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1 Overview
A common problem in signal and image processing is the reconstruction of a function
f(x) of one or several variables from finitely many integrals

dn =
∫ b

a

f(x)gn(x)dx,

for n = 1, ..., N . If we take as our inner product of functions u(x) and v(x)

〈u, v〉 =
∫

u(x)v(x)dx,

then the minimum-norm solution of this under-determined problem is

f̂(x) = c1g1(x) + ... + cNgN (x),

where the coefficients are chosen so as to make the reconstructed function consistent
with the data.

For any positive function p(x) we can write

dn =
∫ b

a

f(x)gn(x)p(x)p(x)−1dx,

so that, using the inner product

〈u, v〉 =
∫ b

a

u(x)v(x)p(x)−1dx,

the minimum-norm solution becomes

f̂(x) = p(x)
(
c1g1(x) + ... + cNgN (x)

)
,
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with the cn again chosen so as to make f̂(x) consistent with the data. We can incor-
porate our prior knowledge of prominent features of the true f(x), such as its support,
through the appropriate selection of the p(x).

2 Introduction
An important point to keep in mind when doing signal and image processing is that,
while the data is usually limited, the information we seek may not be lost. Although
processing the data in a reasonable way may suggest otherwise, other processing meth-
ods may reveal that the desired information is still available in the data. Figure 1
illustrates this point. The top right is the original discrete simulated head slice. The
data are some of the FFT values nearest the origin. The bottom right is the DFT, or
minimum-norm solution, obtained by replacing with zeros the FFT values not being
used, and then inverse Fourier transforming. The top left is the prior weighting func-
tion, and the bottom left is the minimum weighted norm reconstruction, from the same
data.

Figure 1: Minimum Norm and Minimum Weighted Norm Reconstruction.

3 The Basic problem
The problem is to reconstruct a (possibly complex-valued) function f : RD → C
from finitely many measurements dn, n = 1, ..., N , pertaining to f . The function f(r)
represents the physical object of interest, such as the spatial distribution of acoustic
energy in sonar, the distribution of x-ray-attenuating material in transmission tomogra-
phy, the distribution of radionuclide in emission tomography, the sources of reflected
radio waves in radar, and so on. Often the reconstruction, or estimate, of the function
f takes the form of an image in two or three dimensions; for that reason, we also speak
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of the problem as one of image reconstruction. The data are obtained through mea-
surements. Because there are only finitely many measurements, the problem is highly
under-determined and even noise-free data are insufficient to specify a unique solution.

4 The Optimization Approach
One way to solve such under-determined problems is to replace f(r) with a vector in
CN and to use the data to determine the N entries of this vector. An alternative method
is to model f(r) as a member of a family of linear combinations of N preselected basis
functions of the multi-variable r. Then the data is used to determine the coefficients.
This approach offers the user the opportunity to incorporate prior information about
f(r) in the choice of the basis functions. Such finite-parameter models for f(r) can be
obtained through the use of the minimum-norm estimation procedure, as we shall see.
More generally, we can associate a cost with each data-consistent function of r, and
then minimize the cost over all the potential solutions to the problem. Using a norm as a
cost function is one way to proceed, but there are others. These optimization problems
can often be solved only through the use of discretization and iterative algorithms.

5 A Hilbert Space Formulation
In many applications the data are related linearly to f . To model the operator that
transforms f into the data vector, we need to select an ambient space containing f .
Typically, we choose a Hilbert space. The selection of the inner product provides an
opportunity to incorporate prior knowledge about f into the reconstruction. The inner
product induces a norm and our reconstruction is that function, consistent with the
data, for which this norm is minimized. We shall illustrate the method using Fourier-
transform data and prior knowledge about the support of f and about its overall shape.

