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Chapter 1

Introduction

1.1 Overview

In the course of doing my research I found that certain questions arise
that, while probably not of much interest to anyone else, continue to nag
me. I kept returning to these questions as a tongue explores a painful
tooth. Recently, I had the good fortune to answer several of these questions,
achieving what I think of as small private victories that will probably never
be published. These questions often had to do with the relationship, if any,
between different parts of my research. I decided that, since I will have
more down time over the spring and summer of 2011 than I had expected
to have, I would write up these private victories.

As I look back over the mathematics that I have done over the past
several decades, I begin to see the outlines of a small number of themes,
threads that seem to weave their way through what might seem largely
unrelated work. This has prompted me to expand my effort and to try to
capture some of those themes here.

The chapters that follow will trace aspects of my work in essentially
chronological order, beginning about 1980. Some of the material has ap-
peared in print previously. I will try to place the material in each chapter
within the context of the problems and influences I was dealing with at the
time.

Over the past couple of years I have also been putting together a col-
lection of essays on various topics in applied mathematics, designed to
supplement the text in my graduate courses. This effort involved research
of a somewhat different sort, since I was not as familiar with some of these
topics as I wanted to be. I have a few favorite ones that I am including
here as well.

1
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Chapter 2

The PDFT

2.1 The Context

In 1978 I received tenure at The Catholic University of America and began
looking for new areas for research. Up to that time my research had been
in functional analysis and topology, but without much focus. In the 1979-
1980 academic year I taught a graduate course in Stochastic Processes out
of Breiman; this was an area I knew only slightly and wished to know
better. Ray Fitzgerald was in the class. He was a PhD physicist working
in the Acoustics Division at the Naval Research Laboratory. We began by
discussing some of the mathematics involved in the problems of interest
to him and quickly moved on to a collaboration that lasted until about
1990. At first, ours was an informal arrangement, but after a short while
I became a paid consultant, eventually spending the 1981-1982 and 1982-
1983 academic years working at NRL, on leave-of-absence from CUA.

In 1982 Ray and I went to London and Paris for conferences and to meet
with people from the UK Admiralty Research Laboratory in Teddington.
At the meeting at Imperial College we met Mike Fiddy, then a physics
professor at the University of London. We had already been in touch
with Mike and his colleagues and had exchanges preprints. My meeting
with Mike was the beginning of a collaboration that has continued to the
present day.

Fourier analysis plays a central role in imaging farfield objects. As
is discussed in detail in the book A First Course in Signal Processing,
available on my website, what we can measure are often values of the
Fourier transform of what we want. The amount of Fourier data available
is usually limited and increasing the resolution is the main objective. Ray
was interested in acoustic array signal processing, while Mike was involved
in various applications of Fourier optics, but both wanted higher resolution.
There had been some work by Gerchberg and Papoulis on finite, discretized

3



4 CHAPTER 2. THE PDFT

band-limited extrapolation, several other efforts in the direction of linear
extrapolation, and the nonlinear, maximum entropy methods of Burg. Ray
asked me to study these various methods and help him decide if they had
any use in acoustic SP. The PDFT and the IPDFT were the results of this
effort.

2.2 The Basic Problem

Suppose that F (ω) is in L2(−π, π) and its inverse Fourier transform is

f(x) =
1
2π

∫ π

−π

F (ω)e−ixωdω. (2.1)

In applications, F (ω) is unknown and we wish to reconstruct, or estimate,
F (ω) from finitely many values of f(x).

2.3 The DFT

To begin with, suppose that we have finitely many Nyquist samples, f(n),
for n = −N, ..., N . The discrete Fourier transform (DFT) estimate of F (ω)
is

FDFT (ω) =
N∑

n=−N

f(n)einω. (2.2)

This estimate is consistent with the data, in the sense that

1
2π

∫ π

−π

FDFT (ω)e−inωdω = f(n),

for n = −N, ..., N . Consequently, FDFT (ω) might be the right answer. It
is helpful to remember that the DFT estimate is the function of minimum
L2 norm that is consistent with the data.

A useful way to look at the problem is in the context of Hilbert space.
The space L2(−π, π) has the inner product

〈F,G〉 =
1
2π

∫ π

−π

F (ω)G(ω)dω. (2.3)

For each n define
En(ω) = einω,

so that
f(n) = 〈F,En〉.
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We know that F (ω) can be decomposed as

F (ω) = FDFT (ω) +G(ω), (2.4)

where
〈G,En〉 = 0,

for n = −N, ..., N . So the process of taking the inner product of F with
the En for n = −N, ..., N can tell us nothing about the G. Many have
concluded, wrongly, that the DFT is the best we can do, and that this
means that we can never learn anything about G. The subtle point that
they have missed is that we get to choose the ambient Hilbert space. Why
must it be L2(−π, π)?

2.4 The PDFT

Suppose that ε ≤ P (ω) ≤ B is a positive function on [−π, π] and we define
a new inner product on L2(−π, π) by

〈F,G〉P =
1
2π

∫ π

−π

F (ω)G(ω)P (ω)−1dω. (2.5)

For each function G(ω) in L2 the square of the weighted norm is

‖G‖2P =
∫ π

−π

|G(ω)|2P (ω)−1dω = 〈G,G〉P . (2.6)

We can now write

f(n) = 〈F,Hn〉P , (2.7)

where
Hn(ω) = P (ω)En(ω).

Every F (ω) can be decomposed as

F (ω) = FPDFT (ω) +W (ω), (2.8)

where

FPDFT (ω) =
N∑

m=−N

amHm(ω) = P (ω)
N∑

m=−N

ame
imω, (2.9)

and
〈W,Hn〉P = 0,
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for each n = −N, ..., N . Consequently,

〈F,Hn〉P = 〈FPDFT ,Hn〉P ,

for each n = −N, ..., N . We use this to find the coefficients am.
We have

f(n) =
1
2π

N∑
m=−N

am

∫ π

−π

P (ω)ei(m−n)ωdω, (2.10)

for n = −N, ..., N . We solve this system of linear equations for the am

to get the PDFT estimate of F (ω). Unless P (ω) equals one throughout
[−π, π], the PDFT and the DFT are different estimators, although both
are consistent with the data and either could be the right answer. The
PDFT is the function consistent with the data for which the weighted
norm is minimized.

The key point here, missed by many, is that we can represent the data
using inner products in an infinite number of ways, each leading to a dif-
ferent data-consistent estimator of F (ω). The importance of the PDFT for
applications lies in our ability to select P (ω) to incorporate features of the
function F (ω) that may be known a priori.

2.5 Band-Limited Extrapolation

Suppose that F (ω) = 0, except for ω in the interval [−Ω,Ω], for some
Ω < π. We want an estimator of F (ω) that is consistent with the data and
is also supported on the interval [−Ω,Ω].

In 1979 I presented the MDFT [23], which turned out to be a special case
of the PDFT, as a solution to the problem of band-limited extrapolation.
The MDFT estimator has the form of a trig polynomial, restricted to the
interval [Ω,Ω]; that is, the MDFT is

FMDFT (ω) = χΩ(ω)
N∑

m=−N

ame
imω, (2.11)

where χΩ(ω) is one for |ω| ≤ Ω and zero otherwise. We use the data
consistency to find the coefficients. We have

f(n) =
1
2π

N∑
m=−N

am

∫ Ω

−Ω

ei(m−n)ωdω, (2.12)

for n = −N, ..., N . It turns out that this system can be ill-conditioned,
particularly when Ω is much smaller than π. To reduce the sensitivity to
noise, we always replace the function χΩ(ω) with

χΩ(ω) + εχπ(ω),
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where ε > 0 is a small positive quantity.
The inverse Fourier transform of FMDFT (ω) is a function of x that

agrees with the data at the points x = n, n = −N, ..., N , and therefore
provides a band-limited extrapolation of the data.

In the MDFT our prior knowledge that F (ω) is supported on the inter-
val [−Ω,Ω] is incorporated in the first factor, χΩ(ω). This suggests that,
when we have other prior information about the overall shape of F (ω), we
can incorporate that prior knowledge through the use of the function P (ω).
In the next section we see how effective this can be.

2.6 Using More Prior Knowledge

An important point to keep in mind when doing signal processing is that,
while the data is usually limited, the information we seek may not be lost.
Although processing the data in a reasonable way may suggest otherwise,
other processing methods may reveal that the desired information is still
available in the data. Figure 2.1 illustrates this point.

The images in Figure 2.1 were generated in 1983 at the University of
London, by Angela Darling, one of Mike Fiddy’s doctoral students. This
one picture brought home to all of us how useful the PDFT could be.

The original image on the upper right of Figure 2.1 is a discrete rect-
angular array of intensity values simulating a slice of a head. The data
was obtained by taking the two-dimensional discrete Fourier transform of
the original image, and then discarding, that is, setting to zero, all these
spatial frequency values, except for those in a smaller rectangular region
around the origin. The problem then is under-determined. A minimum-
norm solution would seem to be a reasonable reconstruction method.

The minimum-norm solution (DFT) is shown on the lower right. It is
calculated simply by performing an inverse discrete Fourier transform on
the array of modified discrete Fourier transform values. The original image
has relatively large values where the skull is located, but the minimum-
norm reconstruction does not want such high values; the norm involves the
sum of squares of intensities, and high values contribute disproportionately
to the norm. Consequently, the minimum-norm reconstruction chooses
instead to conform to the measured data by spreading what should be the
skull intensities throughout the interior of the skull. The minimum-norm
reconstruction does tell us something about the original; it tells us about
the existence of the skull itself, which, of course, is indeed a prominent
feature of the original. However, in all likelihood, we would already know
about the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have
obtained from the minimum-norm reconstruction itself, we construct the
prior estimate shown in the upper left. Now we use the same data as
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before, and calculate a minimum-weighted-norm reconstruction, using as
the weight vector the reciprocals of the values of the prior image. This
minimum-weighted-norm reconstruction is shown on the lower left; it is
clearly almost the same as the original image.

When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an affect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know.
As this example, and many others, show, the information we seek is often
still in the data, but needs to be brought out in a more subtle way.

2.7 Calculating the PDFT

We see from Equation (2.10) that we need to compute the values of the
inverse Fourier transform of the function P (ω) at the points of the form
m−n, form,n = −N, ..., N . In practice, N is often quite large and this step
can be computationally expensive, particularly when P (ω) is not simple.
Then we have to solve a large system of linear equations to obtain the
coefficients. This whole process can be greatly simplified by discretizing
the problem at the start. We replace the unknown function F (ω) and the
functionsHn(ω) by finite vectors. The problem then is to find the minimum
weighted norm solution of a system of linear equations. All we need is a
discrete version of the function P (ω), not its inverse Fourier transform
values. The solution can be obtained using the iterative ART algorithm
[141].

2.8 Using the PDFT

As we have seen, the PDFT is the unique function, consistent with the data,
for which the weighted two-norm is minimized. So long as the support of
P (ω) is larger than that of the true F (ω), the weighted two-norm of the
PDFT will not be excessively large, since the weighted two-norm of F (ω)
itself is (typically) not large. But if the support of P (ω) is smaller than
that of the true F (ω) there need not be any reasonable function with this
smaller support that is also data-consistent. In such cases, the weighted
two-norm of the PDFT will typically be quite large. We can often use this
fact to estimate the true support of F (ω).



2.9. THE PDFT AND MINIMUM ONE-NORM SOLUTIONS 9

In [28, 29] we applied similar reasoning to solve the phase problem, in
which we have not values f(n), but |f(n)|. Our idea here was to select
phases iteratively to go with the magnitude data, checking each time to see
how large the weighted two-norm of the resulting PDFT was. When the
phases were wrong, there need not be any reasonable function consistent
with this constructed data and having the given support. But when the
phases were close enough to the correct ones, the weighted two-norm of
the PDFT began to drop. We found that it was not necessary to get the
missing phases exactly; reasonably good choices for the phases sufficed to
generate good images.

2.9 The PDFT and Minimum One-Norm So-
lutions

The PDFT applies more generally to under-determined systems of linear
equations Ax = b. In such cases we can find the minimum two-norm
solution, the minimum weighted two-norm solution (e.g. the PDFT), and
the minimum one-norm solution.

The minimum one-norm solution is the x for which

||x||1 =
N∑

n=1

|xn|

is minimized, subject to Ax = b. Denote the solution by x∗. This problem
can be formulated as a linear programming problem, so is more easily
solved.

2.9.1 Minimum One-Norm as an LP Problem

The entries of x need not be non-negative, so the problem is not yet a linear
programming problem. Let

B = [A −A ] ,

and consider the linear programming problem of minimizing the function

cT z =
2J∑

j=1

zj ,

subject to the constraints z ≥ 0, and Bz = b. Let z∗ be the solution. We
write

z∗ =
[
u∗

v∗

]
.
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Then, as we shall see, x∗ = u∗ − v∗ minimizes the one-norm, subject to
Ax = b.

First, we show that u∗jv
∗
j = 0, for each j. If, say, there is a j such that

0 < v∗j < u∗j , then we can create a new vector z by replacing the old u∗j
with u∗j−v∗j and the old v∗j with zero, while maintaining Bz = b. But then,
since u∗j−v∗j < u∗j +v∗j , it follows that cT z < cT z∗, which is a contradiction.
Consequently, we have ‖x∗‖1 = cT z∗.

Now we select any x with Ax = b. Write uj = xj , if xj ≥ 0, and uj = 0,
otherwise. Let vj = uj − xj , so that x = u− v. Then let

z =
[
u
v

]
.

Then b = Ax = Bz, and cT z = ‖x‖1. Consequently,

‖x∗‖1 = cT z∗ ≤ cT z = ‖x‖1,

and x∗ must be a minimum one-norm solution.

2.9.2 Why the One-Norm?

When a system of linear equations Ax = b is under-determined, we can
find the minimum-two-norm solution that minimizes the square of the two-
norm,

||x||22 =
N∑

n=1

x2
n,

subject to Ax = b. One drawback to this approach is that the two-norm
penalizes relatively large values of xn much more than the smaller ones,
so tends to provide non-sparse solutions. Alternatively, we may seek the
solution for which the one-norm,

||x||1 =
N∑

n=1

|xn|,

is minimized. The one-norm still penalizes relatively large entries xn more
than the smaller ones, but much less than the two-norm does.

2.9.3 Comparison with the PDFT

The generalized PDFT approach to solving the under-determined system
Ax = b is to select weights wn > 0 and then to find the solution x̃ that
minimizes the weighted two-norm given by

N∑
n=1

|xn|2wn.
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Our intention is to select weights wn so that w−1
n is reasonably close to

|x∗n|; consider, therefore, what happens when w−1
n = |x∗n|. We claim that x̃

is also a minimum-one-norm solution.
To see why this is true, note that, for any x, we have

N∑
n=1

|xn| =
N∑

n=1

|xn|√
|x∗n|

√
|x∗n|

≤

√√√√ N∑
n=1

|xn|2
|x∗n|

√√√√ N∑
n=1

|x∗n|.

Therefore,
N∑

n=1

|x̃n| ≤

√√√√ N∑
n=1

|x̃n|2
|x∗n|

√√√√ N∑
n=1

|x∗n|

≤

√√√√ N∑
n=1

|x∗n|2
|x∗n|

√√√√ N∑
n=1

|x∗n| =
N∑

n=1

|x∗n|.

Therefore, x̃ also minimizes the one-norm.

2.9.4 Iterative Reweighting

Let x be the truth. Generally, we want each weight wn to be a good
prior estimate of the reciprocal of |xn|. Because we do not yet know x,
we may take a sequential-optimization approach, beginning with weights
w0

n > 0, finding the PDFT solution using these weights, then using this
PDFT solution to get a (we hope!) better choice for the weights, and so
on. This sequential approach was successfully implemented in the early
1980’s by Michael Fiddy and his students [86].

In [55], the same approach is taken, but with respect to the one-norm.
Since the one-norm still penalizes larger values disproportionately, balance
can be achieved by minimizing a weighted-one-norm, with weights close to
the reciprocals of the |xn|. Again, not yet knowing x, they employ a sequen-
tial approach, using the previous minimum-weighted-one-norm solution to
obtain the new set of weights for the next minimization. At each step of
the sequential procedure, the previous reconstruction is used to estimate
the true support of the desired solution.

It is interesting to note that an on-going debate among users of the
PDFT concerns the nature of the prior weighting. Does wn approximate
|xn|−1 or |xn|−2? This is close to the issue treated in [55], the use of a
weight in the minimum-one-norm approach.

It should be noted again that finding a sparse solution is not usually
the goal in the use of the PDFT, but the use of the weights has much the
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same effect as using the one-norm to find sparse solutions: to the extent
that the weights approximate the entries of x̂, their use reduces the penalty
associated with the larger entries of an estimated solution.

2.10 Summary

From a purely mathematical standpoint, the PDFT is not particularly deep.
As I see it, the PDFT contributed in three ways to the overall problem
of reconstruction: first, it has turned out to be quite a useful technique;
second, it has provided the basis for other reconstruction methods, such as
in the phase problem [28], as well as the nonlinear IPDFT, to be discussed
in the next chapter; and third, it embodied a somewhat novel philosophy
of reconstruction, by which we are freed from the dominance of the L2

formulation and allowed to formulate the problem in any convenient Hilbert
space.
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Figure 2.1: Extracting information in image reconstruction.
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Chapter 3

The IPDFT

3.1 The Context

In a variety of applications, the unknown function F (ω) is non-negative and
consists of a small number of delta functions, embedded in a (possibly flat)
background. Linear reconstruction methods may not be able to resolve all
of the delta functions. To solve this problem nonlinear, high resolution
methods can be used. Throughout this chapter we use R(ω) and r(x)
instead of F (ω) and f(x) as a reminder that the unknown function we seek
is non-negative now. Since R(ω) is non-negative, we know that r(−x) =
r(x), so it is natural that we suppose that our data is r(n) for |n| ≤ N .

In the 1970’s, John Burg, working in the oil industry, developed his
maximum entropy method (MEM). This spawned a tremendous interest in
entropy and nonlinear reconstruction methods, and led to the two confer-
ences in Laramie in the early 1980’s [145, 146]. When I began consulting for
NRL, Ray Fitzgerald asked me to look into these high-resolution methods,
to see what use they may have for SONAR. I attended the first of the two
Laramie conferences. The IPDFT, which is a generalization of the MEM,
appeared in [26].

3.2 Burg’s MEM

The problem of estimating the nonnegative function R(ω), for |ω| ≤ π,
from the finitely many Fourier-transform values

r(n) =
∫ π

−π

R(ω) exp(−inω)dω/2π, n = −N, ..., N

is an under-determined problem, meaning that the data alone is insufficient
to determine a unique answer. In such situations we must select one so-

15
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lution out of the infinitely many that are mathematically possible. The
obvious questions we need to answer are: What criteria do we use in this
selection? How do we find algorithms that meet our chosen criteria? In
this chapter we consider Burg’s maximum entropy method (MEM) [18, 19].

These values r(n) are autocorrelation function values associated with a
random process having R(ω) for its power spectrum. In many applications,
such as seismic remote sensing, these autocorrelation values are estimates
obtained from relatively few samples of the underlying random process, so
that N is not large. The DFT estimate,

RDFT (ω) =
N∑

n=−N

r(n) exp(inω),

is real-valued and consistent with the data, but is not necessarily nonneg-
ative. For small values of N , the DFT may not be sufficiently resolving
to be useful. This suggests that one criterion we can use to perform our
selection process is to require that the method provide better resolution
than the DFT for relatively small values of N , when reconstructing power
spectra that consist mainly of delta functions.

The objective of Burg’s MEM for estimating a power spectrum is to
seek better resolution by combining nonnegativity and data-consistency in
a single closed-form estimate. The MEM is remarkable in that it is the only
closed-form (that is, non-iterative) estimation method that is guaranteed
to produce an estimate that is both non-negative and consistent with the
autocorrelation samples. Later we shall consider a more general method,
the inverse PDFT (IPDFT), that is both data-consistent and positive in
most cases.

In discussing the Burg MEM estimate, we shall need to refer to the
concept of minimum-phase vectors. We consider that briefly now.

