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Chapter 1

Introduction

In graduate school and for the first few years as an assistant professor I con-
centrated on pure mathematics, mainly topology and functional analysis.
Around 1979 I was drawn, largely by accident, into signal processing, col-
laborating with friends at the Naval Research Laboratory who were working
on SONAR. I quickly found out that the intersection of the mathematics I
knew and that they knew was nearly empty. For the last twenty-five years
I have been trying to remedy that situation. In writing this book I have
tried to gather together in one place the mathematics I wish I had known in
1979 but did not, in the hope that it will be helpful to others undertaking
a similar journey.

The situations of interest to us here can be summarized as follows: the
data has been obtained through some form of sensing; physical models,
often simplified, describe how the data we have obtained relates to the
information we seek; there usually isn’t enough data and what we have
is corrupted by noise and other distortions. Although applications differ
from one another in their details they often make use of a common core
of mathematical ideas; for example, the Fourier transform and its variants
play an important role in many areas of signal and image processing, as
do the language and theory of matrix analysis, iterative optimization and
approximation techniques and the basics of probability and statistics. This
common core provides the subject matter for this text. Applications of
the core material to tomographic medical imaging, optical imaging and
acoustic signal processing are included.

The term signal processing is used here in a somewhat restrictive sense
to describe the extraction of information from measured data. I believe
strongly that to get information out we must put information in. How to
do this is one of the main topics of the book.

This text is designed to provide the necessary mathematical background
to understand and employ signal processing techniques in an applied en-
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2 CHAPTER 1. INTRODUCTION

vironment. The emphasis is on a small number of fundamental problems
and essential tools, as well as on applications. Certain topics that are com-
monly included in textbooks are touched on only briefly or in exercises or
not mentioned at all. Other topics not usually considered to be part of
signal processing, but which are becoming increasingly important, such as
iterative optimization methods, are included. The book, then, is a rather
personal view of the subject and reflects the author’s interests.

The term signal is not meant to imply a restriction to functions of a
single variable; indeed most of what we discuss in this text applies equally
to functions of one and several variables and therefore to image processing.
However, there are special problems that arise in image processing, such
as edge detection, and special techniques to deal with such problems; we
shall not consider such techniques in this text. Topics discussed include the
following: Fourier series and transforms in one and several variables; appli-
cations to acoustic and EM propagation models, transmission and emission
tomography and image reconstruction; sampling and the limited data prob-
lem; matrix methods, singular value decomposition and data compression;
optimization techniques in signal and image reconstruction from projec-
tions; autocorrelations and power spectra; high resolution methods; detec-
tion and optimal filtering; eigenvector-based methods for array processing
and statistical filtering.



Chapter 2

Complex Numbers

It is standard practice in signal processing to employ complex numbers
whenever possible. One of the main reasons for doing this is that it en-
ables us to represent the important sine and cosine functions in terms of
complex exponential functions and to replace trigonometric identities with
the somewhat simpler rules for the manipulation of exponents.

The complex numbers are the points in the x, y-plane: the complex
number z = (a, b) is identified with the point in the plane having a = Re(z),
the real part of z, for its x-coordinate and b = Im(z), the imaginary part of
z, for its y-coordinate. We call (a, b) the rectangular form of the complex
number z. The conjugate of the complex number z is z = (a,−b). We
can also represent z in its polar form: let the magnitude of z be |z| =√
a2 + b2 and the phase angle of z, denoted θ(z), be the angle in [0, 2π)

with cos θ(z) = a/|z|. Then the polar form for z is

z = (|z| cos θ(z), |z| sin θ(z)).

Any complex number z = (a, b) for which the imaginary part Im(z) = b
is zero is identified with (treated as the same as) its real part Re(z) = a;
that is, we identify a and z = (a, 0). These real complex numbers lie
along the x-axis in the plane, the so-called real line. If this were the whole
story complex numbers would be unimportant; but they are not. It is the
arithmetic associated with complex numbers that makes them important.

We add two complex numbers using their rectangular representations:

(a, b) + (c, d) = (a+ c, b+ d).

This is the same formula used to add two-dimensional vectors. We multiply
complex numbers more easily when they are in their polar representations:
the product of z and w has |z||w| for its magnitude and θ(z)+θ(w) modulo
2π for its phase angle. Notice that the complex number z = (0, 1) has
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4 CHAPTER 2. COMPLEX NUMBERS

θ(z) = π/2 and |z| = 1, so z2 = (−1, 0), which we identify with the real
number −1. This tells us that within the realm of complex numbers the
real number −1 has a square root, i = (0, 1); note that −i = (0,−1) is also
a square root of −1.

To multiply z = (a, b) = a + ib by w = (c, d) = c + id in rectangular
form we simply multiply the binomials

(a+ ib)(c+ id) = ac+ ibc+ iad+ i2bd

and recall that i2 = −1 to get

zw = (ac− bd, bc+ ad).

If (a, b) is real, that is, if b = 0, then (a, b)(c, d) = (a, 0)(c, d) = (ac, ad),
which we also write as a(c, d). Therefore, we can rewrite the polar form for
z as

z = |z|(cos θ(z), sin θ(z)) = |z|(cos θ(z) + i sin θ(z)).

We will have yet another way to write the polar form of z when we consider
the complex exponential function.

Exercise 1: Derive the formula for dividing one complex number in rect-
angular form by another (non-zero) one.

Exercise 2: Show that for any two complex numbers z and w we have

|zw| ≥ 1

2
(zw + zw). (2.1)

Hint: Write |zw| as |zw|.

Exercise 3: Show that, for any constant a with |a| 6= 1, the function

G(z) =
z − a

1 − az

has |G(z)| = 1 whenever |z| = 1.



Chapter 3

Complex Exponentials

The most important function in signal processing is the complex-valued
function of the real variable x defined by

h(x) = cos(x) + i sin(x). (3.1)

For reasons that will become clear shortly, this function is called the com-
plex exponential function. Notice that the magnitude of the complex num-
ber h(x) is always equal to one, since cos2(x) + sin2(x) = 1 for all real x.
Since the functions cos(x) and sin(x) are 2π-periodic, that is, cos(x+2π) =
cos(x) and sin(x+2π) = sin(x) for all x, the complex exponential function
h(x) is also 2π-periodic.

In calculus we encounter functions of the form g(x) = ax, where a > 0
is an arbitrary constant. These functions are the exponential functions, the
most well known of which is the function g(x) = ex. Exponential functions
are those with the property g(u+v) = g(u)g(v) for every u and v. We show
now that the function h(x) in equation (3.1) has this property, so must be
an exponential function; that is, h(x) = cx for some constant c. Since h(x)
has complex values, the constant c cannot be a real number, however.

Calculating h(u)h(v) we find

h(u)h(v) = (cos(u) cos(v) − sin(u) sin(v)) + i(cos(u) sin(v) + sin(u) cos(v))

= cos(u+ v) + i sin(u+ v) = h(u+ v).

So h(x) is an exponential function; h(x) = cx for some complex constant
c. Inserting x = 1 we find that c is

c = cos(1) + i sin(1).

Let’s try to find another way to express c.

5



6 CHAPTER 3. COMPLEX EXPONENTIALS

Recall from calculus that for exponential functions g(x) = ax with a > 0
the derivative g′(x) is

g′(x) = ax ln(a) = g(x) ln(a).

Since

h′(x) = − sin(x) + i cos(x) = i(cos(x) + i sin(x)) = ih(x)

we conjecture that ln(c) = i; but what does this mean?
For a > 0 we know that b = ln(a) means that a = eb. Therefore, we

say that ln(c) = i means c = ei; but what does it mean to take e to a
complex power? To define ei we turn to the Taylor series representation
for the exponential function g(x) = ex, defined for real x:

ex = 1 + x+ x2/2! + x3/3! + ....

Inserting i in place of x and using the fact that i2 = −1, we find that

ei = (1 − 1/2! + 1/4! − ...) + i(1 − 1/3! + 1/5! − ...);

note that the two series are the Taylor series for cos(1) and sin(1), respec-
tively, so ei = cos(1) + i sin(1). Then the complex exponential function in
equation (3.1) is

h(x) = (ei)x = eix.

Inserting x = π we get

h(π) = eiπ = cos(π) + i sin(π) = −1

or
eiπ + 1 = 0,

which is the remarkable relation discovered by Euler that combines the
five most important constants in mathematics, e, π, i, 1 and 0, in a single
equation.

Note that e2πi = e0i = e0 = 1, so

e(2π+x)i = e2πieix = eix

for all x.
We know from calculus what ex means for real x and now we also know

what eix means. Using these we can define ez for any complex number
z = a+ ib by ez = ea+ib = eaeib.

We know from calculus how to define ln(x) for x > 0 and we have just
defined ln(c) = i to mean c = ei. But we could also say that ln(c) = i(1 +
2πk) for any integer k; that is, the periodicity of the complex exponential
function forces the function ln(x) to be multivalued.
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For any nonzero complex number z = |z|eiθ(z) we have

ln(z) = ln(|z|) + ln(eiθ(z)) = ln(|z|) + i(θ(z) + 2πk),

for any integer k. If z = a > 0 then θ(z) = 0 and ln(z) = ln(a) + i(kπ)
for any even integer k; in calculus class we just take the value associated
with k = 0. If z = a < 0 then θ(z) = π and ln(z) = ln(−a) + i(kπ) for
any odd integer k. So we can define the logarithm of a negative number; it
just turns out not to be a real number. If z = ib with b > 0, then θ(z) = π

2
and ln(z) = ln(b) + i(π2 + 2πk), for any integer k; if z = ib with b < 0 then
θ(z) = 3π

2 and ln(z) = ln(−b) + i( 3π
2 + 2πk) for any integer k.

Adding e−ix = cos(x) − i sin(x) to eix given by equation (3.1) we get

cos(x) =
1

2
(eix + e−ix);

subtracting, we obtain

sin(x) =
1

2i
(eix − e−ix).

These formulas allow us to extend the definition of cos and sin to complex
arguments z:

cos(z) =
1

2
(eiz + e−iz)

and

sin(z) =
1

2i
(eiz − e−iz).

In signal processing the complex exponential function is often used to de-
scribe functions of time that exhibit periodic behavior:

h(ωt+ θ) = ei(ωt+θ) = cos(ωt+ θ) + i sin(ωt+ θ),

where the frequency ω and phase angle θ are real constants, and t denotes
time. We can alter the magnitude by multiplying h(ωt + θ) by a positive
constant |A|, called the amplitude, to get |A|h(ωt+ θ). More generally, we
can combine the amplitude and the phase, writing

|A|h(ωt+ θ) = |A|eiθeiωt = Aeiωt,

where A is the complex amplitude A = |A|eiθ. Many of the functions
encountered in signal processing can be modeled as linear combinations of
such complex exponential functions or sinusoids, as they are often called.

Exercise 1: Show that if sin x
2 6= 0 then

EM (x) =
∑M

m=1
eimx = eix(

M+1

2
) sin(Mx/2)

sin(x/2)
. (3.2)
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Hint: Note that EM (x) is the geometric progression

EM (x) = eix + (eix)2 + (eix)3 + ...+ (eix)M = eix(1 − eiMx)/(1 − eix).

Now use the fact that, for any t, we have

1 − eit = eit/2(e−it/2 − eit/2) = eit/2(−2i) sin(t/2).

Exercise 2: The Dirichlet kernel of size M is defined as

DM (x) =
∑M

m=−M
eimx.

Use equation (3.2) to obtain the closed-form expression

DM (x) =
sin((M + 1

2 )x)

sin(x2 )
;

note that DM (x) is real-valued.
Hint: Reduce the problem to that of Exercise 1 by factoring appropriately.

Exercise 3: Use the result in equation (3.2) to obtain the closed-form
expressions

∑M

m=N
cosmx = cos(

M +N

2
x)

sin(M−N+1
2 x)

sin x
2

and
∑M

m=N
sinmx = sin(

M +N

2
x)

sin(M−N+1
2 x)

sin x
2

.

Hint: Recall that cosmx and sinmx are the real and imaginary parts of
eimx.

Exercise 4: Graph the function EM (x) for various values of M .
We note in passing that the function EM (x) equals M for x = 0 and

equals zero for the first time at x = 2π/M . This means that the main
lobe of EM (x), the inverted parabola-like portion of the graph centered at
x = 0, crosses the x-axis at x = 2π/M and x = −2π/M , so its height is M
and its width is 4π/M . As M grows larger the main lobe of EM (x) gets
higher and thinner.



Chapter 4

Hidden Periodicities

We begin with what we call the Ferris Wheel Problem. A Ferris Wheel
is a carnival ride, or perhaps a tourist attraction, like the London Eye,
consisting of a large rotating wheel supported so that its axis of rotation is
parallel to the ground. Around the rim of the wheel are seats for the riders.
Once the seats are filled the wheel rotates for some number of minutes, from
time t = 0 to t = T and then it slows to let the riders off. Suppose that the
radius of the wheel is R feet, the center of the wheel is R +H feet off the
ground and from time t = 0 to t = T the wheel completes one revolution in
P seconds, so that its frequency of rotation is ω = 2π

P radians per second.

Exercise 1: Determine the formulas giving the horizontal and vertical
coordinates of the position of a particular rider at an arbitrary time t in
the time interval [0, T ].

Now let us make it a bit more complicated. Suppose that, instead of seats
around the rim of the wheel, there is a smaller Ferris Wheel (or several
identical smaller wheels distributed around the rim, for stability). To avoid
confusion, let’s let R1 and ω1 be the radius and frequency of rotation of the
original wheel and let R2 and ω2 be the radius and frequency of rotation
of the second wheel.

Exercise 2: Now find the formulas giving the horizontal and vertical co-
ordinates of the position of a particular rider at an arbitrary time t in the
time interval [0, T ].

Continuing down this road, imagine a third wheel on the rim of the second,
a fourth on the rim of the third, and so on; in fact, let there be J nested
Ferris wheels, the j-th wheel having radius Rj and frequency of rotation
ωj . Figure 4.1 illustrates the case of J = 3.

9



10 CHAPTER 4. HIDDEN PERIODICITIES

Exercise 3: Repeat the previous exercise, but for the case of J nested
wheels.

What we have been doing here is solving what is called a direct problem.
The simplest way to explain a direct problem is to contrast it with one that
is not direct, a so-called inverse problem [104], [177]. An inverse problem
involving the Ferris Wheels is the following. Suppose our data consists of
the positions of a particular rider at several distinct times, t1, ..., tM . From
this data alone determine J , the number of nested wheels, the radii Rj of
the wheels, and their frequencies of rotation ωj .

Direct problems usually look ahead in time to what would happen in a
certain situation. The formulas involved are usually straightforward appli-
cations of the relevant concepts and there is no data involved. In contrast,
inverse problems ask us to determine what did happen, given some mea-
surements of the outcome. The measurements may be unreliable or noisy
and there may not be enough measurements to determine a single unique
answer. In the inverse Ferris Wheel problem we would assume that J , the
number of wheels, is smaller than M , the number of measurements. Given
M measurements, it is usually possible to fit those measurements exactly to
a model involving more than M wheels; the hard part is to let the data tell
us what J is. A second issue is the choosing of the times tm at which the
measurements are taken. If we were to take all the measurements in rapid
succession, over a very small interval of time, the problem would become
much more difficult and the answer much more sensitive to slight errors
in the data. Just how we should select the times tm will depend on our
prior knowledge of what the frequencies of rotation might be. If some of
the wheels are turning very rapidly we must sample quickly to determine
that. Otherwise we get the strobe light type of aliasing.

The measured data giving the positions of the rider at various times is
said to contain information about the hidden periodicities involved. There
are periodicites, not always hidden, in many different data sets. For exam-
ple, data giving the temperature every hour in downtown Lowell for the
last one hundred million years would show several interest periodicities,
or almost periodicities. Clearly there is the periodicity corresponding to
the seasons of the year. There is also the periodicity associated with the
passage from day to night, although this is a somewhat more complicated
function of time, involving, as it does, the varying lengths of day and night
in different seasons. There will be other components corresponding to the
temperature changes from one day to the next, having no simple periodic
aspect. On top of all this there will be components with much longer pe-
riods (so much smaller frequencies), corresponding to the climate changes
from one century to the next. There will be components with even longer
periods, the climate changes studied in connection with global warming,
having periods of thousands of years. An interesting study is to try to
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relate, or to correlate, the periodic components in one data set with those
in another. For example, is earth weather related to the periodicities in
the sun spot activity?

Many of the signals we encounter in practice contain complex exponen-
tial components having different amplitudes and frequencies. The standard
model for such signals is

s(t) =
∑N

n=1
|An|ei(ωnt+θn). (4.1)

One of the main problems in signal processing is to determine the values of
the parameters N , |An|, ωn and θn from measurements of the function s(t);
that is, to determine the complex exponential components that constitute
the signal s(t). For example, in automated human voice recognition a par-
ticular individual speaker is identified by the combination of the |An| and
ωn present in the speech of that person when pronouncing a certain sound.
Our ears perform this identification task when we recognize the voice of a
particular singer or actor. In digital speech processing the assumption is
that the signal corresponding to the voicing of a particular sound has the
form given in equation (4.1), at least for a short time interval (until the
next sound is voiced). A second point of view is that equation (4.1) is a
model to be used to perform certain operations on a signal, such as noise
reduction or compression.

In some applications we do not have exact measurements of s(t) but
noisy estimates of what those exact values are. Our job is then to clean up
the data to extract the parameter values. In restoration of old recordings
the parameters are estimated from noisy measurements of the old recording
and these parameters modified and inserted to recreate digitally the original
sound. The noisy measurement data can then be modeled using equation
(4.1) and (at least some of ) the noise removed by subtracting certain
complex exponential components attributed to the noise. At the same time
the quality of the signal can be enhanced by modifying the amplitudes of
the components that remain. The resulting set of numbers can then be
converted back into audible sound.

In radar, sonar, radio astronomy and related remote sensing applica-
tions the variable ω may not be frequency but a direction in space relative
to a fixed coordinate system. In such cases the variable t denotes the loca-
tion in space at which the function s(t) is measured. The various parts of
the objects of interest send (or reflect) individual signals and the measuring
devices record the superposition of all these signals. Whether the objects
of interest are planes in radar, the stars in the heavens in optical or radio
astronomy, submarines and ships at sea in sonar, regions of a patient’s body
in medical tomography or portions of the earth’s surface in synthetic aper-
ture radar imaging, the received signals must be analyzed, that is, broken
down into their constituent parts, so that the individual sources of received
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energy can be separately known. A nonzero value of |An| then indicates
the presence of a source (or reflector) of electromagnetic or acoustic energy
at angle ωn. We measure s(t) at many different locations t and from that
data we try to decompose the signal into its components. How well we
are able to identify separate sources of energy is the resolving capablity of
the process. Our ability to resolve will depend on several things, including
the hardware we use, where we are able to measure s(t) and at how many
values of t we are able to employ, and also the mathematical methods we
use to perform the analysis of the signal.

Common to each of these applications is the need to isolate the individ-
ual complex exponential components in the measured signal. This is the
signal analysis problem, which we consider next.
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Figure 4.1: The Ferris Wheel for J = 3.
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Chapter 5

Signal Analysis: A First

Approach

We shall assume now that the signal we wish to analyze is s(t) given by
equation (4.1), which we rewrite as

s(t) =
∑N

n=1
Ane

iωnt, (5.1)

with An = |An|eiθn the complex amplitudes. Although we shall often
speak of t as a time variable, that is not essential. We assume that we
have determined the value of the function s(t) at M points in time, called
the sampling times. Although it is not necessary, we shall assume the
sampling times are equispaced, that is, they are t = m∆, m = 1, ...,M ,
where ∆ > 0 is the difference between successive sampling times. So our
data are the values s(m∆), m = 1, ...,M . Our goal is to determine N ,
the number of complex exponential components in the signal s(t), their
complex amplitudes An and the frequencies ωn. We assume that N is
smaller than M .

The aliasing problem: Given our data, it is impossible for us to distin-
guish a frequency ω from ω + 2πn

∆ , for any integer n. This can result in
aliasing, if the sample spacing ∆ is not sufficiently small.

For every m we have

eiωnm∆ = ei(ωn+2π/∆)m∆,

which tells us that, using the data we have, we cannot distinguish between
the frequencies ωn and ωn+2π/∆. We shall therefore make the assumption
that ∆ has been selected small enough so that |ωn| ≤ π/∆ for all n. If we
have not selected ∆ small enough, we have undersampled and some of the

15
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frequencies ωn will be mistaken for lower frequencies; this is the aliasing
problem. We describe now an approach that determines N , the ωn and the
An well enough if the data is relatively noise-free, none of the ωn are too
close to one another and the M is large enough.

Our assumption: Our first approach to solving the signal analysis prob-
lem is based on a simplifying restriction on the possible locations of the
frequencies ωn. We assume that the ωn are some of the members of the set
{αk = − π

∆ +k 2π
∆M , k = 1, 2, ...,M}; these are the M frequencies equispaced

across the interval (− π
∆ ,

π
∆ ]. We then rewrite s(t) as

s(t) =
∑M

k=1
Bke

iαkt; (5.2)

values of k for which the Bk are not zero will be the ones for which αk is
one of the original ωn and Bk = An. Our data is then

s(m∆) =
∑M

k=1
Bke

−imπei2πkm/M ,

for m = 1, ...,M .

The complex vector dot product : For any positive integer J and any
two J dimensional complex column vectors u and v we define the complex
vector dot product to be

u · v =
∑J

j=1
ujvj .

Note that u ·v = v†u, where v†, the conjugate transpose of the vector v, is
the row vector whose entries are the conjugates of the entries of the vector
v. Therefore, we can and do view the complex vector dot product as a
special case of matrix multiplication.

As we shall see in a later chapter on the Cauchy inequality, the dot
product is a way of checking how well two vectors resemble one another.
This idea is used extensively in signal processing, when we form the dot
product between the data vector and each of many potential component
vectors, to see how much the data resembles each of them. This is called
matching and is the basic idea in matched filtering, as we shall see later. We
now apply this idea of matching in our first attempt at solving the signal
analysis problem.

For each j = 1, 2, ...,M we ask what data we would have collected had
the signal s(t) consisted solely of a single complex exponential eiαjt with
frequency αj ; the answer is eiαjm∆, for m = 1, 2, ...,M . We now let these
numbers be the entries of a vector we call ej ; then we match ej with the
data vector d having the entries s(m∆).



17

Therefore, for each j = 1, 2, ...,M , we let the entries of the column
vector ej be

ejm = eiαjm∆ = e−imπei2πjm/M .

Let e†
j denote the conjugate transpose of ej , that is, the row vector whose

entries are ejm, so that the matrix multiplication e†
jd is the complex dot

product of ej and d. Then

e†
jd =

∑M

m=1
s(m∆)e−iαjm∆ =

∑M

k=1
Bk(

∑M

m=1
e2πi(k−j)m/M ).

The inner sum is EM (x) for x = 2π(k − j)/M , so we can use the closed
form of this sum that we derived in an exercise earlier to conclude that the
inner sum equals M if k = j and is zero if k 6= j. Therefore, for each fixed
j, as we run through the index of summation k, all the terms being added
are zero, except when the index k reaches the fixed value j. Therefore

e†
jd = MBj

for each j. To isolate the original frequencies ωn we select those j for which
e†
jd is not zero; then the An is the associated value Bj .

So we know how to isolate the individual complex exponential com-
ponents of s(t), so long as each of the ωn is, at least approximately, one
of the αk, which imposes the constraint that no two of the ωn are closer
to each other than 2π/∆M ; this limits our ability to resolve components
whose frequencies are closer than that limit. If we know in advance that
we are seeking frequencies ωn closer than this limit we have at least two
choices: increase M or increase ∆. The latter choice is a bit dangerous in
that we risk aliasing if any of the ωn have magnitudes close to π/∆ already.
A third choice is to alter the method whereby we isolated the individual
components. There are many ways to do this, as we shall see.
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Chapter 6

Convolution and the

Vector DFT

Convolution is an important concept in signal processing and occurs in
several distinct contexts. In this chapter we shall discuss non-periodic
convolution and periodic convolution of vectors. Later we shall consider the
convolution of infinite sequences and of functions of a continuous variable.
The reader may recall an earlier encounter with convolution in a course
on differential equations. The simplest example of convolution is the non-
periodic convolution of finite vectors.

Non-periodic convolution:

Recall the algebra problem of multiplying one polynomial by another. Sup-
pose

A(x) = a0 + a1x+ ...+ aMx
M

and

B(x) = b0 + b1x+ ...+ bNx
N .

Let C(x) = A(x)B(x). With

C(x) = c0 + c1x+ ...+ cM+Nx
M+N ,

each of the coefficients cj , j = 0, ...,M+N, can be expressed in terms of the
am and bn (an easy exercise!). The vector c = (c0, ..., cM+N ) is called the
non-periodic convolution of the vectors a = (a0, ..., aM ) and b = (b0, ..., bN ).
Non-periodic convolution can be viewed as a particular case of periodic
convolution, as we see next.
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The DFT and the vector DFT:

As we just discussed, non-periodic convolution is another way of looking
at the multiplication of two polynomials. This relationship between con-
volution on the one hand and multiplication on the other is a fundamental
aspect of convolution, whenever it occurs. Whenever we have a convolution
we should ask what related mathematical objects are being multiplied. We
ask this question now with regard to periodic convolution; the answer turns
out to be the vector discrete Fourier transform.

Given the N by 1 vector f with complex entries f0, f1, ..., fN−1 define
the discrete Fourier transform (DFT) of f to be the function DFTf (ω),
defined for ω in [0, 2π), by

DFTf (ω) =

N−1
∑

n=0

fne
inω.

The terminology can be confusing, since the expression ‘discrete Fourier
transform’ is often used to describe several slightly different mathematical
objects.

For example, in the exercise that follows we are interested solely in the
values Fk = DFTf (2πk/N), for k = 0, 1, ..., N − 1. In this case the DFT of
the vector f often means simply the vector F whose entries are the complex
numbers Fk, for k = 0, ..., N − 1; for the moment let us call this the vector
DFT of f and write F = vDFTf . The point of Exercise 1 is to show how
to use the vector DFT to perform the periodic convolution operation.

In some instances the numbers fn are obtained by evaluating a function
f(x) at some finite number of points xn; that is, fn = f(xn), for n =
0, ..., N − 1. As we shall see later, if the xn are equispaced, the DFT
provides an approximation of the Fourier transform of the function f(x).
Since the Fourier transform is another function of a continuous variable,
and not a vector, it is appropriate, then, to view the DFT also as such
a function. Since the practice is to use the term DFT to mean slightly
different things in different contexts, we adopt that practice here. The
reader will have to infer the precise meaning of DFT from the context.

Periodic convolution:

Given the N by 1 vectors f and d with complex entries fn and dn, respec-
tively, we define a third N by 1 vector f ∗ d, the periodic convolution of f
and d, to have the entries

(f ∗ d)n = f0dn + f1dn−1 + ...+ fnd0 + fn+1dN−1 + ...+ fN−1dn+1.

Periodic convolution is illustrated in Figure 6.1. The first exercise relates
the periodic convolution to the vector DFT.
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Exercise 1: Let F = vDFTf and D = vDFTd. Define a third vector E
having for its k-th entry Ek = FkDk, for k = 0, ..., N − 1. Show that E is
the vDFT of the vector f ∗ d.

The vector vDFTf can be obtained from the vector f by means of
matrix multiplcation by a certain matrix G, called the DFT matrix. The
matrix G has an inverse that is easily computed and can be used to go
from F = vDFTf back to the original f . The details are in Exercise 2.

Exercise 2: Let G be the N by N matrix whose entries are Gjk =
ei(j−1)(k−1)2π/N . The matrix G is sometimes called the DFT matrix. Show
that the inverse of G is G−1 = 1

NG
†, where G† is the conjugate transpose

of the matrix G. Then f ∗ d = G−1E = 1
NG

†E.
As we mentioned above, nonperiodic convolution is really a special case

of periodic convolution. Extend the M + 1 by 1 vector a to an M +N + 1
by 1 vector by appending N zero entries; similarly, extend the vector b to
an M + N + 1 by 1 vector by appending zeros. The vector c is now the
periodic convolution of these extended vectors. Therefore, since we have
an efficient algorithm for performing periodic convolution, namely the Fast
Fourier Transform algorithm (FFT), we have a fast way to do the periodic
(and thereby nonperiodic) convolution and polynomial multiplication.
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a(0)

a(1)

a(2)

a(3)

b(0)

b(1)

b(2)

b(3)

a(0)

a(1)

a(2)

a(3) b(2)

b(3)

b(0)

b(1)

a*b(0)=a(0)b(0)+a(1)b(3)+a(2)b(2) + a(3) b(1) 

a*b(1)=a(0) b(1)+a(1) b(0)+a(2)b(3) + a(3) b(2) 

Per iodic Con volution

Rot ate inner

disk clock wise

Multiply and add

Figure 6.1: Periodic convolution of vectors a = (a(0), a(1), a(2), a(3)) and
b = (b(0), b(1), b(2), b(3)).



Chapter 7

Signal Analysis: A Second

Approach

As before, we assume that we have data vector d with entries s(m∆), m =
1, ...,M from the signal s(t) given by equation (26.9). Unlike in our first
approach, we do not now make any assumptions about the location of the
frequencies ωn, except that |ωn| < π/∆.

For each ω in the interval (−π/∆, π/∆) let eω be the column vector
with entries eiωm∆, m = 1, ...,M . The output of the matched filter e†

ωd,
as a function of the continuous variable ω in the interval (−π/∆, π/∆) is

DFTd(ω) =
∑M

m=1
s(m∆)e−iωm∆

=
∑N

n=1
An(

∑M

m=1
ei(ωn−ω)m∆).

We know from our earlier calculations that

∑M

m=1
ei(ωn−ω)m∆ = ei

M+1

2
(ωn−ω) sin(

M

2
(ωn − ω))/(sin

1

2
(ωn − ω)),

which equals M if ω = ωn. If the ωn are well separated then this sum is
significantly smaller if ω is not near ωn. So if the ωn are well separated
and M is significantly larger than N the function DFTd(ω) will be near
MAn when ω = ωn, for each n, and will be near zero otherwise. Of course
we cannot calculate DFTd(ω) for each ω; for the purposes of plotting we
select sufficiently many values of ω and calculate |DFTd(ω)| at these points.
Later we shall study a fast algorithm, known as the fast Fourier transform
(FFT), which does this calculation for us in an efficient manner.

Exercise 1: Let N = 2 and ω1 = −α, ω2 = α for some α > 0 in (−π, π).
Let A1 = A2 = 1. Select a value of M that is greater than two and
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calculate the values f(m) for m = 1, ...,M . Plot the graph of the function
DFTd(ω) on (−π, π). Repeat the exercise for various values of M and
values of α closer to zero. Notice how DFTd(0) behaves as α goes to zero.
For each fixed value of M there will be a critical value of α such that, for
any smaller values of α, DFTd(0) will be larger than DFTd(α). This is
loss of resolution.

As the exercise has shown, for each fixed value of M there will be a
limit to our ability to resolve closely spaced frequencies using DFTd(ω). If
we are unable to increase the M we can try other methods of isolating the
frequencies. We shall discuss these other methods later.



Chapter 8

Cauchy’s Inequality

So far our methods for analyzing the measured signal have been based on
the idea of matching the data against various potential complex exponen-
tial components to see which ones match best. The matching is done using
the complex dot product, e†

ωd. In the ideal case this dot product is large,
for those values of ω that correspond to an actual component of the signal;
otherwise it is small. Why this should be the case is the Cauchy-Schwarz
inequality (or sometimes, depending on the context, just Cauchy’s inequal-
ity, just Schwarz’s inequality, or, in the Russian literature, Bunyakovsky’s
inequality).

The complex vector dot product: Let u = (a, b) and v = (c, d) be
two vectors in two-dimensional space. Let u make the angle α > 0 with
the positive x-axis and v the angle β > 0. Let ||u|| =

√
a2 + b2 denote the

length of the vector u. Then a = ||u|| cosα, b = ||u|| sinα, c = ||v|| cosβ
and d = ||v|| sinβ. So u · v = ac+ bd = ||u||||v||(cosα cosβ + sinα sinβ =
||u|| ||v|| cos(α− β). Therefore, we have

u · v = ||u|| ||v|| cos θ, (8.1)

where θ = α− β is the angle between u and v. Cauchy’s inequality is

|u · v| ≤ ||u|| ||v||,

with equality if and only if u and v are parallel.
Cauchy’s inequality extends to vectors of any size with complex entries.

For example, the complex M -dimensional vectors eω and eθ defined earlier
both have length equal to

√
M and

|e†
ωeθ| ≤ M,

with equality if and only if ω and θ differ by an integer multiple of π.
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From equation (8.1) we know that the dot product u · v is zero if and
only if the angle between these two vectors is a right angle; we say then
that u and v are mutually orthogonal. Orthogonality was at the core of our
first approach to signal analysis: the vectors ej and ek are orthogonal if
k 6= j. The notion of orthogonality is fundamental in signal processing and
we shall return to it repeatedly in what follows. The idea of using the dot
product to measure how similar two vectors are is called matched filtering;
it is a popular method in signal detection and estimation of parameters.

Proof of Cauchy’s inequality: To prove Cauchy’s inequality for the
complex vector dot product we write u · v = |u · v|eiθ. Let t be a real
variable and consider

0 ≤ ||e−iθu − tv||2 = (e−iθu − tv) · (e−iθu − tv)

= ||u||2 − t[(e−iθu) · v + v · (e−iθu)] + t2||v||2

= ||u||2 − t[(e−iθu) · v + (e−iθu) · v] + t2||v||2

= ||u||2 − 2Re(te−iθ(u · v)) + t2||v||2

= ||u||2 − 2Re(t|u · v|) + t2||v||2 = ||u||2 − 2t|u · v| + t2||v||2.
This is a nonnegative quadratic polynomial in the variable t, so cannot have
two distinct real roots. Therefore, the discriminant 4|u · v|2 − 4||v||2||u||2
must be non-positive; that is, |u · v|2 ≤ ||u||2||v||2. This is Cauchy’s
inequality.

Exercise 1: Use Cauchy’s inequality to show that

||u + v|| ≤ ||u|| + ||v||;

this is called the triangle inequality.

A careful examination of the proof just presented shows that we did not
explicitly use the definition of the complex vector dot product, but only
certain of its properties. This suggested to mathematicians the possibility
of abstracting these properties and using them to define a more general con-
cept, an inner product, between objects more general than complex vectors,
such as infinite sequences, random variables and matrices. Such an inner
product can then be used to define the norm of these objects and thereby a
distance between such objects. Once we have an inner product defined we
also have available the notions of orthogonality and best approximation.
We shall treat all of these topics in a later chapter.



Chapter 9

Orthogonal Vectors

Consider the problem of writing the two-dimensional real vector (3,−2) as
a linear combination of the vectors (1, 1) and (1,−1); that is, we want to
find constants a and b so that (3,−2) = a(1, 1) + b(1,−1). One way to do
this, of course, is to compare the components: 3 = a + b and −2 = a − b;
we can then solve this simple system for the a and b. In higher dimensions
this way of doing it becomes harder, however. A second way is to make
use of the dot product and orthogonality.

The dot product of two vectors (x, y) and (w, z) in R2 is (x, y) · (w, z) =
xw+yz. If the dot product is zero then the vectors are said to be orthogonal;
the two vectors (1, 1) and (1,−1) are orthogonal. We take the dot product
of both sides of (3,−2) = a(1, 1) + b(1,−1) with (1, 1) to get

1 = (3,−2) ·(1, 1) = a(1, 1) ·(1, 1)+b(1,−1) ·(1, 1) = a(1, 1) ·(1, 1)+0 = 2a,

so we see that a = 1
2 . Similarly, taking the dot product of both sides with

(1,−1) gives

5 = (3,−2) · (1,−1) = a(1, 1) · (1,−1) + b(1,−1) · (1,−1) = 2b,

so b = 5
2 . Therefore (3,−2) = 1

2 (1, 1) + 5
2 (1,−1). The beauty of this

approach is that it does not get much harder as we go to higher dimensions.
Since the cosine of the angle θ between vectors u and v is

cos θ = u · v/||u|| ||v||,

where ||u||2 = u · u, the projection of vector v onto the line through the
origin parallel to u is

Proju(v) =
u · v
u · uu.

Therefore the vector v can be written as

v = Proju(v) + (v − Proju(v)),
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where the first term on the right is parallel to u and the second one is
orthogonal to u.

How do we find vectors that are mutually orthogonal? Suppose we
begin with (1, 1). Take a second vector, say (1, 2), that is not parallel to
(1, 1) and write it as we did v earlier; that is, as a sum of two vectors,
one parallel to (1, 1) and the second orthogonal to (1, 1). The projection
of (1, 2) onto the line parallel to (1, 1) passing through the origin is

(1, 1) · (1, 2)

(1, 1) · (1, 1)
(1, 1) =

3

2
(1, 1) = (

3

2
,
3

2
)

so

(1, 2) = (
3

2
,
3

2
) + ((1, 2) − (

3

2
,
3

2
)) = (

3

2
,
3

2
) + (−1

2
,
1

2
).

The vectors (− 1
2 ,

1
2 ) = − 1

2 (1,−1) and, therefore, (1,−1) are then orthogo-
nal to (1, 1). This approach is the basis for the Gram-Schmidt method for
constructing a set of mutually orthogonal vectors.

Exercise 1: Use the Gram-Schmidt approach to find a third vector in R3

orthogonal to both (1, 1, 1) and (1, 0,−1).

Orthogonality is a convenient tool that can be exploited whenever we
have an inner product defined.



Chapter 10

Discrete Linear Filters

Let g = (g1, ..., gM )T be an M -dimensional complex column vector. The
discrete linear filter obtained from g operates on any other M -dimensional
column vector h = (h1, ..., hM )T through the complex dot product: when
the input of the filter is h the output of the filter is

g†h = h · g =
∑M

m=1
hmgm.

Earlier we analyzed the signal s(t) by applying the discrete linear filters
g = eω to the data vector d to obtain the function e†

ωd of the variable
ω. Such discrete linear filters are usually called matched filters because we
use the dot product to determine the degree of similarity between the two
vectors.

The term discrete linear filter also applies to the somewhat more general
convolution filter whereby vectors g and h are used to produce a third
vector f = g ∗ h, the periodic convolution of g and h, whose entries fn are

fn =
∑M

m=1
gmhn−m, (10.1)

where, for notational convenience, we define hn−m = hn−m+M whenever
the index n−m is less than one. Figure 10.1 illustrates the action of this
convolution filter.

To better understand the action of this filtering operation we associate
with each of the vectors f , g and h a function of ω: let

DFTg(ω) =
∑M

m=1
gme

imω

for ω in the interval [−π, π]; similarly define the functions DFTf (ω) and
DFTh(ω). Notice that these functions are the discrete Fourier transforms
(DFT) discussed earlier. We have the option here of considering the vector
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discrete Fourier transforms instead. However, since we shall also discuss
the theoretical case in which we have doubly infinite sequences {fn}∞

n=−∞,
it is more convenient to view the DFT as a function of the continuous
variable ω throughout the discussion. As we saw in an earlier exercise,
when f = g ∗ h we also have

DFTf (ω) = DFTg(ω)DFTh(ω)

for the values ω = 2π
M n, n = 1, 2, ...,M .

Time-invariant linear systems: Although in practice all digital filtering
is performed using finite length vectors, it is convenient, in theoretical
discussions, to permit the use of infinite sequences. Suppose now that g =
{gn}+∞

n=−∞ and h = {hn}+∞
n=−∞ are infinite sequences of complex numbers.

As above, we use g to obtain a convolution filter that, having h as the
input, will have as output the convolution of sequences g and h. This is
the infinite sequence f = g ∗ h with entries

fn =
∑+∞

m=−∞
gmhn−m.

This situation is commonly described by saying that the sequence {gn}
represents a time-invariant linear system in which the input sequence is
convolved with {gn} to produce the output sequence.

When dealing with infinite sequences we must be concerned with the
convergence of any infinite series we encounter. In Walnut’s book [180]
and elsewhere an infinite sequence {hn} is called a signal if it is absolutely
summable; that is,

∞
∑

n=−∞
|hn| < +∞.

The sequences {gn} used to define convolution filters are also required to
be absolutely summable, so that the output f = g ∗ h is also absolutely
summable and {fn} is therefore a signal. However, the requirement that
all signals be absolutely summable is a bit restrictive. For that reason
most authors, including Walnut, consider wider classes of sequences, such
as absolutely square summable h = {hn} for which we have

∞
∑

n=−∞
|hn|2 < +∞,

bounded sequences and sequences obtained from finitely nonzero ones by
periodic extension. Concepts such as stability can be defined in different
ways, depending on the type of signals being considered. Our discussion
here will be more formal and less rigorous. The reader should remember
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that integrals and infinite sums make sense only after appropriate assump-
tions are made.

We associate with doubly infinite sequences a function of ω: for each ω
in the interval [−π, π] let

G(ω) =
∑+∞

n=−∞
gne

inω. (10.2)

Define F (ω) and H(ω) similarly. Because the sequences are infinite we have
a multiplication theorem that is somewhat stronger than with the vector
DFT.

Exercise 1: Show that F (ω) = G(ω)H(ω) for all ω in [−π, π].

We see from the exercise that the convolution filter obtained from the
sequence {gn} can be understood in terms of how it affects the individual
complex exponential components that make up the input. The filter con-
verts each H(ω) into F (ω) = G(ω)H(ω). If G(ω) = 0 for certain values of
ω then whenever h(t) has a complex exponential component corresponding
to that value of ω it will be removed upon filtering.

Convolution filters have the important property that they amplify or
depress sinusoidal inputs without distorting the frequency. Let ω be an
arbitrary but fixed frequency in the interval [−π, π] and let the input to
the filter be the doubly infinite sequence h with entries hn = e−inω; that
is, a pure sinusoid with frequency −ω. Then the output sequence is f with
entries

fn = e−inω
∑∞

m=−∞
gme

imω.

So the output is again a pure sinusoid, with the same frequency as the
input, but with amplitude G(ω) instead of one.

The function G(ω) in equation (10.2) is a Fourier series. Here we began
with an essentially arbitrary sequence g of complex numbers and formed
the function G. In a number of applications we begin with a function G(ω)
that is either defined on an interval of length 2π or is defined for all ω and
is 2π-periodic. We then seek the complex numbers gn so that the Fourier
series obtained using these gn gives us back the original function G as in
equation (10.2). This is called the Fourier series expansion of the function
G(ω).

Given the function H(ω) on [−π, π] the numbers hn can be determined:
we have

hn =

∫ π

−π
H(ω)e−inω dω

2π
. (10.3)

This follows from the orthogonality of the functions einω over the interval
[−π, π], as we shall discuss in the next chapter. We can interpret equation
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(10.3) as expressing the sequence h = {hn} as a continuously infinite super-
position of pure sinusoids, each with their own frequency −ω and amplitude
H(ω)/2π. We know that the output from the individual sinusoidal input
{e−inω} is G(ω){e−inω}. By the linearity of the filter, the output from
the input sequence h with entries given by equation (10.3) is therefore the
sequence f with entries

fn =

∫ π

−π
G(ω)H(ω)e−inω dω

2π
.

Since we also have

fn =

∫ π

−π
F (ω)e−inω dω

2π
,

we are led once again to F (ω) = G(ω)H(ω).

Suppose that the input to the filter is an impulsive sequence; that is,
let the input be the sequence h = δ0 with entries hn = 0 for n 6= 0 and
h0 = 1. Then the output is the sequence f with entries fn = gn. The
sequence g = {gn} used to build the discrete linear filter is therefore called
the impulse response sequence of the filter and the function G(ω) is the
filter function.

Exercise 2: The three-point moving average filter is defined as follows:
given the input sequence {hn, n = −∞, ...,∞} the output sequence is
{fn, n = −∞, ...,∞}, with

fn = (hn−1 + hn + hn+1)/3.

Let gm = 1/3, if m = 0, 1,−1 and gm = 0, otherwise. Then we have

fn =

∞
∑

m=−∞
gmhn−m,

so that f is the convolution of h and g. Let F (ω) be defined for ω in the
interval [−π, π] by equation (10.2); similarly define G and H. To recover
h from f we might proceed as follows: calculate F , then divide F by G to
get H, then compute h from H; does this always work?

If we let h be the sequence {..., 1, 1, 1, ...} then f = h; if we take h to be
the sequence {..., 3, 0, 0, 3, 0, 0, ...} then we again get f = {..., 1, 1, 1, ...}.
Therefore, we cannot expect to recover h from f in general. We know that
G(ω) = 1

3 (1 + 2 cos(ω)); what does this have to do with the problem of
recovering h from f?

Hint: Compute H. Where are the zeros of G?
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If we take the input sequence to our convolution filter the sequence h
with entries

hn = g−n

then the output sequence is f with entries

fn =
∑+∞

m=−∞
gmgm−n

and F (ω) = |G(ω)|2. The sequence f is called the autocorrelation sequence
for g and |G(ω)|2 is the power spectrum of g. The Cauchy inequality is
valid for infinite sequences also: with the length of f defined by

||f || = (
∑+∞

n=−∞
|fn|2)1/2

and the inner product of f and g given by

〈f, g〉 =
∑+∞

n=−∞
fngn

we have

|〈f, g〉| ≤ ||f || ||g||,

with equality if and only if g is a constant multiple of f .

Exercise 3: Let f be the autocorrelation sequence for g. Show that
f−n = fn and f0 ≥ |fn| for all n.

The z-transform: It is common to consider the case in which the input to
a time-invariant linear system g = {gn} is a discrete random process {Xn};
that is, each Xn is a random variable [152], [158]. The output sequence
{Yn} given by

Yn =

+∞
∑

m=−∞
gmXn−m

is then a second discrete random process whose statistics are related to
those of the input, as well as to properties of the sequence g. By analogy
with what we did earlier, we would like to be able to form the functions

X(ω) =

+∞
∑

n=−∞
Xne

inω

and

Y (ω) =

+∞
∑

n=−∞
Yne

inω
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and use them to study the action of the system on random input. For the
series for X(ω) to converge we would at least want

+∞
∑

n=−∞
|Xn|2 < +∞.

This poses a problem, because the random processes {Xn} we usually con-
sider do not go to zero as |n| → +∞. For this reason we need a somewhat
more general tool, the z-transform.

Given a doubly infinite sequence sequence g = {gn}+∞
n=−∞ we associate

with g its z-transform, the function of the complex variable z given by

G(z) =
∑+∞

n=−∞
gnz

−n.

Doubly infinite series of this form are called Laurent series and occur in
the representation of functions analytic in an annulus. Note that if we
take z = e−iω then G(z) becomes G(ω) as defined by equation (10.2). The
z-transform is a somewhat more flexible tool in that we are not restricted
to those sequence g for which the z-transform is defined for z = e−iω.

The linear system determined by g is said to be stable [150] if the output
sequence is bounded in absolute value whenever the input sequence is.

Exercise 4: Show that the linear system determined by g is stable if and
only if

∑+∞
n=−∞ |gn| < +∞.

Hint: If
∑+∞
n=−∞ |gn| = +∞, consider as input the bounded sequence

fn = g−n/|gn| and show that h0 = +∞.

Exercise 5: Consider the linear system determined by the sequence g0 = 2,
gn = ( 1

2 )|n|, for n 6= 0. Show that this system is stable. Calculate the z-
transform of {gn} and determine its region of convergence.

The time-invariant linear system determined by g is said to be a causal
system if the sequence {gn} is itself causal; that is, gn = 0 for n < 0.

Exercise 6: Show that the function G(z) = (z − z0)
−1 is the z-transform

of a causal sequence g, where z0 is a fixed complex number. What is the
region of convergence? Show that the resulting linear system is stable if
and only if |z0| < 1.

Continuous time-invariant linear systems: An operator T associates
with function f another function Tf . For example, Tf could be the
derivative of f , if f is differentiable, or Tf could be F , the Fourier trans-
form of f . The operator T is called linear if T (f + h) = Tf + Th and
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T (αf) = αTf for any functions f and h and scalar α. For any real number
τ let fτ (t) = f(t + τ). We say that T is time-invariant if h = Tf implies
that hτ = Tfτ . Suppose we fix a function g and define Tf = f ∗ g; such
an operator is called a convolution operator. Convolution operators are
linear and time-invariant. As we shall see, time-invariant linear systems
are convolution operators.

Exercise 7: Let f(t) = e−iωt for some fixed real number ω. Let h = Tf ,
where T is linear and time-invariant. Show that there is a constant c so
that h(t) = cf(t). Since the constant c may depend on ω we rewrite c as
G(ω).

Exercise 8: Let T be as in the previous exercise. For

f(t) =

∫ +∞

−∞
F (ω)e−iωtdω/2π

and h = Tf show that H(ω) = F (ω)G(ω) for each ω. Conclude that T is
a convolution operator whose function g(t) is the inverse FT of G(ω).
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h
g

f

f(n)= Σ   g(k) h(n-k)

C onv utionol Filter

Figure 10.1: Convolution filter g operating on input h to produce out put
f .



Chapter 11

Inner Products

The proof of Cauchy’s inequality rests not on the actual definition of the
complex vector dot product, but rather on four of its most basic prop-
erties. We use these properties to extend the concept of complex vector
dot product to that of inner product. Later in this chapter we shall give
several examples of inner products, applied to a variety of mathematical
objects, including infinite sequences, functions, random variables and ma-
trices. For now, let us denote our mathematical objects by u and v and
the inner product between them as 〈u,v〉 . The objects will then be said to
be members of an inner product space. We are interested in inner products
because they provide a notion of orthogonality, which is fundamental to
best approximation and optimal estimation.

Defining an inner product: The four basic properties that will serve to
define an inner product are as follows:

1: 〈u,u〉 ≥ 0, with equality if and only if u = 0;

2. 〈v,u〉 = 〈u,v〉 ;

3. 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉;

4. 〈cu,v〉 = c〈u,v〉 for any complex number c.

The inner product is the basic ingredient in Hilbert space theory. Using
the inner product, we define the norm of u to be

||u|| =
√

〈u,u〉

and the distance between u and v to be ||u − v||.
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The Cauchy-Schwarz inequality: Because these four properties were
all we needed to prove the Cauchy inequality for the complex vector dot
product, we obtain the same inequality whenever we have an inner product.
This more general inequality is the Cauchy-Schwarz inequality:

|〈u,v〉| ≤
√

〈u,u〉
√

〈v,v〉

or

|〈u,v〉| ≤ ||u|| ||v||,

with equality if and only if there is a scalar c such that v = cu. We say
that the vectors u and v are orthogonal if 〈u,v〉 = 0. We turn now to
some examples.

Inner products of infinite sequences: Let u = {un} and v = {vn} be
infinite sequences of complex numbers. The inner product is then

〈u,v〉 =
∑

unvn,

and

||u|| =
√

∑

|un|2.

The sums are assumed to be finite; the index of summation n is singly or
doubly infinite, depending on the context. The Cauchy-Schwarz inequality
says that

|
∑

unvn| ≤
√

∑

|un|2
√

∑

|vn|2.

Inner product of functions: Now suppose that u = f(x) and v = g(x).
Then

〈u,v〉 =

∫

f(x)g(x)dx

and

||u|| =

√

∫

|f(x)|2dx.

The integrals are assumed to be finite; the limits of integration depend on
the support of the functions involved. The Cauchy-Schwarz inequality now
says that

|
∫

f(x)g(x)dx| ≤
√

∫

|f(x)|2dx
√

∫

|g(x)|2dx.
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Inner product of random variables: Now suppose that u = X and
v = Y are random variables. Then

〈u,v〉 = E(XY )

and
||u|| =

√

E(|X|2),
which is the standard deviation of X if the mean of X is zero. The expected
values are assumed to be finite. The Cauchy-Schwarz inequality now says
that

|E(XY )| ≤
√

E(|X|2)
√

E(|Y |2).
If E(X) = 0 and E(Y ) = 0 the random variables X and Y are orthogonal
if and only if they are uncorrelated.

Inner product of complex matrices: Now suppose that u = A and
v = B are complex matrices. Then

〈u,v〉 = trace(B†A)

and

||u|| =
√

trace(A†A),

where the trace of a square matrix is the sum of the entries on the main
diagonal. As we shall see later, this inner product is simply the complex
vector dot product of the vectorized versions of the matrices involved. The
Cauchy-Schwarz inequality now says that

|trace(B†A)| ≤
√

trace(A†A)
√

trace(B†B).

Weighted inner products of complex vectors: Let u and v be com-
plex vectors and let Q be a Hermitian positive-definite matrix; that is,
Q† = Q and u†Qu > 0 for all nonzero vectors u .The inner product is then

〈u,v〉 = v†Qu

and
||u|| =

√

u†Qu.

We know from the eigenvector decomposition of Q that Q = C†C for some
matrix C. Therefore the inner product is simply the complex vector dot
product of the vectors Cu and Cv. The Cauchy-Schwarz inequality says
that

|v†Qu| ≤
√

u†Qu
√

v†Qv.
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The weighted inner product of functions: Now suppose that u = f(x)
and v = g(x) and w(x) > 0. Then define

〈u,v〉 =

∫

f(x)g(x)w(x)dx

and

||u|| =

√

∫

|f(x)|2w(x)dx.

The integrals are assumed to be finite; the limits of integration depend on
the support of the functions involved. This inner product is simply the
inner product of the functions f(x)

√

w(x) and g(x)
√

w(x). The Cauchy-
Schwarz inequality now says that

|
∫

f(x)g(x)w(x)dx| ≤
√

∫

|f(x)|2w(x)dx

√

∫

|g(x)|2w(x)dx.

Once we have an inner product defined we can speak about orthogonality
and best approximation. Important in that regard is the orthogonality
principle, the topic of the next chapter.



Chapter 12

The Orthogonality

Principle

Imagine that you are standing and looking down at the floor. The point
B on the floor that is closest to N , the tip of your nose, is the unique
point on the floor such that the vector from B to any other point A on the
floor is perpendicular to the vector from N to B; that is, 〈BN,BA〉 = 0.
This is a simple illustration of the orthogonality principle. Whenever we
have an inner product defined we can speak of orthogonality and apply the
orthogonality principle to find best approximations.

The orthogonality principle: Let u and v1, ...,vN be members of an
inner product space. For all choices of scalars a1, ..., aN we can compute
the distance from u to the member a1v

1 + ...aNvN . Then we minimize
this distance over all choices of the scalars; let b1, ..., bN be this best choice.
The orthogonality principle tells us that the member u − (b1v

1 + ...bNvN )
is orthogonal to the member (a1v

1 + ...+ aNvN ) − (b1v
1 + ...bNvN ), that

is,

〈u − (b1v
1 + ...bNvN ), (a1v

1 + ...+ aNvN ) − (b1v
1 + ...bNvN ) = 0,

for every choice of scalars an. We can then use the orthogonality principle
to find the best choice b1., , , .bN .

For each fixed index value j in the set {1, ..., N} let an = bn if j is not
equal to n and aj = bj + 1. Then we have

0 = 〈u − (b1v
1 + ...bNvN ),vj〉,

or

〈u,vj〉 =
∑N

n=1
bn〈vn,vj〉,
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for each j. The vn are known, so we can calculate the inner products
〈vn,vj〉 and solve this system of equations for the best bn.

We shall encounter a number of particular cases of the orthogonality
principle in subsequent chapters. The example of the least squares solution
of a system of linear equations provides a good example of the use of this
principle.

The least squares solution: Let V a = u be a system of M linear
equations in N unknowns. For n = 1, ..., N let vn be the n-th column of
the matrix V . For any choice of the vector a with entries an, n = 1, ..., N
the vector V a is

V a =
∑N

n=1
anv

n.

Solving V a = u amounts to representing the vector u as a linear combina-
tion of the columns of V .

If there is no solution of V a = u then we can look for the best choice of
coefficients so as to minimize the distance ||u− (a1v

1 + ...+ aNvN )||. The
matrix with entries 〈vn,vj〉 is V †V and the vector with entries 〈u,vj〉 is
V †u. According to the orthogonality principle we must solve the system of
equations V †u = V †V a, which leads to the least squares solution.

Exercise 1: Find polynomial functions f(x), g(x) and h(x) that are or-
thogonal on the interval [0, 1] and have the property that every polynomial
of degree two or less can be written as a linear combination of these three
functions.

Exercise 2: Show that the functions einx, n an integer, are orthogonal on
the interval [−π, π]. Let f(x) have the Fourier expansion

f(x) =
∑∞

n=−∞
ane

inx, |x| ≤ π.

Use orthogonality to find the coefficients an.

We have seen that orthogonality can be used to determine the coeffi-
cients in the Fourier series representation of a function. There are other
useful representations in which orthogonality also plays a role; wavelets is
one such. Let f(x) be defined on the closed interval [0, X]. Suppose that we
change the function f(x) to a new function g(x) by altering the values for
x within a small interval, keeping the remaining values the same: then all
of the Fourier coefficients change. Looked at another way, a localized dis-
turbance in the function f(x) affects all of its Fourier coefficients. It would
be helpful to be able to represent f(x) as a sum of orthogonal functions in
such a way that localized changes in f(x) affect only a small number of the
components in the sum. One way to do this is with wavelets, as we shall
see shortly.



Chapter 13

Fourier Transforms and

Fourier Series

In a previous chapter we studied the problem of isolating the individual
complex exponential components of the signal function s(t), given the data
vector d with entries s(m∆), m = 1, ...,M , where s(t) is

s(t) =
∑N

n=1
Ane

iωnt;

we assume that |ωn| < π/∆. The second approach we considered involved
calculating the function

DFTd(ω) =
∑M

m=1
s(m∆)e−iωm∆

for |ω| < π/∆. This sum is an example of a (finite) Fourier series. As
we just saw, we can extend the concept of Fourier series to include infinite
sums. In fact, we can generalize to summing over a continuous variable,
using integrals in place of summation; this is what is done in the definition
of the Fourier transform.

The Fourier transform:

In our discussion of linear filtering we saw that if f is a finite vector f =
(f1, ..., fM )T or an infinite sequence f = {fm}+∞

m=−∞ then it is convenient
to consider the function F (ω) defined for |ω| ≤ π by the finite or infinite
Fourier series expression

F (ω) =
∑

fme
imω.

If f(x) is a function of the real variable x, we can associate with f the
function F (ω), the Fourier transform (FT) of f(x), defined for all real ω

43



44 CHAPTER 13. FOURIER TRANSFORMS AND FOURIER SERIES

by

F (ω) =

∫

f(x)eixωdx. (13.1)

Once we have F (ω) we can recover f(x) as the inverse Fourier transform
(IFT) of F (ω):

f(x) =

∫

F (ω)e−ixωdω/2π. (13.2)

We say then that the functions f and F form a Fourier transform pair. It
may happen that one or both of the integrals above will fail to be defined in
the usual way and will be interpreted as the principal value of the integral
[97].

Note that the definitions of the FT and IFT just given may differ slightly
from the ones found elsewhere; our definitions are those of Bochner and
Chandrasekharan [18]. The differences are minor and involve only the
placement of the quantity 2π and of the minus sign in the exponent. One
sometimes sees the FT of the function f denoted f̂ ; here we shall reserve
the symbol f̂ for estimates of the function f .

As an example of a Fourier transform pair let F (ω) be the function
χΩ(ω) that equals one for |ω| ≤ Ω and is zero otherwise. Then the inverse
Fourier transform of χΩ(ω) is

f(x) =

∫ Ω

−Ω

e−iωxdω/2π =
sin(Ωx)

πx
.

The function sin(x)
x is called the sinc function, sinc (x).

Fourier series:

If there is a positive Ω such that the Fourier transform F (ω) of the function
f(x) is zero for |ω| > Ω then the function f(x) is said to be Ω-bandlimited
and F (ω) has bandwidth Ω; in this case the function F (ω) can be written,
on the interval [−Ω,Ω], as an infinite discrete sum of complex exponentials.
For |ω| ≤ Ω we have

F (ω) =
∑+∞

n=−∞
fne

inω π
Ω . (13.3)

We determine the coefficients fn in much the same way as in earlier dis-
cussions.

We know that the integral

∫ Ω

−Ω

ei(n−m)ω π
Ω dω
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equals zero if m 6= n and equals 2Ω for m = n. Therefore,

fm =
1

2Ω

∫ Ω

−Ω

F (ω)e−imω π
Ω dω (13.4)

for each integer m. If we wish, we can also write the coefficient fm in
terms of the inverse Fourier transform f(x) of the function F (ω): the right
side of equation (13.4) also equals π

Ωf(m π
Ω ), from which we conclude that

fm = π
Ωf(m π

Ω ).

The Shannon Sampling Theorem: Now that we have found the coef-
ficients of the Fourier series for F (ω) we can write

F (ω) =
π

Ω

∞
∑

n=−∞
f(n

π

Ω
)einω

π
Ω (13.5)

for |ω| ≤ Ω. We apply the formula in equation (13.2) to get

f(x) =

∞
∑

n=−∞
f(n

π

Ω
)
sin(Ωx− nπ)

Ωx− nπ
. (13.6)

This is the famous Shannon sampling theorem, which tells us that if F (ω)
is zero outside [−Ω,Ω], then f(x) is completely determined by the infinite
sequence of values {f(n πΩ )}+∞

n=−∞. If F (ω) is continuous and F (−Ω) =
F (Ω) then F (ω) has a continuous periodic extension to all of the real line.
Then the Fourier series in equation (13.3) converges to F (ω) for every ω
at which the function F (ω) has a left and right derivative. In general, if
F (−Ω) 6= F (Ω), or if F (ω) is discontinuous for some ω in (−Ω,Ω), the
series will still converge, but to the average of the one-sided limits F (ω+0)
and F (ω − 0), again, provided that F (ω) has one-sided derivatives at that
point. If

∫ Ω

−Ω

|F (ω)|2dω < ∞

then
∑+∞

n=−∞
|f(n

π

Ω
)|2 < ∞

and the series in equation (13.6) converges to f(x) in the L2 sense. If, in
addition, we have

∑+∞

n=−∞
|f(n

π

Ω
)| < ∞,

then the series converges uniformly to f(x) for x on the real line. There
are many books that can be consulted for details concerning convergence
of Fourier series, such as [16] and [97].
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Let f = {fm} and g = {gm} be the sequences of Fourier coeffcients for
the functions F (ω) and G(ω), respectively, defined on the interval [−π, π];
that is

F (ω) =
∑∞

m=−∞
fme

imω, |ω| ≤ π.

Exercise 1: Use the orthogonality of the functions eimω on [−π, π] to
establish Parseval’s equation:

〈f, g〉 =
∑∞

m=−∞
fmgm =

∫ π

−π
F (ω)G(ω)dω/2π,

from which it follows that

〈f, f〉 =

∫ ∞

−∞
|F (ω)|2dω/2π.

Similar results hold for the Fourier transform, as we shall see in the next
chapter.

Exercise 2: Let f(x) be defined for all real x and let F (ω) be its FT. Let

g(x) =

∞
∑

k=−∞
f(x+ 2πk),

assuming the sum exists. Show that g is a 2π -periodic function. Compute
its Fourier series and use it to derive the Poisson summation formula:

∞
∑

k=−∞
f(2πk) =

1

2π

∞
∑

n=−∞
F (n).

In certain applications our main interest is the function f(x), for which we
have finitely many (usually noisy) values. For example, x may be the time
variable t and f(t) may be a short segment of spoken speech that we wish
to analyze. We model f(t) as a finite, infinite discrete or continuous sum
of complex exponentials, that is, as a Fourier series or Fourier transform,
in order to process the data, to remove the noise, to compress the data and
to identify the parameters.

In remote sensing applications (such as radar, sonar, tomography), on
the other hand, we have again noisy values of f(x), but it is not f(x) that
interests us. Instead, we are interested in F (ω), the Fourier transform of
f(x) or the sequence Fn of the complex Fourier coeffcients of f(x), if f(x) =
0 outside some finite interval. We cannot measure these quantities directly,
so we must content ourselves with estimating them from our measurements
of f(x).
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In yet a third class of applications, such as linear filtering, we are con-
cerned with constructing a digital procedure for performing certain oper-
ations on any signal we might receive as input. In such cases our goal is
to construct the sequence gn for which the associated Fourier series G(ω)
will have a desired shape. For example, we may want the filter to eliminate
all complex exponential components of the input signal whose frequency
is not in the interval [−Ω,Ω]. Then we would want G(ω) to be one for ω
within this interval and zero outside. To achieve this we would take the
sequence gn to be

gn =
sin(Ωn)

πn
.

In these applications there is no f(x) to be analyzed nor F (ω) to be esti-
mated.
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Chapter 14

Fourier Series and

Analytic Functions

We first encounter infinite series expansions for functions in calculus, when
we study Maclaurin and Taylor series. Fourier series are usually first met in
a much different context, such as partial differential equations and bound-
ary value problems. Laurent expansions come later, when we study func-
tions of a complex variable. There are, nevertheless, important connections
among these different types of infinite series expansions, which provide the
subject for this chapter.

Suppose that f(z) is analytic in an annulus containing the unit circle
C = {z | |z| = 1}. Then f(z) has a Laurent series expansion

f(z) =

∞
∑

n=−∞
fnz

n

valid for z within that annulus. Substituting z = eiθ we get f(θ), defined
for θ in the interval [−π, π] by

f(θ) = f(eiθ) =

∞
∑

n=−∞
fne

inθ;

here the Fourier series for f(θ) is derived from the Laurent series for the
analytic function f(z). If f(z) is actually analytic in (1 + ε)D, where
D = {z| |z| < 1} is the open unit disk, then f(z) has a Taylor series
expansion and the Fourier series for f(θ) contains only terms corresponding
to nonnegative n.

As an example, consider the rational function

f(z) =
1

z − 1
2

− 1

z − 3
= −5

2
/(z − 1

2
)(z − 3).
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In an annulus containing the unit circle this function has the Laurent series
expansion

f(z) =

−1
∑

n=−∞
2n+1zn +

∞
∑

n=0

(
1

3
)n+1zn;

replacing z with eiθ we obtain the Fourier series for the function f(θ) =
f(eiθ) defined for θ in the interval [−π, π].

The function F (z) = 1/f(z) is analytic for all complex z, but because
it has a root inside the unit circle, its reciprocal, f(z), is not analytic in
a disk containing the unit circle. Consequently, the Fourier series for f(θ)
is doubly infinite. We saw in the chapter on complex varables that the
function G(z) = z−a

1−az has |G(eiθ)| = 1. With a = 2 and H(z) = F (z)G(z)
we have

H(z) =
1

5
(z − 3)(z − 2)

and its reciprocal has the form

1/H(z) =

∞
∑

n=0

anz
n.

Because

G(eiθ)/H(eiθ) = 1/F (eiθ)

it follows that

|1/H(eiθ)| = |1/F (eiθ)| = |f(θ)|

and so

|f(θ)| = |
∞
∑

n=0

ane
inθ|.

Multiplication by G(z) permits us to move a root from inside C to outside
C without altering the magnitude of the function’s values on C.

The relationships that obtain between functions defined on C and func-
tions analytic (or harmonic) in D form the core of harmonic analysis [114].
The factorization F (z) = H(z)/G(z) above is a special case of the inner-
outer factorization for functions in Hardy spaces; the function H(z) is an
outer function and the functions G(z) and 1/G(z) are inner functions.

Instead of starting with an analytic function and restricting it to the
unit circle, we often begin with a function f(eiθ) defined on the unit circle,
or, equivalently, a function of the form f(θ) for θ in [−π, π], and wish to
view this function as the restriction to the unit circle of a function that is
analytic in a region containing the unit circle. One application of this idea
is the Fejér-Riesz factorization theorem.
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Theorem 14.1 Let h(θ) be a finite trigonometric polynomial

h(θ) =

N
∑

n=−N
hne

inθ

such that h(θ) ≥ 0 for all θ in the interval [−π, π]. Then there is

y(θ) =

N
∑

n=0

yne
inθ

with h(θ) = |y(θ)|2. The function y(z) is unique if we require, in addition,
that all its roots be outside D.

