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Overview

An important point to keep in mind when doing signal and
image processing is that, while the data is usually limited, the
information we seek may not be lost. Although processing the
data in a reasonable way may suggest otherwise, other
processing methods may reveal that the desired information is
still available in the data. The first figure illustrates this point.



Using Prior Knowledge

For under-determined problems, prior knowledge can be used
effectively to produce a reasonable reconstruction.

Figure: Minimum Norm and Minimum Weighted Norm
Reconstruction.



The Main Idea

We are concerned with problems of reconstruction of a function
of one or more variables, call it f (x), from limited data. Because
the problem is under-determined, there are infinitely many
functions that agree with the data. How should we select one?
The minimum-norm solution is reasonable; the freedom to
select the norm provides the opportunity to include prior
knowledge.



Linear Functional Data

The measured values are linear functionals of f (x), that is, our
data are the finitely many inner products

dn = 〈f , hn〉,

where, for n = 1, ..., N, the hn(x) are known functions. The
inner product is intentionally unspecified.



The Minimum-Norm Solution

The minimum-norm solution has the algebraic form

f̂ (x) = c1h1(x) + ... + cNhN(x),

where the cn are chosen to make the reconstruction f̂ (x) agree
with the data.



Calculating Coefficients

Taking inner products with a fixed hm(x) on both sides, we get

dm = 〈f , hm〉 =
N∑

n=1

cn〈hn, hm〉.

To find the cn we must solve this N by N system of linear
equations, which we write as d = Hc.



Ghosts

The true f (x) can be written uniquely as

f (x) =
(

c1h1(x) + ... + cNhN(x)
)

+ g(x),

where
〈g, hn〉 = 0,

for n = 1, ..., N. Since the g(x) is a ghost function whose
presence cannot be detected by our sensing system, it would
seem that the only way for us to proceed is to accept f̂ (x) as
our reconstruction and end the discussion.



Ghost Busters

We intentionally left the inner product unspecified because the
inner product is not unique; we have the freedom to select the
particular inner product we wish to use, and this alters our
reconstruction.



Examples

Suppose, initially, that we have data that we can describe as

dn =

∫ b

a
f (x)gn(x)dx .

Then we can define the inner product of any real functions u(x)
and v(x) to be

〈u, v〉 =

∫ b

a
u(x)v(x)dx .

With this inner product, we have

hn(x) = gn(x),

for each n, and our reconstruction is a linear combination of the
functions gn(x):

f̂ (x) = c1g1(x) + ... + cNgN(x).



A New Inner Product

However, for any positive function p(x) on [a, b], we can also
write

dn =

∫ b

a
f (x)gn(x)p(x)p(x)−1dx .

Suppose we define the inner product of any u(x) and v(x) to be

〈u, v〉 =

∫ b

a
u(x)v(x)p(x)−1dx .

Then, for this inner product, we have

hn(x) = gn(x)p(x);

the PDFT reconstruction takes the form

f̂ (x) = p(x)
(

c1g1(x) + ... + cNgN(x)
)
.

When p(x) is selected as our prior estimate of |f (x)|, we
incorporate our prior information about f (x), such as its
support, into the reconstruction.



Computational Issues

To calculate the coefficients cn we must first generate the
entries of the matrix H, which are now

Hmn = 〈hn, hm〉

=

∫ b

a
(gn(x)p(x))(gm(x)p(x))p(x)−1dx =

∫ b

a
gn(x)gm(x)p(x)dx .

This can be a difficult step that we may want to avoid.



Example: Reconstruction from Fourier Transform
Values

A basic problem in signal processing is the estimation of the
function

f (x) =
1

2π

∫ ∞

−∞
F (ω)e−ixωdx (1)

from finitely many values of its inverse Fourier transform F (ω).
The discrete Fourier transform (DFT) is one such estimator. As
we shall see, there are other estimators that are able to make
better use of prior information about F (ω) and thereby provide
a better estimate.



Choosing the Prior

Suppose the data is F (n∆), for n = 1, ..., N. Our PDFT
reconstruction has the form

f̂ (x) = p(x)
N∑

n=1

cnein∆x ,

with the cn chosen to make f̂ (x) data consistent. If we know
f (x) = 0, for |x | > A, then one choice for p(x) is χA(x), the
characteristic function that is one for |x | ≤ A and zero
otherwise.



Over-Sampling

Suppose that f (x) = 0 for |x | > A, where 0 < A < π. The
Nyquist sample spacing is then ∆ = π/A. In many applications
we can take as many samples as we wish, but must take them
within some fixed interval. If we take samples at the rate of
∆ = π/A, we may not get very many samples to work with.
Instead, we may sample at a faster rate, say ∆ = 1, to get more
data points. How we process this over-sampled data is
important.



Choosing the Hilbert Space

If we use as our ambient Hilbert space L2(−π, π), the
minimum-norm reconstruction wastes a lot of effort
reconstructing f (x) outside [−A, A], where we already know it to
be zero. Instead, we use L2(−A, A) as the ambient Hilbert
space.



The DFT and the MDFT

For the simulation in the figure below, f (x) = 0 for |x | > A = π
30 .

The top graph is the minimum-norm estimator, with respect to
the Hilbert space L2(−A, A), called the modified DFT (MDFT);
the bottom graph is the DFT, the minimum-norm estimator with
respect to the Hilbert space L2(−π, π). The MDFT is a
non-iterative variant of Gerchberg-Papoulis band-limited
extrapolation.



30 Times Over-Sampled Data

Figure: The non-iterative band-limited extrapolation method (MDFT)
(top) and the DFT (bottom); 30 times over-sampled.



