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Abstract

The problem is to reconstruct a function f : RP? — C from finitely many
linear functional values. To model the operator that transforms f into the data
vector, we need to select an ambient space containing f. Typically, we choose
a Hilbert space. The selection of the inner product provides an opportunity
to incorporate prior knowledge about f into the reconstructon. The inner
product induces a norm and our reconstruction is the function, consistent with
the data, for which this norm is minimized. The method is illustrated using
Fourier-transform data and prior knowledge about the support of f and about
its overall shape.

1 The Basic Problem

We want to reconstruct a function f : R? — C from finitely many linear functional
values, g1, ..., gn. Although we may reasonably view f as part of objective reality,
once we embed f in a Hilbert space we are imposing theory that, while reasonable,
is not given a priori, and is not part of objective reality. As we shall see, the selec-
tion of the ambient Hilbert space provides one of the few opportunities we have to
incorporate prior knowledge about f, and therefore is an important step in the re-
construction. Because the problem is highly underdetermined, there will be infinitely
many reconstructions consistent with the finite data. A common approach to solving
such problems is to select the reconstruction with the smallest norm; how we select

the norm in the first place is the important step.



1.1 The L*(R”) inner product

It is common practice to view f as a member of L?(R”) and to model the data values

as
g = (£, 172 = [ J(@)hn(@)da. (L)
for known h"™. We then model the problem to be solved as
g="H"f, (1.2)
where
Hf={f.h")2, ., (LB )2)T. (1.3)

For any continuous linear operator 7 on L?(RP), the adjoint operator, denoted T,
is defined by

<Tf7 h>2 = <f7 TTh)Q
As we change the ambient Hilbert space, or just the inner product, the adjoint oper-

ator will change.

1.2 A Class of Inner Products

Let 7 be a continuous, linear and invertible operator on L?(R?). Define the T inner

product to be
(fsh)r =T £, T h). (1.4)

We can then use this inner product to define the problem to be solved. We now say
that

9n = <f7 tn>7’7 (15)

for known functions t"(x). Using the definition of the 7 inner product, we find that

gn = (£, 0" = (T f, Th") .
The adjoint operator for 7, with respect to the 7-norm, is denoted 7*, and is defined
by
(Tf.hy7r={fT"h)T
Therefore,
gn = (f, T Th")T.
It is easy to show that 7*T = TT'. Consequently, we have

gn = (f, TTIH") 7. (1.6)



2 The Minimum-Norm Solutions

Since the reconstruction problem is highly underdetermined, we seek a minimum-
norm solution, in whichever norm we are considering. From basic Hilbert space
theory, we know that the minimum-norm solution is the function f consistent with

the data having the algebraic form
N
=3 a,TTh™ (2.1)
m=1

Applying the inner product to both sides of Equation (2.1), we get
gn = <f7 7-7-1[hn>7~

= fj am (TTR, TTR") .

Therefore,

Jn = i\/: A (TTR™, TTh™)s. (2.2)

m=1
We solve this system for the a,, and insert them into Equation (2.1) to get our
reconstruction. The Gram matrix that appears in Equation (2.2) is positive-definite,
but is often ill-conditioned; increasing the main diagonal by a percent or so usually

is sufficient regularization.

3 The Case of Fourier-Transform Data

To illustrate these minimum-norm solutions, we consider the case in which the data

are values of the Fourier transform of f. Specifically, suppose that

g = / fla)e ez,
for arbitrary values w,. In order to have the functions e** in the Hilbert space, we
need to assume that f has bounded support, say [—A, A], and then select the Hilbert
space to be L?(—A, A).

3.1 The L?(—7,w) Case

Suppose that the Fourier values are associated with the equi-spaced points w,, = n.
If we do not have prior knowledge of the support of f, we may assume that f(x) =0,

for |z| > 7. The minimum-norm solution within L?*(—7,7) is then

f(x) = Z_:lgneim. (3.1)



3.2 The Over-Sampled Case

Suppose that f(x) = 0 for |z| > A, where 0 < A < m. Then we use L?(—A, A) as the

Hilbert space. For equispaced data at w,, = n, we have

A .
go= | Sl mdn,

—-A

so that the minimum-norm solution has the form

N
F(@) = xa(®) 3 ame™, (3.2)
m=1
with x4 the characteristic function of the interval [—A, A] and
=92 Z amM.
—n

The minimum-norm solution is support-limited to [—A, A] and consistent with the
Fourier-transform data.
3.3 Irregularly Spaced Data

For general w, the minimum-norm solution within L*(—A, A) is

N .
= 3 apen, (3.3)
m=1
with
N A
_ Z am/ ez(wmfwn)xda:.
m=1 A

In each of these examples we have incorporated prior knowledge of the support of f.

Now we consider including information about the shape of the function f.

3.4 Using a Prior Estimate of f

Suppose that f(xz) =0 for |x| > A again, and that p(z) satisfies
0<e<pxr)<E<+o0,

for all x in [—A, A]. Define the operator T by (7 f)(z) = \/p(z)f(z). The T-norm is
then

th—/ F(@)h(@)p(x)~de.
It follows that
A .
9o = [ F@p()e“pla)  da,

—A



so that the minimum 7 -norm solution is
. N ) N '
f(@) =" amp(z)e“™™ = p(x) Y ape?, (3.4)
m=1 m=1

where
N A )
N
m=1 -A

If we have prior knowledge about the support of f, or some idea of its shape, we can
incorporate that prior knowledge into the reconstruction through the choice of p(z).

The reconstruction in Equation (3.4) was presented in [2], where it was called
the PDFT method. The PDFT was based on an earlier non-iterative version of the
Gerchberg-Papoulis bandlimited extrapolation procedure [1]. The PDFT was then
applied to image reconstruction problems in [3]. An application of the PDFT was pre-
sented in [5]. In [4] we extended the PDFT to a nonlinear version, the indirect PDFT
(IPDFT), that generalizes Burg’s maximum entropy spectrum estimation method.
The PDFT was applied to the phase problem in [6] and in [7] both the PDFT and
IPDFT were examined in the context of Wiener filter approximation. More recent

work on these topics is discussed in the book [§].
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