
1



CHOOSING PARAMETERS IN BLOCK-ITERATIVE

OR ORDERED SUBSET RECONSTRUCTION

by Charles Byrne (Charles Byrne@uml.edu),

Department of Mathematical Sciences,

University of Massachusetts Lowell, Lowell, MA 01854

Viewed abstractly, all the algorithms considered here

are designed to provide a nonnegative solution x

to the system of linear equations y = Px, where

y is a vector with positive entries and P a matrix

whose entries are nonnegative and with no purely

zero columns.

The expectation maximization maximum likelihood

(EMML) method in emission tomography [1] and

the simultaneous multiplicative algebraic reconstruc-

tion technique (SMART) [2, 3, 4, 5] are slow to con-

verge on large data sets; accelerating convergence

through the use of block-iterative or ordered subset

versions of these algorithms is a topic of consid-

erable interest. These block-iterative versions in-

volve relaxation and normalization parameters the

correct selection of which may not be obvious to

all users. The algorithms are not faster merely by

virtue of being block-iterative; the correct choice

of the parameters is crucial. Through a detailed

discussion of the theoretical foundations of these

methods we come to a better understanding of the

precise roles these parameters play.
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The notion of cross-entropy or the Kullback-Leibler

distance is central to our discussion. For positive

numbers a and b let

KL(a, b) = a log(a/b) + b − a;

also let KL(a, 0) = +∞ and KL(0, b) = b. It is easily

seen that KL(a, b) > 0 unless a = b. We extend this

Kullback-Leibler distance component-wise to vec-

tors x and z with nonnegative entries:

KL(x, z) =
J∑

j=1
KL(xj, zj).

Note that KL(x, z) and KL(z, x) are generally not the

same. While the KL distance is not a metric in the

usual sense it does have certain properties involving

best approximation that are similar to those of the

square of the Euclidean metric.

The methods based on cross-entropy, such as the

multiplicative version of the algebraic reconstruc-

tion technique (ART), the MART [6], its simulta-

neous version, SMART, the expectation maximiza-

tion maximum likelihood method (EMML) and all

block-iterative versions of these algorithms apply

to nonnegative systems that we denote by Px = y,

where y is a vector of positive entries, P is a matrix

with entries Pij ≥ 0 such that for each j the sum

sj =
∑I

i=1 Pij is positive and we seek a solution x with

nonnegative entries. If no nonnegative x satisfies

y = Px we say the system is inconsistent.

3



Simultaneous iterative algorithms employ all of the

equations at each step of the iteration; block-iterative

methods do not. For the latter methods we assume

that the index set {i = 1, ..., I} is the (not necessarily

disjoint) union of the N sets or blocks Bn, n = 1, ..., N .

We shall require that snj =
∑

i∈Bn
Pij > 0 for each n

and each j. Block-iterative methods like ART and

MART for which each block consists of precisely

one element are called row-action or sequential meth-

ods. We begin our discussion with the SMART and

the EMML method.

Both the SMART and the EMML method provide a

solution of y = Px when such exist and (distinct) ap-

proximate solutions in the inconsistent case. Both

begin with an arbitrary positive vector x0. Having

found xk the iterative step for the SMART is

SMART:

xk+1
j = xk

j exp (s−1
j

I∑

i=1
Pij log

yi

(Pxk)i
) (1)

while that for the EMML method is

EMML:

xk+1
j = xk

js
−1
j

I∑

i=1
Pij

yi

(Pxk)i
. (2)
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The following theorems summarize what we know

of SMART and EMML.

Theorem 1 In the consistent case the SMART con-

verges to the unique nonnegative solution of y =

Px for which the distance
∑J

j=1 sjKL(xj, x
0
j) is min-

imized. In the inconsistent case it converges to

the unique nonnegative minimizer of the distance

KL(Px, y) for which
∑J

j=1 sjKL(xj, x
0
j) is minimized;

if P and every matrix derived from P by deleting

columns has full rank then there is a unique non-

negative minimizer of KL(Px, y) and at most I − 1

of its entries are nonzero.