We say that the finite column vector with complex entries (a0, a1, ..., aN )T

is a minimum-phase vector if the complex polynomial

A(z) = a0 + a1z + ...+ aNz
N

has the property that A(z) = 0 implies that |z| > 1; that is, all roots of
A(z) are outside the unit circle. Consequently, the function B(z) given by
B(z) = 1/A(z) is analytic in a disk centered at the origin and including
the unit circle. Therefore, we can write

B(z) = b0 + b1z + b2z
2 + ...,

and taking z = exp(iω), we get

B(exp(iω)) = b0 + b1 exp(iω) + b2 exp(2iω) + ... .
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The point here is that B(exp(iω)) is a one-sided trigonometric series, with
only terms corresponding to exp(inω) for nonnegative n.

The MEM approach is to estimate R(ω) by the function S(ω) > 0 that
maximizes the so-called Burg entropy,

∫ π

−π
logS(θ)dθ, subject to the data

constraints.
The Euler-Lagrange equation from the calculus of variations allows us

to conclude that S(ω) has the form

S(ω) = 1/H(ω)

for

H(ω) =
N∑

n=−N

hne
inω > 0.

From the Fejér-Riesz Theorem we know that H(ω) = |A(eiω)|2 for mini-
mum phase A(z). As we now show, the coefficients an satisfy a system of
linear equations formed using the data r(n).

Given the data r(n), |n| ≤ N , we form the autocorrelation matrix R
with entries Rmn = r(m − n), for −N ≤ m,n ≤ N . Let δ be the column
vector δ = (1, 0, ..., 0)T . Let a = (a0, a1, ..., aN )T be the solution of the
system Ra = δ. Then, Burg’s MEM estimate is the function S(ω) =
RMEM (ω) given by

RMEM (ω) = a0/|A(exp(iω))|2, |ω| ≤ π.

Once we show that a0 ≥ 0, it will be obvious that RMEM (ω) ≥ 0. We also
must show that RMEM is data-consistent; that is,

r(n) =
∫ π

−π

RMEM (ω) exp(−inω)dω/2π =, n = −N, ..., N.

Let us write RMEM (ω) as a Fourier series; that is,

RMEM (ω) =
+∞∑

n=−∞
q(n) exp(inω), |ω| ≤ π.

From the form of RMEM (ω), we have

RMEM (ω)A(exp(iω)) = a0B(exp(iω)). (3.1)

It can be shown that A(z) has all its roots outside the unit circle, so
B(exp(iω)) is a one-sided trigonometric series, with only terms correspond-
ing to exp(inω) for nonnegative n. Then, multiplying on the left side of
Equation (3.1), and equating coefficients corresponding to n = 0,−1,−2, ...,
we find that, provided q(n) = r(n), for |n| ≤ N , we must have Ra = δ.
Notice that these are precisely the same equations we solve in calculating
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the coefficients of an AR process. For that reason the MEM is sometimes
called an autoregressive method for spectral estimation.

The MEM resolves better than the DFT when the true power spectrum
being reconstructed is a sum of delta functions plus a flat background.
When the background itself is not flat, performance of the MEM degrades
rapidly; the MEM tends to interpret any non-flat background in terms of
additional delta functions. In the next section we consider an extension of
the MEM, called the indirect PDFT (IPDFT), that corrects this flaw.

3.3 The IPDFT

The IPDFT method is suggested by considering the MEM system of equa-
tions Ra = δ and comparing it with the linear system that arises in the
PDFT. In the PDFT the matrix of the system comes from our prior esti-
mate P (ω), the right side of the equation is the data vector, and we solve
for the vector of coefficients. The PDFT estimate then has two factors, the
prior P (ω) and the finite trig polynomial. When we view the MEM system
this way, it appears that R(ω) is playing the role of the prior. The data
then consists of Fourier coefficients of a constant function.

If we try to estimate this constant function using R(ω) as our prior,
we would expect the finite trig polynomial factor to correspond essentially
to the reciprocal of R(ω). Said another way, we would expect R(ω) to be
well approximated by the reciprocal of the finite trig polynomial. When
R(ω) consists of a flat background plus a few delta functions, the trig
polynomial should remove from R(ω) everything that is not flat, namely
the delta functions. It does so by placing its zeros very near the supports
of the delta functions.

Suppose now that R(ω) consists of delta functions on top of a non-flat
background. The trig polynomial will now remove from R(ω) everything
that is not flat, which means that the trig polynomial will approximate
the reciprocal of the non-flat background. The zeros of the trig polynomial
will be placed near the high-intensity areas of the background. The MEM
estimate will then have a number of spikes in the regions of high-intensity
of the background, making it difficult to find the true delta functions.

In the IPDFT we replace the vector δ on the right side of the system
Ra = δ with the vector

p = (p(0), p(1), ..., p(N))T ,

where p(x) is the inverse Fourier transform of the prior P (ω). Now the trig
polynomial removes everything from R(ω) that does not look like P (ω),
which should be only the delta functions, if P (ω) is a good approximation
of the background. For more details and a comparison of MEM and IPDFT
see [44].
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3.4 Technical Issues

In our discussion of the MEM, we obtained an estimate for the function
R(ω), not simply a way of locating the delta-function components. As we
shall show, the IPDFT can also be used to estimate R(ω). Although the
resulting estimate is not guaranteed to be nonnegative or data consistent,
it usually is both of these.

The equations that we solve in the IPDFT are

p(m) =
N∑

k=0

fkr(m− k). (3.2)

Once we have found f we form the polynomial

F (ω) =
N∑

k=0

fke
ikω, |ω| ≤ π.

The zeros of F (ω) should then be near the supports of the delta func-
tion components of the power spectrum R(ω), provided that our original
estimate of the background is not too inaccurate.

For any function G(ω) on [−π, π] with Fourier series

G(ω) =
∞∑

n=−∞
g(n)einω,

the additive causal part of the function G(ω) is

G+(ω) =
∞∑

n=0

g(n)einω.

Any function such as G+ that has Fourier coefficients that are zero for
negative indices is called a causal function. The Equation (3.2) then says
that the two causal functions P+ and (FR)+ have Fourier coefficients that
agree for m = 0, 1, ..., N .

Because F (ω) is a finite causal trigonometric polynomial, we can write

(FR)+(ω) = R+(ω)F (ω) + J(ω),

where

J(ω) =
N−1∑
m=0

(N−m∑
k=1

r(−k)fm+k

)
eimω.

Treating P+ as approximately equal to (FR)+ = R+F + J , we obtain as
an estimate of R+ the function Q = (P+−J)/F . In order for this estimate
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of R+ to be causal, it is sufficient that the function 1/F be causal. This
means that the trigonometric polynomial F (ω) must be minimum phase;
that is, all its roots lie outside the unit circle. We know that this is always
the case for MEM. It is not always the case for the IPDFT, but it is usually
the case in practice; in fact, it was difficult (but possible) to construct a
counterexample. We then construct our IPDFT estimate of R(ω), which is

RIPDFT (ω) = 2Re(Q(ω))− r(0).

The IPDFT estimate is real-valued and, when 1/F is causal, guaranteed
to be data consistent. Although this estimate is not guaranteed to be
nonnegative, it usually is.

We know that the vector a that solves Ra = δ corresponds to a poly-
nomial A(z) having all its roots on or outside the unit circle; that is, it is
minimum phase. The IPDFT involves the solution of the system Rf = p,
where p = (p(0), ..., p(N))T is the vector of initial Fourier coefficients of
another power spectrum, P (ω) ≥ 0 on [−π, π]. When P (ω) is constant, we
get p = δ. For the IPDFT to be data-consistent, it is sufficient that the
polynomial F (z) = f0 + ...+fNz

N be minimum phase. Although this need
not be the case, it is usually observed in practice.

3.5 Afterward

My collaboration with Mike Fiddy and his graduate students in London,
which began in 1982, led to several trips to London, to his spending a
sabbatical year with me in 1985, and then with his moving to UML in
1987. Our work in the 1980’s involved various applications of the PDFT,
especially the phase problem.

In 1983 Alan Steele came to NRL from Adelaide and we began a col-
laboration that continued through my visit to Australia in June 1986. The
work focused mainly on stabilizing eigenvector techniques.

In about 1983 NRL opened a second branch in Bay Saint Louis, MS.
In 1987 Don DelBalzo, who had moved from DC to MS, asked Applied
Technologies, Inc. to hire me to give a three-day short course on SONAR
signal processing. This was the first of several short courses I gave on this
subject over the next five years in the US and Canada. For several years
after the MS short course I collaborated with DelBalzo and his colleagues
on matched-field processing.

My research was to take a different path after I was invited to visit the
UMass Medical School in 1989.
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A Tale of Two Algorithms

4.1 The Context

In 1989 I began consulting for the Nuclear Medicine group at the University
of Massachusetts Medical School. At that time the leaders of the group,
Drs. Mike King and Bill Penney, were working on SPECT image recon-
struction and asked me to study what I will call here the EMML algorithm.
This algorithm is a particular case of the more general EM algorithm [74].
Some of the material in this chapter first appeared in [30, 31].

In [30] I established the close connection between the EMML and the
SMART algorithms, answered a couple of open questions, and corrected
some mistakes that had appeared in the literature. After the publication of
[30] I was invited by Rob Lewitt to speak at the Medical Imaging Processing
Group (MIPG) at Penn, where I met Gabor Herman, the head of MIPG,
Yair Censor, Arnold Lent and Paul Eggermont. A bit later, Yair invited
me to Haifa, to participate in a conference at the Technion.

I was also invited by Larry Shepp to participate in a week-long IMA
conference at the University of Minnesota. The presentation in this chapter
follows closely my talk at that conference, which was published in [32]. It
is taken from one of my texts, which explains the embedded exercises.
Actually, I purposely presented many of the results in the form of exercises
to emphasize the elementary nature of this proof.

4.2 Background

In positron emission tomography (PET) and single-photon emission com-
puted tomography (SPECT) radioactive material, or radionuclide, is in-
jected into the patient and is then metabolized. Photons exiting the body
are detected at various locations and this data provides the basis for a
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reconstruction of the distribution of the radionuclide. The radionuclide is
designed to provide a contrast between, say, a tumor, and healthy nearby
tissue. In the fully discrete model, the body consists of pixels or voxels,
each with an unknown amount of the radionuclide. For simplicity, the av-
erage number of emissions coming from a given pixel during the scanning
time is taken as a surrogate for the actual amount of radionuclide present
in a pixel. The goal is to determine these average numbers.

In 1976 Rockmore and Macovski [137] suggested that Poisson statistics
be used and the average number of emissions be viewed as parameters to be
determined, for example, by maximum likelihood estimation. Shepp and
Vardi [139, 149] took the next step and presented the EMML algorithm for
this particular case. A complete and elementary proof of convergence of
the EMML first appeared in [30].

At the same time, Gabor Herman, Yair Censor, and their colleagues
were performing image reconstruction using an algebraic approach, involv-
ing the solution of large, constrained systems of linear equations. They had
introduced the ART and MART algorithms, and suggested, in [99], their
comments on the paper [149], that the EMML was probably closely related
to their algebraic methods. This prompted a heated response from the au-
thors of [149], who denied any connection between their statistical method
and any linear-algebraic approach. The simultaneous MART (SMART)
[71, 138] is a variant of MART that uses all the data at each step of the
iteration. It was my development of the EMML and SMART in tandem
[30, 31, 32] and my presentation at the IMA that revealed just how close
the two methods really are.

Although the EMML and SMART algorithms have quite different his-
tories and are not typically considered together, they are closely related,
as we shall see [30, 31]. In this chapter we examine these two algorithms
in tandem, following [32]. Forging a link between the EMML and SMART
led to a better understanding of both of these algorithms and to new re-
sults. The proof of convergence of the SMART in the inconsistent case [30]
was based on the analogous proof for the EMML [149], while discovery of
the faster version of the EMML, the rescaled block-iterative EMML (RBI-
EMML) [33] came from studying the analogous block-iterative version of
SMART [59]. The proofs we give here are elementary and rely mainly
on easily established properties of the cross-entropy or Kullback-Leibler
distance.

Another class of iterative algorithms was introduced into medical imag-
ing by Gordon et al. in [93]. These include the algebraic reconstruction
technique (ART) and its multiplicative version, MART. These methods
were derived by viewing image reconstruction as solving systems of linear
equations, possibly subject to constraints, such as positivity.
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4.3 The Kullback-Leibler Distance

The Kullback-Leibler distance KL(a, b) is defined for positive a and b by

KL(a, b) = a log
a

b
+ b− a, (4.1)

with KL(a, 0) = +∞ and KL(0, b) = b. The KL distance is then extended
to non-negative vectors x and z component-wise;

KL(x, z) =
N∑

n=1

KL(xn, zn). (4.2)

Clearly, the KL distance has the property

KL(cx, cz) = cKL(x, z)

for all positive scalars c.

Ex. 4.1 Let z+ =
∑J

j=1 zj > 0. Then

KL(x, z) = KL(x+, z+) +KL(x, (x+/z+)z). (4.3)

As we shall see, the KL distance mimics the ordinary Euclidean distance
in several ways that make it particularly useful in designing optimization
algorithms.

4.4 The Alternating Minimization Paradigm

Let P be an I by J matrix with entries Pij ≥ 0, such that, for each
j = 1, ..., J , we have sj =

∑I
i=1 Pij > 0. Let y = (y1, ..., yI)T with yi > 0

for each i. We shall assume throughout this chapter that sj = 1 for each j.
If this is not the case initially, we replace xj with xjsj and Pij with Pij/sj ;
the quantities (Px)i are unchanged.

For each nonnegative vector x for which (Px)i =
∑J

j=1 Pijxj > 0, let
r(x) = {r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjPij
yi

(Px)i

and
q(x)ij = xjPij .
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The KL distances

KL(r(x), q(z)) =
I∑

i=1

J∑
j=i

KL(r(x)ij , q(z)ij)

and

KL(q(x), r(z)) =
I∑

i=1

J∑
j=1

KL(q(x)ij , r(z)ij)

will play important roles in the discussion that follows. Note that if there
is nonnegative x with r(x) = q(x) then y = Px.

4.4.1 Some Pythagorean Identities Involving the KL
Distance

The iterative algorithms we discuss in this chapter are derived using the
principle of alternating minimization, according to which the distances
KL(r(x), q(z)) and KL(q(x), r(z)) are minimized, first with respect to the
variable x and then with respect to the variable z. Although the KL dis-
tance is not Euclidean, and, in particular, not even symmetric, there are
analogues of Pythagoras’ theorem that play important roles in the conver-
gence proofs.

Ex. 4.2 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (4.4)

KL(r(x), q(z)) = KL(r(x), q(x′)) +KL(x′, z), (4.5)

for

x′j = xj

I∑
i=1

Pij
yi

(Px)i
; (4.6)

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz); (4.7)

KL(q(x), r(z)) = KL(q(z′′), r(z)) +KL(x, z′′), (4.8)

for

z′′j = zj exp(
I∑

i=1

Pij log
yi

(Pz)i
). (4.9)

Note that it follows from Equation (4.3) that KL(x, z)−KL(Px, Pz) ≥ 0.
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4.4.2 The Two Algorithms

The algorithms we shall consider are the expectation maximization maxi-
mum likelihood method (EMML) and the simultaneous multiplicative alge-
braic reconstruction technique (SMART). When y = Px has nonnegative
solutions, both algorithms produce such a solution. In general, the EMML
gives a nonnegative minimizer of KL(y, Px), while the SMART minimizes
KL(Px,y) over nonnegative x.

For both algorithms we begin with an arbitrary positive vector x0. The
iterative step for the EMML method is

xk+1
j = (xk)′j = xk

j

I∑
i=1

Pij
yi

(Pxk)i
. (4.10)

The iterative step for the SMART is

xm+1
j = (xm)′′j = xm

j exp
( I∑

i=1

Pij log
yi

(Pxm)i

)
. (4.11)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

Ex. 4.3 Show that, for {xk} given by Equation (4.10), {KL(y, Pxk)} is
decreasing and {KL(xk+1,xk)} → 0. Show that, for {xm} given by Equa-
tion (4.11), {KL(Pxm,y)} is decreasing and {KL(xm,xm+1)} → 0.

Hint: Use KL(r(x), q(x)) = KL(y, Px), KL(q(x), r(x)) = KL(Px,y),
and the Pythagorean identities.

Ex. 4.4 Show that the EMML sequence {xk} is bounded by showing

J∑
j=1

xk
j =

I∑
i=1

yi.

Show that the SMART sequence {xm} is bounded by showing that

J∑
j=1

xm
j ≤

I∑
i=1

yi.
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Ex. 4.5 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML se-
quence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}.

Hint: Use the facts that {KL(xk+1,xk)} → 0 and {KL(xm,xm+1)} → 0.

Ex. 4.6 Let x̂ and x̃ minimize KL(y, Px) and KL(Px,y), respectively,
over all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃.

Hint: Apply Pythagorean identities toKL(r(x̂), q(x̂)) andKL(q(x̃), r(x̃)).
Note that, because of convexity properties of the KL distance, even if

the minimizers x̂ and x̃ are not unique, the vectors P x̂ and P x̃ are unique.

Ex. 4.7 For the EMML sequence {xk} with cluster point x∗ and x̂ as
defined previously, we have the double inequality

KL(x̂,xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂,xk+1), (4.12)

from which we conclude that the sequence {KL(x̂,xk)} is decreasing and
KL(x̂,x∗) < +∞.

Hint: For the first inequality calculate KL(r(x̂), q(xk)) in two ways. For
the second one, use (x)′j =

∑I
i=1 r(x)ij and Exercise 4.1.

Ex. 4.8 Show that, for the SMART sequence {xm} with cluster point x∗

and x̃ as defined previously, we have

KL(x̃,xm)−KL(x̃,xm+1) = KL(Pxm+1,y)−KL(P x̃,y)+

KL(P x̃, Pxm) +KL(xm+1,xm)−KL(Pxm+1, Pxm), (4.13)

and so KL(P x̃, Px∗) = 0, the sequence {KL(x̃,xm)} is decreasing and
KL(x̃,x∗) < +∞.

Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean identities.
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Ex. 4.9 For x∗ a cluster point of the EMML sequence {xk} we have KL(y, Px∗) =
KL(y, P x̂). Therefore, x∗ is a nonnegative minimizer of KL(y, Px). Con-
sequently, the sequence {KL(x∗,xk)} converges to zero, and so {xk} → x∗.

Hint: Use the double inequality of Equation (4.12) and KL(r(x̂), q(x∗)).

Ex. 4.10 For x∗ a cluster point of the SMART sequence {xm} we have
KL(Px∗,y) = KL(P x̃,y). Therefore, x∗ is a nonnegative minimizer of
KL(Px,y). Consequently, the sequence {KL(x∗,xm)} converges to zero,
and so {xm} → x∗. Moreover,

KL(x̃,x0) ≥ KL(x∗,x0)

for all x̃ as before.

Hints: Use Exercise 4.8. For the final assertion use the fact that the
difference KL(x̃,xm) − KL(x̃,xm+1) is independent of the choice of x̃,
since it depends only on Px∗ = P x̃. Now sum over the index m.

Both the EMML and the SMART algorithms are slow to converge. For
that reason attention has shifted, in recent years, to block-iterative versions
of these algorithms. We take up that topic in a later chapter.

4.5 Related Topics

The idea of alternating minimization (altmin) that we use here is studied
in great detail in the paper by Csiszár and Tusnády [70]. As the authors of
[149] remark, the geometric argument in [70] is “deep, though it is hard to
follow”. One of my private victories recently has been to come to a better
understanding of this paper and to obtain a somewhat simpler treatment
of the altmin method, which I shall discuss in a later chapter.

As I noted earlier, the EMML algorithm is a particular case of the
more general EM algorithm discussed in [74]. I have been studying the EM
algorithm for about twenty years and have been bothered all that time by
the erroneous manner in which most articles and books treat the case of
continuous-variable pdf’s.

