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1 The Laplace Transform and the Ozone Layer

In farfield propagation problems, we often find the measured data to be related to

the desired object function by a Fourier transformation. The image reconstruction

problem then becomes one of estimating a function from finitely many noisy values

of its Fourier transform. In this note we consider an inverse problem involving the

Laplace transform. The example is taken from Twomey’s book [1].

2 The Laplace Transform

The Laplace transform of the function f(x) defined for 0 ≤ x < +∞ is the function

F(s) =
∫ +∞

0
f(x)e−sxdx.

3 Scattering of Ultraviolet Radiation

The sun emits ultraviolet (UV) radiation that enters the Earth’s atmosphere at an

angle θ0 that depends on the sun’s position, and with intensity I(0). Let the x-axis

be vertical, with x = 0 at the top of the atmosphere and x increasing as we move

down to the Earth’s surface, at x = X. The intensity at x is given by

I(x) = I(0)e−kx/ cos θ0 .

Within the ozone layer, the amount of UV radiation scattered in the direction θ is

given by

S(θ, θ0)I(0)e−kx/ cos θ0∆p,
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where S(θ, θ0) is a known parameter, and ∆p is the change in the pressure of the ozone

within the infinitesimal layer [x, x + ∆x], and so is proportional to the concentration

of ozone within that layer.

4 Measuring the Scattered Intensity

The radiation scattered at the angle θ then travels to the ground, a distance of X−x,

weakened along the way, and reaches the ground with intensity

S(θ, θ0)I(0)e−kx/ cos θ0e−k(X−x)/ cos θ∆p.

The total scattered intensity at angle θ is then a superposition of the intensities due

to scattering at each of the thin layers, and is then

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0
e−xβdp,

where

β = k[
1

cos θ0

− 1

cos θ
].

This superposition of intensity can then be written as

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0
e−xβp′(x)dx.

5 The Laplace Transform Data

Using integration by parts, we get∫ X

0
e−xβp′(x)dx = p(X)e−βX − p(0) + β

∫ X

0
e−βxp(x)dx.

Since p(0) = 0 and p(X) can be measured, our data is then the Laplace transform

value ∫ +∞

0
e−βxp(x)dx;

note that we can replace the upper limit X with +∞ if we extend p(x) as zero beyond

x = X.

The variable β depends on the two angles θ and θ0. We can alter θ as we measure

and θ0 changes as the sun moves relative to the earth. In this way we get values of

the Laplace transform of p(x) for various values of β. The problem then is to recover

p(x) from these values. Because the Laplace transform involves a smoothing of the

function p(x), recovering p(x) from its Laplace transform is more ill-conditioned than

is the Fourier transform inversion problem.
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