Theorem 2 In the consistent case the EMML algo-

rithm converges to a nonnegative solution of y =

Px. In the inconsistent case it converges to a

nonnegative minimizer of the distance KL(y, Px);

if P and every matrix derived from P by deleting

columns has full rank then there is a unique non-

negative minimizer of KL(y, Px) and at most I − 1

of its entries are nonzero.

In the consistent case there may be multiple non-

negative solutions and the one obtained using the

EMML algorithm will depend on the starting vec-

tor x0; how it depends on x0 is an open question.

These theorems are special cases of more general

results on block-iterative methods.
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Those who have used the SMART or the EMML on

sizable problems have certainly noticed that they

are both slow to converge. An important issue,

therefore, is how to accelerate convergence. One

popular method is through the use of block-iterative

(or ordered subset) methods. To illustrate block-

iterative methods and to motivate our subsequent

discussion we consider now the ordered subset EM

algorithm (OSEM) [7], which is a popular technique

in some areas of medical imaging, as well as an anal-

ogous version of SMART, which we shall call here

the OSSMART. The OSEM algorithm is now used

quite frequently in tomographic image reconstruc-

tion, where it is acknowledged to produce usable

images significantly faster then EMML method.

The idea behind the OSEM (OSSMART) is sim-

ple: the iteration looks very much like the EMML

(SMART), but at each step of the iteration the sum-

mations are taken only over the current block. The

blocks are processed cyclically.
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The OSEM iteration is the following: for k = 0, 1, ...

and n the index of the current block or subset, hav-

ing found xk let

OSEM:

xk+1
j = xk

js
−1
nj

∑

i∈Bn

Pij
yi

(Pxk)i
. (3)

The OSSMART has the following iterative step:

OSSMART:

xk+1
j = xk

j exp (s−1
nj

∑

i∈Bn

Pij log
yi

(Pxk)i
). (4)
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In general we do not expect block-iterative algo-

rithms to converge in the inconsistent case, but to

exhibit subsequential convergence to a limit cycle.

We do, however, want them to converge to a solu-

tion in the consistent case; in general, the OSEM

and OSSMART do not. These two algorithms are

known to converge to a solution in the consistent

case when the matrix P and the set of blocks sat-

isfy the condition known as subset balance, which

means that the sums snj depend only on j and not

on n. While subset balance may be approximately

valid in some special cases it is overly restrictive,

eliminating, for example, almost every set of blocks

whose cardinalities are not all the same. When the

OSEM does well in practice in medical imaging it is

probably because the N is not large and only a few

iterations are carried out.

The experience with the OSEM is encouraging, how-

ever, and strongly suggests that an equally fast, but

mathematically rigorous, block-iterative version of

EMML could be found; this is the rescaled block-

iterative EMML (RBI-EMML)[8]. Both RBI-EMML

and an analogous corrected version of OSSMART,

the RBI-SMART, provide fast convergence to a so-

lution in the consistent case, for any choice of blocks.
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We consider now block-iterative formulations of the

SMART and EMML that are general enough to in-

clude all of the variants we wish to discuss. In fact,

our initial formulations will be too general and will

need to be restricted in certain ways to guarantee

and to accelerate convergence.

We begin with the block-iterative version of the

SMART, which we shall denote BI-SMART. These

methods were known prior to the discovery of RBI-

EMML and played an important role in that dis-

covery; the importance of rescaling for accelera-

tion was apparently not appreciated, however. The

SMART was discovered in 1972, independently, by

Darroch and Ratcliff [2], working in statistics, and

by Schmidlin [3] in medical imaging. Block-iterative

versions of SMART are also treated in [2], but they

also insist on subset balance; the inconsistent case

was not considered. We start by considering a for-

mulation of BI-SMART that is general enough to

include all of the variants we wish to discuss. As

we shall see, this formulation is too general and will

need to be restricted in certain ways to obtain con-

vergence.
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Initially, we let the BI-SMART iterative step be

defined as

xk+1
j = xk

j exp (βnj
∑

i∈Bn

αniPij log (
yi

(Pxk)i
)), (5)

for j = 1, 2, ..., J, n = k(mod N) + 1 and βnj and αni

arbitrary positive weights. Our convergence proof

requires that βnj be separable, that is,

βnj = γjδn

for each j and n so that (5) becomes

BI-SMART:

xk+1
j = xk

j exp (γjδn
∑

i∈Bn

αniPij log (
yi

(Pxk)i
)). (6)

We also require

γjδnσnj ≤ 1, (7)

for σnj =
∑

i∈Bn
αniPij.