Our problem, then, is to estimate a (possibly complex-valued) function f(r) of D
real variables r = (r1, ..., rD) from finitely many measurements, dn, n = 1, ..., N .
We shall assume, in this article, that these measurements take the form

dn =
∫

S

f(r)gn(r)dr, (1)

where S denotes the support of the function f(r), which, in most cases, is a bounded
set. For the purpose of estimating, or reconstructing, f(r), it is convenient to view
Equation (1) in the context of a Hilbert space, and to write

dn = 〈f, gn〉, (2)

where the usual Hilbert space inner product is defined by

〈u, v〉2 =
∫

S

u(r)v(r)dr, (3)

for functions u(r) and v(r) supported on the set S. Of course, for these integrals to be
defined, the functions must satisfy certain additional properties, but a more complete
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discussion of these issues is outside the scope of this chapter. The Hilbert space so
defined, denoted L2(S), consists (essentially) of all functions f(r) for which the norm

||f ||2 =

√∫
S

|f(r)|2dr (4)

is finite.

5.1 Minimum-Norm Solutions
Our estimation problem is highly under-determined; there are infinitely many functions
in L2(S) that are consistent with the data and might be the right answer. Such under-
determined problems are often solved by acting conservatively, and selecting as the
estimate that function consistent with the data that has the smallest norm. At the same
time, however, we often have some prior information about f that we would like to
incorporate in the estimate. One way to achieve both of these goals is to select the
norm to incorporate prior information about f , and then to take as the estimate of f the
function consistent with the data, for which the chosen norm is minimized.

The data vector d = (d1, ..., dN )T is in CN and the linear operator H from L2(S)
to CN takes f to d; so we write d = Hf . Associated with the mapping H is its adjoint
operator, H†, going from CN to L2(S) and given, for each vector a = (a1, ..., aN )T ,
by

H†a(r) = a1g1(r) + ... + aNgN (r). (5)

The operator from CN to CN defined by HH† corresponds to an N by N matrix,
which we shall also denote by HH†. If the functions gn(r) are linearly independent,
then this matrix is positive-definite, therefore invertible.

Given the data vector d, we can solve the system of linear equations

d = HH†a (6)

for the vector a. Then the function

f̂(r) = H†a(r) (7)

is consistent with the measured data and is the function in L2(S) of least norm for
which this is true. The function w(r) = f(r) − f̂(r) has the property Hw = 0. It is
easy to see that

||f ||22 = ||f̂ ||22 + ||w||22 (8)

The estimate f̂(r) is the minimum-norm solution, with respect to the norm defined
in Equation (4). If we change the norm on L2(S), or, equivalently, the inner product,
then the minimum-norm solution will change.

For any continuous linear operator T on L2(S), the adjoint operator, denoted T †,
is defined by

〈T u, v〉2 = 〈u, T †v〉2. (9)

The adjoint operator will change when we change the inner product.
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6 A Class of Inner Products
Let T be a continuous, linear and invertible operator on L2(S). Define the T inner
product to be

〈u, v〉T = 〈T −1u, T −1v〉2. (1)

We can then use this inner product to define the problem to be solved. We now say that

dn = 〈f, tn〉T , (2)

for known functions tn(r). Using the definition of the T inner product, we find that

dn = 〈f, gn〉2 = 〈T f, T gn〉T . (3)

The adjoint operator for T , with respect to the T -norm, is denoted T ∗, and is defined
by

〈T u, v〉T = 〈u, T ∗v〉T . (4)

Therefore,

dn = 〈f, T ∗T gn〉T . (5)

Lemma 1. We have T ∗T = T T †.
Consequently, we have

dn = 〈f, T T †gn〉T . (6)

7 Minimum-T -Norm Solutions
The function f̃ consistent with the data and having the smallest T -norm has the alge-
braic form

f̂ =
N∑

m=1

amT T †gm. (1)

Applying the T -inner product to both sides of Equation (1), we get

dn = 〈f̂ , T T †gn〉T (2)

=
N∑

m=1

am〈T T †gm, T T †gn〉T . (3)

Therefore,

dn =
N∑

m=1

am〈T †gm, T †gn〉2. (4)

We solve this system for the am and insert them into Equation (1) to get our recon-
struction. The Gram matrix that appears in Equation (4) is positive-definite, but is of-
ten ill-conditioned; increasing the main diagonal by a percent or so usually is sufficient
regularization.
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8 The Case of Fourier-Transform Data
To illustrate these minimum-T -norm solutions, we consider the case in which the data
are values of the Fourier transform of f . Specifically, suppose that

dn =
∫

S

f(x)e−iωnxdx, (1)

for arbitrary values ωn.