In 2009 Paul Eggermont and I were invited to write a chapter on the
EM algorithm for a book on algorithms. This assignment brought me back
yet again to the problem that has bothered me all these years. Earlier this
year, I discovered what I believe to be the answer to this problem, which I
will also discuss in a later chapter.
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Chapter 5

The Rescaled
Block-Iterative Method

5.1 The Context

Both the EMML and the SMART algorithms can be slow to converge.
These methods are simultaneous methods, in which all the equations are
employed at each step of the iteration; in tomography, there can be tens
of thousands of equations. In the early 1990’s Hudson, Hutton and Larkin
[103, 104] discovered, partly by accident, that useful images can be re-
constructed when only some of the equations are used at each step of the
algorithm. They called this approach the ordered-subset (OSEM) variation
of the EMML algorithm. The OSEM was picked up quickly by the research
community and soon became the main concern of those studying medical
image reconstruction algorithms.

Ordered-subset methods, also known as block-iterative methods, in
which only some of the equations are used at each step, often converge
faster than their simultaneous cousins. In addition, the blocks can be de-
signed to take advantage of the manner in which the computer stores and
retrieves data. These methods should always converge to a single solution,
when the data is noise-free; the OSEM, however, does not always do that.
The proof of convergence of the OSEM holds only when the subsets exhibit
rather special properties, called subset balance. I suspected that OSEM is
not the final word on block-iterative extensions of the EMML.

In the fall of 1995 I had a sabbatical and spent much of that time
searching for a correct version of the OSEM. Eventually, I discovered what
I called the rescaled block-iterative EMML (RBI-EMML) [33]. As it should,
the RBI-EMML converges for noise-free data, for any choice of subsets.
When subset balance holds, the RBI-EMML reduces to OSEM.

29
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Even though the OSEM is not the mathematically correct algorithm, it
works well enough so that the medical imaging community, already invested
in OSEM, saw little reason to start using RBI-EMML. Consequently, I am
forced to consider the discovery of the RBI-EMML one of my more or less
private victories.

5.2 Recalling the MART Algorithm

Throughout this chapter A will denote a rectangular matrix with non-
negative entries, b a vector with positive entries, and x an unknown vector
with non-negative entries. The MART algorithm uses only one equation
at a time. For k = 0, 1, ..., we let i = k(mod I) + 1 and

xk+1
j = xk

j

( bi
(Axk)i

)Aijm−1
i

. (5.1)

The MART converges to the non-negative solution of Ax = b for which
KL(x, x0) is minimized, whenever such solutions exist, provided that we se-
lect mi so that Aij ≤ mi, for all j. Here we shall choose mi = max{Aij |j =
1, 2, ..., J}.

5.3 The EMML and the SMART Algorithms

We recall the formulas for the iterative step of the EMML and the SMART.

5.3.1 The EMML Algorithm

The iterative step for the EMML algorithm is

xk+1
j = xk

j s
−1
j

I∑
i=1

Aij
bi

(Axk)i
, (5.2)

where sj =
∑I

i=1Aij . The iterative step can also be written as

xk+1
j =

I∑
i=1

(s−1
j Aij)

(
xk

j

bi
(Axk)i

)
, (5.3)

which shows that xk+1
j is the weighted arithmetic mean of the terms xk

j
bi

(Axk)i
.

5.3.2 The SMART Algorithm

The iterative step for the SMART algorithm is

xk+1
j = xk

j exp
(
s−1

j

I∑
i=1

Aij log
( bi

(Axk)i

))
. (5.4)



5.4. BLOCK-ITERATIVE METHODS 31

The iterative step can also be written as

xk+1
j =

I∏
i=1

(
xk

j

bi
(Axk)i

)s−1
j

Aij

, (5.5)

which shows that xk+1
j is the weighted geometric mean of the terms xk

j
bi

(Axk)i
.

In a later section we shall look more closely at these terms.

5.4 Block-Iterative Methods

The term block-iterative methods refers to algorithms in which only some
of the equations, those in the current block, are used at each step of the
iteration. We denote by Bn, n = 1, ..., N , the nth block; each Bn is a
subset of the index set {i = 1, ..., I}. The MART is an example of such a
block-iterative method; there are N = I blocks, each block containing only
one value of the index i. For simplicity, we say that Bi = {i}, for each
i. Once we know xk, we compute i = k(mod I) + 1 and use only the ith
equation to compute xk+1.

5.4.1 Block-Iterative SMART

More general block-iterative versions of the SMART algorithm have been
known since the work of Darroch and Ratcliff [71], and were treated in detail
in [59]. The iterative step of the block-iterative SMART (BI-SMART)
algorithm is

xk+1
j = xk

j exp
(
m−1

n

I∑
i∈Bn

Aij log
( bi

(Axk)i

))
. (5.6)

The BI-SMART converges to the non-negative solution of Ax = b for which
KL(x, x0) is minimized, whenever such solutions exist, provided that snj ≤
mn, where snj =

∑
i∈Bn

Aij and n = k(modN) + 1. Here we shall choose
mn = max{snj |j = 1, 2, ..., J}; the BI-SMART with this choice of the
parameter mn is called the rescaled block-iterative SMART (RBI-SMART)
[33].

5.4.2 Seeking a Block-Iterative EMML

In contrast to the SMART, block-iterative versions of the EMML did not
appear in the early literature on this algorithm. The first paper that I
am aware of that suggested the use of blocks for the EMML, but without
explicit formulas, is the 1990 paper by Holte, Schmidlin et al. [102]. Some-
what later, Hudson, Hutton and Larkin [103, 104] discovered what they
called the ordered-subset (OSEM) variation of the EMML algorithm.
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The iterative step of the OSEM algorithm is

xk+1
j = xk

j s
−1
nj

∑
i∈Bn

Aij

( bi
(Axk)i

)
. (5.7)

It is identical with that of the EMML in Equation (5.2), except that each
sum is taken only over the i in the current block Bn.

Although the OSEM often produces usable medical images from tomo-
graphic data in much less time than required by the EMML algorithm,
there are theoretical problems with OSEM that suggested that OSEM may
not be the correct block-iterative version of EMML. First, in order to prove
that OSEM converges to a non-negative solution of Ax = b, when such solu-
tions exist, we need to assume that the generalized subset-balance condition
holds: we need

snj =
∑

i∈Bn

Aij = tnrj ,

for some constants tn and rj . Second, if we use the OSEM formula for the
case of N = I, as in MART, we find that

xk+1
j = xk

j

( bi
(Axk)i

)
,

so that each xk+1 is simply a scalar multiple of the starting vector x0;
obviously, this is not the proper analog of the MART.

5.4.3 The BI-EMML Algorithm

The problem then is how to define block-iterative versions of the EMML
that converge to a non-negative solution whenever there are such solutions,
and which give a useful analog of the MART algorithm. To see how to do
this, it is helpful to return to the EMML, SMART and MART.

We saw previously that in the SMART, the next iterate xk+1
j is the

weighted geometric mean of the terms xk
j

(
bi

(Axk)i

)
, while that of the EMML

is the weighted arithmetic mean of the same terms. The MART is also a
weighted geometric mean of the single term xk

j

(
bi

(Axk)i

)
and xk

j itself; we
can write Equation (5.1) as

xk+1
j =

(
xk

j

)1−Aijm−1
i
(
xk

j

bi
(Axk)i

)Aijm−1
i

. (5.8)

This suggests that when we do not use all the equations, we must use xk
j

itself as one of the terms in the weighted geometric or arithmetic mean,
which is a form of relaxation.
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We become more convinced that relaxation is the right idea when we
notice that the BI-SMART can be written as

xk+1
j = (xk

j )1−m−1
n snj

∏
i∈Bn

(
xk

j

bi
(Axk)i

)Aijm−1
n

; (5.9)

this tells us that xk+1
j is a weighted geometric mean of xk

j itself and the

terms xk
j

(
bi

(Axk)i

)
for i ∈ Bn.

Now it becomes clearer how to define the block-iterative EMML algo-
rithms; we must use the weighted arithmetic mean of xk

j itself and the

terms xk
j

(
bi

(Axk)i

)
for i ∈ Bn. The resulting BI-EMML iteration is

xk+1
j = (1−m−1

n snj)xk
j +m−1

n xk
j

∑
i∈Bn

Aij

( bi
(Axk)i

)
. (5.10)

Actually, all we need is that the parameter mn be chosen so that snj ≤ mn;
with the choice of mn = max{snj |j = 1, 2, ..., J} the algorithm is called
the rescaled block-iterative EMML (RBI-EMML) [33]. Notice that when
snj = tnrj , the first term vanishes, since m−1

n snj = 1, and the RBI-EMML
becomes the OSEM.

5.4.4 The EMART Algorithm

When we apply the formula for the RBI-EMML to the case of N = I,
we obtain the analog of the MART that we have been seeking. It has the
iterative step

xk+1
j = (1−m−1

i Aij)xk
j +m−1

i Aij

(
xk

j

bi
(Axk)i

)
. (5.11)

5.5 KL Projections

The term xk
j

(
bi

(Axk)i

)
shows up in all the algorithms we have considered so

far in this chapter. It is reasonable to ask if this term has any significance.
The ART and Cimmino algorithms involve the orthogonal projections

onto the hyperplanes determined by each of the equations in the system.
Now we are considering non-negative systems of linear equations, so it
makes sense to define

Hi = {x ≥ 0|(Ax)i = bi}.

When we try to calculate the KL projection of a vector z ≥ 0 onto Hi,
that is, when we try to find the member of Hi that minimizes KL(x, z),
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we find that we cannot solve for x in closed form. However, suppose that
we calculate the x in Hi that minimizes the distance

J∑
j=1

AijKL(xj , zj),

the weighted KL projection of z onto Hi. We find that the solution is

xj = zj

( bi
(Az)i

)
.

Therefore, the term xk
j

(
bi

(Axk)i

)
is the vector in Hi that minimizes

J∑
j=1

AijKL(xj , x
k
j ).

All the algorithms we have considered in this chapter rely on the weighted
KL projection of the current vector onto Hi.

5.6 Some Open Questions

We know that the RBI-SMART algorithms converge to the non-negative
solution of Ax = b for which KL(x, x0) is minimized, for any choice of
blocks, whenever Ax = b has non-negative solutions. We know that the
RBI-EMML algorithms converge to a non-negative solution of Ax = b,
whenever Ax = b has non-negative solutions. We do not know if the
solution obtained depends on the blocks chosen, and we do not know which
non-negative solution the algorithms give us, even in the case of the original
EMML algorithm.



Chapter 6

The Split Feasibility
Problem

6.1 The Context

In the late 1990’s I began working more closely with Yair Censor, studying
iterative algorithms more from a mathematical point of view, rather than
for applications [38, 40, 21]. The split feasibility problem (SFP) was some-
thing Yair and Tommy Elfving had been working on for about a decade.
Their algorithms for the SFP, as well as one I came up with, were impracti-
cal. Finally, I was able to use the approach in [38] to come up with what I
called the CQ algorithm [41]. Because it did not require a nested inversion
at each step, it was practical.

The CQ algorithm can be viewed as an iterative method for optimizing
a convex function. As I pursued this idea further, I found that I was able to
extend it to some variational inequality problems. I emailed several people
to see if such extensions were known. Boris Polyak replied that Dolidze
had done something similar, and this led me to a new way of looking at
the CQ algorithm, as I explained in [42].

Shortly after the appearance of [41] and [42] Yair, in collaboration with
some medical physicists, extended the CQ algorithm and applied it to in-
tensity modulated radiation therapy [58, 57]. At the same time, a number
of other researchers, seemingly all from China, began publishing various
extensions of the CQ algorithm. As a result, the paper [42] became quite
popular and got referenced frequently. In 2010 the journal Inverse Prob-
lems celebrated their 25th anniversary with a special issue, containing one
paper from each of their first twenty-five years. The paper [42] was chosen
to represent 2004; a not-so-private victory this time.
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6.2 The Split Feasibility Problem

The split feasibility problem (SFP) [56] is to find c ∈ C with Ac ∈ Q,
if such points exist, where A is a real I by J matrix and C and Q are
nonempty, closed convex sets in RJ and RI , respectively. When there is no
exact solution to the SFP the CQ algorithm optimizes a certain proximity
measure. In this chapter we discuss the CQ algorithm for solving the SFP,
as well as recent extensions and applications.

6.3 The CQ Algorithm

In [41] the CQ algorithm for solving the SFP was presented, for the real
case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (6.1)

where I is the identity operator and γ ∈ (0, 2/ρ(ATA)), for ρ(ATA) the
spectral radius of the matrix ATA, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (6.2)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1
2
||PQAx−Ax||22 (6.3)

over the set C, provided such constrained minimizers exist. Therefore the
CQ algorithm is an iterative constrained optimization method. As shown in
[42], convergence of the CQ algorithm is a consequence of the Krasnoselskii-
Mann (KM) Theorem for averaged operators (see [45, 50]).

The function f(x) is convex and differentiable on RJ and its derivative
is the operator

∇f(x) = AT (I − PQ)Ax; (6.4)

see [3].
The following lemma contains terms not defined here; the interested

reader should consult [50].

Lemma 6.1 The derivative operator ∇f is λ-Lipschitz continuous for λ =
ρ(ATA), therefore it is ν-ism for ν = 1

λ .
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Proof: We have

||∇f(x)−∇f(y)||22 = ||AT (I − PQ)Ax−AT (I − PQ)Ay||22 (6.5)

≤ λ||(I − PQ)Ax− (I − PQ)Ay||22. (6.6)

Also

||(I − PQ)Ax− (I − PQ)Ay||22 = ||Ax−Ay||22 (6.7)

+||PQAx− PQAy||22 − 2〈PQAx− PQAy,Ax−Ay〉 (6.8)

and, since PQ is fne,

〈PQAx− PQAy,Ax−Ay〉 ≥ ||PQAx− PQAy||22. (6.9)

Therefore,

||∇f(x)−∇f(y)||22 ≤ λ(||Ax−Ay||22 − ||PQAx− PQAy||22) (6.10)

≤ λ||Ax−Ay||22 ≤ λ2||x− y||22. (6.11)

This completes the proof.

If γ ∈ (0, 2/λ) then B = PC(I − γAT (I − PQ)A) is av and, by the
KM Theorem, the orbit sequence {Bkx} converges to a fixed point of B,
whenever such points exist. If z is a fixed point of B, then we have

z = PC(z − γAT (I − PQ)Az).

Therefore, for any c in C we have

〈c− z, z − (z − γAT (I − PQ)Az)〉 ≥ 0. (6.12)

This tells us that

〈c− z,AT (I − PQ)Az〉 ≥ 0, (6.13)

which means that z minimizes f(x) relative to the set C.
The CQ algorithm employs the relaxation parameter γ in the interval

(0, 2/L), where L is the largest eigenvalue of the matrix ATA. Choosing
the best relaxation parameter in any algorithm is a nontrivial procedure.
Generally speaking, we want to select γ near to 1/L. We have a simple
estimate for L in the case of singular values of sparse matrices: if A is
normalized so that each row has length one, then the spectral radius of
ATA does not exceed the maximum number of nonzero elements in any
column of A. A similar upper bound on ρ(ATA) was obtained for non-
normalized, ε-sparse A.
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6.4 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C ⊆ RJ and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RJ , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. Generally,
we cannot solve the SFP in closed form and iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber
[112] and projected Landweber methods (see [12]), are particular cases of
the CQ algorithm.

6.4.1 The Landweber algorithm

With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b−Axk). (6.1)

This is the Landweber algorithm.

6.4.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ..., the
projected Landweber method for finding a solution of Ax = b in C has the
iterative step

xk+1 = PC(xk + γAT (b−Axk)). (6.2)

6.4.3 Convergence of the Landweber Algorithms

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever
such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution
of Ax = b, while the projected Landweber algorithm will converge to a
minimizer, over the set C, of the function ||b − Ax||2, whenever such a
minimizer exists.

Another example of the CQ algorithm is the simultaneous algebraic
reconstruction technique (SART) of Anderson and Kak for solving Ax = b,
for nonnegative matrix A [2].

6.4.4 Related Methods and Applications

One of the obvious drawbacks to the use of the CQ algorithm is that we
would need the projections PC and PQ to be easily calculated. Several
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authors have offered remedies for that problem, using approximations of the
convex sets by the intersection of hyperplanes and orthogonal projections
onto those hyperplanes [155].

In a recent papers [58, 57] Censor et al. discuss the application of the CQ
algorithm to the problem of intensity-modulated radiation therapy (IMRT)
treatment planning. Mathematically speaking, the problem is the multi-set
split feasibility problem (MSSFP), which is to find x in C, the non-empty
intersection of closed, convex sets Ci, for i = 1, ..., I, such that Ax is in the
non-empty intersection of the closed, convex sets Qj , for j = 1, ..., J . In the
CQ algorithm it is assumed that the orthogonal projections onto C and Q
are easily calculated, while algorithms for solving the MSSFP assume that
the orthogonal projections onto the Ci and Qj are easily calculated.

The split feasibility problem can be formulated as an optimization prob-
lem, namely, to minimize

h(x) = ψC(x) + ψQ(Ax), (6.3)

where ψC(x) is the indicator function of the set C. The CQ algorithm
solves the more general problem of minimizing the function

f(x) = ψC(x) + ||PQAx−Ax||22. (6.4)

The second term in f(x) is differentiable, allowing us to apply the forward-
backward splitting method of Combettes and Wajs [67]; the CQ algorithm
is then a special case of their method.

6.5 Exercises

Ex. 6.1 Use the CQ algorithm to prove the following. Let C1 and C2 be
nonempty, closed convex sets in RJ , with C1 ∩ C2 = ∅. Assume that there
is a unique ĉ2 in C2 minimizing the function f(x) = ||c2 − P1c2||2, over
all c2 in C2. Let ĉ1 = P1ĉ2. Then P2ĉ1 = ĉ2. Let z0 be arbitrary and, for
n = 0, 1, ..., let

z2n+1 = P1z
2n, (6.5)

and

z2n+2 = P2z
2n+1. (6.6)

Then

{z2n+1} → ĉ1, (6.7)

and

{z2n} → ĉ2. (6.8)
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Chapter 7

Sequential Unconstrained
Minimization- SUMMA

7.1 The Context

In this chapter we consider an approach to optimization in which the orig-
inal problem is replaced by a series of simpler problems. This approach
can be particularly effective for constrained optimization. Suppose, for ex-
ample, that we want to minimize f(x), subject to the constraint that x
lie within a set C. At the kth step of the iteration we minimize the func-
tion Gk(x) = f(x) + gk(x), with no additional restrictions on x, to get the
vector xk, where the functions gk(x) are related to the set C in some way.
In practice, minimizing Gk(x) may require iteration, but we will not deal
with that issue here. In the best case, the sequence {xk} will converge to
the solution to the original problem.

Several of the algorithms I have worked on fall into this category. In the
case of the EMML algorithm, the function we want to minimize is f(x) =
KL(y, Px), but at each step we minimize something else, say Gk(x) =
f(x) + gk(x), where each Gk(x) has a minimizer that we can write in
closed form. While the function f(x) does not, by its very form, require
that x be non-negative, the function Gk(x) does. So we achieve two things
by using this approach: first, we get a closed form solution xk at each step;
and second, the xk is automatically positive, which forces the limit to be
non-negative. Much the same can be said of the SMART.

The EMML and SMART algorithms can be sensitive to noise in the
data. For that reason, one usually adds a penalty term to regularize the
problem. This is yet another reason for using sequential unconstrained
minimization.

In [38] I considered the problem of sequential projection onto convex

41
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sets using different metrics for each set. This situation arises in the EMML
and SMART and I wondered if such an algorithm could be possible in
general. It turned out that you can do it, provided that each projection is
relaxed in a particular way. This again leads to a sequential unconstrained
minimization procedure.

In 2007, with all these different examples of sequential unconstrained
minimization in mind, I began looking at what sort of conditions we would
need to place on the gk(x) to guarantee convergence. Out of this came
what I called the SUMMA, which is a very general class of sequential
unconstrained methods that, remarkably, includes just about everything.
The SUMMA condition is so simple,

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk),

and yet quite powerful. It is odd, though, that try as I might, I cannot
remember just how I happened to hit on this condition.