To prove this theorem we consider the function

h(z) =

N
∑

n=−N
hnz

n,

which is analytic in an annulus containing the unit circle, with h(eiθ) =
h(θ). The rest of the proof is contained in the following exercise.

Exercise 1: Use the fact that h−n = hn to show that zj is a root of h(z)
if and only if 1/zj is also a root. From the nonnegativity of h(eiθ) conclude
that if h(z) has a root on the unit circle then it has even multiplicity. Take
y(z) to be proportional to the product of factors z−zj for all the zj outside
D; for roots on C include them with half their multiplicities.

The Fejér-Riesz theorem is used in the derivation of Burg’s maximum
entropy method for spectrum estimation. The problem there is to estimate
a function R(θ) > 0 knowing only the values

rn =
1

2π

∫ π

−π
R(θ)e−inθdθ,

for |n| ≤ N . The approach is to estimate R(θ) by the function S(θ) > 0
that maximizes the so-called Burg entropy,

∫ π

−π logS(θ)dθ, subject to the
data constraints.

The Euler-Lagrange equation from the calculus of variations allows us
to conclude that S(θ) has the form

S(θ) = 1/

N
∑

n=−N
hne

inθ.
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The function

h(θ) =

N
∑

n=−N
hne

inθ

is nonnegative, so, by the Fejér-Riesz theorem, it factors as h(θ) = |y(θ)|2.
We then have S(θ)y(θ) = 1/y(θ). Since all the roots of y(z) lie outside D
and none are on C, the function 1/y(z) is analytic in a region containing C
and D so it has a Taylor series expansion in that region. Restricting this
Taylor series to C we obtain a one-sided Fourier series having zero terms
for the negative indices.

Exercise 2: Show that the coefficients yn in y(z) satisfy a system of linear
equations whose coefficients are the rn.

Hint: Compare the coefficients of the terms on both sides of the equation
S(θ)y(θ) = 1/y(θ) that correspond to negative indices.

The Hilbert transform for sequences: If g(ω) has the Fourier series
expansion

g(ω) =

∞
∑

n=−∞
gne

−inω,

the conjugate Fourier series [125] is

h(ω) =

∞
∑

n=−∞
(−i sgn(n))gne

−inω.

Then

f(ω) = g(ω) + ih(ω) = g0 + 2

∞
∑

n=1

gne
inω

is a one-sided Fourier series. In harmonic analysis the sequence {hn} is said
to be the conjugate of the sequence {gn}; in signal processing it is called
its Hilbert transform. As we shall see in a subsequent chapter, the Hilbert
transform occurs in several different contexts.



Chapter 15

More on the Fourier

Transform

We begin with exercises that treat basic properties of the FT and then
introduce several examples of Fourier transform pairs.

Exercise 1: Let F (ω) be the FT of the function f(x). Use the definitions
of the FT and IFT given in equations (13.1) and (13.2) to establish the
following basic properties of the Fourier transform operation:

Symmetry: The FT of the function F (x) is 2πf(−ω). For example, the

FT of the function f(x) = sin(Ωx)
πx is χΩ(ω), so the FT of g(x) = χΩ(x) is

G(ω) = 2π sin(Ωω)
πω .

Conjugation: The FT of f(x) is F (−ω).

Scaling: The FT of f(ax) is 1
|a|F (ωa ) for any nonzero constant a.

Shifting: The FT of f(x− a) is e−iaωF (ω).

Modulation: The FT of f(x) cos(ω0x) is 1
2 [F (ω + ω0) + F (ω − ω0)].

Differentiation: The FT of the n-th derivative, f (n)(x) is (−iω)nF (ω).
The IFT of F (n)(ω) is (ix)nf(x).

Convolution in x: Let f, F , g,G and h,H be FT pairs, with

h(x) =

∫

f(y)g(x− y)dy,
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so that h(x) = (f ∗g)(x) is the convolution of f(x) and g(x). Then H(ω) =
F (ω)G(ω). For example, if we take g(x) = f(−x), then

h(x) =

∫

f(x+ y)f(y)dy =

∫

f(y)f(y − x)dy = rf (x)

is the autocorrelation function associated with f(x) and

H(ω) = |F (ω)|2 = Rf (ω) ≥ 0

is the power spectrum of f(x).

Convolution in ω: Let f, F , g,G and h,H be FT pairs, with h(x) =
f(x)g(x). Then H(ω) = 1

2π (F ∗G)(ω).

Exercise 2: Show that the Fourier transform of f(x) = e−α2x2

is F (ω) =√
π
α e−( ω

2α
)2 . Hint: Calculate the derivative F ′(ω) by differentiating under

the integral sign in the definition of F and integrating by parts. Then solve
the resulting differential equation.

Let u(x) be the Heaviside function that is +1 if x ≥ 0 and 0 otherwise.
Let χX(x) be the characteristic function of the interval [−X,X] that is +1
for x in [−X,X] and 0 otherwise. Let sgn(x) be the sign function that is
+1 if x > 0, −1 if x < 0 and zero for x = 0.

Exercise 3: Show that the FT of the function f(x) = u(x)e−ax is F (ω) =
1

a−iω , for every positive constant a.

Exercise 4: Show that the FT of f(x) = χX(x) is F (ω) = 2 sin(Xω)
ω .

Exercise 5: Show that the IFT of the function F (ω) = 2i/ω is f(x) =
sgn(x).

Hints: write the formula for the inverse Fourier transform of F (ω) as

f(x) =
1

2π

∫ +∞

−∞

2i

ω
cosωxdω − i

2π

∫ +∞

−∞

2i

ω
sinωxdω

which reduces to

f(x) =
1

π

∫ +∞

−∞

1

ω
sinωxdω,

since the integrand of the first integral is odd. For x > 0 consider the
Fourier transform of the function χx(t). For x < 0 perform the change of
variables u = −x.



55

We saw earlier that the F (ω) = χΩ(ω) has for its inverse Fourier trans-
form the function f(x) = sin Ωx

πx ; note that f(0) = Ω
π and f(x) = 0 for the

first time when Ωx = π or x = π
Ω . For any Ω-bandlimited function g(x) we

have G(ω) = G(ω)χΩ(ω), so that, for any x0, we have

g(x0) =

∫ ∞

−∞
g(x)

sin Ω(x− x0)

π(x− x0)
dx.

We describe this by saying that the function f(x) = sin Ωx
πx has the sifting

property for all Ω-bandlimited functions g(x).
As Ω grows larger, f(0) approaches +∞, while f(x) goes to zero for

x 6= 0. The limit is therefore not a function; it is a generalized function
called the Dirac delta function at zero, denoted δ(x). For this reason the
function f(x) = sin Ωx

πx is called an approximate delta function. The FT
of δ(x) is the function F (ω) = 1 for all ω. The Dirac delta function δ(x)
enjoys the sifting property for all g(x); that is,

g(x0) =

∫ ∞

−∞
g(x)δ(x− x0)dx.

It follows from the sifting and shifting properties that the FT of δ(x− x0)
is the function eix0ω.

The formula for the inverse FT nows says

δ(x) =
1

2π

∫ ∞

−∞
e−ixωdω. (15.1)

If we try to make sense of this integral according to the rules of calculus we
get stuck quickly. The problem is that the integral formula doesn’t mean
quite what it does ordinarily and the δ(x) is not really a function, but
an operator on functions; it is sometimes called a distribution. The Dirac
deltas are mathematical fictions, not in the bad sense of being lies or fakes,
but in the sense of being made up for some purpose. They provide helpful
descriptions of impulsive forces, probability densities in which a discrete
point has nonzero probability, or, in array processing, objects far enough
away to be viewed as occupying a discrete point in space.

We shall treat the relationship expressed by equation (15.1) as a formal
statement, rather than attempt to explain the use of the integral in what is
surely an unconventional manner. Nevertheless, it is possible to motivate
this relationship by proving that, for any x 6= 0,

∫ ∞

−∞
e−ixωdω = 0.

Assume, for convenience, that x > 0. Notice first that we can write

∫ ∞

−∞
e−ixωdω =

∞
∑

k=−∞

∫ 2π
x

(k+1)

2π
x
k

e−ixωdω.
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Since

e−ixω = e−ix(ω+ 2π
x

)

we can write
∫ 2π

x
(k+1)

2π
x
k

e−ixωdω =

∫ π
x

− π
x

e−ixωdω

=

∫ π
x

0

[e−ixω + e−ix(ω− π
x
)]dω

=
1

x

∫ π

0

[e−iω(1 + eiπ)]dω

=
1

x
(1 + eiπ)

∫ π

0

e−iωdω = 0.

Clearly, when x = 0 the integrand is one for all ω, which leads to the delta
function supported at zero.

If we move the discussion into the ω domain and define the Dirac delta
function δ(ω) to be the FT of the function that has the value 1

2π for all
x, then the FT of the complex exponential function 1

2π e
−iω0x is δ(ω−ω0),

visualized as a ”spike” at ω0, that is, a generalized function that has the
value +∞ at ω = ω0 and zero elsewhere. This is a useful result, in that
it provides the motivation for considering the Fourier transform of a signal
s(t) containing hidden periodicities. If s(t) is a sum of complex exponentials
with frequencies −ωn then its Fourier transform will consist of Dirac delta
functions δ(ω−ωn). If we then estimate the Fourier transform of s(t) from
sampled data, we are looking for the peaks in the Fourier transform that
approximate the infinitely high spikes of these delta functions.

Exercise 6: Use the fact that sgn(x) = 2u(x)−1 and the previous exercise
to show that f(x) = u(x) has the FT F (ω) = i/ω + πδ(ω).

Generally, the functions f(x) and F (ω) are complex-valued, so that we
may speak about their real and imaginary parts. The next exercise explores
the connections that hold among these real-valued functions.

Exercise 7: Let f(x) be arbitrary and F (ω) its Fourier transform. Let
F (ω) = R(ω) + iX(ω), where R and X are real-valued functions, and
similarly, let f(x) = f1(x) + if2(x), where f1 and f2 are real-valued. Find
relationships between the pairs R,X and f1,f2.

Exercise 8: Let f, F be a FT pair. Let g(x) =
∫ x

−∞ f(y)dy. Show that

the FT of g(x) is G(ω) = πF (0)δ(ω) + iF (ω)
ω .
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Hint: For u(x) the Heaviside function we have

∫ x

−∞
f(y)dy =

∫ ∞

−∞
f(y)u(x− y)dy.

We can use properties of the Dirac delta functions to extend the Parseval
equation to Fourier transforms, where it is usually called the Parseval-
Plancherel equation.

Exercise 9: Let f(x), F (ω) and g(x), G(ω) be Fourier transform pairs.
Use equation (15.1) to establish the Parseval-Plancherel equation

〈f, g〉 =

∫

f(x)g(x)dx =
1

2π

∫

F (ω)G(ω)dω,

from which it follows that

||f ||2 = 〈f, f〉 =

∫

|f(x)|2dx =
1

2π

∫

|F (ω)|2dω.

Exercise 10: We define the even part of f(x) to be the function

fe(x) =
f(x) + f(−x)

2
,

and the odd part of f(x) to be

fo(x) =
f(x) − f(−x)

2
;

define Fe and Fo similarly for F the FT of f . Let F (ω) = R(ω)+ iX(ω) be
the decomposition of F into its real and imaginary parts. We say that f is
a causal function if f(x) = 0 for all x < 0. Show that, if f is causal, then
R and X are related; specifically, show that X is the Hilbert transform of
R, that is,

X(ω) =
1

π

∫ ∞

−∞

R(α)

ω − α
dα.

Hint: If f(x) = 0 for x < 0 then f(x)sgn(x) = f(x). Apply the convolution
theorem, then compare real and imaginary parts.

Exercise 11: The one-sided Laplace transform (LT) of f is F given by

F(z) =

∫ ∞

0

f(x)e−zxdx.

Compute F(z) for f(x) = u(x), the Heaviside function. Compare F(−iω)
with the FT of u.
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Chapter 16

The Uncertainty Principle

We saw earlier that the Fourier transform of the function f(x) = e−α2x2

is

F (ω) =

√
π

α
e−( ω

2α
)2 .

This Fourier transform pair illustrates well the general fact that the more
concentrated f(x) is, the more spread out F (ω) is. In particular, it is
impossible for both f and F to have bounded support. We prove the
following inequality:

∫

x2|f(x)|2dx
∫

|f(x)|2dx

∫

ω2|F (ω)|2dω
∫

|F (ω)|2dω ≥ 1

4
. (16.1)

This inequality is the mathematical version of Heisenberg’s Uncertainty
Principle.

The Parseval-Plancherel equation tells us that

∫

f(x)g(x)dx =
1

2π

∫

F (ω)G(ω)dω

for any Fourier transform pairs f, F and g,G. In particular, if g = f we
get

∫

|f(x)|2dx =
1

2π

∫

|F (ω)|2dω.

We’ll need Parseval’s theorem in the proof of the uncertainty principle as
well as this result from an earlier exercise (see equation (2.1)): for any two
complex numbers z and w we have

|zw| ≥ 1

2
(zw + zw).
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We have
1

2π

∫

x2|f(x)|2dx
∫

ω2|F (ω)|2dω

=
1

2π

∫

|xf(x)|2dx
∫

|ωF (ω)|2dω

=
1

2π

∫

|xf(x)|2dx
∫

|f ′(x)|2dx

≥ (

∫

|xf ′(x)f(x)|dx)2 ≥ (

∫

x

2
[f ′(x)f(x) + f(x)f ′(x)]dx)2

=
1

4
(

∫

x(
d

dx
|f(x)|2)dx)2

=
1

4
(

∫

|f(x)|2dx)2 =
1

8π

∫

|f(x)|2dx
∫

|F (ω)|2dω.

This completes the proof of the inequality (16.1).
To better understand the significance of this inequality, we reformulate

it in terms of the variances of probability densities. Suppose that

∫

|f(x)|2dx =

∫

|F (ω)|2dω = 1,

so that we may view |f(x)|2 and |F (ω)|2 as probability density functions
associated with random variables X and Y , respectively. From probability
theory we know that the expected values E(X) and E(Y ) are given by

m = E(X) =

∫

x|f(x)|2dx

and

M = E(Y ) =

∫

ω|F (ω)|2dω.

Let
g(x) = f(x+m)eiMx,

so that the Fourier transform of g(x) is

G(ω) = F (ω +M)ei(M−ω)m.

Then |g(x)|2 = |f(x+m)|2 and |G(ω)|2 = |F (ω +M)|2; we also have

∫

x|g(x)|2dx = 0

and
∫

ω|G(ω)|2dω = 0.
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The point here is that we can assume thatm = 0 andM = 0. Consequently
the variance of X is

var(X) =

∫

x2|f(x)|2dx

and the variance of Y is

var(Y ) =

∫

ω2|F (ω)|2dω.

The variances measure how spread out the functions |f(x)|2 and |F (ω)|2
are around their respective means. From the inequality (16.1) we know
that the product of these variances is not smaller than 1

4 .

Exercise 1: Show, by examining the proof of inequality (16.1), that if
the inequality is an equation for some f then f ′(x) = kxf(x), so that

f(x) = e−α2x2

for some α > 0.
Hint: What can be said when Cauchy’s inequality is an equation?
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Chapter 17

Directional Transmission

An important example of the use of the DFT is the design of directional
transmitting or receiving arrays of antennas. In this chapter we concentrate
on the transmission case; we shall return to array processing and consider
the passive or receiving case in a later chapter.

Parabolic mirrors behind car headlamps reflect the light from the bulb,
concentrating it directly ahead. Whispering at one focal point of an ellip-
tical room can be heard clearly at the other focal point. When I call to
someone across the street I cup my hands in the form of a megaphone to
concentrate the sound in that direction. In all these cases the transmit-
ted signal has acquired directionality. In the case of the elliptical room,
not only does the soft whispering reflect off the walls toward the oppo-
site focal point, but the travel times are independent of where on the wall
the reflections occur; otherwise, the differences in time would make the
received sound unintelligible. Parabolic satellite dishes perform much the
same function, concentrating incoming signals coherently. In this chapter
we discuss the use of amplitude and phase modulation of transmitted sig-
nals to concentrate the signal power in certain directions. Following the
lead of Richard Feynman in [91], we use radio broadcasting as a concrete
example of the use of directional transmission.

Radio broadcasts are meant to be received and the amount of energy
that reaches the receiver depends on the amount of energy put into the
transmission as well as on the distance from the transmitter to the receiver.
If the transmitter broadcasts a spherical wave front, with equal power in
all directions, the energy in the signal is the same over the spherical wave-
fronts, so that the energy per unit area is proportional to the reciprocal
of the surface area of the front. This means that, for omni-directional
broadcasting, the energy per unit area, that is, the energy supplied to any
receiver, falls off as the distance squared. The amplitude of the received
signal is then proportional to the reciprocal of the distance.
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Suppose you owned a radio station in Los Angeles. Most of the pop-
ulation resides along the north-south coast, with fewer to the east, in the
desert, and fewer still to the west, in the Pacific Ocean. You might well
want to transmit the radio signal in a way that concentrates most of the
power north and south. But how can you do this? The answer is to broad-
cast directionally. By shaping the wavefront to have most of its surface
area north and south you will enable to have the broadcast heard by more
people without increasing the total energy in the transmission. To achieve
this shaping you can use an array of multiple antennas.

Multiple antenna arrays: We place 2N + 1 transmitting antennas a
distance ∆ > 0 apart along an east-west axis, as shown in Figure 71.1. For
convenience, let the locations of the antennas be n∆, n = −N, ..., N . To
begin with, let us suppose that we have a fixed frequency ω and each of the
transmitting antennas sends out the same signal fn(t) = 1√

2N+1
cos(ωt).

With this normalization the total energy is independent of N . Let (x, y) be
an arbitrary location on the ground and let s be the vector from the origin
to the point (x, y). Let θ be the angle measured counterclockwise from
the positive horizontal axis to the vector s. Let D be the distance from
(x, y) to the origin. Then, if (x, y) is sufficiently distant from the antennas,
the distance from n∆ on the horizontal axis to (x, y) is approximately
D − n∆ cos(θ). The signals arriving at (x, y) from the various antennas
will have travelled for different times and so will be out of phase with one
another to a degree that depends on the location of (x, y).

Since we are concerned only with wavefront shape, we omit for now the
distance-dependence in the amplitude of the received signal. The signal
received at (x, y) is proportional to

f(s, t) =
1√

2N + 1

N
∑

n=−N
cos(ω(t− tn)),

where

tn =
1

c
(D − n∆ cos(θ))

and c is the speed of propagation of the signal. Writing

cos(ω(t− tn)) = cos(ω(t− D

c
) + nγ cos(θ))

for γ = ω∆
c , we have

cos(ω(t−tn)) = cos(ω(t−D

c
)) cos(nγ cos(θ))−sin(ω(t−D

c
)) sin(nγ cos(θ)).

Therefore the signal received at (x, y) is

f(s, t) =
1√

2N + 1
A(θ) cos(ω(t− D

c
)) (17.1)
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for

A(θ) =
sin((N + 1

2 )γ cos(θ))

sin( 1
2γ cos(θ))

;

when the denominator equals zero the signal equals
√

2N + 1 cos(ω(t−D
c )).

We see from equation (17.1) that the maximum power is in the north-
south direction. What about the east-west direction? In order to have
negligible signal power wasted in the east-west direction we want the nu-
merator in equation (17.1) to be zero when θ = 0. This means that
∆ = mλ/(2N + 1), where λ = 2πc/ω is the wavelength and m is some
positive integer. Recall that the wavelength for broadcast radio is tens to
hundreds of meters.

Exercise 1: Graph the function A(θ) in polar coordinates for various
choices of N and ∆.

Phase and Amplitude Modulation: In the previous section the signal
broadcast from each of the antennas was the same. Now we look at what
directionality can be obtained by using different amplitudes and phases at
each of the antennas. Let the signal broadcast from the antenna at n∆ be

fn(t) = |An| cos(ωt− φn) = |An| cos(ω(t− τn)),

for some amplitude |An| > 0 and phase φn = ωτn. Now the signal received
at s is proportional to

f(s, t) =

N
∑

n=−N
|An| cos(ω(t− tn − τn)). (17.2)

If we wish, we can repeat the calculations done earlier to see what the effect
of the amplitude and phase changes is. Using complex notation simplifies
things somewhat.

Let us consider a complex signal; suppose that the signal transmitted
from the antenna at n∆ is gn(t) = |An|eiω(t−τn). Then the signal received
at location s is proportional to

g(s, t) =

N
∑

n=−N
|An|eiω(t−tn−τn).

Then we have
g(s, t) = B(θ)eiω(t− D

c
)

for An = |An|e−iφn and x = ω∆
c sin(θ). Note that the complex amplitude

function B(θ) depends on our choices of N and ∆ and takes the form of
a finite Fourier series or DFT. We can design B(θ) to approximate the
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desired directionality by choosing the appropriate complex coefficients An
and selecting the amplitudes |An| and phases φn accordingly. We can
generalize further by allowing the antennas to be spaced irregularly along
the east-west axis, or even distributed irregularly over a two-dimensional
area on the ground.

Exercise 2: Use the Fourier transform of the characteristic function of
an interval to design a transmitting array that maximally concentrates
signal power within the sectors northwest to northeast and southwest to
southeast.

Maximal concentration in a sector: Suppose we want to concentrate
the transmission power in the directions represented by x ∈ [a, b] where
[a, b] is a subinterval of [−π, π]. Let u = (A−N , ..., AN )T be the vector of
coefficients for the function

B(x) =

N
∑

n=−N
Ane

−inx.

Exercise 3: Show that

1

2π

∫ π

−π
|B(x)|2dx = u†u,

and
1

2π

∫ b

a

|B(x)|2dx = u†Qu,

where Q is the matrix with entries

Qmn =
1

2π

∫ b

a

exp(i(n−m)x)dx.

Maximizing the concentration of power within the interval [a, b] is then
equivalent to finding the vector u that maximizes the ratio u†Qu/u†u.
The matrix Q is positive-definite, all its eigenvalues are positive and the
optimal u is the eigenvector of Q associated with the largest eigenvalue.
This largest eigenvalue is the desired ratio and is always less that one. As
N increases this ratio approaches one, for any fixed sub-interval [a, b].

The figures below show that transmission pattern A(θ) for various
choices of m and N . In Figure 17.2 N = 5 for each plot and the m changes,
illustrating the effect of changing the spacing of the array elements. The
plots in Figure 17.3 differ from those in Figure 17.2 only in that N = 21
now. In Figure 17.4 we allow the m to be less than one, showing the loss
of the nulls in the east and west directions.
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Figure 17.2: Transmission Pattern A(θ): m = 1, 2, 4, 8 and N = 5
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Figure 17.3: Transmission Pattern A(θ): m = 1, 2, 4, 8 and N = 21
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Figure 17.4: Transmission Pattern A(θ): m = 0.9, 0.5, 0.25, 0.125 and N =
21



Chapter 18

Analysis and Synthesis

An important theme that runs through most of mathematics, from the
geometry of the early Greeks to modern signal processing, is analysis and
synthesis, or, less formally, breaking up and putting back together. The
Greeks estimated the area of a circle by breaking it up into sectors that
approximated triangles. The Riemann approach to integration involves
breaking up the area under a curve into pieces that approximate rectangles
or other simple shapes. Viewed differently, the Riemann approach is first
to approximate the function to be integrated by a step function and then
to integrate the step function.

Euclid includes a good deal of number theory along with his geometry;
there also we find analysis and synthesis. His theorem that every posi-
tive integer is divisible by a prime is analysis; division does the breaking
up and the simple pieces are the primes. The fundamental theorem of
arithmetic, which asserts that every positive integer can be written in an
essentially unique way as the product of powers of primes, is synthesis,
with the putting together done by multiplication.

Analysis and synthesis in signal processing refers to the effort to study
complicated functions in terms of simpler ones. The individual power func-
tions, xn, are not particularly interesting by themselves, but when finitely
many of them are scaled and added to form a polynomial, interesting func-
tions can result, as the famous approximation theorem of Weierstrass con-
firms [127]:

Theorem 18.1 If f : [a, b] → R is continous and ε > 0 is given we can
find a polynomial P such that |f(x) − P (x)| ≤ ε for every x in [a, b].

The idea of building complicated functions from powers is carried a
step further with the use of infinite series, such as Taylor series. The sine
function, for example, can be represented for all real x by the infinite power
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series

sinx = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + ....

The most interesting thing to note about this is that the sine function has
properties that none of the individual power functions possess: for exam-
ple, it is bounded and periodic. So we see that an infinite sum of simple
functions can be qualitatively different from the components in the sum. If
we take the sum of only finitely many terms in the Taylor series for the sine
function we get a polynomial, which cannot provide a good approximation
of the sine function for all x; that is, the finite sum does not approximate
the sine function uniformly over the real line. The approximation is better
for x near zero and poorer as we move away from zero. However, for any
selected x and for any ε > 0 there is a positive integer N , depending on
the x and on the ε, with the sum of the first N terms of the series within
ε of sinx; that is, the series converges pointwise to sinx for each real x.
In Fourier analysis the trigonometric functions themselves are viewed as
the simple functions and we try to build more complicated functions as
(possibly infinite) sums of trig functions. In wavelet analysis we have more
freedom to design the simple functions to fit the problem at hand.

When we speak of signal analysis we often mean that we believe the
signal to be a superposition of simpler signals of a known type and we wish
to know which of these simpler signals are involved and to what extent. For
example, received sonar or radar data may be the superposition of individ-
ual components corresponding to spatially localized targets of interest. As
we shall see in our discussion of the ambiguity function and of wavelets,
we want to tailor the family of simpler signals to fit the physical problem
being considered.

Sometimes it is not the individual components that are significant by
themselves, but groupings of these components. For example, if our re-
ceived signal is believed to consist of a lower frequency signal of interest
plus a noise component employing both low and high frequencies, we can re-
move some of the noise by performing a low-pass filtering. This amounts to
analyzing the received signal to determine what its low-pass and high-pass
components are. We formulate this operation mathematically using the
Fourier transform, which decomposes the received signal f(t) into complex
exponential function components corresponding to different frequencies.

More generally, we may analyze a signal f(t) by calculating certain in-
ner products 〈f, gn〉 , n = 1, ..., N . We may wish to encode the signal using
these N numbers, or to make a decision about the signal, such as recog-
nizing a voice. If the signal is a two-dimensional image, say a fingerprint,
we may want to construct a data-base of these N -dimensional vectors, for
identification. In such a case we are not necessarily claiming that the signal
f(t) is a superposition of the gn(t) in any sense, nor do we necessarily ex-
pect to reconstruct f(t) at some later date from the stored inner products.
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For example, one might identify a piece of music using only the upward or
downward progression of the first few notes.

There are many cases, on the other hand, in which we do wish to recon-
struct the signal f(t) from measurements or stored compressed versions.
In such cases we need to consider this when we design the measuring or
compression procedures. For example, we may have values of the signal or
its Fourier transform at some finite number of points and want to recapture
f(t) itself. Even in those cases mentioned above in which reconstruction
is not desired, such as the fingerprint case, we do wish to be reasonably
sure that similar vectors of inner products correspond to similar signals and
distinct vectors of inner products correspond to distinct signals, within the
obvious limitations imposed by the finiteness of the stored inner products.
The twin processes of analysis and synthesis are dealt with mathematically
using the notions of frames and bases.

Frames: Although in practice we deal with finitely many measurements or
inner product values, it is convenient, in theoretical discussions, to imagine
that the signal f(t) has been associated with an infinite sequence of inner
products {〈f, gn〉 , n = 1, 2, ...}. It is also convenient to assume that ||f ||2 =
∫∞

−∞ |f(t)|2dt < +∞; that is, we assume that f is in the Hilbert space

H = L2. The sequence {gn|n = 1, 2, ...} in any Hilbert space H is called a
frame for H if there are positive constants A ≤ B such that, for all f in H,

A||f ||2 ≤
∞
∑

n=1

|〈f, gn〉|2 ≤ B||f ||2. (18.1)

The inequalities in (18.1) define the frame property. A frame is said to be
tight if A = B.

To motivate this definition, suppose that f = g − h. If g and h are
nearly equal, then f is near zero, so that ||f ||2 is near zero. Consequently,
the numbers |〈f, gn〉|2 are all small, meaning that 〈g, gn〉 is nearly equal to
〈h, gn〉 for each n. Conversely, if 〈g, gn〉 is nearly equal to 〈h, gn〉 for each n,
then the numbers |〈f, gn〉|2 are all small. Consequently ||f ||2 is small, from
which we conclude that g is close to h. The analysis operator is the one
that takes us from f to the sequence {〈f, gn〉}, while the synthesis operator
takes us from the sequence {〈f, gn〉} to f . This discussion of frames and
related notions is based on the treatment in Christensen’s book [66].

In the case of finite dimensional space, any finite set {gn, n = 1, ..., N}
is a frame for the space H of all f that are linear combinations of the gn.

Exercise 1: An interesting example of a frame in H = R2 is the so-
called Mercedes frame: let g1 = (0, 1), g2 = (−

√
3/2,−1/2) and g3 =

(
√

3/2,−1/2). Show that for this frame A = B = 3/2, so the Mercedes
frame is tight.
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The frame property in (18.1) provides a necessary condition for stable
application of the decomposition and reconstruction operators. But it does
more than that- it actually provides a reconstruction algorithm. The frame
operator S is given by

Sf =

∞
∑

n=1

〈f, gn〉 gn.

The frame property implies that the frame operator is invertible. The dual
frame is the sequence {S−1gn, n = 1, 2, ...}.

Exercise 2: Use the definitions of the frame operator S and the dual frame
to obtain the following reconstruction formulas:

f =

∞
∑

n=1

〈f, gn〉S−1gn;

and

f =

∞
∑

n=1

〈f, S−1gn〉 gn.

If the frame is tight then the dual frame is { 1
Agn, n = 1, 2, ...}; if the frame

is not tight, inversion of the frame operator is done only approximately.

Bases, Riesz bases and orthonormal bases: The sequence {gn, n =
1, 2, ...} in H is a basis for H if, for every f in H, there is a unique sequence
{cn, n = 1, 2, ...} with

f =

∞
∑

n=1

cngn.

A basis is called a Riesz basis if it is also a frame for H. It can be shown
that a frame is a Riesz basis if the removal of any one element causes the
loss of the frame property; since the second inequality in (18.1) is not lost,
it follows that it is the first inequality that can now be violated for some f .
A basis is an orthonormal basis for H if ||gn|| = 1 for all n and 〈gn, gm〉 = 0
for distinct m and n.

We know that the complex exponentials

{en(t) =
1√
2π
eint, −∞ < n < ∞}

form an orthonormal basis for the Hilbert space L2(−π, π) consisting of all
f supported on (−π, π) with

∫ π

−π |f(t)|2dt < +∞. Every such f can be
written as

f(t) =
1√
2π

+∞
∑

n=−∞
ane

int,



75

for

an = 〈f, en〉 =
1√
2π

∫ π

−π
f(t)e−intdt.

Consequently, this is true for every f in L2(−π/2, π/2), although the set of
functions {gn} formed by restricting the {en} to the interval (−π/2, π/2) is
no longer a basis forH = L2(−π/2, π/2). It is still a tight frame withA = 1,
but is no longer normalized, since the norm of gn in L2(−π/2, π/2) is 1/

√
2.

An orthonormal basis can be characterized as any sequence with ||gn|| = 1
for all n that is a tight frame with A = 1. The sequence {

√
2g2k, k =

−∞, ...,∞} is an orthonormal basis for L2(−π/2, π/2), as is the sequence
{
√

2g2k+1, k = −∞, ...,∞}. The sequence {〈f, gn〉 , n = −∞, ...,∞} is
redundant; the half corresponding either to the odd n or the half corre-
sponding to the even n suffices to recover f . Because of this redundancy
we can tolerate more inaccuracy in measuring these values; indeed, this is
one of the main attractions of frames in signal processing.
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Chapter 19

Ambiguity Functions

We turn now to signal processing problems arising in radar. Not only does
radar provide an important illustration of the application of the theory
of Fourier transforms and matched filters, but it also serves to motivate
several of the mathematical concepts we shall encounter in our discussion
of wavelets. The connection between radar signal processing and wavelets
is discussed in some detail in Kaiser’s book [123].

In radar a real-valued function ψ(t) representing a time-varying voltage
is converted by an antenna in transmission mode into a propagating elec-
tromagnetic wave. When this wave encounters a reflecting target an echo
is produced. The antenna, now in receiving mode, picks up the echo f(t),
which is related to the original signal by

f(t) = Aψ(t− d(t)),

where d(t) is the time required for the original signal to make the round trip
from the antenna to the target and return back at time t. The amplitude A
incorporates the reflectivity of the target as well as attenuation suffered by
the signal. As we shall see shortly, the delay d(t) depends on the distance
from the antenna to the target and, if the target is moving, on its radial
velocity. The main signal processing problem is to determine target range
and radial velocity from knowledge of f(t) and ψ(t).

If the target is stationary, at a distance r0 from the antenna, then
d(t) = 2r0/c, where c is the speed of light. In this case the original signal
and the received echo are related simply by

f(t) = Aψ(t− b),

for b = 2r0/c. When the target is moving so that its distance to the
antenna, r(t), is time-dependent, the relationship between f and ψ is more
complicated.
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Exercise 1: Suppose the target has radial velocity v, with v > 0 indicating
away from the antenna. Show that the delay function d(t) is now

d(t) = 2
r0 + vt

c+ v

and f(t) is related to ψ(t) according to

f(t) = Aψ(
t− b

a
), (19.1)

for

a =
c+ v

c− v

and

b =
2r0
c− v

.

Show also that if we select A = ( c−vc+v )1/2 then energy is preserved; that is,
||f || = ||ψ||.

Exercise 2: Let Ψ(ω) be the Fourier transform of the signal ψ(t). Show
that the Fourier transform of the echo f(t) in equation (19.1) is then

F (ω) = AaeibωΨ(aω). (19.2)

The basic problem is to determine a and b, and therefore the range and
radial velocity of the target, from knowledge of f(t) and ψ(t). An obvious
approach is to do a matched filter.

The wideband cross-ambiguity function:

Note that the received echo f(t) is related to the original signal by the
operations of rescaling and shifting. We therefore match the received echo
with all the shifted and rescaled versions of the original signal. For each
a > 0 and real b let

ψa,b(t) = ψ(
t− b

a
).

The wideband cross-ambiguity function (WCAF) is

(Wψf)(b, a) =
1√
a

∫ ∞

−∞
f(t)ψa,b(t)dt. (19.3)

In the ideal case the values of a and b for which the WCAF takes on its
largest absolute value should be the true values of a and b.

More generally, there will be many individual targets or sources of echos,
each having their own values of a, b and A. The resulting received echo
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function f(t) is a superposition of the individual functions ψa,b(t), which,
for technical reasons, we write as

f(t) =

∫ ∞

−∞

∫ ∞

0

D(b, a)ψa,b(t)
dadb

a2
. (19.4)

We then have the inverse problem of determining D(b, a) from f(t).
Equation (19.4) provides a representation of the echo f(t) as a super-

position of rescaled translates of a single function, namely the original sig-
nal ψ(t). We shall encounter this representation again in our discussion of
wavelets, where the signal ψ(t) is called the mother wavelet and the WCAF
is called the integral wavelet transform. One reason for discussing radar and
ambiguity functions now is to motivate some of the wavelet theory. Our
discussion here follows closely the treatment in [123], where Kaiser em-
phasizes the important connections between wavelets and radar ambiguity
functions.

As we shall see in the chapter on wavelets, we can recover the signal
f(t) from the WCAF using the following inversion formula: at points t
where f(t) is continuous we have

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψf)(b, a)ψ(

t− b

a
)
dadb

a2
,

with

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω

for Ψ(ω) the Fourier transform of ψ(t). The obvious conjecture is then that
the distribution functon D(b, a) is then

D(b, a) =
1

Cψ
(Wψf)(b, a).

However, this is not generally the case. Indeed, there is no particular
reason why the physically meaningful function D(b, a) must have the form
(Wψg)(b, a) for some function g. So the inverse problem of estimating
D(b, a) from f(t) is more complicated. One approach mentioned in [123]
involves transmitting more than one signal ψ(t) and estimating D(b, a)
from the echos corresponding to each of the several different transmitted
signals.

The narrowband cross-ambiguity function:

The real signal ψ(t) with Fourier transform Ψ(ω) is said to be a narrowband
signal if there are constants α and γ such that the conjugate-symmetric
function Ψ(ω) is concentrated on α ≤ |ω| ≤ γ and γ−α

γ+α is nearly equal to
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zero, which means that α is very much greater than β = γ−α
2 . The center

frequency is ωc = γ+α
2 .

Exercise 3: Let φ = 2ωcv/c. Show that aωc is approximately equal to
ωc + φ.

It follows then that, for ω > 0, F (ω), the Fourier transform of the echo
f(t), is approximately AaeibωΨ(ω + φ). Because the Doppler shift affects
positive and negative frequencies differently it is convenient to construct a
related signal having only positive frequency components.

Let G(ω) = 2F (ω) for ω > 0 and G(ω) = 0 otherwise. Let g(t) be
the inverse Fourier transform of G(ω). Then the complex-valued function
g(t) is called the analytic signal associated with f(t). The function f(t) is
the real part of g(t); the imaginary part of g(t) is the Hilbert transform of
f(t). Then the demodulated analytic signal associated with f(t) is h(t) with
Fourier transformH(ω) = G(ω+ωc). Similarly, let γ(t) be the demodulated
analytic signal associated with ψ(t).

Exercise 4: Show that the demodulated analytic signals h(t) and γ(t) are
related by

h(t) = Beiφtγ(t− b) = Bγφ,b(t),

for B a time-independent constant.
Hint: Use the fact that Ψ(ω) = 0 for 0 ≤ ω < α and φ < α.

To determine the range and radial velocity in the narrowband case
we again use the matched filter, forming the narrowband cross-ambiguity
function (NCAF)

Nh(φ, b) = 〈h, γφ,b〉 =

∫ ∞

−∞
h(t)e−iφtγ(t− b)dt. (19.5)

Ideally, the values of φ and b corresponding to the largest absolute value of
Nh(φ, b) will be the true ones, from which the range and radial velocity can
be determined. For each fixed value of b the NCAF is the Fourier transform
of the function h(t)γ(t− b), evaluated at ω = −φ; so the NCAF contains
complete information about the function h(t). In the chapter on wavelets
we shall consider the NCAF in a different light, with γ playing the role of a
window function and the NCAF the short-time Fourier transform of h(t),
describing the frequency content of h(t) near the time b.

In the more general case in which the narrowband echo function f(t) is
a superposition of narrowband reflections,

f(t) =

∫ ∞

−∞

∫ ∞

0

D(b, a)ψa,b(t)
dadb

a2
,
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we have

h(t) =

∫ ∞

−∞

∫ ∞

0

DNB(b, φ)eiφtγ(t− b)dφdb,

where DNB(b, φ) is the narrowband distribution of reflecting target points,
as a function of b and φ = 2ωcv/c. The inverse problem now is to estimate
this distribution, given h(t).
Range estimation: If the transmitted signal is ψ(t) = eiωt and the target
is stationary at range r, then the echo received is f(t) = Aeiω(t−b), where
b = 2r/c. So our information about r is that we know the value e2iωr/c.
Because of the periodicity of the complex exponential function, this is not
enough information to determine r; we need e2iωr/c for a variety of values
of ω. To obtain these values we can transmit a signal whose frequency
changes with time, such as a chirp of the form

ψ(t) = eiωt
2

with the frequency 2ωt at time t.
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Chapter 20

Time-Frequency Analysis

There are applications in which the frequency composition of the signal
of interest will change over time. A good analogy is a piece of music,
in which notes at certain frequencies are heard for a while and then are
replaced by notes at other frequencies. We do not usually care what the
overall contribution of, say, middle C, is to the song, but do want to know
which notes are to be sounded when and for how long. Analyzing such
non-stationary signals requires tools other than the Fourier transform: the
short-time Fourier transform is one such tool; wavelet expansion is another.

The inverse Fourier transform formula

f(t) =
1

2π

∫ ∞

−∞
F (ω)e−iωtdω

provides a representation of the function of time f(t) as a superposition of
sinusoids e−iωt with frequencies ω. The value at ω of the Fourier transform

F (ω) =

∫ ∞

−∞
f(t)eiωtdt

is the complex amplitude associated with the sinusoidal component e−iωt.
It quantifies the contribution to f(t) made by that sinusoid, over all of t.
To determine each individual number F (ω) we need f(t) for all t. It is
implicit that the frequency content has not changed over time.

The short-time Fourier transform: To estimate the frequency content
of the signal f(t) around the time t = b we could proceed as follows.
Multiply f(t) by the function that is equal to 1

2ε on the interval [b− ε, b+ ε]
and zero otherwise. Then take the Fourier transform. The multiplication
step is called windowing.
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To see how well this works, consider the case in which f(t) = exp(−iω0t)
for all t. The Fourier transform of the windowed signal is then

exp(i(ω − ω0)b)
sin(ε(ω − ω0))

ε(ω − ω0)
.

This function attains its maximum value of one at ω = ω0. But, the first
zeros of the function are at |ω− ω0| = π

ε , which says that as ε gets smaller
the windowed Fourier transform spreads out more and more around ω =
ω0; that is, better time localization comes at the price of worse frequency
localization. To achieve a somewhat better result we can change the window
function.

The standard normal (or Gaussian) curve is

g(t) =
1√
2π

exp(−1

2
t2),

which has its peak at t = 0 and falls off to zero symmetrically on either
side. For σ > 0 let

gσ(t) =
1

σ
g(t/σ).

Then the function gσ(t− b) is centered at t = b and falls off on either side,
more slowly for large σ, faster for smaller σ. Also we have

∫ ∞

−∞
gσ(t− b)dt = 1

for each b and σ > 0. Such functions were used by Gabor [96] for windowing
signals and are called Gabor windows.

Gabor’s idea was to multiply f(t), the signal of interest, by the window
gσ(t− b) and then to take the Fourier transform, obtaining the short-time
Fourier transform (STFT)

Gσb (ω) =

∫ ∞

−∞
f(t)gσ(t− b)eiωtdt.

Since gσ(t − b) falls off to zero on either side of t = b, multiplying by
this window essentially restricts the signal to a neighborhood of t = b.
The STFT then measures the frequency content of the signal, near the
time t = b. The STFT therefore performs a time-frequency analysis of the
signal.

We focus more tightly around the time t = b by choosing a small value
for σ. Because of the uncertainty principle, the Fourier transform of the
window gσ(t− b) grows wider as σ gets smaller; the time-frequency window
remains constant [67]. This causes the STFT to involve greater blurring
in the frequency domain. In short, to get good resolution in frequency, we
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need to observe for a longer time; if we focus on a small time interval, we
pay the price of reduced frequency resolution. This is unfortunate because
when we focus on a short interval of time, it is to uncover a part of the signal
that is changing within that short interval, which means it must have high
frequency components within that interval. There is no reason to believe
that the spacing is larger between those high frequencies we wish to resolve
than between lower frequencies associated with longer time intervals. We
would like to have the same resolving capability when focusing on a short
time interval that we have when focusing on a longer one.

The Wigner-Ville distribution: In [143] Meyer describes Ville’s ap-
proach to determining the instantaneous power spectrum of the signal, that
is, the energy in the signal f(t) that corresponds to time t and frequency
ω. The goal is to find a function Wf (t, ω) having the properties

∫

Wf (t, ω)dω/2π = |f(t)|2,

which is the total energy in the signal at time t, and
∫

Wf (t, ω)dt = |F (ω)|2,

which is the total energy in the Fourier transform at frequency ω. Be-
cause these two properties do not specify a unique Wf (t, ω) two additional
properties are usually required:

∫ ∫

Wf (t, ω)Wg(t, ω)dtdω/2π = |
∫

f(t)g(t)dt|2,

and for f(t) = gσ(t− b) exp(iαt)

Wf (t, ω) = 2 exp(−σ−2(t− b)2) exp(−σ2(ω − α)2).

The Wigner-Ville distribution of f(t), given by

WVf (t, ω) =

∫ ∞

−∞
f(t+

τ

2
)f(t− τ

2
) exp(−iωτ)dτ,

has all four of the desired properties. The Wigner-Ville distribution is
always real-valued, but its values need not be nonnegative.

In [81] De Bruijn defines the score of a signal f(t) to be H(x, y; f, f),
where

H(x, y; f1, f2) = 2

∫ ∞

−∞
f1(x+ t)f2(x− t)e−4πiytdt.

Exercise 1: Relate the narrowband cross-ambiguity function to the De
Bruijn’s score and the Wigner-Ville distribution.



86 CHAPTER 20. TIME-FREQUENCY ANALYSIS



Chapter 21

Wavelets

The fantastic increase in computer power over the last few decades has
made possible, even routine, the use of digital procedures for solving prob-
lems that were believed earlier to be intractible, such as the modeling of
large-scale systems. At the same time, it has created new applications
unimagined previously, such as medical imaging. In some cases the math-
ematical formulation of the problem is known and progress has come with
the introduction of efficient computational algorithms, as with the Fast
Fourier Transform. In other cases, the mathematics is developed, or per-
haps rediscovered, as needed by the people involved in the applications.
Only later it is realized that the theory already existed, as with the de-
velopment of computerized tomography without Radon’s earlier work on
reconstruction of functions from their line integrals.

It can happen that applications give a theoretical field of mathematics
a rebirth; such seems to be the case with wavelets [117]. Sometime in the
1980’s researchers working on various problems in electrical engineering,
quantum mechanics, image processing and elsewhere became aware that
what the others were doing was related to their own work. As connections
became established, similarities with the earlier mathematical theory of
approximation in functional analysis were noticed. Meetings began to take
place and a common language began to emerge around this reborn area,
now called wavelets. There are a number of good books on wavelets, such
as [123], [16] and [180].

Fourier analysis and synthesis concerns the decomposition, filtering,
compressing and reconstruction of signals using complex exponential func-
tions as the building blocks; wavelets provides a framework in which other
building blocks, better suited to the problem at hand, can be used. As al-
ways, efficient algorithms provide the bridge between theory and practice.

Since their development in the 1980’s wavelets have been used for many
purposes. In the discussion to follow we focus on the problem of analyzing a
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signal whose frequency composition is changing over time. As we saw in our
discussion of the narrowband cross-ambiguity function in radar, the need
for such time-frequency analysis has been known for quite a while. Other
methods, such as Gabor’s short time Fourier transform and the Wigner-
Ville distribution, have also been considered for this purpose.

The integral wavelet transform: For real numbers b and a 6= 0 the
integral wavelet transform (IWT) of the signal f(t) relative to the basic
wavelet (or mother wavelet) ψ(t) is

(Wψf)(b, a) = |a|− 1
2

∫ ∞

−∞
f(t)ψ(

t− b

a
)dt.

This function is also the wideband cross-ambiguity function in radar. The
function ψ(t) is also called a window function and, like Gaussian functions,
it will be relatively localized in time. However, it must also have properties
quite different from those of Gabor’s Gaussian windows; in particular, we
want

∫ ∞

−∞
ψ(t)dt = 0.

An example is the Haar wavelet ψHaar(t) that has the value +1 for 0 ≤
t < 1

2 , −1 for 1
2 ≤ t < 1 and zero otherwise.

As the scaling parameter a grows larger the wavelet ψ(t) grows wider,
so choosing a small value of the scaling parameter permits us to focus in a
neighborhood of the time t = b. The IWT then registers the contribution
to f(t) made by components with features on the scale determined by
a, in the neightborhood of t = b. Calculations involving the uncertainty
principle reveal that the IWT provides a flexible time-frequency window
that narrows when we observe high frequency components and widens for
lower frequencies [67].

Given the integral wavelet transform (Wψf)(b, a) it is natural to ask
how we might recover the signal f(t). The following inversion formula
answers that question: at points t where f(t) is continuous we have

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψf)(b, a)ψ(

t− b

a
)
da

a2
db,

with

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω

for Ψ(ω) the Fourier transform of ψ(t).

Wavelet series expansions: The Fourier series expansion of a function
f(t) on a finite interval is a representation of f(t) as a sum of orthogonal



89

complex exponentials. Localized alterations in f(t) affect every one of the
components of this sum. Wavelets, on the other hand, can be used to
represent f(t) so that localized alterations in f(t) affect only a few of the
components of the wavelet expansion. The simplest example of a wavelet
expansion is with respect to the Haar wavelets.

Exercise 1: Let w(t) = ψHaar(t). Show that the functions wjk(t) =
w(2jt− k) are mutually orthogonal on the interval [0, 1], where j = 0, 1, ...
and k = 0, 1, ..., 2j − 1.

These functions wjk(t) are the Haar wavelets. Every continuous func-
tion f(t) defined on [0, 1] can be written as

f(t) = c0 +
∑∞

j=0

∑2j−1

k=0
cjkwjk(t)

for some choice of c0 and the cjk. Notice that the support of the func-
tion wjk(t), the interval on which it is nonzero, gets smaller as j increases.
Therefore, the components corresponding to higher values of j in the Haar
expansion of f(t) come from features that are localized in the variable t;
such features are transients that live for only a short time. Such transient
components affect all of the Fourier coefficients but only those Haar wavelet
coefficients corresponding to terms supported in the region of the distur-
bance. This ability to isolate localized features is the main reason for the
popularity of wavelet expansions.

The orthogonal functions used in the Haar wavelet expansion are them-
selves discontinuous, which presents a bit of a problem when we represent
continuous functions. Wavelets that are themselves continuous, or better
still, differentiable, should do a better job representing smooth functions.

We can obtain other wavelet series expansions by selecting a basic
wavelet ψ(t) and defining ψjk(t) = 2j/2ψ(2jt − k), for integers j and k.
We then say that the function ψ(t) is an orthogonal wavelet if the family
{ψjk} is an orthonormal basis for the space of square-integrable functions
on the real line, the Hilbert space L2(R). This means that for every such
f(t) there are coefficients cjk so that

f(t) =

∞
∑

j=−∞

∞
∑

k=−∞
cjkψjk(t),

with convergence in the mean-square sense. The coefficients cjk are found
using the IWT:

cjk = (Wψf)(
k

2j
,

1

2j
).

It is also of interest to consider wavelets ψ for which {ψjk} form a basis,
but not an orthogonal one, or, more generally, form a frame, in which the
series representations of f(t) need not be unique.
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As with Fourier series, wavelet series expansion permits the filtering of
certain components, as well as signal compression. In the case of Fourier
series, we might attribute high frequency components to noise and achieve
a smoothing by setting to zero the coefficients associated with these high
frequencies. In the case of wavelet series expansions, we might attribute to
noise localized small-scale disturbances and remove them by setting to zero
the coefficients corresponding to the appropriate j and k. For both Fourier
and wavelet series expansions we can achieve compression by ignoring those
components whose coefficients are below some chosen level.

Multiresolution analysis: One way to study wavelet series expansions
is through multiresolution analysis (MRA). Let us begin with an example
involving bandlimited functions. This example is called the Shannon MRA.

Let V0 be the collection of functions f(t) whose Fourier transform F (ω)
is zero for |ω| > π; so V0 is the collection of π-bandlimited functions.
Let V1 be the collection of functions f(t) whose Fourier transform F (ω) is
zero for |ω| > 2π; so V1 is the collection of 2π-bandlimited functions. In
general, for each integer j, let Vj be the collection of functions f(t) whose
Fourier transform F (ω) is zero for |ω| > 2jπ; so Vj is the collection of
2jπ-bandlimited functions.

Exercise 2: Show that if the function f(t) is in Vj then the function
g(t) = f(2t) is in Vj+1.

We then have a nested sequence of sets of functions {Vj}, with Vj ⊆ Vj+1

for each integer j. The intersection of all the Vj is the set containing only
the zero function. Every function in L2(R) is arbitrarily close to a function
in at least one of the sets Vj ; more mathematically, we say that the union
of the Vj is dense in L2(R). In addition, we have f(t) in Vj if and only if
g(t) = f(2t) is in Vj+1. In general, such a collection of sets of functions
is called a multiresolution analysis for L2(R). Once we have a MRA for
L2(R) how do we get a wavelet series expansion?

A function φ(t) is called a scaling function or sometimes the father
wavelet for the MRA if the collection of integer translates {φ(t− k)} forms
a basis for V0 (more precisely, a Riesz basis). Then, for each fixed j, the
functions φjk(t) = φ(2jt− k), for integer k, will form a basis for Vj . In the
case of the Shannon MRA the scaling function is φ(t) = sinπt

πt . But how do
we get a basis for all of L2(R)?

The Haar multiresolution analysis: To see how to proceed, it is helpful
to return to the Haar wavelets. Let φHaar(t) be the function that has the
value +1 for 0 ≤ t < 1 and zero elsewhere. Let V0 be the collection of all
functions in L2(R) that are linear combinations of integer translates of φ(t);
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that is, all functions f(t) that are constant on intervals of the form [k, k+1),
for all integers k. Now V1 is the collection of all functions g(t) of the form
g(t) = f(2t), for some f(t) in V0. Therefore, V1 consists of all functions in
L2(R) that are constant on intervals of the form [k/2, (k + 1)/2).

Every function in V0 is also in V1 and every function g(t) in V1 can be
written uniquely as a sum of a function f(t) in V0 and a function h(t) in
V1 that is orthogonal to every function in V0. For example, the function
g(t) that takes the value +3 for 0 ≤ t < 1/2, −1 for 1/2 ≤ t < 1 and zero
elsewhere can be written as g(t) = f(t) + h(t) where h(t) has the value +2
for 0 ≤ t < 1/2, −2 for 1/2 ≤ t < 1 and zero elsewhere, and f(t) takes the
value +1 for 0 ≤ t < 1 and zero elsewhere. Clearly, h(t), which is twice the
Haar wavelet function, is orthogonal to all functions in V0.

Exercise 3: Show that the function f(t) can be written uniquely as f(t) =
d(t) + e(t), where d(t) in V−1 and e(t) is in V0 and is orthogonal to every
function in V−1. Relate the function e(t) to the Haar wavelet function.

Wavelets and multiresolution analysis: To get an orthogonal wavelet
expansion from a general MRA we write the set V1 as the direct sum
V1 = V0 ⊕ W0, so every function g(t) in V1 can be uniquely written as
g(t) = f(t) + h(t), where f(t) is a function in V0 and h(t) is a function
in W0, with f(t) and h(t) orthogonal. Since the scaling function or father
wavelet φ(t) is in V1 it can be written as

φ(t) =

∞
∑

k=−∞
pkφ(2t− k), (21.1)

for some sequence {pk} called the two-scale sequence for φ(t). This most
important identity is the scaling relation for the father wavelet. The mother
wavelet is defined using a similar expression

ψ(t) =
∑

k

(−1)kp1−kφ(2t− k). (21.2)

We define

φjk(t) = 2j/2φ(2jt− k) (21.3)

and

ψjk(t) = 2j/2ψ(2jt− k). (21.4)

The collection {ψjk(t), −∞ < j, k < ∞} then forms an orthogonal wavelet
basis for L2(R). For the Haar MRA the two-scale sequence is p0 = p1 = 1
and pk = 0 for the rest.
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Exercise 4: Show that the two-scale sequence {pk} has the properties

pk = 2

∫

φ(t)φ(2t− k)dt;

∞
∑

k=−∞
pk−2mpk = 0,

for m 6= 0 and equals two when m = 0.

Signal processing using wavelets: Once we have an orthogonal wavelet
basis for L2(R) we can use the basis to represent and process a signal
f(t). Suppose, for example, that f(t) is bandlimited but essentially zero
for t not in [0, 1] and we have samples f( kM ), k = 0, ...,M . We assume
that the sampling rate ∆ = 1

M is faster than the Nyquist rate so that
the Fourier transform of f(t) is zero outside, say, the interval [0, 2πM ].
Roughly speaking, the Wj component of f(t), given by

gj(t) =

2j−1
∑

k=0

βjkψjk(t),

with βjk = 〈f(t), ψjk(t)〉, corresponds to the components of f(t) with fre-

quencies ω between 2j−1 and 2j . For 2j > 2πM we have βjk = 0, so
gj(t) = 0. Let J be the smallest integer greater than log2(2π) + log2(M).
Then f(t) is in the space VJ and has the expansion

f(t) =

2J−1
∑

k=0

αJkφJk(t),

for αJk = 〈f(t), φJk(t)〉. It is common practice, but not universally ap-
proved, to take M = 2J and to estimate the αJk by the samples f( kM ).
Once we have the sequence {αJk} we can begin the decomposition of f(t)
into components in Vj and Wj for j < J . As we shall see, the algorithms
for the decomposition and subsequent reconstruction of the signal are quite
similar to the FFT.

Decomposition and reconstruction: The decomposition and recon-
struction algorithms both involve the equation

∑

k

ajkφjk =
∑

m

aj−1
m φ(j−1),m + bj−1

m ψ(j−1),m ; (21.5)

in the decomposition step we know the {ajk} and want the {aj−1
m } and

{bj−1
m }, while in the reconstruction step we know the {aj−1

m } and {bj−1
m }

and want the {ajk}.
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Using equations (21.1) and (21.3) we obtain

φ(j−1),l = 2−1/2
∑

k

pkφj,(k+2l) = 2−1/2
∑

k

pk−2lφjk; (21.6)

using equations (21.2), (21.3) and (21.4) we get

ψ(j−1),l = 2−1/2
∑

k

(−1)kp1−k+2lφjk. (21.7)

Therefore

〈φjk, φ(j−1),l〉 = 2−1/2pk−2l; (21.8)

this comes from substituting φ(j−1),l as in equation (21.6) into the second
term in the inner product. Similarly, we have

〈φjk, ψ(j−1),l〉 = 2−1/2(−1)kp1−k+2l. (21.9)

These relationships are then used to derive the decomposition and recon-
struction algorithms.
The decomposition step: To find aj−1

l we take the inner product of both
sides of equation (21.5) with the function φ(j−1),l. Using equation (21.8)
and the fact that φ(j−1),l is orthogonal to all the φ(j−1),m except for m = l
and is orthogonal to all the ψ(j−1),m, we obtain

2−1/2
∑

k

ajkpk−2l = aj−1
l ;

similarly, using equation (21.9), we get

2−1/2
∑

k

ajk(−1)kp1−k+2l = bj−1
l .

The decomposition step is to apply these two equations to get the {aj−1
l }

and {bj−1
l } from the {ajk}.

The reconstruction step: Now we use equations (21.6) and (21.7) to sub-
stitute into the right hand side of equation (21.5). Combining terms, we
get

ajk = 2−1/2
∑

l

aj−1
l pk−2l + bj−1

l (−1)kp1−k+2l.

This takes us from the {aj−1
l } and {bj−1

l } to the {ajk}.
We have assumed that we have already obtained the scaling function

φ(t) with the property that {φ(t − k)} is an orthogonal basis for V0. But
how do we actually obtain such functions?
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Generating the scaling function: The scaling function φ(t) is generated
from the two-scale sequence {pk} using the following iterative procedure.
Start with φ0(t) = φHaar(t), the Haar scaling function that is one on [0, 1]
and zero elsewhere. Now, for each n = 1, 2, ... define

φn(t) =

∞
∑

k=−∞
pkφn−1(2t− k).

Provided that the sequence {pk} has certain properties to be discussed
below, this sequence of functions converges and the limit is the desired
scaling function.

The properties of {pk} that are needed can be expressed in terms of
properties of the function

P (z) =
1

2

∞
∑

k=−∞
pkz

k.

For the Haar MRA this function is P (z) = 1
2 (1 + z). We require that

1. P (1) = 1;

2. |P (eiθ)|2 + |P (ei(θ+π))|2 = 1 for 0 ≤ θ ≤ π;

and

3. |P (eiθ)| > 0 for −π
2 ≤ θ ≤ π

2 .

Generating the two-scale sequence: The final piece of the puzzle is the
generation of the sequence {pk} itself, or, equivalently, finding a function
P (z) with the properties listed above. The following example, also used in
[16], illustrates Daubechies’ method.

We begin with the identity

cos2
θ

2
+ sin2 θ

2
= 1

and then raise both sides to an odd power n = 2N−1. Here we use N = 2,
obtaining

1 = cos6
θ

2
+ 3 cos4

θ

2
sin2 θ

2

+ cos6
(θ + π)

2
+ 3 cos4

(θ + π)

2
sin2 (θ + π)

2
.

We then let

|P (eiθ)|2 = cos6
θ

2
+ 3 cos4

θ

2
sin2 θ

2
,
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so that
|P (eiθ)|2 + |P (ei(θ+π))|2 = 1

for 0 ≤ θ ≤ π. Now we have to find P (eiθ).
Writing

|P (eiθ)|2 = cos4
θ

2
[cos2

θ

2
+ 3 sin2 θ

2
],

we have

P (eiθ) = cos2
θ

2
[cos

θ

2
+

√
3i sin

θ

2
]eiα(θ),

where the real function α(θ) is arbitrary. Selecting α(θ) = 3 θ2 we get

P (eiθ) = p0 + p1e
iθ + p2e

2iθ + p3e
3iθ,

for

p0 =
1 +

√
3

4
;

p1 =
3 +

√
3

4
;

p2 =
3 −

√
3

4
;

p3 =
1 −

√
3

4
;

and all the other coefficients are zero. The resulting Daubechies’ wavelet
is compactly supported and continuous, but not differentiable [16]. Figure
21.1 shows the scaling function and mother wavelet for N = 2. When larger
values of N are used the resulting wavelet, often denoted ψN (t), which is
again compactly supported, has approximately N/5 continuous derivatives.

These notions extend to non-orthogonal wavelet bases and to frames.
Algorithms similar to the fast Fourier transform provide the wavelet de-
composition and reconstruction of signals. The recent text by Boggess and
Narcowich [16] is a nice introduction to this fast-growing area; the more
advanced book by Chui [67] is also a good source. Wavelets in the context
of Riesz bases and frames are discussed in Christensen’s book [66].

Wavelets and filter banks: In [172] Strang and Nguyen take a somewhat
different approach to wavelets, emphasizing the role of filters and matrices.
To illustrate one of their main points we consider the two-point moving
average filter.

The two-point moving average filter transforms an input sequence x =
{x(n)} to output y = {y(n)} with y(n) = 1

2x(n) + 1
2x(n − 1). The filter
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h = {h(k)} has h(0) = h(1) = 1
2 and all the remaining h(n) are zero. This

filter is a finite impulse response (FIR) low-pass filter and is not invertible;
the input sequence with x(n) = (−1)n has output zero. Similarly, the two-
point moving difference filter g = {g(k)} with g(0) = 1

2 , g(1) = − 1
2 and

the rest zero, is a FIR high-pass filter, also not invertible. However, if we
perform these filters in parallel, as a filter bank, no information is lost and
the input can be completely reconstructed, with a unit delay. In addition,
the outputs of the two filters contain redundancy that can be removed by
decimation, which is taken here to mean downsampling, that is, throwing
away every other term of a sequence.

The authors treat the more general problem of obtaining perfect recon-
struction of the input from the output of a filter bank of low- and high-pass
filters followed by downsampling. The properties that must be required of
the filters are those we encountered earlier with regard to the two-scale se-
quences for the father and mother wavelets. When the filter operations are
construed as matrix multiplications the decomposition and reconstruction
algorithms become matrix factorizations.



97

0 0.5 1 1.5 2 2.5 3
0. 5

0

0.5

1

1.5

scaling function

Daubechies: N=2

1 0. 5 0 0.5 1 1.5 2
1. 5

1

0. 5

0

0.5

1

1.5

2

mother wavelet

Figure 21.1: Daubechies’ scaling function and mother wavelet for N = 2.
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Chapter 22

The FT in Higher

Dimensions

The Fourier transform is also defined for functions of several real variables
f(x1, ..., xN ) = f(x). The multidimensional FT arises in image processing,
scattering, transmission tomography, and many other areas.

We adopt the usual vector notation that ω and x are N -dimensional
real vectors. We say that F (ω) is the N-dimensional Fourier transform of
the possibly complex-valued function f(x) if the following relation holds:

F (ω) =

∫ ∞

−∞
...

∫ ∞

−∞
f(x)eiω·xdx,

where ω·x denotes the vector dot product and dx = dx1dx2...dxN . In most
cases we then have

f(x) =

∫ ∞

−∞
...

∫ ∞

−∞
F (ω)e−iω·xdω/(2π)N ;

we describe this by saying that f(x) is the inverse Fourier transform of
F (ω).

Consider the FT of a function of two variables f(x, y):

F (α, β) =

∫ ∫

f(x, y)ei(xα+yβ)dxdy.

We convert to polar coordinates using (x, y) = r(cos θ, sin θ) and (α, β) =
ρ(cosω, sinω). Then

F (ρ, ω) =

∫ ∞

0

∫ π

−π
f(r, θ)eirρ cos(θ−ω)rdrdθ. (22.1)
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Say that a function f(x, y) of two variables is a radial function if x2 + y2 =
x2

1 + y2
1 implies f(x, y) = f(x1, y1), for all points (x, y) and (x1, y1); that

is, f(x, y) = g(
√

x2 + y2) for some function g of one variable.

Exercise 1: Show that if f is radial then its FT F is also radial. Find the
FT of the radial function f(x, y) = 1√

x2+y2
.

Hints: Insert f(r, θ) = g(r) in equation (22.1) to obtain

F (ρ, ω) =

∫ ∞

0

∫ π

−π
g(r)eirρ cos(θ−ω)rdrdθ

or

F (ρ, ω) =

∫ ∞

0

rg(r)[

∫ π

−π
eirρ cos(θ−ω)dθ]dr. (22.2)

Show that the inner integral is independent of ω and then use the fact that

∫ π

−π
eirρ cos θdθ = 2πJ0(rρ),

with J0 the 0-th order Bessel function, to get

F (ρ, ω) = H(ρ) = 2π

∫ ∞

0

rg(r)J0(rρ)dr. (22.3)

The function H(ρ) is called the Hankel transform of g(r). Summarizing,
we say that if f(x, y) is a radial function obtained using g then its Fourier
transform F (α, β) is also a radial function, obtained using the Hankel trans-
form of g.



Chapter 23

Characteristic Functions

The Fourier transform shows up in probability theory in the guise of the
characteristic function of a random variable. The characteristic function
is related to, but more general than, the moment-generating function and
serves much the same purposes.

A real-valued random variable X is said to have the probability density
function (pdf) f(x) if, for any interval [a, b], the probability that X takes

its value within this interval is given by the integral
∫ b

a
f(x)dx. To be a

pdf f(x) must be nonnegative and
∫∞

−∞ f(x)dx = 1. The characteristic
function of X is then

F (ω) =

∫ ∞

−∞
f(x)eixωdx.

The formulas for differentiating the Fourier transform are quite useful in
determining the moments of a random variable.

The expected value of X is

E(X) =

∫ ∞

−∞
xf(x)dx,

and for any real-valued function g(x) the expected value of the random
variable g(X) is

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx.

The n-th moment of X is

E(Xn) =

∫ ∞

−∞
xnf(x)dx;

the variance of X is then var(X)= E(X2) − E(X)2. It follows, therefore,
that the n-th moment of the random variable X is given by

E(Xn) = (i)nF (n)(0).
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If we have N real-valued random variables X1, ..., XN their joint proba-
bility density function is f(x1, ..., xN ) ≥ 0 having the property that, for any
intervals [a1, b1], ..., [aN , bN ], the probability that Xn takes its value within
[an, bn], for each n, is given by the multiple integral

∫ b1

a1

· · ·
∫ bN

aN

f(x1, ..., xN )dx1 · · · dxN .

The joint moments are then

E(Xm1

1 · · ·XmN

N ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
xm1

1 · · · xmN

N f(x1, ..., xN )dx1 · · · dxN .

The joint moments can be calculated by evaluating at zero the partial
derivatives of the characteristic function of the joint pdf.

The random variables are said to be independent if

f(x1, ..., xN ) = f(x1) · · · f(xN ),

where, in keeping with the convention used in the probability literature,
f(xn) denotes the pfd of the random variable Xn.

