-Sampled Fourier-Transform Data

For the simulation in the figure above, f (x) = 0 for |x | > L. The
top graph is the minimum-norm estimator, with respect to the
Hilbert space L2(−L,L), called the modified DFT (MDFT); the
bottom graph is the DFT, the minimum-norm estimator with
respect to the Hilbert space L2(−30L,30L), shown only for
[−L,L]. The MDFT is a non-iterative variant of
Gerchberg-Papoulis band-limited extrapolation.



Using Orthogonal Projection

In both of the examples above we see minimum two-norm
solutions consistent with the data. These reconstructions
involve the orthogonal projection of the zero vector onto the set
of solutions consistent with the data. The improvements
illustrate the advantage gained by the selection of an
appropriate ambient space within which to perform the
projection. The constraints of data consistency define a subset
onto which we project, and the distance to zero is the function
being minimized, subject to the constraints. This leads to the
more general problem of optimizing a function, subject to
constraints.



The Discrete Problem

From now on, we treat the discrete case, in which the object to
be estimated is a vector x in RJ . Our data is insufficient to
determine a unique x . One approach is to select a prior
estimate p of x and to project p onto the set of vectors
consistent with the data. This approach is equivalent to
minimizing a distance function over the constraint set of all
data-consistent vectors. We can incorporate other prior
knowledge about x in the constraint set, or in the choice of the
distance function to be minimized.



Optimization

The basic problem we consider here is to minimize a
real-valued function

f : X → R,

over a subset C ⊆ X , where X is an arbitrary set. With

ιC(x) = 0, for x ∈ C, and +∞, otherwise,

we can rewrite the problem as minimizing f (x) + ιC(x), over all
x ∈ X .



Constraints

We want our reconstruction to be at least approximately
consistent with the measured data. We may know that the
entries of x are non-negative. When x is a vectorized image,
we may have prior knowledge of its general appearance (a
head slice, for example). If x is an extrapolated band-limited
time series, we may have prior knowledge of the extent of the
band.



Representing Constraints

Prior knowledge of general properties of x can be incorporated
through the choice of the ambient space. Other constraints,
such as the measured data, tell us that x lies in a subset C of
the ambient space.



An Example: Linear Functional Data

Suppose that the measured data vector b is linear in x , with
Ax = b under-determined. The minimum two-norm solution
minimizes

J∑
j=1

|xj |2,

subject to Ax = b. Let the vector p with entries pj > 0 be a prior
estimate of the magnitudes |xj |. The minimum weighted
two-norm solution minimizes

J∑
j=1

|xj |2/pj ,

subject to Ax = b.



Using Prior Knowledge

Figure : Minimum Two-Norm and Minimum Weighted Two-Norm
Reconstruction.



Using Optimization

When the constraint set C is relatively small, any member of C
may provide an adequate solution to the problem. More likely,
C is relatively large, and we may choose to determine x by
minimizing a cost function over the set C.



An Example- Systems of Linear Equations

Let the data b pertaining to x be linear, so that Ax = b for some
matrix A.

1. When there are infinitely many solutions, we may select
x to minimize a norm or other suitable distance measure;
2. When there are no solutions, we may select a
least-squares or other approximate solution;
3. When the data b is noisy, we may select a regularized
solution.



Barrier Functions: An Example

The problem is to minimize the function

f (x) = f (x1, x2) = x2
1 + x2

2 , subject to x1 + x2 ≥ 1.

For each positive integer k , the vector xk with entries

xk
1 = xk

2 =
1
4

+
1
4

√
1 +

4
k

minimizes the function

Bk (x) = x2
1 + x2

2 −
1
k

log(x1 + x2 − 1) = f (x) +
1
k

b(x).

Notice that xk
1 + xk

2 > 1, so each xk satisfies the constraint. As
k → +∞, xk converges to (1

2 ,
1
2), which solves the original

problem.



Penalty Functions: An Example

The problem is to minimize the function

f (x) = (x + 1)2, subject to x ≥ 0.

Our penalty function is

p(x) = x2, for x ≤ 0, p(x) = 0, for x > 0.

At the k th step we minimize

f (x) + kp(x)

to get xk = −1
k+1 , which converges to the right answer, x∗ = 0,

as k →∞. The limit x∗ satisfies the constraint, but the xk do
not; this is an exterior-point method.