8.1 The L2(−π, π) Case
Assume that f(x) = 0, for |x| > π. The minimum-2-norm solution has the form

f̂(x) =
N∑

m=1

ameiωmx, (2)

with

dn =
N∑

m=1

am

∫ π

−π

ei(ωm−ωn)xdx. (3)

For the equispaced values ωn = n we find that am = dm and the minimum-norm
solution is

f̂(x) =
N∑

n=1

gneinx. (4)

8.2 The Over-Sampled Case
Suppose that f(x) = 0 for |x| > A, where 0 < A < π. The Nyquist sample spacing
is then ∆ = π/A. In many applications we can take as many samples as we wish, but
must take them within some fixed interval. If we take samples at the rate of ∆ = π/A,
we may not get very many samples to work with. Instead, we may sample at a faster
rate, say ∆ = 1, to get more data points. How we process this over-sampled data is
important.

If we use as our ambient Hilbert space L2(−π, π), the minimum-norm reconstruc-
tion wastes a lot of effort reconstructing f(x) outside [−A,A], where we already know
it to be zero. Instead, we use L2(−A,A) as the ambient Hilbert space.

For the simulation in Figure 2, f(x) = 0 for |x| > A = π/30. The top graph
is the minimum-norm estimator, with respect to the Hilbert space L2(−A,A), called
the modified DFT (MDFT); the bottom graph is the DFT, the minimum-norm estimator
with respect to the Hilbert space L2(−π, π). The MDFT is a non-iterative variant of
Gerchberg-Papoulis [18, 19] band-limited extrapolation.
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8.3 Using a Prior Estimate of f

Suppose that f(x) = 0 for |x| > π again, and that p(x) satisfies

0 < ε ≤ p(x) ≤ E < +∞, (5)

for all x in [−π, π]. Define the operator T by (T f)(x) =
√

p(x)f(x). The T -norm is
then

〈u, v〉T =
∫ π

−π

u(x)v(x)p(x)−1dx. (6)

It follows that

dn =
∫ π

−π

f(x)p(x)e−inxp(x)−1dx, (7)

so that the minimum T -norm solution is

f̂(x) =
N∑

m=1

amp(x)eimx = p(x)
N∑

m=1

ameimx, (8)

where

dn =
N∑

m=1

am

∫ π

−π

p(x)ei(m−n)xdx. (9)

If we have prior knowledge about the support of f , or some idea of its shape, we can
incorporate that prior knowledge into the reconstruction through the choice of p(x).

The reconstruction in Equation (8) was presented in [5], where it was called the
PDFT method. The PDFT was based on an earlier non-iterative version of the Gerchberg-
Papoulis bandlimited extrapolation procedure [4]. The PDFT was then applied to im-
age reconstruction problems in [6]. An application of the PDFT was presented in [8].

Figure 2: The non-iterative band-limited extrapolation method (MDFT) (top) and the
DFT (bottom); 30 times over-sampled.
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In [7] we extended the PDFT to a nonlinear version, the indirect PDFT (IPDFT), that
generalizes Burg’s maximum entropy spectrum estimation method [1, 2, 3]. The PDFT
was applied to the phase problem in [10] and in [11] both the PDFT and IPDFT were
examined in the context of Wiener filter approximation. More recent work on these
topics is discussed in the books [12, 13].

In the next section we sketch the non-linear indirect PDFT estimator, the IPDFT.