If X and Y are independent random variables with probability density
functions f(x) and g(y) then the probability density function for the ran-
dom variable Z = X + Y is (f ∗ g)(z), the convolution of f and g. To see
this, we first calculate the cumulative distribution function

H(z) = Prob (X + Y ≤ z),

which is

H(z) =

∫ +∞

x=−∞

∫ z−x

y=−∞
f(x)g(y)dydx.

Using the change of variable t = x+ y, we get

H(z) =

∫ +∞

x=−∞

∫ z

t=−∞
f(x)g(t− x)dtdx.

The pdf for the random variable Z is h(z) = H ′(z), the derivative of H(z).
Differentiating the inner integral with respect to z we obtain

h(z) =

∫ +∞

x=−∞
f(x)g(z − x)dx;

therefore h(z) = (f ∗g)(z). It follows that the characteristic function for the
random variable Z = X + Y is the product of the characteristic functions
for X and Y .



Chapter 24

The Hilbert Transform

We encountered the Hilbert transform for sequences in our discussion of
analytic functions and for functions in one of the exercises earlier. Now we
take a closer look. In some contexts, such as harmonic analysis, the Hilbert
transform is called the conjugate function [125]

The Hilbert transform of periodic f(t):

The Hilbert transform (HT) of the function f(t) = cos(ωt) is the function
sin(ωt). The HT of sin(ωt) is − cos(ωt), so the HT can be viewed as
performing integration; for this reason it is sometimes called a quadrature
filter.

If f(t) is a 2π-periodic function with Fourier series expansion

f(t) =
∑+∞

n=−∞
an exp(int),

then the HT of f(t), denoted HTf (t), is formed by multiplying the coeffi-
cients an by −i, for n > 0, by i for n < 0 and by zero for n = 0. Therefore,
we have

HTf (t) = i
∑−1

n=−∞
an exp(int) − i

∑+∞

n=1
an exp(int).

Since

cos(nt) =
1

2
exp(−int) +

1

2
exp(int)

we see that its Hilbert transform is

i
1

2
exp(−int) − i

1

2
exp(int),

which is sin(nt).
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One way to motivate the HT is to connect the Fourier series represen-
tations with the Laurent series obtained by replacing exp(int) with zn.
The Fourier series for the function g(t) = f(t) + iHTf (t) has terms only
for positive values of n. Therefore, when we replace exp(int) with zn, we
get only positive powers of the variable z, so the Laurent series becomes
a Taylor series, so becomes analytic in a disk centered at zero. We can
therefore connect the Fourier theory with the theory of analytic functions
via the HT.

The Hilbert transform for non-periodic f(t):

For non-periodic functions f(t) we can view the HT as operating on the
Fourier transform of f(t) instead of on its Fourier coefficients. Specificially,
let f(t) have Fourier transform F (ω). Then the HT of f(t) has for its
Fourier transform the function G(ω) that is equal to −iF (ω) for ω > 0, to
iF (ω) for ω < 0 and equal to zero for ω = 0. Recall that the function sgn(ω)
is +1 for ω > 0, −1 for ω < 0 and zero for ω = 0. Therefore, HTf (t), the
HT of f(t), has for its Fourier transform the function G(ω) = F (ω)sgn(ω).
In the t domain the HT is obtained by convolving f(t) with the inverse
Fourier transform of sgn(ω), which is the function h(t) = 1

πt :

HTf (t) =
1

π

∫ +∞

−∞

f(τ)

t− τ
dτ.

So this is what the HT is; but what is it used for and how does it arise?
While the HT may seem to be a fairly obscure notion, the function

sgn(ω) is quite common; the HT often arises in applications as a result of
the use of the sgn function.

The Hilbert transform of real-valued functions f(t):

Suppose that f(t) is a real-valued function. Then its Fourier transform
F (ω) is conjugate-symmetric. Therefore, the values F (ω) for ω < 0 are
redundant and f(t) is completely determined from the values of F (ω) for
ω > 0; we may therefore, wish to work solely with the positive ω values.
Suppose we define Z(ω) = 0 for ω ≤ 0 and

Z(ω) = 2F (ω)

for ω > 0. Then since Z(ω) is not conjugate-symmetric, its inverse Fourier
transform is not real. Its real part turns out to be the original f(t) and its
imaginary part is the HT of f .

Viewed another way, given a real-valued function f(t) we seek a second
real-valued function g(t) so that the complex-valued function z(t) = f(t)+
ig(t) has Fourier transform Z(ω) that equals 2F (ω) for ω > 0 and is zero
otherwise; then g(t) is the HT of f(t).
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The Hilbert transform of causal functions f(t):

Another way in which the HT arises is in the context of causal functions.
Say that complex-valued f(t) is causal if f(t) = 0 for t ≤ 0. Then the real
and imaginary parts of its Fourier transform are R(ω) and HTR(ω); that
is, the imaginary part is the HT of the real part.
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Chapter 25

The Fast Fourier

Transform

A fundamental problem in signal processing is to estimate finitely many
values of the function F (ω) from finitely many values of its (inverse) Fourier
transform, f(t). As we have seen, the DFT arises in several ways in that
estimation effort. The fast Fourier transform (FFT), discovered in 1965 by
Cooley and Tukey, is an important and efficient algorithm for calculating
the vector DFT [74]. John Tukey has been quoted as saying that his main
contribution to this discovery was the firm and often voiced belief that such
an algorithm must exist.

To illustrate the main idea behind the FFT consider the problem of
evaluating a real polynomial P (x) at a point, say x = c: let the polynomial
be

P (x) = a0 + a1x+ a2x
2 + ...+ a2Kx

2K ,

where a2K might be zero. Performing the evaluation efficiently by Horner’s
method,

P (c) = (((a2Kc+ a2K−1)c+ a2K−2)c+ a2K−3)c+ ...,

requires 2K multiplications, so the complexity is on the order of the degree
of the polynomial being evaluated. But suppose we also want P (−c). We
can write

P (x) = (a0 + a2x
2 + ...+ a2Kx

2K) + x(a1 + a3x
2 + ...+ a2K−1x

2K−2)

or
P (x) = Q(x2) + xR(x2).

Therefore we have P (c) = Q(c2) + cR(c2) and P (−c) = Q(c2) − cR(c2).
If we evaluate P (c) by evaluating Q(c2) and R(c2) separately, one more
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multiplication gives us P (−c) as well. The FFT is based on repeated use
of this idea, which turns out to be more powerful when we are using complex
exponentials, because of their periodicity.

Say the data are the samples are {f(n∆), n = 1, ..., N}, where ∆ > 0 is
the sampling increment or sampling spacing.

The DFT estimate of F (ω) is the function FDFT (ω), defined for ω in
[−π/∆, π/∆], and given by

FDFT (ω) = ∆

N
∑

n=1

f(n∆)ein∆ω.

The DFT estimate FDFT (ω) is data consistent; its inverse Fourier trans-
form value at t = n∆ is f(n∆) for n = 1, ..., N . The DFT is sometimes
used in a slightly more general context in which the coefficients are not
necessarily viewed as samples of a function f(t).

Given the complex N -dimensional column vector f = (f0, f1, ..., fN−1)
T

define the DFT of vector f to be the function DFTf (ω), defined for ω in
[0, 2π), given by

DFTf (ω) =

N−1
∑

n=0

fne
inω.

Let F be the complex N -dimensional vector F = (F0, F1, ..., FN−1)
T , where

Fk = DFTf (2πk/N), k = 0, 1, ..., N−1. So the vector F consists ofN values
of the function DFTf , taken at N equispaced points 2π/N apart in [0, 2π).

From the formula for DFTf we have, for k = 0, 1, ..., N − 1,

Fk = F (2πk/N) =

N−1
∑

n=0

fne
2πink/N . (25.1)

To calculate a single Fk requires N multiplications; it would seem that to
calculate all N of them would require N2 multiplications. However, using
the FFT algorithm we can calculate vector F in approximately N log2(N)
multiplications.

Suppose that N = 2M is even. We can rewrite equation(25.1) as fol-
lows:

Fk =

M−1
∑

m=0

f2me
2πi(2m)k/N +

M−1
∑

m=0

f2m+1e
2πi(2m+1)k/N ,

or, equivalently,

Fk =

M−1
∑

m=0

f2me
2πimk/M + e2πik/N

M−1
∑

m=0

f2m+1e
2πimk/M . (25.2)
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Note that if 0 ≤ k ≤ M − 1 then

Fk+M =

M−1
∑

m=0

f2me
2πimk/M − e2πik/N

M−1
∑

m=0

f2m+1e
2πimk/M , (25.3)

so there is no additional computational cost in calculating the second half
of the entries of F, once we have calculated the first half. The FFT is the
algorithm that results when take full advantage of the savings obtainable
by splitting a DFT calculating into two similar calculations of half the size.

We assume now that N = 2L. Notice that if we use equations (25.2)
and (25.3) to calculate vector F, the problem reduces to the calculation of
two similar DFT evaluations, both involving half as many entries, followed
by one multiplication for each of the k between 0 and M − 1. We can split
these in half as well. The FFT algorithm involves repeated splitting of the
calculations of DFTs at each step into two similar DFTs, but with half the
number of entries, followed by as many multiplications as there are entries
in either one of these smaller DFTs. We use recursion to calculate the cost
C(N) of computing F using this FFT method. From equation (25.2) we
see that C(N) = 2C(N/2) + (N/2). Applying the same reasoning to get
C(N/2) = 2C(N/4) + (N/4), we obtain

C(N) = 2C(N/2) + (N/2) = 4C(N/4) + 2(N/2) = ...

= 2LC(N/2L) + L(N/2) = N + L(N/2).

Therefore the cost required to calculate F is approximately N log2N .
From our earlier discussion of discrete linear filters and convolution we

see that the FFT can be used to calculate the periodic convolution (or even
the non-periodic convolution) of finite length vectors.

Finally, let’s return to the original context of estimating the Fourier
transform F (ω) of function f(t) from finitely many samples of f(t). If we
have N equispaced samples we can use them to form the vector f as above
and perform the FFT algorithm to get vector F consisting of N values of
the DFT estimate of F (ω). It may happen that we wish to calculate more
than N values of the DFT estimate, perhaps to produce a smooth looking
graph. We can still use the FFT, but we must trick it into thinking we have
more data that the N samples we really have. We do this by zero-padding.
Instead of creating the N -dimensional vector f , we make a longer vector by
appending, say, J zeros to the data, to make a vector that has dimension
N + J . The DFT estimate is still the same function of ω, since we have
only included new zero coefficients as fake data. But the FFT thinks we
have N + J data values, so it returns N + J values of the DFT, at N + J
equispaced values of ω in [0, 2π).
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Chapter 26

Two Problems in Fourier

Transform Estimation

It is often the case in remote sensing that what we want and what we can
measure are related by Fourier transformation. Frequently one of the two
functions has bounded support, so that the other one is band-limited. If our
measurements are samples of a function of bounded support we shall say
that we are solving a problem of Type One, while if the sampled function
is band-limited we say the problem is of Type Two. As we shall see, these
two types of problems are distinct and different techniques are required to
solve them.

Throughout this chapter we let F (ω) be defined for ω ∈ [0, 2π], with

f(x) =
1

2π

∫ 2π

0

F (ω)e−ixωdω. (26.1)

In applications F (ω) usually represents some physical object of limited
extent. In problems of Type Two remote sensing has provided (usually
noisy) values of f(x) for finitely many x.

When algorithms are being developed and tested one often works with
simulations. If the F (ω) to be simulated is specified analytically we may
be able to compute values of f(x) by performing the integrals in equation
(26.1). It may be the case, however, that the integrals cannot be performed
exactly or even that F (ω) is represented by a finite vector of samples.
Estimating values of f(x) in such cases becomes a problem of Type One.
In the hyperspectral imaging problem discussed in a later chapter problems
of both types must be solved.

When discussing problems of Type One in this chapter we shall assume
that we have the values Fn = F (2πn/N), n = 0, 1, ..., N − 1 and wish to
estimate f(x) for certain values of x. When discussing problems of Type
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Two in this chapter we shall assume, at first, that we have the values
f(m), m = 0, ...,M −1 and wish to estimate values of F (ω) and then allow
the data to be f(xm), m = 1, ...,M , where the xm are arbitrary.

For problems of Type One it is tempting to take as our estimate of f(x)
what is perhaps the obvious choice, the function

f̂(x) =
1

N

N−1
∑

n=0

Fne
−2πnx/N . (26.2)

and for problems of Type Two the estimate

F̂ (ω) =

M−1
∑

m=0

f(m)eimω. (26.3)

If, in the first case, we decide to estimate f(x) only for the integer values
j = 0, ..., N − 1 then we get

f̂(j) =
1

N

N−1
∑

n=0

Fne
−2πnj/N , (26.4)

which can be calculated using the Fast Fourier Transform. Similarly, if, in
the second case, we decide to estimate F (ω) only for the values ω = ωk =
2πk/M, k = 0, ...,M − 1, we get

F̂ (ωk) =

M−1
∑

m=0

f(m)e2πkm/M , (26.5)

The main theme of this chapter is that while these estimates may be obvi-
ous, they are not necessarily good choices.

Exercise 1: Consider the function F (ω) defined on the interval [0, 2π] by
F (ω) = 1 for π

2 ≤ ω ≤ 3π
2 and F (ω) = 0 elsewhere. The inverse Fourier

transform of F (ω) is f(x) = 1
2 (sin(π2x))/(

π
2x). Let N be a positive power

of two and let bn = F ( 2π
N (n−1), for n = 1, 2, ..., N . The FFT of the vector

b has the entries

fft(b)k =

N
∑

n=1

bn exp(−i(n− 1)(k − 1)
2π

N
),

for k = 1, 2, ..., N . Use MATLAB or some similar computer package to
compute and compare the values f(k − 1) and 1

N fft(b)k for k = 1, ..., N .
Repeat this exercise for different values of N .
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Problems of Type One: Let us assume that F (ω) is Riemann inte-
grable. For each x we can approximate the integral in equation (26.1) by
the Riemann sum

rs(x;N) =
1

N

N−1
∑

n=0

Fne
−2πinx/N , (26.6)

which is our estimate in equation (26.2). The problem is that how good an
approximation rs(x;N) is of f(x) will depend on x; as |x| gets large the
integrand becomes ever more oscillatory and a larger value of N will be
needed to obtain a good approximation of the integral.

The basic idea here is to use the measured values F (2πn/N), n =
0, ..., N − 1 to find an approximation of the function F (ω) and then to
take the inverse Fourier transform of this approximation as our estimate
of the function f(x). One particular approximation we study in detail is
a step function, although other approximations can be considered. It is
helpful to remember that the estimate in equation (26.2) is N -periodic and
is based on the unrealistic approximation of F (ω) by finitely many delta
functions supported on the points 2πn/N, n = 0, ..., N − 1.

Consider the step function approximation of F (ω) given by

S(ω) =

N−1
∑

n=0

Fnχπ/N (ω − 2n+ 1

N
π) (26.7)

with

s(x) =
1

2π

∫ 2π

0

S(ω)e−2πixωdω. (26.8)

Performing the integrations we find that

s(x) = e−ixπ/Nrs(x;N)
sin(πx/N)

πx/N
. (26.9)

If N is large enough for S(ω) to provide a reasonable approximation of
F (ω) then s(x) should be a good estimate of f(x), at least for smaller
values of x. Of course, since the rate of decay of f(x) as |x| approaches
infinity depends on the smoothness of F (ω) we must not expect s(x) to
approximate f(x) well for larger values of x. Before leaving our discussion
of problems of Type One we want to investigate to what extent the function
rs(x;N) provides a good estimate of f(x).

Notice that the first positive zero of sin(πx/N) occurs at x = N , which
suggests that rs(x;N) provides a reasonable estimate of f(x) for |x| not
larger than, say, N/2; therefore we may use fk to estimate f(k) for 0 ≤
k ≤ N/2. To be safe, we may wish to use a smaller upper bound on k.
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Note also that rs(−x;N) = rs(−x+N ;N), which means that we may use
fN−k to approximate f(−k) for 0 < k ≤ N/2.

To summarize, the N samples of F (ω) provide useful estimates rs(k;N)
of f(k) for −N/2 < k ≤ N/2. For N = 2K we have −K < k ≤ K, so that
the N samples of F (ω) provide 2K = N useful estimates of f(k) through
the use of rs(k;N).

There is yet another way to look at this problem. If F (ω) is twice
continuously differentiable then

F (ω) =

∞
∑

m=−∞
f(m)eimω (26.10)

with uniform convergence of this Fourier series for 0 ≤ ω ≤ 2π. Therefore,
for M large enough, we can estimate F (ω) using the truncated Fourier
series

T (ω;M) =

M
∑

m=−M
f(m)eimω. (26.11)

Let N = 2M + 1 now.
Substituting ω = 2πn/N into equation (26.11) we obtain

T (2πn/N ;M) =

M
∑

m=−M
f(m)e2πimn/N . (26.12)

For j = −M, ...,M multiply both sides of equation (26.12) by e−2πinj/N ,
sum over n = 0, ..., N − 1 and use orthogonality to get f(j) on the right
side and

1

N

N−1
∑

n=0

T (2πn/N ;M)e−2πinj/N (26.13)

on the left. Viewing T (2πn/N ;M) as an estimate of F (2πn/N) and replac-
ing the former by the latter in equation (26.13), we conclude once again
that f(k) is well approximated by fk for 0 ≤ k ≤ M and f(−k) by fN−k
for 1 ≤ k ≤ M .

Exercise 2: Show that if N = 2M is even and the function F (ω) is real-
valued then fN−j = fj for j = 1, ...,M − 1, where fk is given by equation
(??).

When F (ω) is real-valued f(x) is conjugate-symmetric, that is, f(−x) =
f(x) for each x. It follows from Exercise 2 that if we view fj as an estimate
of f(j) for j = 1, ...,M , then we should view fN−j as an estimate of f(−j).
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It does not make good sense to view fN−j as an estimate of f(N − j) since
there need be no relation between f(j) and f(N − j), while fj and fN−j
are complex conjugates of each other.

Problems of Type Two: In problems of Type Two we want to estimate
the function F (ω) having bounded support and have samples of its Fourier
transform, f(x). As we shall see, this type of problem presents difficulties
that are quite different from those presented by problems of Type One.

According to Shannon’s sampling theorem we can recover F (ω) com-
pletely from the infinite sequence of samples {f(k∆)}, where k runs over
all the integers, for any sampling rate ∆ ≤ 1. Unfortunately, we do not
have infinitely many samples. In most applications there is a bounded set
of x variables within which we select our sampling points. We may take as
many sampling points as we desire, but must remain within the bounded
set. We need not take the samples equispaced one unit apart; in fact, we
may take irregularly spaced sample points. Let us assume now that we have
the samples {f(xm), m = 1, ...,M}, from which to estimate the function
F (ω). We have several options now. One method, which we shall discuss
at length in subsequent chapters is the PDFT (see [46, 47, 43, 44]), which
estimates F (ω) for all ω, using a certain finite parameter model. Only
after this is done is the estimated function discretized. A second method,
the one we shall present here, is closely related to the first method, but
begins with a discretization of the function F (ω). It is the discrete PDFT
(DPDFT) method .

We select N > M and replace the function F (ω) with the vector F =
(F1, F2, ..., FN )T , where the entry Fn can be viewed as Fn = F (2π(n −
1)/N). Our data is

f(xm) =
1

2π

∫ 2π

0

F (ω)e−ixmωdω,

for m = 1, ...,M . We approximate the integrals with finite sums, obtaining

f(xm) =
1

2π

N
∑

n=1

Fne
−2πixmn, (26.14)

which we write in matrix form as f = AF, with A the M by N matrix
with entries Amn = 1

2π exp(−ixmn). Since M < N the systems of equa-
tions AF = f will typically have infinitely many solutions. Our goal is
to incorporate our prior knowledge of the function F (ω) in the choice of
solution.

A common choice in such underdetermined problems is to select the
minimum norm solution, given by

Fminnorm = A†(AA†)−1f ,
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where the superscript † indicates conjugate transpose and we assume, rea-
sonably, that the matrix AA† is invertible. However, suppose we have
some prior information about the shape of the function F (ω), such as it is
zero outside some interval [a, b] contained within [0, 2π], or, more generally,
|F (ω)| can be approximated by some nonnegative function P (ω) ≥ 0. We

then let Pn = P (2π(n − 1)/N) and Wn = P
−1/2
n whenever Pn > 0; let

Wn = α > 0 for some small α > 0 otherwise. Let W be the diagonal
matrix with entries Wn. The minimum weighted norm solution of f = AF
is

Fmwn = W−1A†(AW−1A†)−1f .

This minimum weighted norm solution can be obtained from the minimum
norm solution of a related system of linear equations. Let B = AW−1/2

and G = W 1/2F. Then f = AF = BG. The minimum norm solution of
f = BG is

Gminnorm = B†(BB†)−1f = W−1/2A†(AW−1A†)−1f

and
Fmwn = W−1/2Gminnorm.

We calculate Fmwn iteratively, either by applying the algebraic reconstruc-
tion technique (ART) directly to the system f = BG or rewriting the ART
iterative step for this system in terms of the original system f = AF.

When the data is noisy we often do not want an exact solution of
f = AF. In that case we regularize by taking as our approximate solution
the vector

Frmwn = W−1A†(AW−1A† + ε2I)−1f ,

where ε > 0 is small and I is the identity matrix. This solution can also
be found iteratively, using ART, without having to calculate the matrix
AW−1A†.
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A Brief Look at the ART

In applied mathematics it is often the case that the solution to our prob-
lem cannot be written in closed form, nor can it be calculated exactly in a
finite number of steps. In such cases we are forced to find approximate so-
lutions using iterative algorithms; the Newton-Raphson method for solving
f(x) = 0 is an example of an iterative method. There are also situations
in which, in theory, the solution can be found exactly, assuming infinitely
precise calculations, but to do so would be impractical: solving large sys-
tems of linear equations is an example of such a problem. We know that, in
theory, Gauss elimination will find the solution in a finite number of steps,
if there is a unique solution. But, when there are thousands of equations
in thousands of unknowns, as is commonly the case in image processing,
Gauss elimination is not practical. The iterative algebraic reconstruction
technique (ART) was devised to solve just such large systems of linear
equations.

Finding a solution to the system of linear equations given in matrix
form by Ax = f is equivalent to finding a vector x in RJ that is in all of
the sets

Hm = {x|(Ax)m = fm},

for m = 1, ...,M . The sets Hm are hyperplanes in RJ . One way to find
such an x is to use the ART method.

In ART we begin with an arbitrary starting vector x0. We then let x1

be the vector in H1 closest to x0, then x2 the vector in H2 closest to x1,
and so on. When we have found vector xM in HM closest to xM−1, we
then let xM+1 be the vector in H1 closest to xM , etc.; that is, we cycle
once again through each of the M hyperplanes. This process is known to
converge to the vector closest to x0 that is in all of the Hm.

Given any vector x and hyperplane Hm, the vector z in Hm closest to
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x can be written explicitly. We have

zj = xj +Amj(fm − (Ax)m)/
∑J

n=1
A2
mn.

Therefore, the ART algorithm can be written explicitly as follows: for
k = 0, 1, ... and m = k(modM) + 1 we have

xk+1
j = xkj +Amj(fm − (Axk)m)/

∑J

n=1
A2
mn.

It is known that the ART can be slow to converge if the equations that make
up Ax = f are ordered so that successive rows of A are not significantly
different. To avoid this it is highly recommended that the equations be
reordered according to some random selection prior to using ART.

In a later chapter we shall examine the ART and related algorithms,
such as the multiplicative ART (MART), in the context of block-iterative
methods.



Chapter 28

Bandlimited

Extrapolation

Let f(x) and F (ω) be a Fourier transform pair. We know from the formulas
in equations (13.1) and (13.2) that we can determine F from f and vice
versa. But what happens if we have some, but not all, of the values f(x)?
Can we still find F (ω) for all ω? If we can, then we can also recover the
missing values of f , which says that there must be considerable redundancy
in the way f stores information. We shall investigate this matter further
now for the important case in which F has bounded support; that is, there
is some Ω > 0 such that F (ω) = 0, for |ω| > Ω. The function f(x) is then
said to be Ω-bandlimited.

We shall assume throughout this chapter that f is Ω-bandlimited and
ask how much we need to know about f to recover F (ω) for all ω. Because
recovering F (ω) for all ω is equivalent to finding f(x) for all x, this problem
is called the bandlimited extrapolation problem.

We have already encountered one result along these lines. According
to Shannon’s sampling theorem, if we have the values {f(n∆), −∞ < n <
∞}, for some ∆ ∈ (0, πΩ ], then we can recover F (ω) for all ω and thereby
f(x) for all x. Therefore, these infinite sequences of samples of f contain
complete information about f . Other results of this sort have quite a
different flavor.

Since F (ω) = 0 outside its interval of support [−Ω,Ω] the extension of
f(x) to complex z, given by the Fourier-Laplace transform

f(z) =

∫ ∞

−∞
F (ω)e−izωdω/2π, (28.1)

can be differentiated under the integral sign since the limits of integration
are now finite. In fact, the function f(z) is a complex-valued function that
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is analytic throughout the complex plane. Such functions have power series
expansions that converge for all z.

Exercise 1: Show that there can be no Fourier transform pair f, F for
which positive constants a and b exist such that f(x) = 0 for |x| > a and
F (ω) = 0 for |ω| > b. Thus it is not possible for both f and F to be
band-limited.

Hint: Use the analyticity of the function f(z).

The coefficients needed for such a power series expansion are determined
by the derivatives of f(z) at a single point, say z = 0. Therefore, if we have
the values of f(z) for z in some small disc around z = 0 we have all the
information we need. Actually, even this amount of knowledge about f is
too much; to calculate the derivatives at z = 0 we need only know f(xn)
for some sequence {xn} of real numbers converging to z = 0.

This is fine in theory, but, of course, we cannot hope to calculate all the
derivatives of f at z = 0. Even calculating a few derivatives in the presence
of noisy measurements of f is hopeless. In [152] Papoulis presents an iter-
ative scheme for determining F (ω) from knowledge of f(x) for x within an
interval A = [a, b] of the real line. This is not a practical technique, since it
uses infinitely many samples of f(x), but can be modified to provide useful
algorithms, as we shall see. The iterative and non-iterative methods we
describe below are usually called super-resolution techniques in the signal
processing literature. Similar methods applied in sonar and radar array
processing are called super-directive methods [75].

Papoulis’ iterative method: Let g0(x) = χA(x)f(x). Having found
gk(x) let Gk(ω) be the FT of gk, Hk(ω) = χΩ(ω)Gk(ω) and hk(x) the
inverse FT of Hk(ω). Then take gk+1(x) = f(x) for x ∈ A and gk+1(x) =
hk(x) otherwise. The sequence {hk(x)} converges to f(x) for all x and the
sequence {Hk} converges in the mean square sense to F .

In practice we have only finitely many values of f(x). This is not, of
course, enough information to determine F (ω). We seek an estimate of F ,
or, equivalently, an approximate extrapolation of the data. We consider
now several practical variants of Papoulis’ iterative method.

Gerchberg-Papoulis iteration (I): The algorithm discussed in this sec-
tion is called the Gerchberg-Papoulis (GP) bandlimited iteration method
[100], [151]. For notational convenience we shall assume that Ω < π and
that we have the finite data f(n), n = 0, 1, ...,M − 1. We seek to esti-
mate the values f(n), n = M,M + 1, ..., N for some choice of N > M .
We begin with g0 the N -dimensional vector with entries g0(n) = f(n) for
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n = 0, 1, ...,M − 1 and g0(n) = 0 for n = M,M +1, ..., N − 1. Then having
found the vector gk we let

Gkm =

N−1
∑

n=0

gk(n) exp(2πimn/N),

for m = 0, 1, ..., N − 1. We interpret these values as samples of a function
Gk(ω) defined on [−π, π]; specifically, we take

Gkm = Gk(2πm/N)

for m = 0, 1, ..., N2 and

Gkm = Gk(−2π + 2πm/N)

for m = N
2 + 1, ..., N − 1; for convenience we assume that N is even.

Mimicking the definition of Hk(ω), we define Hk
m to be Gkm for those m =

0, 1, ..., N2 such that 2πm/N ≤ Ω and for those m = N
2 + 1, ..., N − 1 for

which −2π+2πm/N ≥ −Ω. For all other values of m we set Hk
m = 0. Now

calculate

hkn =
1

N

N−1
∑

m=0

Hk
m exp(−2πimn/N),

for n = 0, 1, ..., N − 1. Finally, set gk+1
n = f(n), for n = 0, 1, ...,M − 1

and gk+1
n = hkn for n = M,M + 1, ..., N − 1. The limit vector g∞ has

g∞
n = f(n) for n = 0, 1, ...,M −1, but in order to have G∞

m = 0 for those m
corresponding to frequencies outside [−Ω,Ω] we need to take N ≥ Mπ/Ω.
The values g∞

n for n = M,M+1, ..., N−1 are then our extrapolated values
of f .

The advantages of this approach are that only finite data is used and
the calculations can be performed using the fast Fourier transform. The
vectors obtained are optimal in some sense [53], [54]. Obviously, one draw-
back is that we do not extrapolate f(n) for all integers n, but only for a
finite subset. Also, we do not obtain a function G∞(ω) of the continuous
variable ω that is equal to zero for all ω outside the band [−Ω,Ω] and whose
corresponding g∞(x) is consistent with the finite data. To remedy this we
consider another variant of the GP algorithm.

Gerchberg-Papoulis iteration (II): We shall assume again that Ω < π
and that we have the finite data f(n), n = 0, 1, ...,M − 1. Since

F (ω) =

∞
∑

n=−∞
f(n) exp(inω)

for ω ∈ [−π, π], we seek to extrapolate f(n) for n not in the set {0, 1, ...,M−
1}.
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Mimicking the algorithm in the previous section, we begin with the
infinite sequence g0 = {g0

n, −∞ < n < ∞} where g0
n = f(n) for n =

0, 1, ...,M − 1 and g0
n = 0 otherwise. Having found the infinite sequence gk

we define

Gk(ω) =

∞
∑

n=−∞
gkn exp(inω)

for ω ∈ [−π, π]. Then we set

Hk(ω) = χΩ(ω)Gk(ω)

and

hkn =
1

2π

∫ π

−π
Hk(ω) exp(−inω)dω.

Then let gk+1
n = f(n) for n = 0, 1, ...,M − 1 and gk+1

n = hkn otherwise.
It would appear that this iterative scheme cannot actually be performed

because it requires calculating gk+1
n for all integers n. Fortunately, there is

a way out.

Non-iterative bandlimited extrapolation: Note that Gk+1(ω) can be
written as

Gk+1(ω) = Hk(ω) +G0(ω) −
N−1
∑

n=0

hkn exp(inω),

so that

Hk+1(ω) −Hk(ω) = χΩ(ω)

N−1
∑

n=0

akn exp(inω) (28.2)

for some ak0 , ..., a
k
N−1. If we wish we can implement the GP iterative method

by iteratively updating these constants. There is a better way to proceed,
however.

It follows from equation (28.2) and the definition of H0 that the limit
H∞(ω) has the form

H∞(ω) = χΩ(ω)

N−1
∑

n=0

an exp(inω) (28.3)

for some constants a0, ..., aN−1. We then solve for these coefficients using
our data. Taking the inverse Fourier transform of both sides of equation
(28.3)and forcing data consistency, we obtain the system of equations

f(m) =

N−1
∑

n=0

an
sin Ω(m− n)

π(m− n)
, (28.4)
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m = 0, ..., N − 1, which we solve to find the coefficients. Once we have
the coefficients we insert them into the expression for H∞(ω) to obtain
a function supported on the interval [−Ω,Ω] whose associated h∞(x) is
consistent with the data. The extrapolated sequence is then {h∞(n)} for
integers n not between 0 and M − 1. This noniterative implementation of
the GP extrapolation is not new; it was presented in [45], and has been
rediscovered several times since then (see p. 209 of [170]).

Because our data usually contains noise we need to exercise some care
in solving the system in equation (28.4). The matrix S whose entries are

Smn =
sin Ω(m− n)

π(m− n)

is typically ill-conditioned, particularly when Ω is much smaller than π.
To reduce sensitivity to noise we can regularize; one way is to multiply
the entries on the main diagonal of S by, say, 1.0001. This increases the
eigenvalues of S, thereby decreasing the eigenvalues of S−1 and making the
computed solution less sensitive to the noise.

The finite data we have tells us nothing about the values f(n) we have
not measured, in the sense that we can define f(M) any way we wish and
still construct an Ω-bandlimited function consistent with the data and with
this chosen value of f(M). In a similar sense our finite data also tells us
nothing about the value of Ω; we can select any interval [a, b] and find a
function H(ω) supported on [a, b] whose h(x) is consistent with the data.
But this is not quite the whole story; finite data cannot rule out anything,
but it can suggest strongly that certain things are false. For example, if
we select the interval [a, b] disjoint from [−Ω,Ω] the function H(ω) will
probably have large energy; that is, the integral

∫ b

a

|H(ω)|2dω

will be much larger than

∫ Ω

−Ω

|H∞(ω)|2dω.

We can use this fact to help us decide if we have chosen a good value for Ω.
In [43] this same idea was used to obtain an iterative algorithm for solving
the phase retrieval problem discussed in a later chapter.

When the data set is large, as usually happens in multi-dimensional
problems such as image reconstruction, solving the equations (28.4) is some-
times performed iteratively. Nevertheless, the algorithm still differs from
the first GP method in that we are still extrapolating infinitely many values
of f(n); we are just doing it using a finite parameter model.
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The non-iterative implementation of the Gerchberg-Papoulis bandlim-
ited extrapolation method can be extended in several ways to solve Fourier
transform estimation problems. The modified DFT (MDFT) estimator gen-
eralizes the non-iterative GP method to accomodate non-equispaced sam-
pling. More generally, the PDFT method permits us to include other prior
information about the shape of F (ω) beyond knowledge of its support; it
also applies to multi-dimensional problems. Constructing the matrix used
in the system of equations can be difficult when the data sets are large;
an iterative discrete implementation of the PDFT, the DPDFT, allows us
to avoid dealing with this large matrix. There is also a nonlinear version
of the PDFT, the indirect PDFT (IPDFT), that extends the maximum
entropy method for extrapolating autocorrelation data.



Chapter 29

Fourier Transform

Estimation

The basic problem we want to solve is the reconstruction of an object
function F (ω) from finitely many values of its inverse Fourier transform

f(x) =

∫

F (ω) exp(−ixω)dω/2π, (29.1)

where, for notational convenience, we use single letters x and ω to denote
possibly multi-dimensional variables. We assume that the formula

F (ω) =

∫

f(x) exp(ixω)dx

also holds.
Let the data be f(xm), m = 1, ...,M . Given this data, we want to

estimate F (ω). Notice that any estimate of F (ω), which we denote as
F̂ (ω), corresponds to an estimate of f(x) by inserting F̂ (ω) into equation
(29.1); that is

f̂(x) =

∫

F̂ (ω) exp(−ixω)dω/2π. (29.2)

We shall say that the estimate F̂ (ω) is data consistent if

f̂(xm) = f(xm), m = 1, ...,M.

A first estimate for F (ω): It seems reasonable to take as our first attempt
the estimate

F̂ (ω) =

M
∑

m=1

f(xm) exp(ixmω). (29.3)

125
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Is this estimate data consistent? Let’s calculate f̂(x) and see. Inserting
F̂ (ω) in equation (29.3) into equation (29.2) we get

f̂(x) =

M
∑

m=1

f(xm)δ(x− xm),

where δ(x− a) denotes the Dirac delta function supported at the point a.
The estimate is not data consistent, since what we measured at x = xm
was not the top of a delta function, but just a number, f(xm). Does
our estimate seem reasonable now? Is it reasonable that the estimate of
the function f(x) just happens to have delta function components located
at precisely the places we chose to sample and is zero everywhere else?
Perhaps we can do better.

We go beyond our first estimation attempt by incorporating some prior
knowledge in our estimate, or, at least, making reasonable assumptions
about the function F (ω) being estimated. The first type of assumption we
make concerns the support of F (ω), that is, the region in ω-space outside
of which F (ω) is identically equal to zero.

Including a support constraint: Let Ω > 0 and suppose that the func-
tion F (ω) = 0 for |ω| > Ω. Let χΩ(ω) be the function that is one for
|ω| ≤ Ω and zero otherwise. Building on our first attempt, we try the
estimate

F̂ (ω) = χΩ(ω)

M
∑

m=1

f(xm) exp(ixmω). (29.4)

Is this estimate data consistent? Inserting F̂ (ω) in equation (29.4) into
equation (29.2) we get

f̂(x) =

M
∑

m=1

f(xm)
sin Ω(x− xm)

π(x− xm)
. (29.5)

Now we ask if it is true that

f(xn) =

M
∑

m=1

f(xm)
sin Ω(xn − xm)

π(xn − xm)
(29.6)

for n = 1, ...,M . The answer is, generally, no, although in special cases,
the answer is yes, or almost yes.

The Nyquist case: Suppose that Ω = π, F (ω) is zero for |ω| > π and the
data is f(m), m = 1, ...,M . Then the estimate

F̂ (ω) = χπ(ω)

M
∑

m=1

f(m) exp(imω)
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is data consistent; it is then what is often called the discrete Fourier trans-
form (DFT) of the data, defined for ω in the interval [−π, π]. For this
reason we write the estimate as FDFT (ω). The inversion formula gives

f̂(x) =

M
∑

m=1

f(m)
sinπ(x−m)

π(x−m)

and

f̂(n) =

M
∑

m=1

f(m)
sinπ(n−m)

π(n−m)

holds for each n = 1, ...,M , since the matrix becomes the identity matrix.
Suppose, more generally, that Ω = π

∆ for some ∆ > 0, F (ω) is zero for
|ω| > π

∆ and the data is f(m∆), m = 1, ...,M . Then the estimate

F̂ (ω) = χ π
∆

(ω)

M
∑

m=1

f(m∆) exp(im∆ω)

is almost data consistent. The inversion formula gives

f̂(x) =

M
∑

m=1

f(m∆)
sin π

∆ (x−m∆)

π(x−m∆)

and so

f̂(n∆) =
1

∆

M
∑

m=1

f(m∆)
sinπ(n−m)

π(n−m)
=

1

∆
f(n∆)

holds for each n = 1, ...,M . To get data consistency we multiply our
estimate by ∆; that is, we take

F̂ (ω) = ∆χ π
∆

(ω)

M
∑

m=1

f(m∆) exp(im∆ω).

Now this estimate is both data consistent and supported on the interval
[− π

∆ ,
π
∆ ]. This estimate may also be called the DFT, ignoring the ∆ mul-

tiplier or redefining variables to make ∆ = 1.

Exercise 1: Use the orthogonality principle to show that the DFT mini-
mizes the distance

∫ π

−π
|F (ω) −

∑M

m=1
ame

imω|2dω.

When the data is f(m∆), so is equispaced, we assume that F (ω) = 0 for
|ω| > π

∆ ; that is, we assume that our sample spacing ∆ is small enough to
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avoid aliasing. What happens when we oversample; that is, when F (ω) = 0
for |ω| > Ω, where Ω < π

∆?

The general case: Even for integer spaced data f(m), m = 1, ...,M , the
estimate

F̂ (ω) = χΩ(ω)

M
∑

m=1

f(m) exp(imω)

will not be data consistent if Ω < π. For more generally spaced data f(xm),
m = 1, ...,M the estimate

F̂ (ω) = χΩ(ω)

M
∑

m=1

f(xm) exp(ixmω)

will not be data consistent. The approach we take is to retain the algebraic
form of these estimators, but to allow the coefficients to be determined by
data consistency.

Take as the estimate of F (ω) the function

FΩ(ω) = χΩ(ω)

M
∑

m=1

am exp(ixmω), (29.7)

with the coefficients am chosen to give data consistency. This means we
must select the am to satisfy the equations

f(xn) =

M
∑

m=1

am
sin Ω(xn − xm)

π(xn − xm)

for n = 1, ...,M . The resulting estimate FΩ(ω) is both data consistent
and supported on the interval [−Ω,Ω]. This non-iterative bandlimited ex-
trapolation method was called the modified DFT (MDFT) in [45]. Figure
29.1 below shows the advantage of the MDFT, in the top frame, over the
DFT below. The true object to be reconstructed is the solid figure. The
sampling spacing is ∆ = 1, but Ω = π/30, so the 129 data points are thirty
times oversampled.

A paradox: It follows from what we just did that for any finite data
and any α < β there is a function F̂ (ω) supported on the interval [α, β]
and consistent with the data. Does the data contain no information about
the actual support of F (ω)? This would seem to say that the data we
have measured contains essentially no information, since we can generate
thousands of additional data points, select any α and β and still find a data
consistent estimate of F (ω). How can this be true when, at the same time,



129

we have plenty of simulation cases in which we are able to generate fairly
accurate estimates of the correct answer using these techniques?

The answer is that while the data we have does not eliminate any pos-
sible support for the function F (ω) it is capable of indicating preferences.
When we use equation (29.7) we do get an estimate that is data consistent,
but if the support [−Ω,Ω] is a poor choice we usually have an indication
of that in the norm of the estimate. The norm of FΩ(ω) is

||FΩ|| =

√

∫ Ω

−Ω

|FΩ(ω)|2dω

and can be quite large if the data and the Ω are poorly matched. Usually,
the true F (ω) is a physically meaningful function that does not have un-
usually large norm, so any estimate FΩ(x) with a large norm is probably
incorrect and a better Ω should be sought.

Properties of the estimate FΩ(ω): In addition to being data consistent
and having for its support the interval [−Ω,Ω] the estimate FΩ(ω) given by
equation (29.7) has two additional properties that are worth mentioning.
The choice G(ω) = FΩ(ω) minimizes the integral

∫ Ω

−Ω

|G(ω)|2dx

over all estimates G(ω) that are data consistent. It also minimizes the
approximation error

∫ Ω

−Ω

|F (ω) −
M
∑

m=1

am exp(ixmω)|2dω (29.8)

over all choices of coefficients am. So in this sense it is the best approxi-
mation of the truth that we can find that has its particular algebraic form,
provided, of course, that F (ω) is supported on [−Ω,Ω].

Exercise 2: Suppose that 0 < Ω and F (ω) = 0 for |ω| > Ω. Let f(x)
be the inverse Fourier transform of F (ω) and suppose that the data is
f(xm), m = 1, ...,M . Use the orthogonality principle to find the coeffi-
cients am that minimize the error given by equation (29.8). Show that the
resulting estimate of F (ω) is consistent with the data.

The choice of Ω is left up to us. Suppose that our choice is too big.
Then the estimate in equation (29.7) gives the best estimate of its algebraic
form over the interval [−Ω,Ω], but since F (ω) is zero on a portion of this
interval, the estimate spends some effort estimating the value zero. If we
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can get a more accurate estimate of the true support of F (ω) then we can
modify the Ω and get a better estimate of F (ω).

Once we have calculated the estimate FΩ(ω) we obtain a procedure for
extrapolating the data by computing its inverse Fourier transform:

fΩ(x) =

M
∑

m=1

am
sin Ω(x− xm)

π(x− xm)

estimates the values f(x) we did not measure. This procedure extends the
Gerchberg-Papoulis (GP) method for bandlimited extrapolation that we
saw in the previous chapter.

The PDFT: The estimate FΩ(ω) is the product of two terms: the first
is χΩ(ω), which incorporates prior knowledge about the function F (ω),
and the second is the sum, whose coefficients are calculated to insure data
consistency. We obtain a more flexible class of estimators by replacing the
first term, χΩ(ω), with P (ω) ≥ 0, a prior estimate of the magnitude of
F (ω). The resulting estimate, called the PDFT, is the subject of the next
chapter.
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Figure 29.1: The non-iterative bandlimited extrapolation method (MDFT)
(top) and the DFT (below) for M = 129, ∆ = 1 and Ω = π/30.
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Chapter 30

The PDFT

Most of the time the data we have is noisy, the data we have isn’t really
the data we want, the locations where we measured the data were the ones
available, not the ones we wanted to use, the physical model we are using
to interpret the data is not quite right, but is the best we can do, and
we don’t have enough data. All these difficulties are important and we
shall deal with each one of them in one way or another. Beginning with
the discussion of bandlimited extrapolation and continuing through this
chapter, we focus on the last problem, the limited data problem.

In many estimation and reconstruction problems we have a limited
amount of data that is not sufficient, by itself, to provide a useful result;
additional information is needed. In the bandlimited extrapolation prob-
lem just discussed we were able to use the information about the support
of the Fourier transform function F (ω) to improve our estimate. We may,
at times, have some prior estimate not only of the support, but of its over-
all shape; such prior profile information can be useful in estimating F (ω).
The PDFT [46], [47] is a generalization of the MDFT in equation (29.7),
designed to permit the use of such prior profile estimates.

Suppose now that the data is f(xm), m = 1, ...,M . Suppose also that
we have some prior estimate of the magnitude of F (ω) for each real ω, in
the form of a function P (ω) ≥ 0. In the previous chapter P (ω) appeared as
χπ(ω) and χΩ(ω). We take as our estimate of F the function of the form

FPDFT (ω) = P (ω)
∑M

m=1
cm exp(ixmω), (30.1)

where the cm are chosen to give data consistency.

Exercise 1: Show that the cm must satisfy the equations

f(xn) =
∑M

m=1
cmp(xn − xm), n = 1, ...,M, (30.2)

133
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where p(x) is the inverse Fourier transform of P (ω). Note that for P (ω) =

χΩ(ω) we have p(x) = sin(Ωx)
πx .

Both of the estimates FDFT (ω) and FΩ(ω) provide a best approximation
of its form and support for F (ω). The same is true of the PDFT.

Exercise 2: Show that the estimate FPDFT (ω) minimizes the distance

∫

|F (ω) − P (ω)
∑M

m=1
am exp(ixmω)|2P (ω)−1dω

over all choices of the coefficients am.

Both of the estimates FDFT (ω) and FΩ(ω) minimize an energy, subject
to data consistency. Something similar happens with the PDFT; the PDFT
minimizes the weighted energy

∫ π

−π
|FPDFT (ω)|2P (ω)−1dω, (30.3)

subject to data consistency, with the understanding that P (ω)−1 = 0 if
P (ω) = 0. That the PDFT is a minimum weighted energy solution will be
important later when we turn to the discrete PDFT.

For relatively small M the PDFT is easily calculated. The difficult part
is constructing the matrix P having the entries Pm,n = p(xm − xn), which
requires the calculation of the inverse Fourier transform of P (ω) at the
irregularly spaced points xm − xn. In addition, the matrix P is often ill-
conditioned, meaning that some of its (necessarily positive) eigenvalues are
near zero. Noise in the data f(xm) can lead to unreasonably large values
of cm and to a PDFT estimate that is useless. To combat this problem
we can multiply the terms Pn,n on the main diagonal of P by (say) 1.001.
This prevents the eigenvalues from becoming too small.

For large data sets it is more difficult to work with the PDFT as formu-
lated. The matrix P is very large, its entries difficult to compute, storage
becomes a problem and solving the resulting system of equations is expen-
sive. To avoid all these problems and to have a formulation of the PDFT
that is conceptually easier to use we turn to a discrete formulation, which
we call the DPDFT.

In a recent article [157] Poggio and Smale discuss the use of positive-
definite kernels for interpolation, in the context of artificial intelligence and
supervised learning.

Figure 30.1 below illustrates the DFT, MDFT and the PDFT; Figure
30.2 zooms in on the smaller peak. The original object is in the upper
left. Its support is contained within the interval [0, 128]. The data are the
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Fourier transform values f( 2πn
4096 ), |n| ≤ 500; therefore the data is thirty-

two times oversampled. The MDFT uses as the object support the interval
[13, 117] and the PDFT uses the main lobe of the original as the prior;
the matrix in both cases is regularized. By incorporating prior information
about the object to be reconstructed in the first factor P (ω) the PDFT
allows the trigonometric polynomial that is the second factor to describe
only those parts of the object not already accounted for by the prior. Figure
30.3 shows only the polynomial factors in each estimate.

The usefulness of the PDFT in image processing is illustrated in Figure
30.4. The original is a simulated head slice. The data are low spatial
frequency values. The DFT does show us that the object is round and
appears to have a skull-type outer layer. Beyond that, it tells us nothing
of use about the interior. From the DFT image or from prior knowledge of
the problem at hand, we take as our prior estimate of the image the skull
shape, with a uniform interior. Using this prior and the same low-pass data
the PDFT can recover the original with only slight blurring.
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Figure 30.1: The DFT, MDFT and PDFT



136 CHAPTER 30. THE PDFT

75 80 85 90 95 100
−2

0

2

4

dft

75 80 85 90 95 100
−2

0

2

4

mdft

75 80 85 90 95 100
0

1

2

3

4

pdft

Figure 30.2: The DFT, MDFT and PDFT up close
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Figure 30.3: The polynomial terms in the DFT, MDFT and PDFT



138 CHAPTER 30. THE PDFT

Figure 30.4: The PDFT in image reconstruction



Chapter 31

More on Bandlimited

Extrapolation

Let our data be f(xm), m = 1, ...,M , where the xm are arbitrary values of
the variable x. If F (ω) is zero outside [−Ω,Ω], then minimizing the energy
over [−Ω,Ω] subject to data consistency produces an estimate of the form

FΩ(ω) = χΩ(ω)
∑M

m=1
bm exp(ixmω),

with the bm satisfying the equations

f(xn) =
∑M

m=1
bm

sin(Ω(xm − xn))

π(xm − xn)
,

for n = 1, ...,M . The matrix SΩ with entries sin(Ω(xm−xn))
π(xm−xn) we call a sinc

matrix.

Although it seems reasonable that incorporating the additional infor-
mation about the support of F (ω) should improve the estimation, it would
be more convincing if we had a more mathematical argument to make. For
that we turn to an analysis of the eigenvectors of the sinc matrix.

Exercise 1: The purpose of this exercise is to show that, for an Hermitian
nonnegative-definite M by M matrix Q, a norm-one eigenvector u1 of Q as-
sociated with its largest eigenvalue, λ1, maximizes the quadratic form a†Qa
over all vectors a with norm one. Let Q = ULU† be the eigenvector decom-
position of Q, where the columns of U are mutually orthogonal eigenvectors
un with norms equal to one, so that U†U = I, and L = diag{λ1, ..., λM} is
the diagonal matrix with the eigenvalues of Q as its entries along the main

139
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diagonal. Assume that λ1 ≥ λ2 ≥ ... ≥ λM . Then maximize

a†Qa =

M
∑

n=1

λn |a†un|2,

subject to the constraint

a†a = a†U†Ua =

M
∑

n=1

|a†un|2 = 1.

Hint: Show a†Qa is a convex combination of the eigenvalues of Q.

Exercise 2: Show that for the sinc matrix Q = SΩ the quadratic form
a†Qa in the previous exercise becomes

a†SΩa =
1

2π

∫ Ω

−Ω

|
∑M

n=1
ane

inω|2dω.

Show that the norm of the vector a is the integral

1

2π

∫ π

−π
|
∑M

n=1
ane

inω|2dω.

Exercise 3: For M = 30 compute the eigenvalues of the matrix SΩ for
various choices of Ω, such as Ω = π

k , for k = 2, 3, ..., 10. For each k arrange
the set of eigenvalues in decreasing order and note the proportion of them
that are not near zero. The set of eigenvalues of a matrix is sometimes
called its eigenspectrum and the nonnegative function χΩ(ω) is a power
spectrum; here is one time in which different notions of a spectrum are
related.

Suppose that the vector u1 = (u1
1, ..., u

1
M )T is an eigenvector of SΩ

corresponding to the largest eigenvalue, λ1. Associate with u1 the function

U1(ω) =
∑M

n=1
u1
ne
inω.

Then

λ1 =

∫ Ω

−Ω

|U1(ω)|2dω/
∫ π

−π
|U1(ω)|2dω

and U1(ω) is the function of its form that is most concentrated within the
interval [−Ω,Ω].

Similarly, if uM is an eigenvector of SΩ associated with the smallest
eigenvalue λM , then the corrsponding function UM (ω) is the function of
its form least concentrated in the interval [−Ω,Ω].
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Exercise 4: Plot for |ω| ≤ π the functions |Um(ω)| corresponding to each
of the eigenvectors of the sinc matrix SΩ. Pay particular attention to the
places where each of these functions is zero.

The eigenvectors of SΩ corresponding to different eigenvalues are or-
thogonal, that is (um)†un = 0 if m is not n. We can write this in terms of
integrals:

∫ π

−π
Un(ω)Um(ω)dω = 0

if m is not n. The mutual orthogonality of these functions is related to the
locations of their roots, which were studied in the previous exercise.

Any Hermitian matrix Q is invertible if and only if none of its eigenval-
ues is zero. With λm and um, m = 1, ...,M the eigenvalues and eigenvectors
of Q the inverse of Q can then be written as

Q−1 = (1/λ1)u
1(u1)† + ...+ (1/λM )uM (uM )†.

Exercise 5: Show that the MDFT estimator (29.7) FΩ(ω) can be written
as

FΩ(ω) = χΩ(ω)
∑M

m=1

1

λm
(um)†dUm(ω),

where d is the data vector.

Exercise 6: Show that the DFT estimate of F (ω), restricted to the interval
[−Ω,Ω], is

FDFT (ω) = χΩ(ω)
∑M

m=1
(um)†dUm(ω).

From these two exercises we can learn why it is that the estimate FΩ(ω)
resolves better than the DFT. The former makes more use of the functions
Um(ω) for higher values of m, since these are the ones for which λm is
closer to zero. Since those functions are the ones having most of their
roots within the interval [−Ω,Ω], they have the most flexibility within that
region and are better able to describe those features in F (ω) that are not
resolved by the DFT.
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Chapter 32

The Phase Problem

In optical image processing and elsewhere we find that we are unable to
measure the complex values of the inverse Fourier transform f(xm), but
only the magnitudes |f(xm)|. Estimating F (ω) from these magnitude-only
values is called the phase problem [92], [79], [94], [131], [57]. Such problems
can arise in optical imaging through turbulent atmosphere, for example
[93]. One solution to the phase problem in crystallography led to a Nobel
Prize in the early 1980’s for Jerome Karle.

Assume throughout this chapter that F (ω) = 0 for |ω| > Ω. We can
select an arbitrary collection of phases θm to combine with the magnitudes,
to form the complex pseudo data |f(xm)|eiθm . If we have some idea of the
proper choice of Ω we calculate the estimate FΩ(ω) corresponding to the
pseudo-data and again monitor the energy integral. For good choices of the
phases the energy should not be too large, while for inappropriate choices
the energy should be much larger, particularly if the data is oversampled.
In Figure 32.1 we see the MDFT energy as a function ofD, where the object
is the original in Figure 30.1. The data is r(n), |n| ≤ 25 and the perturbed
data is r(n) exp(iDu(n)) for u(n) random in [0, 1] and D in [0, 1]. The
reconstruction process can be implemented as an iterative optimization
procedure, in which we select a new collection of phases at each step in
such a way as to reduce the energy in the bandlimited extrapolation that
results. In [43] we show how to do this in an efficient manner. When the
extrapolation energy is sufficiently small, the resulting estimate is typically
acceptable, particularly when the data is oversampled.

When we have only magnitude measurements we can at least be sure
that if |f(xm)| = 0 then f(xm) = 0. This suggests that we might try to
estimate the function F (ω) from the zeros of its inverse Fourier transform.
In [138] we showed that this approach has some promise for solving the
phase problem.
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Figure 32.1: MDFT energy as a function of D
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A Little Matrix Theory

The 2 by 2 matrix A =

[

a b
c d

]

has an inverse

A−1 =
1

ad− bc

[

d −b
−c a

]

whenever the determinant of A, det(A) = ad − bc 6= 0. More generally,
associated with every complex square matrix is the complex number called
its determinant, which is obtained from the entries of the matrix using
formulas that can be found in any text on linear algebra. The significance of
the determinant is that the matrix is invertible if and only if its determinant
is not zero. This is of more theoretical than practical importance, since no
computer can tell when a number is precisely zero.

Given N by N complex matrix A, we say that a complex number λ is an
eigenvalue of A if there is a nonzero vector u with Au = λu. The column
vector u is then called an eigenvector of A associated with eigenvalue λ;
clearly, if u is an eigenvector of A, then so is cu, for any constant c 6= 0.
If λ is an eigenvalue of A then the matrix A− λI fails to have an inverse,
since (A − λI)u = 0 but u 6= 0. If we treat λ as a variable and compute
the determinant of A − λI we obtain a polynomial of degree N in λ. Its
roots λ1, ..., λN are then the eigenvalues of A. If ||u||2 = u†u = 1 then
u†Au = λu†u = λ.

Suppose that Ax = b is a consistent linear system of M equations in
N unknowns, where M < N . Then there are infinitely many solutions.
A standard procedure in such cases is to find that solution x having the
smallest norm

||x|| =

√

∑N

n=1
|xn|2.

As we shall see shortly, the minimum norm solution of Ax = b is a vector of
the form x = A†z, where A† denotes the conjugate transpose of the matrix
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A. Then Ax = b becomes AA†z = b. Typically (AA†)−1 will exist and we
get z = (AA†)−1b, from which it follows that the minimum norm solution
is x = A†(AA†)−1b. When M and N are not too large forming the matrix
AA† and solving for z is not prohibitively expensive and time-consuming.
However, in image processing the vector x is often a vectorization of a two-
dimensional (or even three-dimensional) image and M and N can be on
the order of tens of thousands or more. The ART algorithm gives us a fast
method for finding the minimum norm solution without computing AA†.

We begin by proving that the minimum norm solution of Ax = b has
the form x = A†z for some M -dimensional complex vector z.

Let the null space of the matrix A be all N -dimensional complex vectors
w with Aw = 0. If Ax = b then A(x + w) = b for all w in the null space
of A. If x = A†z and w is in the null space of A then

||x + w||2 = ||A†z + w||2 = (A†z + w)†(A†z + w)

= (A†z)†(A†z) + (A†z)†w + w†(A†z) + w†w

= ||A†z||2 + (A†z)†w + w†(A†z) + ||w||2

= ||A†z||2 + ||w||2,
since

w†(A†z) = (Aw)†z = 0†z = 0

and
(A†z)†w = z†Aw = z†0 = 0.

Therefore ||x + w|| = ||A†z + w|| > ||A†z|| = ||x|| unless w = 0. This
completes the proof.

Exercise 1: Show that if z = (z1, ..., zN )T is a column vector with complex
entries and H = H† is an N by N Hermitian matrix with complex entries
then the quadratic form z†Hz is a real number. Show that the quadratic
form z†Hz can be calculated using only real numbers. Let z = x+ iy, with
x and y real vectors and let H = A+ iB, where A and B are real matrices.
Then show that AT = A, BT = −B, xTBx = 0 and finally,

z†Hz = [xT yT ]

[

A −B
B A

] [

x
y

]

.

Use the fact that z†Hz is real for every vector z to conclude that the
eigenvalues of H are real.

It can be shown that it is possible to find a set of N mutually orthogonal
eigenvectors of the Hermitian matrixH; call them {u1, ...,uN}. The matrix
H can then be written as

H =
∑N

n=1
λnu

n(un)†,
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a linear superposition of the dyad matrices un(un)†. We can also write
H = ULU†, where U is the matrix whose n-th column is the column
vector un and L is the diagonal matrix with the eigenvalues down the
main diagonal and zero elsewhere.

The matrix H is invertible if and only if none of the λ are zero and its
inverse is

H−1 =
∑N

n=1
λ−1
n un(un)†.

We also have H−1 = UL−1U†.
A Hermitian matrix Q is said to be nonnegative- (positive-)definite if

all the eigenvalues of Q are nonnegative (positive). The matrix Q is a
nonnegative-definite matrix if and only if there is another matrix C such
that Q = C†C. Since the eigenvalues of Q are nonnegative, the diagonal
matrix L has a square root,

√
L. Using the fact that U†U = I we have

Q = ULU† = U
√
LU†U

√
LU†;

we then take C = U
√
LU†, so C† = C. Then z†Qz = z†C†Cz = ||Cz||2,

so that Q is positive-definite if and only if C is invertible.

Exercise 2: Let A be an M by N matrix with complex entries. View A as
a linear function with domain CN , the space of all N -dimensional complex
column vectors, and range contained within CM , via the expression A(x) =
Ax. Suppose that M > N . The range of A, denoted R(A), cannot be all of
CM . Show that every vector z in CM can be written uniquely in the form
z = Ax + w, where A†w = 0. Show that ‖z‖2 = ‖Ax‖2 + ‖w‖2, where
‖z‖2 denotes the square of the norm of z.

Hint: If z = Ax + w then consider A†z. Assume A†A is invertible.

Exercise 3: When the complexM byN matrix A is stored in the computer
it is usually vectorized; that is, the matrix

A =















A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN















becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN )T .
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a: Show that the complex dot product vec(A)·vec(B) = vec(B)†vec(A)
can be obtained by

vec(A)·vec(B) = trace (AB†) = tr(AB†),

where, for a square matrix C, trace (C) means the sum of the entries along
the main diagonal of C. We can therefore use the trace to define an inner
product between matrices: < A,B >= trace (AB†).

b: Show that trace (AA†) ≥ 0 for all A, so that we can use the trace to
define a norm on matrices: ||A||2 = trace (AA†).

Exercise 4: Let B = ULD† be an M by N matrix in diagonalized form;
that is, L is an M by N diagonal matrix with entries λ1, ..., λK on its main
diagonal, where K = min(M,N), and U and V are square matrices. Let
the nth column of U be denoted un and similarly for the columns of V .
Such a diagonal decomposition occurs in the singular value decomposition
(SVD). Show that we can write

B = λ1u
1(v1)† + ...+ λKuK(vK)†.

If B is an N by N Hermitian matrix then we can take U = V and K =
M = N , with the columns of U the eigenvectors of B, normalized to
have Euclidean norm equal to one, and the λn to be the eigenvalues of
B. In this case we may also assume that U is a unitary matrix, that is,
UU† = U†U = I, where I denotes the identity matrix.

Regularization of linear systems of equations:

A consistent linear system of equations Ax = b is ill-conditioned if small
changes in the entries of vector b can result in large changes in the solution.
Such situations are common in signal processing and are usually dealt with
by regularization. We consider regularization in this subsection.

We assume, throughout this subsection, that A is a real M by N matrix
with full rank; then either AAT or ATA is invertible, whichever one has
the smaller size.

Exercise 5: Show that the vector x = (x1, ..., xN )T minimizes the mean
squared error

‖Ax − b‖2 =

N
∑

m=1

(Axm − bm)2,

if and only if x satisfies the system of linear equations AT (Ax − b) = 0,

where Axm = (Ax)m =
∑N
n=1Amnxn.
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Hint: Calculate the partial derivatives of ‖Ax − b‖2 with respect to each
xn.

Exercise 6: Let ε be in (0, 1) and let I be the identity matrix whose
dimensions are understood from the context. Show that

((1 − ε)AAT + εI)−1A = A((1 − ε)ATA+ εI)−1,

and, taking transposes,

AT ((1 − ε)AAT + εI)−1 = ((1 − ε)ATA+ εI)−1AT .

Hint: use the identity

A((1 − ε)ATA+ εI) = ((1 − ε)AAT + εI)A.

Exercise 7: Show that any vector p in RN can be written as p = ATq+r,
where Ar = 0.

We want to solve Ax = b, at least in some approximate sense. Of
course, there may be no solution, a unique solution or even multiple solu-
tions. It often happens in applications that, even when there is an exact
solution of Ax = b, noise in the vector b makes such as exact solution un-
desirable; in such cases a regularized solution is usually used instead. Let
ε > 0 and define

Fε(x) = (1 − ε)‖Ax − b‖2 + ε‖x − p‖2.

Exercise 8: Show that Fε always has a unique minimizer x̂ε given by

x̂ε = ((1 − ε)ATA+ εI)−1((1 − ε)ATb + εp);

this is a regularized solution of Ax = b. Here p is a prior estimate of the
desired solution. Note that the inverse above always exists.

What happens to x̂ε as ε goes to zero? This will depend on which case
we are in:

Case 1: N ≤ M,ATA invertible; or

Case 2: N > M,AAT invertible.

Exercise 9: Show that, in Case 1, taking limits as ε → 0 on both sides of
the expression for x̂ε gives x̂ε → (ATA)−1ATb, the least squares solution
of Ax = b.
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We consider Case 2 now. Write p = ATq + r, with Ar = 0. Then

x̂ε = AT ((1 − ε)AAT + εI)−1((1 − ε)b + εq) + ((1 − ε)ATA+ εI)−1(εr).

Exercise 10: (a): Show that

((1 − ε)ATA+ εI)−1(εr) = r,∀ε.

Hint: let
tε = ((1 − ε)ATA+ εI)−1(εr).

Then multiplying by A gives

Atε = A((1 − ε)ATA+ εI)−1(εr).

Now show that Atε = 0.
(b): Now take the limit of x̂ε, as ε → 0, to get x̂ε → AT (AAT )−1b + r.
Show that this is the solution of Ax = b closest to p.
Hint: Draw a diagram for the case of one equation in two unknowns.

Some useful matrix identities: In the exercise that follows we consider
several matrix identities that are useful in developing the Kalman filter.

Exercise 11: Establish the following identities, assuming that all the prod-
ucts and inverses involved are defined:

CDA−1B(C−1 −DA−1B)−1 = (C−1 −DA−1B)−1 − C; (33.1)

(A−BCD)−1 = A−1 +A−1B(C−1 −DA−1B)−1DA−1; (33.2)

A−1B(C−1 −DA−1B)−1 = (A−BCD)−1BC; (33.3)

(A−BCD)−1 = (I +GD)A−1, (33.4)

for
G = A−1B(C−1 −DA−1B)−1.

Hints: To get equation (33.1) use

C(C−1 −DA−1B) = I − CDA−1B.

For the second identity, multiply both sides of equation (33.2) on the left
by A−BCD and at the appropriate step use the identity (33.1). For (33.3)
show that

BC(C−1 −DA−1B) = B −BCDA−1B = (A−BCD)A−1B.

For (33.4), substitute what G is and use (33.2).



Chapter 34

Matrix and Vector

Calculus

As we saw in the previous chapter, the least squares approximate solution
of Ax = b is a vector x̂ that minimizes the function ||Ax − b||. In our
discussion of bandlimited extrapolation we showed that, for any nonneg-
ative definite matrix Q, the vector having norm one that maximizes the
quadratic form x†Qx is an eigenvector of Q associated with the largest
eigenvalue. In the chapter on best linear unbiased optimization we seek
a matrix that minimizes a certain function. All of these examples involve
what we can call matrix-vector calculus; that is, the differentiation of a
function with respect to a matrix or a vector. The gradient of a function of
several variables is a well known example and we begin there. Since there
is some possibility of confusion, for the rest of this chapter we follow the
notational convention that x is a column vector and x is a scalar.

Differentiation with respect to a vector:

Let x = (x1, ..., xN )T be an N -dimensional real column vector. Let z =
f(x) be a real-valued function of the entries of x. The derivative of z with
respect to x, also called the gradient of z, is the column vector

∂z

∂x
= a = (a1, ..., aN )T

with entries

an =
∂z

∂xn
.

Exercise 1: Let y be a fixed real column vector and z = f(x) = yTx.
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Show that
∂z

∂x
= y.

Exercise 2: Let Q be a real symmetric nonnegative definite matrix and
let z = f(x) = xTQx. Show that the gradient of this quadratic form is

∂z

∂x
= 2Qx.

Hint: Write Q as a linear combination of dyads involving the eigenvectors.

Exercise 3: Let z = ||Ax − b||2. Show that

∂z

∂x
= 2ATAx − 2ATb.

Hint: Use z = (Ax − b)T (Ax − b).
We can also consider the second derivative of z = f(x), which is the

Hessian matrix of z
∂2z

∂x2
= A

with entries

Amn =
∂2z

∂xm∂xn
.