Among other things, the SUMMA contained the SMART as a particular
case. However, as of the writing of [46], I could not see how to place the
EMML under the SUMMA umbrella. It wasn’t until 2011, when I saw how
to include altmin as SUMMA, that the answer for EMML became clear.

7.2 Introduction

In many inverse problems, we have measured data pertaining to the object
x, which may be, for example, a vectorized image, as well as prior infor-
mation about x, such as that its entries are nonnegative. Tomographic
imaging is a good example. We want to find an estimate of x that is (more
or less) consistent with the data, as well as conforming to the prior con-
straints. The measured data and prior information are usually not sufficient
to determine a unique x and some form of optimization is performed. For
example, we may seek the image x for which the entropy is maximized, or
a minimum-norm least-squares solution.

There are many well-known methods for minimizing a function f :
RJ → R; we can use the Newton-Raphson algorithm or any of its sev-
eral approximations, or nonlinear conjugate-gradient algorithms, such as
the Fletcher-Reeves, Polak-Ribiere, or Hestenes-Stiefel methods. When
the problem is to minimize the function f(x), subject to constraints on the
variable x, the problem becomes much more difficult. For such constrained
minimization, we can employ sequential unconstrained minimization algo-
rithms [85].

We assume that f : S → (−∞,+∞]; our objective is to minimize
f(x) over x in some given nonempty subset P of S. At the kth step of a
sequential unconstrained minimization algorithm we minimize a function
Gk(x) to get the vector xk. We shall assume throughout that Gk(x) has a
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global minimizer xk, for each k. The existence of these minimizers can be
established, once additional conditions, such as continuity and convexity,
are placed on the functions Gk(x); see, for example, Fiacco and McCormick
[85], p.95. Later we shall consider briefly the issue of computing the xk.

In the best case, the set S is a metric space and the sequence {xk} con-
verges to a constrained minimizer of the original objective function f(x).
Obviously, the functions Gk(x) must involve both the function f(x) and
the set P . Those methods for which each xk is feasible, that is, each xk is in
P , are called interior-point methods, while those for which only the limit of
the sequence is in P are called exterior-point methods. Barrier-function al-
gorithms are typically interior-point methods, while penalty-function algo-
rithms are exterior-point methods. The purpose of this chapter is to present
a fairly broad class of sequential unconstrained minimization algorithms,
which we call SUMMA [46]. The SUMMA include both barrier-function al-
gorithms, as well as proximity-function methods of Teboulle [148] and Cen-
sor and Zenios [60, 61], and the simultaneous multiplicative algebraic re-
construction technique (SMART) and the EMML algorithm [30, 43, 44, 45],
and all alternating minimization methods for which the three- and four-
point properties hold [70]. After some reformulation, the penalty-function
methods can also be viewed as belonging to the SUMMA class.

7.3 SUMMA

The sequential unconstrained minimization algorithms (SUMMA) we present
here use functions of the form

Gk(x) = f(x) + gk(x), (7.1)

with the auxiliary functions gk(x) chosen so that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk), (7.2)

for k = 1, 2, .... Let

d = inf{f(x)|x ∈ P} ≥ −∞,

and xk ∈ P for each k. Our main results are that the sequence {f(xk)}
is monotonically decreasing to d, and, subject to certain conditions on S
and the function f(x), the sequence {xk} converges to a feasible x∗ with
f(x∗) = d.

We begin with a brief review of several types of sequential unconstrained
minimization methods, including those mentioned previously. Then we
state and prove the convergence results for the SUMMA. Finally, we show
that each of these methods reviewed previously is a particular case of the
SUMMA.
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7.4 Barrier-Function Methods (I)

Let b(x) : RJ → (−∞,+∞] be continuous, with effective domain the set

D = {x| b(x) < +∞}.

The goal is to minimize the objective function f(x), over x in the closed
set C = D, the closure of D. In the barrier-function method, we minimize

f(x) +
1
k
b(x) (7.3)

over x in D to get xk. Each xk lies within D, so the method is an interior-
point algorithm. If the sequence {xk} converges, the limit vector x∗ will
be in C and f(x∗) = f(x̂).

Barrier functions typically have the property that b(x) → +∞ as x
approaches the boundary of D, so not only is xk prevented from leaving
D, it is discouraged from approaching the boundary.

7.4.1 Examples of Barrier Functions

Consider the convex programming (CP) problem of minimizing the convex
function f : RJ → R, subject to gi(x) ≤ 0, where each gi : RJ → R is
convex, for i = 1, ..., I. Let D = {x|gi(x) < 0, i = 1, ..., I}; then D is open.
We consider two barrier functions appropriate for this problem.

The Logarithmic Barrier Function

A suitable barrier function is the logarithmic barrier function

b(x) =
(
−

I∑
i=1

log(−gi(x))
)
. (7.4)

The function − log(−gi(x)) is defined only for those x in D, and is positive
for gi(x) > −1. If gi(x) is near zero, then so is −gi(x) and b(x) will be
large.

The Inverse Barrier Function

Another suitable barrier function is the inverse barrier function

b(x) =
I∑

i=1

−1
gi(x)

, (7.5)

defined for those x in D.
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In both examples, when k is small, the minimization pays more at-
tention to b(x), and less to f(x), forcing the gi(x) to be large negative
numbers. But, as k grows larger, more attention is paid to minimizing
f(x) and the gi(x) are allowed to be smaller negative numbers. By let-
ting k → ∞, we obtain an iterative method for solving the constrained
minimization problem.

An Illustration

We minimize the function f(x1, x2) = x2
1+x

2
2, subject to the constraint that

x1 + x2 ≥ 1. The constraint is then written g(x1, x2) = 1− (x1 + x2) ≤ 0.
We use the logarithmic barrier. The vector xk = (xk

1 , x
k
2) minimizing the

function
Gk(x) = x2

1 + x2
2 −

1
k

log(x1 + x2 − 1)

has entries

xk
1 = xk

2 =
1
4

+
1
4

√
1 +

4
k
.

Notice that xk
1 + xk

2 > 1, so each xk satisfies the constraint. As k → +∞,
xk converges to ( 1

2 ,
1
2 ), which is the solution to the original problem. An

obvious question is why we have used a minus sign rather than a plus sign
in front of the logarithm. If we had used a plus sign there would have
been no minimizer of Gk(x) within the feasible region of all (x1, x2) with
x1 + x2 ≥ 1.

7.5 Penalty-Function Methods (I)

Instead of minimizing a function f(x) over x in RJ , we sometimes want
to minimize a penalized version, f(x) + p(x). As with barrier-function
methods, the new function f(x)+ p(x) may be the function we really want
to minimize, and we still need to find a method for doing this. In other
cases, it is f(x) that we wish to minimize, and the inclusion of the term
p(x) occurs only in the iterative steps of the algorithm. As we shall see,
under conditions to be specified later, the penalty-function method can
be used to minimize a continuous function f(x) over the nonempty set of
minimizers of another continuous function p(x).

7.5.1 Imposing Constraints

When we add a barrier function to f(x) we restrict the domain. When
the barrier function is used in a sequential unconstrained minimization
algorithm, the vector xk that minimizes the function f(x) + 1

k b(x) lies in
the effective domain D of b(x), and we prove that, under certain conditions,
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the sequence {xk} converges to a minimizer of the function f(x) over the
closure of D. The constraint of lying within the set D is satisfied at every
step of the algorithm; for that reason such algorithms are called interior-
point methods. Constraints may also be imposed using a penalty function.
In this case, violations of the constraints are discouraged, but not forbidden.
When a penalty function is used in a sequential unconstrained minimization
algorithm, the xk need not satisfy the constraints; only the limit vector need
be feasible.

7.5.2 Examples of Penalty Functions

Consider the CP problem. We wish to minimize the convex function f(x)
over all x for which the convex functions gi(x) ≤ 0, for i = 1, ..., I.

The Absolute-Value Penalty Function

We let g+
i (x) = max{gi(x), 0}, and

p(x) =
I∑

i=1

g+
i (x). (7.6)

This is the Absolute-Value penalty function; it penalizes violations of the
constraints gi(x) ≤ 0, but does not forbid such violations. Then, for k =
1, 2, ..., we minimize

f(x) + kp(x), (7.7)

to get xk. As k → +∞, the penalty function becomes more heavily
weighted, so that, in the limit, the constraints gi(x) ≤ 0 should hold. Be-
cause only the limit vector satisfies the constraints, and the xk are allowed
to violate them, such a method is called an exterior-point method.

The Courant-Beltrami Penalty Function

The Courant-Beltrami penalty-function method is similar, but uses

p(x) =
I∑

i=1

[g+
i (x)]2. (7.8)

The Quadratic-Loss Penalty Function

Penalty methods can also be used with equality constraints. Consider the
problem of minimizing the convex function f(x), subject to the constraints
gi(x) = 0, i = 1, ..., I. The quadratic-loss penalty function is

p(x) =
1
2

I∑
i=1

(gi(x))2. (7.9)
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The inclusion of a penalty term can serve purposes other than to impose
constraints on the location of the limit vector. In image processing, it is
often desirable to obtain a reconstructed image that is locally smooth, but
with well defined edges. Penalty functions that favor such images can then
be used in the iterative reconstruction [87]. We survey several instances in
which we would want to use a penalized objective function.

Regularized Least-Squares

Suppose we want to solve the system of equations Ax = b. The prob-
lem may have no exact solution, precisely one solution, or there may be
infinitely many solutions. If we minimize the function

f(x) =
1
2
‖Ax− b‖22,

we get a least-squares solution, generally, and an exact solution, whenever
exact solutions exist. When the matrix A is ill-conditioned, small changes
in the vector b can lead to large changes in the solution. When the vector
b comes from measured data, the entries of b may include measurement
errors, so that an exact solution of Ax = b may be undesirable, even
when such exact solutions exist; exact solutions may correspond to x with
unacceptably large norm, for example. In such cases, we may, instead, wish
to minimize a function such as

1
2
‖Ax− b‖22 +

ε

2
‖x− z‖22, (7.10)

for some vector z. If z = 0, the minimizing vector xε is then a norm-
constrained least-squares solution. We then say that the least-squares prob-
lem has been regularized. In the limit, as ε→ 0, these regularized solutions
xε converge to the least-squares solution closest to z.

Suppose the system Ax = b has infinitely many exact solutions. Our
problem is to select one. Let us select z that incorporates features of the
desired solution, to the extent that we know them a priori. Then, as ε→ 0,
the vectors xε converge to the exact solution closest to z. For example,
taking z = 0 leads to the minimum-norm solution.

Minimizing Cross-Entropy

In image processing, it is common to encounter systems Px = y in which all
the terms are non-negative. In such cases, it may be desirable to solve the
system Px = y, approximately, perhaps, by minimizing the cross-entropy
or Kullback-Leibler distance

KL(y, Px) =
I∑

i=1

(
yi log

yi

(Px)i
+ (Px)i − yi

)
, (7.11)
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over vectors x ≥ 0. When the vector y is noisy, the resulting solution,
viewed as an image, can be unacceptable. It is wise, therefore, to add a
penalty term, such as p(x) = εKL(z, x), where z > 0 is a prior estimate of
the desired x [113, 149, 114, 30].

A similar problem involves minimizing the function KL(Px, y). Once
again, noisy results can be avoided by including a penalty term, such as
p(x) = εKL(x, z) [30].

The Lagrangian in Convex Programming

When there is a sensitivity vector λ for the CP problem, minimizing f(x)
is equivalent to minimizing the Lagrangian,

f(x) +
I∑

i=1

λigi(x) = f(x) + p(x); (7.12)

in this case, the addition of the second term, p(x), serves to incorporate
the constraints gi(x) ≤ 0 in the function to be minimized, turning a con-
strained minimization problem into an unconstrained one. The problem of
minimizing the Lagrangian still remains, though. We may have to solve
that problem using an iterative algorithm.

Infimal Convolution

The infimal convolution of the functions f and g is defined as

(f ⊕ g)(z) = inf
x

{
f(x) + g(z − x)

}
.

The infimal deconvolution of f and g is defined as

(f 	 g)(z) = sup
x

{
f(z − x)− g(x)

}
.

Later we shall relate the infimal convolution and deconvolution to the
Fenchel conjugate.

Moreau’s Proximity-Function Method

The Moreau envelope of the function f is the function

mf (z) = inf
x

{
f(x) +

1
2
‖x− z‖22

}
, (7.13)

which is also the infimal convolution of the functions f(x) and 1
2‖x‖

2
2. It

can be shown that the infimum is uniquely attained at the point denoted
x = proxfz (see [136]). In similar fashion, we can define mf∗z and proxf∗z,
where f∗(z) denotes the function conjugate to f .
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Proposition 7.1 The infimum of mf (z), over all z, is the same as the
infimum of f(x), over all x.

Proof: We have

inf
z
mf (z) = inf

z
inf
x
{f(x) +

1
2
‖x− z‖22}

= inf
x

inf
z
{f(x) +

1
2
‖x− z‖22} = inf

x
{f(x) +

1
2

inf
z
‖x− z‖22} = inf

x
f(x).

The minimizers of mf (z) and f(x) are the same, as well. Therefore,
one way to use Moreau’s method is to replace the original problem of
minimizing the possibly non-smooth function f(x) with the problem of
minimizing the smooth functionmf (z). Another way is to convert Moreau’s
method into a sequential minimization algorithm, replacing z with xk−1

and minimizing with respect to x to get xk. As we shall see, this leads to
the proximal minimization algorithm to be discussed in a later chapter.

7.5.3 The Roles Penalty Functions Play

From the examples just surveyed, we can distinguish several distinct roles
that penalty functions can play.

Impose Constraints

The first role is to penalize violations of constraints, as part of sequential
minimization, or even to turn a constrained minimization into an equiva-
lent unconstrained one: the Absolute-Value and Courant-Beltrami penalty
functions penalize violations of the constraints gi(x) ≤ 0, while Quadratic-
Loss penalty function penalizes violations of the constraints gi(x) = 0. The
augmented objective functions f(x) + kp(x) now become part of a sequen-
tial unconstrained minimization method. It is sometimes possible for f(x)
and f(x) + p(x) to have the same minimizers, or for constrained minimiz-
ers of f(x) to be the same as unconstrained minimizers of f(x) + p(x), as
happens with the Lagrangian in the CP problem.

Regularization

The second role is regularization: in the least-squares problem, the main
purpose for adding the norm-squared penalty function in Equation (7.10)
is to reduce sensitivity to noise in the entries of the vector b. Also, regular-
ization will usually turn a problem with multiple solutions into one with a
unique solution.
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Incorporate Prior Information

The third role is to incorporate prior information: when Ax = b is under-
determined, using the penalty function ε‖x−z‖22 and letting ε→ 0 encour-
ages the solution to be close to the prior estimate z.

Simplify Calculations

A fourth role that penalty functions can play is to simplify calculation:
in the case of cross-entropy minimization, adding the penalty functions
KL(z, x) andKL(x, z) to the objective functionsKL(y, Px) andKL(Px, y),
respectively, regularizes the minimization problem. But, as we shall see
later, the SMART algorithm minimizes KL(Px, y) by using a sequential
approach, in which each minimizer xk can be calculated in closed form.

Sequential Unconstrained Minimization

More generally, a fifth role for penalty functions is as part of sequential
minimization. Here the goal is to replace one computationally difficult
minimization with a sequence of simpler ones. Clearly, one reason for
the difficulty can be that the original problem is constrained, and the se-
quential approach uses a series of unconstrained minimizations, penalizing
violations of the constraints through the penalty function. However, there
are other instances in which the sequential approach serves to simplify the
calculations, not to remove constraints, but, perhaps, to replace a non-
differentiable objective function with a differentiable one, or a sequence of
differentiable ones, as in Moreau’s method.

7.6 Proximity-Function Minimization (I)

Let f : RJ → (−∞,+∞] be closed, proper, convex and differentiable.
Let h be a closed proper convex function, with effective domain D, that
is differentiable on the nonempty open convex set int D. Assume that
f(x) is finite on C = D and attains its minimum value on C at x̂. The
corresponding Bregman distance Dh(x, z) is defined for x in D and z in int
D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (7.14)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then
Dh(x, z) = 0 implies that x = z. Our objective is to minimize f(x) over x
in C = D.
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7.6.1 Proximal Minimization Algorithm

At the kth step of the proximal minimization algorithm (PMA) [38], we
minimize the function

Gk(x) = f(x) +Dh(x, xk−1), (7.15)

to get xk. The function

gk(x) = Dh(x, xk−1) (7.16)

is nonnegative and gk(xk−1) = 0. We assume that each xk lies in int D.

7.6.2 The Method of Auslander and Teboulle

In [4] Auslander and Teboulle consider an iterative method similar to the
PMA, in which, at the kth step, one minimizes the function

Fk(x) = f(x) + d(x, xk−1) (7.17)

to get xk. Their distance d(x, y) is not assumed to be a Bregman distance.
Instead, they assume that the distance d has an associated induced proximal
distance H(a, b) ≥ 0, finite for a and b in D, with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (7.18)

for all c in D. The notation ∇1d(x, y) denotes the gradient with respect to
the vector variable x.

If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (7.19)

we see that Dh has H = Dh for its associated induced proximal distance,
so Dh is self-proximal, in the terminology of [4].

7.7 The Simultaneous MART (SMART) (I)

Our next example is the simultaneous multiplicative algebraic reconstruc-
tion technique (SMART). For a > 0 and b > 0, the Kullback-Leibler dis-
tance, KL(a, b), is defined as

KL(a, b) = a log
a

b
+ b− a. (7.20)

In addition, KL(0, 0) = 0, KL(a, 0) = +∞ and KL(0, b) = b. The KL
distance is then extended to nonnegative vectors coordinate-wise.
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7.7.1 The SMART Iteration

The SMART minimizes the function f(x) = KL(Px, y), over nonnegative
vectors x. Here y is a vector with positive entries, and P is a matrix with
nonnegative entries, such that sj =

∑I
i=1 Pij > 0. Denote by X the set of

all nonnegative x for which the vector Px has only positive entries.
Having found the vector xk−1, the next vector in the SMART sequence

is xk, with entries given by

xk
j = xk−1

j exp s−1
j

( I∑
i=1

Pij log(yi/(Pxk−1)i)
)
. (7.21)

7.7.2 The EMML Iteration

The EMML algorithm minimizes the function f(x) = KL(y, Px), over
nonnegative vectors x. Having found the vector xk−1, the next vector in
the EMML sequence is xk, with entries given by

xk
j = xk−1

j s−1
j

( I∑
i=1

Pij(yi/(Pxk−1)i)
)
. (7.22)

7.7.3 The EMML and the SMART as Alternating Min-
imization

In [30] the SMART was derived using the following alternating minimiza-
tion approach.

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (7.23)

and

q(x)ij = xjPij . (7.24)

In the iterative step of the SMART we get xk by minimizing the function

KL(q(x), r(xk−1)) =
I∑

i=1

J∑
j=1

KL(q(x)ij , r(xk−1)ij)

over x ≥ 0. Note that KL(Px, y) = KL(q(x), r(x)).
Similarly, the iterative step of the EMML is to minimize the function

KL(r(xk−1), q(x)) to get x = xk. Note that KL(y, Px) = KL(r(x), q(x)).
Now we establish the basic results for the SUMMA.
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7.8 Convergence Theorems for SUMMA

At the kth step of the SUMMA we minimize the function Gk(x) to get
xk ∈ P . In practice, of course, this minimization may need to be performed
iteratively; we shall not address this issue here, and shall assume that xk

can be computed. We make the following additional assumptions.

Assumption 1: The functions gk(x) are finite-valued on the subset P .

Assumption 2: The functions gk(x) satisfy the inequality in (7.2); that
is,

0 ≤ gk(x) ≤ Gk−1(x)−Gk−1(xk−1),

for k = 2, 3, ... and all x ∈ P . Consequently,

gk(xk−1) = 0.

Assumption 3: There is a real number α with

α ≤ f(x),

for all x in S.

Assumption 4: Each xk is in P .

Using these assumptions, we can conclude several things about the sequence
{xk}.

Proposition 7.2 The sequence {f(xk)} is decreasing, and the sequence
{gk(xk)} converges to zero.