9 The Non-Linear Indirect PDFT (IPDFT)
Suppose that r(x) ≥ 0, for |x| ≤ π, with

r(x) =
∞∑

n=−∞
R(n)einx,

and we want to reconstruct this function from the data R(n), |n| ≤ N . The goal here
is to obtain a non-linear estimator along the lines of Burg’s maximum entropy method
[1, 2, 3].

9.1 Reconstructing the Additive Causal Part
We begin by considering the problem of reconstructing its additive causal part,

r(x)+ =
∞∑

n=0

R(n)einx,

from data R(n), for n = 0, 1, ..., N . We use the prior p(x) and the PDFT, obtaining
the estimate

r̂(x) = p(x)
N∑

n=0

cneinx.

To obtain the cn we need to solve the system
P (0) P (−1) ... P (−N)
P (1) P (0) ... P (−N + 1)
· · ... ·
· · ... ·

P (N) P (N − 1) ... P (0)




c0

c1

·
·

cN

 =


R(0)
R(1)
·
·

R(N)

 .

Suppose now that we switch the roles of r(x) and p(x), “estimating” p(x)+ using
r(x) ≥ 0 as the prior.
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9.2 Switching Roles
Now we need to solve the system

R(0) R(−1) ... R(−N)
R(1) R(0) ... R(−N + 1)
· · ... ·
· · ... ·

R(N) R(N − 1) ... R(0)




c0

c1

·
·

cN

 =


P (0)
P (1)
·
·

P (N)

 .

Since R(−n) = R(n), we know all the entries of the matrix.
Our “estimate”of p(x)+ is then

p̂(x)+ = r(x)
N∑

n=0

cneinx = r(x)c(x).

The additive causal part of the right side is

(
r(x)c(x)

)
+

= r(x)+c(x) +
N−1∑
m=0

( N−m∑
k=1

R(−k)cm+k

)
eimx

= r(x)+c(x) + j(x).

Therefore, we can say that

p(x)+ ≈ r(x)+c(x) + j(x),

so that

r(x)+ ≈ q(x) =
p(x)+ − j(x)

c(x)
.

Our IPDFT estimate of r(x) is then

r̂(x) = 2Real(q(x))−R(0).

When p(x) = 1 for all x we get Burg’s maximum entropy estimator, which is always
non-negative and consistent with the original data. The IPDFT is always real-valued.
It is not guaranteed to be non-negative, but seems to be, most of the time. The big
question is “Is the IPDFT estimate consistent with the original data?”

If c(x)−1 is causal, that is,

c(x)−1 = d0 + d1e
ix + d2e

2ix + ...,

then our estimate q(x) of r(x)+ is causal and the IPDFT is consistent with the data.
It was difficult, but not impossible, for me to find an example in which the function
c(x)−1 is not causal. This leads to

Open Problem: When is c(x)−1 causal?
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10 Poisson Mixture Problems
A compound Poisson probability function on the non-negative integers has

p(n) =
1
n!

∫ ∞

0

c(λ)e−λλndλ,

as the probability that the non-negative integer n will occur; here the non-negative func-
tion c(λ) is the compounding probability density function. Measured counts provide
estimates of p(n), for n = 0, 1, ..., N . On the basis of this data we want to estimate
the function c(λ). Both the PDFT and IPDFT approaches can be used for this purpose
[8, 14].

11 Discretizing the Problem
Suppose we select J > N and replace the functions f(x) and gn(x) with finite (col-
umn) vectors,

f = (f1, ..., fJ)T ,

and
gn = (gn

1 , ..., gn
N )T ,

and model the data as
dn = f1g

n
1 + ... + fNgn

N .

Then a vector f is data consistent if it solves the under-determined system

Af = d,

where the entries of the matrix A are

An,j = gn
j .

