
Applications of Matrices and Linear Algebra

1 Curves and Surfaces Through Given Points

In this section and the ones that follow, we describe a number of applications of

matrices and linear algebra. Most of these examples come from the text [1]. Other

examples are also available on the web site.

1.1 Two Points on a Line

We are given two points in the plane, say (x1, y1) and (x2, y2), and we want to find

the equation of the line determined by these two points. Let the equation of the line

be

c1x + c2y + c3 = 0,

where c1, c2, and c3 are to be determined. We write

x1c1 + y1c2 + 1c3 = 0,

x2c1 + y2c2 + 1c3 = 0,

and

xc1 + yc2 + 1c3 = 0.

Since there is to be a non-trivial solution, the matrix

A =

 x1 y1 1
x2 y2 1
x y 1

 (1.1)

must have determinant equal to zero. Therefore

x(y1 − y2)− y(x1 − x2) + (x1y2 − x2y1) = 0,

and we can choose

c1 = (y1 − y2),

c2 = (x2 − x1),

and

c3 = (x1y2 − x2y1).



1.2 A Circle Through Three Given Points

We are given the three non-collinear points (x1, y1), (x2, y2), and (x3, y3) and want to

find the circle containing these points. Any circle in the plane can be described by

an equation of the form

(x− a)2 + (y − b)2 = r2.

Rewriting this as

(x2 + y2)− 2ax− 2by + a2 + b2 − r2 = 0,

we see that the points (x, y) on the circle must satisfy the equation

c1(x
2 + y2) + c2x + c3y + c4 = 0,

for some choice of the unknowns c1, c2, c3, and c4. We write

c1(x
2
1 + y2

1) + c2x1 + c3y1 + c4 = 0,

c1(x
2
2 + y2

2) + c2x2 + c3y2 + c4 = 0,

c1(x
2
3 + y2

3) + c2x3 + c3y3 + c4 = 0,

and

c1(x
2 + y2) + c2x + c3y + c4 = 0.

Once again, since there is to be a non-trivial solution, the determinant of the matrix

A =


x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

x2 + y2 x y 1

 (1.2)

must be zero, and writing this out will give us an equation of the circle in the variables

x and y.

1.3 Additional Examples

The same approach can be used to determine a conic through five points, a plane

through three points, and a sphere through four points.

2 Allocation Problems

We have n different jobs to assign to n different people. For i = 1, ..., n and j = 1, ..., n

the quantity Cij is the cost of having person i do job j. The n by n matrix C with

these entries is the cost matrix. An assignment is a selection of n entries of C so that

no two are in the same column or the same row; that is, everybody gets one job. Our

goal is to find an assignment that minimizes the total cost.



We know that there are n! ways to make assignments, so one solution would be

to determine the cost of each of these assignments and selection the cheapest. But

for large n this is impractical. We want an algorithm that will solve the problem

with less calculation. The algorithm we present here, discovered by two Hungarian

mathematicians in the 1930’s, is called The Hungarian Method.

To illustrate, suppose there are three people and three jobs, and the cost matrix

is

C =

 53 96 37
47 87 41
60 92 36

 . (2.3)

The algorithm is as follows:

• Step 1: Subtract the minimum of each row from all the entries of that row.

This is equivalent to saying that each person charges a certain amount just for

participating, even before any assignments are made, and we must pay these

costs in any case. Subtracting these necessary costs, which do not depend on

the ultimate assignments, cannot change the optimal solutions.

The new matrix is then  16 59 0
6 46 0
24 56 0

 . (2.4)

• Step 2: Subtract each column minimum from the entries of its column. This

is equivalent to saying that each job has a minimum cost that we must pay,

regardless of who performs it. As before, subtracting these necessary costs does

not change the optimal solutions.

The matrix becomes  10 13 0
0 0 0
18 10 0

 . (2.5)

• Step 3: Draw a line through the smallest number of rows and columns that

results in all zeros being covered by a line; here I have put in boldface the entries

covered by a line. The matrix becomes 10 13 0
0 0 0
18 10 0

 . (2.6)

We have used a total of two lines, one row and one column.



What we want is a set of n zeros with the property that each row contains one of

them, and each column contains one of them; we shall call such a set an optimal

set of zeros. Such a set of zeros will provide the desired cheapest assignments.

The next two steps help us decide whether or not such a set of zeros currently

exists.

• Step 4: If the number of lines just drawn is n we have finished. In our example,

we are not finished. Proving that needing n lines to cover all the zeros means

that there is an optimal set of zeros is difficult. It is easy to show that if there

exists an optimal set of zeros, then n or more lines are necessary to cover all the

zeros; just notice that any line can contain at most one member of an optimal

set of zeros.