Proof: We have

f(xk+1)+gk+1(xk+1) = Gk+1(xk+1) ≤ Gk+1(xk) = f(xk)+gk+1(xk) = f(xk).

Therefore,
f(xk)− f(xk+1) ≥ gk+1(xk+1) ≥ 0.

Since the sequence {f(xk)} is decreasing and bounded below by d, the dif-
ference sequence must converge to zero. Therefore, the sequence {gk(xk)}
converges to zero.

Theorem 7.1 The sequence {f(xk)} converges to d.
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Proof: Suppose that there is D > d with

f(xk) ≥ D,

for all k. Then there is z in P with

f(xk) ≥ D > f(z) ≥ d,

for all k. From
gk+1(z) ≤ Gk(z)−Gk(xk),

we have

gk(z)− gk+1(z) ≥ f(xk) + gk(xk)− f(z) ≥ f(xk)− f(z) ≥ D − f(z) > 0,

for all k. This says that the nonnegative sequence {gk(z)} is decreasing, but
that successive differences remain bounded away from zero, which cannot
happen.

Definition 7.1 A real-valued function p(x) on RJ has bounded level sets
if, for all real γ, the level set {x|p(x) ≤ γ} is bounded.

Theorem 7.2 Let S be a complete metric space, f(x) be a continuous
function, d > −∞, and the restriction of f(x) to x in P have bounded level
sets. Then the sequence {xk} is bounded, and f(x∗) = d, for any cluster
point x∗ ∈ S. If x̂ is the unique minimizer of f(x) for x ∈ P , then x∗ = x̂
and {xk} → x̂.

Proof: From the previous theorem we have f(x∗) = d, for all cluster points
x∗. But, by uniqueness, x∗ = x̂, and so {xk} → x̂.

Corollary 7.1 Let C ⊆ RJ be closed and convex. Let f(x) : RJ → R be
closed, proper and convex. If x̂ is the unique minimizer of f(x) over x ∈ C,
the sequence {xk} converges to x̂.

Proof: Let ιC(x) be the indicator function of the set C, that is, ιC(x) = 0,
for all x in C, and ιC(x) = +∞, otherwise. Then the function g(x) =
f(x) + ιC(x) is closed, proper and convex. If x̂ is unique, then we have

{x|f(x) + ιC(x) ≤ f(x̂)} = {x̂}.

Therefore, one of the level sets of g(x) is bounded and nonempty. It follows
from Corollary 8.7.1 of [136] that every level set of g(x) is bounded, so that
the sequence {xk} is bounded.

If x̂ is not unique, we may still be able to prove convergence of the
sequence {xk}, for particular cases of SUMMA, as we shall see shortly.
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7.9 Barrier-Function Methods (II)

We return now to the barrier-function methods, to show that they are
particular cases of the SUMMA. The iterative step of the barrier-function
method can be formulated as follows: minimize

f(x) + [(k − 1)f(x) + b(x)] (7.25)

to get xk. Since, for k = 2, 3, ..., the function

(k − 1)f(x) + b(x) (7.26)

is minimized by xk−1, the function

gk(x) = (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1) (7.27)

is nonnegative, and xk minimizes the function

Gk(x) = f(x) + gk(x). (7.28)

From

Gk(x) = f(x) + (k − 1)f(x) + b(x)− f(xk−1)− (k − 1)f(xk−1)− b(xk−1),

it follows that

Gk(x)−Gk(xk) = kf(x) + b(x)− kf(xk)− b(xk) = gk+1(x),

so that gk+1(x) satisfies the condition in (7.2). This shows that the barrier-
function method is a particular case of SUMMA.

The goal is to minimize the objective function f(x), over x in the closed
set C = D, the closure of D. In the barrier-function method, we minimize

f(x) +
1
k
b(x) (7.29)

over x in D to get xk. Each xk lies within D, so the method is an interior-
point algorithm. If the sequence {xk} converges, the limit vector x∗ will
be in C and f(x∗) = f(x̂).

From the results for SUMMA, we conclude that {f(xk)} is decreasing
to f(x̂), and that {gk(xk)} converges to zero. From the nonnegativity of
gk(xk) we have that

(k − 1)(f(xk)− f(xk−1)) ≥ b(xk−1)− b(xk).

Since the sequence {f(xk)} is decreasing, the sequence {b(xk)} must be
increasing, but might not be bounded above.
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If x̂ is unique, and f(x) has bounded level sets, then it follows, from our
discussion of SUMMA, that {xk} → x̂. Suppose now that x̂ is not known
to be unique, but can be chosen in D, so that Gk(x̂) is finite for each k.
From

f(x̂) +
1
k
b(x̂) ≥ f(xk) +

1
k
b(xk)

we have
1
k

(
b(x̂)− b(xk)

)
≥ f(xk)− f(x̂) ≥ 0,

so that
b(x̂)− b(xk) ≥ 0,

for all k. If either f or b has bounded level sets, then the sequence {xk} is
bounded and has a cluster point, x∗ in C. It follows that b(x∗) ≤ b(x̂) <
+∞, so that x∗ is in D. If we assume that f(x) is convex and b(x) is
strictly convex on D, then we can show that x∗ is unique in D, so that
x∗ = x̂ and {xk} → x̂.

To see this, assume, to the contrary, that there are two distinct cluster
points x∗ and x∗∗ in D, with

{xkn} → x∗,

and
{xjn} → x∗∗.

Without loss of generality, we assume that

0 < kn < jn < kn+1,

for all n, so that
b(xkn) ≤ b(xjn) ≤ b(xkn+1).

Therefore,
b(x∗) = b(x∗∗) ≤ b(x̂).

From the strict convexity of b(x) on the set D, and the convexity of f(x),
we conclude that, for 0 < λ < 1 and y = (1 − λ)x∗ + λx∗∗, we have
b(y) < b(x∗) and f(y) ≤ f(x∗). But, we must then have f(y) = f(x∗).
There must then be some kn such that

Gkn(y) = f(y) +
1
kn
b(y) < f(xkn) +

1
kn
b(xkn) = Gkn(xkn).

But, this is a contradiction.
The following theorem summarizes what we have shown with regard to

the barrier-function method.
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Theorem 7.3 Let f : RJ → (−∞,+∞] be a continuous function. Let
b(x) : RJ → (0,+∞] be a continuous function, with effective domain the
nonempty set D. Let x̂ minimize f(x) over all x in C = D. For each
positive integer k, let xk minimize the function f(x) + 1

k b(x). Then the
sequence {f(xk)} is monotonically decreasing to the limit f(x̂), and the
sequence {b(xk)} is increasing. If x̂ is unique, and f(x) has bounded level
sets, then the sequence {xk} converges to x̂. In particular, if x̂ can be chosen
in D, if either f(x) or b(x) has bounded level sets, if f(x) is convex and if
b(x) is strictly convex on D, then x̂ is unique in D and {xk} converges to
x̂.

At the kth step of the barrier method we must minimize the function
f(x) + 1

k b(x). In practice, this must also be performed iteratively, with,
say, the Newton-Raphson algorithm. It is important, therefore, that bar-
rier functions be selected so that relatively few Newton-Raphson steps are
needed to produce acceptable solutions to the main problem. For more on
these issues see Renegar [134] and Nesterov and Nemirovski [130].

7.10 Penalty-Function Methods (II)

Once again, our objective is to find a sequence {xk} such that {f(xk)} → d.
We select a penalty function p(x) with p(x) ≥ 0 and p(x) = 0 if and only if x
is in P . For k = 1, 2, ..., let xk be a minimizer of the function f(x)+kp(x).
As we shall see, we can formulate this penalty-function algorithm as a
barrier-function iteration.

7.10.1 Penalty-Function Methods as Barrier-Function
Methods

In order to relate penalty-function methods to barrier-function methods,
we note that minimizing Tk(x) = f(x) + kp(x) is equivalent to minimizing
p(x) + 1

kf(x). This is the form of the barrier-function iteration, with p(x)
now in the role previously played by f(x), and f(x) now in the role previ-
ously played by b(x). We are not concerned here with the effective domain
of f(x). Therefore, we can now mimic most, but not all, of what we did
for barrier-function methods.

7.10.2 Basic Facts

Lemma 7.1 The sequence {Tk(xk)} is increasing, bounded above by d and
converges to some γ ≤ d.

Proof: We have

Tk(xk) ≤ Tk(xk+1) ≤ Tk(xk+1) + p(xk+1) = Tk+1(xk+1).
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Also, for any z ∈ P , and for each k, we have

f(z) = f(z) + kp(z) = Tk(z) ≥ Tk(xk);

therefore d ≥ γ.

Lemma 7.2 The sequence {p(xk)} is decreasing to zero, the sequence {f(xk)}
is increasing and converging to some β ≤ d.

Proof: Since xk minimizes Tk(x) and xk+1 minimizes Tk+1(x), we have

f(xk) + kp(xk) ≤ f(xk+1) + kp(xk+1),

and
f(xk+1) + (k + 1)p(xk+1) ≤ f(xk) + (k + 1)p(xk).

Consequently, we have

(k + 1)[p(xk)− p(xk+1)] ≥ f(xk+1)− f(xk) ≥ k[p(xk)− p(xk+1)].

Therefore,
p(xk)− p(xk+1) ≥ 0,

and
f(xk+1)− f(xk) ≥ 0.

From
f(xk) ≤ f(xk) + kp(xk) = Tk(xk) ≤ γ ≤ d,

it follows that the sequence {f(xk)} is increasing and converges to some
β ≤ γ. Since

α+ kp(xk) ≤ f(xk) + kp(xk) = Tk(xk) ≤ γ

for all k, we have 0 ≤ kp(xk) ≤ γ − α. Therefore, the sequence {p(xk)}
converges to zero.

We want β = d. To obtain this result, it appears that we need to make
more assumptions: we assume S is a complete metric space, P is closed
in S, the functions f and p are continuous and f has bounded level sets.
From these assumptions, we are able to assert that the sequence {xk} is
bounded, so that there is a convergent subsequence; let {xkn} → x∗. It
follows that p(x∗) = 0, so that x∗ is in P . Then

f(x∗) = f(x∗)+p(x∗) = lim
n→+∞

(f(xkn)+p(xkn)) ≤ lim
n→+∞

Tkn
(xkn) = γ ≤ d.

But x∗ ∈ P , so f(x∗) ≥ d. Therefore, f(x∗) = d.
It may seem odd that we are trying to minimize f(x) over the set P

using a sequence {xk} with {f(xk)} increasing, but remember that these
xk are not in P .



7.11. PROXIMAL MINIMIZATION ALGORITHMS (II) 59

7.11 Proximal Minimization Algorithms (II)

We show now that Assumption 3 holds, so that the PMA is a particular
case of the SUMMA. We remind the reader that f(x) is now assumed to be
convex and differentiable, so that the Bregman distance Df (x, z) is defined
and nonnegative, for all x in D and z in intD.

Lemma 7.3 For each k we have

Gk(x) = Gk(xk) +Df (x, xk) +Dh(x, xk). (7.30)

Proof: Since xk minimizes Gk(x) within the set D, we have

0 = ∇f(xk) +∇h(xk)−∇h(xk−1). (7.31)

Then

Gk(x)−Gk(xk) = f(x)− f(xk) + h(x)− h(xk)− 〈∇h(xk−1), x− xk〉.

Now substitute, using Equation (7.31), and use the definition of Bregman
distances.

It follows from Lemma 7.3 that

Gk(x)−Gk(xk) = gk+1(x) +Df (x, xk),

so Assumption 3 holds.
From the discussion of the SUMMA we know that {f(xk)} is monoton-

ically decreasing to f(x̂). As we noted previously, if the sequence {xk} is
bounded, and x̂ is unique, we can conclude that {xk} → x̂.

Suppose that x̂ is not known to be unique, but can be chosen in D; this
will be the case, of course, whenever D is closed. Then Gk(x̂) is finite for
each k. From the definition of Gk(x) we have

Gk(x̂) = f(x̂) +Dh(x̂, xk−1). (7.32)

From Equation (7.30) we have

Gk(x̂) = Gk(xk) +Df (x̂, xk) +Dh(x̂, xk), (7.33)

so that

Gk(x̂) = f(xk) +Dh(xk, xk−1) +Df (x̂, xk) +Dh(x̂, xk). (7.34)

Therefore,
Dh(x̂, xk−1)−Dh(x̂, xk) =

f(xk)− f(x̂) +Dh(xk, xk−1) +Df (x̂, xk). (7.35)
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It follows that the sequence {Dh(x̂, xk)} is decreasing and that the sequence
{Df (x̂, xk)} converges to 0. If either the function f(x) or the function
Dh(x̂, ·) has bounded level sets, then the sequence {xk} is bounded, has
cluster points x∗ in C, and f(x∗) = f(x̂), for every x∗. We now show that
x̂ in D implies that x∗ is also in D, whenever h is a Bregman -Legendre
function.

Let x∗ be an arbitrary cluster point, with {xkn} → x∗. If x̂ is not in
the interior of D, then, by Property B2 of Bregman-Legendre functions, we
know that

Dh(x∗, xkn)→ 0,

so x∗ is in D. Then the sequence {Dh(x∗, xk)} is decreasing. Since a
subsequence converges to zero, we have {Dh(x∗, xk)} → 0. From Property
R5, we conclude that {xk} → x∗.

If x̂ is in int D, but x∗ is not, then {Dh(x̂, xk)} → +∞, by Property R2.
But, this is a contradiction; therefore x∗ is in D. Once again, we conclude
that {xk} → x∗.

Now we summarize our results for the PMA. Let f : RJ → (−∞,+∞]
be closed, proper, convex and differentiable. Let h be a closed proper
convex function, with effective domain D, that is differentiable on the
nonempty open convex set int D. Assume that f(x) is finite on C = D
and attains its minimum value on C at x̂. For each positive integer k, let
xk minimize the function f(x) + Dh(x, xk−1). Assume that each xk is in
the interior of D.

Theorem 7.4 If the restriction of f(x) to x in C has bounded level sets
and x̂ is unique, and then the sequence {xk} converges to x̂.

Theorem 7.5 If h(x) is a Bregman-Legendre function and x̂ can be chosen
in D, then {xk} → x∗, x∗ in D, with f(x∗) = f(x̂).

7.11.1 The Method of Auslander and Teboulle

The method of Auslander and Teboulle described in a previous section
seems not to be a particular case of SUMMA. However, we can adapt the
proof of Theorem 7.1 to prove the analogous result for their method. Once
again, we assume that f(x̂) ≤ f(x), for all x in C.

Theorem 7.6 For k = 2, 3, ..., let xk minimize the function

Fk(x) = f(x) + d(x, xk−1).

If the distance d has an induced proximal distance H, then {f(xk)} → f(x̂).

Proof: First, we show that the sequence {f(xk)} is decreasing. We have

f(xk−1) = Fk(xk−1) ≥ Fk(xk) = f(xk) + d(xk, xk−1),
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from which we conclude that the sequence {f(xk)} is decreasing and the
sequence {d(xk, xk−1)} converges to zero.

Now suppose that
f(xk) ≥ f(x̂) + δ,

for some δ > 0 and all k. Since x̂ is in C, there is z in D with

f(xk) ≥ f(z) +
δ

2
,

for all k. Since xk minimizes Fk(x), it follows that

0 = ∇f(xk) +∇1d(xk, xk−1).

Using the convexity of the function f(x) and the fact that H is an induced
proximal distance, we have

0 <
δ

2
≤ f(xk)− f(z) ≤ 〈−∇f(xk), z − xk〉 =

〈∇1d(xk, xk−1), z − xk〉 ≤ H(z, xk−1)−H(z, xk).

Therefore, the nonnegative sequence {H(z, xk)} is decreasing, but its suc-
cessive differences remain bounded below by δ

2 , which is a contradiction.

It is interesting to note that the Auslander-Teboulle approach places a
restriction on the function d(x, y), the existence of the induced proximal
distance H, that is unrelated to the objective function f(x), but this con-
dition is helpful only for convex f(x). In contrast, the SUMMA approach
requires that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk),

which involves the f(x) being minimized, but does not require that this
f(x) be convex.

7.12 The Simultaneous MART (II)

It follows from the identities established in [30] that the SMART can also
be formulated as a particular case of the SUMMA.

7.12.1 The SMART as a Case of SUMMA

We show now that the SMART is a particular case of the SUMMA. The
following lemma is helpful in that regard.
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Lemma 7.4 For any non-negative vectors x and z, with z+ =
∑J

j=1 zj >
0, we have

KL(x, z) = KL(x+, z+) +KL(x,
x+

z+
z). (7.36)

For notational convenience, we assume, for the remainder of this chapter,
that sj = 1 for all j. From the identities established for the SMART in
[30], we know that the iterative step of SMART can be expressed as follows:
minimize the function

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (7.37)

to get xk. According to Lemma 7.4, the quantity

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)

is nonnegative, since sj = 1. The gk(x) are defined for all nonnegative x;
that is, the set D is the closed nonnegative orthant in RJ . Each xk is a
positive vector.

It was shown in [30] that

Gk(x) = Gk(xk) +KL(x, xk), (7.38)

from which it follows immediately that Assumption 3 holds for the SMART.
Because the SMART is a particular case of the SUMMA, we know that

the sequence {f(xk)} is monotonically decreasing to f(x̂). It was shown
in [30] that if y = Px has no nonnegative solution and the matrix P and
every submatrix obtained from P by removing columns has full rank, then
x̂ is unique; in that case, the sequence {xk} converges to x̂. As we shall
see, the SMART sequence always converges to a nonnegative minimizer of
f(x). To establish this, we reformulate the SMART as a particular case of
the PMA.

7.12.2 The SMART as a Case of the PMA

We take F (x) to be the function

F (x) =
J∑

j=1

xj log xj . (7.39)

Then

DF (x, z) = KL(x, z). (7.40)

For nonnegative x and z in X , we have

Df (x, z) = KL(Px, Pz). (7.41)
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Lemma 7.5 DF (x, z) ≥ Df (x, z).

Proof: We have

DF (x, z) ≥
J∑

j=1

KL(xj , zj) ≥
J∑

j=1

I∑
i=1

KL(Pijxj , Pijzj)

≥
I∑

i=1

KL((Px)i, (Pz)i) = KL(Px, Pz). (7.42)

Then we let h(x) = F (x) − f(x); then Dh(x, z) ≥ 0 for nonnegative x
and z in X . The iterative step of the SMART is to minimize the function

f(x) +Dh(x, xk−1). (7.43)

So the SMART is a particular case of the PMA.
The function h(x) = F (x)−f(x) is finite on D the nonnegative orthant

of RJ , and differentiable on the interior, so C = D is closed in this example.
Consequently, x̂ is necessarily in D. From our earlier discussion of the
PMA, we can conclude that the sequence {Dh(x̂, xk)} is decreasing and
the sequence {Df (x̂, xk)} → 0. Since the function KL(x̂, ·) has bounded
level sets, the sequence {xk} is bounded, and f(x∗) = f(x̂), for every
cluster point. Therefore, the sequence {Dh(x∗, xk)} is decreasing. Since a
subsequence converges to zero, the entire sequence converges to zero. The
convergence of {xk} to x∗ follows from basic properties of the KL distance.

From the fact that {Df (x̂, xk)} → 0, we conclude that Px̂ = Px∗.
Equation (7.35) now tells us that the difference Dh(x̂, xk−1) − Dh(x̂, xk)
depends on only on Px̂, and not directly on x̂. Therefore, the difference
Dh(x̂, x0) − Dh(x̂, x∗) also depends only on Px̂ and not directly on x̂.
Minimizing Dh(x̂, x0) over nonnegative minimizers x̂ of f(x) is therefore
equivalent to minimizing Dh(x̂, x∗) over the same vectors. But the solution
to the latter problem is obviously x̂ = x∗. Thus we have shown that the
limit of the SMART is the nonnegative minimizer of KL(Px, y) for which
the distance KL(x, x0) is minimized.

The following theorem summarizes the situation with regard to the
SMART.