If the entries of the vector z = (z1, ..., zM )T are real-valued functions of
the vector x the derivative of z is the matrix whose m-th column is the
derivative of the real-valued function zm. This matrix is usually called the
Jacobian matrix of z. If M = N the determinant of the Jacobian matrix is
the Jacobian.

Exercise 4: Suppose (u, v) = (u(x, y), v(x, y)) is a change of variables
from the Cartesian (x, y) coordinate system to some other (u, v) coordinate
system. Let x = (x, y)T and z = (u(x), v(x))T .

a: Calculate the Jacobian for the rectangular coordinate system obtained
by rotating the (x, y) system through an angle of θ.

b: Calculate the Jacobian for the transformation from the (x, y) system to
polar coordinates.

Differentiation with respect to a matrix:

Now we consider real-valued functions z = f(A) of a real matrix A. As an
example, for square matrices A we have

z = f(A) = trace (A) =

N
∑

n=1

Ann,
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the sum of the entries along the main diagonal of A.
The derivative of z = f(A) is the matrix

∂z

∂A
= B

whose entries are

Bmn =
∂z

∂Amn
.

Exercise 5: Show that the derivative of trace (A) is B = I, the identity
matrix.

Exercise 6: Show that the derivative of z = trace (DAC) with respect to
A is

∂z

∂A
= DTCT . (34.1)

We note in passing that the derivative of det(DAC) with respect to A is
the matrix det(DAC)(A−1)T .

Although the trace is not independent of the order of the matrices in a
product, it is independent of cyclic permutation of the factors:

trace (ABC) = trace (CAB) = trace (BCA).

Therefore the trace is independent of the order for the product of two
matrices:

trace (AB) = trace (BA).

From this fact we conclude that

xTx = trace (xTx) = trace (xxT ).

If x is a random vector with correlation matrix

R = E(xxT )

then

E(xTx) = E(trace (xxT )) = trace (E(xxT )) = trace (R).

We shall use this trick in the chapter on detection.

Exercise 7: Let z = trace (ATCA). Show that the derivative of z with
respect to the matrix A is

∂z

∂A
= CA+ CTA. (34.2)



154 CHAPTER 34. MATRIX AND VECTOR CALCULUS

Therefore, if C = Q is symmetric, then the derivative is 2QA.
We have restricted the discussion here to real matrices and vectors. It

often happens that we want to optimize a real quantity with respect to a
complex vector. We can rewrite such quantities in terms of the real and
imaginary parts of the complex values involved, to reduce everything to
the real case just considered. For example, let Q be a hermitian matrix;
then the quadratic form k†Qk is real, for any complex vector k. As we saw
in an earlier exercise, we can write the quadratic form entirely in terms of
real matrices and vectors.

If w = u+ iv is a complex number with real part u and imaginary part
v the function z = f(w) = |w|2 is real-valued. The derivative of z = f(w)
with respect to the complex variable w does not exist. When we write
z = u2 + v2 we consider z as a function of the real vector x = (u, v)T . The
derivative of z with respect to x is the vector (2u, 2v)T .

Similarly, when we consider the real quadratic form k†Qk, we view each
of the complex entries of the N by 1 vector k as two real numbers forming a
two-dimensional real vector. We then differentiate the quadratic form with
respect to the 2N by 1 real vector formed from these real and imaginary
parts. If we turn the resulting 2N by 1 real vector back into an N by 1
complex vector, we get 2Qk as the derivative; so it appears as if the formula
for differentiating in real case carries over to the complex case.



Chapter 35

The Singular Value

Decomposition

We saw earlier that an N by N Hermitian matrix H can be written in
terms of its eigenvalues and eigenvectors as H = ULU† or as

H =
∑N

n=1
λnu

n(un)†.

The singular value decomposition (SVD) is a similar result that applies to
any rectangular matrix. It is an important tool in image compression and
pseudo-inversion.

Let C be any N by K complex matrix. In presenting the SVD of C we
shall assume that K ≥ N ; the SVD of C† will come from that of C. Let
A = C†C and B = CC†; we assume, reasonably, that B, the smaller of the
two matrices, is invertible, so all the eigenvalues λ1, ..., λN of B are positive.
Then write the eigenvalue/eigenvector decomposition of B as B = ULU†.

Exercise 1: Show that the nonzero eigenvalues of A and B are the same.

Let V be the K by K matrix whose first N columns are those of the
matrix C†UL−1/2 and whose remaining K −N columns are any mutually
orthogonal norm-one vectors that are all orthogonal to each of the first
N columns. Let M be the N by K matrix with diagonal entries Mnn =√
λn for n = 1, ..., N and whose remaining entries are zero. The nonzero

entries of M ,
√
λn, are called the singular values of C. The singular value

decomposition (SVD) of C is C = UMV †. The SVD of C† is C† = VMTU†.

Exercise 2: Show that UMV † equals C.
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Using the SVD of C we can write

C =
∑N

n=1

√

λnu
n(vn)†,

where vn denotes the n-th column of the matrix V .
In image processing matrices such as C are used to represent discrete

two-dimensional images, with the entries of C corresponding to the grey
level or color at each pixel. It is common to find that most of the N singular
values of C are nearly zero, so that C can be written approximately as a
sum of far fewer than N dyads; this is SVD image compression.

If N 6= K then C cannot have an inverse; it does, however, have a
pseudo-inverse, C∗ = VM∗U†, where M∗ is the matrix obtained from M
by taking the inverse of each of its nonzero entries and leaving the remaining
zeros the same. The pseudo-inverse of C† is

(C†)∗ = (C∗)† = U(M∗)TV † = U(M†)∗V †.

Some important properties of the pseudo-inverse are the following:

a. CC∗C = C;

b. C∗CC∗ = C∗;

c. (C∗C)† = C∗C;

d. (CC∗)† = CC∗.

The pseudo-inverse of an arbitrary I by J matrix G can be used in much
the same way as the inverse of non-singular matrices to find approximate
or xact solutions of systems of equations Gx = d. The following examples
illustrate this point.

Exercise 3: If I > J the system Gx = d probably has no exact solution.
Show that whenever G†G is invertible the pseudo-inverse of G is G∗ =
(G†G)−1G† so that the vector x = G∗d is the least squares approximate
solution.

Exercise 4: If I < J the system Gx = d probably has infinitely many
solutions. Show that whenever the matrix GG† is invertible the pseudo-
inverse of G is G∗ = G†(GG†)−1, so that the vector x = G∗d is the exact
solution of Gx = d closest to the origin; that is, it is the minimum norm
solution.



Chapter 36

Projection onto Convex

Sets

In [185] Youla suggests that problems in signal processing and image restora-
tion might be viewed geometrically and the method of projection onto con-
vex sets (POCS) employed to solve such inverse problems. In the survey
paper [186] he examines the POCS method as a particular case of iterative
algorithms for finding fixed points of nonexpansive mappings. This point
of view is increasingly important in applications such as medical imaging
and a number of recent papers have addressed the theoretical and practical
issues involved [9], [10], [8], [35], [39], [42], [70], [71], [73].

A subset C of RN is convex if the line segment joining any two of its
members lies entirely within C. In the plane R2 the set C of all points
whose distance to the origin is less than one is convex; if we include the
boundary of C, that is, the circumference of the circle, the set is also closed.
But the circumference alone is not a convex set. If C is a closed convex set
and x is not in C, then there ia a unique point in C closer to x than any
other member of C; that point is called the metric projection of x onto C,
written PCx. If the set is not convex there need not be a unique nearest
point; the circle of radius one (not including the inside) is not convex, the
origin is not in this set and every point on the circumference is the same
distance from the origin, so there is no unique point nearest to the origin.
Examples of closed convex sets include RN+ , the set of all realN -dimensional
vectors having nonnegative entries; the set of all x whose norm does not
exceed a given value r > 0; the set of all x such that Ax ≤ b, for a given
matrix A and given vector b; and the set of all real vectors x with entries
xn in the interval [αn, βn], for each n.

In this geometric approach the restoredN -dimensional signal or image is
a solution of the convex feasibility problem (CFP), that is, it lies within the
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intersection of finitely many closed nonempty convex sets Cm,m = 1, ...,M,
in RN (or sometimes, in infinite dimensional Hilbert space, when we talk
about functions, instead of vectors).

For each vector x and each convex set C the metric projection of x onto
C satisfies the inequality

(c − PCx) · (PCx − x) ≥ 0, (36.1)

for any c in the set C. This just says that the angle between the vectors
c − PCx and PCx − x does not exceed π/2, which happens because C is
convex (Draw a picture!).

The iterative methods used to solve the CFP employ these metric pro-
jections. Algorithms for solving the CFP are discussed in the papers cited
above, as well as in the books by Censor and Zenios [63], Stark and Yang
[170] and Borwein and Lewis [19].

The simplest example of the CFP is the solving of a system of linear
equations Ax = b. Let A be an M by N real matrix and for m = 1, ...,M
let Bm = {x|(Ax)m = bm}, where bm denotes the m-th entry of the vector
b. Now let Cm = Bm. Any solution of Ax = b lies in the intersection of
the Cm; if the system is inconsistent then the intersection is empty. The
Kaczmarz algorithm [122] for solving the system of linear equations Ax = b
has the iterative step

xk+1
n = xkn +Am(k)n(bm(k) − (Axk)m(k)), (36.2)

for n = 1, ..., N , k = 0, 1, ... and m(k) = k(modM) + 1. This algorithm
was rediscovered by Gordon, Bender and Herman [102], who called it the
algebraic reconstruction technique (ART). This algorithm is an example
of the method of successive orthogonal projections (SOP) [105] whereby
we generate the sequence {xk} by taking xk+1 to be the point in Cm(k)

closest to xk. Kaczmarz’s algorithm can also be viewed as a method for
constrained optimization: whenever Ax = b has solutions, the limit of the
sequence generated by equation (36.2) minimizes the function ||x − x0||
over all solutions of Ax = b.

In the example just discussed the sets Cm are hyperplanes in RN ; sup-
pose now that we take the Cm to be half-spaces and consider the problem
of finding x such that Ax ≥ b. For each m let Hm be the half-space
Hm = {x|(Ax)m ≥ bm}. Then x will be in the intersection of the sets
Cm = Hm if and only if Ax ≥ b. Methods for solving this CFP, such as Hil-
dreth’s algorithm, are discussed in [63]. The Agmon-Motzkin-Schoenberg
(AMS) algorithm [1] [145] for solving such systems of inequalities Ax ≥ b
has the iterative step

xk+1
n = xkn +Am(k)n(bm(k) − (Axk)m(k))+, (36.3)
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where, for any real number t, the number t+ is t if t ≥ 0 and 0 otherwise.
The AMS algorithm converges to a solution of Ax ≥ b, if there are so-
lutions. If there are no solutions the AMS algorithm converges cyclically,
that is, subsequences associated with the same m converge [84],[10].

The Gerchberg-Papoulis (GP) algorithm discussed earlier is another
example of a POCS method. For any sequence of Fourier coefficients g =
{g(n)} let Dg denote the sequence whose terms are g(n) for n ∈ {M,M +
1, ..., N} and zero otherwise. Let Fg = G be the operator taking a sequence
of Fourier coefficients g into the function

G(ω) =
∑+∞

n=−∞
g(n) exp(inω),

for ω ∈ (−π, π). Let H = L2(−π, π), C1 = L2(−Ω,Ω) and C2 the set
of all members G(ω) of H whose Fourier coefficients satisfy g(n) = f(n)
for n = M,M + 1, ..., N . The metric projection of a function G(ω) ∈ H
onto C1 is χΩG(ω); this is the function in C1 closest to G(ω). The metric
projection onto C2 is implemented by passing from G(ω) to the sequence
of its Fourier coefficients F−1G = g, then replacing those coefficients for
n = M,M + 1, ..., N with f(n) and calculating the resulting Fourier series;
that is, the metric projection of G onto C2 is F(Df + (I −D)F−1G). The
GP algorithm consists in alternating metric projections onto the two sets
C1 and C2.

Algorithms for solving the CFP fall into two classes: those that employ
all the sets Cm at each step of the iteration (the so-called simultaneous
methods) and those that do not (the row-action algorithms or, more gener-
ally, block-iterative methods).

In the consistent case, in which the intersection of the convex sets Cm
is nonempty, all reasonable algorithms are expected to converge to a mem-
ber of that intersection; the limit may or may not be the member of the
intersection closest to the starting vector x0. Figure 36.1 illustrates the
method of alternating projection; note that the limit is not the point in the
intersection nearest to the starting point.

In the inconsistent case, in which the intersection of the Cm is empty,
simultaneous methods typically converge to a minimizer of a proximity
function [42], such as

f(x) =
∑M

m=1
||x − PCm

x||2,

if a minimizer exists.
In the next chapter we consider an iterative POCS solution of the split

feasibility problem.
In a later chapter we shall encounter the EMML and SMART algo-

rithms. These algorithms can also be viewed as POCS methods, but with
a twist. The projections onto convex sets that are involved there are with



160 CHAPTER 36. PROJECTION ONTO CONVEX SETS

respect to a different notion of distance between vectors; instead of the
usual euclidean distance we use the cross-entropy distance.
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Figure 36.1: Alternating projections in POCS.
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Chapter 37

The Split Feasibility

Problem

In digital image processing it is typical to represent the image in vec-
torized form, as an N by 1 column vector x, where N is the number
of pixels we have chosen to use. The measured data pertaining to the
image can then usually be represented as dot products of x with cer-
tain vectors am, m = 1, ...,M ; that is, the data is bm = am · x,, for
m = 1, ...,M . This problem is called image reconstruction from projec-
tions. With b = (b1, ..., bM )T and A the M by N matrix whose m-th row
is the conjugate transpose of the column vector am, we can write Ax = b.
Usually the measurements are noisy and we do not really want to solve
this system of linear equations exactly; we might just want Ax to be near
b, or perhaps we want Ax to lie in a convex set Q that may involve b.
We may also have additional information about the image that can be ex-
pressed by saying the x lies in some convex set C; for example, x may have
nonnegative entries, so we would take C to be the nonnegative cone in N -
dimensional space. Such problems lead us to the split feasibility problem,
which generalizes the problem of finding exact or approximate solutions of
linear systems of equations.

The split feasibility problem (SFP) [59] is to find c ∈ C with Ac ∈ Q,
if such points exist, where A is a real M by N matrix and C and Q are
nonempty, closed convex sets in RN and RM , respectively. In [39] the CQ
algorithm for solving the SFP was presented. The CQ algorithm has the
iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (37.1)

where γ ∈ (0, 2/ρ(ATA)), for ρ(ATA) the spectral radius of the matrix
ATA, which is also its largest eigenvalue.
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The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1

2
||PQAx −Ax||2

over the set C, provided such constrained minimizers exist. Therefore the
CQ algorithm is an iterative constrained optimization method.

The function f(x) is convex and differentiable on RN and its derivative
is the operator

∇f(x) = AT (I − PQ)Ax.

Let B = PC(I − γAT (I −PQ)A). If γ ∈ (0, 2/λ) the orbit sequence {Bkx}
converges to a fixed point of B, whenever such points exist. If z is a fixed
point of B, that is, Bz = z, then z = PC(z − γAT (I − PQ)Az). Therefore,
according to the inequality (36.1), for any c in C we have

(c − z) · (z − (z − γAT (I − PQ)Az)) ≥ 0.

This tells us that

(c − z) · (AT (I − PQ)Az) = (c − z) · ∇f(z) ≥ 0,

which means that z minimizes f(x) relative to x in the set C.
The CQ algorithm employs the relaxation parameter γ in the interval

(0, 2/L), where L is the largest eigenvalue of the matrix ATA, or, equiv-
alently, the square of the largest singular value of A. Choosing the best
relaxation parameter in any algorithm is a nontrivial procedure. Generally
speaking, we want to select γ near to 1/L. In practice, it would be help-
ful to have a quick method for estimating L. In [39] we presented such a
method that is particularly useful for sparse matrices. In the next chapter
we take a look at that method for estimating L.

A number of well known iterative algorithms, such as the Landweber
[130] and projected Landweber methods (see [12]), are particular cases
of the CQ algorithm. The Gerchberg-Papoulis algorithm is, in turn, a
particular case of the Landweber method.

The Landweber algorithms

It is easy to find important examples of the SFP: if C ⊆ RN and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RN , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. The SFP is
currently of some interest in dynamic PET medical image reconstruction,
for reasons discussed in detail in [39]. Generally, we cannot solve the SFP
in closed form and iterative methods are needed.
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The Landweber algorithm: With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b −Axk). (37.2)

For general nonempty closed convex C we obtain the projected Landweber
method for finding a solution of Ax = b in C:

The projected Landweber algorithm: for x0 arbitrary and k = 0, 1, ...
let

xk+1 = PC(xk + γAT (b −Axk)). (37.3)

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever
such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution of
Ax = b, while the projected Landweber method will converge to a mini-
mizer, over the set C, of the function ||b−Ax||, whenever such a minimizer
exists. Examples of the Landweber method include the Gerchberg-Papoulis
iterative procedure for bandlimited extrapolation and super-resolution and
the simultaneous algebraic reconstruction technique (SART) [3] for solving
Ax = b, for nonnegative matrix A.

The SART algorithm: Let A be an M by N matrix with nonnegative
entries. Let Ai+ > 0 be the sum of the entries in the ith row of A and
A+j > 0 be the sum of the entries in the jth column of A. Consider
the (possibly inconsistent) system Ax = b. The SART algorithm has the
following iterative step:

xk+1
j = xkj +

1

A+j

∑M

i=1
(bi − (Axk)i)/Ai+.

We make the following changes of variables:

Bij = Aij/(Ai+)1/2(A+j)
1/2,

zj = xj(A+j)
1/2,

and
ci = bi/(Ai+)1/2.

Then the SART iterative step can be written as

zk+1 = zk +BT (c −Bzk).

This is a particular case of the Landweber algorithm, with γ = 1. The
convergence of SART follows, once we know that the largest eigenvalue of
BTB is less than two; in fact, we showed it is one [39].
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Chapter 38

Singular Values of Sparse

Matrices

In image reconstruction from projections the M by N matrix A is usually
quite large and often ε-sparse, that is, most of its elements do not exceed ε
in absolute value, where ε denotes a small positive quantity. In transmission
tomography each column of A corresponds to a single pixel in the digitized
image, while each row of A corresponds to a line segment through the
object, along which an x-ray beam has travelled. The entries of a given
row of A are non-zero only for those columns whose associated pixel lies
on that line segment; clearly most of the entries of any given row of A will
then be zero. In emission tomography the I by J nonnegative matrix P has
entries Pij ≥ 0; for each detector i and pixel j Pij is the probability that
an emission at the j-th pixel will be detected at the i-th detector. When
a detection is recorded at the i-th detector we want the likely source of
the emission to be one of only a small number of pixels. For single photon
emission tomography (SPECT) a collimator is used to permit detection
of only those photons approaching the detector straight on. In positron
emission tomography (PET) coincidence detection serves much the same
purpose. In both cases the probabilities Pij will be zero (or nearly zero)
for most combinations of i and j. Such matrices are called sparse (or
almost sparse). In this chapter we provide a convenient estimate for the
largest singular value of an almost sparse matrix A, which, for notational
convenience only, we take to be real.

In [39] it was shown that if A is normalized so that each row has length
one, then the spectral radius of ATA, which is the square of the largest
singular value of A itself, does not exceed the maximum number of nonzero
elements in any column of A. A similar upper bound on ρ(ATA) can be
obtained for non-normalized, ε-sparse A.
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Let A be an M by N matrix. For each n = 1, ..., N , let sn > 0 be
the number of nonzero entries in the n-th column of A and let s be the
maximum of the sn. Let G be the M by N matrix with entries

Gmn = Amn/(
∑N

l=1
slA

2
ml)

1/2.

Lent has shown that the eigenvalues of the matrix GTG do not exceed one
[136]. This result suggested the following proposition, whose proof was
given in [39].

Proposition 38.1 Let A be an M by N matrix. For each m = 1, ...,M let
νm =

∑N
n=1A

2
mn > 0. For each n = 1, ..., N let σn =

∑M
m=1 emnνm, where

emn = 1 if Amn 6= 0 and emn = 0 otherwise. Let σ denote the maximum
of the σn. Then the eigenvalues of the matrix ATA do not exceed σ. If A
is normalized so that the Euclidean length of each of its rows is one, then
the eigenvalues of ATA do not exceed s, the maximum number of nonzero
elements in any column of A.

Proof: For simplicity, we consider only the normalized case; the proof for
the more general case is similar.

Let ATAv = cv for some nonzero vector v. We show that c ≤ s. We
have AATAv = cAv and so wTAATw = vTATAATAv = cvTATAv =
cwTw, for w = Av. Then, with emn = 1 if Amn 6= 0 and emn = 0
otherwise, we have

(
∑M

m=1
Amnwm)2 = (

∑M

m=1
Amnemnwm)2

≤ (
∑M

m=1
A2
mnw

2
m)(
∑M

m=1
e2mn) =

(
∑M

m=1
A2
mnw

2
m)sj ≤ (

∑M

m=1
A2
mnw

2
m)s.

Therefore,

wTATAw =
∑N

n=1
(
∑M

m=1
Amnwm)2 ≤

∑N

n=1
(
∑M

m=1
A2
mnw

2
m)s,

and

wTATAw = c
∑M

m=1
w2
m = c

∑M

m=1
w2
m(
∑N

n=1
A2
mn)

= c
∑M

m=1

∑N

n=1
w2
mA

2
mn.

The result follows immediately.

If we normalize A so that its rows have length one, then the trace of the
matrix AAT is tr(AAT ) = M , which is also the sum of the eigenvalues of



169

ATA. Consequently, the maximum eigenvalue of ATA does not exceed M ;
the result above improves that considerably, if A is sparse and so s << M .

In image reconstruction from projection data that includes scattering we
often encounter matrices A most of whose entries are small, if not exactly
zero. A slight modification of the proof above provides us with a useful
upper bound for L, the largest eigenvalue of ATA, in such cases. Assume
that the rows of A have length one. For ε > 0 let s be the largest number
of entries in any column of A whose magnitudes exceed ε. Then we have

L ≤ s+MNε2 + 2ε(MNs)1/2.

The proof of this result is similar to that for the proposition above.
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Chapter 39

Discrete Random

Processes

The most common model used in signal processing is that of a sum of
complex exponential functions plus noise. The noise is viewed as a sequence
of random variables, and the signal components also may involve random
parameters, such as random amplitudes and phase angles. Such models are
best studied as discrete random processes.

A discrete random process is an infinite sequence {Xn}+∞
n=−∞ in which

eachXn is a complex-valued random variable. The autocorrelation function
associated with the random process is defined for all index values m and n
by rx(m,n) = E(XmXn), where E(·) is the expectation or expected value
operator. For m = n we get r(n, n) = variance(Xn). We say that the
random process is wide-sense stationary if E(Xn) is independent of n and
rx(m,n) is a function only of the difference, m − n, so that variance(Xn)
is independent of n. The autocorrelation function can then be redefined as
rx(k) = E(Xn+kXn). The power spectrum Rx(ω) of the random process is
defined using the values rx(k) as its Fourier coeffcients:

Rx(ω) =
∑+∞

k=−∞
rx(k)e

ikω,

for all ω in the interval [−π, π]. It can be proved that the power spectrum
is a nonnegative function of the form Rx(ω) = |G(ω)|2 and the autocorre-
lation sequence {rx(k)} satisfies the equations

rx(k) =
∑+∞

n=−∞
gk+ngn,

for

G(ω) =
∑+∞

n=−∞
g(n)einω.
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In practice we will have actual values Xn = xn, for only finitely many of the
Xn, say for n = 1, ...,m. These can be used to estimate the values rx(k), at
least for values of k between, say, −M/5 and M/5. For example, we could
estimate rx(k) by averaging all the products of the form xk+mxm that we
can compute from the data. Clearly, as k gets farther away from zero we
have fewer such products, so our average is a less accurate estimate.

Once we have rx(k), |k| ≤ N we form the N+1 by N+1 autocorrelation
matrix R having the entries Rm,n = rx(m−n). This autocorrelation matrix
is what is used in the design of optimal filtering.

The matrix R is Hermitian, that is, Rn,m = Rm,n, so that R† = R. An
M by M Hermitian matrix H is said to be nonnegative-definite if, for all
complex column vectors a = (a1, ..., aM )T , the quadratic form a†Ha is a
nonnegative number and positive-definite if such a quadratic form is always
positive.

Exercise 1: Show that the autocorrelation matrix R is nonnegative defi-
nite. Hint: Let

A(ω) =
∑N+1

n=1
ane

inω

and express the integral

∫

|A(ω)|2R(ω)dω

in terms of the an and the Rm,n. Under what conditions can R fail to be
positive-definite?

Later we shall consider the maximum entropy method for estimating
the power spectrum from finitely many values of rx(k).

Autoregressive processes: We noted at the beginning of the chapter
that the case of a discrete-time signal with additive random noise provides
a good example of a discrete random process; there are others. One partic-
ularly important type is the autoregressive (AR) process, which is closely
related to ordinary linear differential equations.

When a smooth periodic function has noise added the new function
is rough. Imagine, though, a fairly weighty pendulum of a clock, moving
smoothly and periodically. Now imagine that a young child is throwing
small stones at the bob of the pendulum. The movement of the pendulum is
no longer periodic, but it is not rough. The pendulum is moving randomly
in response to the random external disturbance, but not as if a random noise
component has been added to its motion. To model such random processes
we need to extend the notion of an ordinary differential equation. That
leads us to the AR processes.
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Recall that an ordinary linear M -th order differential equation with
constant coefficients has the form

x(M)(t) + c1x
(M−1)(t) + c2x

(M−2)(t) + ...+ cM−1x
′(t) + cMx(t) = f(t),

where x(m)(t) denotes the m-th derivative of the function x(t) and the cm
are constants. In many applications the variable t is time and the function
f(t) is an external effect driving the linear system, with system response
given by the unknown function x(t). How the system responds to a variety
of external drivers is of great interest. It is sometimes convenient to re-
place this continuous formulation with a discrete analog, called a difference
equation.

In switching from differential equations to difference equations we dis-
cretize the time variable and replace the driving function f(t) with fn,
x(t) with xn, the first derivative at time t, x′(t), with the first differ-
ence, xn − xn−1, the second derivative x′′(t) with the second difference,
(xn − xn−1) − (xn−1 − xn−2), and so on. The differential equation is then
replaced by the difference equation

xn − a1xn−1 − a2xn−2 − ...− aMxn−M = fn (39.1)

for some constants am; the negative signs are a technical convenience only.
We now assume that the driving function is a discrete random process

{fn}, so that the system response becomes a discrete random process,
{Xn}. If we assume that the driver fn is white noise, independent of the
{Xn}, then the process {Xn} is called an autoregressive (AR) process.
What the system does at time n depends partly on what it has done at the
M discrete times prior to time n, as well as what the external disturbance
fn is at time n. Our goal is usually to determine the constants am; this
is system identification. Our data is typically some number of consecutive
measurements of the Xn.

Multiplying both sides of equation (39.1) by Xn−k, for some k > 0 and
taking the expected value, we obtain

E(XnXn−k) − ...− aME(Xn−MXn−k) = 0.

or
rx(k) − a1rx(k − 1) − ...− aMrx(k −M) = 0.

Taking k = 0 we get

rx(0) − a1rx(−1) − ...− aMrx(−M) = E(|fn|2) = var (fn).

To find the am we use the data to estimate rx(k) at least for k = 0, 1, ...,M .
Then we use these estimates in the linear equations above, solving them
for the am.
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Linear systems with random input: In our discussion of discrete linear
filters, also called time-invariant linear systems, we noted that it is common
to consider as the input to such a system a discrete random process, {Xn}.
The output is then another random process {Yn} given by

Yn =

+∞
∑

m=−∞
gmXn−m,

for each n.

Exercise 2: Show that if the input process is wide-sense stationary then
so is the output. Show that the power spectrum Ry(ω) of the output is

Ry(ω) = |G(ω)|2Rx(ω).
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Prediction

An important problem in signal processing is the estimation of the next
term in a sequence of numbers from knowledge of the previous values.
This is called the prediction problem. The numbers might be the values at
closing of a certain stock market index; knowing what has happened up
to today, can we predict, with some accuracy, tomorrow’s closing value?
The numbers might describe the position in space of a missile; knowing
where it has been for the past few minutes, can we predict where it will
be for the next few? The numbers might be the noontime temperature in
New York City on successive days; can we predict tomorrow’s temperature
from our knowledge of the temperatures on previous days? It is helpful, in
weather prediction and elsewhere, to use not only the previous values of the
sequence of interest, but those of related sequences; the recent temperatures
in Pittsburgh might be helpful in predicting tomorrow’s weather in New
York City. In this chapter we begin a discussion of the prediction problem.

Prediction through interpolation: Suppose our data are the real num-
bers x1, ..., xm, corresponding to times t = 1, ...,m. Our goal is to estimate
xm+1. One way to do this is by interpolation.

A function f(t) is said to interpolate the data if f(n) = xn for n =
1, ...,m. Having found such an interpolating function, we can take as our
prediction of xm+1 the number x̂m+1 = f(m + 1). Of course, there are
infinitely many choices for the interpolating function f(t). In our discussion
of Fourier transform estimation we considered methods of interpolation
that incorporated prior knowledge about the function being sampled, such
as that it was bandlimited. In the absence of such additional information
polynomial interpolation is one obvious choice.

Polynomial interpolation involves selecting as the function f(t) the poly-
nomial of least degree that interpolates the data. Given m data points, we
seek a polynomial of degree m − 1. Lagrange’s method is a well known
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procedure for solving this problem.
For k = 1, ...,m let Lk(t) be the unique polynomial with the properties

Lk(k) = 1 and Lk(n) = 0 for n = 1, ...,m and n 6= k. We can write each
Lk(t) explicitly, since we know its zeros:

Lk(t) =
(t− 1) · · · (t− (k − 1))(t− (k + 1)) · · · (t−m)

(k − 1) · · · (k − (k − 1))(k − (k + 1)) · · · (k −m)
.

Then the polynomial

Pm(t) =

m
∑

k=1

xkLk(t)

is the interpolating polynomial we seek.

Exercise 1: Show that for m = 1 the predicted value of x2 is x̂2 = x1, so
that

x̂2 − x1 = 0.

This is the ‘Tomorrow will be like today’ prediction.

Exercise 2: Show that form = 2 the predicted value of x3 is x̂3 = 2x2−x1,
or x̂3 − x2 = (x2 − x1) so that

x̂3 − 2x2 + x1 = 0.

This prediction amounts to assuming the change from today to tomorrow
will be the same as the change from yesterday to today; that is, we assume
a constant slope.

Exercise 3: Show that for m = 3 the predicted value of x4 is x̂4 =
3x3 − 3x2 + x1, so that

x̂4 − 3x3 + 3x2 − x1 = 0.

Exercise 4: The coefficients in the previous exercises fit a pattern. Using
this pattern, determine the predicted value of x5 for the case of m = 4. In
general, what will be the predicted value of xm+1 based on the m previous
values?

The concept of divided difference plays a significant role in interpola-
tion, as we shall see.

Divided differences: The zeroth divided difference of a function f(t) with
respect to the point t0 is f [t0] = f(t0). The first divided difference with
respect to the points t0 and t1 is

f [t0, t1] =
f(t1) − f(t0)

t1 − t0
.
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The mth divided difference with respect to the points t0, ..., tm is

f [t0, ..., tm] =
f [t1, ..., tm] − f [t0, ..., tm−1]

tm − t0
.

These quantities are discrete analogs of the derivatives of a function. In-
deed, if f(t) is a polynomial of degree at most m− 1 then the mth divided
difference is zero, for any points t0, ..., tm.

When the points t0, ..., tm are consecutive integers the divided differ-
ences take on a special form. Suppose t0 = 1, t1 = 2, ..., tm = m + 1.
Then

f [t0, t1] = f(2) − f(1);

f [t0, t1, t2] =
1

2
(f(3) − 2f(2) + f(1));

f [t0, t1, t2, t3] =
1

6
(f(4) − 3f(3) + 3f(2) − f(1))

and so on, with each successive divided difference involving the coefficients
in the expansion of the binomial (a− b)k.

For each fixed value of m ≥ 1 and 1 ≤ n ≤ m we have f(n) = xn and
f(m + 1) = x̂m+1. According to the exercises above, for m = 1 we can
write

x̂2 − x1 = 0,

which says that the first divided difference is zero; that is, f [1, 2] = 0. For
m = 2 we have

[x̂3 − x2] − [x2 − x1] = 0,

or f [1, 2, 3] = 0, so the second divided difference is zero. For m = 3

[[x̂4 − x3] − [x3 − x2]] − [[x3 − x2] − [x2 − x1]] = 0,

which says that the third divided difference, f [1, 2, 3, 4], is zero. The in-
terpolation is achieved by assuming that the m data points as well as the
point to be interpolated lie on a polynomial of degree at most m− 1. Un-
der this assumption the mth divided difference with respect to the points
1, 2, ...,m+1 would be zero. The interpolated value can then be calculated
by setting the mth divided difference equal to zero, but replacing xm+1

with the estimate x̂m+1.
The coefficients that occur in these various predictors are those in the

expansion of the binomial (a − b)m. To investigate this matter further,
we define the first difference operator on an arbitrary sequence x = {xn}
to be the operator D such that y = Dx, where y = {yn} is the sequence
with entries yn = xn − xn−1. Notice that the operator D can be written
as D = I − S, where I is the identity operator and S is the shift operator;
that is, Sx = z where z = {zn} is the sequence with entries zn = xn−1.
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The k-th difference operator is Dk = (I − S)k; expanding this product in
terms of powers of S leads to the binomial coefficients that we saw earlier.

This method of predicting using the interpolating polynomial of degree
m − 1 will be perfectly accurate if the sequence {xn} is formed by taking
values from a polynomial of degree m− 1 or less. Typically, our data con-
tains noise and interpolating the data exactly, while theoretically possible,
is not wise or useful.

The prediction method used here is linear in the sense that our predicted
value is a linear combination of the data values and the coefficients we use
do not involve the data. Another approach, linear predictive coding, is
somewhat different.

Linear Predictive Coding: Suppose once again that we have the data
x1, ..., xm and we want to predict xm+1. Instead of using a linear combina-
tion of all the values x1, ..., xm we choose to use as our prediction of xm+1

a linear combination of xm−p, xm−p+1, ..., xm, where p is a positive integer
much smaller than m. So our prediction has the form

x̂m+1 = a0xm + a1xm−1 + ...+ apxm−p.

To find the best coefficients a0, ..., ap to use we imagine trying out each
possible choice of coefficients, using them to predict data values we al-
ready know. Specifically, for each set of coefficients {a0, ..., ap} we form the
predictions

x̂p+2 = a0xp+1 + a1xp + a2xp−1 + ...+ apx1,

x̂p+3 = a0xp+2 + a1xp+1 + a2xp + ...+ apx2,

and so on, down to

x̂m = a0xm−1 + a1xm−2 + ...+ apxm−(p+1).

Since we already know what the true values are, we can compare the pre-
dicted values with the true ones and then find the choice of coefficients
that minimizes the average squared error. This amounts to finding the
least squares solution of the system of equations obtained by replacing the
predictions with the true values on the left side of the equations above:
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which we write as Ga = b. Since m is typically larger than p, this system
is overdetermined. The least squares solution is

a = (G†G)−1G†b.

The resulting set of coefficients is then used to make a linear combination
of the values xm, ..., xm−p, which is then our predicted value. But note
that although a linear combination of data forms the predicted value, the
coefficients are determined from the data values themselves, so the overall
method is nonlinear.

This method of prediction forms the basis of a data compression tech-
nique known as linear predictive coding (LPC). In many applications a long
sequence of numbers has a certain amount of local redundancy and many
of the values can be well predicted from a small number of previous ones,
using the method just described. Instead of transmitting the entire se-
quence of numbers, only some of the numbers, along with the coefficients
and occasional outliers, are sent.

The entry in the kth row, nth column of the matrix G†G is

(G†G)kn =

m−p
∑

j=1

xp+1−k+jxp+1−n+j .

If we view the data as values of a stationary random process, then the
quantity 1

m−p (G
†G)kn is an estimate of the autocorrelation value rx(n−k).

Similarly, the kth entry of the vector G†b is

(G†b)k =

m−p
∑

j=1

xp+1−k+jxp+1+j

and 1
m−p (G

†b)k is an estimate of rx(−k), for k = 1, ..., p+1. This brings us

to the problem of predicting the next value for a (possibly nonstationary)
random process.

Stochastic prediction: In time series analysis similar linear prediction
methods are studied. In that case the numbers xn are viewed as values
of a discrete random process {Xn}. The coefficients are determined by
considering the statistical description of how the random variable Xm+1 is
related to the previous Xn. The prediction of Xm+1 is a linear combination
of the random variables Xn, n = 1, ...,m,

X̂m+1 = a0Xm + a1Xm−1 + ...+ am−1X1,

with the coefficients determined using the orthogonality principle. Conse-
quently, the coefficients satisfy the system of linear equations

E(Xm+1Xk) = a0E(XmXk) + ...+ am−1E(X1Xk),
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for k = 1, 2, ...,m. The expected values in these equations are the autocor-
relations associated with the random process.

Prediction for an autoregressive process: Suppose that the random
process {Xn} is an Mth order AR process, so that

Xn − a1Xn−1 − ...− aMXn−M = fn,

where {fn} is white noise independent of the {Xn}.

Exercise 5: Use our earlier discussion of the relationship between the au-
tocorrelation values rx(k) and the coefficients am to show that the best
linear predictor for the random variable Xn in terms of the values of
Xn−1, ..., Xn−M is

X̂n = a1Xn−1 + ...+ aMXn−M

and the mean squared error is

E(|X̂n −Xn|2) = var (fn).

In fact, it can be shown that, because the process is an Mth order AR
process, this is the best linear predictor of Xn in terms of the entire history
of the process.



Chapter 41

Best Linear Unbiased

Estimation

Detection is often like finding a needle in a haystack. One way to find
the needle is to bring in some cows and have them eat the hay and leave
the needle. Of course they would not be ordinary cows; they would be
well trained to distinguish hay from needles. Because hay may vary in its
length, shape, flavor, color, smell and so on, the cows need to learn what
hay is like on average, with this statistical description broad enough to
include almost any hay they are likely to encounter, but not so broad as
to include needles. The more a needle looks, tastes or smells like hay the
harder it is for the cows. The cows are not perfect. They may eat a needle
now and then; we call this a false negative. They may fail to eat some hay,
thinking it a needle; this is a false positive.

In most signal and image processing applications the measured data
includes (or may include) a signal component we want and unwanted com-
ponents called noise. Estimation involves determining the precise nature
and strength of the signal component; deciding if that strength is zero or
not is detection.

Noise often appears as an additive term, which we then try to remove. If
we knew precisely the noisy part added to each data value we would simply
subtract it; of course, we never have such information. How then do we
remove something when we don’t know what it is? Statistics provides a
way out.

The basic idea in statistics is to use procedures that perform well on
average, when applied to a class of problems. The procedures are built
using properties of that class, usually involving probabilistic notions, and
are evaluated by examining how they would have performed had they been
applied to every problem in the class. To use such methods to remove
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additive noise we need a description of the class of noises we expect to
encounter, not specific values of the noise component in any one particular
instance. We also need some idea about what signal components look like.
In this chapter we discuss solving this noise removal problem using the best
linear unbiased estimation (BLUE) . We begin with the simplest case and
then proceed to discuss increasingly complex scenarios.

The simplest problem:

Suppose our data is zj = c + vj , for j = 1, ..., J , where c is an unknown
constant to be estimated and the vj are additive noise. We assume that
E(vj) = 0, E(vjvk) = 0, for j 6= k and E(|vj |2) = σ2

j . So the additive
noises are assumed to have mean zero and to be independent (or at least
uncorrelated). In order to estimate c we adopt the following rules:

a. The estimate ĉ is linear in the data z = (z1, ..., zJ)T ; that is, ĉ = k†z,
for some vector k = (k1, ..., kJ)T .

b. The estimate is unbiased; that is E(ĉ) = c. This means
∑J
j=1 kj = 1.

c. The estimate is best in the sense that it minimizes the expected error
squared; that is, E(|ĉ− c|2) is minimized.

The resulting vector k is calculated to be

ki = σ−2
i /(

J
∑

j=1

σ−2
j )

and the BLUE estimator of c is then

ĉ =
∑J

i=1
ziσ

−2
i /(

∑J

j=1
σ−2
j ).

The general case of the BLUE:

Suppose now that our data vector is z = Hx+v. Here x is a random vector
whose value is to be estimated, the random vector v is additive noise whose
mean is E(v) = 0 and whose known covariance matrix is Q = E(vv†), not
necessarily diagonal, and the known matrix H is J by N , with J > N .
Now we seek an estimate of the vector x. The rules we use are now

a. The estimate x̂ must have the form x̂ = K†z, where the matrix K is to
be determined.

b. The estimate is unbiased; that is, E(x̂) = E(x).
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c. The K is determined as the minimizer of the expected squared error;
that is, once again we minimize E(|x̂ − x|2).

Exercise 1: Show that

E(|x̂ − x|2) = traceK†QK.

Hints: Write the left side as

E(trace ((x̂ − x)(x̂ − x)†)).

Also use the fact that the trace and expected value operations commute.

Exercise 2: Show that for the estimator to be unbiased we need K†H = I,
the identity matrix.

The problem then is to minimize trace K†QK subject to the constraint
equation K†H = I. We solve this problem using a technique known as
prewhitening.

Since the noise covariance matrix Q is Hermitian and nonnegative def-
inite, we have Q = UDU†, where the columns of U are the (mutually
orthogonal) eigenvectors of Q and D is a diagonal matrix whose diago-
nal entries are the (necessarily nonnegative) eigenvalues of Q; therefore,
U†U = I. We call C = UD1/2U† the Hermitian square root of Q, since
C† = C and C2 = Q. We assume that Q is invertible, so that C is also.
Given the system of equations

z = Hx + v,

as above, we obtain a new system

y = Gx + w

by multiplying both sides by C−1 = Q−1/2; here G = C−1H and w =
C−1v. The new noise correlation matrix is

E(ww†) = C−1QC−1 = I,

so the new noise is white. For this reason the step of multiplying by C−1

is called prewhitening.
With J = CK and M = C−1H we have

K†QK = J†J

and
K†H = J†M.
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Our problem then is to minimize trace J†J , subject to J†M = I.
Let L = L† = (M†M)−1 and let f(J) be the function

f(J) = trace[(J† − L†M†)(J −ML)].

The minimum value of f(J) is zero, which occurs when J = ML. Note
that this choice for J has the property J†M = I. So minimizing f(J)
is equivalent to minimizing f(J) subject to the constraint J†M = I and
both problems have the solution J = ML. But minimizing f(J) subject to
J†M = I is equivalent to minimizing trace J†J subject to J†M = I, which
is our original problem. Therefore the optimal choice for J is J = ML.
Consequently the optimal choice for K is

K = Q−1HL = Q−1H(H†Q−1H)−1.

and the BLUE estimate of x is

xBLUE = x̂ = K†z = (H†Q−1H)−1H†Q−1z.

The simplest case can be obtained from this more general formula by taking
N = 1, H = (1, 1, ..., 1)T and x = c.

Note that if the noise is white, that is, Q = σ2I, then x̂ = (H†H)−1H†z,
which is the least squares solution of the equation z = Hx. The effect of
requiring that the estimate be unbiased is that, in this case, we simply
ignore the presence of the noise and calculate the least squares solution of
the noise-free equation z = Hx.

The BLUE estimator involves nested inversion, making it difficult to
calculate, especially for large matrices. In the exercise that follows we
discover an approximation of the BLUE that is easier to calculate.

Exercise 3: Show that for ε > 0 we have

(H†Q−1H + εI)−1H†Q−1 = H†(HH† + εQ)−1. (41.1)

Hint: Use the identity

H†Q−1(HH† + εQ) = (H†Q−1H + εI)H†.

It follows from the identity (41.1) that

xBLUE = lim
ε→0

H†(HH† + εQ)−1z. (41.2)

Therefore we can get an approximation of the BLUE estimate by selecting
ε > 0 near zero, solving the system of linear equations

(HH† + εQ)a = z

for a and taking x = H†a.
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The BLUE with a prior estimate

In Kalman filtering we have the situation in which we want to estimate
the random vector x given measurements z = Hx + v, but also given a
prior estimate y of x. It is the case there that E(y) = E(x), so we write
y = x + w, with w independent of both x and v and E(w) = 0. The
covariance matrix for w we denote by E(ww†) = R. We now require that
the estimate x̂ be linear in both z and y; that is, the estimate has the form

x̂ = C†z +D†y,

for matrices C and D to be determined.
The approach is to apply the BLUE to the combined system of linear

equations

z = Hx + v,

y = x + w.

In matrix language this combined system becomes u = Jx+n, with uT =
[zT yT ], JT = [HT IT ] and nT = [vT wT ]. The noise covariance matrix
becomes

P =

[

Q 0
0 R

]

.

The BLUE estimate is K†u, with K†J = I. Minimizing the variance, we
find that the optimal K† is

K† = (J†P−1J)−1J†P−1.

The optimal estimate is then

x̂ = (H†Q−1H +R−1)−1(H†Q−1z +R−1y).

Therefore

C† = (H†Q−1H +R−1)−1H†Q−1

and

D† = (H†Q−1H +R−1)−1R−1.

Using the matrix identities in equations (33.2) and (33.3) we can rewrite
this estimate in the more useful form

x̂ = y +G(z −Hy),

for

G = RH†(Q+HRH†)−1. (41.3)
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The covariance matrix of the optimal estimator is K†PK, which can be
written as

K†PK = (R−1 +H†Q−1H)−1 = (I −GH)R.

In the context of the Kalman filter R is the covariance of the prior estimate
of the current state, G is the Kalman gain matrix and K†PK is the pos-
terior covariance of the current state. The algorithm proceeds recursively
from one state to the next in time.

Adaptive BLUE

We have assumed so far that we know the covariance matrix Q corre-
sponding to the measurement noise. If we do not, then we may attempt
to estimate Q from the measurements themselves; such methods are called
noise-adaptive. To illustrate, let the innovations vector be e = z − Hy.
Then the covariance matrix of e is S = HRH† + Q. Having obtained an
estimate Ŝ of S from the data, we use Ŝ−HRH† in place of Q in equation
(41.3).

In this chapter we have focused on the filtering problem: given the data
vector z, estimate x, assuming that z consists of noisy measurements of
Hx; that is, z = Hx + v. An important extension of this problem is that
of stochastic prediction. In a later chapter we discuss the Kalman filter
method for solving this more general problem.



Chapter 42

The BLUE and the Least

Squares Estimators

As we saw in the previous chapter, the best linear unbiased estimate of x,
given the observed vector z = Hx + v, is

xBLUE = (H†Q−1H)−1H†Q−1z, (42.1)

where Q is the invertible covariance matrix of the mean zero noise vector
v and H is a J by N matrix with J ≥ N and H†H invertible. Even if we
know Q exactly, the double inversion in equation (42.1) makes it difficult
to calculate the BLUE estimate, especially for large vectors z. It is often
the case in practice that we do not know Q precisely and must estimate
or model it. Because good approximations of Q do not necessarily lead
to good approximations of Q−1, the calculation of the BLUE is further
complicated. For these reasons one may decide to use the least squares
estimate

xLS = (H†H)−1H†z (42.2)

instead. We are therefore led to consider when the two estimation methods
produce the same answers; that is, when do we have

(H†H)−1H† = (H†Q−1H)−1H†Q−1. (42.3)

In this chapter we state and prove a theorem that answers this question.
The proof relies on the results of several exercises that involve basic facts
from linear algebra.

A little linear algebra: We begin with some definitions. Let S be a sub-
space of finite-dimensional Euclidean space RJ and Q a J by J Hermitian
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matrix. We denote by Q(S) the set

Q(S) = {t|there exists s ∈ S with t = Qs},

and by Q−1(S) the set

Q−1(S) = {u|Qu ∈ S}.

Note that the set Q−1(S) is defined whether or not Q is invertible.
We denote by S⊥ the set of vectors u that are orthogonal to every

member of S; that is,

S⊥ = {u|u†s = 0, for every s ∈ S}.

Let H be a J by N matrix. Then CS(H), the column space of H, is the
subspace of RJ consisting of all the linear combinations of the columns
of H. The null space of H†, denoted NS(H†), is the subspace of RJ

containing all the vectors w for which H†w = 0.

Exercise 1: Show that CS(H)⊥ = NS(H†).

Hint: If v ∈ CS(H)⊥, then v†Hx = 0 for all x, including x = H†v.

Exercise 2: Show that CS(H) ∩NS(H†) = {0}.

Hint: If y = Hx ∈ NS(H†) consider ||y||2 = y†y.

Exercise 3: Let S be any subspace of RJ . Show that if Q is invertible
and Q(S) = S then Q−1(S) = S.

Hint: If Qt = Qs then t = s.

Exercise 4: Let Q be Hermitian. Show that Q(S)⊥ = Q−1(S⊥) for every
subspace S. If Q is also invertible then Q−1(S)⊥ = Q(S⊥). Find an
example of a non-invertible Q for which Q−1(S)⊥ and Q(S⊥) are different.

We assume, for the remainder of this chapter, that Q is Hermitian and
invertible and that the matrix H†H is invertible. Note that the matrix
H†Q−1H need not be invertible under these assumptions. We shall denote
by S an arbitrary subspace of RJ .

Exercise 5: Show that Q(S) = S if and only if Q(S⊥) = S⊥.

Hint: Use Exercise 4.
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Exercise 6: Show that ifQ(CS(H)) = CS(H) thenH†Q−1H is invertible.

Hint: Show that H†Q−1Hx = 0 if and only if x = 0. Recall that
Q−1Hx ∈ CS(H), by Exercise 4. Then use Exercise 2.

When are the BLUE and the LS estimator the same?
We are looking for conditions on Q and H that imply equation (42.3),

which we rewrite as

H† = (H†Q−1H)(H†H)−1H†Q (42.4)

or
H†Tx = 0

for all x, where
T = I −Q−1H(H†H)−1H†Q.

In other words, we want Tx ∈ NS(H†) for all x. The theorem is the
following:

Theorem 42.1 We have Tx ∈ NS(H†) for all x if and only if Q(CS(H)) =
CS(H).

An equivalent form of this theorem was proven by Anderson in [2]; he
attributes a portion of the proof to Magness and McQuire [139]. The proof
we give here is due to Kheifets [126] and is much simpler than Anderson’s
proof. The proof of the theorem is simplified somewhat by first establishing
the result in the next exercise.

Exercise 7: Show that if equation (42.4) holds then the matrix H†Q−1H
is invertible.

Hints: Recall that we have assumed that CS(H†) = RJ when we assumed
thatH†H is invertible. From equation (42.4) it follows that CS(H†Q−1H) =
RJ .

The proof of the theorem: Assume first that Q(CS(H)) = CS(H),
which, as we now know, also implies Q(NS(H†)) = NS(H†), as well as
Q−1(CS(H)) = CS(H), Q−1(NS(H†)) = NS(H†) and the invertibility of
the matrix H†Q−1H. Every x ∈ RJ has the form x = Ha + w, for some
a and w ∈ NS(H†). We show that Tx = w, so that Tx ∈ NS(H†) for all
x. We have

Tx = THa + Tw =

x −Q−1H(H†H)−1H†QHa −Q−1H(H†H)−1H†Qw.
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We know that QHa = Hb for some b, so that Ha = Q−1Hb. We also
know that Qw = v ∈ NS(H†), so that w = Q−1v. Then, continuing our
calculations, we have

Tx = x −Q−1Hb − 0 = x −Ha = w,

so Tx ∈ NS(H†).
Conversely, suppose now that Tx ∈ NS(H†) for all x, which, as we

have seen, is equivalent to equation (42.4). We show that Q−1(NS(H†) =
NS(H†). First, let v ∈ Q−1(NS(H†)); we show v ∈ NS(H†). We have

H†v = (H†Q−1H)(H†H)−1H†Qv,

which is zero, since H†Qv = 0. So we have shown that Q−1(NS(H†)) ⊆
NS(H†). To complete the proof we take an arbitrary member v of NS(H†)
and show that v is in Q−1(NS(H†)), that is, Qv ∈ NS(H†). We know
that Qv = Ha + w, for w ∈ NS(H†) and

a = (H†H)−1H†Qv,

so that
Ha = H(H†H)−1H†Qv.

Then, using Exercise 7, we have

Qv = H(H†H)−1H†Qv + w

= H(H†Q−1H)−1H†Q−1Qv + w

= H(H†Q−1H)−1H†v + w = w.

So Qv = w, which is in NS(H†). This completes the proof.

A recursive approach: In array processing and elsewhere it sometimes
happens that the matrixQ is estimated from several measurements {vn, n =
1, ..., N} of the noise vector v as

Q =
1

N

N
∑

n=1

vn(vn)†.

Then the inverses of Q and of H†Q−1H can be obtained recursively, using
the matrix inversion identity

(A+ xx†)−1 =
1

1 + x†A−1x
A−1xx†A−1, (42.5)

which requires that x†A−1x not equal minus one. Since the matrices in-
volved here are nonnegative definite this denominator will always be at least
one. The idea is to define Q0 = εI, for some ε > 0, and, for n = 1, ..., N ,

Qn = Qn−1 + vn(vn)†.



191

ThenQ−1
n can be obtained fromQ−1

n−1 and (H†Q−1
n H)−1 from (H†Q−1

n−1H)−1

using the identity in equation (42.5).

The vector Wiener filter: Instead of using the LS estimator as a sub-
stitute for the BLUE we can approximate the BLUE using equation (41.2).
This approximation of the BLUE is actually an optimal estimator in its
own right, called the vector Wiener filter (VWF). Assume that z = Hx +
v=s + v, with v as above, the signal component s = Hx and x a random
vector with mean zero and covariance matrix E(xx†) = σ2I. We take our
estimate ŝ of the signal s to be linear in z; that is, ŝ = B†z for some matrix
B. We then find the B for which the expected squared error is minimized;
that is, we minimize E(|ŝ − s|2). As we shall see when we consider the
VWF in more detail in a subsequent chapter, the optimal B is

B = σ2(σ2HH† +Q)−1HH†

and so the VWF estimate of x is

xVWF = H†(HH† + σ−2Q)−1z.

We see from this that the ε > 0 in Exercise 8 is the reciprocal of the signal
power in the VWF case; the noise power is the sum of the variances of the
entries of v, which is the trace of Q. The VWF estimate converges to the
BLUE estimate as the signal-to-noise ratio approaches infinity.

Prewhitening: Using its eigenvalue/eigenvector decompositionQ = ULU†

we find that Q has a Hermitian square root C = U
√
LU†. Multiplying both

sides of z = Hx + v by C−1 gives

y = Gx + w (42.6)

for G = C−1H, y = C−1z and w = C−1v. Then E(ww†) = I, so
the system in equation (42.6) has a noise component that is white. For
this system the BLUE and the LS estimate coincide. Therefore, we can
use iterative methods, such as the double ART (DART), to calculate the
BLUE.

Using a norm constraint: The LS estimator is the one for which the
error term ||Hx − z||2 is minimized. If N = J then the LS estimate is an
exact solution, which is not necessarily desirable, since we are assuming
the presence of a noise term v in z. Even when N is smaller than J the LS
estimate may force Hx to be too close to z. Evidence that this is happening
may show up in the norm of xLS being larger than expected. One way to
force the estimation process to take the noise into account is to impose an
additional norm constraint, by minimizing

||Hx − z||2 + ε||x||2,



192CHAPTER 42. THE BLUE AND THE LEAST SQUARES ESTIMATORS

for some small ε > 0. The x obtained in this way is

x = (H†H + εI)−1H†z.

If we apply a norm constraint to the prewhitened equation y = Gx+w we
find that the optimal x is

x = (H†Q−1H + εI)−1H†Q−1z = H†(HH† + εQ)−1z,

which is the approximation of the BLUE given in equation (41.2).



Chapter 43

Kalman Filters

One area in which prediction plays an important role is the tracking of
moving targets, such as ballistic missiles, using radar. The range to the
target, its angle of elevation and its azimuthal angle are all functions of
time governed by linear differential equations. The state vector of the
system at time t might then be a vector with nine components, the three
functions just mentioned, along with their first and second derivatives. In
theory, if we knew the initial state perfectly and our differential equations
model of the physics was perfect, that would be enough to determine the
future states. In practice neither of these is true and we need to assist the
differential equation by taking radar measurements of the state at various
times. The problem then is to estimate the state at time t using both the
measurements taken prior to time t and the estimate based on the physics.

When such tracking is performed digitally the functions of time are re-
placed by discrete sequences. Let the state vector at time k∆t be denoted
by xk, for k an integer and ∆t > 0. Then, with the derivatives in the dif-
ferential equation approximated by divided differences, the physical model
for the evolution of the system in time becomes

xk = Ak−1xk−1 + mk−1.

The matrix Ak−1, which we assume is known, is obtained from the differen-
tial equation, which may have nonconstant coefficients, as well as from the
divided difference approximations to the derivatives. The random vector
sequence mk−1 represents the error in the physical model due to the dis-
cretization and necessary simplification inherent in the original differential
equation itself. We assume that the expected value of mk is zero for each
k. The covariance matrix is E(mkm

†
k) = Mk.

At time k∆t we have the measurements

zk = Hkxk + vk,
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where Hk is a known matrix describing the nature of the linear measure-
ments of the state vector and the random vector vk is the noise in these
measurements. We assume that the mean value of vk is zero for each k.
The covariance matrix is E(vkv

†
k) = Qk. We assume that the initial state

vector x0 is random and independent of the noise sequences.
Given an unbiased estimate x̂k−1 of the state vector xk−1, our prior

estimate of xk based solely on the physics is

yk = Ak−1x̂k−1.

Exercise 1: Show that E(yk − xk) = 0, so the prior estimate of xk is
unbiased. We can then write yk = xk + wk, with E(wk) = 0.

Kalman filtering: The Kalman filter [124], [98], [68] is a recursive algo-
rithm to estimate the state vector xk at time k∆t as a linear combination
of the vectors zk and yk. The estimate x̂k will have the form

x̂k = C†
kzk +D†

kyk, (43.1)

for matrices Ck and Dk to be determined. As we shall see, this estimate
can also be written as

x̂k = yk +Gk(zk −Hkyk), (43.2)

which shows that the estimate involves a prior prediction step, the yk,
followed by a correction step, in which Hkyk is compared to the measured
data vector zk; such estimation methods are sometimes called predictor-
corrector methods.

In our discussion of the BLUE we saw how to incorporate a prior esti-
mate of the vector to be estimated. The trick was to form a larger matrix
equation and then to apply the BLUE to that system. The Kalman filter
does just that.

The correction step in the Kalman filter uses the BLUE to solve the
combined linear system

zk = Hkxk + vk

and
yk = xk + wk.

The covariance matrix of x̂k−1 − xk−1 is denoted Pk−1 and we let Qk =
E(wkw

†
k). The covariance matrix of yk − xk is

cov(yk − xk) = Rk = Mk−1 +Ak−1Pk−1A
†
k−1.

It follows from our earlier discussion of the BLUE that the estimate of xk
is

x̂k = yk +Gk(zk −Hyk),
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with
Gk = RkH

†
k(Qk +HkRkH

†
k)

−1.

Then the covariance matrix of x̂k − xk is

Pk = (I −GkHk)Rk.

The recursive procedure is to go from Pk−1 and Mk−1 to Rk, then to Gk,
from which x̂k is formed, and finally to Pk, which, along with the known
matrix Mk, provides the input to the next step. The time-consuming part
of this recursive algorithm is the matrix inversion in the calculation of Gk.
Simpler versions of the algorithm are based on the assumption that the
matrices Qk are diagonal, or on the convergence of the matrices Gk to a
limiting matrix G [68].

There are many variants of the Kalman filter, corresponding to varia-
tions in the physical model, as well as in the statistical assumptions. The
differential equation may be nonlinear, so that the matrices Ak depend on
xk. The system noise sequence {wk} and the measurement noise sequence
{vk} may be correlated. For computational convenience the various func-
tions that describe the state may be treated separately. The model may
include known external inputs to drive the differential system, as in the
tracking of spacecraft capable of firing booster rockets. Finally, the noise
covariance matrices may not be known a priori and adaptive filtering may
be needed. We discuss this last issue briefly in the next section.

Adaptive Kalman filtering: As in [68] we consider only the case in
which the covariance matrix Qk of the measurement noise vk is unknown.
As we saw in the discussion of adaptive BLUE, the covariance matrix of
the innovations vector ek = zk −Hkyk is

Sk = HkRkH
†
k +Qk.

Once we have an estimate for Sk, we estimate Qk using

Q̂k = Ŝk −HkRkH
†
k.

We might assume that Sk is independent of k and estimate Sk = S using
past and present innovations; for example, we could use

Ŝ =
1

k − 1

k
∑

j=1

(zj −Hjyj)(zj −Hjyj)
†.
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Chapter 44

The Vector Wiener Filter

The vector Wiener filter (VWF) provides another method for estimating
the vector x given noisy measurements z, where

z = Hx + v,

with x and v independent random vectors and H a known matrix. We
shall assume throughout this chapter that E(v) = 0 and let Q = E(vv†).

It is common to formulate the VWF in the context of filtering a signal
vector s from signal plus noise. The data is the vector

z = s + v

and we want to estimate s. Each entry of our estimate of the vector s
will be a linear combination of the data values; that is, our estimate is
ŝ = B†z for some matrix B to be determined. This B will be called the
vector Wiener filter. To extract the signal from the noise we must know
something about possible signals and possible noises. We consider several
stages of increasing complexity and correspondence with reality.

Suppose, initially, that all signals must have the form s = au, where a is
an unknown scalar and u is a known vector. Suppose that all noises must
have the form v = bw, where b is an unknown scalar and w is a known
vector. Then to estimate s we must find a. So long as J ≥ 2 we should be
able to solve for a and b. We form the two equations

u†z = au†u + bu†w

and
w†z = aw†u + bw†w.

This system of two equations in two unknowns will have a unique solu-
tion unless u and w are proportional, in which case we cannot expect to
distinguish signal from noise.
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We move now to a somewhat more complicated model. Suppose now
that all signals must have the form

s =

N
∑

n=1

anu
n,

where the an are unknown scalars and the un are known vectors. Suppose
that all noises must have the form

v =

M
∑

m=1

bmwm,

where the bm are unknown scalars and wm are known vectors. Then to
estimate s we must find the an. So long as J ≥ N+M we should be able to
solve for the unique an and bm. However, we usually do not know a great
deal about the signal and the noise, so we find ourselves in the situation
in which the N and M are large. Let U be the J by N matrix whose nth
column is un and W the J by M matrix whose mth column is wm. Let V
be the J by N + M matrix whose first N columns contain U and whose
last M columns contain W ; so V = [U W ]. Let c be the N + M by 1
column vector whose first N entries are the an and whose last M entries
are the bm. We want to solve z = V c. But this system of linear equations
has too many unknowns when N +M > J , so we seek the minimum norm
solution. In closed form this solution is

ĉ = V †(V V †)−1z.

The matrix V V † = (UU† + WW †) involves the signal correlation matrix
UU† and the noise correlation matrix WW †. Consider UU†. The matrix
UU† is J by J and the (i, j) entry of UU† is given by

UU†
ij =

N
∑

n=1

uni u
n
j ,

so the matrix 1
NUU

† has for its entries the average, over all the n = 1, ..., N ,
of the product of the ith and jth entries of the vectors un. Therefore,
1
NUU

† is statistical information about the signal; it tells us how these
products look, on average, over all members of the family {un}, the en-
semble, to use the statistical word.

To pass to a more formal statistical framework, we let the coefficient
vectors a = (a1, a2, ..., aN )T and b = (b1, b2, ..., bM )T be independent ran-
dom white noise vectors, both with mean zero and covariance matrices
E(aa†) = I and E(bb†) = I. Then

UU† = E(ss†) = Rs
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and
WW † = E(vv†) = Q = Rv.

The estimate of s is the result of applying the vector Wiener filter to the
vector z and is given by

ŝ = UU†(UU† +WW †)−1z.

Exercise 1: Apply the vector Wiener filter to the simplest problem dis-
cussed earlier; here let N = 1. It will help to use the matrix inversion
identity

(Q+ uu†)−1 = Q−1 − (1 + u†Q−1u)−1Q−1uu†Q−1. (44.1)

The VWF and the BLUE: To apply the VWF to the problem considered
in the discussion of the BLUE let the vector s be Hx. We assume, in
addition, that the vector x is a white noise vector; that is, E(xx†) = σ2I.
Then Rs = σ2HH†.

In the VWF approach we estimate s using

ŝ = B†z,

where the matrix B is chosen so as to minimize the mean squared error,
E|ŝ − s|2. This is equivalent to minimizing

traceE((Bz − s)(Bz − s)†).

Expanding the matrix products and using the definitions above, we see
that we must minimize

trace (B†(Rs +Rv)B −RsB −B†Rs +Rs).

Differentiating with respect to the matrix B using equations (34.1) and
(34.2), we find

(Rs +Rv)B −Rs = 0,

so that
B = (Rs +Rv)

−1Rs.

Our estimate of the signal component is then

ŝ = Rs(Rs +Rv)
−1z.

With s = Hx, our estimate of s is

ŝ = σ2HH†(σ2HH† +Q)−1z

and the VWF estimate of x is

x̂ = σ2H†(σ2HH† +Q)−1z.
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How does this estimate relate to the one we got from the BLUE?
The BLUE estimate of x is

x̂ = (H†Q−1H)−1H†Q−1z.

From the matrix identity in equation (33.3) we know that

(H†Q−1H + σ−2I)−1H†Q−1 = σ2H†(σ2HH† +Q)−1.

Therefore the VWF estimate of x is

x̂ = (H†Q−1H + σ−2I)−1H†Q−1z.

Note that the BLUE estimate is unbiased and unaffected by changes in
the signal strength or the noise strength. In contrast, the VWF is not
unbiased and does depend on the signal-to-noise ratio; that is, it depends
on the ratio σ2/trace (Q). The BLUE estimate is the limiting case of the
VWF estimate, as the signal-to-noise ratio goes to infinity.

The BLUE estimates s = Hx by first finding the BLUE estimate of x
and then multiplying it by H to get the estimate of the signal s.

Exercise 2: Show that the mean squared error in the estimation of s is

E(|ŝ − s|2) = trace (H(H†Q−1H)−1H†).

The VWF finds the linear estimate of s = Hx that minimizes the mean
squared error E(|ŝ − s|2). Consequently, the mean squared error in the
VWF is less than that in the BLUE.

Exercise 3: Assume that E(xx†) = σ2I. Show that the mean squared
error for the VWF estimate is

E(|ŝ − s|2) = trace (H(H†Q−1H + σ−2I)−1H†).

The functional Wiener filter The Wiener filter is often presented in
the context of random functions of, say, time. In this model signal is s(t)
and noise is q(t), where these functions of time are viewed as random func-
tions (stochastic processes). The data is taken to be z(t), a function of
t, so that the matrices UU† and WW † are now infinite matrices; the dis-
crete index j = 1, ..., J is now replaced by the continuous index variable
t. Instead of the finite family {un, n = 1..., N}, we now have an infinite
family of functions u(t) in U . The entries of UU† are essentially the av-
erage values of the products u(t1)u(t2) over all the members of U . It is
often assumed that this average of products is a function not of t1 and
t2 separately, but only of their difference t1 − t2; this is called stationar-
ity. So, aver{u(t1)u(t2)} = rs(t1 − t2) comes from a function rs(τ) of a
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single variable. The Fourier transform of rs(τ) is Rs(ω), the signal power
spectrum. The matrix UU† is then an infinite Toeplitz matrix, constant
on each diagonal. The Wiener filtering can actually be achieved by taking
Fourier transforms and multiplying and dividing by power spectra, instead
of inverting infinite matrices. It is also common to discretize the time vari-
able and to consider the Wiener filter operating on infinite sequences, as
we see in the next chapter.
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Chapter 45

Wiener Filter

Approximation

As we saw in the previous chapter, when the data is a finite vector composed
of signal plus noise the vector Wiener filter can be used to estimate the
signal component, provided we know something about the possible signals
and possible noises. In theoretical discussion of filtering signal from signal
plus noise it is traditional to assume that both components are doubly
infinite sequences of random variables. In this case the Wiener filter is a
convolution filter that operates on the input signal plus noise sequence to
produce the output estimate of the signal-only sequence. The derivation
of the Wiener filter is in terms of the autocorrelation sequences of the two
components, as well as their respective power spectra.