With these conditions satisfied we have the follow-

ing result.

Theorem 3 Let there be nonnegative solutions of

y = Px. For any positive vector x0 and any col-

lection of blocks {Bn, n = 1, ..., N} the BI-SMART

sequence {xk} given by (6) converges to the unique

solution of y = Px for which the weighted cross-

entropy, given by
∑J

j=1 γ−1
j KL(xj, x

0
j), is minimized.
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We see from the theorem that how we select the γj is

determined by how we wish to weight the terms in

the sum
∑J

j=1 γ−1
j KL(xj, x

0
j). In some cases we want to

minimize the cross-entropy KL(x, x0) subject to y =

Px; in this case we would select γj = 1. In other cases

we may have some prior knowledge as to the relative

sizes of the xj and wish to emphasize the smaller

values more; then we may choose γj proportional to

our prior estimate of the size of xj. Having selected

the γj, convergence will be accelerated if we select

δn as large as permitted by the condition γjδnσnj ≤ 1.

This suggests that we take

δn = 1/ max{σnjγj, j = 1, ..., J}. (8)

The rescaled BI-SMART (RBI-SMART) as presented

in [8, 9, 10] uses this choice, but with αni = 1 for each

n and i.

Let’s look now at some of the other choices for these

parameters that have been considered in the liter-

ature. First, we notice that the OSSMART does

not generally satisfy the requirements, since in (4)

the choices are αni = 1 and βnj = s−1
nj ; the only times

this is acceptable is if the snj are separable; that is,

snj = rjtn for some rj and tn. This is slightly more

general than the condition of subset balance and is

sufficient for convergence of OSSMART, since, for

γj = αni = 1 and δn as in (8), the BI-SMART reduces

to the OSSMART.
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In [4] Censor and Segman make the choices βnj = 1

and αni > 0 such that σnj ≤ 1 for all n and j. In those

cases in which σnj is much less than 1 for each n

and j their iterative scheme is probably excessively

relaxed; it is hard to see how one might improve the

rate of convergence by altering only the weights αni,

however. Limiting the choice to γjδn = 1 reduces our

ability to accelerate this algorithm.

The original SMART in (1) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly (7) is satisfied; in fact it be-

comes an equality now. For the row-action version

of SMART, the multiplicative ART (MART), due to

Gordon, Bender and Herman [6], we take N = I and

Bn = Bi = {i} for i = 1, ..., I.

Darroch and Ratcliff included a discussion of a block-

iterative version of SMART in their 1972 paper [2].

Close inspection of their version reveals that they

require that snj =
∑

i∈Bn
Pij = 1 for all j. Since this

is unlikely to be the case initially, we might try to

rescale the equations or unknowns to obtain this

condition. However, unless snj =
∑

i∈Bn
Pij depends

only on j and not on n, which is the subset balance

property used in [7], we cannot redefine the un-

knowns in a way that is independent of n.
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The MART begins with a strictly positive vector x0

and has the iterative step

MART:

xk+1
j = xk

j (
yi

(Pxk)i
)m

−1

i Pij , (9)

for j = 1, 2, ..., J, i = k(mod I) + 1 and mi > 0 chosen

so that m−1
i Pij ≤ 1 for all j. Convergence of the

MART is generally faster for smaller mi, so a good

choice is mi = max{Pij|, j = 1, ..., J}. Although this

particular choice for mi is not explicitly mentioned

in the various discussions of MART, it was used in

implementations of MART from the beginning.

The MART fails to converge in the inconsistent

case. What is always observed, but for which no

proof exists, is that, for each fixed i = 1, 2, ..., I, as

m → +∞, the MART subsequences {xmI+i} converge

to separate limit vectors, say x∞,i. This limit cycle LC

= {x∞,i|i = 1, ..., I} reduces to a single vector when-

ever there is a nonnegative solution of y = Px. The

greater the minimum value of KL(Px, y) the more

distinct from one another the vectors of the limit

cycle are. An analogous result is observed for BI-

SMART.
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We turn now to the block-iterative version of the

EMML algorithm.