Theorem 7.7 In the consistent case the SMART converges to the unique
nonnegative solution of y = Px for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Px, y) for which

∑J
j=1 sjKL(xj , x

0
j ) is

minimized; if P and every matrix derived from P by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Px, y) and
at most I − 1 of its entries are nonzero.
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7.12.3 The EMML Algorithm

The expectation maximization maximum likelihood (EMML) algorithm min-
imizes the function f(x) = KL(y, Px) over x in X . In [44] the EMML
algorithm and the SMART are developed in tandem to reveal how closely
related these two methods are. There, the EMML algorithm is derived us-
ing alternating minimization, in which the vector xk is the one for which the
function KL(r(xk−1), q(x)) is minimized. When we try to put the EMML
into the framework of SUMMA, we find that xk minimizes the function

Gk(x) = f(x) +KL(r(xk−1), r(x)), (7.44)

over all positive vectors x. However, the functions

gk(x) = KL(r(xk−1), r(x)) (7.45)

appear not to satisfy the condition in (7.2).
It turns out, however, that the EMML algorithm is a particular case of

SUMMA, but not in the most obvious way. In a later chapter on alternating
minimization (alt min) we show that any alt min algorithm for which the
three- and four-point properties hold is a SUMMA algorithm. Since the
EMML is such an alt min algorithm, it must be the case that EMML is a
SUMMA algorithm. The details are in the later chapter.

In the next section we present a variant of the SMART, designed to
incorporate bounds on the entries of the vector x.

7.13 Minimizing KL(Px, y) with upper and
lower bounds on the vector x

Let aj < bj , for each j. Let Xab be the set of all vectors x such that
aj ≤ xj ≤ bj , for each j. Now, we seek to minimize f(x) = KL(Px, y),
over all vectors x in X ∩ Xab. We let

F (x) =
J∑

j=1

(
(xj − aj) log(xj − aj) + (bj − xj) log(bj − xj)

)
. (7.46)

Then we have

DF (x, z) =
J∑

j=1

(
KL(xj − aj , zj − aj) +KL(bj − xj , bj − zj)

)
, (7.47)

and, as before,

Df (x, z) = KL(Px, Pz). (7.48)
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Lemma 7.6 For any c > 0, with a ≥ c and b ≥ c, we have KL(a− c, b−
c) ≥ KL(a, b).

Proof: Let g(c) = KL(a − c, b − c) and differentiate with respect to c, to
obtain

g′(c) =
a− c
b− c

− 1− log(
a− c
b− c

) ≥ 0. (7.49)

We see then that the function g(c) is increasing with c.
As a corollary of Lemma 7.6, we have

Lemma 7.7 Let a = (a1, ..., aJ)T , and x and z in X with (Px)i ≥ (Pa)i,
(Pz)i ≥ (Pa)i, for each i. Then KL(Px, Pz) ≤ KL(Px− Pa, Pz − Pa).

Lemma 7.8 DF (x, z) ≥ Df (x, z).

Proof: We can easily show that

DF (x, z) ≥ KL(Px− Pa, Pz − Pa) +KL(Pb− Px, Pb− Pz),

along the lines used previously. Then, from Lemma 7.7, we have

KL(Px− Pa, Pz − Pa) ≥ KL(Px, Pz) = Df (x, z).

Once again, we let h(x) = F (x) − f(x), which is finite on the closed
convex set X ∩ Xab. At the kth step of this algorithm we minimize the
function

f(x) +Dh(x, xk−1) (7.50)

to get xk.
Solving for xk

j , we obtain

xk+1
j = αk

j aj + (1− αk
j )bj , (7.51)

where

(αk
j )−1 = 1 +

(xk−1
j − aj

bj − xk−1
j

)
exp

( I∑
i=1

Pij log(yi/(Pxk−1)i)
)
. (7.52)

Since the restriction of f(x) to X ∩Xab has bounded level sets, the sequence
{xk} is bounded and has cluster points. If x̂ is unique, then {xk} → x̂.
This algorithm is closely related to those presented in [36].



66CHAPTER 7. SEQUENTIAL UNCONSTRAINED MINIMIZATION- SUMMA

7.14 Computation

As we noted previously, we do not address computational issues in any de-
tail in this chapter. Nevertheless, it cannot be ignored that both Equation
(7.21) for the SMART and Equations (7.51) and (7.52) for the generalized
SMART provide easily calculated iterates, in contrast to other examples
of SUMMA. At the same time, showing that these two algorithms are par-
ticular cases of SUMMA requires the introduction of functions Gk(x) that
appear to be quite ad hoc. The purpose of this section is to motivate
these choices of Gk(x) and to indicate how other analogous computation-
ally tractable SUMMA iterative schemes may be derived.

7.14.1 Landweber’s Algorithm

Suppose that A is a real I by J matrix and we wish to obtain a least-squares
solution x̂ of Ax = b by minimizing the function

f(x) =
1
2
‖Ax− b‖22.

We know that

(ATA)x̂ = AT b, (7.53)

so, in a sense, the problem is solved. However, in many applications, the
dimensions I and J are quite large, perhaps in the tens of thousands, as
in some image reconstruction problems. Solving Equation (7.53), and even
calculating ATA, can be prohibitively expensive. In such cases, we turn to
iterative methods, not necessarily to incorporate constraints on x, but to
facilitate calculation. Landweber’s algorithm is one such iterative method
for calculating a least-squares solution.

The iterative step of Landweber’s algorithm is

xk = xk−1 − γAT (Axk−1 − b). (7.54)

The sequence {xk} converges to the least-squares solution closest to x0,
for any choice of γ in the interval (0, 2/ρ(ATA)), where ρ(ATA), the spec-
tral radius of ATA, is its largest eigenvalue; this is a consequence of the
Krasnoselskii-Mann Theorem.

It is easy to verify that the xk given by Equation (7.54) is the minimizer
of the function

Gk(x) =
1
2
‖Ax− b‖22 +

1
2γ
‖x− xk−1‖22 −

1
2
‖Ax−Axk−1‖22, (7.55)

that, for γ in the interval (0, 1/ρ(ATA)), the iteration in Equation (7.54)
is a particular case of SUMMA, and

Gk(x)−Gk(xk) =
1
2γ
‖x− xk‖22.
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The similarity between the Gk(x) in Equation (7.55) and that in Equation
(7.37) is not accidental and both are particular cases of a more general
iterative scheme involving proximal minimization.

7.14.2 Extending the PMA

The proximal minimization algorithm (PMA) requires us to minimize the
function Gk(x) given by Equation (7.15) to get xk. How xk may be calcu-
lated was not addressed previously. Suppose, instead of minimizing Gk(x)
in Equation (7.15), we minimize

Gk(x) = f(x) +Dh(x, xk−1)−Df (x, xk−1) = f(x) + gk(x), (7.56)

with the understanding that f(x) is convex and

Dh(x, z)−Df (x, z) ≥ 0,

for all appropriate x and z. The next iterate xk satisfies the equation

0 = ∇h(xk)−∇h(xk−1) +∇f(xk−1), (7.57)

so that

∇h(xk) = ∇h(xk−1)−∇f(xk−1). (7.58)

This iterative scheme is the interior-point algorithm (IPA) presented in [38].
If the function h(x) is chosen carefully, then we can solve for xk easily. The
Landweber algorithm, the SMART, and the generalized SMART are all
particular cases of this IPA.

Using Lemma 7.3, we can show that

Gk(x)−Gk(xk) = Dh(x, xk) ≥ gk+1(x), (7.59)

for all appropriate x, so that the IPA is a particular case of SUMMA. We
consider now several other examples.

If we let h(x) = 1
2γ ‖x‖

2
2 in Equation (7.56), the iteration becomes

xk = xk−1 − γ∇f(xk−1). (7.60)

If, for example, the operator ∇f is L-Lipschitz continuous, that is,

‖∇f(x)−∇f(z)‖2 ≤ L‖x− z‖2,

then, for any γ in the interval (0, 1/2L), we have

1
2γ
‖x− z‖22 ≥ L‖x− z‖22 ≥ 〈∇f(x)−∇f(z), x− z〉
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= Df (x, z) +Df (z, x) ≥ Df (x, z).

Therefore, this iteration is a particular case of SUMMA. It should be noted
that, in this case, the Krasnoselskii-Mann Theorem gives convergence for
any γ in the interval (0, 2/L).

Finally, we consider what happens if we replace the Euclidean norm with
that induced by the local geometry derived from f itself. More specifically,
let us take

h(x) =
1
2
xT∇2f(xk−1)x,

so that
Dh(x, xk−1) =

1
2
(x− xk−1)T∇2f(xk−1)(x− xk−1).

Then the IPA iterate xk becomes

xk = xk−1 −∇2f(xk−1)−1∇f(xk−1), (7.61)

which is the Newton-Raphson iteration. Using the SUMMA framework to
study the Newton-Raphson method is work in progress.

Algorithms such as Landweber’s and SMART can be slow to converge.
It is known that convergence can often be accelerated using incremental
gradient (partial gradient, block-iterative, ordered-subset) methods. Using
the SUMMA framework to study such incremental gradient methods as
the algebraic reconstruction technique (ART), its multiplicative version
(MART), and other block-iterative methods is also the subject of on-going
work.

7.15 Connections with Karmarkar’s Method

As related by Margaret Wright in [152], a revolution in mathematical pro-
gramming took place around 1984. In that year Narenda Karmarkar dis-
covered the first efficient polynomial-time algorithm for the linear program-
ming problem [107]. Khachian’s earlier polynomial-time algorithm for LP
was too slow and conventional wisdom prior to 1984 was that the simplex
method was “the only game in town” . It was known that, for certain pecu-
liar LP problems, the complexity of the simplex method grew exponentially
with the size of the problem, and obtaining a polynomial-time method for
LP had been a goal for quite a while. However, for most problems, the
popular simplex method was more than adequate. Soon after Karmarkar’s
result was made known, others discovered that there was a close connection
between this method and earlier barrier-function approaches in nonlinear
programming [89]. This discovery not only revived barrier-function meth-
ods, but established a link between linear and nonlinear programming, two
areas that had historically been treated separately.
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The primary LP problem in standard form is to minimize cTx, subject
to the conditions Ax = b and x ≥ 0. The barrier-function approach is to
use a logarithmic barrier to enforce the condition x ≥ 0, and then to use
the primal-dual approach to maintain the condition Ax = b. The function
to be minimized, subject to Ax = b, is then

cTx− µ
J∑

j=1

log xj ,

where µ > 0 is the barrier parameter. When this minimization is performed
using the primal-dual method, and the NR iteration is begun at a feasible
x0, each subsequent xk satisfies Axk = b. The limit of the NR iteration is
xµ. Under reasonable conditions, xµ will converge to the solution of the
LP problem, as µ → 0. This interior-point approach to solving the LP
problem is essentially equivalent to Karmarkar’s method.
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Chapter 8

The Forward-Backward
Splitting Algorithm

8.1 The Context

In my course on applied linear algebra I presented the basic theory of aver-
aged operators, in order to get to the projected gradient-descent method,
the CQ algorithm and projected Landweber. Over spring break in 2012
I began to consider if it was possible to bypass this theory and obtain a
more elementary proof. The problem lies with showing that, whenever the
gradient of a convex function is non-expansive, it is firmly non-expansive,
and therefore averaged. This is a non-trivial result and I am forced to
skip its proof in the class. It is also non-trivial to prove that the product
of averaged operators is averaged. I wanted to see how far the SUMMA
approach could be pushed to prove convergence of these algorithms.

My first result along these lines was that convergence of the gradient-
descent method could be established using SUMMA. I did not see how to
include projection, so I wrote up a short note on this and sent it to my list
of colleagues and to JOTA. Within a day or two, I realized that projection
can be included, simply by minimizing Gk(x) over x in C. This time, I
just sent it to my friends, not to JOTA, with the promise not to become a
nuisance. Unfortunately, I was not able to keep my word.

The following day I discovered how to apply the same SUMMA ap-
proach to prove convergence of the forward-backward splitting method of
Combettes and Wajs. The pieces of the puzzle just fell into place very
nicely, which is what tends to happen when you get the right idea in the
first place. I wrote up a longer paper, the content of this chapter, and sent
it to JOTA. In a comment to the editor, I said that I had no objection
if they chose to consider the first note withdrawn and replace it with the

71
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recent one.

8.2 Forward-Backward Splitting

Let f : RJ → R be convex. For each z ∈ RJ the function

mf (z) = min
x
{f(x) +

1
2
‖x− z‖22}

is minimized by x = proxf (z). Moreau’s proximity operator proxf extends
the notion of orthogonal projection onto a closed convex set [124, 125,
126]. Proximity operators are also firmly non-expansive [67]. We have
x = proxf (z) if and only if z − x ∈ ∂f(x), where the set ∂f(x) is the
sub-differential of f at x, given by

∂f(x) = {u|〈u, y − x〉 ≤ f(y)− f(x), for all y}.

Our objective here is to provide an elementary proof of convergence for
the forward-backward splitting (FBS) algorithm; a detailed discussion of
this algorithm and its history is given by Combettes and Wajs in [67].

Theorem 8.1 Let f : RJ → R be convex, with f = f1 + f2, both convex,
f2 differentiable, and ∇f2 L-Lipschitz. For 0 < γ < 1

L , let

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
. (8.1)

The sequence {xk} converges to a minimizer of the function f(x), whenever
such minimizers exist.

Any fixed point of the iteration minimizes the function f(x). Because
proximity operators are firmly non-expansive, and therefore averaged, it is
a consequence of the Krasnoselskii-Mann Theorem [110, 119] for averaged
operators that convergence holds for 0 < γ < 2

L . The proof given here
employs sequential unconstrained minimization and avoids using the non-
trivial results that, because the operator 1

L∇f2 is non-expansive, it is firmly
non-expansive, and that the product of averaged operators is averaged.

Several applications of the theorem are given, including the proof of
convergence of two interior-point algorithms for minimizing f(x) over x
with Ax = b.

8.3 Sequential Unconstrained Optimization

Sequential unconstrained optimization algorithms can be used to minimize
a function f : RJ → (−∞,∞] over a (not necessarily proper) subset C
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of RJ [85]. At the kth step of a sequential unconstrained minimization
method we obtain xk by minimizing the function

Gk(x) = f(x) + gk(x), (8.2)

where the auxiliary function gk(x) is appropriately chosen. If C is a proper
subset of RJ we may force gk(x) = +∞ for x not in C, as in the barrier-
function methods; then each xk will lie in C. The objective is then to
select the gk(x) so that the sequence {xk} converges to a solution of the
problem, or failing that, at least to have the sequence {f(xk)} converging
to the infimum of f(x) over x in C.

Our main focus in this paper is the use of sequential unconstrained
optimization algorithms to obtain iterative methods in which each iterate
can be obtained in closed form. Now the gk(x) are selected not to impose
a constraint, but to facilitate computation.

8.4 SUMMA

In [46] we presented a particular class of sequential unconstrained mini-
mization methods called SUMMA. As we showed in that paper, this class
is broad enough to contain barrier-function methods, proximal minimiza-
tion methods, and the simultaneous multiplicative algebraic reconstruction
technique (SMART). By reformulating the problem, the penalty-function
methods can also be shown to be members of the SUMMA class. Any
alternating minimization (AM) problem with the five-point property [70]
can be reformulated as a SUMMA problem; therefore the expectation max-
imization maximum likelihood (EMML) algorithm for Poisson data, which
is such an AM algorithm, must also be a SUMMA algorithm.

For a method to be in the SUMMA class we require that xk ∈ C for
each k and that each auxiliary function gk(x) satisfy the inequality

0 ≤ gk(x) ≤ Gk−1(x)−Gk−1(xk−1), (8.3)

for all x. Note that it follows that gk(xk−1) = 0, for all k. For this note
we require that f(x) be convex and differentiable, and that the gradient
operator, ∇f , be L-Lipschitz.

We assume, throughout this section, that the inequality in (8.3) holds
for each k. We also assume that infx∈C f(x) = b > −∞. The next two
results are taken from [46].

Proposition 8.1 The sequence {f(xk)} is non-increasing and the sequence
{gk(xk)} converges to zero.

Proof: We have

f(xk+1) + gk+1(xk+1) = Gk+1(xk+1) ≤ Gk+1(xk) = f(xk). (8.4)
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Theorem 8.2 The sequence {f(xk)} converges to b.

Proof: Suppose that there is δ > 0 such that f(xk) ≥ b+2δ, for all k. Then
there is z ∈ C such that f(xk) ≥ f(z) + δ, for all k. From the inequality
in (8.3) we have

gk(z)− gk+1(z) ≥ f(xk) + gk(xk)− f(z) ≥ f(xk)− f(z) ≥ δ, (8.5)

for all k. But this cannot happen; the successive differences of a non-
increasing sequence of non-negative terms must converge to zero.

8.5 Convergence of the FBS algorithm

For each k = 1, 2, ... let

Gk(x) = f(x) +
1
2γ
‖x− xk−1‖22 −Df2(x, x

k−1), (8.6)

where

Df2(x, x
k−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (8.7)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f2 [15].

Lemma 8.1 The xk that minimizes Gk(x) over x is given by Equation
(8.1).

Proof: Since xk minimizes Gk(x) we know that

0 ∈ ∇f2(xk) +
1
γ

(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(xk).

Therefore, (
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂γf1(xk).

Consequently,
xk = proxγf1

(xk−1 − γ∇f2(xk−1)).

The auxiliary function

gk(x) =
1
2γ
‖x− xk−1‖22 −Df2(x, x

k−1) (8.8)
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can be rewritten as

gk(x) = Dh(x, xk−1), (8.9)

where

h(x) =
1
2γ
‖x‖22 − f2(x). (8.10)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (8.11)

for all x and y. This is equivalent to

1
γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (8.12)

Since ∇f2 is L-Lipschitz, the inequality (8.12) holds whenever 0 < γ < 1
L .

A relatively simple calculation shows that

Gk(x)−Gk(xk) =
1
2γ
‖x− xk‖22 +

(
f1(x)− f1(xk)− 〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
.

(8.13)

Since
(xk−1 − γ∇f2(xk−1))− xk ∈ ∂γf1(xk),

it follows that(
f1(x)− f1(xk)− 〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(xk) ≥ 1
2γ
‖x− xk‖22 ≥ gk+1(x). (8.14)

Therefore, the inequality in (8.3) holds and the iteration fits into the
SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(ĉ)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.
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Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From
Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded and that a subsequence con-
verges to some x∗ ∈ C with f(x∗) = f(x̂).

Replacing the generic x̂ with x∗, we find that {Gk(x∗) − Gk(xk)} is
decreasing. By Equation (8.13), it therefore converges to the limit

1
2γ
‖x∗−x∗‖22+

1
γ
〈(proxγf1

−I)(x∗−γ∇f(x∗)), x∗−proxγf1
(x∗−γ∇f(x∗))〉 = 0.

From the inequality in (8.14), we conclude that the sequence {‖x∗− xk‖22}
converges to zero, and so {xk} converges to x∗. This completes the proof
of the theorem.

8.6 Some Examples

We present some examples to illustrate the application of the convergence
theorem.

8.6.1 Projected Gradient Descent

Let C be a non-empty, closed convex subset of RJ and f1(x) = ιC(x),
the function that is +∞ for x not in C and zero for x in C. Then ιC(x)
is convex, but not differentiable. We have proxγf1

= PC , the orthogonal
projection onto C. The iteration in Equation (8.1) becomes

xk = PC

(
xk−1 − γ∇f2(xk−1)

)
. (8.15)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever
such minimizers exist.

The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex
sets. The split feasibility problem (SFP) is to find x in C such that Ax is
in Q. The function

f2(x) =
1
2
‖PQAx−Ax‖22 (8.16)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spec-
tral radius of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (8.17)
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We want to minimize the function f2(x) over x in C, or, equivalently, to
minimize the function f(x) = ιC(x)+f2(x). The projected gradient descent
algorithm has the iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
; (8.18)

this iterative method was called the CQ-algorithm in [41, 42]. The sequence
{xk} converges to a solution whenever f2 has a minimum on the set C.