Suppose now that the discrete stationary random process to be filtered
is the doubly infinite sequence {zn = sn + qn}∞

n=−∞, where {sn} is the
signal component with autocorrelation function rs(k) = E(sn+ksn) and
power spectrum Rs(ω) defined for ω in the interval [−π, π], {qn} is the noise
component with autocorrelation function rq(k) and power spectrum Rq(ω)
defined for ω in [−π, π]. We assume that for each n the random variables
sn and qn have mean zero and that the signal and noise are independent
of one another. Then the autocorrelation function for the signal plus noise
sequence {zn} is

rz(n) = rs(n) + rq(n)

for all n and
Rz(ω) = Rs(ω) +Rq(ω).

is the signal plus noise power spectrum.
Let h = {hk}∞

k=−∞ be a linear filter with transfer function

H(ω) =
∑∞

k=−∞
hke

ikω,
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for ω in [−π, π]. Given the sequence {zn} as input to this filter, the output
is the sequence

yn =
∑∞

k=−∞
hkzn−k. (45.1)

The goal of Wiener filtering is to select the filter h so that the output se-
quence yn approximates the signal sn sequence as well as possible. Specifi-
cally, we seek h so as to minimize the expected squared error, E(|yn−sn|2),
which, because of stationarity, is independent of n. We have

E(|yn|2) =
∑∞

k=−∞
hk(
∑∞

j=−∞
hj(rs(j − k) + rq(j − k)))

=
∑∞

k=−∞
hk(rz ∗ h)k

which, by the Parseval equation, equals

1

2π

∫

H(ω)Rz(ω)H(ω)dω =
1

2π

∫

|H(ω)|2Rz(ω)dω.

Similarly,

E(snyn) =
∑∞

j=−∞
hjrs(j)

which equals
1

2π

∫

Rs(ω)H(ω)dω,

and

E(|sn|2) =
1

2π

∫

Rs(ω)dω.

Therefore,

E(|yn − sn|2) =
1

2π

∫

|H(ω)|2Rz(ω)dω − 1

2π

∫

Rs(ω)H(ω)dω

− 1

2π

∫

Rs(ω)H(ω)dω +
1

2π

∫

Rs(ω)dω.

As we shall see shortly, minimizing E(|yn − sn|2) with respect to the func-
tion H(ω) leads to the equation

Rz(ω)H(ω) = Rs(ω),

so that the transfer function of the optimal filter is

H(ω) = Rs(ω)/Rz(ω).

The Wiener filter is then the sequence {hk} of the Fourier coefficients of
this function H(ω).
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To prove that this choice of H(ω) minimizes E(|yn− sn|2) we note that

|H(ω)|2Rz(ω) −Rs(ω)H(ω) −Rs(ω)H(ω) +Rs(ω)

= |H(ω) −Rs(ω)/Rz(ω)|2 −Rs(ω) +Rs(ω)2/Rz(ω).

Only the first term involves the function H(ω).
Since H(ω) is a nonnegative function of ω, therefore real-valued, its

Fourier coefficients hk will be conjugate symmetric, that is, h−k = hk.
This poses a problem when the random process zn is a discrete time series,
with zn denoting the measurement recorded at time n. From the equation
(45.1) we see that to produce the output yn corresponding to time n we
need the input for every time, past and future. To remedy this we can
obtain the best causal approximation of the Wiener filter h.

A filter g = {gk}∞
k=−∞ is said to be causal if gk = 0 for k < 0; this

means that given the input sequence {zn}, the output

wn =
∑∞

k=−∞
gkzn−k =

∑∞

k=0
gkzn−k

requires only values of zm up to m = n. To obtain the causal filter g
that best approximates the Wiener filter, we find the coeffcients gk that
minimize the quantity E(|yn − wn|2), or, equivalently,

∫ π

−π
|H(ω) −

∑+∞

k=0
gke

ikω|2Rz(ω)dω. (45.2)

The orthogonality principle tells us that the optimal coefficients must sat-
isfy the equations

rs(m) =
∑+∞

k=0
gkrz(m− k), (45.3)

for all m. These are the Wiener-Hopf equations [152].
Even having a causal filter does not completely solve the problem, since

we would have to record and store the infinite past. Instead, we can decide
to use a filter f = {fk}∞

k=−∞ for which fk = 0 unless −K ≤ k ≤ L for
some positive integers K and L. This means we must store L values and
wait until time n+K to obtain the output for time n. Such a linear filter
is a finite memory, finite delay filter, also called a finite impulse response
(FIR) filter. Given the input sequence {zn} the output of the FIR filter is

vn =
∑L

k=−K
fkzn−k.

To obtain such an FIR filter f that best approximates the Wiener filter,
we find the coefficients fk that minimize the quantity E(|yn − vn|2), or,
equivalently,

∫ π

−π
|H(ω) −

∑L

k=−K
fke

ikω|2Rz(ω)dω. (45.4)



206 CHAPTER 45. WIENER FILTER APPROXIMATION

The orthogonality principle tells us that the optimal coefficients must sat-
isfy the equations

rs(m) =
∑L

k=−K
fkrz(m− k), (45.5)

for −K ≤ m ≤ L.
In [44] it was pointed out that the linear equations that arise in Wiener

filter approximation also occur in image reconstruction from projections,
with the image to be reconstructed playing the role of the power spectrum
to be approximated. The methods of Wiener filter approximation were
then used to derive linear and nonlinear image reconstruction procedures.
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Adaptive Wiener Filters

Once again, we consider a stationary random process zn = sn + vn with
autocorrelation function E(znzn−m) = rz(m) = rs(m) + rv(m). The finite
causal Wiener filter (FCWF) f = (f0, f1, ..., fL)T is convolved with {zn} to
produce an estimate of sn given by

ŝn =

L
∑

k=0

fkzn−k.

With y†
n = (zn, zn−1, ..., zn−L) we can write ŝn = y†

nf . The FCWF f
minimizes the expected squared error

J(f) = E(|sn − ŝn|2)

and is obtained as the solution of the equations

rs(m) =
∑L

k=0
fkrz(m− k),

for 0 ≤ m ≤ L. Therefore, to use the FCWF we need the values rs(m) and
rz(m− k) for m and k in the set {0, 1, ..., L}. When these autocorrelation
values are not known we can use adaptive methods to approximate the
FCWF.

An adaptive least mean square approach: We assume now that we
have z0, z1, ..., zN and p0, p1, ..., pN , where pn is a prior estimate of sn, but
that we do not know the correlation functions rz and rs.

The gradient of the function J(f) is

∇J(f) = Rzzf − rs,
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where Rzz is the square matrix with entries rz(m−n) and rs is the vector
with entries rs(m). An iterative gradient descent method for solving the
system of equations Rzzf = rs is

fτ = fτ−1 − µτ∇J(fτ−1),

for some step-size parameters µτ > 0.
The adaptive least mean square (LMS) approach [55] replaces the gra-

dient of J(f) with an approximation of the gradient of the function G(f) =
|sn − ŝn|2, which is −2(sn − ŝn)yn. Since we do not know sn we replace
that term with the estimate pn. The iterative step of the LMS method is

fτ = fτ−1 + µτ (pτ − y†
τ fτ−1)yτ , (46.1)

for L ≤ τ ≤ N . Notice that it is the approximate gradient of the function
|sτ − ŝτ |2 that is used at this step, in order to involve all the data z0, ..., zN
as we iterate from τ = L to τ = N . We illustrate the use of this method
in adaptive interference cancellation.

Adaptive interference cancellation: Adaptive interference cancellation
(AIC) [181] is used to suppress a dominant noise component vn in the
discrete sequence zn = sn + vn. It is assumed that we have available a
good estimate qn of vn. The main idea is to switch the roles of signal and
noise in the adaptive LMS method and design a filter to estimate vn. Once
we have that estimate, we subtract it from zn to get our estimate of sn.

In the role of zn we use

qn = vn + εn,

where εn denotes a low level error component. In the role of pn we take
zn, which is approximately vn, since the signal sn is much lower than the
noise vn. Then y†

n = (qn, qn−1, ..., qn−L). The iterative step used to find
the filter f is then

fτ = fτ−1 + µτ (zτ − y†
τ fτ−1)yτ ,

for L ≤ τ ≤ N . When the iterative process has converged to f we take as
our estimate of sn

ŝn = zn −
L
∑

k=0

fkqn−k.

It has been suggested that this procedure be used in computerized tomog-
raphy to correct artifacts due to patient motion [85].

Recursive least squares: An alternative to the LMS method is to find
the least squares solution of the system of N − L+ 1 linear equations

pn =

L
∑

k=0

fkzn−k,
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for L ≤ n ≤ N . The recursive least squares (RLS) method is a recursive
approach to solving this system.

For L ≤ τ ≤ N let Zτ be the matrix whose rows are y†
n for n = L, ..., τ ,

pTτ = (pL, pL+1, ..., pτ ) and Qτ = Z†
τZτ . The least squares solution we seek

is
f = Q−1

N Z†
NpN .

Exercise 1: Show that Qτ = Qτ−1 + yτy
†
τ , for L < τ ≤ N .

Exercise 2: Use the matrix inversion identity in equation (44.1) to write
Q−1
τ in terms of Q−1

τ−1.

Exercise 3: Using the previous exercise, show that the desired least
squares solution f is f = fN , where, for L ≤ τ ≤ N we let

fτ = fτ−1 + (
pτ − y†

τ fτ−1

1 + y†
τQ

−1
τ−1yτ

)Q−1
τ−1yτ .

Comparing this iterative step with that given by equation (46.1) we see that
the former gives an explicit value for µτ and uses Q−1

τ−1yτ instead of yτ
as the direction vector for the iterative step. The RMS iteration produces
a more accurate estimate of the FCWF than does the LMS method, but
requires more computation.
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Chapter 47

Classical and Modern

Methods

In [55] Candy locates the beginning of the classical period of spectral es-
timation in Schuster’s use of Fourier techniques in 1898 to analyze sun
spot data [164]. The role of Fourier techniques grew with the discovery, by
Wiener in the USA and Khintchine in the USSR, of the relation between
the power spectrum and the autocorrelation function. Much of Wiener’s
important work on control and communication remained classified and be-
came known only with the publication of his classic text Time Series in
1949 [182]. The book by Blackman and Tukey, Measurement of Power
Spectra [15], provides perhaps the best description of the classical meth-
ods. With the discovery of the FFT by Cooley and Tukey in 1965, all the
pieces were in place for the rapid development of this DFT-based approach
to spectral estimation.

Until about the middle of the 1970’s most signal processing depended
almost exclusively on the DFT, as implemented using the FFT. Algorithms
such as the Gerchberg-Papoulis bandlimited extrapolation method were
performed as iterative operations on finite vectors, using the FFT at every
step. Linear filters and related windowing methods involving the FFT
were also used to enhance the resolution of the reconstructed objects. The
proper design of these filters was an area of interest to quite a number of
researchers, John Tukey among them. Then around the end of that decade
interest in entropy maximization began to grow, as researchers began to
wonder if high-resolution methods developed for seismic oil exploration
could be applied successfully in other areas.

John Burg had developed his MEM while working in the oil industry
in the 1960’s. He then went to Stanford as a mature graduate student
and received his doctorate in 1975 for a thesis based largely on his earlier
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work on MEM [27]. This thesis and a handful of earlier presentations at
meetings [25], [26] fueled the interest in entropy.

It was not only the effectiveness of Burg’s techniques that attracted
attention. The classical methods seemed to some to be ad hoc and they
sought a more intellectually satisfying basis for spectral estimation. Clas-
sical methods start with the time series data, say xn, for n = 1, ..., N . In
the direct approach, slightly simplified, the data is windowed, that is, xn
is replaced with xnwn for some choice of constants wn. Then the DFT is
computed, using the FFT, and the magnitude squared of the DFT is the
desired estimate of the power spectrum. In the more indirect approach,
autocorrelation values rx(m) are first estimated, for m = 0, 1, ...,M , where
M is some fraction of the data length N . Then these estimates of rx(m)
are windowed and the DFT calculated, again using the FFT.

What some people objected to was the use of these windows. After
all, the measured data was xn, not xnwn, so why corrupt the data at the
first step? The classical methods produced answers that depended to some
extent on which window function one used; there had to be a better way.
Entropy maximization was the answer to their prayers.

In 1981 the first of several international workshops on entropy maxi-
mization was held at the University of Wyoming, bring together most of
the people working in this area. The books [168] and [169] contain the
papers presented at those workshops. As one can see from reading those
papers, the general theme is that a new day has dawned.

It was soon recognized that maximum entropy methods were closely
related to model-based techniques that had been part of statistical time
series for decades. This realization led to a broader use of autoregressive
(AR) and autoregressive, moving average (ARMA) models for spectral esti-
mation [158], as well as of eigenvector methods, such as Pisarenko’s method
[156]. What Candy describes as the modern approach to spectral estima-
tion is one based on explicit parametric models, in contrast to the classical
non-parametric approach. The book edited by Don Childers [65] is a col-
lection of journal articles that captures the state-of-the-art at the end of
the 1970’s.

In a sense the transition from the classical ways to the modern methods
solved little; the choice of models is as ad hoc as the choice of windows was
before. On the other hand, we do have a wider collection of techniques
from which to choose and we can examine these techniques to see when
they perform well and when they do not. We do not expect one approach
to work in all cases. High-speed computation permits the use of more
complicated parametric models tailored to the physics of a given situation.

At the end of the day our estimates are going to be used for some
purpose. In medical imaging a doctor is going to make a diagnosis based in
part on what the image reveals. How good the image needs to be depends
on the purpose for which it is made. Judging the quality of a reconstructed
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image based on somewhat subjective criteria such as how useful it is to a
doctor is a problem that is not yet solved. Human observer studies are
one way to obtain this non-mathematical evaluation of reconstruction and
estimation methods. The next step beyond that is to develop computer
software that judges the images or spectra as a human would.
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Chapter 48

Entropy Maximization

The problem of estimating the nonnegative function R(ω), for |ω| ≤ π,
from the finitely many Fourier transform values

r(n) =

∫ π

−π
R(ω) exp(−inω)dω/2π, n = −N, ..., N

is an underdetermined problem, meaning that the data alone is insufficient
to determine a unique answer. In such situations we must select one so-
lution out of the infinitely many that are mathematically possible. The
obvious questions we need to answer are: What criteria do we use in this
selection? How do we find algorithms that meet our chosen criteria? In
this chapter we look at some of the answers people have offered and at one
particular algorithm, Burg’s maximum entropy method (MEM) [25], [26].

These values r(n) are autocorrelation function values associated with a
random process having R(ω) for its power spectrum. In many applications,
such as seismic remote sensing, these autocorrelation values are estimates
obtained from relatively few samples of the underlying random process, so
that N is not large. The DFT estimate,

RDFT (ω) =

N
∑

n=−N
r(n) exp(inω),

is real-valued and consistent with the data, but is not necessarily nonnega-
tive. For small values of N the DFT may not be sufficiently resolving to be
useful. This suggests that one criterion we can use to perform our selection
process is to require that the method provide better resolution than the
DFT for relatively small values of N , when reconstructing power spectra
that consist mainly of delta functions.
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A brief side trip to philosophy:

Generally speaking, we would expect to do a better job of estimating a
function from data pertaining to that function if we also possess additional
prior information about the function to be estimated and are able to em-
ploy estimation techniques that make use of that additional information.
There is the danger, however, that we may end up with an answer that
is influenced more by our prior guesses than by the actual measured data.
Striking a balance between including prior knowledge and letting the data
speak for itself is a noble goal; how to achieve that is the question. At this
stage, we begin to suspect that the problem is as much philosophical as it
is mathematical.

We are essentially looking for principles of induction that enable us to
extrapolate from what we have measured to what we have not. Unwilling to
turn the problem over entirely to the philosophers, a number of mathemati-
cians and physicists have sought mathematical solutions to this inference
problem, framed in terms of what the most likely answer is, or which answer
involves the smallest amount of additional prior information [78]. This is
not, of course, a new issue; it has been argued for centuries with regard to
the use of what we now call Bayesian statistics; objective Bayesians allow
the use of prior information, but only if it is the right prior information.
The interested reader should consult the books [168] and [169], contain-
ing papers by Ed Jaynes, Roy Frieden and others originally presented at
workshops on this topic held in the early 1980’s.

The maximum entropy method is a general approach to such problems
that includes Burg’s algorithm as a particular case. It is argued that by
maximizing entropy we are, in some sense, being maximally noncommittal
about what we do not know and thereby introducing a minimum of prior
knowledge (some would say prior guesswork) into the solution. In the case
of Burg’s MEM a somewhat more mathematical argument is available.

Let {xn}∞
n=−∞ be a stationary random process with autocorrelation

sequence r(m) and power spectrum R(ω), |ω| ≤ π. The prediction problem
is the following: suppose we have measured the values of the process prior
to time n and we want to predict the value of the process at time n.
On average, how much error do we expect to make in predicting xn from
knowledge of the infinite past? The answer, according to Szegö’s theorem
[114], is

exp[

∫ π

−π
logR(ω)dω];

the integral
∫ π

−π
logR(ω)dω

is the Burg entropy of the random process [158]. Processes that are very
predictable have low entropy, while those that are quite unpredictable, or,
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like white noise, completely unpredictable, have high entropy; to make
entropies comparable we assume a fixed value of r(0). Given the data r(n),
|n| ≤ N , Burg’s method selects that power spectrum consistent with these
autocorrelation values that corresponds to the most unpredictable random
process.

Other similar procedures are also based on selection through optimiza-
tion. We have seen the minimum norm approach to finding a solution
to an underdetermined system of linear equations, the minimum expected
squared error approach in statistical filtering and later we shall see the
maximum likelihood method used in detection. We must keep in mind
that, however comforting it may be to know that we are on solid philo-
sophical ground (if such exists) in choosing our selection criteria, if the
method does not work well, we must use something else. As we shall see,
the MEM, like every other reasonable method, works well sometimes and
not so well other times. There is certainly philosophical precedent for con-
sidering the consequences of our choices, as Blaise Pascal’s famous wager
about the existence of God nicely illustrates. As an attentive reader of the
books [168] and [169] will surely note, there is a certain theological tone to
some of the arguments offered in support of entropy maximization. One
group of authors (reference omitted) went so far as to declare that entropy
maximization was what one did if one cared what happened to one’s data.

The objective of Burg’s MEM for estimating a power spectrum is to
seek better resolution by combining nonnegativity and data-consistency in
a single closed-form estimate. The MEM is remarkable in that it is the only
closed-form (that is, noniterative) estimation method that is guaranteed
to produce an estimate that is both nonnegative and consistent with the
autocorrelation samples. Later we shall consider a more general method,
the inverse PDFT (IPDFT), that is both data-consistent and positive in
most cases.

Properties of the sequence {r(n)}:
We begin our discussion with a look at important properties of the sequence
{r(n)}. Because R(ω) ≥ 0, the values r(n) are often called autocorrelation
values.

Since R(ω) ≥ 0, it follows immediately that r(0) ≥ 0. In addition,
r(0) ≥ |r(n)| for all n:

|r(n)| = |
∫ π

−π
R(ω) exp(−inω)dω/2π|

≤
∫ π

−π
R(ω)| exp(−inω)|dω/2π = r(0).

In fact, if r(0) = |r(n)| > 0 for some n > 0, then R is a sum of at most
n + 1 delta functions with nonnegative amplitudes. To see this, suppose
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that r(n) = |r(n)| exp(iθ) = r(0) exp(iθ). Then
∫ π

−π
R(ω)|1 − exp(i(θ + nω))|2dω/2π

=

∫ π

−π
R(ω)(1 − exp(i(θ + nω))(1 − exp(−i(θ + nω))dω/2π

=

∫ π

−π
R(ω)[2 − exp(i(θ + nω)) − exp(−i(θ + nω))]dω/2π

= 2r(0) − exp(iθ)r(n) − exp(−iθ)r(n) = 2r(0) − r(0) − r(0) = 0.

Therefore, R(ω) > 0 only at the values of ω where |1−exp(i(θ+nω))|2 = 0;
that is, only at ω = n−1(2πk − θ) for some integer k. Since |ω| ≤ π there
are only finitely many such k.

This result is important in any discussion of resolution limits. It is
natural to feel that if we have only the Fourier coefficients r(n) for |n| ≤ N
then we have only the low frequency information about the function R(ω).
How is it possible to achieve higher resolution? Notice, however, that
in the case just considered, the infinite sequence of Fourier coefficients is
periodic. Of course, we do not know this a priori, necessarily. The fact
that |r(N)| = r(0) does not, by itself, tell us that R(ω) consists solely of
delta functions and that the sequence of Fourier coefficients is periodic.
But, under the added assumption that R(ω) ≥ 0, it does! When we put
in this prior information about R(ω) we find that the data now tells us
more than it did before. This is a good example of the point made in the
Introduction: To get information out we need to put information in.

In discussing the Burg MEM estimate we shall need to refer to the
concept of minimum phase vectors. We consider that briefly now.

Minimum phase vectors:

We say that the finite column vector with complex entries (a0, a1, ..., aN )T

is a minimum phase vector if the complex polynomial

A(z) = a0 + a1z + ...+ aNz
N

has the property that A(z) = 0 implies that |z| > 1; that is, all roots of
A(z) are outside the unit circle. Consequently, the function B(z) given by
B(z) = 1/A(z) is analytic in a disk centered at the origin and including
the unit circle. Therefore, we can write

B(z) = b0 + b1z + b2z
2 + ...

and taking z = exp(iω), we get

B(exp(iω)) = b0 + b1 exp(iω) + b2 exp(2iω) + ....
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The point here is that B(exp(iω)) is a one-sided trigonometric series, with
only terms corresponding to exp(inω) for nonnegative n.

Burg’s MEM:

The approach is to estimate R(ω) by the function S(ω) > 0 that maximizes
the so-called Burg entropy,

∫ π

−π logS(θ)dθ, subject to the data constraints.
The Euler-Lagrange equation from the calculus of variations allows us

to conclude that S(ω) has the form

S(ω) = 1/H(ω)

for

H(ω) =

N
∑

n=−N
hne

inω > 0.

From the Fejér-Riesz theorem 14.1 we know that H(ω) = |A(eiω)|2 for
minimum phase A(z) as above. As we now show, the coefficients an satisfy
a system of linear equations formed using the data r(n).

Given the data r(n), |n| ≤ N , we form the autocorrelation matrix R
with entries Rmn = r(m − n), for −N ≤ m,n ≤ N . Let δ be the column
vector δ = (1, 0, ..., 0)T . Let a = (a0, a1, ..., aN )T be the solution of the sys-
tem Ra = δ. Then Burg’s MEM estimate is the function S(ω) = RMEM (ω)
given by

RMEM (ω) = a0/|A(exp(iω))|2, |ω| ≤ π.

Once we show that a0 ≥ 0 then it will be obvious that RMEM (ω) ≥ 0. We
also must show that RMEM is data-consistent; that is,

r(n) =

∫ π

−π
RMEM (ω) exp(−inω)dω/2π =, n = −N, ..., N.

Let us write RMEM (ω) as a Fourier series; that is

RMEM (ω) =

+∞
∑

n=−∞
q(n) exp(inω), |ω| ≤ π.

From the form of RMEM (ω) we have

RMEM (ω)A(exp(iω)) = a0B(exp(iω)).

Suppose, as we shall shortly show, that A(z) has all its roots outside the
unit circle and so B(exp(iω)) is a one-sided trigonometric series, with only
terms corresponding to exp(inω) for nonnegative n. Then, multiplying on
the left side of the equation above and equating coefficients corresponding
to n = 0,−1,−2, ..., we find that, provided q(n) = r(n), for |n| ≤ N , we
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must have Ra = δ. Notice that these are precisely the same equations we
solve in calculating the coefficients of an AR process. For that reason the
MEM is sometimes called an autoregressive method for spectral estimation.

We now show that if Ra = δ then A(z) has all its roots outside the unit
circle. Let r exp(iθ) be a root of A(z). Then write

A(z) = (z − r exp(iθ))C(z),

where
C(z) = c0 + c1z + c2z

2 + ...+ cN−1z
N−1.

Then the vector a = (a0, a1, ..., aN )T can be written as a = −r exp(iθ)c+d,
where c = (c0, c1, ..., cN−1, 0)T and d = (0, c0, c1, ..., cN−1)

T . So δ = Ra =
−r exp(iθ)Rc +Rd and

0 = d†δ = −r exp(iθ)d†Rc + d†Rd,

so that
r exp(iθ)d†Rc = d†Rd.

From the Cauchy inequality we know that

|d†Rc|2 ≤ (d†Rd)(c†Rc) = (d†Rd)2, (48.1)

where the last equality comes from the special form of the matrix R and
the similarity between c and d.

With
D(ω) = c0e

iω + c1e
2iω...+ cN−1e

iNω

and
C(ω) = c0 + c1e

iω + ...+ cN−1e
i(N−1)ω,

we can easily show that

d†Rd = c†Rc =
1

2π

∫ π

−π
R(ω)|D(ω)|2dω

and

d†Rc =
1

2π

∫ π

−π
R(ω)D(ω)C(ω)dω.

If there is equality in the Cauchy inequality (48.1) then r = 1 and we would
have

exp(iθ)
1

2π

∫ π

−π
R(ω)D(ω)C(ω)dω =

1

2π

∫ π

−π
R(ω)|D(ω)|2dω.

From the Cauchy inequality for integrals, we can conclude that

exp(iθ)D(ω)C(ω) = |D(ω)|2
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for all ω for which R(ω) > 0. But

exp(iω)C(ω) = D(ω).

Therefore we cannot have r = 1 unless R(ω) = δ(ω − θ). In all other cases
we have

|d†Rc|2 < |r|2|d†Rc|2,

from which we conclude that |r| > 1.

Solving Ra = δ using Levinson’s algorithm: Because the matrix R
is Toeplitz (constant on diagonals) and positive definite, there is a fast
algorithm for solving Ra = δ for a. Instead of a single R we let RM be the
matrix defined for M = 0, 1, ..., N by

RM =















r(0) r(−1) ... r(−M)
r(1) r(0) ... r(−M + 1)
.
.
.

r(M) r(M − 1) ... r(0)















so that R = RN . We also let δM be the M + 1-dimensional column
vector δM = (1, 0, ..., 0)T . We want to find the column vector aM =
(aM0 , aM1 , ..., aMM )T that satisfies the equation RMaM = δM . The point
of Levinson’s algorithm is to calculate aM+1 quickly from aM .

For fixed M find constants α and β so that

δM = RM

{

α



















aM−1
0

aM−1
1

.

.

.
aM−1
M−1

0



















+ β





















0
aM−1
M−1

aM−1
M−2

.

.

.
aM−1
0





















}

=

{

α



















1
0
.
.
.
0
γM



















+ β



















γM

0
.
.
.
0
1



















}

,

where

γM = r(M)aM−1
0 + r(M − 1)aM−1

1 + ...+ r(1)aM−1
M−1.
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We then have
α+ βγM = 1, αγM + β = 0

or
β = −αγM , α− α|γM |2 = 1,

so
α = 1/(1 − |γM |2), β = −γM/(1 − |γM |2).

Therefore, the algorithm begins with M = 0, R0 = [r(0)], a0
0 = r(0)−1. At

each step calculate the γM , solve for α and β and form the next aM .
The MEM resolves better than the DFT when the true power spectrum

being reconstructed is a sum of delta functions plus a flat background.
When the background itself is not flat performance of the MEM degrades
rapidly; the MEM tends to interpret any non-flat background in terms of
additional delta functions. In the next chapter we consider an extension of
the MEM, called the indirect PDFT (IPDFT), that corrects this flaw.

Why Burg’s MEM and the IPDFT are able to resolve closely spaced
sinusoidal components better than the DFT is best answered by studying
the eigenvalues and eigenvectors of the matrix R; we turn to this topic in
a later chapter.

A sufficient condition for positive-definiteness:

If the function
R(ω) =

∑∞

n=−∞
r(n)einω

is nonnegative on the interval [−π, π] then the matrices RM above are
nonnegative-definite for every M . Theorems by Herglotz and by Bochner
go in the reverse direction [4]. Katznelson [125] gives the following result.

Theorem 48.1 Let {f(n)}∞
n=−∞ be a sequence of nonnegative real num-

bers converging to zero, with f(−n) = f(n) for each n. If, for each n > 0,
we have

(f(n− 1) − f(n)) − (f(n) − f(n+ 1)) > 0,

then there is a nonnegative function R(ω) on the interval [−π, π] with
f(n) = r(n) for each n.

The figures below illustrate the behavior of the MEM. In Figures 48.1, 48.2
and 48.3 the true object has two delta functions at 0.95π and 1.05π. The
data is f(n) for |n| ≤ 10. The DFT cannot resolve the two spikes. The
SNR is high in Figure 48.1 and the MEM easily resolves them. In Figure
48.2 the SNR is much lower and MEM no longer resolves the spikes.

Exercise 1: In Figure 48.3 the SNR is much higher than in Figure 48.1.
Explain why the graph looks as it does.
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In Figure 48.4 the true object is a box supported between 0.75π and
1.25π. Here N = 10 again. The MEM does a poor job reconstructing the
box. This weakness in MEM will become a problem in the last two figures,
in which the true object consists of the box with the two spikes added. In
Figure 48.5 we have N = 10, while in Figure 48.6 N = 25.
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Figure 48.1: The DFT and MEM, N = 10, high SNR
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Figure 48.2: The DFT and MEM, N = 10, low SNR
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Figure 48.3: The DFT and MEM, N = 10, very high SNR. What hap-
pened?
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Figure 48.4: MEM and DFT for a box object; N = 10
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Figure 48.5: The DFT and MEM: two spikes on a large box; N = 10
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Figure 48.6: The DFT and MEM: two spikes on a large box; N = 25



Chapter 49

The IPDFT

Experience with Burg’s MEM shows that it is capable of resolving closely
spaced delta functions better than the DFT, provided that the background
is flat. When the background is not flat MEM tends to interpret the non-flat
background as additional delta functions to be resolved. In this chapter we
consider an extension of MEM based on the PDFT that can resolve in the
presence of non-flat background. This method is called the indirect PDFT
(IPDFT) [48]. The IPDFT applies to the reconstruction of one-dimensional
power spectra, but the main idea can be used to generate high resolution
methods for multi-dimensional spectra as well. The IPDFT method is
suggested by considering the MEM equations Ra = δ as a particular case of
the equations that arise in Wiener filter approximation. As in the previous
chapter, we assume that we have the autocorrelation values r(n) for |n| ≤
N , from which we wish to estimate the power spectrum

R(ω) =
∑+∞

n=−∞
r(n)einω, |ω| ≤ π.

In the chapter on Wiener filter approximation we saw that the best finite
length filter approximation of the Wiener filter is obtained by minimizing
the integral in equation (45.4)

∫ π

−π
|H(ω) −

∑L

k=−K
fke

ikω|2(Rs(ω) +Ru(ω))dω.

The optimal coefficients then must satisfy equations (45.5):

rs(m) =
∑L

k=−K
fk(rs(m− k) + ru(m− k)), (49.1)

for −K ≤ m ≤ L.
Consider the case in which the power spectrum we wish to estimate

consists of a signal component that is the sum of delta functions and a noise
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component that is white noise. If we construct a finite length Wiener filter
that filters out the signal component and leaves only the noise, then that
filter should be able to zero out the delta function components. By finding
the locations of those zeros we can find the supports of the delta functions.
So the approach is to reverse the roles of signal and noise, viewing the
signal as the component called u and the noise as the component called s
in the discussion of the Wiener filter. The autocorrelation function rs(n)
corresponds to the white noise now and so rs(n) = 0 for n 6= 0. The terms
rs(n) + ru(n) are the data values r(n), for |n| ≤ N . Taking K = 0 and
L = N in equation (49.1), we obtain

∑N

k=0
fkr(m− k) = 0,

for m = 1, 2, ..., N and

∑N

k=0
fkr(0 − k) = r(0),

which is precisely that same system Ra = δ that occurs in MEM.
This approach reveals that the vector a = (a0, ..., aN )T we find in MEM

can be viewed an a finite length approximation of the Wiener filter designed
to remove the delta function component and to leave the remaining flat
white noise component untouched. The polynomial

A(ω) =
∑N

n=0
ane

inω

will then have zeros near the supports of the delta functions. What happens
to MEM when the background is not flat is that the filter tries to eliminate
any component that is not white noise, so places the zeros of A(ω) in the
wrong places.

Suppose we take P (ω) ≥ 0 to be our estimate of the background com-
ponent of R(ω); that is, we believe that R(ω) equals a multiple of P (ω)
plus a sum of delta functions. We now ask for the finite length approx-
imation of the Wiener filter that removes the delta functions and leaves
any background component that looks like P (ω) untouched. We then take
rs(n) = p(n), where

P (ω) =
∑+∞

n=−∞
p(n)einω, |ω| ≤ π.

The desired filter is f = (f0, ..., fN )T satisfying the equations

p(m) =
∑N

k=0
fkr(m− k). (49.2)

Once we have found f we form the polynomial

F (ω) =
∑N

k=0
fke

ikω, |ω| ≤ π.
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The zeros of F (ω) should then be near the supports of the delta func-
tion components of the power spectrum R(ω), provided that our original
estimate of the background is not too inaccurate.

In the PDFT it is important to select the prior estimate P (ω) nonzero
wherever the function being reconstructed is nonzero; for the IPDFT the
situation is different. Comparing equation (49.2) with equation (30.2) we
see that in the IPDFT the true R(ω) is playing the role previously given to
P (ω), while P (ω) is in the role previously played by the function we wished
to estimate, which, in the IPDFT, is R(ω). It is important, therefore, that
R(ω) not be zero where P (ω) 6= 0; that is, we should choose the P (ω) = 0
wherever R(ω) = 0. Of course, we usually do not know the support of R(ω)
a priori. The point is simply that it is better to make P (ω) = 0 than to
make it nonzero, if we have any doubt as to the value of R(ω).

In our discussion of the MEM we obtained an estimate for the function
R(ω), not simply a way of locating the delta function components. As
we shall show, the IPDFT can also be used to estimate R(ω). Although
the resulting estimate is not guaranteed to be either nonnegative nor data
consistent it usually is both of these.

For any function G(ω) on [−π, π] with Fourier series

G(ω) =
∑∞

n=−∞
g(n)einω

the additive causal part of the function G(ω) is

G+(ω) =
∑∞

n=0
g(n)einω.

Any function such as G+ that has Fourier coefficients that are zero for
negative indices is called a causal function. The equation (49.2) then says
that the two causal functions P+ and (FR)+ have Fourier coefficients that
agree for m = 0, 1, ..., N .

Because F (ω) is a finite causal trigonometric polynomial we can write

(FR)+(ω) = R+(ω)F (ω) + J(ω),

where

J(ω) =
∑N−1

m=0
[
∑N−m

k=1
r(−k)f(m+ k)]eimω.

Treating P+ as approximately equal to (FR)+ = R+F + J , we obtain as
an estimate of R+ the function Q = (P+ −J)/F . In order for this estimate
of R+ to be causal it is sufficient that the function 1/F be causal. This
means that the trigonometric polynomial F (ω) be minimum phase; that is,
all its roots lie outside the unit circle. In the chapter on MEM we saw that
this is always the case for MEM. It is not always the case for the IPDFT,
but it is usually the case in practice; in fact, it was difficult (but possible)
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to construct a counterexample. We then construct our IPDFT estimate of
R(ω), which is

RIPDFT (ω) = 2Re(Q(ω)) − r(0).

The IPDFT estimate is real-valued and, when 1/F is causal, guaranteed
to be data consistent. Although this estimate is not guaranteed to be
nonnegative, it usually is.

We showed in the chapter on entropy maximization that the vector a
that solves Ra = δ corresponds to a polynomial A(z) having all its roots on
or outside the unit circle; that is, it is minimum phase. The IPDFT involves
the solution of the system Rf = p, where p = (p(0), ..., p(N))T is the
vector of initial Fourier coefficients of another power spectrum, P (ω) ≥ 0
on [−π, π]. When P (ω) is constant we get p = δ. For the IPDFT to be
data-consistent it is sufficient that the polynomial F (z) = f0+...+fNz

N be
minimum phase. Although this need not be the case, it is usually observed
in practice.

Exercise 1: Find conditions on the power spectra R(ω) and P (ω) that
cause F (z) to be minimum phase.
Warning: This is probably not an easy exercise.

The figures below illustrate the IPDFT. The prior function in each case
is the box object supported on the central fourth of the interval [0, 2π]. The
value r(0) has been increased slightly to regularize the matrix inversion.
Figure 49.1 shows the behavior of the IPDFT when the object is only the
box. Contrast this with the behavior of MEM in this case, as seen in Figure
48.4. Figures 49.2 and 49.3 show the abilty of the IPDFT to resolve the two
spikes at 0.95π and 1.05π against the box background. Again, contrast this
with the MEM reconstructions in Figures 48.5 and 48.6. To show that the
IPDFT is actually indicating the presence of the spikes and not just rolling
across the top of the box, we reconstruct two unequal spikes in Figure 49.4.
Figure 49.5 shows how the IPDFT behaves when we increase the number
of data points; now N = 25 and the SNR is very low.
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Figure 49.1: The DFT and IPDFT: box only, N = 1
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Figure 49.2: The DFT and IPDFT, box and two spikes, N = 10, high SNR
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Figure 49.3: The DFT and IPDFT, box and two spikes, N = 10, moderate
SNR
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Figure 49.4: The DFT and IPDFT, box and unequal spikes, N = 10, high
SNR
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Figure 49.5: The DFT and IPDFT, box and unequal spikes, N = 25, very
low SNR
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Chapter 50

Prony’s Method

The date of publication of [159] is often taken by editors to be a typograph-
ical error and is replaced by 1995, or, since it is not written in English,
perhaps 1895. But the 1795 date is the correct one. The mathematical
problem Prony solved arises also in signal processing and his method for
solving it is still used today. Prony’s method is also the inspiration for the
eigenvector methods described in our next chapter.

Prony’s problem: Prony considers a function of the form

s(t) =
∑N

n=1
ane

γnt, (50.1)

where we allow the an and the γn to be complex. If we take the γn = iωn
to be imaginary s(t) becomes the sum of complex exponentials; if we take
γn to be real, then s(t) is the sum of real exponentials, either increasing
with t or decreasing with t. The problem is to determine from samples of
s(t) the number N , the γn and the an.

Prony’s method: Suppose that we have data ym = s(m∆), for some
∆ > 0 and for m = 1, ...,M , where we assume that M = 2N . We seek a
vector c with entries cj , j = 0, ..., N such that

c0yk+1 + c1yk+2 + c2yk+3 + ...+ cNyk+N+1 = 0, (50.2)

for k = 0, 1, ...,M − N − 1. So we want a complex vector c in CN+1

orthogonal to M −N = N other vectors. In matrix-vector notation we are
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solving the linear system
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which we write as Y c = 0. Since Y †Y c = 0 also, we see that c is an eigen-
vector associated with the eigenvalue zero of the hermitian nonnegative
definite matrix Y †Y .

Fix a value of k and replace each of the yk+j in equation (50.2) with
the value given by equation (50.1) to get

0 =
∑N

n=0
an[
∑N

j=0
cje

γn(k+j+1)∆]

=
∑N

n=0
ane

γn(k+1)∆[
∑N

j=0
cj(e

γn∆)j ].

Since this is true for each of the N fixed values of k, we conclude that the
inner sum is zero for each n; that is,

∑N

j=0
cj(e

γn∆)j = 0,

for each n. Therefore, the polynomial

C(x) =
∑N

j=0
cjx

j

has for its roots the N values x = eγn∆. Once we find the roots of this
polynomial we have the values of γn. Then we obtain the an by solving
a linear system of equations. In practice we would not know N so would
overestimate N somewhat in selecting M . As a result, some of the an
would be zero.

If we believe that the number N is considerably smaller than M , we do
not assume that 2N = M . Instead, we select L somewhat larger than we
believe N is and then solve the linear system
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This system has M−L equations and L+1 unknowns, so is quite overdeter-
mined. We would then use the least squares aproach to obtain the vector
c. Again writing the system as Y c = 0, we note that the matrix Y †Y
is L + 1 by L + 1 and has λ = 0 for its lowest eigenvalue; therefore it is
not invertible. When there is noise in the measurements this matrix may
become invertible, but will still have at least one very small eigenvalue.

Finding the vector c in either case can be tricky, because we are look-
ing for a nonzero solution of a homogeneous system of linear equations.
For a discussion of the numerical issues involved in these calculations the
interested reader should consult the book by Therrien [174].
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Chapter 51

Eigenvector Methods

Prony’s method showed that information about the signal can sometimes
be obtained from the roots of certain polynomials formed from the data.
Eigenvector methods assume the data is correlation values and involve poly-
nomials formed from the eigenvectors of the correlation matrix. Schmidt’s
multiple signal classification (MUSIC) algorithm is one such method [163].
A related technique used in direction-of-arrival array processing is the esti-
mation of signal parameters by rotational invariance techniques (ESPRIT)
of Paulraj, Roy and Kailath [154].

We suppose now that the function f(t) being measured is signal plus
noise, with the form

f(t) =
∑J

j=1
Aje

iθjeiωjt + n(t) = s(t) + n(t),

where the phases θj are random variables, independent and uniformly dis-
tributed in the interval [0, 2π) and n(t) denotes the random complex sta-
tionary noise component. Assume that E(n(t)) = 0 for all t and that
the noise is independent of the signal components. We want to estimate
J , the number of sinusoidal components, their magnitudes |Aj | and their
frequencies ωj .

The autocorrelation function associated with s(t) is

rs(τ) =
∑J

j=1
|Aj |2e−iωjτ

and the signal power spectrum is the Fourier transform of rs(τ),

Rs(ω) =
∑J

j=1
|Aj |2δ(ω − ωj).

The noise autocorrelation is denoted rn(τ) and the noise power spectrum
is denoted Rn(ω). For the remainder of this section we shall assume that
the noise is white noise, that is, Rn(ω) is constant and rn(τ) = 0 for τ 6= 0.
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We collect samples of the function f(t) and use them to estimate some of
the values of rs(τ). From these values of rs(τ) we estimate Rs(ω), primarily
looking for the locations ωj at which there are delta functions.

We assume that the samples of f(t) have been taken over an interval
of time sufficiently long to take advantage of the independent nature of
the phase angles θj and the noise. This means that when we estimate the

rs(τ) from products of the form f(t + τ)f(t) the cross terms between one
signal component and another, as well as between a signal component and
the noise, are nearly zero, due to destructive interference coming from the
random phases.

Suppose now that we have the values rf (m) form = −(M−1), ...,M−1,
where M > J , rf (m) = rs(m) for m 6= 0 and rf (0) = rs(0) + σ2, for σ2

the variance (or power) of the noise. We form the M by M autocorrelation
matrix R with entries Rm,k = rf (m− k).

Exercise 1: Show that the matrix R has the following form:

R =
∑J

j=1
|Aj |2eje†

j + σ2I,

where ej is the column vector with entries e−iωjm, for m = −(M −
1), ...,M − 1.

Let λ1 ≥ λ2 ≥ ... ≥ λM > 0 be the eigenvalues of R and let um be a
norm-one eigenvector associated with λm.

Exercise 2: Show that λm = σ2 for m = J + 1, ...,M , while λm > σ2 for
m = 1, ..., J . Hint: since M > J the M − J orthogonal eigenvectors um

corresponding to λm for m = J +1, ...,M will be orthogonal to each of the
ej . Then consider the quadratic forms (um)†Rum.

By calculating the eigenvalues of R and noting how many of them are
greater than the smallest one we find J . Now we seek the ωj .

For each ω let eω have the entries e−iωm and form the function

T (ω) =
∑M

m=J+1
|e†
ωu

m|2.

This function T (ω) will have zeros at precisely the values ω = ωj , for j =
1, ..., J . Once we have determined J and the ωj we estimate the magnitudes
|Aj | using Fourier transform estimation techniques already discussed. This
is basically Schmidt’s MUSIC method.

We have made several assumptions here that may not hold in practice
and we must modify this eigenvector approach somewhat. First, the time
over which we are able to measure the function f(t) may not be long enough
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to give good estimates of the rf (τ). In that case we may work directly with
the samples of f(t). Second, the smallest eigenvalues will not be exactly
equal to σ2 and some will be larger than others. If the ωj are not well
separated, or if some of the |Aj | are quite small, it may be hard to tell
what the value of J is. Third, we often have measurements of f(t) that
have errors other than those due to background noise; inexpensive sensors
can introduce their own random phases that can complicate the estimation
process. Finally, the noise may not be white, so that the estimated rf (τ)
will not equal rs(τ) for τ 6= 0, as above. If we know the noise power
spectrum or have a decent idea what it is we can perform a prewhitening
to R, which will then return us to the case considered above, although this
can be a tricky procedure.

When the noise power spectrum has a component that is not white
the eigenvalues and eigenvectors of R behave somewhat differently from
the white noise case. The eigenvectors tend to separate into three groups.
Those in the first group correspond to the smallest eigenvalues and are
approximately orthogonal to both the signal components and the nonwhite
noise component. Those in the second group, whose eigenvalues are some-
what larger than those in the previous group, tend to be orthogonal to the
signal components but to have a sizable projection onto the nonwhite noise
component. Those in the third group, with the largest eigenvalues, have
sizable projection onto both the signal and nonwhite noise components.
Since the DFT estimate uses R, as opposed to R−1, the DFT spectrum
is determined largely by the eigenvectors in the third group. The MEM
estimator, which uses R−1, makes most use of the eigenvectors in the first
group, but in the formation of the denominator. In the presence of a non-
white noise component the orthogonality of those eigenvectors to both the
signals and the nonwhite noise shows up as peaks throughout the region of
interest, masking or distorting the signal peaks we wish to see.

There is a second problem exacerbated by the nonwhite component-
sensitivity of nonlinear and eigenvector methods to phase errors. We have
assumed up to now that the data we have obtained is accurate, but there
isn’t enough of it. In some cases the machinery used to obtain the measured
data may not be of the highest quality; certain applications of SONAR
make use of relatively inexpensive hydrophones that will sink into the ocean
after they have been used briefly. In such cases the complex numbers r(n)
will be distorted. Errors in the measurement of their phases are particularly
damaging. The figures below illustrate these issues.

In the figures below the true power spectrum is the box and spikes
object used earlier in our discussion of the MEM and IPDFT. It consists
of two delta functions at ω = 0.95π and 1.05π, along with a box extending
from 0.75π to 1.25π. There is also a small white noise component that is
flat across [0, 2π], contributing only to the r(0) value. The data, in the
absence of phase errors, is r(n), |n| ≤ N = 25. Three different amounts of
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phase perturbation are introduced in the other cases.
Figure 51.1 shows the function T (ω) for the two eigenvectors in the sec-

ond group; here J = 18 and M = 21. The approximate zeros at 0.95π and
1.05π are clearly seen in the error-free case and remain fairly stable as the
phase errors are introduced. Figure 51.2 uses the eigenvectors in the first
group, with J = 0 and M = 18. The approximate nulls at 0.95π and 1.05π
are hard to distinguish even in the error-free case and get progressively
worse as phase errors are introduced. Stable nonlinear methods, such as
the IPDFT, rely most on the eigenvectors in the second group.
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Figure 51.1: T (ω) for J = 18, M = 21, varying degrees of phase errors
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Figure 51.2: T (ω) for J = 0, M = 18, varying degrees of phase errors
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Chapter 52

Resolution Limits

We began in the introductory chapter by saying that our data has been
obtained through some form of sensing; physical models, often simplified,
describe how the data we have obtained relates to the information we seek;
there usually isn’t enough data and what we have is corrupted by noise
and other distortions. All of the models and algorithms we have considered
have as their aim the overcoming of this inherent problem of limited data.
But just how limited is the data and in what sense limited? After all,
if Burg’s maximum entropy method (MEM) resolves peaks that are left
unresolved by the DFT, the problem would seem to lie not with the data,
which must still retain the desired information, but with the method used.
When Burg’s MEM produces incorrect reconstructions in the presence of a
background that is not flat, but the IPDFT is able to use an estimate of the
background to provide a better answer, is it the data or the method that is
limiting? On the other hand, when we say MEM has produced an incorrect
answer what do we mean? We know that MEM gives a positive estimate of
the power spectrum that is exactly consistent with the autocorrelation data;
it is only incorrect because we know the true spectrum, having created it in
our simulations. Such questions concern everyone using inversion methods,
and yet have no completely satisfying answers. Bertero’s paper [11] is a
good place to start one’s education in these matters. In this chapter we
consider some of these issues, in so far as they concern the methods we
have discussed in this text.

The DFT:

The exercise following our discussion of the second approach to signal anal-
ysis uses the DFT to illustrate the notion of resolution limit. The signal
there was the sum of two sinusoids, at frequencies ω1 = −α and ω2 = α.
As the α approached zero resolution in the DFT was eventually lost; for
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larger data lengths the α could be smaller before this happened. We know
from successful application of high-resolution methods that this does not
mean that the information about the two sinusoids has been lost. What
does it mean?

The DFT shows up almost everywhere in signal processing. As a fi-
nite Fourier series it can be viewed as a best approximation of the infinite
Fourier series; as a matched filter it is the optimal linear method for detect-
ing a single sinusoid in white noise. However, it is not the optimal linear
method for detecting two sinusoids in white noise. If we know that the sig-
nal is the sum of two sinusoids (with equal amplitudes, for now) in additive

white noise, the optimal linear filter is a matched filter of the form e†
αβd,

where d is the data vector and eαβ is the data we would have received
had the signal consisted solely of eiαt + eiβt. The output of the matched
filter is a function of the two variables α and β. We plot the magnitude
of this function of two variables and select the pair for which the magni-
tude is greatest. If we apply this procedure to the signal in the exercise
we would find that we could still determine that there are sinusoids at α
and β = −α. The DFT manages to resolve sinusoids when they are far
enough apart to be treated as two separate signals, each with a single sinu-
soid. Otherwise, the DFT is simply not the proper estimate of frequency
location for multiple sinusoids. A proper notion of resolution limit should
be based on something other than the behavior of the DFT in the presence
of two sinusoids.

Bandlimited extrapolation reconsidered:

Suppose we want to estimate the function F (ω), known to be zero for
|ω| > Ω, where 0 < Ω < π. Our data will be samples of the inverse
Fourier transform, f(x). Suppose, in addition, that we are able to select
our finitely many samples only for x within the bounded interval [0, X],
but are otherwise unrestricted; that is, we can take as many samples at
whichever x values we wish. What should we do?

Shannon’s sampling theorem tells us that we can reconstruct F (ω) ex-
actly if we know the values f(n πΩ ) for all the integers n. Then we have

F (ω) =
π

Ω

∑∞

n=−∞
f(n

π

Ω
)ein

π
Ω
ω.

The sampling rate of ∆ = π
Ω is the Nyquist rate and the doubly infinite

sequence of samples at this rate is all we need. But, of course, we can-
not actually measure infinitely many values of f(x). Furthermore, we are
restricted to the interval [0, X]. If

(N − 1)
π

Ω
≤ X < N

π

Ω
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then there are N Nyquist samples available within the interval [0, X]. Some
have concluded that the sampling theorem tells us that we can do no better
than to take the N samples f(n πΩ ), n = 0, 1, ..., N − 1, that we have N
degrees of freedom in selecting data from within the interval [0, X] and
our freedom is thus exhausted when we have taken these N samples. The
questions are: Can we do better? and Is there a quantifiable limit to our
freedom to extract information under these restrictions? If someone offered
to give you the value of f(x) at one new point x within the interval [0, X],
would you take it?

No one would argue that the N Nyquist samples determine completely
the values of f(x) for the remaining x within the interval [0, X]. The
problem is more how to use this new data value. The DFT

FDFT (ω) =
π

Ω
χΩ(ω)

∑N−1

n=0
f(n

π

Ω
)ein

π
Ω
ω

is zero outside the interval [−Ω,Ω], is consistent with the data and therefore
could be the right answer. If we are given the additional value f(a) the
estimate

π

Ω
χΩ(ω)[f(a)eiaω +

∑N−1

n=0
f(n

π

Ω
)ein

π
Ω
ω]

is not consistent with the data.
Using the non-iterative bandlimited extrapolation estimate given in

equation (29.7) we can get an estimate with is consistent with this no
longer uniformly spaced data as well as with the band limitation. So it is
possible to make good use of the additional sample offered to us; we should
accept it. Is there no end to this, however? Should we simply take as many
samples as we desire, equispaced or not? Is there some limit to our freedom
to squeeze information out of the behavior of the function f(x) within the
interval [0, X]? The answer is Yes, there are limits, but the limits depend
in sometimes subtle ways on themethod being used and the amount and
nature of the noise involved, which must include round-off error and quan-
tization. Let’s consider this more closely, with respect to the non-iterative
bandlimited extrapolation method.

As we saw earlier, the non-iterative Gerchberg-Papoulis bandlimited
extrapolation method leads to the estimate

FΩ(ω) = χΩ(ω)
∑M

m=1

1

λm
(um)†dUm(ω),

where d is the data vector. In contrast, the DFT estimate is

FDFT (ω) =
∑M

m=1
(um)†dUm(ω).

The estimate FΩ(ω) can provide better resolution within the interval [−Ω,Ω]
because of the multiplier 1/λm, causing the estimate to rely more heavily on
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those functions Um(ω) having more roots, therefore more structure, within
that interval. But therein lies the danger, as well.

When the data is noise-free the dot product (um)†d is relatively small
for those eigenvectors um corresponding to the small eigenvalues; therefore
the product (1/λm)(um)†d is not large. However, when the data vector d
contains noise, the dot product of the noise component with each of the
eigenvectors is about the same size. Therefore, the product (1/λm)(um)†d
is now quite large and the estimate is dominated by the noise. This sensi-
tivity to the noise is the limiting factor in the bandlimited extrapolation.
Any reasonable definitions of degrees of freedom and resolution limit must
include the signal-to-noise ratio, as well as the fall-off rate of the eigenval-
ues of the matrix. In our bandlimited extrapolation problem the matrix
is the sinc matrix. The proportion of nearly zero eigenvalues will be ap-
proximately 1 − Ω

π ; the smaller the ratio Ω
π the fewer essentially nonzero

eigenvalues there will be. For other extrapolation methods, such as the
PDFT, the fall-off rate may be somewhat different. For analogous meth-
ods in higher dimensions the fall-off rate may be quite different [11].

High-resolution methods:

The bandlimited extrapolation methods we have studied are linear in the
data, while the high-resolution methods are not. The high-resolution meth-
ods we have considered, such as MEM, Capon’s method, the IPDFT and
the eigenvector techniques, exploit the fact that the frequencies of sinu-
soidal components can be associated with the roots of certain polynomials
obtained from eigenvectors of the autocorrelation matrix. When the roots
are disturbed by phase errors or are displaced by the presence of a non-
flat background, the methods that use these roots perform badly. As we
mentioned earlier, there is some redundancy in the storage of information
in these roots and stable processing is still possible in many cases. Not
all the eigenvectors store this information and a successful method must
interrogate the ones that do. Additive white noise causes MEM to fail by
increasing all the eigenvalues, but does not hurt explicit eigenvector meth-
ods. Correlated noise that cannot be effectively prewhitened hurts all these
methods, by making it more difficult to separate the information-bearing
eigenvectors from the others. Correlation between sinusoidal components,
as may occur in multipath arrivals in shallow water, causes additional dif-
ficulty, as does short data length, which corrupts the estimates of the au-
tocorrelation values.



Chapter 53

A Little Probability

Theory

In this chapter we review a few important results from the theory of prob-
ability that will be needed later.

Averaging independent random variables: Let X1, ..., XN be N in-
dependent random variables with the same mean (that is, expected value)
µ and same variance σ2. Then the sample average

X̄ = N−1
N
∑

n=1

Xn

has µ for its mean and σ2/N for its variance.

Exercise 1: Prove these two assertions.

Maximum likelihood estimation- an example: Let θ in the interval
[0, 1] be the unknown probability of success on one trial of a binomial
distribution (a coin flip, for example), so that the probability of x successes
in n trials is L(θ, x, n) = n!

x!(n−x)!θ
x(1 − θ)n−x, for x = 0, 1, ..., n. If we

have observed n trials and have recorded x successes we can estimate θ by
selecting that θ̂ for which L(θ, x, n) is maximized as a function of θ. This
estimator is called the maximum likelihood estimator.

Exercise 2: Show that, for the binomial case described above, the maxi-
mum likelihood estimate of θ is θ̂ = x/n.

The Poisson distribution: A random variable X taking on only nonneg-
ative integer values is said to have the Poisson distribution with parameter
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λ > 0 if, for each nonnegative integer k, the probability pk that X will take
on the value k is given by

pk = e−λλk/k!.

Exercise 3: Show that the sequence {pk}∞
k=0 sums to one.

Exercise 4: Show that the expected value E(X) is λ, where the expected
value in this case is

E(X) =
∑∞

k=0
kpk.

Exercise 5: Show that the variance of X is also λ, where the variance of
X in this case is

var(X) =
∑∞

k=0
(k − λ)2pk.

Sums of independent Poisson random variables: Let Z1, ..., ZN be
independent Poisson random variables with expected value E(Zn) = λn.
Let Z be the random vector with Zn as its entries, λ the vector whose
entries are the λn and λ+ =

∑N
n=1 λn. Then the probability function for

Z is

f(Z|λ) =

N
∏

n=1

λzn
n exp(−λn)/zn! = exp(−λ+)

N
∏

n=1

λzn
n /zn! . (53.1)

Now let Y =
∑N
n=1 Zn. Then, the probability function for Y is

Prob(Y = y) = Prob(Z1 + ...+ ZN = y)

=
∑

z1+...zN=y

exp(−λ+)

N
∏

n=1

λzn
n /zn! . (53.2)

But, as we shall show shortly, we have

∑

z1+...zN=y

exp(−λ+)

N
∏

n=1

λzn
n /zn! = exp(−λ+)λy+/y! . (53.3)

Therefore, Y is a Poisson random variable with E(Y ) = λ+.
If we observe an instance of y, we then can consider the conditional

distribution f(Z|λ, y) of {Z1, ..., ZN}, subject to y = Z1 + ... + ZN . We
have

f(Z|λ, y) =
y!

z1!...zN !
(
λ1

λ+
)z1 ...(

λN
λ+

)zN . (53.4)
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This is a multinomial distribution. Given y and λ the conditional expected
value of Zn is then E(Zn|λ, y) = yλn/λ+. To see why (53.3) is true, we
discuss the multinomial distribution a bit.

The multinomial distribution: When we expand the quantity (a1 +
... + aN )y we obtain a sum of terms, each of the form az11 ...a

zN

N , with
z1 + ...+ zN = y. How many terms of the same form are there? There are
N variables. We are to select zn of type n, for each n = 1, ..., N , to get
y = z1 + ...+ zN factors. Imagine y blank spaces, to be filled in by various
factor types as we do the selection. We select z1 of these blanks and mark
them a1, for type one. We can do that in

(

y
z1

)

ways. We then select z2 of

the remaining blank spaces and enter a2 in them; we can do this in
(

y−z1
z2

)

ways. Continuing this way we find that we can select the N factor types in
(

y

z1

)(

y − z1
z2

)

...

(

y − (z1 + ...+ zN−2)

zN−1

)

(53.5)

ways, or in

y!

z1!(y − z1)!
...

(y − (z1 + ...+ zN−2))!

zN−1!(y − (z1 + ...+ zN−1))!
=

y!

z1!...zN !
. (53.6)

This tells us in how many different sequences the factor types can be se-
lected. Applying this we get the multinomial theorem:

(a1 + ...+ aN )y =
∑

z1+...+zN=y

y!

z1!...zN !
az11 ...a

zN

N . (53.7)

Select an = λn/λ+. Then

1 = 1y = (
λ1

λ+
+ ...+

λN
λ+

)y

=
∑

z1+...+zN=y

y!

z1!...zN !
(
λ1

λ+
)z1 ...(

λN
λ+

)zN . (53.8)

From this we get

∑

z1+...zN=y

exp(−λ+)

N
∏

n=1

λzn
n /zn! = exp(−λ+)λy+/y! . (53.9)

Gaussian random variables: A real-valued random variable X is called
Gaussian or normal with mean µ and variance σ2 if its probabilty density
function (pdf) is

f(x) =
1

σ
√

2π
exp(− (x− µ)2

2σ2
). (53.10)
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In the statistical literature a normal random variable is standard if its mean
is µ = 0 and its variance is σ2 = 1.

Suppose now that Z1, ..., ZN are independent standard normal random
variables. Then their joint pdf is the function

f(z1, ..., zN ) =

N
∏

n=1

1√
2π

exp(−1

2
z2
n) =

1

(
√

2π)N
exp(−1

2
(z2

1 + ...+ z2
N )).

By taking linear combinations of these random variables we can obtain a
new set of normal random variables that are no longer independent. For
each m = 1, ...,M let

Xm =
∑N

n=1
AmnZn.

Then E(Xm) = 0.
The covariance matrix associated with the Xm is the matrix R with

entries Rmn = E(XmXn), m, n = 1, 2, ...,M . We have

E(XmXn) =
∑N

k=1
Amk

∑N

j=1
AnjE(ZkZj).

Since the Zn are independent with mean zero, we have E(ZkZj) = 0 for
k 6= j and E(Z2

k) = 1. Therefore,

E(XmXn) =
∑N

k=1
AmkAnk,

and the covariance matrix is R = AAT .
Writing X = (X1, ..., XM )T and Z = (Z1, ..., ZN )T we have X = AZ,

where A is the M by N matrix with entries Amn. Using the standard
formulas for changing variables, we find that the joint pdf for the random
variables X1, ..., XM is

f(x1, ..., xM ) =
1

√

det (R)

1

(
√

2π)N
exp(−1

2
xTR−1x),

with x = (x1, ..., xN )T . For the remainder of this chapter we limit the
discussion to the case of M = N = 2 and use the notation X1 = X,
X2 = Y and f(x1, x2) = f(x, y). We also let ρ = E(XY )/σ1σ2.

The two-dimensional FT of the function f(x, y), the characteristic func-
tion of the Gaussian random vector X, is

F (α, β) = exp(−1

2
(σ2

1α
2 + σ2

2β
2 + 2σ1σ2ραβ)).

Exercise 6: Use partial derivatives of F (α, β) to show that E(X2Y 2) =
2σ2

1σ
2
2ρ

2.
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Exercise 7: Show that E(X2Y 2) = E(X2)E(Y 2) + 2E(XY )2.

Let X and Y be independent real Gaussian random variables with
means µx and µy, respectively, and common variance σ2. ThenW = X+iY
is a complex Gaussian random variable with mean µw = E(W ) = µx + iµy
and variance σ2

w = 2σ2.
The results of Exercise 7 extend to complex Gaussian random variables

W and V . In the complex case we have

E(|V |2|W |2) = E(|V |2)E(|W |2) + |E(VW )|2.

This is important in optical image processing, where it is called the Hanbury-
Brown Twiss effect and provides the basis for intensity interferometry
[95]. The main point is that we can obtain magnitude information about
E(VW ), but not phase information, by measuring the correlation between
the magnitudes of V and W ; that is, we learn something about E(VW )
from intensity measurements. Since we have only the magnitude of E(VW )
we then have a phase problem.
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Chapter 54

Bayesian Methods

We know that to get information out we need to put information in; how
to do it is the problem. One approach that is quite popular within the
image reconstruction community is the use of statistical Bayesian methods
and maximum a posteriori (MAP) estimation.

Conditional probabilities: Suppose that A and B are two events with
positive probabilities P (A) and P (B), respectively. The conditional proba-
bility of B, given A, is defined to be P (B|A) = P (A∩B)/P (A). It follows
that Bayes’ Rule holds:

P (A|B) = P (B|A)P (A)/P (B).

To illustrate the use of this rule we consider the following example.

An example of Bayes’ Rule: Suppose that, in a certain town, ten
percent of the adults over fifty have diabetes. The town doctor correctly
diagnoses those with diabetes as having the disease ninety-five percent of
the time. In two percent of the cases he incorrectly diagnoses those not
having the disease as having it. Let D mean that the patient has diabetes,
N that the patient does not have the disease, Amean a diagnosis of diabetes
is made and B a diagnosis of no diabetes is made. The probability that he
will diagnose a given adult as having diabetes is given by the rule of total
probability:

P (A) = P (A|D)P (D) + P (A|N)P (N).

In this example we obtain P (A) = 0.113. Now suppose a patient receives a
diagnosis of diabetes. What is the probability that this diagnosis is correct?
In other words, what is P (D|A)? For this we use Bayes’ Rule:

P (D|A) = P (A|D)P (D)/P (A),
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which turns out to be 0.84.

Using prior probabilities: Nothing so far is controversial. The fun
begins when we attempt to broaden the use of Bayes’ Rule to ascribe a
priori probabilities to quantities that are not random. The example used
originally by Thomas Bayes in the eighteenth century is as follows. Imagine
a billiard table with a line drawn across it parallel to its shorter side, cutting
the table into two rectangular regions, the nearer called A and the farther
B. Balls are tossed onto the table, coming to rest in either of the two
regions. Suppose we are told only that after N such tosses n of the balls
ended up in region A. What is the probability that the next ball will end
up in region A?

At first it would seem that we cannot answer this question unless we
are told the probability of any ball ending up in region A; Bayes argues
differently, however. Let A be the event that a ball comes to rest in region
A and let P (A) = x be the unknown probability of coming to rest in region
A; we may as well consider x to be the relative area of region A, although
this is not necessary. Let D be the event that n out of N balls end up in
A. Then

P (D|x) =

(

N

n

)

xn(1 − x)N−n.

Bayes then adopts the view that the horizontal line on the table was ran-
domly positioned so that the unknown x can be treated as a random vari-
able. Using Bayes’ Rule we have

P (x|D) = P (D|x)P (x)/P (D),

where P (x) is the probability density function (pdf) of the random variable
x, which Bayes takes to be uniform over the interval [0, 1]. Therefore we
have

P (x|D) = c

(

N

n

)

xn(1 − x)N−n,

where c is chosen so as to make P (x|D) a pdf.

Exercise 1: Use integration by parts to show that

(

N

n

)
∫ 1

0

xn(1 − x)N−ndx = 1/(N + 1),

and
(

N + 1

n+ 1

)
∫ 1

0

xn+1(1 − x)N−ndx = 1/(N + 2)

for n = 0, 1, ..., N .
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From the exercise we can conclude that c = N + 1. Therefore we have the
pdf P (x|D). Now we want to estimate x itself. One way to do this is to
calculate the expected value of this pdf, which, according to the exercise, is
(n+ 1)/(N + 2). So even though we do not know x, we can reasonably say
(n+ 1)/(N + 2) is the probability that the next ball will end up in region
A, given the behavior of the previous N balls.

There is a second way to estimate x; we can find that value of x for
which the pdf reaches its maximum. A quick calculation shows this value
to be n/N . This estimate of x is not the same as the one we calculated
using the expected value but they are close for large N .

What is controversial here is the decision to treat the positioning of the
line as a random act, with the resulting probability x a random variable,
as well as the specification of the pdf governing x. Even if x were a random
variable, we do not necessarily know its pdf. Bayes takes the pdf to be
uniform over [0, 1] more as an expression of ignorance than of knowledge. It
is this broader use of prior probabilities that is generally known as Bayesian
methods and not the use of Bayes’ Rule itself.