Initially, we let the iterative step of the BI-EMML

be defined as

xk+1
j = xk

j (1 − βnjσnj) + xk
jβnj

∑

i∈Bn

αniPij
yi

(Pxk)i
, (10)

for j = 1, 2, ..., J, n = k(mod N)+1 and βnj and αni posi-

tive. As in the case of BI-SMART, our convergence

proof requires that βnj be separable, that is,

βnj = γjδn

for each j and n and that

γjδnσnj ≤ 1,

for σnj =
∑

i∈Bn
αniPij. The BI-EMML then becomes

BI-EMML:

xk+1
j = xk

j (1 − γjδnσnj) + xk
jγjδn

∑

i∈Bn

αniPij
yi

(Pxk)i
, (11)

With these conditions satisfied we have the follow-

ing result.

Theorem 4 Let there be nonnegative solutions of

y = Px. For any positive vector x0 and any col-

lection of blocks {Bn, n = 1, ..., N} the BI-EMML

sequence {xk} given by (11) converges to a non-

negative solution of y = Px.
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When there are multiple nonnegative solutions of

y = Px the solution obtained by BI-EMML will de-

pend on the starting point x0, but precisely how it

depends on x0 is an open question. Also, in contrast

to the case of BI-SMART, the solution can depend

on the particular choice of the blocks.

Having selected the γj, convergence will be accel-

erated if we select δn as large as permitted by the

condition γjδnσnj ≤ 1. This suggests that once again

we take δn as in (8). The rescaled BI-EMML (RBI-

EMML) as presented in [8, 9, 10] uses this choice,

but with αni = 1 for each n and i.

Let’s look now at some of the other choices for

these parameters that have been considered in the

literature. First, we notice that the OSEM does

not generally satisfy the requirements, since in (3)

the choices are αni = 1 and βnj = s−1
nj ; the only times

this is acceptable is if the snj are separable; that

is, snj = rjtn for some rj and tn. This is slightly

more general than the condition of subset balance

and is sufficient for convergence of OSEM, since, for

γj = αni = 1 and δn as in (8), the BI-EMML reduces

to the OSEM .
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The original EMML in (2) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly (7) is satisfied; in fact it be-

comes an equality now. Notice that the calculations

required to perform the BI-SMART are somewhat

more complicated than those needed in BI-EMML.

Because the MART converges rapidly in most cases

there is considerable interest in the row-action ver-

sion of EMML. It was clear from the outset that us-

ing the OSEM in a row-action mode does not work.

We see from the formula for BI-EMML that the

proper row-action version of EMML, which we call

the EM-MART, has the iterative step

EM-MART:

xk+1
j = (1 − δiγjαiiPij)x

k
j + δiγjαiiPij

yi

(Pxk)i
, (12)

with

γjδiαiiPij ≤ 1

for all i and j.
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The optimal choice would seem to be to take δiαii

as large as possible; that is, to select

δiαii = 1/ max{γjPij, j = 1, ..., J}.

With this choice the EM-MART is called the rescaled

EM-MART (REM-MART). The EM-MART fails to

converge in the inconsistent case. What is always

observed, but for which no proof exists, is that, for

each fixed i = 1, 2, ..., I, as m → +∞, the EM-MART

subsequences {xmI+i} converge to separate limit vec-

tors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I}

reduces to a single vector whenever there is a non-

negative solution of y = Px. The greater the mini-

mum value of KL(y, Px) the more distinct from one

another the vectors of the limit cycle are. An anal-

ogous result is observed for BI-EMML.
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We must mention a method that closely resembles

the REM-MART, the row-action maximum likelihood

algorithm (RAMLA), which was discovered indepen-

dently by Browne and De Pierro [11]. The RAMLA

avoids the limit cycle in the inconsistent case by

using strong underrelaxation involving a decreasing

sequence of relaxation parameters λk. The RAMLA

has the following iterative step:

RAMLA:

xk+1
j = (1 − λk

∑

i∈Bn

Pij)x
k
j + λkx

k
j

∑

i∈Bn

Pij(
yi

(Pxk)i
), (13)

where the positive relaxation parameters λk are cho-

sen to converge to zero and
∑+∞

k=0 λk = +∞.
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