Auxiliary-Function Methods

The Problem: to minimize a function f : X → (−∞,∞], over a
non-empty subset C of X , where X is an arbitrary set.

Auxiliary-Function Methods: At the k th step of an
auxiliary-function (AF) algorithm we minimize a function

Gk (x) = f (x) + gk (x)

over x ∈ C to get xk . Auxiliary functions gk have the properties
1. gk (x) ≥ 0, for all x ∈ C;
2. gk (xk−1) = 0.



Main Theorem for Auxiliary-Function Algorithms

We have the following theorem.

Theorem

Let {xk} be generated by an AF algorithm. Then the sequence
{f (xk )} is non-increasing.

Proof: We have

f (xk−1) = Gk (xk−1) ≥ Gk (xk ) ≥ f (xk ).

Auxiliary-function algorithms are closely related to sequential
unconstrained minimization (SUM) methods. Several SUM
methods, such as barrier-function and penalty-function
methods, can be reformulated as AF methods.



GOALS:

The vector xk minimizes

Gk (x) = f (x) + gk (x), over x ∈ C.

1. We would like for the sequence {xk} to converge to
some x∗ ∈ C that solves the problem. This requires a
topology on X .
2. Failing that, we would like the sequence {f (xk )} to
converge to

d = inf{f (x)|x ∈ C}.

3. At the very least, we want the sequence {f (xk )} to be
non-increasing.



SUMMA

An AF algorithm in said to be in the SUMMA class if

Gk (x)−Gk (xk ) ≥ gk+1(x) ≥ 0,

for all x ∈ C.

Theorem

For algorithms in the SUMMA class, the sequence {f (xk )} is
non-increasing, and we have

{f (xk )} ↓ d = inf{f (x)|x ∈ C}.



SUMMA Proof:

If f (xk ) ≥ d∗ > f (z) ≥ d for all k , then

gk (z)− gk+1(z) ≥ gk (z)− (Gk (z)−Gk (xk ))

= f (xk )− f (z) + gk (xk ) ≥ d∗ − f (z) > 0.

But the decreasing non-negative sequence {gk (z)} cannot
have its successive differences bounded away from zero.



Examples of SUMMA

A number of well known algorithms either are in the SUMMA
class, or can be reformulated to be in the SUMMA class,
including

1. Barrier-function methods;
2. Penalty-function methods;
3. Forward-backward splitting (the CQ algorithm, projected
Landweber, projected gradient descent);
4. Alternating minimization with the 5-point property
(simultaneous MART);
5. Certain cases of the EM algorithm;
6. Proximal minimization with Bregman distances;
7. Statistical majorization minimization.



Barrier-Function Methods

A function b : C → [0,+∞] is a barrier function for C, that is, b
is finite on C, b(x) = +∞, for x not in C, and, for topologized X ,
has the property that b(x)→ +∞ as x approaches the
boundary of C. At the k th step of the iteration we minimize

f (x) +
1
k

b(x)

to get xk . Equivalently, we minimize

Gk (x) = f (x) + gk (x),

with

gk (x) = [(k − 1)f (x) + b(x)]− [(k − 1)f (xk−1) + b(xk−1)].

Then
Gk (x)−Gk (xk ) = gk+1(x).



Penalty-Function Methods

We select a non-negative function p : X → R with the property
that p(x) = 0 if and only if x is in C and then, for each positive
integer k , we minimize

f (x) + kp(x),

or, equivalently,

p(x) +
1
k

f (x),

to get xk . Most, but not all, of what we need concerning
penalty-function methods can then be obtained from the
discussion of barrier-function methods.



Bregman Distances

Let f : Z ⊆ RJ → R be convex on its domain Z , and
differentiable on the interior U of Z . For x ∈ Z and y ∈ U, the
Bregman distance from y to x is

Df (x , y) = f (x)− f (y)− 〈∇f (y), x − y〉.

Then, because of the convexity of f , Df (x , y) ≥ 0 for all x and y .

The Euclidean distance is the Bregman distance for

f (x) =
1
2
‖x‖22.