Maximum a posteriori estimation: Bayesian methods provide us with
an alternative to maximum likelihood parameter estimation. Suppose that
a random variable (or vector) Z has the pdf f(z; θ), where θ is a parameter.
When this pdf is viewed as a function of θ, not of z, it is called the likelihood
function. Having observed an instance of Z, call it z, we can estimate
the parameter θ by selecting that value for which the likelihood function
f(z; θ) has its maximum. This is the maximum likelihood (ML) estimator.
Alternatively, suppose we treat θ itself as one value of a random variable Θ
having its own pdf, say g(θ). Then Bayes’ Rule says that the conditional
pdf of Θ, given z, is

g(θ|z) = f(z; θ)g(θ)/f(z),

where

f(z) =

∫

f(z; θ)g(θ)dθ.

The maximum a posteriori (MAP) estimate of θ is the one for which the
function g(θ|z) is maximized. Taking logs and ignoring terms that do not
involve θ, we find that the MAP estimate of θ maximizes the function
log f(z; θ) + log g(θ).

Because the ML estimate maximizes log f(z; θ) the MAP estimate is
viewed as involving a penalty term log g(θ) missing in the ML approach.
This penalty function is based on the prior pdf g(θ). We choose g(θ) in a
way that expresses our prior knowledge of the parameter θ.

MAP reconstruction of images: In emission tomography the param-
eter θ is actually a vectorized image that we wish to reconstruct and the
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observed data constitute z. Our prior knowledge about θ may be that the
true image is near some prior estimate, say ρ, of the correct answer, in
which case g(θ) is selected to peak at ρ [133]. Frequently our prior knowl-
edge of θ is that the image it represents is nearly constant locally, except
for edges. Then g(θ) is designed to weight more heavily the locally constant
images and less heavily the others [99, 103, 134, 107, 137].

Penalty function methods: The so-called penalty function that appears
in the MAP approach comes from a prior pdf for θ. This suggests more
general methods that involve a penalty function term that does not nec-
essarily emerge from Bayes’ Rule [29]. Such methods are well known in
optimization. We are free to estimate θ as the maximizer of a suitable
objective function whether or not that function is a posterior probability.
Using penalty function methods permits us to avoid the controversies that
accompany Bayesian methods.



Chapter 55

Correlation

The covariance between two complex-valued random variables x and y is

covxy = E((x− E(x))(y − E(y)))

and the correlation coefficient is

ρxy = covxy/
√

E(|x− E(x)|2)
√

E(|y − E(y)|2).

The two random variables are said to be uncorrelated if and only if ρxy = 0.
The covariance matrix of a random vector v is the matrix Q whose entries
are the covariances of all the pairs of entries of v. The vector v is said to be
uncorrelated if Q is diagonal; otherwise we call v correlated. If the expected
value of each of the entries of v is zero we also have Q = E(vv†). We saw
in our discussion of the BLUE that when the noise vector v is correlated
we need to employ the covariance matrix to obtain the best linear unbiased
estimator.

We can obtain an N by 1 correlated noise vector v by selecting a pos-
itive integer K, an arbitrary N by K matrix C, K independent standard
normal random variables z1, ..., zK , that is, their means are zero and their
variances are one, and defining v = Cz. Then we have E(v) = 0 and
E(vv†) = CC† = Q. In fact, for the Gaussian case this is the only way to
obtain a correlated Gaussian random vector. The matrix C producing the
covariance matrix Q is not unique.

We can obtain an N by 1 noise vector v with any given N by N co-
variance matrix Q using the eigenvalue/eigenvector decomposition of Q. In
order for Q be be a covariance matrix it is necessary and sufficient that it
be Hermitian and nonnegative-definite; that is, Q† = Q and the eigenvalues
of Q are nonnegative. Then, taking U to be the matrix whose columns are
the orthonormal eigenvectors of Q and L the diagonal matrix whose diag-
onal entries are λn, n = 1, ..., N , the eigenvalues of Q, we have Q = ULU†.
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For convenience, we assume that λ1 ≥ λ2 ≥ ... ≥ λN > 0. Let z be a
random N by 1 vector whose entries are independent standard normal ran-
dom variables and let C = U

√
LU†, the hermitian square root of Q. Then

v = Cz has Q for its covariance matrix.
If we write this v as

v = (U
√
LU†)z = U(

√
LU†z) = Up

then p =
√
LU†z is uncorrelated; E(pp†) = L.

Principal components: We can write the entries of the vector v = Up
as

vn =

N
∑

m=1

umn pm (55.1)

where um is the eigenvector of Q associated with eigenvalue λm. Since the
variance of pm is λm equation (55.1) decomposes the vector v into compo-
nents of decreasing strength. The terms in the sum corresponding to the
smaller indices describe most of v; they are the principal components of
v. Each pm is a linear combination of the entries of v and principal com-
ponent analysis consists of finding these uncorrelated linear combinations
that best describe the correlated entries of v. The representation v = Up
expresses v as a linear combination of orthonormal vectors with uncorre-
lated coefficients. This is analogous to the Karhunen-Loève expansion for
stochastic processes [4].

Principal component analysis has as its goal the approximation of the
covariance matrix Q = E(vv†) by nonnegative-definite matrices of lower
rank. A related area is factor analysis, which attempts to describe the N
by N covariance matrix Q as Q = AA† + D, where A is some N by J
matrix, for some J < N , and D is diagonal. Factor analysis attempts to
account for the correlated components of Q using the lower rank matrix
AA†. Underlying this is a model for the random vector v:

v = Ax + w,

where both x and w are uncorrelated. The entries of the random vector
x are the common factors that affect each entry of v while those of w are
the special factors, each associated with a single entry of v. Factor analysis
plays an increasingly prominent role in signal and image processing [23], as
well as in the social sciences.

In [171] Gil Strang points out that, from a linear algebra standpoint,
factor analysis raises some questions. As his example below shows, the
representation of Q as Q = AA† +D is not unique. The matrix Q does not
uniquely determine the size of the matrix A:
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Q =







1 .74 .24 .24
.74 1 .24 .24
.24 .24 1 .74
.24 .24 .74 1






=







.7 .5

.7 .5

.7 −.5

.7 −.5







[

.7 .7 .7 .7

.5 .5 −.5 −.5

]

+ .26I

and

Q =







.6
√
.38 0

.6
√
.38 0

.4 0
√
.58

.4 0
√
.58











.6 .6 .4 .4√
.38

√
.38 0 0

0 0
√
.58

√
.58



+ .26I.

It is also possible to represent Q with different diagonal components D.
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Chapter 56

Signal Detection and

Estimation

In this chapter we consider the problem of deciding whether or not a par-
ticular signal is present in the measured data; this is the detection problem.
The underlying framework for the detection problem is optimal estimation
and statistical hypothesis testing [98].

The general model of signal in additive noise:

The basic model used in detection is that of a signal in additive noise. The
complex data vector is x = (x1, x2, ..., xN )T . We assume that there are two
possibilities:

Case 1: noise only

xn = zn, n = 1, ..., N,

or

Case 2: signal in noise

xn = γsn + zn,

where z = (z1, z2, ..., zN )T is a complex vector whose entries zn are values
of random variables that we call noise, about which we have only statistical
information (that is to say, information about the average behavior), s =
(s1, s2, ..., sN )T is a complex signal vector that we may known exactly, or
at least for which we have a specific parametric model and γ is a scalar that
may be viewed either as deterministic or random (but unknown, in either
case). Unless otherwise stated, we shall assume that γ is deterministic.
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The detection problem is to decide which case we are in, based on some
calculation performed on the data x. Since Case 1 can be viewed as a
special case of Case 2 in which the value of γ is zero, the detection problem
is closely related to the problem of estimating γ, which we discussed in the
chapter dealing with the best linear unbiased estimator, the BLUE.

We shall assume throughout that the entries of z correspond to random
variables with means equal to zero. What the variances are and whether or
not these random variables are mutually correlated will be discussed below.
In all cases we shall assume that this information has been determined
previously and is available to us in the form of the covariance matrix Q =
E(zz†) of the vector z; the symbol E denotes expected value, so the entries
of Q are the quantities Qmn = E(zmzn). The diagonal entries of Q are
Qnn = σ2

n, the variance of zn.
Note that we have adopted the common practice of using the same

symbols, zn, when speaking about the random variables and about the
specific values of these random variables that are present in our data. The
context should make it clear to which we are referring.

In case 2 we say that the signal power is equal to |γ|2 1
N

∑N
n=1 |sn|2 =

1
N |γ|2s†s and the noise power is 1

N

∑N
n=1 σ

2
n = 1

N tr(Q), where tr(Q) is the
trace of the matrix Q, that is, the sum of its diagonal terms; therefore the
noise power is the average of the variances σ2

n. The input signal-to-noise
ratio (SNRin) is the ratio of the signal power to that of the noise, prior to
processing the data; that is,

SNRin =
1

N
|γ|2s†s/

1

N
tr(Q) = |γ|2s†s/tr(Q).

Optimal linear filtering for detection:

In each case to be considered below, our detector will take the form of a
linear estimate of γ; that is, we shall compute the estimate γ̂ given by

γ̂ =

N
∑

n=1

bnxn = b†x,

where b = (b1, b2, ..., bN )T is a vector to be determined. The objective is
to use what we know about the situation to select the optimal b, which
will depend on s and Q.

For any given vector b, the quantity

γ̂ = b†x = γb†s + b†z

is a random variable whose mean value is equal to γb†s and whose variance
is

var(γ̂) = E(|b†z|2) = E(b†zz†b) = b†E(zz†)b = b†Qb.
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Therefore, the output signal-to-noise ratio (SNRout) is defined to be

SNRout = |γb†s|2/b†Qb.

The advantage we obtain from processing the data is called the gain asso-
ciated with b and is defined to be the ratio of the SNRout to SNRin; that
is

gain(b) =
|γb†s|2/(b†Qb)

|γ|2(s†s)/tr(Q)
=

|b†s|2 tr(Q)

(b†Qb)(s†s)
.

The best b to use will be the one for which gain(b) is the largest. So,
ignoring the terms in the gain formula that do not involve b, we see that

the problem becomes maximize |b†s|2
b†Qb

, for fixed signal vector s and fixed
noise covariance matrix Q.

The Cauchy inequality plays a major role in optimal filtering and de-
tection:

Cauchy’s inequality: for any vectors a and b we have

|a†b|2 ≤ (a†a)(b†b),

with equality if and only if a is proportional to b, that is, there is a scalar
β such that b = βa.

Exercise 1: Use Cauchy’s inequality to show that, for any fixed vector a,
the choice b = βa maximizes the quantity |b†a|2/b†b, for any constant β.

Exercise 2: Use the definition of the covariance matrix Q to show that
Q is Hermitian and that, for any vector y, y†Qy ≥ 0. Therefore Q is a
nonnegative definite matrix and, using its eigenvector decomposition, can
be written as Q = CC†, for some invertible square matrix C.

Exercise 3: Consider now the problem of maximizing |b†s|2/b†Qb. Using
the two previous exercises, show that the solution is b = βQ−1s, for some
arbitrary constant β.

We can now use the results of these exercises to continue our discussion.
We choose the constant β = 1/(s†Q−1s) so that the optimal b has b†s = 1;
that is, the optimal filter b is

b = (1/(s†Q−1s))Q−1s

and the optimal estimate of γ is

γ̂ = b†x = (1/(s†Q−1s))(s†Q−1x).
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The random variable γ̂ has mean equal to γb†s = γ and variance equal to
1/(s†Q−1s). Therefore, the output signal power is |γ|2, the output noise
power is 1/(s†Q−1s) and so the output signal-to-noise ratio (SNRout) is

SNRout = |γ|2(s†Q−1s).

The gain associated with the optimal vector b is then

maximum gain =
(s†Q−1s) tr(Q)

(s†s)
.

The calculation of the vector C−1x is sometimes called prewhitening since
C−1x = γC−1s + C−1z and the new noise vector, C−1z, has the identity
matrix for its covariance matrix. The new signal vector is C−1s. The
filtering operation that gives γ̂ = b†x can be written as

γ̂ = (1/(s†Q−1s))(C−1s)†C−1x;

the term (C−1s)†C−1x is described by saying that we prewhiten, then do
a matched filter. Now we consider some special cases of noise.

The case of white noise:

We say that the noise is white noise if the covariance matrix is Q = σ2I,
where I denotes the identity matrix that is one on the main diagonal and
zero elsewhere and σ > 0 is the common standard deviation of the zn. This
means that the zn are mutually uncorrelated (independent, in the Gaussian
case) and share a common variance.

In this case the optimal vector b is b = 1
(s†s)

s and the gain is N . Notice

that γ̂ now involves only a matched filter. We consider now some special
cases of the signal vectors s.

Constant signal: Suppose that the vector s is constant, that is, s = 1 =
(1, 1, ..., 1)T . Then we have

γ̂ =
1

N

N
∑

n=1

xn.

This is the same result we found in our discussion of the BLUE, when we
estimated the mean value and the noise was white.

Sinusoidal signal - known frequency: Suppose

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))
T ,
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where ω0 denotes a known frequency in [−π, π). Then b = 1
N e(ω0) and

γ̂ =
1

N

N
∑

n=1

xn exp(inω0);

so we see yet another occurrence of the DFT.

Sinusoidal signal - unknown frequency: If we do not know the value
of the signal frequency ω0 a reasonable thing to do is to calculate the γ̂ for
each (actually, finitely many) of the possible frequencies within [−π, π) and
base the detection decision on the largest value; that is, we calculate the
DFT as a function of the variable ω. If there is only a single ω0 for which
there is a sinusoidal signal present in the data, the values of γ̂ obtained at
frequencies other than ω0 provide estimates of the noise power σ2, against
which the value of γ̂ for ω0 can be compared.

The case of correlated noise:

We say that the noise is correlated if the covariance matrix is Q is not a
multiple of the identity matrix. This means either that the zn are mutually
correlated (dependent, in the Gaussian case) or that they are uncorrelated,
but have different variances.

In this case, as we saw above, the optimal vector b is

b =
1

(s†Q−1s)
Q−1s

and the gain is

maximum gain =
(s†Q−1s) tr(Q)

(s†s)
.

How large or small the gain is depends on how the signal vector s relates
to the matrix Q.

For sinusoidal signals, the quantity s†s is the same, for all values of the
parameter ω; this is not always the case, however. In passive detection of
sources in acoustic array processing, for example, the signal vectors arise
from models of the acoustic medium involved. For far-field sources in an
(acoustically) isotropic deep ocean, planewave models for s will have the
property that s†s does not change with source location. However, for near-
field or shallow-water environments, this is usually no longer the case.

It follows from an earlier exercise that the quantity s†Q−1s

s†s
achieves its

maximum value when s is an eigenvector of Q associated with its smallest
eigenvalue, λN ; in this case, we are saying that the signal vector does not
look very much like a typical noise vector. The maximum gain is then
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λ−1
N tr(Q). Since tr(Q) equals the sum of its eigenvalues, multiplying by
tr(Q) serves to normalize the gain, so that we cannot get larger gain simply
by having all the eigenvalues of Q small.

On the other hand, if s should be an eigenvector of Q associated with
its largest eigenvalue, say λ1, then the maximum gain is λ−1

1 tr(Q). If
the noise is signal-like, that is, has one dominant eigenvalue, then tr(Q)
is approximately λ1 and the maximum gain is around one, so we have
lost the maximum gain of N we were able to get in the white noise case.
This makes sense, in that it says that we cannot significantly improve our
ability to discriminate between signal and noise by taking more samples, if
the signal and noise are very similar.

Constant signal with unequal-variance uncorrelated noise: Sup-
pose that the vector s is constant, that is, s = 1 = (1, 1, ..., 1)T . Suppose
also that the noise covariance matrix is Q = diag{σ1, ..., σN}.

In this case the optimal vector b has entries

bm =
1

(
∑N
n=1 σ

−1
n )

σ−1
m ,

for m = 1, ..., N , and we have

γ̂ =
1

(
∑N
n=1 σ

−1
n )

N
∑

m=1

σ−1
m xm.

This is the BLUE estimate of γ in this case.

Sinusoidal signal - known frequency, in correlated noise: Suppose

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))
T ,

where ω0 denotes a known frequency in [−π, π). In this case the optimal
vector b is

b =
1

e(ω0)†Q−1e(ω0)
Q−1e(ω0)

and the gain is

maximum gain =
1

N
[e(ω0)

†Q−1e(ω0)]tr(Q).

How large or small the gain is depends on the quantity q(ω0), where

q(ω) = e(ω)†Q−1e(ω).

The function 1/q(ω) can be viewed as a sort of noise power spectrum,
describing how the noise power appears when decomposed over the various
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frequencies in [−π, π). The maximum gain will be large if this noise power
spectrum is relatively small near ω = ω0; however, when the noise is similar
to the signal, that is, when the noise power spectrum is relatively large
near ω = ω0, the maximum gain can be small. In this case the noise power
spectrum plays a role analogous to that played by the eigenvalues of Q
earlier.

To see more clearly why it is that the function 1/q(ω) can be viewed
as a sort of noise power spectrum, consider what we get when we apply
the optimal filter associated with ω to data containing only noise. The
average output should tell us how much power there is in the component of
the noise that resembles e(ω); this is essentially what is meant by a noise
power spectrum. The result is b†z = (1/q(ω))e(ω)†Q−1z. The expected
value of |b†z|2 is then 1/q(ω).

Sinusoidal signal - unknown frequency: Again, if we do not know the
value of the signal frequency ω0 a reasonable thing to do is to calculate
the γ̂ for each (actually, finitely many) of the possible frequencies within
[−π, π) and base the detection decision on the largest value. For each ω
the corresponding value of γ̂ is

γ̂(ω) = [1/(e(ω)†Q−1e(ω))]

N
∑

n=1

an exp(inω),

where a = (a1, a2, ..., aN )T satisfies the linear system Qa = x or a =
Q−1x. It is interesting to note the similarity between this estimation pro-
cedure and the PDFT discussed in earlier notes; to see the connection view
[1/(e(ω)†Q−1e(ω))] in the role of P (ω) and Q its corresponding matrix of
Fourier transform values. The analogy breaks down when we notice that
Q need not be Toeplitz, as in the PDFT case; however, the similarity is
intriguing.
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Chapter 57

Random Signal Detection

We consider now the detection and estimation problem for the case in which
the signal components have random aspects as well.

Random amplitude sinusoid in noise:

A somewhat more general model for sinusoids in additive noise is the fol-
lowing. The complex data vector is x = (x1, x2, ..., xN )T . We assume that
there are two possibilities:

Case 1: noise only
xn = zn, n = 1, ..., N,

or

Case 2: signal in noise

xn = γsn + zn,

where γ = |γ| exp(iθ) is an unknown value of a complex random variable
whose magnitude |γ| and phase θ are mutually independent and indepen-
dent of the noise. In this case the mean value of γ can be zero, if θ is
distributed uniformly over [−π, π). The presence of a nonzero signal com-
ponent is detected through the increase in the variance, not through a
nonzero mean value, as above. The calculations are basically the same as
the earlier ones and we shall not consider this case further.

Multiple independent sinusoids in noise:

We mention briefly the case in which there may be more than one sinusoid
present. For this case a random model is typically used, in which the
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magnitudes and phases of the different sinusoids are taken to be mutually
independent. Statistical hypothesis testing theory tells us that we should
detect in two steps now:

1: perform a maximum likelihood estimation of the number and location
(in frequency space) of the sinusoidal components; then

2: use the optimal linear filtering to estimate their respective coefficients,
the γ’s.

The first step is computationally intractible and various suboptimal, but
computationally efficient, alternatives are commonly used. These alterna-
tive methods can involve the eigenvector- or singular value decomposition
of certain matrices formed from the data vector x, and so are nonlinear
procedures. How well we can detect two or more separate signals will, of
course, depend on how distinct their s vectors are, how distinct each is
from the noise, how accurate our knowledge of the noise correlation matrix
Q is, how accurate our model of the s is and on the value of N ; this is
the resolution problem. Our ability to resolve will also depend on the ac-
curacy of the measurements, therefore on the hardware used to collect the
measurements.

Data-adaptive high resolution methods:

In all of the discussion so far, we have assumed that the noise correlation
matrix Q was available to use in forming the optimal filter b. The Q may
depend on data previously obtained or may simply be the result of a model
chosen to describe the physical situation. In some applications, such as
sonar array processing, the Q may vary from minute to minute; it would
be helpful if we could obtain as good an estimate as possible of the current
value of Q, but this would require measurements, at the present moment, of
the noise without the embedded signal, which is impossible. One approach,
due to Capon [56], is a data-adaptive high resolution detection; it has been
used in the case in which there are potentially more than one signal present,
to achieve higher resolution than that obtainable by the methods we have
discussed so far.

Data-adaptive high resolution methods- sinusoidal signals
The idea behind these methods is to use the data vector x to estimate

the noise correlation matrix. Since the vector x may also contain signals, it
would seem that we would be lumping signals in with noise and designing
a filter b to suppress everything. The constraint b†e(ω) = 1 saves us,
however.

Suppose that there are two signals present: then the vector x has com-
ponents

xn = γ1 exp(−inω1) + γ2 exp(−inω2) + zn,
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for n = 1, ..., N . When we are trying to detect e(ω1) it is fine if the e(ω2)
component is viewed as noise, and vice versa. High resolution depends
on what the output of our filter is when we look at a frequency ω that is
between ω1 and ω2; now it is advantageous that the signal components are
lumped in with the noise.

To obtain a substitute for Q we partition the N by 1 data vector x into
K smaller M by 1 vectors, denoted yk, for k = 1, ...,K and N = MK.
Specifically, we let

ykm = x(k−1)M+m, m = 1, ...,M,

for k = 1, 2, ...,K. We then define the M by M matrix R as follows:

Rjm =
1

K

K
∑

k=1

ykj y
k
m,

for j, m = 1, 2, ...,M . The matrix R is then Hermitian and nonnegative
definite. The signal components involving e(ω1) and e(ω2) are transformed
into shorter components of the form

ẽ(ω) = (exp(−iω), ..., exp(−iMω))T .

To obtain our data-adaptive estimate of the γ of the potential signal com-
ponent ẽ(ω) we apply the optimal filtering, as before, but to each of the
vectors yk separately, using R instead of Q and using ẽ(ω) instead of e(ω).
We then average the squared magnitudes of the resulting estimates over
k = 1, ...,K, to obtain our estimate of the |γ|2 associated with ω.

Capon’s data-adaptive estimator:

|γ̂(ω)|2 = 1/(ẽ(ω)†R−1(ẽ(ω)).

Exercise 1: (or better, Research Project 1.) What is going on here?
Why is this method ‘high resolution’ ? What does R look like? What are
its eigenvalues and eigenvectors? Can we apply it to signals other than
sinusoids? Is it important that the signal coefficients (the γ’s) be random?
What can go wrong? How can it be fixed?
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Chapter 58

Parameter Estimation in

Reconstruction

In its most general formulation our problem is simple. We have a vector
of measured data y = (y1, ..., yI)

T . Related to the data in some way is a
vector x = (x1, ..., xJ)T whose entries are parameters we wish to determine.
To solve the problem we need to describe the relationship between y and
x and then use this description to solve for x. As always, the devil is in
the details.

The problem as stated is so general as to include problems that lie out-
side our main area of interest, such as drawing inferences from census data.
While we do not need to exclude such problems, to which many of the
techniques discussed in this book indeed apply, we shall focus here on ap-
plications in which the relationship between data and parameters involves
a physical model describing some form of remote sensing or imaging. The
vector x will often represent a vectorization of a discretized two-dimensional
distribution; that is, x will be a vectorized image. The data vector y in
such cases may also be a vectorized image, such as a blurred version of
x, or may simply be measurements, such as projections, related to x. On
occasion we shall formulate our problem in terms of finding a continuous
distribution, as in our discussion of the Radon transform in tomography.
But for the most part it is sufficient to assume that a discretization has
taken place and that the unknowns are entries of a finite vector x.

In all of the applications of interest the data is noisy and the relationship
between the data and the parameters imperfectly known. Even in the
absence of these errors the measurements may not be sufficient to specify
a unique solution. There will always be a trade-off between the complexity
of the description of the relationship and the ease of solving for the desired
x.
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Because the measurements involve noise the relationship of the data
to the parameters must include randomness. We shall find it useful to
consider our problem as statistical parameter estimation. While this choice
may seem overly restrictive it is general enough for our purposes and is,
in fact, a fairly popular choice in the literature of signal processing, image
reconstruction and remote sensing.

Statistical parameter estimation: Suppose that Y is a random vector
whose probability density function (pdf) f(y;x) is a function of the vector
variable y and is a member of a family of pdf parametrized by the vector
variable x. Our data is one instance of Y, that is, one particular value
of the variable y, which we also denote by y. We want to estimate the
correct value of the variable x, which we shall also denote by x. This
notation is standard and the dual use of the symbols y and x should not
cause confusion. Given the particular y we can estimate the correct x by
viewing f(y;x) as a function of the second variable, with the first variable
held fixed. This function of the parameters only is called the likelihood
function. A maximum likelihood (ML) estimate of the parameter vector x
is any value of the second variable for which the function is maximized.
We consider several examples.

Example 1: Estimating a Gaussian mean: Let Y1, ..., YI be I indepen-
dent Gaussian (or normal) random variables with known variance σ2 = 1
and unknown common mean µ. Let Y = (Y1, ..., YI)

T . The parameter x
we wish to estimate is the mean x = µ. Then the random vector Y has
the pdf

f(y;x) = (2π)−I/2 exp(−1

2

∑I

i=1
(yi − x)2).

Holding y fixed and maximizing over x is equivalent to minimizing

∑I

i=1
(yi − x)2

as a function of x. The ML estimate is the arithmetic mean of the data,

xML =
1

I

I
∑

i=1

yi.

Notice that E(Y), the expected value of Y, is the vector x all of whose
entries are x = µ. The ML estimate is the least squares solution of the
overdetermined system of equations y = E(Y), that is,

yi = x

for i = 1, ..., I.
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The least squares solution of a system of equations Ax = b is the
vector that minimizes the Euclidean distance between Ax and b; that is,
it minimizes the Euclidean norm of their difference, ||Ax − b||2, where, for
any two vectors a and b we define

||a − b||2 =

I
∑

i=1

(ai − bi)
2.

As we shall see in the next example, another important measure of distance
is the Kullback-Leibler (KL) distance between two nonnegative vectors c
and d, given by

KL(c,d) =

I
∑

i=1

ci log(ci/di) + di − ci.

Example 2: Estimating a Poisson mean Let Y1, ..., YI be I indepen-
dent Poisson random variables with unknown common mean λ, which is
the parameter x we wish to estimate. Let Y = (Y1, ..., YI)

T . Then the
probability function of Y is

f(y;x) =

I
∏

i=1

exp(−x)xyi/(yi)!.

Holding y fixed and maximizing this likelihood function over positive values
of x is equivalent to minimizing the Kullback-Leibler distance between the
nonnegative vector y and the vector x whose entries are all equal to x,
given by

KL(y,x) =

I
∑

i=1

yi log(yi/x) + x− yi.

The ML estimator is easily seen to be the arithmetic mean of the data,

xML =
1

I

I
∑

i=1

yi.

The vector x is again E(Y), so the ML estimate is once again obtained by
finding an approximate solution of the overdetermined system of equations
y = E(Y). In the previous example the approximation was in the least
squares sense, whereas here it is in the minimum KL sense; the ML estimate
is the arithmetic mean in both cases because the parameter to be estimated
is one-dimensional.

Example 3: Estimating a uniform mean Suppose now that Y1, ..., YI
are independent random variables uniformly distributed over the interval
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[0, 2x]. The parameter to be determined in their common mean, x. The
random vector Y = (Y1, ..., YI)

T has the pdf

f(y;x) = x−I , for 2x ≥ m,

f(y;x) = 0 , otherwise ,

where m is the maximum of the yi. For fixed vector y the ML estimate
of x is m/2. The expected value of Y is E(Y) = x whose entries are all
equal to x. In this case the ML estimator is not obtained by finding an
approximate solution to the overdetermined system y = E(Y).

Since we can always write

y = E(Y) + (y − E(Y))

we can model y as the sum of E(Y) and mean-zero error or noise. Since
f(y;x) depends on x so does E(Y). Therefore it makes some sense to
consider estimating our parameter vector x using an approximate solution
for the system of equations

y = E(Y).

As the first two examples (as well as many others) illustrate, this is what
the ML approach often amounts to, while the third example shows that
this is not always the case, however. Still to be determined, though, is the
metric with respect to which the approximation is to be performed. As
the Gaussian and Poisson examples showed, the ML formalism can provide
that metric. In those overly simple cases it did not seem to matter which
metric we used, but it does matter.

Example 4: Image restoration A standard model for image restoration
is the following:

y = Ax + z,

where y is the blurred image, A is an I by J matrix describing the linear
imaging system, x is the desired vectorized restored image and z is (possibly
correlated) mean-zero additive Gaussian noise. The noise covariance matrix
is Q = E(zzT ). Then E(Y) = Ax and the pdf is

f(y;x) = c exp(−(y −Ax)TQ−1(y −Ax)),

where c is a constant that does not involve x. Holding y fixed and maxi-
mizing f(y;x) with respect to x is equivalent to minimizing

(y −Ax)TQ−1(y −Ax).

Therefore the ML solution is obtained by finding a weighted least squares
approximate solution of the overdetermined linear system y = E(Y), with



283

the weights coming from the matrix Q−1. When the noise terms are un-
correlated and have the same variance this reduces to the least squares
solution.

Example 5: Poisson mixtures The model of a Poisson mixture is com-
monly used in emission tomography and elsewhere. Let P be an I by
J matrix with nonnegative entries and let x = (x1, ..., xJ)T be a vector
of nonnegative parameters. Let Y1, ..., YI be independent Poisson random
variables with positive means

E(Yi) =

J
∑

j=1

Pijxj = (Px)i.

The probability function for the random vector Y is then

f(y;x) = c

I
∏

i=1

exp(−(Px)i)((Px)i)
yi ,

where c is a constant not involving x. Maximizing this function of x for
fixed y is equivalent to minimizing the KL distance KL(y, Px) over non-
negative x. The expected value of the random vector Y is E(Y) = Px
and once again we see that the ML estimate is a nonnegative approximate
solution of the system of (linear) equations y = E(Y), with the approxi-
mation in the KL sense. The system y = Px may not be overdetermined;
there may even be exact solutions. But we require in addition that x ≥ 0
and there need not be a nonnegative solution to y = Px. We see from this
example that constrained optimization plays a role in solving our problems.

In the previous two examples the expected value E(Y) was linear in the
vector x. This is a convenient and commonly employed model but does not
always apply, as we shall see in our discussion of transmission tomography.

The ML approach is not always the best approach. As we have seen,
the ML estimate is often found by solving, at least approximately, the sys-
tem of equations y = E(Y). Since noise is always present, this system of
equations is rarely a correct statement of the situation. It is possible to
overfit the mean to the noisy data, in which case the resulting x can be use-
less. In such cases Bayesian methods and maximum a posteriori estimation,
as well as other forms of regularization and penalty function techniques,
can help. Other approaches involve stopping iterative algorithms prior to
convergence.

In most applications the data is limited and it is helpful to include
prior information about the parameter vector x to be estimated. In the
Poisson mixture problem above the vector x must have nonnegative entries.
In certain applications, such as transmission tomography, we might have
upper bounds on suitable values of the entries of x.
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From a mathematical standpoint we are interested in the convergence of
iterative algorithms, while in many applications we want usable estimates
in a reasonable amount of time, often obtained by running an iterative
algorithm for only a few iterations. Algorithms designed to minimize the
same cost function can behave quite differently during the early iterations.
Iterative algorithms, such as block-iterative or incremental methods, that
can provide decent answers quickly will be important.

Formulating the problem as one of statistical parameter estimation and
then applying likelihood maximization is by no means the end of the story.
In the Poisson mixture problem we are told to minimize the KL distance
KL(y, Px) with respect to x ≥ 0, but we are not told how to do this.
Even in the linear image restoration example we still need an algorithm for
finding the weighted least squares solution of the (possibly) overdetermined
system y = Ax. If there happen to be multiple exact solutions we still
would need a criterion (and an algorithm) for selecting one out the many
possibilities. Keeping in mind that these systems involve thousands of
equations and thousands of unknowns in most cases, we see that practical
considerations, such as storage and computation time, will be important.
With few exceptions the algorithms we shall consider here are iterative
ones.

The main problems of image reconstruction are deriving an accurate
model for the data collection, determining appropriate cost functions to be
minimized and obtaining suitable algorithms for this minimization. There
are, of course, general methods for minimization, such as steepest descent
methods, that can be applied to any problem. Because many of the mini-
mization problems encountered here will involve restrictions on the desired
solution, such as nonnegativity, we find that methods tailored to the specific
problem are often preferred.

In developing algorithms it helps to have some guiding principles or
paradigms. One such paradigm is fixed point iteration. Suppose that we
wish to minimize the real-valued cost function F (x). In the absence of
constraints this usually means that we want its gradient to vanish, that is,
we want f(x) = ∇F (x) = 0. Equivalently, we want an x which, for any
invertible matrix G, satisfies

x = x +G−1f(x);

that is, we want a fixed point of the operator

T (x) = x +G−1f(x).

An obvious way to find fixed points is to compute the sequence of iterates
{xk+1 = T (xk)}. The function f(x) is determined, but we are free to select
the matrix G. The objective is to find a G that is easily inverted and for
which the iteration converges.
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A second paradigm for image reconstruction is convex feasibility. The
parameter vector x to be estimated often is known to satisfy certain con-
straints which can be imposed by requiring that x be a member of each
of several closed convex sets, Cm, m = 1, ...,M . Finding a member of the
intersection of convex sets is called the convex feasibility problem (CFP).
The projection onto convex sets (POCS) method is one way to derive an al-
gorithm to solve the CFP. Several of the algorithms we shall consider later
are best derived using alternating minimization methods, which is POCS
with M = 2. These algorithms are also fixed point iteration schemes, com-
bining the two paradigms. Sometimes the algorithms are designed so that
the constraints are satisfied not only by the limit vector, but by each of the
iterates xk; these methods are interior point algorithms.
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Chapter 59

Emission Tomography

In positron emission tomography (PET) and single photon emission tomog-
raphy (SPECT) the patient swallows, inhales or is injected with chemicals
to which radioactive material has been chemically attached. The chemi-
cals are designed to accumulate in that specific region of the body we wish
to image. For example, we may be looking for tumors in the abdomen,
weakness in the heart wall or evidence of brain activity in a selected re-
gion. The patient is placed on a table surrounded by detectors that count
the number of emitted photons. On the basis of where the various counts
were obtained, we wish to determine the concentration of radioactivity at
various locations throughout the region of interest within the patient.

In SPECT the radionuclide emits single photons, which then travel
through the body of the patient and, in some fraction of the cases, are
detected. Detections in SPECT correspond to individual sensor locations
outside the body. The data is SPECT are the photon counts at each of the
finitely many detector locations.

In PET the situation is different. The radionuclide emits individual
positrons, which travel, on average, between 4 mm and 2.5 cm (depending
on their kinetic energy) before encountering an electron. The resulting an-
nihilation releases two gamma-ray photons that then proceed in essentially
opposite directions. Detection in the PET case means the recording of two
photons at nearly the same time at two different detectors. The locations of
these two detectors then provide the end points of the line segment passing,
more or less, through the site of the original positron emission. Therefore
each possible pair of detectors determines a line of response (LOR). Because
there are so many such LOR the odds are good that no LOR is recorded
more than once and most are never recorded. When a LOR is recorded it
is assumed that a positron was emitted somewhere along that line. The
PET data consists of the list of LOR that are recorded. Because the two
photons detected at either end of the LOR are not detected at exactly the
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same time the time difference can be used in time of flight PET to further
localize the site of the emission to a smaller segment of perhaps 8 cm in
length.

In what follows we use the term detector in whichever sense is appro-
priate for the modality under discussion. We begin by discretizing the
problem; that is, we imagine the region of interest within the patient to
consist of finitely many tiny squares, called pixels for two dimensional pro-
cessing or cubes, called voxels for three dimensional processing. In what
follows we shall not distinguish the two cases, but as a linguistic shorthand,
we shall refer to ‘pixels’ indexed by j = 1, ..., J . The detectors are indexed
by i = 1, ..., I, the count obtained at detector i is denoted yi and the vector
y = (y1, ..., yI)

T is our data. In practice, for the fully 3D case, I and J can
be several hundred thousand.

We imagine that each pixel j has its own level of concentration of ra-
dioactivity and these concentration levels are what we want to determine.
Proportional to these concentration levels are the average rates of emission
of photons; the average rate for j we denote by xj . The goal is to determine
the vector x = (x1, ..., xJ)T from y.

To achieve our goal we must construct a model that relates y to x.
The standard way to do this is to adopt the model of independent Poisson
emitters. For i = 1, ..., I and j = 1, ..., J denote by Zij the random variable
whose value is to be the number of photons detected at detector i during
the scanning time that were emitted from pixel j. We assume that the
members of the collection {Zij |i = 1, ..., I, j = 1, ..., J} are independent. In
keeping with standard practice in modelling radioactivity, we also assume
the Zij are Poisson distributed.

We assume that Zij is a Poisson random variable whose mean value
(and variance) is λij = Pijxj . Here the xj ≥ 0 is the average rate of
emission from pixel j, as discussed above, and Pij ≥ 0 is the probability
that a photon emitted from pixel j will be detected at detector i. We
then define the random variables Yi =

∑J
j=1 Zij , the total counts to be

recorded at detector i; our actual count yi is then the observed value of the
random variable Yi. Note that the actual value of the individual Zij are
not observable.

So far the problem looks like a fairly standard parameter estimation
problem of the sort studied in beginning statistics. There is one problem,
however; we do not know what the Pij are. These values will vary from one
patient to the next, since whether or not a photon makes it from a given
pixel to a given detector depends on the geometric relationship between
detector i and pixel j, as well as what is in the patient’s body between these
two locations. If there are ribs or skull getting in the way, the probability
of making it goes down. If there are just lungs, the probability goes up.
There are additional complications when we try to image a beating heart.
One way or another, we decide on our values of the Pij .
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The EMML Algorithm

In our discussion of emission tomography we saw that the photon count
data can reasonably be viewed as a linear superposition or mixture of
finitely many independent Poisson random variables, whose mean values
we wish to estimate. The expectation maximization maximum likelihood
method, called the EM algorithm, is a general statistical procedure for it-
erative parameter estimation [82]. What we shall call the EMML method
is the algorithm obtained when we apply the general EM algorithm to the
particular problem posed by emission tomography [132], [133], [179]. As
we shall see, the EMML can be used more generally to find approximate
solutions of nonnegative systems of linear equations. The likelihood func-
tion we maximize here is closely related to a certain cross-entropy distance,
leading us to a short discussion of entropy-maximizing methods.

Let {Zij , i = 1, ..., I, j = 1, ..., J} be independent Poisson random vari-
ables, with E(Zij) = Pijxj ≥ 0, where P = [Pij ] is a matrix with non-
negative entries and x = (x1, ..., xJ)T is a column vector with nonnega-

tive entries. Let Yi =
∑J
j=1 Zij , i = 1, ..., I. Then the {Yi, i = 1, ..., I}

are independent Poisson random variables, with E(Yi) = Pxi = (Px)i =
∑J
j=1 Pijxj . For the sake of notational convenience we assume that the

problem is normalized so that
∑

i Pij = 1, for j = 1, ..., J ; here
∑

i =
∑I
i=1.

The log likelihood function LLy(x) now has the form

LLy(x) =
∑

i
yi log(Pxi) − Pxi − log(yi!). (60.1)

According to the Karush-Kuhn-Tucker theorem [155], at a maximizer x̂ of
LLy(x) the gradient must have the properties

∇LLy(x̂)j =
∑

i
[
yi
P x̂i

− 1]Pij ≤ 0, j = 1, ..., J, (60.2)
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and

∇LLy(x̂)j =
∑

i
[
yi
P x̂i

− 1]Pij = 0, (60.3)

for all j such that x̂j > 0. A closed form expression for the solution x̂ is
not available and an iterative procedure is needed.

If we had observed the vector z = {zij |i = 1, ..., I, j = 1, ..., J}, then we
could maximize the log likelihood function LLz(x), which has the form

LLz(x) =
∑

i

∑

j
zij log(Pijxj) − Pijxj − log(zij !). (60.4)

The maximizing x can be obtained in closed form as

xj =
∑

i
zij , (60.5)

recalling that
∑

i Pij = 1, j = 1, ..., J .

The EM algorithm: the general EM algorithm [82] is the following two-
step iterative procedure. Having obtained xk, let zkij be the conditional

expected value of Zij , conditioned on xk and the data y. Now we maximize
LLzk(x) to get xk+1. Now increment k to k + 1 and repeat the two steps.

Now we consider the EM algorithm as it applies in the Poisson case.
Since Zij is Pijx

k
j -Poisson and the sum

∑

j Zij = yi, we know that the
conditional expected value is

zkij = Pijx
k
j

yi
Pxki

. (60.6)

Now we maximize LLzk(x) to get xk+1; using (60.5), we have that

xk+1
j = xkj

∑

i
Pij

yi
Pxki

, (60.7)

for j = 1, ..., J . We begin with x0 > 0 and proceed iteratively, as above.
Then the sequence xk converges to a maximizer of LLy(x). We refer to
this specific instance of the EM algorithm as the EMML algorithm.

For a > 0 and b > 0 let the Kullback-Leibler or cross-entropy distance
from a to b be defined by

KL(a, b) = a log
a

b
+ b− a ≥ 0,

with KL(0, b) = b and KL(a, 0) = +∞. For vectors a = (a1, ..., aN )T and
b = (b1, ..., bN )T with nonnegative entries define

KL(a,b) =
∑N

n=1
KL(an, bn).
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If 1 = (1, 1, ..., 1)T then

KL(a,1) = N +
∑N

n=1
an log an − an;

the sum

−
∑N

n=1
an log an − an

is sometimes called the Shannon entropy of the vector a. The quantity

−KL(1,b) =
∑N

n=1
log bn − bn

is sometimes called the Burg entropy of the vector b.
The negative of the likelihood function above is, except for terms not

involving the variable x, equal to the quantity KL(y, Px). The follow-
ing convergence theorem for the EMML algorithm is due to Csiszár and
Tusnády [76].

Theorem 60.1 For any positive starting vector x0 the EMML sequence
xk converges to a nonnegative minimizer x∞ of KL(y, Px). If the linear
system of equations y = Px has nonnegative solutions, then y = Px∞. For
any nonnegative minimizer x̂ of KL(y, Px), we have KL(x̂,x∞) < +∞, so
the support of the vector x∞ must be maximal with respect to all nonnegative
minimizers of KL(y, Px).

In the inconsistent case, in which the system y = Px has no nonnegative
solutions, the nonnegative minimizer ofKL(y, Px) is almost always unique,
regardless of the relative sizes of I and J , as the following theorem shows
[29]. Say that the matrix P has the ‘full rank property’ (FRP) if P and
every submatrix obtained from P by deleting columns have full rank.

Theorem 60.2 Let P have the FRP and let y = Px have no nonnega-
tive solution. Then there is a subset S of {j = 1, ..., J}, having cardinal-
ity at most I − 1, with the property that any nonnegative minimizer x̂ of
KL(y, Px) has positive entries, x̂j > 0, only if j ∈ S. Consequently, x̂ is
unique.

Maximum entropy solutions:

Suppose that the system y = Px has nonnegative solutions. We sometimes
seek the solution having the maximum Shannon entropy; that is, we want
to maximize KL(x,1), subject to y = Px. Although the EMML algorithm
gives a nonnegative solution it will not generally be the maximum Shannon
entropy solution. On the other hand, the simultaneous multiplicative ART
(SMART) algorithm does give the maximum Shannon entropy solution.
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The SMART is an iterative algorithm with the following iterative step:

xk+1
j = xkj exp[

∑

i
Pij log

yi
Pxki

],

for j = 1, ..., J . When there are nonnegative solutions to y = Px the
SMART converges to that solution minimizing KL(x,x0), where x0 > 0 is
the starting vector; if x0 = 1 then we get the maximum Shannon entropy
solution. If there are no nonnegative solutions of y = Px then the SMART
converges to the minimizer ofKL(Px,y) for whichKL(x,x0) is minimized.

Transforming from a general linear system to a nonneg-

ative one

Suppose that Hc = d is an arbitrary (real) system of linear equations,
with the matrix H = [Hij ]. Rescaling the equations if necessary, we may
assume that for each j the column sum

∑

iHij is nonzero; note that if a
particular rescaling of one equation to make the first column sum nonzero
causes another column sum to become zero, we simply choose a different
rescaling. Since there are finitely many columns to worry about, we can
always succeed in making all the column sums nonzero. Now redefineH and
c as follows: replace Hkj with Gkj =

Hkj
∑

i
Hij

and cj with gj = cj
∑

iHij ;

the product Hc is equal to Gg and the new matrix G has column sums
equal to one. The system Gg = d still holds, but now we know that
∑

i di = d+ =
∑

j gj = g+. Let U be the matrix whose entries are all one
and let t ≥ 0 be large enough so that B = G + tU has all nonnegative
entries. Then Bg = Gg + (tg+)1, where 1 is the vector whose entries are
all one. So the new system of equations to solve is Bg = d + (td+)1 = y.

In the algorithms of interest to us we often made the further assumption
that the column sums of the matrix are all one. To achieve this, we make
one additional renormalization: replace Bkj with Pkj =

Bkj
∑

i
Bij

and gj with

xj = gj
∑

iBij ; the product Bg is equal to Px and the new matrix P is
nonnegative and has column sums equal to one.
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A Tale of Two Algorithms

The expectation maximization maximum likelihood method (EMML) dis-
cussed in the previous chapter has been the subject of much attention in
the medical imaging literature over the past decade. Statisticians like it
because it is based on the well studied principle of likelihood maximization
for parameter estimation. Physicists like it because, unlike its competition,
filtered backprojection, it permits the inclusion of sophisticated models of
the physical situation. Mathematicians like it because it can be derived
from iterative optimization theory. Physicians like it because the images
are better than those produced by other means. No method is perfect,
however, and the EMML suffers from sensitivity to noise and slow rate of
convergence. Research is ongoing to find faster and less sensitive versions
of this algorithm.

Another class of iterative algorithms were introduced into medical imag-
ing by Gordon et al in [102]. These include the algebraic reconstruction
technique (ART) and its multiplicative version, MART. These methods
were derived by viewing image reconstruction as solving systems of linear
equations, possibly subject to constraints, such as positivity. The simulta-
neous MART (SMART) [80], [162] is a variant of MART that uses all the
data at each step of the iteration.

Although the EMML and SMART algorithms have quite different his-
tories and are not typically considered together they are closely related [29],
[30]. In this chapter we examine these two algorithms in tandem, following
[31]. Forging a link between the EMML and SMART led to a better un-
derstanding of both of these algorithms and to new results. The proof of
convergence of the SMART in the inconsistent case [29] was based on the
analogous proof for the EMML [179], while discovery of the faster version
of the EMML, the rescaled block-iterative EMML (RBI-EMML) [32] came
from studying the analogous block-iterative version of SMART [62]. The
proofs we give here are elementary and rely mainly on easily established
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properties of the cross-entropy.
For a > 0 and b > 0 define the cross-entropy or Kullback-Leibler dis-

tance
KL(a, b) = a log(

a

b
) + b− a.

Let KL(a, 0) = +∞ and KL(0, b) = b. For nonnegative vectors x and z
define KL(x, z) component-wise:

KL(x, z) =

J
∑

j=1

KL(xj , zj).

Note that the KL distance has the property KL(cx, cz) = cKL(x, z) for
all positive scalars c.

Exercise 1: Let z+ =
∑J
j=1 zj > 0. Then

KL(x, z) = KL(x+, z+) +KL(x, (x+/z+)z). (61.1)

As we shall see, the KL distance mimics the ordinary Euclidean distance
in several ways that make it particularly useful in designing optimization
algorithms.

Let P be an I by J matrix with entries Pij ≥ 0, such that, for each

j = 1, ..., J , we have sj =
∑I
i=1 Pij > 0. Let y = (y1, ..., yI)

T with yi > 0
for each i. We shall assume throughout this chapter that sj = 1 for each j.
If this is not the case initially, we replace xj with xjsj and Pij with Pij/sj ;
the quantities (Px)i are unchanged.

For each nonnegative vector x for which (Px)i =
∑J
j=1 Pijxj > 0 let

r(x) = {r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjPij
yi

(Px)i

and
q(x)ij = xjPij .

The KL distances

KL(r(x), q(z)) =

I
∑

i=1

J
∑

j=i

KL(r(x)ij , q(z)ij)

and

KL(q(x), r(z)) =

I
∑

i=1

J
∑

j=1

KL(q(x)ij , r(z)ij)

will play important roles in the discussion that follows. Note that if there
is nonnegative x with r(x) = q(x) then y = Px.
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Some Pythagorean identities involving the KL distance: The itera-
tive algorithms we discuss in this chapter are derived using the principle of
alternating minimization, according to which the distances KL(r(x), q(z))
and KL(q(x), r(z)) are minimized, first with respect to the variable x and
then with respect to the variable z. Although the KL distance is not Eu-
clidean, and, in particular, not even symmetric, there are analogues of
Pythagoras’ theorem that play important roles in the convergence proofs.

Exercise 2: Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (61.2)

KL(r(x), q(z)) = KL(r(x), q(x′)) +KL(x′, z), (61.3)

for

x′
j = xj

I
∑

i=1

Pij
yi

(Px)i
; (61.4)

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z) −KL(Px, Pz); (61.5)

KL(q(x), r(z)) = KL(q(z′′), r(z)) +KL(x, z′′), (61.6)

for

z′′
j = zj exp(

I
∑

i=1

Pij log
yi

(Pz)i
). (61.7)

Note that it follows from equation (61.1) that KL(x, z)−KL(Px, Pz) ≥ 0.

The two algorithms: The algorithms we shall consider are the expec-
tation maximization maximum likelihood method (EMML) and the simul-
taneous multiplicative algebraic reconstruction technique (SMART). When
y = Px has nonnegative solutions both algorithms produce such a solution.
In general, the EMML gives a nonnegative minimizer of KL(y, Px), while
the SMART minimizes KL(Px,y) over nonnegative x.

For both algorithms we begin with an arbitrary positive vector x0. The
iterative step for the EMML method is

EMML:

xk+1
j = (xk)′

j = xkj

I
∑

i=1

Pij
yi

(Pxk)i
. (61.8)
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The iterative step for the SMART is

SMART:

xm+1
j = (xm)′′

j = xmj exp
(

I
∑

i=1

Pij log
yi

(Pxm)i

)

. (61.9)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

Exercise 3: Show that, for {xk} given by equation (61.8), {KL(y, Pxk)}
is decreasing and {KL(xk+1,xk)} → 0. Show that, for {xm} given by
equation (61.9), {KL(Pxm,y)} is decreasing and {KL(xm,xm+1)} → 0.

Hints: Use KL(r(x), q(x)) = KL(y, Px), KL(q(x), r(x)) = KL(Px,y)
and the Pythagorean identities.

Exercise 4: Show that the EMML sequence {xk} is bounded by showing

J
∑

j=1

xkj =

I
∑

i=1

yi.

Show that the SMART sequence {xm} is bounded by showing that

J
∑

j=1

xmj ≤
I
∑

i=1

yi.

Exercise 5: Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML
sequence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}.

Hint: Use the facts that {KL(xk+1,xk)} → 0 and {KL(xm,xm+1)} → 0.

Exercise 6: Let x̂ and x̃ minimize KL(y, Px) and KL(Px,y), respec-
tively, over all x ≥ 0. Then (x̂)′ = x̂ and (x̃)′′ = x̃.

Hints: Apply Pythagorean identities toKL(r(x̂), q(x̂)) andKL(q(x̃), r(x̃)).
Note that, because of convexity properties of the KL distance, even if

the minimizers x̂ and x̃ are not unique, the vectors P x̂ and P x̃ are unique.
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Exercise 7: For the EMML sequence {xk} with cluster point x∗ and x̂ as
above we have the double inequality

KL(x̂,xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂,xk+1), (61.10)

from which we conclude that the sequence {KL(x̂,xk)} is decreasing and
KL(x̂,x∗) < +∞.

Hint: For the first inequality calculate KL(r(x̂), q(xk)) two ways. For the

second one, use (x)′
j =

∑I
i=1 r(x)ij and Exercise 1.

Exercise 8: For the SMART sequence {xm} with cluster point x∗ and x̃
as above we have

KL(x̃,xm) −KL(x̃,xm+1) = KL(Pxm+1,y) −KL(P x̃,y)+

KL(P x̃, Pxm) +KL(xm+1,xm) −KL(Pxm+1, Pxm), (61.11)

from which we conclude that the sequence {KL(x̃,xm)} is decreasing,
KL(P x̃, Px∗) = 0 and KL(x̃,x∗) < +∞.

Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean identities.

Exercise 9: For x∗ a cluster point of the EMML sequence {xk} we have
KL(y, Px∗) = KL(y, P x̂). Therefore x∗ is a nonnegative minimizer of
KL(y, Px). Consequently, the sequence {KL(x∗,xk)} converges to zero,
and so {xk} → x∗.

Hint: Use the double inequality (61.10) and KL(r(x̂), q(x∗)).

Exercise 10: For x∗ a cluster point of the SMART sequence {xm} we
have KL(Px∗,y) = KL(P x̃,y). Therefore x∗ is a nonnegative minimizer
of KL(Px,y). Consequently, the sequence {KL(x∗,xm)} converges to
zero, and so {xm} → x∗. Moreover,

KL(x̃,x0) ≥ KL(x∗,x0)

for all x̃ as above.

Hints: Use Exercise 8. For the final assertion use the fact that the differ-
ence KL(x̃,xm) −KL(x̃,xm+1) is independent of the choice of x̃, since it
depends only on Px∗ = P x̃. Now sum over the index m.

Both the EMML and the SMART algorithms are slow to converge. For
that reason attention has shifted, in recent years, to block iterative versions
of these algorithms. We take up that topic in the next chapter.
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Chapter 62

List-mode EMML in PET

imaging

We saw earlier in our brief discussion of positron emission tomography
(PET) that a detection in PET is the nearly simultaneous recording of
photon arrival at two separate detector locations. The detection is then
associated with the line segment having these two locations as end points
and it is assumed that the original positron emission occurred somewhere
along that line segment. Such line segments are called lines of response
(LOR).

In the case of SPECT we know in advance the finite set of detector
locations at which photon arrivals can be detected. The data is then the
number of such arrivals recorded at each of these locations. In the case of
PET we maintain a list of the LOR associated with detections. We have
a choice to make now. For each pair of end points x1 = (x1, y1, z1) and
x2 = (x2, y2, z2) there is a LOR λ(x1,x2) connecting these two points. We
can identify a very large, but finite, set of locations capable of serving as
the end points of LOR, in which case we posit a priori a very large, but
finite, set {λi, i = 1, ..., I} containing these LOR. On the other hand, we
can imagine a continuum of possible LOR.

In the first (finite) case we must specify the nonnegative quantities Pij ,
the probability that a positron emission at voxel j will be detected and
associated with LOR λi. Then the sum

sj =

I
∑

i=1

Pij

is the probability that an emission at voxel j will be detected.
In the second (continuously infinite) case we have to specify, for each

voxel j, a probability density function (pdf) fj(λ) describing the random
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distribution of LOR due to emissions at voxel j. In this second case the
distributions fj over the space of all LOR λ(x1,x2) can be viewed as a
distribution over the space of all pairs of end points (x1,x2). In addition
we must specify the probability g(λ) that a photon pair travelling along
LOR λ will be detected.

The first choice, the finite case, is the one adopted by Huesman et al
[119], while Barrett et al make the second choice, the continuum model
[7, 153]. In either case the data consists of a list of the LOR associated
with an emission, rather than counts, hence the term list-mode. We suppose
that N LOR are on the list. Regardless of which case we are in, we denote
these LOR by {λn, n = 1, ..., N}.

In all of the papers just cited the EMML algorithm is chosen for the
reconstruction. For list-mode processing the EMML iterative step is the
following:

List-mode EMML:

xk+1
j = d−1

j xkj

N
∑

n=1

Pnj
1

(Pxk)n
, (62.1)

where dj is the probability of detecting an emission from voxel j. In the
finite case dj = sj . In the continuum case Pnj is the value of the pdf fj at
the nth LOR on the list, that is, Pnj = fj(λn) and

dj =

∫

fj(λ)g(λ)dλ.

In the finite case the EMML algorithm is a special case of the algorithm
used in SPECT. In the second case, however, there is some modification
necessary. The issue here is the role of the term dj and its relation to the
Pnj . Because the Pnj are values of a pdf they can take on any positive
values and are not restricted to lie within [0, 1]. The dj is not the sum
of the Pnj over the index n. Convergence of the EMML algorithm in the
second, continuum case does not follow from results concerning the finite
case. Nevertheless, the EMML algorithm in the continuum case can be
shown to converge to a maximizer of the likelihood [38].

We can convert the quantities Pnj into probabilities by dividing each
one by the sum

tj =

N
∑

n=1

Pnj .

Let R be the matrix with entries Rnj = Pnj/tj . To use the EMML algo-
rithm as given in equation (62.1) we need only the relative probabilities
represented by the Rnj , along with the overall sensitivity coefficients dj ;
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we do not need to specify the fj explicitly. Indeed, we can rewrite equation
(62.1) as

zk+1
j = d−1

j tjz
k
j

N
∑

n=1

Rnj
1

(Rzk)n
(62.2)

for zkj = tjx
k
j .

Suppose, after the list has been created, we treat the N LOR on the
list as the only ones that could have been there, in effect putting us into
the first (finite) case, with N replacing I now. Since

∑N
n=1Rnj = 1 for

each j, we are implicitly assuming that with probability one all emissions
are detected. The parameters we seek now are wj = xjdj , the detected
intensity at voxel j. The iterative step of the EMML algorithm is then

wk+1
j = wkj

N
∑

n=1

Rnj
1

(Rwk)n
. (62.3)

This iteration converges to a nonnegative minimizer of the KL distance
KL(u, Rw), where u is the vector whose entries are all one.
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Chapter 63

Maximum a posteriori

estimation

The EMML iterative algorithm maximizes the likelihood function for the
case in which the entries of the data vector y = (y1, ..., yI)

T are assumed
to be samples of independent Poisson random variables with mean val-
ues (Px)i; here P is an I by J matrix with nonnegative entries and
x = (x1, ..., xJ)T is the vector of nonnegative parameters to be estimated.
Equivalently, it minimizes the Kullback-Leibler distanceKL(y, P (x)). This
situation arises in single photon emission tomography, where the yi are the
number of photons counted at each detector i, x is the vectorized image
to be reconstructed and its entries xj are (proportional to) the radionu-
clide intensity levels at each voxel j. When the signal-to-noise ratio is low,
which is almost always the case in medical applications, maximizing like-
lihood can lead to unacceptably noisy reconstructions, particularly when
J is larger than I. One way to remedy this problem is simply to halt the
EMML algorithm after a few iterations, to avoid over-fitting the x to the
noisy data. A more mathematically sophisticated remedy is to employ a
Bayesian approach and seek a maximum a posteriori (MAP) estimate of x.

In the Bayesian approach we view x as an instance of a random vector
having a probability density function f(x). Instead of maximizing the like-
lihood given the data we now maximize the posterior likelihood, given both
the data and the prior distribution for x. This is equivalent to minimizing

F (x) = KL(y, P (x)) − log f(x). (63.1)

As we saw earlier, the EMML algorithm is an example of an optimiza-
tion method based on alternating minimization of a function of two vector
variables. The alternating minimization works this way: let x and z be
vector variables and H(x, z) > 0. If we fix z and minimize H(x, z) with
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respect to x we find that the solution is x = z, the vector we fixed; that is,
H(x, z) ≥ H(z, z) always. If we fix x and minimize H(x, z) with respect to
z we get something new; call it Tx. The EMML algorithm has the iterative
step xk+1 = Txk.

Obviously, we can’t use an arbitrary function H; it must be related to
KL(y, Px) that we wish to minimize and we must be able to obtain each
intermediate optimizer in closed form. The clever step is to select H(x, z)
so that H(x,x) = KL(y, Px), for any x. Now see what we have so far:

KL(y, Pxk) = H(xk,xk) ≥ H(xk,xk+1) ≥ H(xk+1,xk+1) = KL(y, Pxk+1).

That tells us that the algorithm makes KL(y, Pxk) decrease with each
iteration. The proof doesn’t stop here, but at least it is now plausible that
the EMML iteration could minimize KL(y, Px).

The function H(x, z) used in the EMML case is the KL distance

H(x, z) = KL(r(x), q(z)) =

I
∑

i=1

J
∑

j=i

KL(r(x)ij , q(z)ij). (63.2)

With x = xk fixed, we minimize with respect to z to obtain the next EMML
iterate xk+1. As before, we define, for each nonnegative vector x for which
(Px)i =

∑J
j=1 Pijxj > 0, the arrays r(x) = {r(x)ij} and q(x) = {q(x)ij}

with entries
r(x)ij = xjPij

yi
(Px)i

and
q(x)ij = xjPij .

Having selected the prior pdf f(x) we want an iterative algorithm to
minimize the function F (x) in equation (63.1). It would be a great help if
we could mimic the alternating minimization formulation and obtain xk+1

by minimizing

KL(r(xk), q(z)) − log f(z) (63.3)

with respect to z. Unfortunately, to be able to express each new xk+1 in
closed form we need to choose f(x) carefully.

The Gamma prior distribution for x: In [133] Lange et al suggest view-
ing the entries xj as samples of independent gamma-distributed random
variables. A gamma-distributed random variable x takes positive values
and has for its pdf the gamma distribution defined for positive x by

γ(x) =
1

Γ(α)
(
α

β
)αxα−1e−αx/β ,
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where α and β are positive parameters and Γ denotes the gamma function.
The mean of such a gamma-distributed random variable is then µ = β and
the variance is σ2 = β2/α.

Exercise 1: Show that if the entries zj of z are viewed as independent
and gamma-distributed with means µj and variances σ2

j then minimizing
(63.3) with respect to z is equivalent to minimizing the function

KL(r(xk), q(z)) +

J
∑

j=1

δjKL(γj , zj), (63.4)

for

δj =
µj
σ2
j

, γj =
µ2
j − σ2

j

µj
,

under the assumption that the latter term is positive. Show further that
the resulting xk+1 has entries given in closed form by

xk+1
j =

δj
δj + sj

γj +
1

δj + sj
xkj

I
∑

i=1

Pijyi/(Pxk)i, (63.5)

where sj =
∑I
i=1 Pij .

We see from equation (63.5) that the MAP iteration using the gamma
priors generates a sequence of estimates each entry of which is a convex
combination or weighted arithmetic mean of the result of one EMML step
and the prior estimate γj . Convergence of the resulting iterative sequence
is established in [133]; see also [29].

The one-step-late alternative: It may well happen that we do not wish
to use the gamma priors model and prefer some other f(x). Because we
will not be able to find a closed form expression for the z minimizing the
function in equation (63.3) we need some other way to proceed with the
alternating minimization. Green [103] has offered the one-step-late (OSL)
alternative. When we try to minimize the function in (63.3) by setting the
gradient to zero we replace the variable z that occurs in the gradient of the
term − log f(z) with xk, the previously calculated iterate. Then we can
solve for z in closed form to obtain the new xk+1. Unfortunately, negative
entries can result and convergence is not guaranteed. There is a sizable
literature on the use of MAP methods for this problem. In [37] an interior
point algorithm (IPA) is presented that avoids the OSL issue. In [146] the
IPA is used to regularize transmission tomographic images.

Regularizing the SMART: In the presence of noisy data the SMART
algorithm suffers from the same problem that afflicts the EMML, overfitting
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to noisy data resulting in an unacceptably noisy image. As we saw earlier,
there is a close connection between the EMML and SMART algorithms.
This suggests that a regularization method for SMART can be developed
along the lines of the MAP with gamma priors used for EMML. Since the
SMART is obtained by minimizing the function

KL(q(z), r(xk))

with respect to z to obtain xk+1 it seems reasonable to attempt to derive
a regularized SMART iterative scheme by minimizing

KL(q(z), r(xk)) +

J
∑

j=1

δjKL(zj , γj), (63.6)

for selected positive parameters δj and γj .

Exercise 2: Show that the zj minimizing the function in (63.6) can be
expressed in closed form and that the resulting xk+1 has entries that satisfy

log xk+1
j =

δj
δj + sj

log γj +
1

δj + sj
xkj

I
∑

i=1

Pij log[yi/(Pxk)i]. (63.7)

In [29] it was shown that this iterative sequence converges to a minimizer
of the function

KL(Px,y) +

J
∑

j=1

δjKL(xj , γj).

It is useful to note that although it may be possible to rederive this min-
imization problem within the framework of Bayesian MAP estimation by
carefully selecting a prior pdf for the vector x we have not done so. The
MAP approach is a special case of regularization through the use of penalty
functions. Those penalty functions need not arise through a Bayesian for-
mulation of the parameter estimation problem.

De Pierro’s surrogate function method: In [83] De Pierro presents
a modified EMML algorithm that includes regularization in the form of
a penalty function. His objective is the same as ours was in the case of
regularized SMART: to embed the penalty term in the alternating mini-
mization framework in such a way as to make it possible to obtain the next
iterate in closed form. Because his surrogate function method has been
used subsequently by others to obtain penalized likelihood algorithms [64]
we consider his approach in some detail.

Let x and z be vector variables and H(x, z) > 0. Mimicking the behav-
ior of the function H(x, z) used in equation (63.2) we require that if we fix
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z and minimize H(x, z) with respect to x the solution should be x = z, the
vector we fixed; that is, H(x, z) ≥ H(z, z) always. If we fix x and minimize
H(x, z) with respect to z we should get something new; call it Tx. As with
the EMML, the algorithm will have the iterative step xk+1 = Txk.

Summarizing, we see that we need a function H(x, z) with the proper-
ties 1) H(x, z) ≥ H(z, z) for all x and z; 2) H(x,x) is the function F (x)
we wish to minimize; and 3) minimizing H(x, z) with respect to z for fixed
x is easy.

The function to be minimized is

F (x) = KL(y, P (x)) + g(x),

where g(x) ≥ 0 is some penalty function. De Pierro uses penalty functions
g(x) of the form

g(x) =

p
∑

l=1

fl(〈sl,x〉 ).

Let us define the matrix S to have for its lth row the vector sl. Then
〈sl,x〉 = (Sx)l, the lth entry of the vector Sx. Therefore,

g(x) =

p
∑

l=1

fl((Sx)l).

Let λjl > 0 with
∑J
j=1 λjl = 1, for each l.

Assume that the functions fl are convex. Therefore, for each l, we have

fl((Sx)l) = fl(

J
∑

j=1

Sjlxj) = fl(

J
∑

j=1

λjl(Sjl/λjl)xj)

≤
J
∑

j=1

λjlfl((Sjl/λjl)xj).

Therefore

g(x) ≤
p
∑

l=1

∑

j

λjlfl((Sjl/λjl)xj).

So we have replaced g(x) with a related function in which the xj occur
separately, rather than just in the combinations (Sx)l. But we aren’t quite
done yet.

We would like to take for De Pierro’s H(x, z) the function used in the
EMML algorithm, plus the function

∑p

l=1

J
∑

j=1

λjlfl((Sjl/λjl)zj).
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But there is one slight problem: we need H(z, z) = F (z), which we don’t
have yet. De Pierro’s clever trick is to replace fl((Sjl/λjl)zj) with

fl((Sjl/λjl)zj − (Sjl/λjl)xj + (Sx)l).

So De Pierro’s functionH(x, z) is the sum of theH(x, z) used in the EMML
case and the function

∑p

l=1

J
∑

j=1

λjlfl((Sjl/λjl)zj − (Sjl/λjl)xj + (Sx)l).