The Projected Landweber Algorithm

The problem is to minimize the function

f2(x) =
1
2
‖Ax− b‖22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-
algorithm, with Q = {b}. The resulting iteration is the projected Landwe-
ber algorithm; when C = RJ it becomes the Landweber algorithm.

8.7 Minimizing f2 over a Linear Manifold

Suppose that we want to minimize f2 over the set of x in the linear manifold
M = S + p, where S is a subspace of RJ of dimension I < J and p is a
fixed vector. Let A be an I by J matrix such that the I columns of AT

form a basis for S. For each z ∈ RI let

d(z) = f2(AT z + p),

so that d is convex, differentiable, and its gradient,

∇d(z) = A∇f2(AT z + p),

is K = ρ(ATA)L-Lipschitz. The iteration

zk = zk−1 − γ∇d(zk−1) (8.19)

converges to a minimizer of d over all z in RI , whenever minimizers exist,
for any γ in the interval (0, 1

K ).
From Equation (8.19) we get

xk = xk−1 − γATA∇f2(xk−1), (8.20)

with xk = AT zk + p. The sequence {xk} converges to a minimizer of f2
over all x in M .
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Suppose now that we begin with an algorithm having the iterative step

xk = xk−1 − γATA∇f2(xk−1), (8.21)

where A is any real I by J matrix having rank I. Let x0 be in the range of
AT , so that x0 = AT z0, for some z0 ∈ RI . Then each xk = AT zk is again
in the range of AT , and we have

AT zk = AT zk−1 − γATA∇f2(AT zk−1). (8.22)

With d(z) = f2(AT z), we can write Equation (8.22) as

AT
(
zk − (zk−1 − γ∇d(zk−1))

)
= 0. (8.23)

Since A has rank I, AT is one-to-one, so that

zk − zk−1 − γ∇d(zk−1). (8.24)

The sequence {zk} converges to a minimizer of d, over all z ∈ RI , whenever
such minimizers exist, for 0 < γ < 1

K . Therefore, the sequence {xk}
converges to a minimizer of f2 over all x in the range of AT .

8.8 Feasible-Point Algorithms

Suppose that we want to minimize a convex differentiable function f(x)
over x such that Ax = b, where A is an I by J full-rank matrix, with
I < J . If Axk = b for each of the vectors {xk} generated by the iterative
algorithm, we say that the algorithm is a feasible-point method.

8.8.1 The Projected Gradient Algorithm

Let C be the feasible set of all x in RJ such that Ax = b. For every z in
RJ , we have

PCz = PNS(A)z +AT (AAT )−1b, (8.25)

where NS(A) is the null space of A. Using

PNS(A)z = z −AT (AAT )−1Az, (8.26)

we have

PCz = z +AT (AAT )−1(b−Az). (8.27)

For the projected gradient algorithm the iteration in Equation (8.1) becomes

xk = xk−1 − γPNS(A)∇f(xk−1), (8.28)

which converges to a solution for any γ in (0, 1
L ), whenever solutions exist.

In the next subsection we present a somewhat simpler approach.
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8.8.2 The Reduced Gradient Algorithm

Let x0 be a feasible point, that is, Ax0 = b. Then x = x0 +p is also feasible
if p is in the null space of A, that is, Ap = 0. Let Z be a J by J − I matrix
whose columns form a basis for the null space of A. We want p = Zv for
some v. The best v will be the one for which the function

φ(v) = f(x0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent
method, or the Newton-Raphson method, or any other minimization tech-
nique.

The steepest descent method, applied to φ(v), is called the reduced
steepest descent algorithm [129]. The gradient of φ(v), also called the re-
duced gradient, is

∇φ(v) = ZT∇f(x),

where x = x0 + Zv; the gradient operator ∇φ is then K-Lipschitz, for
K = ρ(ATA)L.

Let x0 be feasible. The iteration in Equation (8.1) now becomes

vk = vk−1 − γ∇φ(vk−1), (8.29)

so that the iteration for xk = x0 + Zvk is

xk = xk−1 − γZZT∇f(xk−1). (8.30)

The vectors xk are feasible and the sequence {xk} converges to a solution,
whenever solutions exist, for any 0 < γ < 1

K .

8.8.3 The Reduced Newton-Raphson Method

The same idea can be applied to the Newton-Raphson method. The
Newton-Raphson method, applied to φ(v), is called the reduced Newton-
Raphson method [129]. The Hessian matrix of φ(v), also called the reduced
Hessian matrix, is

∇2φ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

xk = xk−1 − Z
(
ZT∇2f(xk−1)Z

)−1

ZT∇f(xk−1). (8.31)

Let c0 be feasible. Then each xk is feasible. The sequence {xk} is not
guaranteed to converge.
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Chapter 9

Alternating Minimization
and SUMMA

9.1 The Context

As we have seen, both the EMML and the SMART are best derived as
alternating minimization (AM) algorithms. The idea of using the AM
framework for EMML is due to Vardi, Shepp and Kaufman [149]. The
main reference for alternating minimization is the paper [70] of Csiszár
and Tusnády. As the authors of [149] remark, the geometric argument in
[70] is “deep, though hard to follow”. Over the years, I have returned to [70]
several times, hoping to simplify that paper and get a better understanding
of what they are saying. Finally, in 2011, I managed to clear away the
clutter and get to the basics of that paper. This chapter is the result. Once
again, it counts as a private victory; I have to assume others have performed
the same clearing out and what I have here will never be published. As we
shall see, all AM methods for which the five-point property of [70] holds
fall into the SUMMA class. Consequently, both the SMART and EMML
algorithms are also SUMMA algorithms.

9.2 Alternating Minimization

The alternating minimization (AM) iteration of Csiszár and Tusnády [70]
provides a useful framework for the derivation of iterative optimization
algorithms. In this section we discuss their five-point property and use it
to obtain a somewhat simpler proof of convergence for their AM algorithm.

81
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9.2.1 The AM Framework

Suppose that P and Q are arbitrary non-empty sets and the function
Θ(p, q) satisfies −∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We
assume that, for each p ∈ P , there is q ∈ Q with Θ(p, q) < +∞. There-
fore, b = infp∈P, q∈Q Θ(p, q) < +∞. We assume also that b > −∞; in
many applications, the function Θ(p, q) is non-negative, so this additional
assumption is unnecessary. We do not always assume there are p̂ ∈ P and
q̂ ∈ Q such that Θ(p̂, q̂) = b; when we do assume that such a p̂ and q̂
exist, we will not assume that p̂ and q̂ are unique with that property. The
objective is to generate a sequence {(pn, qn)} such that Θ(pn, qn)→ b.

9.2.2 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0,
and, having found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

In certain applications we consider the special case of alternating cross-
entropy minimization. In that case, the vectors p and q are non-negative,
and the function Θ(p, q) will have the value +∞ whenever there is an
index j such that pj > 0, but qj = 0. It is important for those particular
applications that we select q0 with all positive entries. We therefore assume,
for the general case, that we have selected q0 so that Θ(p, q0) is finite for
all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by b, since
we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (9.1)

Therefore, the sequence {Θ(pn, qn)} converges to some B ≥ b. Without
additional assumptions, we can say little more.

We know two things:

Θ(pn+1, qn)−Θ(pn+1, qn+1) ≥ 0, (9.2)

and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (9.3)

Equation 9.3 can be strengthened to

Θ(p, qn)−Θ(pn+1, qn) ≥ 0. (9.4)

We need to make these inequalities more precise.
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9.2.3 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and
n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (9.5)

9.2.4 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to con-
verge to b, that is, for B = b. The following is the main result of [70].

Theorem 9.1 If the five-point property holds then B = b.

Proof: Suppose that B > b. Then there are p′ and q′ such that B >
Θ(p′, q′) ≥ b. From the five-point property we have

Θ(p′, qn−1)−Θ(pn, qn−1) ≥ Θ(p′, qn)−Θ(p′, q′), (9.6)

so that

Θ(p′, qn−1)−Θ(p′, qn) ≥ Θ(pn, qn−1)−Θ(p′, q′) ≥ 0. (9.7)

All the terms being subtracted can be shown to be finite. It follows that
the sequence {Θ(p′, qn−1)} is decreasing, bounded below, and therefore
convergent. The right side of Equation (9.7) must therefore converge to
zero, which is a contradiction. We conclude that B = b whenever the
five-point property holds in AM.

9.2.5 The Three- and Four-Point Properties

In [70] the five-point property is related to two other properties, the three-
and four-point properties. This is a bit peculiar for two reasons: first, as
we have just seen, the five-point property is sufficient to prove the main
theorem; and second, these other properties involve a second function, ∆ :
P ×P → [0,+∞], with ∆(p, p) = 0 for all p ∈ P . The three- and four-point
properties jointly imply the five-point property, but to get the converse, we
need to use the five-point property to define this second function; it can be
done, however.

The three-point property is the following:

The Three-Point Property

Θ(p, qn)−Θ(pn+1, qn) ≥ ∆(p, pn+1), (9.8)
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for all p. The four-point property is the following:

The Four-Point Property

∆(p, pn+1) + Θ(p, q) ≥ Θ(p, qn+1), (9.9)

for all p and q.
It is clear that the three- and four-point properties together imply the

five-point property. We show now that the three-point property and the
four-point property are implied by the five-point property. For that purpose
we need to define a suitable ∆(p, p̃). For any p and p̃ in P define

∆(p, p̃) = Θ(p, q(p̃))−Θ(p, q(p)), (9.10)

where q(p) denotes a member of Q satisfying Θ(p, q(p)) ≤ Θ(p, q), for all q
in Q. Clearly, ∆(p, p̃) ≥ 0 and ∆(p, p) = 0. The four-point property holds
automatically from this definition, while the three-point property follows
from the five-point property. Therefore, it is sufficient to discuss only the
five-point property when speaking of the AM method.

In the next two sections we discuss the SMART and EMML algorithms,
two important instances of alternating minimization.

9.3 The SMART

In this section we consider the simultaneous multiplicative algebraic recon-
struction technique (SMART) as an example of AM.

9.3.1 The Kullback-Leibler Distance

The Kullback-Leibler distance plays a fundamental role in the development
of both the SMART and the EMML algorithms.

For α > 0 and β > 0, the Kullback-Leibler distance, KL(α, β), is
defined as

KL(α, β) = α log
α

β
+ β − α. (9.11)

In addition, KL(0, 0) = 0, KL(α, 0) = +∞ and KL(0, β) = β. The KL
distance is then extended to non-negative vectors coordinate-wise.

One of the most useful facts about the KL distance is contained in the
following lemma.

Lemma 9.1 For non-negative vectors x and z, with z+ =
∑J

j=1 zj > 0,
we have

KL(x, z) = KL(x+, z+) +KL(x,
x+

z+
z). (9.12)
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9.3.2 Background

What is usually called the simultaneous multiplicative algebraic recon-
struction technique (SMART) was discovered in 1972, independently, by
Darroch and Ratcliff [71], working in statistics, and by Schmidlin [138] in
medical imaging. The SMART provides another example of alternating
minimization having the three- and four-point properties.

Darroch and Ratcliff called their algorithm generalized iterative scal-
ing. It was designed to calculate the entropic projection of one probability
vector onto a family of probability vectors with a pre-determined marginal
distribution. They did not consider the more general problems of finding a
non-negative solution of a non-negative system of linear equations y = Px,
or of minimizing a function; they did not, therefore, consider what hap-
pens in the inconsistent case, in which the system of equations y = Px has
no non-negative solutions. This issue was resolved in [30], where it was
shown that the SMART minimizes the function f(x) = KL(Px, y), over
non-negative vectors x. Here y is a vector with positive entries, and P is
a matrix with non-negative entries, such that sj =

∑I
i=1 Pij > 0 for all j.

This function is continuous in the variable x and has bounded level sets, so
there is at least one minimizer; call it x̂. The vector Px̂ is unique, even if
the vector x̂ is not. For notational convenience we shall assume that sj = 1
for all j. If this is not the case initially, we replace Pij with Pij/sj and xj

with xjsj ; the product Px is unchanged.

9.3.3 Some Notation for SMART

Let X be the set of all x ≥ 0 for which the vector Px has only positive
entries. For each x ∈ X , let t(x) and r(x) be the I by J arrays with entries

t(x)ij = xjPij , (9.13)

and

r(x)ij = xjPijyi/(Px)i. (9.14)

We then let

R = {r = {rij ≥ 0}|
J∑

j=1

rij = yi, for i = 1, 2, ..., I}, (9.15)

and

T = {t = t(x)|x ∈ X}. (9.16)

The sets R and T are convex in the space RI+J .
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9.3.4 Pythagorean Identities

Using the following Pythagorean identities we can prove convergence of the
SMART algorithm [30, 32]:

KL(t(x), r(z)) = KL(t(x), r(x)) +KL(x, z)−KL(Px, Pz); (9.17)

and

KL(t(x), r(z)) = KL(t(z∗), r(z)) +KL(x, z∗), (9.18)

where x and z are arbitrary members of X and

z∗j = zj exp
( I∑

i=1

Pij log
( yi

(Pz)i

))
, (9.19)

for each j. Note that

KL(Px, y) = KL(t(x), r(x)), (9.20)

and

KL(x, z)−KL(Px, Pz) ≥ 0. (9.21)

9.3.5 The SMART Iteration

The iterative step of the SMART is to minimize the functionKL(t(x), r(xn−1))
to get x = xn. The SMART iteration begins with a positive vector x0.
Having found the vector xn−1, the next vector in the SMART sequence is
xn = (xn−1)∗, with entries given by

xn
j = (xn−1)∗j = xn−1

j exp
( I∑

i=1

Pij log
( yi

(Pxn−1)i

))
. (9.22)

The sequence {xn} converges to the non-negative minimizer of the function
KL(Px, y) for which KL(x, x0) is minimized.

9.3.6 The SMART as AM

To put the SMART algorithm into the framework of alternating minimiza-
tion, we take the sets Q = R and P = T as above and let pn = t(xn), and
qn = r(xn). Generic vectors are p = t(x) for some x ∈ X and q = r(z) for
some z ∈ X . Then we set

Θ(p, q) = KL(t(x), r(z)), (9.23)
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and, for arbitrary p = t(x) and p̃ = t(x̃),

∆(p, p̃) = KL(t(x), t(x̃)) = KL(x, x̃). (9.24)

From the Pythagorean identity (9.18) we have

KL(t(x), r(xn−1)) = KL(t(xn), r(xn−1)) +KL(x, xn) (9.25)

so that

Θ(p, qn−1) = Θ(pn, qn−1) + ∆(p, pn), (9.26)

which is then the three-point property. From

KL(t(x), r(xn))−KL(t(x), r(x)) = KL(x, xn)−KL(Px, Pxn) ≤ KL(x, xn)(9.27)

we have

∆(p, pn) ≥ Θ(p, qn)−Θ(p, q(p)) ≥ Θ(p, qn)−Θ(p, q), (9.28)

which is the four-point property.
The iterative step of the SMART is then to minimize the function

Θ(p, qn−1) = KL(t(x), r(xn−1)) (9.29)

to get x = xn = (xn−1)∗. Since the SMART is a particular case of AM for
which the five-point property holds, we know that

{KL(Pxn, y)} → inf{KL(Px, y) |x ≥ 0}. (9.30)

Using the Pythagorean identities we can show more: the sequence {xn}
converges to the non-negative minimizer of the function KL(Px, y) for
which KL(x, x0) is minimized ([30, 32]) .

9.3.7 Related work of Csiszár

In [69] Csiszár shows that the generalized iterative scaling method of Dar-
roch and Ratcliff can be formulated in terms of successive entropic projec-
tion onto the sets R and T . In other words, he views their method as an
alternating projection method, not as alternating minimization. He derives
the generalized iterative scaling algorithm in two steps:

• 1. minimize KL(r(x), t(xn)) to get r(xn); and then

• 2. minimize KL(t(x), r(xn)) to get t(xn+1).

Although [69] appeared five years after [70], Csiszár does not reference
[70], nor does he mention alternating minimization, instead basing his con-
vergence proof here on his earlier paper [68], which deals with entropic
projection. He is able to make this work because the order of the t(xn) and
r(x) does not matter in the first step. Therefore, the generalized iterative
scaling, and, more generally, the SMART, is also an alternating projection
algorithm, as well.
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9.4 The EMML Algorithm

The expectation maximization maximum likelihood (EMML) method we
discuss here is actually a special case of a more general approach to like-
lihood maximization, usually called the EM algorithm [74]; the book by
McLachnan and Krishnan [120] is a good source for the history of this
more general algorithm.

9.4.1 Background

It was noticed by Rockmore and Macovski [137] that the image reconstruc-
tion problems that arise in medical tomography can be formulated as sta-
tistical parameter estimation problems. Following up on this idea, Shepp
and Vardi [139] suggested the use of the EM algorithm for solving the re-
construction problem in emission tomography. In [113], Lange and Carson
presented an EM-type iterative method for transmission tomographic im-
age reconstruction, and pointed out a gap in the convergence proof given in
[139] for the emission case. In [149], Vardi, Shepp and Kaufman repaired
the earlier proof, relying on techniques due to Csiszár and Tusnády [70].
In [114] Lange, Bahn and Little improved the transmission and emission
algorithms, by including regularization to reduce the effects of noise. The
question of uniqueness of the solution in the inconsistent case was resolved
in [30, 31].

The EMML, as a statistical parameter estimation technique, was not
originally thought to be connected to any system of linear equations. In
[30], it was shown that the EMML algorithm minimizes the function f(x) =
KL(y, Px), over non-negative vectors x. As in the previous section, y is a
vector with positive entries, and P is a matrix with non-negative entries,
such that sj =

∑I
i=1 Pij = 1. Consequently, when the non-negative sys-

tem of linear equations Px = y has a non-negative solution, the EMML
converges to such a solution.

Because KL(y, Px) is continuous in the variable x and has bounded
level sets, there is at least one non-negative minimizer; call it x̂. The
vector Px̂ is unique, even if x̂ is not.

9.4.2 Pythagorean Identities

For each x ∈ X , let t(x) and r(x) be as previously defined. Using the
following Pythagorean identities we can prove convergence of the EMML
algorithm [30, 32]:

KL(r(x), t(z)) = KL(r(z), t(z)) +KL(r(x), r(z)); (9.31)
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and

KL(r(x), t(z)) = KL(r(x), t(x′)) +KL(x′, z), (9.32)

where x and z are arbitrary members of X and the entries of x′ are defined
by

x′j = xj

I∑
i=1

Pij
yi

(Px)i
, (9.33)

for each j. Note that KL(y, Px) = KL(r(x), t(x)).

9.4.3 The EMML as AM

In the EMML algorithm we minimize the function KL(r(xn), t(x)) to get
x = xn+1. The EMML iteration begins with a positive vector x0. Having
found the vector xn, the next vector in the EMML sequence is xn+1 = (xn)′,
with entries given by

xn+1
j = (xn)′j = xn

j

I∑
i=1

Pij

( yi

(Pxn)i

)
=

I∑
i=1

r(xn)ij . (9.34)

The sequence {xn} converges to a non-negative minimizer of the function
KL(y, Px).

We put the EMML algorithm into an AM framework using P = R,
Q = T , p = r(x), q = t(z), Θ(p, q) = KL(r(x), t(z)), and minimizing
KL(r(x), t(x)) = KL(y, Px). Using the AM notation, we let qn−1 =
t(xn−1), pn = r(xn−1), p = r(x), p̃ = r(x̃), and q(p) = t(x′). At the
nth step of the EMML algorithm we obtain pn = r(xn−1) by minimizing

Θ(p, qn−1) = KL(r(x), t(xn−1)). (9.35)

According to the Pythagorean identities (9.31) and (9.32) and Lemma 9.12,
we have xn = (xn−1)′ and

Θ(p, qn−1)−Θ(pn, qn−1) = KL(r(x), r(xn−1)) ≥ KL(x′, (xn−1)′) = KL(x′, xn).(9.36)

With ∆(p, p̃) defined as

∆(p, p̃) = KL(r(x), r(x̃)), (9.37)

it follows that

∆(p, pn) = KL(r(x), r(xn−1)), (9.38)

so that

Θ(p, qn−1)−Θ(pn, qn−1) ≥ ∆(p, pn), (9.39)
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which is the three-point property.
We know that

KL(r(x), t(xn))−KL(r(x), t(x′)) = KL(x′, xn) (9.40)

and

KL(r(x), r(xn−1)) ≥ KL(x′, xn), (9.41)

from which it follows that

KL(r(x), r(xn−1)) ≥ KL(r(x), t(xn))−KL(r(x), t(x′)); (9.42)

this is the four-point property.