• Step 5: If, as in our example, the number of lines drawn is fewer than n,

determine the smallest entry not yet covered by a line (not boldface, here). It

is 10 in our example. Then subtract this number from all the uncovered entries

and add it to all the entries covered by both a vertical and horizontal line. This

step is equivalent to, first, subtracting the smallest entry from every row not

completely covered by a line, and, second, adding this smallest entry to every

column covered by a line. Since adding or subtracting a fixed amount from any

row or column does not change the optimal solutions, we can return then to

Step 3.

Our matrix becomes  0 3 0
0 0 10
8 0 0

 . (2.7)

Now return to Step 3.

In our example, when we return to Step 3 we find that we need three lines now

and so we are finished. The optimal allocation is to assign the second person to

the first job, the third person to the second job, and the first person to the third

job. Generally, finding an optimal set of zeros for larger cost matrices, even when we

know such a set must exist, is not a simple matter; there are computer algorithms to

perform this task, however.

Exercise 2.1 Apply this algorithm to the cost matrix

C =


90 75 75 80
35 85 55 65
125 95 90 105
45 110 95 115

 . (2.8)



3 Graph Theory

A directed graph is a set of symbols {P1, P2, ..., Pn} called the vertices and a set of

ordered pairs (Pi, Pj) for Pi 6= Pj, called the edges of the directed graph. Write

Pi → Pj if and only if (Pi, Pj) is an edge. We represent this directed graph using

the matrix M with Mij = 1 if Pi → Pj and Mij = 0 otherwise. See the download

“Motivating Matrix Operations” for a discussion of influence graphs and dominance-

directed graphs.

A subset of vertices is called a clique if and only if it has at least three members,

Pi → Pj and Pj → Pi for each pair of vertices in the subset, and we cannot add a

vertex to the subset without violating the second condition. Define a matrix S so

that Sij = 1 if and only if Pi → Pj and Pj → Pi; otherwise Sij = 0. Then the vertex

Pi is a member of a clique if and only if (S3)ii 6= 0.

4 Game Theory

The use of a pay-off matrix in game theory provides a good application of linear

algebra; see the pdf on the web site.

5 Markov Chains

Let {1, 2, ..., k} be states. For i = 1, ..., k and j = 1, ..., k let Pij ≥ 0 be the probability

of going from state j to state i in one step. The matrix P with entries Pij is called

the transition matrix. We begin with a column vector x0 = (x0
1, ..., x

0
k)

T , where x0
i is

the probability that we start in state i. For n = 1, 2, ... the vector xn is the vector

whose entry xn
i is the probability of being in state i after n steps, given the initial

probability vector x0. We then have

xn+1 = Pxn.

We are often interested in the limiting behavior of the xn.

For example, let

P =
[
0 1
1 0

]
(5.9)

and let x0 = [1 0]T . Then for n even we have xn = [1 0]T and for n odd we have

xn = [0 1]T .

We say that P is regular if, for some n, the matrix P n has only positive entries.

A basic theorem in Markov Chains is the following:



Theorem 5.1 If P is regular, then there is a probability vector q = (q1, ..., qk), with

all entries positive, such that, as n → ∞, P n
ij → qi for each j. Let Q be the matrix

with Qij = qi, for each i and j.

So the limiting probability of going from j to i is independent of j. For any

probability (column) vector x we have Qx = q. Also Qq = q, so q is an eigenvector

of Q associated with eigenvalue λ = 1.

6 Hill Codes

Simple substitution codes are easily broken by frequency analysis. Here we consider

a code involving matrices.

Number the letters of the alphabet from A = 1 to Y = 25 and Z = 0. To encode

the sentence “I am hiding” , we first group the letters in pairs, as “ia mh id in gg”.

Then replace each letter by its number, to get

9 1, 13 8, 9 4, 9 14, 7 7,

and view each of these pairs of numbers as a two-by one vector. Select an encoding

matrix A; in this case we use a two-by-two matrix

P =
[
1 2
0 3

]
. (6.10)

Now multiply each of the two-by-one vectors by A; in our example we get [11 3]T ,

which is KC, [29 24] = [3 24]T , which is CX, and so on. This is a Hill-2 cipher. To

decode, we need A to be invertible modulo 26, which means that its determinant,

modulo 26 must have an inverse, modulo 26, which will happen if and only if this

determinant modulo 26 is not divisible by 2 or 13.

Exercise 6.1 Find a decoding procedure for this Hill code by calculating a modulo-26

inverse for the matrix A.

References

[1] Anton, H., and Rorres, C. (1986) Elementary Linear Algebra and Applications,

Wiley and Sons, New York.

[2] Gale, D. (1960) The Theory of Linear Economic Models. New York: McGraw-

Hill.