Proximal Minimization Algorithms (PMA)

Let f : C ⊆ RJ → R be convex on C and differentiable on the
interior U of C. At the k th step of a proximal minimization (prox
min) algorithm (PMA), we minimize the function

Gk (x) = f (x) + Dh(x , xk−1),

to get xk . The function gk (x) = Dh(x , xk−1) is the Bregman
distance associated with the Bregman function h. We assume
that each xk lies in U, whose closure is the set C. We have

Gk (x)−Gk (xk ) = Df (x , xk ) + Dh(x , xk ) ≥ Dh(x , xk ) = gk+1(x).



Another Job for the PMA

Suppose that

f (x) =
1
2
‖Ax − b‖22,

with AAT invertible. If the PMA sequence {xk} converges to
some x∗ and ∇h(x0) is in the range of AT then x∗ minimizes
h(x) over all x with Ax = b.



A Question About the PMA

Suppose that xk minimizes

f (x) + Dh(x , xk−1),

and {xk} converges to x∗. We know that x∗ minimizes f (x)
over all x in the closure of the essential domain of h. Let M be
the set of all such minimizers. Does x∗ also minimize h(z) over
all z in M? In general, the answer is no; Dh does not determine
h uniquely. What if h(x) = Dh(x , x0)? There are several
examples, using both Euclidean and Kullback-Leibler distances,
in which the answer is yes.



Obstacles in the PMA

To obtain xk in the PMA we must solve the equation

∇f (xk ) +∇h(xk ) = ∇h(xk−1).

This is usually not easy. However, we can modify the PMA to
overcome this obstacle. This modified PMA is an interior-point
algorithm that we have called the IPA.



The IPA

We still get xk by minimizing

Gk (x) = f (x) + Dh(x , xk−1).

With
a(x) = h(x) + f (x),

we find that xk solves

∇a(xk ) = ∇a(xk−1)−∇f (xk−1).

Therefore, we look for a(x) so that
1. h(x) = a(x)− f (x) is convex;
2. obtaining xk from ∇a(xk ) is easy now.



The IPA and Constraints

In the PMA, h can be chosen to force xk to be in U, the interior
of the domain of h. In the IPA it is a(x) that we select, and
incorporating the constraints within a(x) may not be easy.



An Example of the IPA: Projected Gradient Descent

Let f be convex and differentiable on RJ , with ∇f L-Lipschitz,
and 0 < γ ≤ 1

L . Let C ⊆ RJ be closed, nonempty, and convex.
Let

a(x) =
1

2γ
‖x‖22.

At the k th step we minimize

Gk (x) = f (x) +
1

2γ
‖x − xk−1‖22 − Df (x , xk−1),

over x ∈ C, obtaining

xk = PC(xk−1 − γ∇f (xk−1));

PC is the orthogonal projection onto C.



Projected Gradient Descent as SUMMA

The auxiliary function gk (x) can be written as

gk (x) =
1

2γ
‖x − xk−1‖22 − Df (x , xk−1) = Dh(x , xk−1),

where h(x) is the convex differentiable function

h(x) = a(x)− f (x) =
1

2γ
‖x‖22 − f (x).

Then

Gk (x)−Gk (xk ) = Da(x , xk ) ≥ Dh(x , xk ) = gk+1(x).



The Projected Landweber Algorithm as IPA

We want to

minimize f (x) =
1
2
‖Ax − b‖22, over x ∈ C.

We select γ so that 0 < γ < 1
ρ(AT A) and

a(x) =
1

2γ
‖x‖22.

We have
Df (x , y) =

1
2
‖Ax − Ay‖22,

and we minimize

Gk (x) = f (x) +
1

2γ
‖x − xk−1‖22 −

1
2
‖Ax − Axk−1‖22

over x in C to get

xk = PC(xk−1 − γAT (Axk−1 − b)).



Majorization Minimization or Optimization Transfer

Majorization minimization or optimization transfer is used in
statistical optimization.

For each fixed y , let g(x |y) ≥ f (x), for all x , and g(y |y) = f (y).
At the k th step we minimize g(x |xk−1) to get xk . This statistical
method is equivalent to minimizing

f (x) + D(x , xk−1) = f (x) + gk (x),

where
gk (x) = D(x , xk−1),

for some distance measure D(x , z) ≥ 0, with D(z, z) = 0.