Now he has the three properties he needs. Once he has computed xk he
minimizes H(xk, z) by taking the gradient and solving the equations for
the correct z = Txk = xk+1. For the choices of fl he discusses these
intermediate calculations can either be done in closed form (the quadratic
case) or with a simple Newton-Raphson iteration (the logcosh case).



Chapter 64

Block-iterative algorithms

Iterative methods for reconstructing images have been studied for decades.
Because many of these methods, such as the EMML, are slow to converge,
particularly for the large data sets typical of modern imaging, there has
been growing interest in block-iterative (also called ordered subset) meth-
ods for image reconstruction, due largely to the accelerated convergence
some of these methods provide. A brief overview of the use of iterative
reconstrction methods in medical imaging is given in [135]. The block-
iterative methods of interest to us here can be derived as incremental opti-
mization procedures, in which the cost function h(x) to be minimized can

be decomposed as a sum of simpler functions, h(x) =
∑I
i=1 hi(x), and the

iterative procedure involves the gradients of only a few of the hi(x) at each
step.

Our topic is the reconstruction of a discrete image from finite data
pertaining to that image. Because realistic models relating the data to the
image pixels (or voxels) typically preclude closed form solutions, we shall
focus here on iterative algorithms. For reasons to be presented shortly, the
algorithms we shall consider are optimization methods, in which we seek to
maximize or minimize some function over the set of feasible images, that
is, those satisfying whatever constraints, such as nonnegativity, we have
imposed .

When the data is essentially noise-free, but insufficient to determine a
unique image, one may choose that feasible image consistent with the data,
for which some function, such as entropy, is maximized, or some measure of
image roughness or distance to a prior estimate of the image is minimized.
When the data is noisy, there may be no feasible image consistent with the
data. In such cases, one may choose to minimize a function that measures
deviation from data consistency, with or without an additional regularizing
term.

In typical image reconstruction situations both the data set and the
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number of pixels or voxels to be determined are large; in addition, time
considerations are important. The overall objective is the practical one of
producing a useful reconstructed image quickly, rather than the more the-
oretical one of finding the solution of an optimization problem. Therefore
iterative methods that produce fairly accurate reconstructed images in a
short time are desired. For such practical reasons there has been grow-
ing interest in certain block-iterative or ordered subset methods [109], [32],
[118], which provide the topic of this chapter.

Block-iterative methods are called incremental methods in the opti-
mization literature [14]. The basic idea is as follows. Suppose that we wish
to minimize a function h : RJ → (−∞,+∞). Iterative gradient methods
would require us to calculate the gradient of h at each step. If h is the
sum of a large number of simpler functions hi whose gradients are easier
to calculate, so

h(x) =

I
∑

i=1

hi(x), (64.1)

then at the k-th step we would need to compute

∇h(xk) =

I
∑

i=1

∇hi(xk). (64.2)

For example, consider the least squares problem of finding a minimizer of
the function h(x) = 1

2 ||Ax − b||2, where A is any real I by J matrix. The
gradient of h is ∇h(x) = AT (Ax − b). We can put h into the form of
equation (64.1) using hi(x) = 1

2 ((Ax)i − bi)
2, which has for its gradient

∇hi(x) = ((Ax)i − bi)a
i, where ai is the i-th column of the matrix AT .

To avoid computing the large sum in (64.2), we might consider using
only those gradients ∇hi whose indices i belong to some predetermined
block Bn, where n depends on k; we assume throughout this paper that
{B1, ..., BN} denotes a partition of the set {i = 1, ..., I} into disjoint sub-
sets. We then proceed incrementally, using only these partial gradients to
determine the direction to the next iterate. Stated this way, block-iterative
methods appear to reduce computation at each step; but if the price we pay
is to increase the number of steps needed to produce a good reconstructed
image, we have gained nothing. Several of the block-iterative methods
we shall discuss here do not require an increased number of steps, hence
provide considerable time reduction in the reconstruction process.

When there is only a single block, that isN = 1, we say that the method
is simultaneous. When each block contains only a single i, so there are I
blocks, we call the method sequential or successive; for problems involving
the solution of matrix equations sequential methods have also been called
row-action methods [58].
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Because most of the functions we encounter in image reconstruction can
be decomposed as in equation (64.1), obtaining block-iterative versions of
iterative optimization algorithms is usually not difficult; but this is not
enough. In order for a block-iterative method to be useful it must satisfy
certain requirements. These requirements pertain to acceleration of con-
vergence, as well as to the manner in which the method handles noise in
the data.

Block-iterative methods are not new and the literature on the subject
is extensive; see the book by Censor and Zenios [63] and the references
therein.



312 CHAPTER 64. BLOCK-ITERATIVE ALGORITHMS



Chapter 65

More on the ART

In this chapter we take a longer look at the algebraic reconstruction tech-
nique (ART). Both ART and its multiplicative version, MART, have block-
iterative and simultaneous counterparts, which we shall discuss in subse-
quent chapters.

The ART is a procedure for solving the system of linear equations Ax =
b. Let A be an M by N real matrix and for m = 1, ...,M let Bm =
{x|(Ax)m = bm}, where bm denotes the m-th entry of the vector b. For
notational convenience we shall assume in this chapter that A has been
normalized so that each of its rows has euclidean length one. Any solution
of Ax = b lies in the intersection of the Bm; if the system is inconsistent
then the intersection is empty. The Kaczmarz algorithm [122] for solving
the system of linear equations Ax = b has the iterative step

xk+1
n = xkn +Am(k)n(bm(k) − (Axk)m(k)), (65.1)

for n = 1, ..., N , k = 0, 1, ... and m(k) = k(modM)+1. This algorithm was
rediscovered, in the context of medical imaging, by Gordon, Bender and
Herman [102], who called it the algebraic reconstruction technique (ART).
The ART algorithm is an example of the method of successive orthogonal
projections (SOP) [105].

In the consistent case, in which the intersection of the hyperplanes Bm
is nonempty, the ART converges to that solution of Ax = b closest to the
starting vector x0, as illustrated in Figure 65.1. The ART cannot con-
verge in the inconsistent case, in which the intersection of the sets Bm is
empty, since the limit would then be a member of the (empty) intersec-
tion. Instead, the ART exhibits what is called cyclic convergence; that is,
subsequences converge to finitely many distinct limits comprising a limit
cycle [173], as illustrated in Figure 65.2. Once a member of this limit cycle
is reached, further application of the algorithm results in passing from one
member of the limit cycle to the next. Proving the existence of these limit
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cycles is not as easy as it may seem. The proof given here is perhaps the
most elementary. We assume throughout this chapter that the real M by
N matrix A has full rank and its rows have Euclidean length one.

Some useful facts about the ART:

For m = 1, 2, ...,M let Km = {x|(Ax)m = 0} and pm be the metric projec-
tion of x = 0 onto Bm. Let vrm = (AxrM+m−1)m and vr = (vr1, ..., v

r
M )T ,

for r = 0, 1, .... We begin with some basic facts.

Exercise 1: Establish the following facts concerning the ART.

Fact 1:

||xk||2 − ||xk+1||2 = (A(xk)m(k))
2 − (bm(k))

2.

Fact 2:

||xrM ||2 − ||x(r+1)M ||2 = ||vr||2 − ||b||2.

Fact 3:

||xk − xk+1||2 = ((Axk)m(k) − bm(k))
2.

Fact 4: There exists B > 0 such that, for all r = 0, 1, ..., if ||vr|| ≤ ||b||
then ||xrM || ≥ ||x(r+1)M || −B.

Fact 5: Let x0 and y0 be arbitrary and {xk} and {yk} the sequences
generated by applying the ART algorithm. Then

||x0 − y0||2 − ||xM − yM ||2 =
∑M

m=1
((Axm−1)m − (Aym−1)m)2.

The system Ax = b is consistent:

In this subsection we give a proof of the following result.

Theorem 65.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by equation (65.1). Then the sequence {||x̂ − xk||} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.
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Proof: Let Ax̂ = b. It follows from Fact 5 that the sequence {||x̂−xrM ||}
is decreasing and the sequence {vr − b} → 0. So {xrM} is bounded; let
x∗,0 be a cluster point. Then, for m = 1, 2, ...,M let x∗,m be the successor
of x∗,m−1 using the ART algorithm. It follows that (Ax∗,m−1)m = bm
for each m, from which we conclude that x∗,0 = x∗,m for all m and that
Ax∗,0 = b. Using x∗,0 in place of x̂, we have that {||x∗,0 − xk||} is de-
creasing. But a subsequence converges to zero, so {xk} converges to x∗,0.
By Fact 5 the difference ||x̂ − xk||2 − ||x̂ − xk+1||2 is independent of which
solution x̂ we pick; consequently, so is ||x̂ − x0||2 − ||x̂ − x∗,0||2. It follows
that x∗,0 is the solution closest to x0. This completes the proof.

The system Ax = b is inconsistent:

In the inconsistent case the sequence {xk} will not converge, since any
limit would be a solution. However, for each fixed m ∈ {1, 2, ...,M}, the
subsequence {xrM+m} converges [173]. Tanabe’s proof relies heavily on
results from linear algebra. The proof here is more elementary. We begin
by establishing the following.

Proposition 65.1 The sequence {xrM} is bounded.

Proof: Assume that the sequence {xrM} is unbounded. We first show
that we can select a subsequence {xrjM} with the properties ||xrjM || ≥ j
and ||vrj || < ||b||, for j = 1, 2, ....

Assume that we have selected xrjM , with the properties ||xrjM || ≥ j
and ||vrj || < ||b||; we show how to select xrj+1M . Pick integer t > 0 such
that

||xtM || ≥ ||xrjM || +B + 1,

where B > 0 is as in Fact 4. With n + rj = t let i ≥ 0 be the smallest
integer for which

||x(rj+n−i−1)M || < ||xtM || ≤ ||x(rj+n−i)M ||.

Then ||vrj+n−i−1|| < ||b||. Let xrj+1M = x(rj+n−i−1)M . Then we have

||xrj+1M || ≥ ||x(rj+n−i)M ||−B ≥ ||xtM ||−B ≥ ||xrjM ||+B+1−B ≥ j+1.

This gives us the desired subsequence.
For every k = 0, 1, ... let zk+1 = xk+1 − pm(k). Then zk+1 ∈ Km(k).

For zk+1 6= 0 let uk+1 = zk+1/||zk+1||. Since the subsequence {xrjM}
is unbounded, so is {zrjM}, so for sufficiently large j the vectors urjM

are defined and on the unit sphere. Let u∗,0 be a cluster point of {urjM};
replacing {xrjM} with a subsequence if necessary, assume that the sequence
{urjM} converges to u∗,0. Then let u∗,1 be a subsequence of {urjM+1};
again, assume the sequence {urjM+1} converges to u∗,1. Continuing in this
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manner, we have {urjM+i} converging to u∗,i for i = 0, 1, 2, .... We know
that {zrjM} is unbounded and since ||vrj || < ||b||, we have, by Fact 3, that
{zrjM+m−1 − zrjM+m} is bounded for each m. Consequently {zrjM+m} is
unbounded for each m.

Now we have

||zrjM+m−1 − zrjM+m||

≥ ||zrjM+m−1|| ||urjM+m−1 − 〈urjM+m−1,urjM+m〉urjM+m||.

Since the left side is bounded and ||zrjM+m−1|| has no infinite bounded
subsequence, we conclude that

||urjM+m−1 − 〈urjM+m−1,urj+M+m〉urjM+m|| → 0.

It follows that u∗,0 = u∗,m or u∗,0 = −u∗,m for each m = 1, 2, ...,M .
Therefore u∗,0 is in Km for each m; since the null space of A contains only
zero, this is a contradiction. This completes the proof of the proposition.

Now we give a proof of the following result.

Theorem 65.2 Let A be M by N , with M > N and A with full rank. If
Ax = b has no solutions, then, for any x0 and each fixed m ∈ {0, 1, ...,M},
the subsequence {xrM+m} converges to a limit x∗,m. Beginning the it-
eration in equation (65.1) at x∗,0, we generate the x∗,m in turn, with
x∗,M = x∗,0.

Proof: Let x∗,0 be a cluster point of {xrM}. Beginning the ART algorithm
at x∗,0 we obtain x∗,i, for i = 0, 1, 2, .... It is easily seen that

||x(r−1)M − xrM ||2 − ||xrM − x(r+1)M ||2

=
∑M

m=1
((Ax(r−1)M+m−1)m − (AxrM+m−1)m)2.

Therefore the sequence {||x(r−1)M − xrM ||} is decreasing and

{
∑M

m=1
((Ax(r−1)M+m−1)m − (AxrM+m−1)m)2} → 0.

Therefore (Ax∗,m−1)m = (Ax∗,M+m−1)m for each m.
For arbitrary x we have

||x − x∗,0||2 − ||x − x∗,M ||2

=
∑M

m=1
((Ax)m − (Ax∗,m−1)m)2 −

∑M

m=1
((Ax)m − bm)2,
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so that

||x − x∗,0||2 − ||x − x∗,M ||2 = ||x − x∗,M ||2 − ||x − x∗,2M ||2.

Using x = x∗,M we have

||x∗,M − x∗,0|| = −||x∗,M − x∗,2M ||,

from which we conclude that x∗,0 = x∗,M . From Fact 5 it follows that
the sequence {||x∗,0 − xrM ||} is decreasing; but a subsequence converges
to zero, so the entire sequence converges to zero and {xrM} converges to
x∗,0. This completes the proof.

Avoiding the limit cycle behavior:

The greater the minimum value of ||Ax − b||2 the more the vectors of the
LC are distinct from one another. There are several ways to avoid the LC
in ART and to obtain a least squares solution. One way is the double ART
(DART) [36]:

The DART: We know that any b can be written as b = Ax̂ + ŵ, where
AT ŵ = 0 and x̂ is a minimizer of ||Ax − b||2. The vector ŵ is the orthog-
onal projection of b onto the null space of the matrix transformation AT .
Therefore, in Step 1 of DART we apply the ART algorithm to the consistent
system of linear equations ATw = 0, beginning with w0 = b. The limit is
w∞ = ŵ, the member of the null space of AT closest to b. In Step 2, apply
ART to the consistent system of linear equations Ax = b−w∞ = Ax̂. The
limit is then the minimizer of ||Ax − b|| closest to x0.

Another method for avoiding the LC is strong underrelaxation [60].

Strongly underrelaxed ART: Let t > 0. Replace the iterative step in
ART with

xk+1
j = xkj + tAij

(bi − (Axk)i)
∑J
l=1A

2
il

. (65.2)

In [60] it is shown that, as t → 0, the vectors of the LC approach the
geometric least squares solution closest to x0. Bertsekas [14] uses strong
underrelaxation to obtain convergence of more general incremental meth-
ods.

Regularizing ART:

It is often the case that the entries of the vector b in the system Ax = b
come from measurements, so are usually noisy. If the entries of b are noisy
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but the system Ax = b remains consistent (which can easily happen in the
underdetermined case, with N > M) the ART begun at x0 = 0 converges
to the solution having minimum norm, but this norm can be quite large.
The resulting solution is probably useless. Instead of solving Ax = b we
regularize by minimizing, for example, the function

||Ax − b||2 + ε2||x||2, (65.3)

for some small ε2. The solution to this problem is the vector x for which

(ATA+ ε2I)x = ATb. (65.4)

However, we do not want to have to calculate ATA, particularly when the
matrix A is large.

We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is new, the second one is due to Eggermont,
Herman and Lent [88].

In our first method we use ART to solve the system of equations given
in matrix form by

[AT εI ]

[

u
v

]

= 0.

We begin with u0 = b and v0 = 0. The lower component of the limit
vector is then v∞ = −εx̂, where x̂ minimizes the function in (65.3).

The method of Eggermont et al is similar. In his method we use ART
to solve the system of equations given in matrix form by

[A εI ]

[

x
v

]

= b.

We begin at x0 = 0 and v0 = 0. Then the limit vector has for its upper
component x∞ = x̂ as before. Also εv∞ = b −Ax̂.

As Herman and Meyer have shown [109], the order in which the equa-
tions are accessed in ART, as well as the use of relaxation parameters, can
greatly affect the speed of convergence. The main consideration is to avoid
taking the equations in an order such that each equation substantially re-
peats the information about the image present in the previous equation.
To avoid such a situation we could employ a random ordering of the equa-
tions, although more carefully designed ordering may achieve somewhat
faster convergence.

There are several interesting questions we can ask about the behavior of
the ART in the inconsistent case, some of which are, I believe, unanswered.

Where is the least squares solution?

When the system Ax = b has no exact solutions we could seek instead the
least squares solution x̂ satisfying

ATAx̂ = ATb.



319

But suppose we do not know if the system has exact solutions. We do the
ART and then discover, after convergence to a limit cycle, that Ax = b has
no solutions. What can we do then? Is there a simple way to compute the
least squares solution from the limit cycle vectors? More generally, where
is the least squares solution, in relation to the vectors of the limit cycle?
The following partial answer was presented in [33].

Theorem 65.3 Let M = N + 1. If the system of equations Ax = b has
no solution then the vectors of the ART limit cycle lie on a sphere in RN

centered at the least squares solution.

Proof: Let the vectors of the limit cycle be {z1, z2, ..., zM = z0} and let
the vector c have the entries cm = (Azm−1)m, for m = 1, 2, ...,M . We then
have

zmn − zm−1
n = Amn(bm − cm)

for each m and n. Summing over m = 1, ...,M on both sides and using the
fact that zM = z0, we get zero on the left side, for each n. It follows then
that

ATb = AT c.

Therefore the systems Ax = b and Ax = c have the same least squares
solution x̂. This means that we can write

b = Ax̂ + v

and
c = Ax̂ + w,

where ATv = ATw = 0. In addition, we have

||b||2 = ||Ax̂||2 + ||v||2

and
||c||2 = ||Ax̂||2 + ||w||2.

It is easy to show that

||x̂ − zm||2 − ||x̂ − zm−1||2 = v2
m − w2

m,

as well as
||zm||2 − ||zm−1||2 = b2m − c2m.

for each m. Again summing over m on both sides of the latter equation,
we get zero on the left and ||b||2 − ||c||2 on the right. It follows that
||v|| = ||w||. Both v and w are in the null space of the matrix AT . Since
M = N + 1 and A is assumed to have full rank, the null space of AT

has dimension one. Consequently v = w or v = −w. The first choice is
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out, since that implies that z1 = z2 = ... = zM , which means the system
Ax = b is consistent, with solution z1. So we must conclude that v = −w.
But this says

||x̂ − zm||2 − ||x̂ − zm−1||2 = 0.

Since this holds for any m the proof of the theorem is complete.

It is curious that this result holds only sometimes when the condition
M = N+1 is violated. An interesting question that has not been answered
is: What is the radius of this sphere? As far as I know, this theorem has
not been extended to the general case.

A quick side trip to Euclidean geometry:

The theorem above has an interesting connection to a not very well known
theorem in plane euclidean geometry. It is well known that the medians
of a triangle are concurrent, as are the angle bisectors. The symmedian
lines, formed by reflecting the medians in the angle bisectors, are also
concurrent, their common point being the Grebe-Lemoine point, also called
the symmedian point [121]. The symmedian point can be shown to be that
point in the plane such that the sum of the squares of the distances from
the point to the three sides of the triangle is minimized.

Exercise 2: Connect this result with our theorem above.

Another look at the least squares solution:

One reason why the system of equations Ax = b can fail to have a solution
when M > N is that there are not enough unknowns. Suppose we augment
the vector of unknowns x by concatenating anM−N by 1 vector y, forming
the M by M vector z = [xT yT ]T . Similarly, augment the M by N matrix
A by adding M −N new columns to get C = [A B].

Exercise 3: Show that if we select B so that C is invertible and BTA = 0
then the exact solution of Cz = b is the concatenation of the least squares
solutions of Ax = b and By = b.

Nonnegatively constrained least squares:

Consider the problem of minimizing the function ||Ax−b||, subject to the
constraints xn ≥ 0 for all n. We can solve this problem using a slight
modification of the ART: at each step of the iteration, if the n-th entry of
the vector xk+1 given by the ART is nonnegative we accept it; if it is not,
we replace it with zero. Although there may be multiple solutions x̂, we
know, at least, that Ax̂ is the same for all solutions.
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According to the Karush-Kuhn-Tucker theorem [155] the vector Ax̂
must satisfy the condition

∑M

m=1
Amn(Ax̂m − bm) = 0 (65.5)

for all n for which x̂n > 0 for some solution x̂. Let S be the set of all
indices n for which there exists a solution x̂ with x̂n > 0. Then equation
(65.5) must hold for all n in S. Let Q be the matrix obtained from A by
deleting those columns whose index n is not in S. Then QT (Ax̂ − b) = 0.
If Q has full rank and the cardinality of S is greater than or equal to M ,
then QT is one-to-one and Ax̂ = b. We have proven the following result:

Theorem 65.4 Suppose that A and every matrix Q obtained from A by
deleting columns has full rank. Suppose there is no nonnegative solution
of the system of equations Ax = b. Then there is a subset S of the set
{n = 1, 2, ..., N} with cardinality at most M − 1 such that, if x̂ is any
minimizer of ||Ax − b|| subject to x ≥ 0, then x̂n = 0 for n not in S.
Therefore x̂ is unique.

When x̂ is a vectorized two-dimensional image and N > M the presence
of at most M−1 positive pixels makes the resulting image resemble stars in
the sky; for that reason this theorem and the related result for the EMML
algorithm are sometimes called night sky theorems.
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equation 2

equation 3

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

    

Figure 65.1: The ART algorithm in the consistent case.
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Equation 1

Equation 2

Equation 3

L C 1

L C 2

L C 3

x(0)

    

L C 1 , L C 2 , L C  3

form the limit cycle

Figure 65.2: The ART algorithm in the inconsistent case.
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Chapter 66

Methods related to the

ART

The ART algorithm for solving the system Ax = b can be modified to
include relaxation and regularization. There are also block-iterative and
simultaneous versions of the ART. For example, we can introduce relaxation
in ART using the relaxed ART (REART):

The REART:

xk+1
j = xkj + γkAij

(bi − (Axk)i)
∑J
l=1A

2
il

, (66.1)

with γk positive scalars.
A simultaneous version of the ART was introduced by Cimmino [69].

It is obtained by projecting orthogonally onto each hyperplane simultane-
ously, then averaging the result. In closed form the Cimmino method is
the following:

Cimmino’s method: For k = 0, 1, ... let

xk+1
j = xkj +

1

I

I
∑

i=1

Aij
(bi − (Axk)i)
∑J
l=1A

2
il

; (66.2)

with

Gij = Aij/(

J
∑

l=1

A2
il)

1/2 (66.3)

and

ci = bi/(

J
∑

l=1

A2
il)

1/2, (66.4)
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the iteration in equation (66.2) becomes

xk+1 = xk +
1

I
GT (c −Gxk). (66.5)

Clearly the Cimmino method is a special case of the Landweber iterative
method given in equation (37.2).

Cimmino’s method can also employ relaxation: using positive relaxation
parameters γk in place of 1

I we get

The relaxed Cimmino method:

xk+1 = xk + γkG
T (c −Gxk). (66.6)

The convergence proof for the relaxed Cimmino method requires that the
relaxation parameters satisfy the inequality 0 < γk < 2/L, where L is the
largest eigenvalue of the matrix GTG. Since the trace of GGT is I, we
know that L ≤ I. This is a quite conservative estimate, in most cases,
particularly if the matrix A is sparse. Let sj be the number of nonzero
entries in the j-th column of A and let s be the maximum of the sj . As we
showed in an earlier chapter, L ≤ s, which says that the relaxed Cimmino
method converges with γk = 1

s . To illustrate, suppose that s = I1/2. Then

the factor I−1 in Cimmino can be replaced with I−1/2, which significantly
accelerates convergence. We can obtain additional acceleration by passing
to a block-iterative version of ART.

Because the computations in Cimmino can be performed simultane-
ously, the Cimmino method has the advantage of being parallelizable. In
practice, it might be more efficient for only a subset of these computations
to be performed simultaneously. In that case, block-iterative versions of
ART would be more appropriate. We consider those now.

We can obtain a block-iterative version of ART (BI-ART) by partition-
ing the collection of hyperplanes into finitely many subsets or blocks and
then projecting orthogonally onto each hyperplane in the current block and
averaging the result. Then a new current block is selected and the process
repeated. For n = 1, ..., N let In be the cardinality of the block Bn.

The block-iterative ART (BI-ART) has the following iterative step:

The BI-ART: For k = 0, 1, ... and n = n(k) = k(modN) + 1 let

xk+1
j = xkj +

1

In

∑

i∈Bn

Aij
(bi − (Axk)i)
∑J
l=1A

2
il

. (66.7)

Obtain the matrix Gn from G in equation (66.3) by removing the i-th row
of G for those i not in Bn. Similarly, obtain vector cn from c in equation
(66.4). Then the iteration in equation (66.7) becomes

xk+1 = xk +
1

In
GTn (cn −Gnx

k). (66.8)
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Relaxed BI-ART (RE-BI-ART) employs positive relaxation parameters γn
in place of 1

In
:

The RE- BI-ART: For k = 0, 1, ... and n = n(k) = k(modN) + 1 let

xk+1 = xk + γnG
T
n (cn −Gnx

k), (66.9)

where γn ∈ (0, 1/Ln) for Ln the largest eigenvalue of the matrix GTnGn.
Concerning the RE-BI-ART we have the following theorem.

Theorem 66.1 Let k and n = n(k) be fixed and let Gx = c. Then

||x − xk||2 − ||x − xk+1||2 ≥ γn||cn −Gnx
k||2. (66.10)

This result follows by expanding the norms in terms of inner products and
using the Cauchy inequality.

When there are solutions of Gx = c the RE-BI-ART converges to the
solution closest to the starting point x0. The inequality in (66.10) is the
key to the convergence proof. The same trace argument as used earlier
tells us that Ln ≤ In. If Gn is sparse, we can do much better. For fixed n
and j, let snj be the number of nonzero entries in the j-th column of the
matrix Gn; let sn be the maximum of the snj . Then we have Ln ≤ sn, so
that the factor 1/In in equation (66.7) can be replaced by the factor 1/sn.
This can lead to significant acceleration of convergence.

Suppose, for the sake of illustration, that each column of the matrix G
has s nonzero entries and that r = s/I is the proportion of nonzero entries
in any column. Suppose that In = I/N for each n. If N is not too large,
we would expect snj to be nearly equal to rIn = rI/N , for each j and n;
then sn is nearly rI/N = s

I
I
N = s

N . So the factor 1
I in Cimmino is replaced

by s
N in RE-BI-ART. But, unless sn = 0, which means the matrix Gn is

the zero matrix, we have sn ≥ 1, regardless of the size of N . So the factor
1/sn is never larger than one, which is the factor used in unrelaxed ART.
For a given value of s, we need to use approximately N = s blocks to have
sn nearly equal to one. Therefore, the more sparse the matrix is, the fewer
blocks we need to use for the factor 1/sn to attain its maximum value. For
very sparse matrices, few blocks are needed, allowing for a high degree of
parallelization, since, within each block, the computation is simultaneous.

When there are solutions of the system Gx = c then ART, BI-ART
and Cimmino methods converge to the solution of Ax = b closest to the
initial vector x0, according to the Euclidean distance. In addition, when
there are no solutions of Ax = b Cimmino converges to the geometric least
squares solution, the minimizer of ||Gx − c|| closest to x0, while ART and
BI-ART fail to converge. Instead, as Tanabe has shown [173], for each fixed
i, as m → +∞, the ART subsequences {xmI+i} converge to (usually I)
distinct vectors x∞,i; we call this set of vectors the limit cycle (LC). The
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greater the minimum value of ||Gx − c||2 the more the vectors of the LC
are distinct from one another. An analogous result holds for RE-BI-ART.

In practical situations, one may use only a few iterations of an algorithm
and be less concerned with the limiting vector (or vectors) than with the
behavior of the iterates for small values of k. When the minimum value of
||Ax − b||2 is not too large (that is, the measured data is not too noisy),
the ART has been shown to provide usable reconstructions with very few
iterations, particularly when the equations are carefully ordered and some
amount of underrelaxation is used [109]. In contrast, the Cimmino method
can be quite slow to converge.

It is important to note that acceleration of convergence need not require
passing from a simultaneous method to a block-iterative method. The
example of Cimmino’s method and BI-ART in the case of a sparse matrix
A shows that part of the reason why Cimmino’s method is slow is that it
does not employ an appropriate relaxation parameter. If we know a good
upper bound on the eigenvalues of GTG then we can improve Cimmino by
using relaxation with better values of γk. If we have no a priori estimate,
we could begin with γk = 1/I and begin to lower the γk as the iteration
proceeds, checking for divergence. In the sparse case, as we have seen, we
can get significant acceleration with relaxed Cimmino by making use of the
degree of sparseness of the matrix G.
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The MART and related

methods

Related to the ART is the multiplicative ART (MART), also due to Gordon,
Bender and Herman [102]. While the ART applies to arbitrary systems of
linear equations, the MART is restricted to a system of linear equations
y = Px, in which the I by J matrix P has nonnegative entries, the entries
of y are positive and x has nonnegative entries; we shall also assume, for
notational convenience, that the columns of P sum to one, although that
is not necessary. The MART and its block-iterative versions, BI-MART,
converge to nonnegative solutions of y = Px, whenever such solutions exist.
The block-iterative version involving only a single block is the simultaneous
MART (SMART), which also converges to an approximate solution when
no nonnegative solution of y = Px exists.

The function minimized by the SMART is h(x) = KL(Px,y); here
KL(u,v) is the Kullback-Leibler (or cross-entropy) distance, defined for
nonnegative vectors u and v by

KL(u,v) =

M
∑

m=1

KL(um, vm), (67.1)

where KL(a, b) = a log a
b + b − a, KL(0, b) = b and KL(a, 0) = +∞ for

positive scalars a and b. With hi(x) = KL((Px)i, yi) we see that h has the
decomposition given by equation (64.1).

The MART algorithm is the following:

The MART: The multiplicative algebraic reconstruction technique (MART)
[102] begins with a strictly positive vector x0 and has the iterative step

xk+1
j = xkj

( yi
(Pxk)i

)Pij

, (67.2)
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for j = 1, 2, ..., J and i = k(mod I)+1. The simultaneous MART (SMART)
algorithm is then

The SMART: The simultaneous MART (SMART) begins with a strictly
positive vector x0 and has the iterative step

xk+1
j = xkj

I
∏

i=1

( yi
(Pxk)i

)Pij

, (67.3)

for j = 1, 2, ..., J . This algorithm was discovered independently in 1972,
in statistics by Darroch and Ratcliff [80] [77] and in medical imaging by
Schmidlin [162],[116]. It was discussed as a simultaneous version of MART
in [62] and convergence in the inconsistent case was demonstrated in [29],
where the algorithm was called the SMART.

The block-iterative SMART (BI-SMART) is as follows:

The BI-SMART: The block-iterative SMART (BI-SMART) [32] begins
with a strictly positive vector x0 and has the iterative step

xk+1
j = xkj

∏

i∈Bn

( yi
(Pxk)i

)Pij

, (67.4)

for j = 1, 2, ..., J and n = k(modN) + 1. Clearly, MART and SMART are
special cases of the BI-SMART method. We introduce relaxation into the
BI-SMART as follows:

The relaxed BI-SMART: The relaxed BI-SMART begins with a strictly
positive vector x0 and has the iterative step

xk+1
j = xkj

∏

i∈Bn

( yi
(Pxk)i

)γkPij

, (67.5)

for j = 1, 2, ..., J and n = k(modN) + 1.
In the consistent case, that is, when there are vectors x ≥ 0 with

y = Px, BI-SMART converges to the nonnegative solution that minimizes
KL(x,x0). When there are no such nonnegative vectors, the SMART
converges to the unique nonnegative minimizer of KL(Px,y) for which
KL(x,x0) is minimized (see [29]); for N > 1, the BI-SMART fails to
converge. What is always observed, but for which no proof exists, is
that, for each fixed i = 1, 2, ..., I, as m → +∞, the MART subsequences
{xmI+i} converge to separate limit vectors, say x∞,i. This limit cycle LC
= {x∞,i|i = 1, ..., I} reduces to a single vector whenever there is a nonneg-
ative solution of y = Px. The greater the minimum value of KL(Px,y)
the more distinct from one another the vectors of the limit cycle are. An
analogous result is observed for BI-SMART.
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The MART will converge, in the consistent case, provided that 0 ≤
Pij ≤ 1, for all i and j; this condition holds here since we have assumed
that the columns of P sum to one. Since I is typically quite large, the
Pij are likely to be a great deal smaller than one. We can accelerate the
convergence of MART by rescaling the equations, obtaining what we have
called the REMART.

The REMART: The rescaled multiplicative algebraic reconstruction tech-
nique (REMART) [32] begins with a strictly positive vector x0 and has the
iterative step

xk+1
j = xkj

( yi
(Pxk)i

)m−1

i
Pij

, (67.6)

for j = 1, 2, ..., J and i = k(mod I) + 1, with mi = max{Pij |j = 1, ..., J}.
Although the importance of the rescaling for accelerating MART is not

remarked upon in papers on MART, the rescaling was often a part of actual
implementations [108].

Similarly, the BI-SMART will converge, in the consistent case, provided
that 0 ≤

∑

i∈Bn
Pij ≤ 1, for all n and j; this condition holds here since we

have assumed that the columns of P sum to one. Since N may be large, the
∑

i∈Bn
Pij are likely to be a great deal smaller than one. We can accelerate

the convergence of BI-SMART by rescaling the equations, obtaining what
we have called the rescaled block-iterative SMART (RBI-SMART).

The RBI-SMART: The rescaled block-iterative SMART (RBI-SMART)
[32] begins with a strictly positive vector x0 and has the iterative step

xk+1
j = xkj

∏

i∈Bn

( yi
(Pxk)i

)m−1
n Pij

, (67.7)

for j = 1, 2, ..., J and n = k(modN) + 1, with

mn = max{
∑

i∈Bn

Pij |j = 1, ..., J}.

The BI-SMART and RBI-SMART converge whenever there is a com-
mon nonnegative minimizer of the functions hi(x), i = 1, .., I. When there
is no such vector, these algorithms are always observed to produce a limit
cycle just as the ART does. So far, however, there is no proof of convergence
to a limit cycle for entropy-based algorithms such as these.

For k = 0, 1, ..., and n = k(modN) + 1 we can see easily that xk+1 in
(67.5) is the unique minimizer of the function Gk(x,x

k) given by

Gk(x,x
k) =

KL(x,xk) − γk
∑

i∈Bn

KL(Pxi, Pxki ) + γk
∑

i∈Bn

KL(Pxi, yi), (67.8)
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where Pxki = (Pxk)i. Let x̂ be an arbitrary nonnegative solution of y =
Px. Then we can show that

KL(x̂,xk) −KL(x̂,xk+1) = Gk(x
k+1,xk) + γk

∑

i∈Bn

KL(yi, Pxki ).(67.9)

We want to conclude that the sequence {KL(x̂,xk)} is decreasing. To be
sure that Gk(x

k+1,xk) ≥ 0 we select γk so that 1/γk ≥ ∑

i∈Bn
Pij for all

j.

We know from equation (61.1) that

KL(x, z) = KL(x+, z+) +KL(x,
x+

z+
z) (67.10)

for any nonnegative vectors x and z, with x+ and z+ > 0 denoting the
sums of the entries of vectors x and z, respectively. We reason here as
follows. Therefore we know that KL(x, z) ≥ KL(x+, z+) always. Then

KL(x, z) ≥ γk
∑

j
(
∑

i∈Bn

Pij)KL(xj , zj) ≥ γk
∑

i∈Bn

KL(Pxi, Pzi).

At the same time, we see that the decrease in the distance to a solution, as
described by the left side of equation (67.9), is roughly proportional to γk,
so we want γk as large as possible. This suggests taking γk = m−1

n , for mn

as above. This is the choice used in the RBI-SMART. We note finally that
the right side of equation (67.9) also contains the term

∑

i∈Bn
KL(yi, Pxki ),

which we want to be large also. As in the case of relaxed BI-ART, the
ordering of the blocks affects the rate of convergence.

In all of the examples we have just considered we have convergence to a
solution in the consistent case, but expect limit cycles for the block-iterative
methods in the inconsistent case.

In the next chapter we consider a block-iterative version of the EMML
method. We show how one particular attempt to form a block-iterative
version of EMML, the ordered subset EM (OSEM), usually fails to converge
in the consistent case and we show how to obtain a corrected algorithm.



Chapter 68

The Block-iterative

EMML method

The EMML algorithm minimizes the function KL(y, Px) over nonnegative
vectors x, where P is an I by J matrix of nonnegative entries with column
sums equal to one and y is the vector with positive entries. Say we are
in the consistent case if there is a nonnegative x with y = Px; otherwise,
we are in the inconsistent case. The EMML algorithm has the following
iterative step:

The EMML:

xk+1
j = xkj

I
∑

i=1

Pij

( yi
(Pxk)i

)

. (68.1)

In the consistent case the EMML converges to a nonnegative solution of
y = Px; in the inconsistent case it converges to the (almost always) unique
minimizer of KL(y, Px) [29], [30], [31]. If we had not redefined P and x
so as to have the columns of P sum to one, the EMML would have had the
iterative step

xk+1
j = xkj

[

I
∑

i=1

Pij

( yi
(Pxk)i

)]

/
[

I
∑

i=1

Pij

]

. (68.2)

The ordered subset EM (OSEM) method was derived from equation (68.2)
by replacing both sums in (68.2) with partial sums over just those i in Bn
[118]. The OSEM has the following iterative step:

The OSEM:

xk+1
j = xkj

[

∑

i∈Bn

Pij

( yi
(Pxk)i

)]

/
[

∑

i∈Bn

Pij

]

, (68.3)
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where n = k(modN) + 1.
The OSEM is mathematically incorrect. To be specific, it fails to con-

verge to a solution in the consistent case, except for the quite special case
of subset balance. The partition is said to have the subset balance prop-
erty if, for each fixed value of j, the sums

∑

i∈Bn
Pij are independent of

n. The OSEM produces, in the consistent case, limit cycles typical of the
behavior of block-iterative methods in the noisy (or inconsistent) case; in
the inconsistent case, it is noisier still. How distinct from one another the
vectors of this limit cycle are depends on the extent to which subset bal-
ance fails, as much as on the relative noise level. Recent use of the OSEM
on clinically obtained patient data has shown that OSEM can provide ac-
curate images in a fraction of the time required for the EMML. In practice
in emission tomography, subset-balance may hold approximately in certain
circumstances, so may not be an unreasonable assumption, particularly
when the blocks have the same size.

A corrected version of OSEM, called the rescaled block-iterative EMML
(RBI-EMML) method, was presented in [32] (see also [33] and [34]). The
RBI-EMML has the following iterative step:

The RBI-EMML:

xk+1
j = (1 −m−1

n

∑

i∈Bn

Pij)x
k
j +m−1

n xkj
∑

i∈Bn

Pij

( yi
(Pxk)i

)

, (68.4)

where, as earlier, we take

mn = max
j

{
∑

i∈Bn

Pij}.

When subset balance holds, the RBI-EMML reduces to the OSEM. The
RBI-EMML converges, in the consistent case, to a solution, for every choice
of subsets. In the inconsistent case the RBI-EMML is always observed to
produce a limit cycle, although no proof of this fact is known; how distinct
from one another the vectors of the limit cycle are depends on how large
the minimum value of KL(y, Px) is. In contrast, the OSEM, applied in
the inconsistent case, produces a limit cycle with the differences between
vectors dependent not only on the noise in the data vector y but also on
the deviation from subset balance. This causes the OSEM to appear noisier
than it should.

When we are free to choose the blocks we could, of course, design them
to have the subset balanced condition, or nearly so; but we are not always
free to select the blocks as we wish. When we attempt to correct for
patient motion, such as respiration, in emission tomography we may want
to combine into a single block data received while the patient was in a fixed
position. In this case the blocks may well have different sizes and subset
balance is unlikely. The OSEM can perform poorly in such cases and, as
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noted in [120], the RBI-EMML is a better choice, since it does not require
subset balance.

Both the OSEM and the RBI-EMML appear noisier than EMML in
the inconsistent case, early in the iteration, for another reason. In the
inconsistent case, the ML solution can have at most I − 1 nonzero entries
(for almost all matrices P )[29]; if there are more unknowns than equations
(J > I) then this means the ML solution will have zero entries and these
tend to be sprinkled throughout the image. Fast methods such as OSEM
and RBI-EMML get near this poor ML solution sooner than the EMML
algorithm does, so they look noisier.

There is another reason why block-iterative reconstructions can appear
noisier than their simultaneous counterparts. The individual vectors in the
limit cycle have their own noise component; if we averaged over the vectors
of the limit cycle to get the final result, instead of simply taking the last
vector computed, the noise would be somewhat smoothed.

The RBI-EMML algorithm converges in the consistent case to a nonneg-
ative solution of the linear system y = Px. As with ART, strong underre-
laxation can be used to achieve convergence in the inconsistent case. Such
a method, called the row-action maximum likelihood algorithm (RAMLA),
was discovered independently by Browne and De Pierro [22]. The RAMLA
has the following iterative step:

The RAMLA:

xk+1
j = (1 − λk

∑

i∈Bn

Pij)x
k
j + λkx

k
j

∑

i∈Bn

Pij

( yi
(Pxk)i

)

, (68.5)

where the positive relaxation parameters λk converge to zero and
∑+∞
k=0 λk =

+∞.
Before leaving this section, we point out that when there are N =

I blocks, so that each Bn contains a single value of i, the RBI-EMML
algorithm provides an analogue of the REMART in equation (67.6):

The RBI-EMML for N=I: for k = 0, 1, ... and i = k(mod I) + 1 let

xk+1
j = (1 −m−1

i Pij)x
k
j +m−1

i xkjPij

( yi
(Pxk)i

)

, (68.6)

where mi = maxj{Pij}.
The RBI-EMML has been applied recently to hyperspectral imaging

[142]. In this application radar imaging from satellites is used to generate
a picture of the ground. Because of the distance between the satellite and
the ground a single image pixel can cover an area about 30 meters square. It
is desirable to decompose such a pixel into constituent parts, to determine,
for example, how much is grass, how much is water, etc. The signal received
provides a power spectrum associated with the pixel, with each constituent
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part contributing its own distinctive spectrum in proportion to its presence
in the pixel. If the pixel is largely water, then the power spectrum is mainly
that associated with water. If the pixel is half grass and half water then
the power spectrum is a mixture of the power spectra of grass and of water.
The received power spectrum is taken to be a mixture of known spectra
associated with potential constituent parts. The RBI-EMML is then used
to determine the proportion of each actually present within the received
power spectrum.



Chapter 69

A general iterative

algorithm

As we have seen, the bandlimited extrapolation procedure of Gerchberg-
Papoulis, the SART of Anderson and Kak, Cimmino’s algorithm and the
Landweber and projected Landweber iterations are all particular cases of
the CQ algorithm for the split feasibility problem. In this chapter we
shall see that the CQ algorithm is itself a particular case of a much more
general method, the Krasnoselskii/Mann (KM) [140] approach to finding
fixed points for nonexpansive operators. The KM algorithm also includes
the ART as a particular case. The discussion here is an abbreviated version
of [40].

Fixed point iterative methods: The iterative methods we shall consider
have the form

xk+1 = Txk, (69.1)

for k = 0, 1, ..., where T is a linear or nonlinear continuous operator on a
real (possibly infinite dimensional) Hilbert space H and x0 is an arbitrary
starting vector. For any operator T on H the fixed point set of T is

Fix(T ) = {z|Tz = z}.

If the iterative sequence defined by equation (69.1) converges then the limit
is a member of Fix(T ).

In the algorithms of interest here the operator T is selected so that the
set Fix(T ) contains those vectors z that possess the properties we desire in
a solution to the original signal processing or image reconstruction problem;
finding a fixed point of the iteration leads to a solution of our problem.
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Our concern here is with properties of the operator T sufficient to guar-
antee convergence, for arbitrary x, of the sequence {T kx} whenever fixed
points of T exist. Most studies of iterative fixed point algorithms begin
with the class of nonexpansive operators and we shall do the same.

Nonexpansive operators: A (possibly nonlinear) operator N on H is
called nonexpansive (ne) if, for all x and y in H,

||Nx −Ny|| ≤ ||x − y||.

The identity map Ix = x for all x is clearly ne; more generally, for any
fixed vector w in H the maps Nx = x + w and Nx = −x + w are ne. As
the example Nx = −x shows, convergence of the sequence {Nkx} is not
guaranteed for ne operators, even when Fix(N) is nonempty.

The Krasnoselskii/Mann approach: The Krasnoselskii/Mann (KM)
[140] approach to finding fixed points of a ne operator N is quite simple,
yet remarkably useful. Given a ne operator N , let

T = (1 − α)I + αN

for some α ∈ (0, 1). The operator T is then said to be averaged (av). The
Krasnoselskii/Mann theorem discussed below tells us that the sequence
defined by equation (69.1) then converges (weakly) to a fixed point of N
whenever such points exist. The metric projection PC onto a convex set
C is av, as is the operator (I − γ∇f) if ∇f is Lipschitz continuous and
the parameter γ is appropriately chosen; the product of finitely many av
operators is av, so the operators PC2

PC1
and PC(I − γ∇f) are also av.

Consequently, fixed points of such operators are limits of the sequence
defined by equation (69.1).

Averaged operators: As we have seen, the fact that a ne operator N has
fixed points is not sufficient to guarantee convergence of the orbit sequence
{Nkx}; additional conditions are needed. An operator S on H is said to
be a strict contraction (sc) if there is σ ∈ (0, 1) such that, for all x and y
in H,

||Sx − Sy|| ≤ σ||x − y||.
The well known Banach-Picard theorem [87] assures us that the operator
S has a unique fixed point, to which the orbit sequence {Skx} converges,
for any starting point x. Requiring the operator to be a strict contraction
is quite restrictive; most of the operators we are interested in here have
multiple fixed points, so are not sc. The Krasnoselskii/Mann theorem
suggests strongly that we should concentrate on averaged operators. We
have the following result.
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Theorem 69.1 Let T be an av operator on H and let Fix(T ) be nonempty.
Then the orbit sequence {T kx} converges weakly to a member of Fix(T ),
for any x.

We shall include a proof of this theorem, for the finite dimensional case.
Recall that the CQ algorithm has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (69.2)

where γ ∈ (0, 2/ρ(ATA)), for ρ(ATA) the spectral radius of the matrix
ATA, which is also its largest eigenvalue. The CQ algorithm converges to
a solution of the SFP, for any starting vector x0, whenever the SFP has
solutions. When the SFP has no solutions, the CQ algorithm converges to
a minimizer of the function

f(x) =
1

2
||PQAx −Ax||2

over the set C, provided such constrained minimizers exist. This result
is a consequence of Theorem 69.1: the function f(x) is convex and differ-
entiable. Its gradient operator ∇f(x) = AT (I − PQ)Ax can be shown to
be λ-Lipschitz continuous for λ = ρ(ATA), from which it follows that the
operator

T (x) = PC(x − γAT (I − PQ)Ax)

is averaged for γ ∈ (0, 2/ρ(ATA)).

Proof of the KM theorem: The following identity relates an operator
T to its complement G = I − T :

||x − y||2 − ||Tx − Ty||2 = 2〈Gx −Gy,x − y〉 − ||Gx −Gy||2. (69.3)

Let z be a fixed point of the nonexpansive operator N and let α ∈ (0, 1).
Let T = (1 − α)I + αN , so the iterative step becomes

xk+1 = Txk = (1 − α)xk + αNxk. (69.4)

The identity in equation (69.3) is the key to proving Theorem 69.1.
Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xk||2 − ||Tz − xk+1||2 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||2

so that

||z − xk||2 − ||z − xk+1||2 ≥ (
1

α
− 1)||xk − xk+1||2. (69.5)

Consequently the sequence {xk} is bounded, the sequence {||z − xk||} is
decreasing and the sequence {||xk −xk+1||} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗ − xk||}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero and the proof is complete.
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Chapter 70

The Wave Equation

In this chapter and the next we demonstrate how the problem of Fourier
transform estimation from sampled data arises in the processing of measure-
ments obtained by sampling electromagnetic or acoustic field fluctuations,
as in radar or sonar.

In many areas of remote sensing what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u,

where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More
complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.

We use the method of separation of variables at this point, to get some
idea about the nature of solutions of the wave equation. Assume, for the
moment, that the solution u(t, x, y, z) has the simple form

u(t, x, y, z) = f(t)g(x, y, z).

Inserting this separated form into the wave equation we get

f ′′(t)g(x, y, z) = c2f(t)∇2g(x, y, z)

or
f ′′(t)/f(t) = c2∇2g(x, y, z)/g(x, y, z).

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
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must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

f ′′(t) + ω2f(t) = 0, (70.1)

and

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0. (70.2)

The equation (70.2) is the Helmholtz equation.
Equation (70.1) has for its solutions the functions f(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions f(t) = eiωt

and f(t) = e−iωt. Functions u(t, x, y, z) = f(t)g(x, y, z) with such time
dependence are called time-harmonic solutions.

In three-dimensional spherical coordinates with r =
√

x2 + y2 + z2 a
radial function u(r, t) satisfies the wave equation if

utt = c2(urr +
2

r
ur).

Exercise 1: Show that the radial function u(r, t) = 1
rh(r−ct) satisfies the

wave equation for any twice differentiable function h.

Radial solutions to the wave equation have the property that at any
fixed time the value of u is the same for all the points on a sphere centered
at the origin; the curves of constant value of u are these spheres, for each
fixed time.

Suppose at time t = 0 the function h(r, 0) is zero except for r near zero;
that is, initially, there is a localized disturbance centered at the origin. As
time passes that disturbance spreads out spherically. When the radius of a
sphere is very large, the surface of the sphere appears planar, to an observer
on that surface, who is said then to be in the far field. This motivates the
study of solutions of the wave equation that are constant on planes; the
so-called planewave solutions.

Exercise 2: Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Show
that u satisfies the wave equation utt = c2∇2u for any real vector k, so long
as ||k||2 = ω2/c2. This solution is a planewave associated with frequency
ω and wavevector k; at any fixed time the function u(s, t) is constant on
any plane in three dimensional space having k as a normal vector.
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Array Processing

In radar and sonar the field u(s, t) being sampled is usually viewed as a
discrete or continuous superposition of planewave solutions with various
amplitudes, frequencies and wavevectors. We sample the field at various
spatial locations sm, m = 1, ...,M , for t in some finite interval of time.
We simplify the situation a bit now by assuming that all the planewave
solutions are associated with the same frequency, ω. If not, we perform an
FFT on the functions of time received at each sensor location sm and keep
only the value associated with the desired frequency ω.

In the continuous superposition model the field is

u(s, t) = eiωt
∫

f(k)eik·sdk.

Our measurements at the sensor locations sm give us the values

F (sm) =

∫

f(k)eik·smdk,

form = 1, ...,M . The data are then Fourier transform values of the complex
function f(k); f(k) is defined for all three-dimensional real vectors k, but
is zero, in theory, at least, for those k whose squared length ||k||2 is not
equal to ω2/c2. Our goal is then to estimate f(k) from finitely many values
of its Fourier transform. Since each k is a normal vector for its planewave
field component, determining the value of f(k) will tell us the strength of
the planewave component coming from the direction k.

The collection of sensors at the spatial locations sm, m = 1, ...,M ,
is called an array and the size of the array, in units of the wavelength
λ = 2πc/ω, is called the aperture of the array. Generally the larger the
aperture the better, but what is a large aperture for one value of ω will be
a smaller aperture for a lower frequency. The book by Haykin [106] is a
useful reference, as is the review paper by Wright, Pridham and Kay [183].
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In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays. Let’s look more closely at the collinear
case.

θ

u

k

array

wavevector

∆ ∆ ∆

uniformly spaced sensor

spacing = ∆

plane wave  fronts

Figure 71.1: A uniform line array sensing a planewave field.

We assume now that the sensors are equispaced along the x-axis, at
locations (m∆, 0, 0), m = 1, ...,M , where ∆ > 0 is the sensor spacing; such
an arrangement is called a uniform line array; this setup is illustrated in
Figure 71.1. Our data is then

Fm = F (sm) = F ((m∆, 0, 0)) =

∫

f(k)eim∆k·(1,0,0)dk.



345

Since k · (1, 0, 0) = ω
c cos θ, for θ the angle between the vector k and the

x-axis, we see that there is some ambiguity now; we cannot distinguish the
cone of vectors that have the same θ. It is common then to assume that the
wavevectors k have no z-component and that θ is the angle between two
vectors in the x, y-plane, the so-called angle of arrival. The wavenumber
variable k = ω

c cos θ lies in the interval [−ω
c ,

ω
c ] and we imagine that f(k)

is now f(k), defined for |k| ≤ ω
c . The Fourier transform of f(k) is F (s), a

function of a single real variable s. Our data is then viewed as the values
F (m∆), for m = 1, ...,M . Since the function f(k) is zero for |k| > ω

c the

Nyquist spacing in s is πc
ω , which is λ

2 , where λ = 2πc
ω is the wavelength.

To avoid aliasing, which now means mistaking one direction of arrival
for another, we need to select ∆ ≤ λ

2 . When we have oversampled, so that

∆ < λ
2 , the interval [−ω

c ,
ω
c ], the so-called visible region, is strictly smaller

than the interval [− π
∆ ,

π
∆ ]. If the model of propagation is accurate all

the signal component planewaves will correspond to wavenumbers k in the
visible region and the background noise will also appear as a superposition
of such propagating planewaves. In practice, there can be components in
the noise that appear to come from wavenumbers k outside of the visible
region; this means these components of the noise are not due to distant
sources propagating as planewaves, but, perhaps, to sources that are in
the near field, or localized around individual sensors, or coming from the
electronics within the sensors.

Using the formula λω = 2πc we can calculate the Nyquist spacing for
any particular case of planewave array processing. For electromagnetic
waves the propagation speed is the speed of light, which we shall take here
to be c = 3 × 108 meters per second. The wavelength λ for gamma rays
is around one Angstrom, which is 10−10 meters; for x-rays it is about one
millimicron, or 10−9 meters; the visible spectrum has wavelengths that are
a little less than one micron, that is, 10−6 meters. Shortwave radio has
wavelength around one millimeter; broadcast radio has a λ running from
about 10 meters to 1000 meters, while the so-called long radio waves can
have wavelengths several thousand meters long. At the one extreme it is
impractical (if not physically impossible) to place individual sensors at the
Nyquist spacing of fractions of microns, while at the other end, managing
to place the sensors far enough apart is the challenge.

The wavelengths used in primitive early radar at the start of World War
II were several meters long. Since resolution is proportional to aperture,
which, in turn, is the length of the array, in units of wavelength, antennae
for such radar needed to be quite large. As Körner notes in [128], the
general feeling at the time was that the side with the shortest wavelength
would win the war. The cavity magnetron, invented during the war by
British scientists, made possible 10 cm wavelength radar, which could then
easily be mounted on planes.
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In ocean acoustics it is usually assumed that the speed of propagation
of sound is around 1500 meters per second, although deviations from this
ambient sound speed are significant, and since they are caused by such
things as temperature differences in the ocean, can be used to estimate these
differences. At around the frequency ω = 50 Hz we find sound generated
by man-made machinery, such as motors in vessels, with higher frequency
harmonics sometimes present also; at other frequencies the main sources of
acoustic energy may be wind-driven waves or whales. The wavelength for
50 Hz is λ = 30 meters; sonar will typically operate both above and below
this wavelength. It is sometimes the case that the array of sensors is fixed
in place, so what may be Nyquist spacing for 50 Hz will be oversampling
for 20 Hz.

It is often the case that we are primarily interested in the values |f(k)|,
not the complex values f(k). Since the Fourier transform of the function
|f(k)|2 is the autocorrelation function obtained by convolving the function
F with F , we can mimic the approach used earlier for power spectrum
estimation to find |f(k)|. We can now employ the nonlinear methods such
as Burg’s MEM and Capon’s maximum likelihood method.

In array processing, as in other forms of signal and image processing, we
want to remove the noise and enhance the information-bearing component,
the signal. To do this we need some idea of the statistical behavior of
the noise, we need a physically accurate description of what the signals
probably look like and we need a way to use this information. Much of our
discussion up to now has been about the many ways in which such prior
information can be incorporated in linear and nonlinear procedures. We
have not said much about the important issue of the sensitivity of these
methods to mismatch; that is, What happens when our physical model is
wrong or the statistics of the noise is not what we thought it was? We
did note earlier how Burg’s MEM resolves closely spaced sinusoids when
the background is white noise, but when the noise is correlated, MEM can
degrade rapidly.

Even when the physical model and noise statistics are reasonably ac-
curate, slight errors in the hardware can cause rapid degradation of the
processor. Sometimes acoustic signal processing is performed with sensors
that are designed to be expendable and are therefore less expensive and
more prone to errors than more permanent equipment. Knowing what a
sensor has received is important, but so is knowing when it received it.
Slight phase errors caused by the hardware can go unnoticed when the
data is processed in one manner, but can ruin the performance of another
method.

The information we seek is often stored redundantly in the data and
hardware errors may harm only some of these storage locations, making
robust processing still possible. As we saw in our discussion of eigenvec-
tor methods, information about the frequencies of the complex exponential
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components of the signal are stored in the roots of the polynomials ob-
tained from some of the eigenvectors. In [52] it was demonstrated that, in
the presence of correlated noise background, phase errors distort the roots
of some of these polynomials more than others; robust estimation of the
frequencies is still possible if the stable roots are interrogated.

We have focused here exclusively on planewave propagation, which re-
sults when the source is far enough way from the sensors and the speed of
propagation is constant. In many important applications these conditions
are violated, different versions of the wave equation are needed, which have
different solutions. For example, sonar signal processing in environments
such as shallow channels, in which some of the sound reaches the sensors
only after interacting with the ocean floor or the surface, requires more
complicated parameterized models for solutions of the appropriate wave
equation. Lack of information about the depth and nature of the bottom
can also cause errors in the signal processing. In some cases it is possi-
ble to use acoustic energy from known sources to determine the needed
information.

Array signal processing can be done in passive or active mode. In passive
mode the energy is either reflected off of or originates at the object of
interest: the moon reflects sunlight, while ships generate their own noise.
In the active mode the object of interest does not generate or reflect enough
energy by itself, so the energy is generated by the party doing the sensing:
active sonor is sometimes used to locate quiet vessels, while radar is used to
locate planes in the sky or to map the surface of the earth. In the February
2003 issue of Harper’s is an article on scientific apocalypse, dealing with
the search for near-earth asteroids. These objects are initially detected
by passive optical observation, as small dots of reflected sunlight; once
detected, they are then imaged by active radar to determine their size,
shape, rotation and such.
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Chapter 72

Matched Field Processing

Previously we considered the array processing problem in the context of
planewave propagation. When the environment is more complicated the
wave equation must be modified to reflect the physics of the situation and
the signal processing modified to incorporate that physics. A good example
of such modification is provided by acoustic signal processing in shallow
water, the topic of this chapter.

In the shallow water situation the acoustic energy from the source in-
teracts with the surface and with the bottom of the channel, prior to being
received by the sensors. The nature of this interaction is described by the
wave equation in cylindrical coordinates. The deviation from the ambient
pressure is the function p(t, s) = p(t, r, z, θ), where s = (r, z, θ) is the spa-
tial vector variable, r is the range, z the depth and θ the bearing angle in
the horizontal. We assume a single frequency, ω, so that

p(t, s) = eiωtg(r, z, θ).

We shall assume cylindrical symmetry to remove the θ dependence; in many
applications the bearing is essentially known or limited by the environment
or can be determined by other means. The sensors are usually positioned
in a vertical array in the channel, with the top of the array taken to be
the origin of the coordinate system and positive z taken to mean positive
depth below the surface. We shall also assume that there is a single source
of acoustic energy located at range rs and depth zs.

To simplify a bit we assume here that the sound speed c = c(z) does not
change with range, but only with depth, and that the channel has constant
depth and density. Then the Helmholtz equation for the function g(r, z) is

∇2g(r, z) + [ω/c(z)]2g(r, z) = 0.

349



350 CHAPTER 72. MATCHED FIELD PROCESSING

The Laplacian is

∇2g(r, z) = grr(r, z) +
1

r
gr(r, z) + gzz(r, z).

We separate the variables once again, writing

g(r, z) = f(r)u(z).

Then the range function f(r) must satisfy the differential equation

f ′′(r) +
1

r
f ′(r) = −αf(r)

and the depth function u(z) satisfies the differential equation

u′′(z) + k(z)2u(z) = αu(z),

where α is a separation constant and

k(z)2 = [ω/c(z)]2.

Taking λ2 = α the range equation becomes

f ′′(r) +
1

r
f ′(r) + λ2f(r) = 0,

which is Bessel’s equation, with Hankel function solutions. The depth
equation becomes

u′′(z) + (k(z)2 − λ2)u(z) = 0,

which is of Sturm-Liouville type. The boundary conditions pertaining to
the surface and the channel bottom will determine the values of λ for which
a solution exists.

To illustrate the way in which the boundary conditions become involved,
we consider two examples.

The homogeneous layer model:

We assume now that the channel consists of a single homogeneous layer of
water of constant density, constant depth d and constant sound speed c.
We impose the following boundary conditions:

a. Pressure-release surface: u(0) = 0;

b. Rigid bottom: u′(d) = 0.

With γ2 = (k2 − λ2) we get cos(γd) = 0, so the permissible values of λ are

λm = (k2 − [(2m− 1)π/2d]2)1/2, m = 1, 2, ....
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The normalized solutions of the depth equation are now

um(z) =
√

2/d sin(γmz),

where
γm =

√

k2 − λ2
m = (2m− 1)π/2d, m = 1, 2, ....

For each m the corresponding function of the range satisfies the differential
equation

f ′′(r) +
1

r
f ′(r) + λ2

mf(r),

which has solution H
(1)
0 (λmr), where H

(1)
0 is the zeroth order Hankel func-

tion solution of Bessel’s equation. The asymptotic form for this function
is

πiH
(1)
0 (λmr) =

√

2π/λmr exp(−i(λmr +
π

4
)).

It is this asymptotic form that is used in practice. Note that when λm is
complex with a negative imaginary part there will be a decaying exponential
in this solution, so this term will be omitted in the signal processing.

Having found the range and depth functions we write g(r, z) as a su-
perposition of these elementary products, called the modes:

g(r, z) =
∑M

m=1
AmH

(1)
0 (λmr)um(z),

where M is the number of propagating modes free of decaying exponentials.
The Am can be found from the original Helmholtz equation; they are

Am = (i/4)um(zs),

where zs is the depth of the source of the acoustic energy. Notice that
the depth of the source also determines the strength of each mode in this
superposition; this is described by saying that the source has excited certain
modes and not others.

The eigenvalues λm of the depth equation will be complex when

k =
ω

c
<

(2m− 1)π

2d
,

If ω is below the cut-off frequency πc
2d then all the λm are complex and there

are no propagating modes (M = 0). The number of propagating modes is

M =
1

2
+
ωd

πc
,

which is 1
2 plus the depth of the channel in units of half-wavelengths.

This model for shallow water propagation is helpful in revealing a num-
ber of the important aspects of modal propagation, but is of limited prac-
tical utility. A more useful and realistic model is the Pekeris waveguide.
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The Pekeris waveguide:

Now we assume that the water column has constant depth d, sound speed
c and density b. Beneath the water is an infinite half-space with sound
speed c′ > c and density b′. Figure 72.1 illustrates the situation.
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Figure 72.1: The Pekeris model.

Using the new depth variable v = ωz
c the depth equation becomes

u′′(v) + λ2u(v) = 0, for 0 ≤ v ≤ ωd

c
,

and

u′′(v) + ((
c

c′
)2 − 1 + λ2)u(v) = 0, for

ωd

c
< v.
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To have a solution λ must satisfy the equation

tan(λωd/c) = −(λb/b′)/

√

1 − (
c

c′
)2 − λ2,

with
1 − (

c

c′
)2 − λ2 ≥ 0.

The trapped modes are those whose corresponding λ satisfies

1 ≥ 1 − λ2 ≥ (
c

c′
)2.

The eigenfunctions are

um(v) = sin(λmv), for 0 ≤ v ≤ ωd

c

and

um(v) = exp

(

− v

√

1 − (
c

c′
)2 − λ2

)

, for
ωd

c
< v.

Although the Pekeris model has its uses, it still may not be realistic enough
in some cases and more complicated propagation models will be needed.

The general normal mode model:

Regardless of the model by which the modal functions are determined, the
general normal mode expansion for the range-independent case is

g(r, z) =
∑M

m=1
um(z)sm(r, zs),

where M is the number of propagating modes and sm(r, zs) is the modal
amplitude containing all the information about the source of the sound.

Matched field processing:

In planewave array processing we write the acoustic field as a superposition
of planewave fields and try to find the corresponding amplitudes. This can
be done using a matched filter, although high resolution methods can also
be used. In the matched filter approach, we fix a wavevector and then
match the data with the vector that describes what we would have received
at the sensors had there been but a single planewave present corresponding
to that fixed wavevector; we then repeat for other fixed wavevectors. In
more complicated acoustic environments, such as normal mode propagation
in shallow water, we write the acoustic field as a superposition of fields due
to sources of acoustic energy at individual points in range and depth and
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then seek the corresponding amplitudes. Once again, this can be done
using a matched filter.

In matched field processing we fix a particular range and depth and
compute what we would have received at the sensors had the acoustic field
been generated solely by a single source at that location. We then match the
data with this computed vector. We repeat this process for many different
choices of range and depth, obtaining a function of r and z showing the
likely locations of actual sources. As in the planewave case, high resolution
nonlinear methods can also be used.

As in the planewave case, the performance of our processing methods
can be degraded by incorrect description of the environment, as well as by
phase errors and the like introduced by the hardware [28]. Once again, it is
necessary to seek out those locations within the data where the information
we seek is less disturbed by such errors [41], [49].

Good sources for more information concerning matched field processing
are the book by Tolstoy [176] and the papers [5], [24], [90], [112], [113],
[165], [166], [167], [175] and [184].
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Transmission Tomography

In this chapter we show how the two dimensional Fourier transform arises
in transmission tomographic image processing. See the texts [147] and [148]
for more detailed discussion of these matters.

As an x-ray beam passes through the body it encounters various types
of matter, soft tissue, bone, ligaments, air, each weakening the beam to a
greater or lesser extent. If the intensity of the beam upon entry is Iin and
Iout is its lesser intensity after passing through the body, then

Iout = Iine
−
∫

L
f
,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being scanned
and

∫

L
f is the integral of the function f over the line L along which the

x-ray beam has passed. To see why this is the case imagine the line L
parametrized by the variable s and consider the intensity function I(s) as
a function of s. For small ∆s > 0 the drop in intensity from the start to the
end of the interval [s, s+∆s] is approximately proportional to the intensity
I(s), to the attenuation f(s) and to ∆s, the length of the interval; that is,

I(s) − I(s+ ∆s) ≈ f(s)I(s)∆s.

Dividing by ∆s and letting ∆s approach zero, we get

dI

ds
= −f(s)I(s).

The solution of this differential equation is

I(s) = I(0) exp(−
∫ u=s

u=0

f(u)du).
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From knowledge of Iin and Iout we can determine
∫

L
f . As we shall see,

if we know
∫

L
f for every line in the x, y-plane we can reconstruct the

attenuation function f . In actual computer-assisted tomography (CAT)
scans we know line integrals only approximately and only for finitely many
lines. Figure 73.1 illustrates the situation. In practice the function f is
replaced by a grid of pixels, as shown in Figure 73.2.

s

t

y

x

θ

L

          

Figure 73.1: The Radon transform of f at (t, θ) is the line integral of f
along line L.

Let θ be a fixed angle in the interval [0, π) and consider the rotation of
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the x, y coordinate axes to produce the t, s axis system, where

t = x cos θ + y sin θ,

and
s = −x sin θ + y cos θ.