11.1 Minimum-Weighted-Two-Norm Solutions
The PDFT estimator minimizes the weighted two-norm∫

|f(x)|2p(x)−1dx,

subject to data consistency. In the discrete formulation of the reconstruction problem,
we seek a solution of a system of equations Af = d for which the weighted two-norm

J∑
j=1

|fj |2w−1
j

is minimized, where the weight vector w is a discretization of the function p(x). This
solution can be found without forming the matrix H , using, say, the iterative algebraic
reconstruction technique (ART).
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12 Minimum One-Norm Solutions
Finding sparse solutions to under-determined systems of linear equations is an increas-
ingly important problem in a variety of applications, such as compressed sampling or
compressed sensing (CS) [16].

12.1 Sparse Solutions
Suppose that A is a real M by N matrix, with M < N , and that the linear system
Ax = b has infinitely many solutions. For any vector x, we define the support of x to
be the subset S of {1, 2, ..., N} consisting of those n for which the entries xn 6= 0.

Consider the problem P0: among all solutions x of the consistent system y = Ax,
find one, call it x̂, having the minimum number of non-zero entries. Obviously, there
will be at least one such solution having minimal support, but finding one, however,
is a combinatorial optimization problem and is generally NP-hard. It is important,
therefore, to have a computationally tractable method for finding maximally sparse
solutions.

12.2 Minimum One-Norm Solutions
Instead, we can seek a minimum one-norm solution, that is, solve the problem P1:
minimize

||x||1 =
N∑

n=1

|xn|,

subject to Ax = b. Problem P1 can be formulated as a linear programming problem,
so is more easily solved. The big questions are: when does P1 have a unique solution,
and when does that solution solve P0? The problem P1 will have a unique solution if
and only if A is such that the one-norm satisfies

||x̂||1 < ||x̂ + v||1,

for all non-zero v in the null space of A.

12.3 Why the One-Norm?
When a system of linear equations Ax = b is under-determined, we can find the
minimum-two-norm solution that minimizes the square of the two-norm,

||x||22 =
N∑

n=1

x2
n,

subject to Ax = b. One drawback to this approach is that the two-norm penalizes
relatively large values of xn much more than the smaller ones, so tends to provide
non-sparse solutions. Alternatively, we may seek the solution for which the one-norm,

||x||1 =
N∑

n=1

|xn|,
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is minimized. The one-norm still penalizes relatively large entries xn more than the
smaller ones, but much less than the two-norm does. As a result, it often happens that
the minimum one-norm solution actually solves P0 as well.

12.4 Comparison with the PDFT
If our weights wn are reasonably close to |x̂n|, then

N∑
n=1

|x̂n| =
N∑

n=1

|x̂n|2|x̂n|−1 ≈
N∑

n=1

|x̂n|2w−1
n ,

and the minimum weighted-two-norm solution of Ax = b should be reasonably close
to the minimum one-norm solution.

12.5 Iterative Reweighting
We want each weight wn to be a good prior estimate of the reciprocal of |x̂n|. Because
we do not yet know x̂, we may take a sequential-optimization approach, beginning with
weights w0

n > 0, finding the PDFT solution using these weights, then using this PDFT
solution to get a (we hope!) a better choice for the weights, and so on. This sequential
approach was successfully implemented in the early 1980’s by Michael Fiddy and his
students [17].

In [15], the same approach is taken, but with respect to the one-norm. Since the
one-norm still penalizes larger values disproportionately, balance can be achieved by
minimizing a weighted-one-norm, with weights close to the reciprocals of the |x̂n|.
Again, not yet knowing x̂, they employ a sequential approach, using the previous
minimum-weighted-one-norm solution to obtain the new set of weights for the next
minimization.

It is interesting to note that an on-going debate among users of the PDFT has been
the nature of the prior weighting. Does wn approximate |xn| or |xn|2? This is close to
the issue treated in [15], the use of a weight in the minimum-one-norm approach.

It should be noted again that finding a sparse solution is not usually the goal in the
use of the PDFT, but the use of the weights has much the same effect as using the one-
norm to find sparse solutions: to the extent that the weights approximate the entries
of x̂, their use reduces the penalty associated with the larger entries of an estimated
solution.
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