The Method of Auslander and Teboulle

The method of Auslander and Teboulle is a particular example
of an MM method that is not in SUMMA. At the k th step of their
method

minimize Gk (x) = f (x) + D(x , xk−1) to get xk .

They assume that D has an associated induced proximal
distance H(a,b) ≥ 0, finite for a and b in C, with H(a,a) = 0
and

〈∇1d(b,a), c − b〉 ≤ H(c,a)− H(c,b),

for all c in C. Here ∇1D(x , y) denotes the x gradient. We do
have {f (xk )} → d . If D = Dh, then H = Dh also; Bregman
distances are self-proximal.



Projected Gradient Descent (PGD) Revisited

At the k th step of the PGD we minimize

Gk (x) = f (x) +
1

2γ
‖x − xk−1‖22 − Df (x , xk−1),

over x ∈ C. Equivalently, we minimize the function

ιC(x) + f (x) +
1

2γ
‖x − xk−1‖22 − Df (x , xk−1),

over all x in RJ , with ιC(x) = 0 for x ∈ C and ιC(x) = +∞
otherwise. Now the objective function is a sum of two functions,
one non-differentiable. The forward-backward splitting method
then applies.



Moreau’s Proximity Operators

Let f : RJ → R be convex. For each z ∈ RJ the function

mf (z) := min
x
{f (x) +

1
2
‖x − z‖22}

is minimized by a unique x = proxf (z). Moreau’s proximity
operator proxf extends the notion of orthogonal projection onto
a closed convex set: if f (x) = ιC(x) then proxf (x) = PC(x). Also

x = proxf (z) iff z − x ∈ ∂f (x) iff x = J∂f (z),

where J∂f (z) is the resolvent of the set-valued operator ∂f .



Forward-Backward Splitting

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2
differentiable, and ∇f2 L-Lipschitz continuous. The iterative step
of the FBS algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
,

which can be obtained by minimizing

Gk (x) = f (x) +
1

2γ
‖x − xk−1‖22 − Df2(x , xk−1).

Convergence of the sequence {xk} to a solution can be
established, if γ is chosen to lie within the interval (0,1/L].



Projected Gradient Descent as FBS

To put the projected gradient descent method into the
framework of the forward-backward splitting we let

f1(x) = ιC(x),

the indicator function of the set C, which is zero for x ∈ C and
+∞ otherwise. Then we minimize the function

f1(x) + f2(x) = ιC(x) + f (x)

over all x ∈ RJ .



The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed
convex sets. The split feasibility problem (SFP) is to find x in
C such that Ax is in Q. The function

f2(x) =
1
2
‖PQAx − Ax‖22

is convex and differentiable, ∇f2 is ρ(AT A)-Lipschitz, and

∇f2(x) = AT (I − PQ)Ax .

We want to minimize the function f (x) = ιC(x) + f2(x), over all
x . The FBS algorithm gives the iterative step for the CQ
algorithm; with 0 < γ ≤ 1/L,

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
.



Alternating Minimization

Suppose that P and Q are arbitrary non-empty sets and the
function Θ(p,q) satisfies −∞ < Θ(p,q) ≤ +∞, for each p ∈ P
and q ∈ Q.
The general AM method proceeds in two steps: we begin with
some q0, and, having found qk−1, we

1. minimize Θ(p,qk−1) over p ∈ P to get p = pk , and then
2. minimize Θ(pk ,q) over q ∈ Q to get q = qk .

The 5-point property of Csiszár and Tusnády is

Θ(p,q) + Θ(p,qk−1) ≥ Θ(p,qk ) + Θ(pk ,qk−1).



AM as SUMMA

When the 5-point property holds for AM, the sequence
{Θ(pk ,qk )} converges to

d = inf
p,q

Θ(p,q).

For each p ∈ P, define q(p) to be some member of Q for which
Θ(p,q(p)) ≤ Θ(p,q), for all q ∈ Q; then q(pk ) = qk . Define

f (p) = Θ(p,q(p)).

At the k th step of AM we minimize

Gk (p) = Θ(p,qk−1) = f (p) + gk (p),

where
gk (p) = Θ(p,qk−1)−Θ(p,q(p)).