We can then write the attenuation function f as a function of the variables
t and s. For each fixed value of t we compute the integral

∫

f(x, y)ds,
obtaining the integral of f(x, y) = f(t cos θ − s sin θ, t sin θ + s cos θ) along
the single line L corresponding to the fixed values of θ and t. We repeat
this process for every value of t and then change the angle θ and repeat
again. In this way we obtain the integrals of f over every line L in the
plane. We denote by rf (θ, t) the integral

rf (θ, t) =

∫

L

f(x, y)ds.

The function rf (θ, t) is called the Radon transform of f .
For fixed θ the function rf (θ, t) is a function of the single real variable

t; let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =

∫

(

∫

f(x, y)ds)eiωtdt,

which we can write as

Rf (θ, ω) =

∫ ∫

f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the central slice theorem. For fixed θ as we change the value of ω we
obtain the values of the function F along the points of the line making the
angle θ with the horizontal axis. As θ varies in [0, π) we get all the values
of the function F . Once we have F we can obtain f using the formula for
the two-dimensional inverse Fourier transform. We conclude that we are
able to determine f from its line integrals.

The inversion formula tells us that the function f(x, y) can be obtained
as

f(x, y) =
1

4π2

∫ ∫

F (u, v)e−i(xu+yv)dudv.

Expressing the double integral in polar coordinates (ω, θ), with ω ≥ 0,
u = ω cos θ and v = ω sin θ, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,
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or

f(x, y) =
1

4π2

∫ π

0

∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dωdθ.

Now write
F (u, v) = F (ω cos θ, ω sin θ) = Rf (θ, ω),

where Rf (θ, ω) is the FT with respect to t of rf (θ, t) so that

∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dω =

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω.

The function hf (θ, t) defined for t = x cos θ + y sin θ by

hf (θ, x cos θ + y sin θ) =

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω

is the result of a linear filtering of rf (θ, t) using a ramp filter with transfer
function G(ω) = |ω|. Then

f(x, y) =
1

4π2

∫ π

0

hf (θ, x cos θ + y sin θ)dθ

gives f(x, y) as the result of a backprojection operator; for every fixed value
of (θ, t) add hf (θ, t) to the current value at the point (x, y) for all (x, y)
lying on the straight line determined by θ and t by t = x cos θ+y sin θ. The
final value at a fixed point (x, y) is then the sum of all the values hf (θ, t)
for those (θ, t) for which (x, y) is on the line t = x cos θ + y sin θ. It is
therefore said that f(x, y) can be obtained by filtered backprojection (FBP)
of the line integral data.

Knowing that f(x, y) is related to the complete set of line integrals by
filtered backprojection suggests that when only finitely many line integrals
are available a similar ramp filtering and backprojection can be used to
estimate f(x, y); in the clinic this is the most widely used method for the
reconstruction of tomographic images.

There is a second way to recover f(x, y) using backprojection and fil-
tering, this time in the reverse order; that is, we backproject the Radon
transform and then ramp filter the resulting function of two variables. We
begin again with the relation

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

which we write as

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)√
u2 + v2

√

u2 + v2e−i(xu+yv)ωdωdθ



359

=
1

4π2

∫ 2π

0

∫ ∞

0

G(u, v)
√

u2 + v2e−i(xu+yv)ωdωdθ, (73.1)

using

G(u, v) =
F (u, v)√
u2 + v2

for (u, v) 6= (0, 0). Equation (73.1) expresses f(x, y) as the result of ramp
filtering g(x, y), the inverse Fourier transform of G(u, v). We show now
that g(x, y) is the backprojection of the function rf (ω, t); that is, we show
that

g(x, y) =

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

From the central slice theorem we know that g(x, y) can be written as

g(x, y) =

∫ π

0

hg(θ, x cos θ + y sin θ)dθ,

where

hg(θ, x cos θ + y sin θ) =

∫ ∞

−∞
Rg(θ, ω)|ω|e−iω(x cos θ+y sin θ)dω.

Since
Rg(θ, ω) = G(ω cos θ, ω sin θ)

we have

g(x, y) =

∫ π

0

∫ ∞

−∞
G(ω cos θ, ω sin θ)|ω|e−iω(x cos θ+y sin θ)dωdθ

=

∫ π

0

∫ ∞

−∞
F (ω cos θ, ω sin θ)e−iω(x cos θ+y sin θ)dωdθ

=

∫ π

0

∫ ∞

−∞
Rf (θ, ω)e−iω(x cos θ+y sin θ)dωdθ

=

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

This is what we wanted.
We have found that the recovery of f(x, y) from its line integrals can

be accomplished using filtering and backprojection in two different ways:
one way is to filter the function rf (θ, t), viewed as a function of t, with a
ramp filter, then backproject; the other way is to backproject rf (θ, t) first
and then filter the resulting function of two variables with a ramp filter in
two dimensions. Both of these filtered backprojection methods have their
analogs in the processing of actual finite data.
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As we noted above, in actual CAT scans only finitely many θ are used
and for each θ only finitely many t are employed. Therefore at each step
along the way we are dealing only with approximations of what the theory
would provide. In addition to that, the data we have are not exactly line
integrals of f but more precisely integrals of f along narrow strips.

Although the one and two dimensional Fourier transforms do play roles
in CAT scan imaging there are better reconstruction methods based on
iterative algorithms such as ART and the EMML.
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x(1) x(6)x(2)

x(7) x(12)

x(25)

x(31) x(36)

Figure 73.2: The Radon transform for a discretized object.
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Chapter 74

Scattering

X-ray transmission tomography is based on the reasonable assumption that
the rays travel in a straight line through the object, more or less. In other
forms of remote sensing this assumption is not reasonable. We consider here
the example of the scattering of an electromagnetic incident planewave by
a dielectric (for more detail see [17], p. 695).

We know from our earlier discussion of the wave equation that a time-
harmonic solution u(t, x, y, z) = eiωtg(x, y, z) of the wave equation

utt = c2∇2u

will have a spatial component g(x, y, z) that satisfies the Helmholtz equa-
tion

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0.

In that earlier discussion it was assumed that the speed of propagation
c2 was constant. In the scalar theory of electromagnetic propagation we
find that each Cartesian component function g(x, y, z) of a time-harmonic
wave will satisfy the Helmholtz equation, provided that the refractive index
n(x, y, z, ω) is independent of the spatial variables. Otherwise, we must
write

∇2g(x, y, z) +
ω2

c2
n2(x, y, z, ω)g(x, y, z) = 0. (74.1)

Usually the refractive index is one outside of a localized region D and
what we are interested in is the object within that region that is causing
the refractive index there not to be one; that is, we want the scattering
potential function

V (x, y, z) = n2(x, y, z) − 1.

For simplicity we no longer show the dependence on ω. We write the spatial
variables in vector form as (x, y, z) = r and let k = ω

c .
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Rewriting equation (74.1) as

∇2g(r) +
ω2

c2
g(r) = −V (r)g(r) (74.2)

we can then view the problem as a non-homogeneous Helmholtz partial
differential equation.

The solution of equation (74.2) is the sum of two functions, g = g0 +gs,
where g0(r) is the incident field that would be present at r even if the
refractive index were constant, and gs(r) is the scattered field due to the
deviations in the refractive index. Assuming that the observation location
r is far enough from the object region D, the scattered field can be written
as

gs(r) = k2 e
ikr

4πr

∫

D

V (r′)g(r′)e−ikr̂·r′

dr′, (74.3)

where r̂ = r
||r|| and r = ||r − r′||. From equation (74.3) we see that we

cannot find the scattered field without knowing the entire field. Obviously,
some sort of approximation is needed.

The first Born approximation is to replace g(r′) in the integrand in
equation (74.3) with the incident field g0(r

′). In most cases the incident
field is a planewave field of the form

g0(r) = eikr̂0·r,

where r0 is the direction vector normal to the incident planewave field.
With this simplification equation (74.3) becomes

gs(r) = k2 e
ikr

4πr

∫

D

V (r′)eikr̂0·r′

e−ikr̂·r′

dr′. (74.4)

The function of r given by the integral in equation (74.4) is the Fourier
transform of the function V (r), evaluated at the point k(r̂0 − r̂). As the
observation location r changes, we obtain this Fourier transform at points
of the sphere of radius k centered at kr̂0; this is the Ewald sphere. By
changing the direction of the incident field as well we eventually obtain
all the values of the Fourier transform of V (r) in a sphere centered at the
origin and having radius 2k.
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A Simple Model for

Remote Sensing

Although remote sensing problems differ from one another in many re-
spects, they often share a fundamental aspect that can best be illustrated
by a simple model involving dice and bowls of colored marbles.

Suppose that we have a pair of not necessarily fair dice. Each roll of
the pair of dice produces a whole number between 2 and 12, but we do not
know the probability of each outcome. In fact, this is precisely what we
want to estimate. Unfortunately, we do not have direct access to the dice
and cannot roll them many times and observe the outcomes. Instead, we
have only indirect access.

In addition to the dice there are eleven bowls, numbered 2, 3, ..., 12 to
correspond to the possible outcomes of a roll of the pair of dice. Each bowl
contains a large number of marbles of various colors: red, blue, green, and
so on. For each bowl we know exactly what the proportions of the various
colors are; for example, we may know that bowl no. 2 has fifty percent
green, twenty percent white and thirty percent red. We then proceed as
follows.

The dice are rolled by someone else; we do not observe the outcome.
That other person looks at the outcome, goes to the bowl having that
number, removes one marble at random, says its color to me and replaces
the marble. The only information I get is the color of the marble drawn.
This process is repeated many time, so that I end up with a long list of
colors. My job is to estimate the probability p(j) that the dice comes up
j, for each j = 2, 3, ..., 12.

Clearly, if two of the bowls, say no. 2 and no. 3, have identical propor-
tions of marbles, I cannot estimate p(2) and p(3) separately. On the other
hand, suppose bowl no. 2 has only black marbles, while none of the other
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bowls has any black marbles. Then every time I hear that the color was
black I know immediately that the bowl was no. 2, so that the dice showed
2. Generally, the more distinct the bowl contents are from each other, the
easier the problem becomes.

What we need is an estimation procedure to take us from the list of
colors to the probabilities p(j). How can we do this?

This may seem like an artificial problem, but it is basically what is
involved in a number of real-world applications, including satellite imaging
and medical tomography. The point is this: when we do remote sensing
we obtain information about lots of things that are ‘out there’ , but that
information is all mixed up. It is sometimes described as the ‘cocktail
party problem’ , in which many people are talking at once and we want to
hear each of them separately. When the information comes to us in the
form of waves, as in optics or acoustics, we often end up with (part of) the
Fourier transform of what we really want. Other times we have a mixture
probability, such as a Poisson or binomial mixture. But the basic problem
is the same: separate out the individual pieces of information.

Exercise 1: Simulate the dice-rolling problem described above and use
the EMML and SMART algorithms to find the p(j).



Chapter 76

Poisson Mixtures

A problem that arises in both the physical sciences and the social sciences
is the mixture problem. In this chapter we consider a particular case, the
Poisson mixture problem.

In [89] the authors examine a data set consisting of all the death notices
of women aged eighty years or older that appeared in the Times of London
on each day of three consecutive years. A simple Poisson model for such
data would assume that there is a mean λ > 0 such that the probability
p(n) that there would be n deaths on a particular day would be given by
the Poisson distribution

p(n) = λne−λ/n!.

A more sophisticated model is a Poisson mixture that assumes that there
are up to J subgroups of the women, each having their own somewhat
different mean values, λj . Then the probability p(n) is given by the Poisson
mixture formula

p(n) =
∑J

j=1
cjλ

n
j e

−λj/n!,

where cj ≥ 0 is the proportion of the women belonging to the j-th group.
The objective is to analyze the data and determine from it accurate es-
timates of J , the means λj and the proportions cj . For the death notice
data the authors show convincingly that J = 2 and that the deaths rates
are roughly λ1 = 1.1 and λ2 = 2.6.

In [160] Qian uses the same model of the Poisson mixture to track the
changing number of fluorescent molecules from photon count data.

We can extend the finite Poisson mixture model to a continuous mix-
ture, defining the probabilities p(n), for n = 0, 1, ... to be

p(n) =

∫ ∞

0

C(ω)e−ωωn/n! dω,
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for some nonnegative probability density function C(ω) having
∫

C(ω)dω =
1. Such a probability model is called a compound Poisson distribution
with compounding function C(ω). The problem then is to use the data
to estimate the function C(ω), for 0 ≤ ω < ∞. The sequence {p(n)} is
sometimes called the Poisson transform of the function C(ω). The finite
Poisson mixture then corresponds to a C(ω) that is a finite sum of delta
functions.

The approach commonly used is to derive estimates of the p(n) for as
many values of n as the data permits and view these estimates as noisy
values of the Poisson transformation of C(ω). This problem is analogous
to the estimation of the Fourier transform F (ω) from noisy samples of
the function f(x) and it is no surprise that some of the same techniques
can be employed. In [51] and [50] we used the PDFT and high resolution
eigenvector methods to solve the finite Poisson mixture problem.
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Hyperspectral Imaging

Hyperspectral image processing provides an excellent example of the need
for estimating Fourier transform values from limited data. In this chapter
we describe one novel approach, due to Mooney et al[144]; the presentation
here follows [21], [149]and [110].

In this hyperspectral imaging problem the electromagnetic energy re-
flected or emitted by a point, such as light reflected from a location on
the earth’s surface, is passed through a prism to separate the components
as to their wavelengths. Due to the dispersion of the different frequency
components caused by the prism, these components are recorded in the
image plane not at a single spatial location, but at distinct points along a
line. Since the received energy comes from a region of points, not a single
point, what is received in the image plane is a superposition of different
wavelength components associated with different points within the object.
The first task is to reorganize the data so that each location in the image
plane is associated with all the components of a single point of the object
being imaged; this is a Fourier transform estimation problem, which we
can solve using band-limited extrapolation.

The points of the image plane are in one-to-one correspondence with
points of the object. These spatial locations in the image plane and in
the object are discretized into finite two-dimensional grids. Once we have
reorganized the data we have, for each grid point in the image plane, a
function of wavelength, describing the intensity of each component of the
energy from the corresponding grid point on the object. Practical con-
siderations limit the fineness of the grid in the image plane; the resulting
discretization of the object is into pixels. In some applications, such as
satellite imaging, a single pixel may cover an area several meters on a
side. Achieving sub-pixel resolution is one goal of hyperspectral imaging;
capturing other subtleties of the scene is another.

Within a single pixel of the object there may well be a variety of object
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types, each reflecting or emitting energy differently. The data we now have
corresponding to a single pixel is therefore a mixture of the energy associ-
ated with each of the sub-objects within the pixel. With prior knowledge
of the possible types and their reflective or emissive properties, we can sep-
arate the mixture to determine which object types are present within the
pixel and to what extent. This mixture problem can be solved using the
RBI-EMML method.

Hyperspectral imaging gives rise to several of the issues we discuss in
this book. From an abstract perspective the problem is the following: F
and f are a Fourier transform pair, as are G and g; F and G have finite
support; we measure G and want F ; g determines some, but not all, of the
values of f . We will have, of course, only finitely many measurements of G
from which to estimate values of g. Having estimated finitely many values
of g we have the corresponding estimates of f . We apply band-limited
extrapolation of these finitely many values of f to estimate F . In fact,
once we have estimated values of F we may not be finished; each value of
F is a mixture whose individual components may be what we really want.
For this unmixing step we use the RBI-EMML algorithm.

The region of the object that we wish to image is described by the two-
dimensional spatial coordinate x = (x1, x2). For simplicity, we take these
coordinates to be continuous, leaving until the end the issue of discretiza-
tion. We shall also denote by x the point in the image plane corresponding
to the point x on the object; the units of distance between two such points
in one plane and their corresponding points in the other plane may, of
course, be quite different. For each x we let F (x, λ) denote the intensity
of the component at wavelength λ of the electromagnetic energy that is
reflected from or emitted by location x. We shall assume that F (x, λ) = 0
for (x, λ) outside some bounded portion of three-dimensional space.

Consider, for a moment, the case in which the energy sensed by the
imaging system comes from a single point x. If the dispersion axis of the
prism is oriented according to the unit vector pθ, for some θ ∈ [0, 2π),
then the component at wavelength λ of the energy from x on the object
is recorded not at x in the image plane but at the point x + µ(λ− λ0)pθ.
Here µ > 0 is a constant and λ0 is the wavelength for which the component
from point x of the object is recorded at x in the image plane.

Now imagine energy coming to the imaging system for all the points
within the imaged region of the object. Let G(x, θ) be the intensity of the
energy received at location x in the image plane when the prism orientation
is θ. It follows from above that

G(x, θ) =

∫ +∞

−∞
F (x − µ(λ− λ0)pθ, λ)dλ. (77.1)

The limits of integration are not really infinite due to the finiteness of the
aperture and the focal plane of the imaging system. Our data will consist
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of finitely many values of G(x, θ), as x varies over the grid points of the
image plane and θ varies over some finite discretized set of angles.

We begin the image processing by taking the two-dimensional inverse
Fourier transform of G(x, θ) with respect to the spatial variable x to get

g(y, θ) =
1

(2π)2

∫

G(x, θ) exp(−ix · y)dx. (77.2)

Inserting the expression for G in equation (77.1) into equation (77.2) we
obtain

g(y, θ) = exp(iµλ0pθ · y)

∫

exp(−iµλpθ · y)f(y, λ)dλ, (77.3)

where f(y, λ) is the two-dimensional inverse Fourier transform of F (x, λ)
with respect to the spatial variable x. Therefore

g(y, θ) = exp(iµλ0pθ · y)F(y, γθ), (77.4)

where F(y, γ) denotes the three-dimensional inverse Fourier transform of
F (x, λ) and γθ = µpθ · y. We see then that each value of g(y, θ) that we
estimate from our measurements provides us with a single estimated value
of F .

We use the measured values of G(x, θ) to estimate values of g(y, θ)
guided by the discussion in our earlier chapter on discretization. Having
obtained finitely many estimated values of F we use the support of the
function F (x, λ) in three-dimensional space to perform a band-limited ex-
trapolation estimate of the function F .

Alternatively, for each fixed y for which we have values of g(y, θ) we
use the PDFT or MDFT to solve equation (77.3), obtaining an estimate of
f(y, λ) as a function of the continuous variable λ. Then, for each fixed λ,
we again use the PDFT or MDFT to estimate F (x, λ) from the values of
f(y, λ) previously obtained.

Once we have the estimated function F (x, λ) on a finite grid in three-
dimensional space we can use the RBI-EMML method, as in [142], to solve
the mixture problem and identify the individual object types contained
within the single pixel denoted x. For each fixed x corresponding to a pixel
denote by b = (b1, ..., bI)

T the column vector with entries bi = F (x, λi),
where λi, i = 1, ..., I constitute a discretization of the wavelength space
of those λ for which F (x, λ) > 0. We assume that this energy intensity
distribution vector b is a superposition of those vectors corresponding to a
number of different object types; that is, we assume that

b =

J
∑

j=1

ajqj , (77.5)
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for some aj ≥ 0 and intensity distribution vectors qj , j = 1, ..., J . Each
column vector qj is a model for what b would be if there had been only
one object type filling the entire pixel. These qj are assumed to be known
a priori. Our objective is to find the aj .

With Q the I by J matrix whose jth column is qj and a the column
vector with entries aj we write equation (77.5) as b = Qa. Since the
entries of Q are nonnegative, the entries of b are positive and we seek
a nonnegative solution a we can use any of the entropy-based iterative
algorithms discussed earlier. Because of its simplicity of form and speed
of convergence our preference is the RBI-EMML algorithm. The recent
master’s thesis of E. Meidunas [142] discusses just such an application.



Chapter 78

Solutions to Selected

Exercises

Complex Numbers

Exercise 1: Derive the formula for dividing one complex number in rect-
angular form by another (non-zero) one.

Solution: For any complex numbers z = (a, b) its reciprocal z−1 = (c, d)
must satisfy the equation zz−1 = (1, 0) = 1. Therefore ac − bd = 1 and
ad + bc = 0. Multiplying the first equation by a and the second by b and
adding, we get (a2 + b2)c = a, so c = a/(a2 + b2). Inserting this in place
of c in the second equation gives d = −b/(a2 + b2). To divide any complex
number w by z we multiply w by z−1.

Exercise 2: Show that for any two complex numbers z and w we have

|zw| ≥ 1

2
(zw + zw).

Hint: Write |zw| as |zw|.

Solution: Using the polar form for z and w it is easy to see that |zw| =
|zw|. With v = zw the problem is now to show that |v| ≥ 1

2 (v + v), or
|v| ≥ Re(v), which is obvious.

Complex Exponentials

Exercise 2: The Dirichlet kernel of size M is defined as

DM (x) =
∑M

m=−M
eimx.
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Obtain the closed-form expression

DM (x) =
sin((M + 1

2 )x)

sin(x2 )
;

note that DM (x) is real-valued.
Hint: Reduce the problem to that of Exercise 1 by factoring appropriately.

Solution: Factor out the term e−i(M+1)x to get

DM (x) = e−i(M+1)x
∑2M+1

m=1
eimx.

Now use the solution to the previous exercise.

Exercise 3: Use the formula for EM (x) to obtain the closed-form expres-
sions

∑M

m=N
cosmx = cos(

M +N

2
x)

sin(M−N+1
2 x)

sin x
2

and
∑M

m=N
sinmx = sin(

M +N

2
x)

sin(M−N+1
2 x)

sin x
2

.

Hint: Recall that cosmx and sinmx are the real and imaginary parts of
eimx.

Solution: Begin with

S(x) =
∑M

m=N
eimx

and factor out ei(N−1)x to get

S(x) = ei(N−1)x
∑M−N+1

m=1
eimx.

Now apply the formula for EM (x). Finally, use the fact that the two sums
we seek are the real and imaginary parts of S(x).

Hidden Periodicities

Exercise 1: Determine the formulas giving the horizontal and vertical
coordinates of the position of a particular rider at an arbitrary time t in
the time interval [0, T ].

Solution: Since the choice of the origin of our coordinate system is arbi-
trary, we take the origin (0, 0) to be the point on the ground directly under
the center of the wheel. The center of the wheel is then located at the point
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(0, R + H). Let the rider be at the point (0 + R cos θ,R + H + sin θ) at
time t = 0. Since the wheel turns with angular frequency ω the horizontal
position of the rider at any subsequent time will be

x(t) = 0 +R cos(θ + tω)

and the vertical position will be

y(t) = R+H +R sin(θ + tω).

Note that we can represent the rider’s position as a complex number

0 + (R+H)i+Rei(θ+tω).

Exercise 2: Now find the formulas giving the horizontal and vertical co-
ordinates of the position of a particular rider at an arbitrary time t in the
time interval [0, T ].

Solution: The position of the center of the smaller wheel is the same as
that of the rider in the previous exercise; that is,

x(t) = 0 +R1 cos(θ1 + tω1)

and
y(t) = R1 +H +R1 sin(θ1 + tω1).

The rider’s position deviates from that of the center of the smaller wheel
in the same way that the rider’s position in the previous exercise deviated
from the center of the single large wheel. Therefore, the horizontal position
of the rider now is

x(t) = 0 +R1 cos(θ1 + tω1) +R2 cos(θ2 + tω2)

and the vertical position is

y(t) = R1 +H +R1 sin(θ1 + tω1) +R2 sin(θ2 + tω2).

Again, we can represent the position as a complex number:

0 + (R+H)i+R1e
i(θ1+tω1) +R2e

i(θ2+tω2).

Exercise 3: Repeat the previous exercise, but for the case of J nested
wheels.

Solution: Reasoning as above, and using the complex representation, we
find the position to be

0 + (R+H)i+
∑J

j=1
Rje

i(θj+tωj).
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Convolution and the Vector DFT

Exercise 1: Let F = vDFTf and D = vDFTd. Define a third vector E
having for its k-th entry Ek = FkDk, for k = 0, ..., N − 1. Show that E is
the vDFT of the vector f ∗ d.

Solution: For notational convenience we define dk−N = dk, for k =
0, 1, ..., N . Then we can write

(f ∗ d)n =
∑N−1

m=0
fmdn−m.

Using this extended notation we find that the sum

∑N−1

n=0
dn−me

i(n−m)2πk/N

does not depend on m and is equal to

∑N−1

j=0
dje

2πjki/N ,

which is Dk. The vDFT of the vector f ∗ d has for its k-th entry the
quantity

∑N−1

n=0
(f ∗ d)ne

2πink/N ,

which we write as the double sum

∑N−1

n=0

∑N−1

m=0
fmdn−me

2πink/N .

Now we simply reverse the order of summation, write

e2πink/N = e2πimk/Ne2πi(n−m)k/N

and use the fact already shown that the sum on n is independent of m. We
then have that the k-th entry is

∑N−1

m=0
fme

2πimk/N
∑N−1

j=0
dje

2πijk/N = FkDk.

Exercise 2: Let G be the N by N matrix whose entries are Gjk =
ei(j−1)(k−1)2π/N . The matrix G is sometimes called the DFT matrix. Show
that the inverse of G is G−1 = 1

NG
†, where G† is the conjugate transpose

of the matrix G. Then f ∗ d = G−1E = 1
NG

†E.

Solution: Compute the entry of the matrix G†G in the m-th row, n-th
column. Use the definition of matrix multiplication to express this entry
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as a sum of the same type as in the definition of EM (x). Consider what
happens when m = n and when m 6= n.

Cauchy’s Inequality

Exercise 1: Use Cauchy’s inequality to show that

||u + v|| ≤ ||u|| + ||v||;

this is called the triangle inequality.

Solution: We have

||u + v||2 = (u + v) · (u + v) = u · u + u · v + v · u + v · v

= ||u||2 + ||v||2 + u · v + u · v = ||u||2 + ||v||2 + 2Re(u · v).

Also we have

(||u|| + ||v||)2 = ||u||2 + ||v||2 + 2||u|| ||v||.

Now use Cauchy’s inequality to conclude that

Re(u · v) ≤ |Re(u · v)| ≤ |u · v| ≤ ||u|| ||v||.

Orthogonal Vectors

Exercise 1: Use the Gram-Schmidt approach to find a third vector in R3

orthogonal to both (1, 1, 1) and (1, 0,−1).

Solution: Let the third vector be v = (a, b, c). Begin by selecting a vector
that cannot be written as α(1, 1, 1) + β(1, 0,−1). How can we be sure
we have such a vector? Notice that such a vector must have the form
(α+ β, α, α− β), so the middle entry is the average of the other two. Now
take any vector that does not have this property; let’s take (1, 2, 2). We
know that we can write (1, 2, 2) as

(1, 2, 2) = α(1, 1, 1) + β(1, 0,−1) + γ(a, b, c),

for some choices of α, β and γ. Let’s find α and β. Take the dot product
of both sides of the last equation with the vector (1, 1, 1) to get

5 = (1, 1, 1) · (1, 2, 2) = α(1, 1, 1) · (1, 1, 1) = 3α.

So α = 5/3. Now take the inner product of both sides with (1, 0,−1) to
get

−1 = (1, 0,−1) · (1, 2, 2) = β(1, 0,−1) · (1, 0,−1) = 2β.
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Therefore, β = −1/2. So we now have

(1, 2, 2) − 5

3
(1, 1, 1) +

1

2
(1, 0,−1) = (−1

6
,
1

3
,−1

6
) =

−1

6
(1,−2, 1).

We can then take γ = −1
6 and v = (a, b, c) = (1,−2, 1).

Discrete Linear Filters

Exercise 1: Show that F (ω) = G(ω)H(ω) for all ω.

Solution: Using the definition of F (ω) and fn we write

F (ω) =

∞
∑

n=−∞

∞
∑

m=−∞
gmhn−me

iωmeiω(n−m)

=

∞
∑

m=−∞
gm[

∞
∑

n=−∞
hn−me

iω(n−m)] eiωm.

Since the inner sum
∞
∑

n=−∞
hn−me

iω(n−m) =

∞
∑

k=−∞
hke

iωk

does not really depend on the index m it can be taken outside the sum over
that index.

Exercise 2: The three-point moving average filter is defined as follows:
given the input sequence {hn, n = −∞, ...,∞} the output sequence is
{fn, n = −∞, ...,∞}, with

fn = (hn−1 + hn + hn+1)/3.

Let gk = 1/3, if k = 0, 1,−1 and gk = 0, otherwise. Then we have

fn =

∞
∑

k=−∞
gkhn−k,

so that f is the discrete convolution of h and g. Let

F (ω) =

∞
∑

n=−∞
fne

inω,

for ω in the interval [−π, π], be the Fourier series for the sequence f ; sim-
ilarly define G and H. To recover h from f we might proceed as follows:
calculate F , then divide F by G to get H, then compute h from H; does
this always work? If we let h be the sequence {..., 1, 1, 1, ...} then f = h;
if we take h to be the sequence {..., 3, 0, 0, 3, 0, 0, ...} then we again get
f = {..., 1, 1, 1, ...}. Therefore, we cannot expect to recover h from f in
general. We know that G(ω) = 1

3 (1 + 2 cos(ω)); what does this have to do
with the problem of recovering h from f?
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Solution: If the input sequence is h = {..., 2,−1,−1, 2,−1,−1, ...} then
the output sequence is f = {..., 0, 0, 0, 0, 0, ...}. Since

G(ω) =
1

3
(1 + 2 cos(ω)),

the zeros of G(ω) are at ω = 2π
3 and ω = − 2π

3 . Consider the sequence
defined by

hn = ein
2π
3 + e−in 2π

3 ;

this is the sequence {..., 2,−1,−1, 2,−1,−1, ...}. This sequence consists
of two complex exponential components, with associated frequencies at
precisely the roots of G(ω). The three-point moving average has the output
of all zeros because the function G(ω) has nulled out the only two sinusoidal
components in h.

Exercise 3: Let f be the autocorrelation sequence for g. Show that
f−n = fn and f0 ≥ |fn| for all n.

Solution: The first part follows immediately from the definition of the
autocorrelation. The second part is a consequence of the Cauchy-Schwarz
inequality for infinite sequences.

Inner Products

Exercise 1: Find polynomial functions f(x), g(x) and h(x) that are or-
thogonal on the interval [0, 1] and have the property that every polynomial
of degree two or less can be written as a linear combination of these three
functions.

Solution: Let’s find f(x) = a, g(x) = bx+ c and h(x) = dx2 + ex+ k that
do the job. Clearly, we can start by taking f(x) = 1. Then

0 =

∫ 1

0

1g(x)dx = b

∫ 1

0

xdx+ c =
b

2
+ c

says that b = −2c. Let c = 1 so that b = −2 and g(x) = −2x+ 1. Then

0 =

∫ 1

0

1h(x)dx =
d

3
+
e

2
+ k

and

0 =

∫ 1

0

g(x)h(x)dx =

∫ 1

0

(−2x+ 1)(dx2 + ex+ k)dx.

Therefore we have

0 =
−2

4
d+

−2

3
e+

−2

2
k +

d

3
+
e

2
+ k.
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We can let d = 6, from which it follows that e = −6 and k = 1. So the
three polynomials are f(x) = 1, g(x) = −2x+ 1 and h(x) = 6x2 − 6x+ 1.
To show that any quadratic polynomial can be written as a sum of these
three, take an arbitrary quadratic, ax2 + bx+ c and write

ax2 + bx+ c = αf(x) + βg(x) + γh(x).

Then show that you can solve for the α, β and γ in terms of the a, b and
c.

Exercise 2: Show that the functions einx, n an integer, are orthogonal on
the interval [−π, π]. Let f(x) have the Fourier expansion

f(x) =
∑∞

n=−∞
ane

inx, |x| ≤ π.

Use orthogonality to find the coefficients an.

Solution: Compute the integral
∫ π

−π
einxe−imxdx

and show that it is zero for m 6= n. To find the coefficients multiply both
sides by e−imx and integrate; on the left we get

∫ π

−π f(x)e−imxdx and on
the right we get 2πam.

Fourier Transforms and Fourier Series

Exercise 1: Use the orthogonality of the functions eimω on [−π, π] to
establish Parseval’s equation:

〈f, g〉 =
∑∞

m=−∞
fmgm =

∫ π

−π
F (ω)G(ω)dω/2π,

from which it follows that

〈f, f〉 =

∫ ∞

−∞
|F (ω)|2dω/2π.

Solution: Since we have

F (ω) =
∑∞

m=−∞
fme

imω, |ω| ≤ π,

with a similar expression for G(ω), we have

〈F,G〉 =

∫ π

−π
F (ω)G(ω)dω/2π
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=

∫ π

−π

∑∞

m=−∞
fme

imω
∑∞

n=−∞
gne

−inωdω/2π

=
∑∞

m=−∞

∑∞

n=−∞
fmgn

∫ π

−π
ei(n−m)ωdω/2π,

which equals
∑∞

m=−∞
fmgm = 〈f, g〉

because the integral is zero unless m = n.

Exercise 3: Let f(x) be defined for all real x and let F (ω) be its FT. Let

g(x) =

∞
∑

k=−∞
f(x+ 2πk),

assuming the sum exists. Show that g is a 2π -periodic function. Compute
its Fourier series and use it to derive the Poisson summation formula:

∞
∑

k=−∞
f(2πk) =

1

2π

∞
∑

n=−∞
F (n).

Solution: Clearly g(x + 2π) = g(x) for all x, so g(x) is 2π-periodic. The
Fourier series for g(x) is

g(x) =
∑∞

n=−∞
ane

inx,

where

an =

∫ π

−π
g(x)e−inxdx/2π

=

∫ π

−π

∞
∑

k=−∞
f(x+ 2πk)e−inxdx/2π

=

∞
∑

k=−∞

∫ π

−π
f(x+ 2πk)e−inxdx/2π

=

∞
∑

k=−∞
ei2πnk

∫ π

−π
f(t)e−intdt/2π

=

∞
∑

k=−∞

∫ π

−π
f(t)e−in(t−2πk)dt/2π

=

∞
∑

k=−∞

∫ π+2πk

−π+2πk

f(t)e−intdt/2π
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=

∫ ∞

−∞
f(t)e−intdt/2π =

1

2π
F (−n).

Therefore

g(x) =
1

2π

∑∞

n=−∞
F (−n)einx.

Now let x = 0 to get

g(0) =

∞
∑

k=−∞
f(2πk) =

1

2π

∑∞

n=−∞
F (−n).

More on the Fourier Transform

Exercise 1: Let F (ω) be the FT of the function f(x). Use the definitions
of the FT and IFT to establish the following basic properties of the Fourier
transform operation:

Differentiation: The FT of the n-th derivative, f (n)(x) is (−iω)nF (ω).
The IFT of F (n)(ω) is (ix)nf(x).

Solution: Begin with the inverse FT equation

f(x) =

∫

F (ω)e−ixωdω/2π

and differentiate with respect to x inside the integral sign n times.

Convolution in x: Let f, F , g,G and h,H be FT pairs, with

h(x) =

∫

f(y)g(x− y)dy,

so that h(x) = (f ∗g)(x) is the convolution of f(x) and g(x). Then H(ω) =
F (ω)G(ω).

Solution: From the definitions of F (ω) and G(ω) we have

F (ω)G(ω) =

∫

f(y)eiyωdy

∫

g(t)eitωdt

=

∫ ∫

f(y)g(t)ei(y+t)ωdy dt.

Changing variables by setting x = y + t, so t = x− y and dt = dx we get

=

∫ ∫

f(y)g(x− y)eixωdydx
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=

∫

[

∫

f(y)g(x− y)dy] eixωdx =

∫

h(x)eixωdx = H(ω).

Exercise 2: Show that the Fourier transform of f(x) = e−α2x2

is F (ω) =√
π
α e−( ω

2α
)2 .

Solution: From the FT formula

F (ω) =

∫

f(x)eixωdx =

∫

e−α2x2

eixωdx

we have

F ′(ω) =

∫

ixe−α2x2

eixωdx.

Integrating by parts gives

F ′(ω) = − ω

2α2
F (ω),

so that

F (ω) = c exp(− ω2

4α2
).

To find c we set ω = 0. Then

c = F (0) =

∫

e−α2x2

dx =

√
π

α
.

This last integral occurs frequently in texts on probability theory, in the
discussion of normal random variables and is obtained by using a trick
involving polar coordinates.

Exercise 3: Calculate the FT of the function f(x) = u(x)e−ax, where a
is a positive constant.

Solution: We have

F (ω) =

∫ ∞

0

e−axeixωdx =

∫ ∞

0

e(iω−a)xdx

=
1

iω − a
[ lim
X→+∞

(e(iω−a)X) − e(iω−a)(0)] =
1

a− iω
.

Exercise 4: Calculate the FT of f(x) = χX(x).

Solution: We now have

F (ω) =

∫ X

−X
eixωdx =

∫ X

−X
cos(xω)dx
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=
2

ω
sin(Xω).

Exercise 5: Show that the IFT of the function F (ω) = 2i/ω is f(x) =
sgn(x). Hints: write the formula for the inverse Fourier transform of F (ω)
as

f(x) =
1

2π

∫ +∞

−∞

2i

ω
cosωxdω − i

2π

∫ +∞

−∞

2i

ω
sinωxdω

which reduces to

f(x) =
1

π

∫ +∞

−∞

1

ω
sinωxdω,

since the integrand of the first integral is odd. For x > 0 consider the
Fourier transform of the function χx(t). For x < 0 perform the change of
variables u = −x.

Solution: See the hints.

Exercise 6: Use the fact that sgn(x) = 2u(x)−1 and the previous exercise
to show that f(x) = u(x) has the FT F (ω) = i/ω + πδ(ω).

Solution: From the previous exercise we know that the FT of f(x) =
sgn(x) is F (ω) = 2i

ω . We also know that the FT of the function f(x) = 1
is F (ω) = 2πδ(ω). Writing

u(x) =
1

2
(sgn(x) + 1)

we find that the FT of u(x) is i
ω + πδ(ω).

Exercise 7: Let F (ω) = R(ω) + iX(ω), where R and X are real-valued
functions, and similarly, let f(x) = f1(x) + if2(x), where f1 and f2 are
real-valued. Find relationships between the pairs R,X and f1,f2.

Solution: From F (ω) = R(ω) + iX(ω) and

F (ω) =

∫

f(x)eixωdx =

∫

(f1(x) + if2(x))e
ixωdx

we get

R(ω) =

∫

f1(x) cos(xω) − f2(x) sin(xω)dx

and

X(ω) =

∫

f1(x) sin(xω) + f2(x) cos(xω)dx.
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Exercise 8: Let f, F be a FT pair. Let g(x) =
∫ x

−∞ f(y)dy. Show that

the FT of g(x) is G(ω) = πF (0)δ(ω) + F (ω)
iω .

Solution: Since g(x) is the convolution of f(x) and the Heaviside function
u(x) it follows that

G(ω) = F (ω)(
i

ω
+ πδ(ω))

= i
F (ω)

ω
+ πF (0)δ(ω).

Exercise 9: Let f(x), F (ω) and g(x), G(ω) be Fourier transform pairs.
Establish the Parseval-Plancherel equation

〈f, g〉 =

∫

f(x)g(x)dx =
1

2π

∫

F (ω)G(ω)dω.

Solution: Begin by inserting

f(x) =

∫

F (ω)e−ixωdω/2π

and

g(x) =

∫

G(α)e−ixαdα/2π

into
∫

f(x)g(x)dx

and interchanging the order of integration to get

∫

f(x)g(x)dx = (
1

2π
)2
∫ ∫

F (ω)G(α)[

∫

eix(ω−α)dx]dωdα.

The innermost integral is

∫

eix(ω−α)dx = δ(ω − α)

so we get

∫

f(x)g(x)dx = (
1

2π
)2
∫

F (ω)[

∫

G(α)δ(ω − α)dα/2π]dω/2π

=

∫

F (ω)G(ω)dω/2π.



386 CHAPTER 78. SOLUTIONS TO SELECTED EXERCISES

Exercise 10: Show that, if f is causal, then R and X are related; specifi-
cally, show that X is the Hilbert transform of R, that is,

X(ω) = 2

∫ ∞

−∞

R(α)

ω − α
dα.

Solution: Since f(x) = 0 for x < 0 we have f(x)sgn(x) = f(x). Taking
the FT of both sides and applying the convolution theorem, we get

F (ω) = 2i

∫

F (α)
1

ω − α
dα/2π.

Now compute the real and imaginary parts of both sides.

Exercise 11: Compute F(z) for f(x) = u(x), the Heaviside function.
Compare F(−iω) with the FT of u.

Solution: Let z = a + bi, where a > 0. For f(x) = u(x) the integral
becomes

F(z) =

∫ ∞

0

e−zxdx =
−1

z
[0 − 1] =

1

z
.

Inserting z = −iω we get

i

ω
= F(−iω) =

∫

u(x)eixωdx.

The integral is the Fourier transform of the Heaviside function u(x), which
is not quite equal to 1

ω . The point here is that we erroneously evaluated
the Laplace transform integral at a point z whose real part is not positive.

The Uncertainty Principle

Exercise 1: Show that, if the inequality is an equation for some f , then
f ′(x) = kxf(x), so that f(x) = e−α2x2

for some α > 0.

Solution: We get equality in the Cauchy-Schwarz inequality if and only if

f ′(x) = cxf(x),

for some constant. Solving this differential equation by separation of vari-
ables we obtain the solution

f(x) = K exp(
c

2
x2).

Since we want
∫

f(x)dx to be finite, we must select c < 0.
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Wavelets

Exercise 1: Let u(x) = 1 for 0 ≤ x < 1
2 , u(x) = −1 for 1

2 ≤ x < 1 and
zero otherwise. Show that the functions ujk(x) = u(2jx− k) are mutually
orthogonal on the interval [0, 1], where j = 0, 1, ... and k = 0, 1, ..., 2j − 1.

Solution: Consider ujk and umn, where m ≥ j. If m = j and k 6= n
then the supports are disjoint and the functions are orthogonal. If m > j
and the supports are disjoint, then, again, the functions are orthogonal. So
suppose that m > j and the supports are not disjoint. Then the support
of umn is a subset of the support of ujk. On that subset ujk(x) is constant,
while umn(x) is that constant for half of the x and is the negative of that
constant for the other half; therefore the inner product is zero.

The FT in Higher Dimensions

Exercise 1: Show that if f is radial then its FT F is also radial. Find the
FT of the radial function f(x, y) = 1√

x2+y2
.

Solution: Inserting f(r, θ) = g(r) in the equation for F (ρ, ω) we obtain

F (ρ, ω) =

∫ ∞

0

∫ π

−π
g(r)eirρ cos(θ−ω)rdrdθ

or

F (ρ, ω) =

∫ ∞

0

rg(r)[

∫ π

−π
eirρ cos(θ−ω)dθ]dr.

Although it does not appear to be, the inner integral is independent of
ω; if we replace the variable θ − ω with θ we have cos θ is the exponent,
d(θ − ω) = dθ remains unchanged, and the limits of integration become
−π + ω to π + ω. But since the integrand is 2π-periodic, this integral is
the same as the one from −π to π.

To find the FT of the radial function f(x, y) = 1√
x2+y2

, we write it in

polar coordinates as f(r, θ) = g(r) = 1/r. Then

H(ρ) = 2π

∫ ∞

0

J0(rρ)dr =
2π

ρ

∫ ∞

0

J0(rρ)ρdr =
2π

ρ
,

since
∫

J0(x)dx = 1; the basic facts about the Bessel function J0(x) can be
found in most texts on differential equations. So, for the two-dimensional
case, the radial function f(r, θ) = g(r) = 1

r is, except for a scaling, its own
Fourier transform, as is the case for the standard Gaussian function in one
dimension.
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Discretization
Exercise 1: In the top half of Figure 78.1 the FT graph shows values of
0.5 sin(π2n)/(π2n) for 0 ≤ n ≤ 63. The FFT graph shows estimates given by
fft values obtained from 128 equispaced sampled of χ[ π

2
, 3π

2
](ω) on [0, 2π].

The bottom half displays the values for n = 64 to n = 127.
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Figure 78.1: FT and FFT comparison

Fourier Transform Estimation

Exercise 1: Use the orthogonality principle to show that the DFT mini-
mizes the distance

∫ π

−π
|F (ω) −

∑M

m=1
ame

imω|2dω.

Solution: The orthogonality principle asserts that, for the optimal choice
of the an, we have

∫ π

−π
(F (ω) −

∑M

m=1
ame

imω)e−inωdω = 0,

for n = 1, ...,M . It follows, much as in the previous exercise, that an =
f(n).

Exercise 2: Suppose that 0 < Ω and F (ω) = 0 for |ω| > Ω. Let f(x)
be the inverse Fourier transform of F (ω) and suppose that the data is
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f(xm), m = 1, ...,M . Use the orthogonality principle to find the coefficients
am that minimize the distance

∫ Ω

−Ω

|F (ω) −
∑M

m=1
ame

ixmω|2dω.

Show that the resulting estimate of F (ω) is consistent with the data.

Solution: The orthogonality principle tells us that, for the optimal choice
of the am, we have

∫ Ω

−Ω

(F (ω −
∑M

m=1
ame

ixmω)e−ixnωdω = 0,

for n = 1, 2, ...,M . This says that, for these n,

f(xn) =
∑M

m=1
am

∫ Ω

−Ω

ei(xm−xn)ωdω/2π

or

f(xn) =
∑M

m=1
am

sin Ω(xm − xn)

π(xm − xn)
.

The inverse Fourier transform of the function

FΩ(ω) = χΩ(ω)
∑M

m=1
ame

ixmω

is

fΩ(x) =
∑M

m=1
am

sin Ω(xm − x)

π(xm − x)
;

setting x = xn we see that fΩ(xn) = f(xn), for n = 1, ...,M , so the optimal
estimate is data consistent.

More on Bandlimited Extrapolation

Exercise 1: The purpose of this exercise is to show that, for an Hermitian
nonnegative-definite M by M matrix Q, a norm-one eigenvector u1 of Q as-
sociated with its largest eigenvalue, λ1, maximizes the quadratic form a†Qa
over all vectors a with norm one. Let Q = ULU† be the eigenvector decom-
position of Q, where the columns of U are mutually orthogonal eigenvectors
un with norms equal to one, so that U†U = I, and L = diag{λ1, ..., λM} is
the diagonal matrix with the eigenvalues of Q as its entries along the main
diagonal. Assume that λ1 ≥ λ2 ≥ ... ≥ λM . Then maximize

a†Qa =

M
∑

n=1

λn |a†un|2,
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subject to the constraint

a†a = a†U†Ua =

M
∑

n=1

|a†un|2 = 1.

Solution: Since we have

∑M

n=1
|a†un|2 = 1

the sum
M
∑

n=1

λn |a†un|2

is a convex combination of the nonnegative numbers λn. Such a convex
combination must be no greater than the greatest λn, which is λ1. But it
can equal λ1 if we select the unit vector a to be a = u1. So the greatest
value a†Qa can attain is λ1.

Exercise 2: Show that for the sinc matrix QΩ the quadratic form a†Qa
in the previous exercise becomes

a†QΩa =
1

2π

∫ Ω

−Ω

|
∑M

n=1
ane

inω|2dω.

Show that the norm of the vector a is the integral

1

2π

∫ π

−π
|
∑M

n=1
ane

inω|2dω.

Solution: Write

|
∑M

n=1
ane

inω|2 =
∑M

n=1

∑M

m=1
aname

i(n−m)ω.

Exercise 3: For M = 30 compute the eigenvalues of the matrix QΩ for
various choices of Ω, such as Ω = π

k , for k = 2, 3, ..., 10. For each k arrange
the set of eigenvalues in decreasing order and note the proportion of them
that are not near zero. The set of eigenvalues of a matrix is sometimes
called its eigenspectrum and the nonnegative function χΩ(ω) is a power
spectrum; here is one time in which different notions of a spectrum are
related.

Solution: We find that the eigenvalues separate, more or less, into two
groups: those near one and those near zero. The number of eigenvalues in
the first group is roughly 30Ω/π.
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Exercise 5: Show that the non-iterative Gerchberg-Papoulis bandlimited
extrapolation method leads to the estimate of F (ω) given by

FΩ(ω) = χΩ(ω)
∑M

m=1

1

λm
(um)†dUm(ω),

where d is the data vector.

Solution: Expand Q−1f using the eigenvector/eigenvalue expression for
Q−1.

Exercise 6: Show that the DFT estimate of F (ω), restricted to the interval
[−Ω,Ω], is

FDFT (ω) = χΩ(ω)
∑M

m=1
(um)†dUm(ω).

Solution: Use the fact that the identity matrix can be written as I = UU†.

The PDFT

Exercise 1: Show that the cm must satisfy the equations

f(xn) =
∑M

m=1
cmp(xn − xm), n = 1, ...,M,

where p(x) is the inverse Fourier transform of P (ω).

Solution: The inverse FT of the function FPDFT (ω) is

fPDFT (x) =
∑M

m=1
cmp(x− xm).

In order for fPDFT (x) to be data consistent we must have

fPDFT (xn) =
∑M

m=1
cmp(xn − xm)

for n = 1, ...,M .
Exercise 2: Show that the estimate FPDFT (ω) minimizes the distance

∫

|F (ω) − P (ω)
∑M

m=1
am exp(ixmω)|2P (ω)−1dω

over all choices of the coefficients am.

Solution: According to the orthogonality principle the optimal choice
am = cm must satisfy

0 =

∫

(F (ω) − P (ω)
∑M

m=1
cm exp(ixmω))P (ω)e−ixnωP (ω)−1dω,
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for n = 1, ...,M . Therefore

0 =

∫

(F (ω) − P (ω)
∑M

m=1
cm exp(ixmω))e−ixnωdω,

which tells us that

f(xn) =
∑M

m=1
cmp(xn − xm)

for n = 1, ...,M .

A Little Matrix Theory

Exercise 1: Show that if z = (z1, ..., zN )T is a column vector with complex
entries and H = H† is an N by N Hermitian matrix with complex entries
then the quadratic form z†Hz is a real number. Show that the quadratic
form z†Hz can be calculated using only real numbers. Let z = x+ iy, with
x and y real vectors and let H = A+ iB, where A and B are real matrices.
Then show that AT = A, BT = −B, xTBx = 0 and finally,

z†Hz = [xT yT ]

[

A −B
B A

] [

x
y

]

.

Use the fact that z†Hz is real for every vector z to conclude that the
eigenvalues of H are real.

Solution: The quadratic form z†Hz is a complex number and also the
product of three matrices. Its conjugate transpose is simply its complex
conjugate, since it is only 1 by 1; but

(z†Hz)† = z†H†(z†)† = z†Hz

since H is Hermitian. The complex conjugate of z†Hz is itself, so it must
be real. We have

A+ iB = H = H† = AT − iBT ,

so that A = AT and BT = −B.
Writing z†Qz in terms of A, B, x and y we get

z†Qz = (xT − iyT )(A+ iB)(x + iy) = (xT − iyT )(Ax −By + i(Bx +Ay)

= xTAx − xTBy + yTBx + yTAy + i(xTBx + xTAy − yTAx + yTBy)

= xTAx + yTAy − xTBy + yTBx

since
xTBx = (xTBx)T = xTBTx = −xTBx
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implies that xTBx = 0 and, similarly, yTBy = 0.
Let λ be an eigenvalue of H associated with eigenvector u. Then

u†Hu = u†(λu) = λu†u = λ.

Since u†Hu is real, so is λ.

Exercise 2: Let A be an M by N matrix with complex entries. View A as
a linear function with domain CN , the space of all N -dimensional complex
column vectors, and range contained within CM , via the expression A(x) =
Ax. Suppose that M > N . The range of A, denoted R(A), cannot be all
of CM . Show that every vector z in CM can be written uniquely in the
form z = Ax + w, where A†w = 0. Show that ‖z‖2 = ‖Ax‖2 + ‖w‖2,
where ‖z‖2 denotes the square of the norm of z. Hint: If z = Ax + w then
consider A†z. Assume A†A is invertible.

Solution: We assume that A†A is invertible. If z = Ax + v with A†v = 0
then A†z = A†Ax, so that x = (A†A)−1A†z. Then

v = z −A(A†A)−1A†z

and we see easily that A†v = 0. Then we have

||z||2 = ||Ax + v||2 = x†A†Ax + x†A†v + v†Ax + v†v = ||Ax||2 + ||v||2.

Exercise 5: Show that the vector x = (x1, ..., xN )T minimizes the mean
squared error

‖Ax − b‖2 =

N
∑

m=1

(Axm − bm)2,

if and only if x satisfies the system of linear equations AT (Ax − b) =

0, where Axm = (Ax)m =
∑N
n=1Amnxn. Hint: calculate the partial

derivative of ‖Ax − b‖2 with respect to each xn.

Solution: The partial derivative of ‖Ax − b‖2 with respect to xn is

2
∑M

m=1
Amn(Axm − bm).

Setting each of these partial derivatives equal to zero gives

AT (Ax − b) = 0.
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Exercise 8: Show that Fε always has a unique minimizer x̂ε given by

x̂ε = ((1 − ε)ATA+ εI)−1((1 − ε)ATb + εp);

this is a regularized solution of Ax = b. Here p is a prior estimate of the
desired solution. Note that the inverse above always exists.

Solution: Set to zero the partial derivatives with respect to each of the
variables xn. Show that the second derivative matrix is ATA+ εI, which is
positive-definite; therefore the partial derivatives are zero at a minimum.

Exercise 9: Show that, in Case 1, taking limits as ε → 0 on both sides of
the expression for x̂ε gives x̂ε → (ATA)−1ATb, the least squares solution
of Ax = b.

Solution: In this case we can simply set ε = 0, since the inverse (ATA)−1

exists.

Exercise 10: Show that

((1 − ε)ATA+ εI)−1(εr) = r,∀ε.

Solution: As in the hint, let

tε = ((1 − ε)ATA+ εI)−1(εr).

Then multiplying by A gives

Atε = A((1 − ε)ATA+ εI)−1(εr).

Now it follows from Ar = 0 and

((1 − ε)AAT + εI)−1A = A((1 − ε)ATA+ εI)−1

that Atε = 0. Now multiply both sides of the equation

tε = ((1 − ε)ATA+ εI)−1(εr)

by (1 − ε)ATA+ εI to get εtε = εr. Now we take the limit of x̂ε, as ε → 0,
by setting ε = 0, to get x̂ε → AT (AAT )−1b + r = x̂.

Now we show that x̂ is the solution of Ax = b closest to p. By the
orthogonality theorem it must then be the case that 〈p − x̂,x − x̂〉 = 0 for
every x with Ax = b. Since p − x̂ = ATq −AT (AAT )−1b we have

〈p − x̂,x − x̂〉 = 〈q − (AAT )−1b, Ax −Ax̂〉 = 0.
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Matrix and Vector Calculus

Exercise 1: Let y be a fixed real column vector and z = f(x) = yTx.
Show that

∂z

∂x
= y.

Solution: We write

z = yTx =
∑N

n=1
xnyn

so that
∂z

∂xn
= yn

for each n.

Exercise 2: Let Q be a real symmetric nonnegative definite matrix and
let z = f(x) = xTQx. Show that the gradient of this quadratic form is

∂z

∂x
= 2Qx.

Solution: Following the hint, we write Q as a linear combination of dyads
involving the eigenvectors; that is

Q =
∑N

m=1
λmum(um)†.

Then

z = xTQx =
∑N

m=1
λm(xTum)2

so that

z =
∑N

m=1
λm(

∑N

n=1
xnu

m
n )2.

Therefore, the partial derivative of z with respect to xn is

∂z

∂xn
= 2

∑N

m=1
λn(xnu

n
m)unm,

which can then be written as

∂z

∂x
= 2Qx.

Exercise 3: Let z = ||Ax − b||2. Show that

∂z

∂x
= 2ATAx − 2ATb.
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Solution: Using z = (Ax − b)T (Ax − b) we get

z = xTATAx − bTAx − xTATb + bTb.

Then it follows from the two previous exercises that

∂z

∂x
= 2ATAx − 2ATb.

Exercise 4: Suppose (u, v) = (u(x, y), v(x, y)) is a change of variables
from the Cartesian (x, y) coordinate system to some other (u, v) coordinate
system. Let x = (x, y)T and z = (u(x), v(x))T .

a: Calculate the Jacobian for the rectangular coordinate system obtained
by rotating the (x, y) system through an angle of θ.

Solution: The equations for this change of coordinates are

u = x cos θ + y sin θ,

and
v = −x sin θ + y cos θ.

Then ux = cos θ, uy = sin θ, vx = − sin θ and vy = cos θ. The Jacobian is
therefore one.

b: Calculate the Jacobian for the transformation from the (x, y) system to
polar coordinates.

Solution: We have r =
√

x2 + y2 and tan θ = y
x . Writing r2 = x2 + y2,

we get 2rrx = 2x and 2rry = 2y, so that rx = x/r and ry = y/r. Also

(sec θ)2θx = −y/x2

and
(sec θ)2θy = 1/x.

Since sec θ = r/x we get

θx =
x2

r2
−y
x2

=
−y
r2

and

θy =
x2

r2
1

x
=

x

r2
.

The Jacobian is therefore 1
r .
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Exercise 6: Show that the derivative of z = trace (DAC) with respect to
A is

∂z

∂A
= DTCT .

Solution: Just write out the general term of DAC.

Exercise 7: Let z = trace (ATCA). Show that the derivative of z with
respect to the matrix A is

∂z

∂A
= CA+ CTA.

Therefore, if C = Q is symmetric, then the derivative is 2QA.

Solution: Again, just write out the general term of ATCA.

The Singular Value Decomposition

Exercise 1: Show that the nonzero eigenvalues of A and B are the same.

Solution: Let λ be a nonzero eigenvalue of A, with Au = λu for some
nonzero vector u. Then CAu = λCu or (CC†)Cu = BCu = λCu; with
Cu = v we have Bv = λv. Since B is invertible v is not the zero vector.
So λ is an eigenvalue of B.

Conversely, let λ 6= 0 be an eigenvalue of B, with Bv = λv for some
nonzero v. Then Bv = CC†v = λv and so C†Bv = (C†C)C†v = AC†v =
λC†v. We need to show that w = C†v is not the zero vector. If 0 = w =
C†v then 0 = Cw = CC†v = Bv. But B is invertible and v is nonzero;
this is a contradiction, so we conclude that w 6= 0.

Exercise 2: Show that UMV † equals C.

Solution: The first N columns of the matrix UM form the matrix

ULL−1/2 = BUL−1/2

and the remaining columns are zero. Consider the product V (UM)†. The
first N columns of V form the matrix C†UL−1/2 so

V (UM)† = C†UL−1U†B = C†B−1B = C†

and so UMV † = C.

Exercise 3: If N > K the system Cx = d probably has no exact solution.
Show that C∗ = (C†C)−1C† so that the vector x = C∗d is the least squares
approximate solution.
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Solution: Show that (C†C)C∗ = C† = VMTU†.

Exercise 4: If N < K the system Cx = d probably has infinitely many
solutions. Show that the pseudo-inverse is now C∗ = C†(CC†)−1, so that
the vector x = C∗d is the exact solution of Cx = d closest to the origin;
that is, it is the minimum norm solution.

Solution: Show that C∗(CC†) = C†.

Discrete Random Processes

Exercise 1: Show that the autocorrelation matrix R is nonnegative defi-
nite. Under what conditions can R fail to be positive-definite?

Solution: Let

A(ω) =
∑N+1

n=1
ane

inω.

Then we have
∫

|A(ω)|2R(ω)dω = a†Ra ≥ 0.

If the quadratic form a†Ra = 0 for some vector a then the integral must
also be zero, which says that the power spectrum is nonzero only when the
polynomial is zero; that is, the power spectrum R(ω) is a sum of not more
than N delta functions.

Best Linear Unbiased Estimation

Exercise 1: Show that

E(|x̂ − x|2) = traceK†QK.

Solution: Write the left side as

E(trace ((x̂ − x)(x̂ − x)†)).

Also use the fact that the trace and expected value operations commute.
Then

E(|x̂−x|2) = trace(E(K†zz†K−xz†K−K†zx†+xx†)) = E(K†zz†K)−xx†.

Notice that
zz† = Hxx†H† +Hxv† + vx†H† + vv†.

Therefore
E(K†zz†K) = K†Hxx†H†K +K†QK.
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It follows that
E(|x̂ − x|2) = traceK†QK.

The Vector Wiener Filter

Exercise 1: Apply the vector Wiener filter to the simplest problem dis-
cussed earlier. Here let K = 1 and NN† = Q.

Solution: Let 1 = (1, 1, ..., 1)T , so that the signal vector is s = c1 for some
constant c and the data vector is z = c1 + v. Then SS† = 11T . We have

(Q+ 11†)−1 = Q−1 − (1 + 1†Q−11)−1Q−111†Q−1,

so we get

ŝ =
1†Q−1z

1 + 1†Q−11
1,

and the estimate of the constant c is

ĉ =
1†Q−1z

1 + 1†Q−11
.

When the noise power is very low the denominator is dominated by the
second term and we get the BLUE estimate.

Eigenvector Methods

Exercise 2: Show that λm = σ2 for m = J + 1, ...,M , while λm > σ2 for
m = 1, ..., J .

Solution: From Exercise 1 we conclude that, for any vector u the quadratic
form u†Ru is

u†Ru =

J
∑

j=1

|Aj |2|u†ej |2 + σ2|u†u|2.

The norm-one eigenvectors of R associated with the J largest eigenvalues
will lie in the linear span of the vectors ej , j = 1, ..., J , while the remaining
M − J eigenvectors will be orthogonal to the ej . For these remaining
eigenvectors the quadratic form will have the value λm = σ2, since the
eigenvectors have norm equal to one. For the eigenvectors associated with
the J largest eigenvalues, the quadratic form will be greater than σ2, since
it will also involve a positive term coming from the sum.

Since M > J the M − J orthogonal eigenvectors um corresponding to
λm for m = J+1, ...,M will be orthogonal to each of the ej . Then consider
the quadratic forms u†

mRum.
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Signal Detection and Estimation

Exercise 1: Use Cauchy’s inequality to show that, for any fixed vector a,
the choice b = βa maximizes the quantity |b†a|2/b†b, for any constant β.

Solution: According to Cauchy’s inequality the quantity |b†a|2
b†b

does not

exceed a†a. The choice of b = βa makes the ratio equal to a†a, so maxi-
mizes the ratio.

Exercise 2: Use the definition of the correlation matrix Q to show that
Q is Hermitian and that, for any vector y, y†Qy ≥ 0. Therefore Q is a
nonnegative definite matrix and, using its eigenvector decomposition, can
be written as Q = CC†, for some invertible square matrix C.

Solution: The entry of Q in the m-th row and n-th column is Qmn =
E(zmzn), so Qnm = Qmn. For any vector y the quadratic form y†Qy =
E(|y†z|2) and the expected value of a nonnegative random variable is
nonnegative. Therefore Q is Hermitian and nonnegative-definite, so its
eigenvalues are nonnegative. The eigenvector/eigenvalue decomposition is
Q = ULU†, where L is the diagonal matrix with the eigenvalues on the
main diagonal. Since these eigenvalues are nonnegative, they have nonneg-
ative square roots. Make these the diagonal elements of the matrix L1/2

and write C = UL1/2U†. Then we have C = C† and CC† = C†C = Q.

Exercise 3: Consider now the problem of maximizing |b†s|2/b†Qb. Using
the two previous exercises, show that the solution is b = βQ−1s, for some
arbitrary constant β.

Solution: Write b†Qb = b†C†Cb = d†d, for d = Cb. We assume that
Q is invertible, so C is also. Write

b†s = b†C†(C†)−1s = d†e,

for e = (C†)−1s. So the problem now is to maximize the ratio |d†e|2
d†d

. By the
first exercise we know that this ratio is maximized when we select d = βe
for some constant β. This means that Cb = β(C†)−1s or b = βQ−1s.
Here the β is a free choice; we select it so that b†s = 1.

A Little Probability Theory

Exercise 1: Show that the sequence {pk}∞
k=0 sums to one.

Solution: The Taylor series expansion of the function ex is

ex =
∑∞

k=0

xk

k!
,
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so
∑∞

k=0
pk = e−λ

∑∞

k=0

λk

k!
= 1.

Exercise 2: Show that the expected value E(X) is λ, where the expected
value in this case is

E(X) =
∑∞

k=0
kpk.

Solution: Note that

∞
∑

k=0

kpk = e−λ
∞
∑

k=1

λk

(k − 1)!

= e−λλ
∞
∑

k=0

λk

k!
= λ.

Exercise 3: Show that the variance of X is also λ, where the variance of
X in this case is

var(X) =
∑∞

k=0
(k − λ)2pk.

Solution: Use

(k − λ)2 = k2 − 2kλ+ λ2 = k(k − 1) + k − 2kλ+ λ2.

Exercise 4: Prove these two assertions.

Solution: The expected value of X is

E(X) =
1

N

N
∑

n=1

E(Xn) =
1

N

N
∑

n=1

µ = µ.

The variance of X is

E((X − µ)2) = E(X
2 − 2µX + µ2)

= E(X
2
) − µ2.

Then

E(X
2
) =

1

N2
E(

N
∑

n=1

Xn

N
∑

m=1

Xm).

Now use the fact that E(XnXm) = E(Xn)E(Xm) = µ2 if m 6= n while
E(XnXn) = σ2 + µ2.
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More on the ART

Exercise 1: Establish the following facts concerning the ART.

Fact 1:
||xk||2 − ||xk+1||2 = (A(xk)m(k))

2 − (bm(k))
2.

Solution: Write ||xk+1||2 = ||xk + (xk+1 − xk)||2 and expand using the
complex dot product.

Fact 2:
||xrM ||2 − ||x(r+1)M ||2 = ||vr||2 − ||b||2.

Solution: The solution is similar to that of the previous exercise.

Fact 3:
||xk − xk+1||2 = ((Axk)m(k) − bm)2.

Solution: Easy.

Fact 4: There exists B > 0 such that, for all r = 0, 1, ..., if ||vr|| ≤ ||b||
then ||xrM || ≥ ||x(r+1)M || −B.

Solution: This is an application of the triangle inequality.

Fact 5: Let x0 and y0 be arbitrary and {xk} and {yk} the sequences
generated by applying the ART algorithm. Then

||x0 − y0||2 − ||xM − yM ||2 =
∑M

m=1
((Axm−1)m − (Aym−1)m)2.

Solution: Calculate ||xm−ym||2−||xm+1−ym+1||2 for eachm = 0, 1, ...,M−
1 and then add.

Exercise 3: Show that if we select B so that C is invertible and BTA = 0
then the exact solution of Cz = b is the concatenation of the least squares
solutions of Ax = b and By = b.

Solution: Calculate the solution of Cz = b as the least squares solution
of Cz = b.
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The MART and related methods

Exercise 1: Show that

KL(x, z) = KL(x+, z+) +KL(x,
x+

z+
z)

for any nonnegative vectors x and z, with x+ and z+ > 0 denoting the
sums of the entries of vectors x and z, respectively.

Solution: Begin with KL(x, x+

z+
z) and write it out as

KL(x,
x+

z+
z) =

N
∑

n=1

xn log(xn/
x+

z+
zn) +

x+

z+

N
∑

n=1

zn −
N
∑

n=1

xn

=

N
∑

n=1

(xn log
xn
zn

+ zn − xn) −
N
∑

n=1

(xn log
x+

z+
+ (

x+

z+
− 1)zn)

= KL(x, z) − x+ log
x+

z+
+ x+ − z+ = KL(x, z) −KL(x+, z+).

The Wave Equation

Exercise 1: Show that the radial function u(r, t) = 1
rh(r−ct) satisfies the

wave equation for any twice differentiable function h.

Solution: The partial derivatives are as follows:

ut = −c1
r
h′(r − ct),

utt = c2
1

r
h′′(r − ct),

ur = − 1

r2
h(r − ct) +

1

r
h′(r − ct),

and

urr = 2
1

r3
h(r − ct) − 2

r2
h′(r − ct) +

1

r
h′′(r − ct).

The result follows immediately from these facts.

Exercise 2: Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Show
that u satisfies the wave equation utt = c2∇2u for any real vector k, so
long as ||k||2 = ω2/c2.

Solution: Easy.
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