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Abstract

The problem is to reconstruct a function f : RD → C from finitely many

linear functional values. To model the operator that transforms f into the data

vector, we need to select an ambient space containing f . Typically, we choose

a Hilbert space. The selection of the inner product provides an opportunity

to incorporate prior knowledge about f into the reconstructon. The inner

product induces a norm and our reconstruction is the function, consistent with

the data, for which this norm is minimized. The method is illustrated using

Fourier-transform data and prior knowledge about the support of f and about

its overall shape.

1 The Basic Problem

We want to reconstruct a function f : RD → C from finitely many linear functional

values, g1, ..., gN . Although we may reasonably view f as part of objective reality,

once we embed f in a Hilbert space we are imposing theory that, while reasonable,

is not given a priori, and is not part of objective reality. As we shall see, the selec-

tion of the ambient Hilbert space provides one of the few opportunities we have to

incorporate prior knowledge about f , and therefore is an important step in the re-

construction. Because the problem is highly underdetermined, there will be infinitely

many reconstructions consistent with the finite data. A common approach to solving

such problems is to select the reconstruction with the smallest norm; how we select

the norm in the first place is the important step.
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1.1 The L2(RD) inner product

It is common practice to view f as a member of L2(RD) and to model the data values

as

gn = 〈f, hn〉2 =
∫

f(x)hn(x)dx. (1.1)

for known hn. We then model the problem to be solved as

g = Hf, (1.2)

where

Hf = (〈f, h1〉2, ..., 〈f, hN〉2)
T . (1.3)

For any continuous linear operator T on L2(RD), the adjoint operator, denoted T †,

is defined by

〈T f, h〉2 = 〈f, T †h〉2.

As we change the ambient Hilbert space, or just the inner product, the adjoint oper-

ator will change.

1.2 A Class of Inner Products

Let T be a continuous, linear and invertible operator on L2(RD). Define the T inner

product to be

〈f, h〉T = 〈T −1f, T −1h〉2. (1.4)

We can then use this inner product to define the problem to be solved. We now say

that

gn = 〈f, tn〉T , (1.5)

for known functions tn(x). Using the definition of the T inner product, we find that

gn = 〈f, hn〉2 = 〈T f, T hn〉T .

The adjoint operator for T , with respect to the T -norm, is denoted T ∗, and is defined

by

〈T f, h〉T = 〈f, T ∗h〉T .

Therefore,

gn = 〈f, T ∗T hn〉T .

It is easy to show that T ∗T = T T †. Consequently, we have

gn = 〈f, T T †hn〉T . (1.6)
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2 The Minimum-Norm Solutions

Since the reconstruction problem is highly underdetermined, we seek a minimum-

norm solution, in whichever norm we are considering. From basic Hilbert space

theory, we know that the minimum-norm solution is the function f̂ consistent with

the data having the algebraic form

f̂ =
N

∑

m=1

amT T †hm. (2.1)

Applying the inner product to both sides of Equation (2.1), we get

gn = 〈f̂ , T T †hn〉T

=
N

∑

m=1

am〈T T †hm, T T †hn〉T .

Therefore,

gn =
N

∑

m=1

am〈T †hm, T †hn〉2. (2.2)

We solve this system for the am and insert them into Equation (2.1) to get our

reconstruction. The Gram matrix that appears in Equation (2.2) is positive-definite,

but is often ill-conditioned; increasing the main diagonal by a percent or so usually

is sufficient regularization.

3 The Case of Fourier-Transform Data

To illustrate these minimum-norm solutions, we consider the case in which the data

are values of the Fourier transform of f . Specifically, suppose that

gn =
∫

f(x)e−iωnxdx,

for arbitrary values ωn. In order to have the functions eiωnx in the Hilbert space, we

need to assume that f has bounded support, say [−A, A], and then select the Hilbert

space to be L2(−A, A).

3.1 The L2(−π, π) Case

Suppose that the Fourier values are associated with the equi-spaced points ωn = n.

If we do not have prior knowledge of the support of f , we may assume that f(x) = 0,

for |x| > π. The minimum-norm solution within L2(−π, π) is then

f̂(x) =
N

∑

n=1

gne
inx. (3.1)
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3.2 The Over-Sampled Case

Suppose that f(x) = 0 for |x| > A, where 0 < A < π. Then we use L2(−A, A) as the

Hilbert space. For equispaced data at ωn = n, we have

gn =
∫

A

−A

f(x)e−inxdx,

so that the minimum-norm solution has the form

f̂(x) = χA(x)
N

∑

m=1

ameimx, (3.2)

with χA the characteristic function of the interval [−A, A] and

gn = 2
N

∑

m=1

am

sin A(m − n)

m − n
.

The minimum-norm solution is support-limited to [−A, A] and consistent with the

Fourier-transform data.

3.3 Irregularly Spaced Data

For general ωn the minimum-norm solution within L2(−A, A) is

f̂(x) =
N

∑

m=1

ameiωmx, (3.3)

with

gn =
N

∑

m=1

am

∫

A

−A

ei(ωm−ωn)xdx.

In each of these examples we have incorporated prior knowledge of the support of f .

Now we consider including information about the shape of the function f .

3.4 Using a Prior Estimate of f

Suppose that f(x) = 0 for |x| > A again, and that p(x) satisfies

0 < ε ≤ p(x) ≤ E < +∞,

for all x in [−A, A]. Define the operator T by (T f)(x) =
√

p(x)f(x). The T -norm is

then

〈f, h〉T =
∫

A

−A

f(x)h(x)p(x)−1dx.

It follows that

gn =
∫

A

−A

f(x)p(x)e−iωnxp(x)−1dx,
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so that the minimum T -norm solution is

f̂(x) =
N

∑

m=1

amp(x)eiωmx = p(x)
N

∑

m=1

ameiωmx, (3.4)

where

gn =
N

∑

m=1

am

∫

A

−A

p(x)ei(ωm−ωn)xdx.

If we have prior knowledge about the support of f , or some idea of its shape, we can

incorporate that prior knowledge into the reconstruction through the choice of p(x).

The reconstruction in Equation (3.4) was presented in [2], where it was called

the PDFT method. The PDFT was based on an earlier non-iterative version of the

Gerchberg-Papoulis bandlimited extrapolation procedure [1]. The PDFT was then

applied to image reconstruction problems in [3]. An application of the PDFT was pre-

sented in [5]. In [4] we extended the PDFT to a nonlinear version, the indirect PDFT

(IPDFT), that generalizes Burg’s maximum entropy spectrum estimation method.

The PDFT was applied to the phase problem in [6] and in [7] both the PDFT and

IPDFT were examined in the context of Wiener filter approximation. More recent

work on these topics is discussed in the book [8].
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