The 5-point property is then the SUMMA condition

Gk (p)−Gk (pk ) ≥ gk+1(p) ≥ 0.



Kullback-Leibler Distances

For a > 0 and b > 0, the Kullback-Leibler distance from a to
b is

KL(a,b) = a log a− a log b + b − a,

with KL(0,b) = b, and KL(a,0) = +∞. The KL distance is
extended to non-negative vectors entry-wise.

Let y ∈ RI be positive, and P an I by J matrix with non-negative
entries. The simultaneous MART (SMART) algorithm
minimizes KL(Px , y), and the EMML algorithm minimizes
KL(y ,Px), both over all non-negative x ∈ RJ . Both algorithms
can be viewed as particular cases of alternating minimization.



The General EM Algorithm

The general EM algorithm is essentially non-stochastic. Let Z
be an arbitrary set. We want to maximize

L(z) =

∫
b(x , z)dx , over z ∈ Z ,

where b(x , z) : RJ × Z → [0,+∞]. Given zk−1, we take
f (z) = −L(z) and

minimize Gk (z) = f (z) +

∫
KL(b(x , zk−1),b(x , z))dx to get zk .

Since
gk (z) =

∫
KL(b(x , zk−1),b(x , z))dx ≥ 0,

for all z ∈ Z and gk (zk−1) = 0, we have an AF method.



KL Projections

For a fixed x , minimizing the distance KL(z, x) over z in the
hyperplane

Hi = {z|(Pz)i = yi}

generally cannot be done in closed form. However, assuming
that

∑I
i=1 Pij = 1, the weighted KL projections z i = Ti(x)

onto hyperplanes Hi obtained by minimizing

J∑
j=1

PijKL(zj , xj)

over z in Hi , are given in closed form by

z i
j = Ti(x)j = xj

yi

(Px)i
, for j = 1, ..., J.



SMART and EMML

Having found xk , the next vector in the SMART sequence is

xk+1
j =

I∏
i=1

(Ti(xk )j)
Pij ,

so xk+1 is a weighted geometric mean of the Ti(xk ).

For the EMML algorithm the next vector in the EMML
sequence is

xk+1
j =

I∑
i=1

PijTi(xk )j ,

so xk+1 is a weighted arithmetic mean of the Ti(xk ).



The MART

The MART algorithm has the iterative step

xk+1
j = xk

j (yi/(Pxk )i)
Pij m

−1
i ,

where i = k(mod I) + 1 and

mi = max{Pij |j = 1,2, ..., J}.

We can express the MART in terms of the weighted KL
projections Ti(xk );

xk+1
j = (xk

j )1−Pij m
−1
i (Ti(xk )j)

Pij m
−1
i .

We see then that the iterative step of the MART is a relaxed
weighted KL projection onto Hi , and a weighted geometric
mean of the current xk

j and Ti(xk )j .



The EMART

The iterative step of the EMART algorithm is

xk+1
j = (1− Pijm−1

i )xk
j + Pijm−1

i Ti(xk )j .

We can express the EMART in terms of the weighted KL
projections Ti(xk );

xk+1
j = (1− Pijm−1

i )xk
j + Pijm−1

i Ti(xk )j .

We see then that the iterative step of the EMART is a relaxed
weighted KL projection onto Hi , and a weighted arithmetic
mean of the current xk

j and Ti(xk )j .



MART and EMART Compared

When there are non-negative solutions of the system y = Px ,
the MART sequence {xk} converges to the solution x that
minimizes KL(x , x0). The EMART sequence {xk} also
converges to a non-negative solution, but nothing further is
known about this solution. One advantage that the EMART has
over the MART is the substitution of multiplication for
exponentiation.



SMART as SUMMA

At the k th step of the SMART we minimize the function

Gk (x) = KL(Px , y) + KL(x , xk−1)− KL(Px ,Pxk−1)

to get xk with entries

xk
j = xk−1

j exp
( I∑

i=1

Pij log(yi/(Pxk−1)i)
)
.

We assume that P and x have been rescaled so that∑I
i=1 Pij = 1, for all j . Then

gk (x) = KL(x , xk−1)− KL(Px ,Pxk−1)) ≥ 0.

and
Gk (x)−Gk (xk ) = KL(x , xk ) ≥ gk+1(x) ≥ 0.