Using Other Prior Information

The approach that led to the MDFT estimate suggests that we
can introduce other prior information besides the support of
f (x). For example, if we have some idea of the overall shape of
the function f (x), we could choose p(x) > 0 to indicate this
shape and use it instead of χA(x) in our estimator. This leads to
the PDFT estimator.



Discretizing the Problem

Suppose we select J > N and replace the functions f (x) and
gn(x) with finite (column) vectors,

f = (f1, ..., fJ)T ,

and
gn = (gn

1 , ..., gn
N)T ,

and model the data as

dn = f1gn
1 + ... + fNgn

N .

Then a vector f is data consistent if it solves the
under-determined system

Af = d ,

where the entries of the matrix A are

An,j = gn
j .



Minimum-Weighted Norm Solutions

The PDFT estimator minimizes the weighted two-norm∫
|f (x)|2p(x)−1dx ,

subject to data consistency. In the discrete formulation of the
reconstruction problem, we seek a solution of a system of
equations Af = d for which the weighted two-norm

J∑
j=1

|fj |2w−1
j

is minimized, where w is a discretization of the function p(x).
This can be done using, say, the algebraic reconstruction
technique (ART), without forming the matrix H.



Minimum-Two-Norm Solutions

When a system of linear equations Ax = b is
under-determined, we can find the solution that minimizes the
two-norm,

||x ||22 =
J∑

j=1

x2
j .

One drawback is that relatively larger values of xj are penalized
more than smaller ones, leading to somewhat smooth solutions.



Minimum-One-Norm Solutions

If we want a sparse solution of Ax = b, we may seek the
solution for which the one-norm,

||x ||1 =
J∑

j=1

|xj |,

is minimized. This is important in compressed sensing
(Donoho; Candès, et al.).



Comparison with the PDFT

If our weights wj are reasonably close to |xj |, then

J∑
j=1

|xj | =
J∑

j=1

|xj |2|xj |−1 ≈
J∑

j=1

|xj |2w−1
j .

Our goal is not sparsity, but we do wish to reduce the penalty
on larger entries.



Sequential Re-weighting

We may obtain a sequence of PDFT solutions, each time using
weights suggested by the previous estimate (M. Fiddy and
students, 1983). The same idea has recently been applied in
re-weighted one-norm miinmization (Candès, Wakin and Boyd).



Other Applications

1. The non-linear indirect PDFT (IPDFT): extending Burg’s
nonlinear high-resolution maximum entropy method to
include prior information, with application to SONAR signal
processing (CB, R. Fitzgerald, M. Fiddy).
2. Phase retrieval: minimizing extrapolated energy as a
function of chosen phases, to reconstruct from
magnitude-only Fourier data (CB, M. Fiddy).
3. Tomographic imaging: reconstruction from “line”
integrals, using a prior estimate of the object (CB, M.
Shieh).
4. Mixture problems: estimating combining probabilities
from photon frequency counts (CB, B. Levine, J.C. Dainty
(1984), CB, D. Haughton, T. Jiang (1993)).



Non-Linear Indirect PDFT

Suppose that r(x) ≥ 0, for |x | ≤ π, and we want to reconstruct
its additive causal part,

r(x)+ =
∞∑

n=0

R(n)einx ,

from data R(n), for n = 0, 1, ..., N. We use the prior p(x) and
the PDFT, obtaining the estimate

r̂(x) = p(x)
N∑

n=0

cneinx .



Obtaining the Coefficients

To obtain the cn we need to solve the system
P(0) P(−1) ... P(−N)
P(1) P(0) ... P(−N + 1)
· · ... ·
· · ... ·

P(N) P(N − 1) ... P(0)




c0
c1
·
·

cN

 =


R(0)
R(1)
·
·

R(N)

 .

Suppose now that we switch the roles of r(x) and p(x),
“estimating” p(x)+ using r(x) ≥ 0 as the prior.



Switching Roles

Now we need to solve the system
R(0) R(−1) ... R(−N)
R(1) R(0) ... R(−N + 1)
· · ... ·
· · ... ·

R(N) R(N − 1) ... R(0)




c0
c1
·
·

cN

 =


P(0)
P(1)
·
·

P(N)

 .

Since R(−n) = R(n), we know all the entries of the matrix.



The “Estimate” of p(x)+

Our “estimate”of p(x)+ is then

p̂(x)+ = r(x)
N∑

n=0

cneinx = r(x)c(x).

The additive causal part of the right side is

(
r(x)c(x)

)
+

= r(x)+c(x) +
N−1∑
m=0

( N−m∑
k=1

R(−k)cm+k

)
eimx

= r(x)+c(x) + j(x).



The IPDFT

From
p̂(x)+ ≈ r(x)+c(x) + j(x),

we get

r(x)+ ≈ q(x) =
p(x)+ − j(x)

c(x)
.

Our IPDFT estimate of r(x) is then

r̂(x) = 2Real(q(x))− R(0).

The IPDFT is real-valued. If c(x)−1 is causal, that is,

c(x)−1 = d0 + d1eix + d2e2ix + ...,

then our estimate q(x) of r(x)+ is causal and the IPDFT is
consistent with the data. It is not guaranteed to be
non-negative, but seems to be, most of the time. When
p(x) = 1 for all x we get Burg’s maximum entropy estimator.
Open Problem: When is c(x)−1 causal?



Poisson Mixture Problems

A compound Poisson probability function on the non-negative
integers has

p(n) =
1
n!

∫ ∞

0
c(λ)e−λλndλ,

as the probability that the non-negative integer n will occur;
here the non-negative function c(λ) is the compounding
probability density function. Measured counts provide
estimates of p(n), for n = 0, 1, ..., N. On the basis of this data
we want to estimate the function c(λ). Both the PDFT and
IPDFT approaches can be used for this purpose.



The End

THE END