SMART as IPA

With
f (x) = KL(Px , y),

the associated Bregman distance is

Df (x , z) = KL(Px ,Pz).

With

a(x) =
J∑

j=1

xj log(xj)− xj ,

we have

Da(x , z) = KL(x , z) ≥ KL(Px ,Pz) = Df (x , z).

Therefore, h(x) = a(x)− f (x) is convex.



Convergence of the FBS

For each k = 1,2, ... let

Gk (x) = f (x) +
1

2γ
‖x − xk−1‖22 − Df2(x , xk−1),

where

Df2(x , xk−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x − xk−1〉.
Here Df2(x , y) is the Bregman distance formed from the
function f2. The auxiliary function

gk (x) =
1

2γ
‖x − xk−1‖22 − Df2(x , xk−1)

can be rewritten as

gk (x) = Dh(x , xk−1),

where
h(x) =

1
2γ
‖x‖22 − f2(x).



Proof (p.2):

Therefore, gk (x) ≥ 0 whenever h(x) is a convex function. We
know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x − y〉 ≥ 0,

for all x and y . This is equivalent to

1
γ
‖x − y‖22 − 〈∇f2(x)−∇f2(y), x − y〉 ≥ 0.

Since ∇f2 is L-Lipschitz, the inequality holds for 0 < γ ≤ 1/L.



Proof (p.3):

Lemma

The xk that minimizes Gk (x) over x is given by

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
.

Proof: We know that xk minimizes Gk (x) if and only if

0 ∈ ∇f2(xk ) +
1
γ

(xk − xk−1)−∇f2(xk ) +∇f2(xk−1) + ∂f1(xk ),

or, equivalently,(
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(xk ).

Consequently,

xk = proxγf1(xk−1 − γ∇f2(xk−1)).



Proof (p.4):

Theorem

The sequence {xk} converges to a minimizer of the function
f (x), whenever minimizers exist.

Proof: Gk (x)−Gk (xk ) = 1
2γ ‖x − xk‖22 +(

f1(x)− f1(xk )− 1
γ
〈(xk−1 − γ∇f2(xk−1))− xk , x − xk 〉

)
≥ 1

2γ
‖x − xk‖22 ≥ gk+1(x),

because

(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(xk ).



Proof (p.5):

Therefore,

Gk (x)−Gk (xk ) ≥ 1
2γ
‖x − xk‖22 ≥ gk+1(x),

and the iteration fits into the SUMMA class. Now let x̂ minimize
f (x) over all x . Then

Gk (x̂)−Gk (xk ) = f (x̂) + gk (x̂)− f (xk )− gk (xk )

≤ f (x̂) + Gk−1(x̂)−Gk−1(xk−1)− f (xk )− gk (xk ),

so that (
Gk−1(x̂)−Gk−1(xk−1)

)
−
(

Gk (x̂)−Gk (xk )
)

≥ f (xk )− f (x̂) + gk (xk ) ≥ 0.



Proof (p.6):

Therefore, the sequence {Gk (x̂)−Gk (xk )} is decreasing and
the sequences {gk (xk )} and {f (xk )− f (x̂)} converge to zero.
From

Gk (x̂)−Gk (xk ) ≥ 1
2γ
‖x̂ − xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we
may select a subsequence {xkn} converging to some x∗∗, with
{xkn−1} converging to some x∗, and therefore
f (x∗) = f (x∗∗) = f (x̂). Replacing the generic x̂ with x∗∗, we find
that {Gk (x∗∗)−Gk (xk )} is decreasing to zero. We conclude
that the sequence {‖x∗ − xk‖22} converges to zero, and so {xk}
converges to x∗. This completes the proof of the theorem.



Summary

1. Auxiliary-function methods can be used to impose
constraints, but also to provide closed-form iterations.
2. When the SUMMA condition holds, the iterative
sequence converges to the infimum of f (x) over C.
3. A wide variety of iterative methods fall into the SUMMA
class.
4. The alternating minimization method is an
auxiliary-function method and the 5-point property is
identical to the SUMMA condition.
6. The SUMMA framework helps in proving convergence.



The End

THE END