9.5 Alternating Bregman Distance Minimiza-
tion

The general problem of minimizing Θ(p, q) is simply a minimization of a
real-valued function of two variables, p ∈ P and q ∈ Q. In many cases the
function Θ(p, q) is a distance between p and q, either ‖p− q‖22 or KL(p, q).
In the case of Θ(p, q) = ‖p− q‖22, each step of the alternating minimization
algorithm involves an orthogonal projection onto a closed convex set; both
projections are with respect to the same Euclidean distance function. In
the case of cross-entropy minimization, we first project qn onto the set
P by minimizing the distance KL(p, qn) over all p ∈ P , and then project
pn+1 onto the set Q by minimizing the distance function KL(pn+1, q). This
suggests the possibility of using alternating minimization with respect to
more general distance functions. We shall focus on Bregman distances.

9.5.1 Bregman Distances

Let f : RN → R be a Bregman function [15, 61, 21], and so f(x) is convex
on its domain and differentiable in the interior of its domain. Then, for x in
the domain and z in the interior, we define the Bregman distance Df (x, z)
by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (9.43)

For example, the KL distance is a Bregman distance with associated Breg-
man function

f(x) =
J∑

j=1

xj log xj − xj . (9.44)
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Suppose now that f(x) is a Bregman function and P and Q are closed
convex subsets of the interior of the domain of f(x). Let pn+1 minimize
Df (p, qn) over all p ∈ P . It follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (9.45)

for all p ∈ P . Since

Df (p, qn)−Df (pn+1, qn) = Df (p, pn+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉,(9.46)

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q), (9.47)

and

∆(p, p̂) = Df (p, p̃). (9.48)

To get the four-point property we need to restrict Df somewhat; we assume
from now on that Df (p, q) is jointly convex, that is, it is convex in the
combined vector variable (p, q) (see [9]). Now we can invoke a lemma due
to Eggermont and LaRiccia [79].

9.5.2 The Eggermont-LaRiccia Lemma

Lemma 9.2 Suppose that the Bregman distance Df (p, q) is jointly convex.
Then it has the four-point property.

Proof: By joint convexity we have

Df (p, q)−Df (pn, qn) ≥

〈∇1Df (pn, qn), p− pn〉+ 〈∇2Df (pn, qn), q − qn〉,

where ∇1 denotes the gradient with respect to the first vector variable.
Since qn minimizes Df (pn, q) over all q ∈ Q, we have

〈∇2Df (pn, qn), q − qn〉 ≥ 0,

for all q. Also,

〈∇1(pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, qn)−Df (p, pn) = Df (pn, qn) + 〈∇1(pn, qn), p− pn〉

≤ Df (p, q)− 〈∇2Df (pn, qn), q − qn〉 ≤ Df (p, q).
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Therefore, we have

Df (p, pn) +Df (p, q) ≥ Df (p, qn).

This is the four-point property.
We now know that the alternating minimization method works for any

Bregman distance that is jointly convex. This includes the Euclidean and
the KL distances.

9.6 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimization
taken from [40]. The problem is the convex feasibility problem (CFP), to
find a member of the intersection C ⊆ RJ of finitely many closed convex
sets Ci, i = 1, ..., I, or, failing that, to minimize the proximity function

F (x) =
I∑

i=1

Di(
←−
P ix, x), (9.49)

where fi are Bregman functions for which Di, the associated Bregman
distance, is jointly convex, and ←−P ix are the left Bregman projection of
x onto the set Ci, that is, ←−P ix ∈ Ci and Di(

←−
P ix, x) ≤ Di(z, x), for all

z ∈ Ci. Because each Di is jointly convex, the function F (x) is convex.
The problem can be formulated as an alternating minimization, where

P ⊆ RIJ is the product set P = C1 × C2 × ... × CI . A typical member
of P has the form p = (c1, c2, ..., cI), where ci ∈ Ci, and Q ⊆ RIJ is the
diagonal subset, meaning that the elements of Q are the I-fold product of
a single x; that is Q = {d(x) = (x, x, ..., x) ∈ RIJ}. We then take

Θ(p, q) =
I∑

i=1

Di(ci, x), (9.50)

and ∆(p, p̃) = Θ(p, p̃).
In [56] a similar iterative algorithm was developed for solving the CFP,

using the same sets P and Q, but using alternating projection, rather
than alternating minimization. Now it is not necessary that the Bregman
distances be jointly convex. Each iteration of their algorithm involves two
steps:

• 1. minimize
∑I

i=1Di(ci, xn) over ci ∈ Ci, obtaining ci = ←−P ix
n, and

then

• 2. minimize
∑I

i=1Di(x,
←−
P ix

n).

Because this method is an alternating projection approach, it converges
only when the CFP has a solution, whereas the previous alternating mini-
mization method minimizes F (x), even when the CFP has no solution.
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9.6.1 Right and Left Projections

Because Bregman distances Df are not generally symmetric, we can speak
of right and left Bregman projections onto a closed convex set. For any
allowable vector x, the left Bregman projection of x onto C, if it exists, is
the vector ←−P Cx ∈ C satisfying the inequality Df (←−P Cx, x) ≤ Df (c, x), for
all c ∈ C. Similarly, the right Bregman projection is the vector −→P Cx ∈ C
satisfying the inequality Df (x,−→P Cx) ≤ Df (x, c), for any c ∈ C.

The alternating minimization approach described above to minimize
the proximity function

F (x) =
I∑

i=1

Di(
←−
P ix, x) (9.51)

can be viewed as an alternating projection method, but employing both
right and left Bregman projections.

Consider the problem of finding a member of the intersection of two
closed convex sets C and D. We could proceed as follows: having found
xn, minimize Df (xn, d) over all d ∈ D, obtaining d = −→P Dx

n, and then
minimize Df (c,−→P Dx

n) over all c ∈ C, obtaining c = xn+1 = ←−P C
−→
P Dx

n.
The objective of this algorithm is to minimize Df (c, d) over all c ∈ C and
d ∈ D; such a minimum may not exist, of course.

In [10] the authors note that the alternating minimization algorithm of
[40] involves right and left Bregman projections, which suggests to them
iterative methods involving a wider class of operators that they call “Breg-
man retractions”.

9.7 More Proximity Function Minimization

Proximity function minimization and right and left Bregman projections
play a role in a variety of iterative algorithms. We survey several of them
in this section.

9.7.1 Cimmino’s Algorithm

Our objective here is to find an exact or approximate solution of the system
of I linear equations in J unknowns, written Ax = b. For each i let

Ci = {z|(Az)i = bi}, (9.52)

and Pix be the orthogonal projection of x onto Ci. Then

(Pix)j = xj + αiAij(bi − (Ax)i), (9.53)
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where

(αi)−1 =
J∑

j=1

A2
ij . (9.54)

Let

F (x) =
I∑

i=1

‖Pix− x‖22. (9.55)

Using alternating minimization on this proximity function gives Cimmino’s
algorithm, with the iterative step

xn+1
j = xn

j +
1
I

I∑
i=1

αiAij(bi − (Axn)i). (9.56)

9.7.2 Simultaneous Projection for Convex Feasibility

Now we let Ci be any closed convex subsets of RJ and define F (x) as in the
previous section. Again, we apply alternating minimization. The iterative
step of the resulting algorithm is

xn+1 =
1
I

I∑
i=1

Pix
n. (9.57)

The objective here is to minimize F (x), if there is a minimum.

9.7.3 The EMML Revisited

As in our earlier discussion of the SMART and EMML methods, we want
an exact or approximate solution of the system y = Px. For each i, let

Ci = {z ≥ 0 |(Pz)i = yi}. (9.58)

The left entropic projection of x > 0 onto Ci is the vector that minimizes
KL(ci, x), over all ci ∈ Ci; unfortunately, we typically cannot calculate
this projection in closed form. Instead, we define the distances

Di(z, x) =
J∑

j=1

PijKL(zj , xj), (9.59)

and calculate the associated left projections←−P ix onto the sets Ci. We then
have Di(

←−
P ix, x) ≤ Di(ci, x), for all ci ∈ Ci, with ←−P ix given in closed form

by

(←−P ix)j = xj
yi

(Px)i
, (9.60)
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for each j. Note that, for the distances Di and these sets Ci, the left and
right projections are the same; that is ←−P ix = −→P ix. Applying alternating
minimization to the proximity function

F (x) =
I∑

i=1

J∑
j=1

PijKL(←−P ix, x), (9.61)

we obtain the iterative step

xn+1
j = xn

j

I∑
i=1

Pij
yi

(Pxn)i
, (9.62)

which is the EMML iteration.

9.7.4 The SMART

Now we define the proximity function F (x) to be

F (x) =
I∑

i=1

J∑
j=1

PijKL(x,−→P ix). (9.63)

Applying alternating minimization and using the fact that←−P ix = −→P ix, we
discover that the resulting iterative step is that of the SMART.

9.7.5 The Bauschke-Combettes-Noll Problem

In [11] Bauschke, Combettes and Noll consider the following problem: min-
imize the function

Θ(p, q) = Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (9.64)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and
P = Q is the interior of the domain of f . They assume that

b = inf
(p,q)

Λ(p, q) > −∞, (9.65)

and seek a sequence {(pn, qn)} such that {Λ(pn, qn)} converges to b. The se-
quence is obtained by the AM method, as in our previous discussion. They
prove that, if the Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ b.
In this subsection we obtain this result by showing that Λ(p, q) has the five-
point property whenever D = Df is jointly convex. Our proof is loosely
based on the proof of the Eggermont-LaRiccia lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (9.66)
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A simple calculation shows that the inequality in (9.66) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥ D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn).(9.67)

By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉,(9.68)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, eval-
uated at (pn, qn).

Since qn minimizes Λ(pn, q), it follows that

〈∇qΛ(pn, qn), q − qn〉 = 0, (9.69)

for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (9.70)

We have

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉.(9.71)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (9.72)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (9.73)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉 (9.74)
= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (9.75)

Using (9.70) we obtain the inequality in (9.67). This shows that Λ(p, q) has
the five-point property whenever the Bregman distance D = Df is jointly
convex.

From our previous discussion of AM, we conclude that the sequence
{Λ(pn, qn)} converges to b; this is Corollary 4.3 of [11].

In [54] it was shown that, in certain cases, the expectation maximization
maximum likelihood (EM) method involves alternating minimization of a
function of the form Λ(p, q).
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9.8 The SUMMA

We turn now to an apparently unrelated problem, to minimize a function
f : S → (−∞,∞] over a (not necessarily proper) subset C of S. At the
nth step of a sequential unconstrained minimization method, we obtain xn

by minimizing the function

Gn(x) = f(x) + gn(x), (9.76)

where the auxiliary function gn(x) is appropriately chosen. If C is a proper
subset of S we may force gn(x) = +∞ for x not in C, as in the barrier-
function methods; then each xn will lie in C.

The objective is to select the gn(x) so that the sequence {xn} converges
to a solution of the problem, or failing that, at least to have the sequence
{f(xn)} converging to the infimum of f(x) over x in C.

In [46] we presented a particular class of sequential unconstrained min-
imization methods called SUMMA. As we showed in that paper, this class
is broad enough to contain barrier-function methods, proximal minimiza-
tion methods, and the simultaneous multiplicative algebraic reconstruction
technique (SMART). By reformulating the problem, the penalty-function
methods can also be shown to be members of the SUMMA class. When
[46] was written, we were not able to include the expectation maximization
maximum likelihood (EMML) method [139] within the SUMMA class. As
we shall see shortly, any AM problem with the five-point property can be
reformulated as a SUMMA problem; therefore the EMML, which is such
an AM algorithm, must also be a SUMMA algorithm.

For a method to be in the SUMMA class we require that xn ∈ C for
each n and that each auxiliary function gn(x) satisfy the inequalities

0 ≤ gn+1(x) ≤ Gn(x)−Gn(xn), (9.77)

for all x. Note that it follows that gn+1(xn) = 0, for all n. We assume,
throughout this section, that the inequality in (9.77) holds for each n. We
also assume that infx∈C f(x) = b > −∞. The next two results are taken
from [46].

Proposition 9.1 The sequence {f(xn)} is non-increasing and the sequence
{gn(xn)} converges to zero.

Proof: We have

f(xn+1) + gn+1(xn+1) = Gn+1(xn+1) ≤ Gn+1(xn) = f(xn). (9.78)

Theorem 9.2 The sequence {f(xn)} converges to b.
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Proof: Suppose that there is δ > 0 such that f(xn) ≥ b + 2δ, for all n.
Then there is z ∈ C such that f(xn) ≥ f(z) + δ, for all n. From the
inequality in (9.77) we have

gn(z)− gn+1(z) ≥ f(xn) + gn(xn)− f(z) ≥ f(xn)− f(z) ≥ δ, (9.79)

for all n. But this cannot happen; the successive differences of a non-
increasing sequence of non-negative terms must converge to zero.

9.9 Examples of SUMMA

In this section we present several examples of SUMMA.

9.9.1 Barrier-Function Methods

Let b(x) : RJ → (−∞,+∞] be continuous, with effective domain the set

D = {x| b(x) < +∞}.

The goal is to minimize the objective function f(x), over x in the closed
set C = D, the closure of D. In the barrier-function method, we minimize

f(x) +
1
n
b(x) (9.1)

over x in D to get xn. Each xn lies within D, so the method is an interior-
point algorithm. If the sequence {xn} converges, the limit vector x∗ will
be in C and f(x∗) = f(x̂).

The iterative step of the barrier-function method can be formulated as
follows: minimize

f(x) + [(n− 1)f(x) + b(x)] (9.2)

to get xn. Since, for n = 2, 3, ..., the function

(n− 1)f(x) + b(x) (9.3)

is minimized by xn−1, the function

gn(x) = (n− 1)f(x) + b(x)− (n− 1)f(xn−1)− b(xn−1) (9.4)

is non-negative, and xn minimizes the function

Gn(x) = f(x) + gn(x). (9.5)

From

Gn(x) = f(x) + (n− 1)f(x) + b(x)− (n− 1)f(xn−1)− b(xn−1), (9.6)
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it follows that

Gn(x)−Gn(xn) = nf(x) + b(x)− nf(xn)− b(xn) = gn+1(x), (9.7)

so that gn+1(x) satisfies the condition in (9.77). This shows that the
barrier-function method is a particular case of SUMMA.

9.9.2 Penalty-Function Methods

Once again, we want to minimize f(x) over x ∈ C. In penalty-function
methods the nth step is to minimize

f(x) + np(x), (9.8)

where p(x) > 0 for x not in C and p(x) = 0 for x ∈ C. To show that
penalty-function methods can be viewed as members of the SUMMA class,
we reformulate these methods as barrier-function methods. In order to
relate penalty-function methods to barrier-function methods, we note that
minimizing f(x) + np(x) is equivalent to minimizing p(x) + 1

nf(x). This
is the form of the barrier-function iteration, with p(x) now in the role
previously played by f(x), and f(x) now in the role previously played by
b(x). We are not concerned here with the effective domain of f(x).

9.9.3 Proximity-Function Minimization

Let f : RJ → (−∞,+∞] be closed, proper, convex and differentiable.
Let h be a closed proper convex function, with effective domain D, that
is differentiable on the nonempty open convex set int D. Assume that
f(x) is finite on C = D and attains its minimum value on C at x̂. The
corresponding Bregman distance Dh(x, z) is defined for x in D and z in int
D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (9.9)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then
Dh(x, z) = 0 implies that x = z. Our objective is to minimize f(x) over x
in C = D.

At the nth step of the proximal minimization algorithm (PMA) [38, 61],
we minimize the function

Gn(x) = f(x) +Dh(x, xn−1), (9.10)

to get xn. The function

gn(x) = Dh(x, xn−1) (9.11)

is non-negative and gn(xn−1) = 0. We assume that each xn lies in int D.
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The PMA is a particular case of the SUMMA. We remind the reader
that f(x) is now assumed to be convex and differentiable, so that the
Bregman distance Df (x, z) is defined and non-negative, for all x in D and
z in intD.

Lemma 9.1 For each n we have

Gn(x) = Gn(xn) +Df (x, xn) +Dh(x, xn). (9.12)

Proof: Since xn minimizes Gn(x) within the set D, we have

0 = ∇f(xn) +∇h(xn)−∇h(xn−1). (9.13)

Then

Gn(x)−Gn(xn) = f(x)− f(xn) + h(x)− h(xn)− 〈∇h(xn−1), x− xn〉.(9.14)

Now substitute, using Equation (9.13) and the definition of Bregman dis-
tances.

It follows from Lemma 9.1 that

Gn(x)−Gn(xn) = gn+1(x) +Df (x, xn). (9.15)

9.9.4 The Simultaneous MART

It follows from the Pythagorean identities established in [30] that the
SMART can also be formulated as a particular case of the SUMMA. From
the identities established for the SMART in [30], we know that the iterative
step of SMART can be expressed as follows: minimize the function

Gn(x) = KL(Px, y) +KL(x, xn−1)−KL(Px, Pxn−1) (9.16)

to get xn. According to Lemma 9.12, the function

gn(x) = KL(x, xn−1)−KL(Px, Pxn−1) (9.17)

is non-negative, since sj = 1. The gn(x) are defined for all non-negative x;
that is, the set D is the closed non-negative orthant in RJ . Each xn is a
positive vector.

It was shown in [30] that

Gn(x) = Gn(xn) +KL(x, xn), (9.18)

from which it follows immediately that SMART is a particular case of
SUMMA. Consequently, the sequence {KL(Pxn, y)} converges to the in-
fimum of the function KL(Px, y) over all x ∈ X . The infimum is always
attained at some x ≥ 0 in the closure of X and it can be shown that the
sequence {xn} converges to a minimizer of KL(Px, y) over x in the closure
of X ([30, 32]).
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9.10 AM as SUMMA

We show now that the SUMMA class of sequential unconstrained mini-
mization methods includes all the AM methods for which the five-point
property holds.

9.10.1 Reformulating AM as SUMMA

For each p in the set P , define q(p) in Q as a member of Q for which
Θ(p, q(p)) ≤ Θ(p, q), for all q ∈ Q. Let f(p) = Θ(p, q(p)).

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(
Θ(p, qn−1)−Θ(p, q(p))

)
(9.19)

to get pn. With

gn(p) =
(
Θ(p, qn−1)−Θ(p, q(p))

)
≥ 0, (9.20)

we can write

Gn(p) = f(p) + gn(p). (9.21)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (9.22)

It follows that AM is a member of the SUMMA class.

9.11 SMART and EMML as SUMMA

We have seen that both the SMART and the EMML can be obtained as
AM algorithms for which the five-point property holds. Consequently, both
SMART and EMML are particular cases of SUMMA.

9.11.1 The SMART as SUMMA

In the case of SMART

Θ(p, q) = KL(t(x), r(z)), (9.23)

and

f(p) = Θ(p, q(p)) = KL(t(x), r(x)) = KL(Px, y), (9.24)

which is the function of x we seek to minimize over x ∈ X .
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9.11.2 The EMML as SUMMA

In the case of EMML

Θ(p, q) = KL(r(x), t(z)), (9.25)

and

f(p) = Θ(p, q(p)) = KL(r(x), t(x′)), (9.26)

which is not KL(y, Px). In order to obtain the EMML from an AM formu-
lation having the five-point property, and therefore to show that EMML
is in the SUMMA class, we need to view the problem as minimizing not
KL(y, Px) but f(x) = KL(r(x), t(x′)). The minima are the same, how-
ever, as are the minimizers.

For the EMML we get xn = (xn−1)′ by minimizing

Gn(x) = KL(r(x), t((xn−1)′)) = f(x) + gn(x), (9.27)

where

gn(x) = KL(r(x), t((xn−1)′))−KL(r(x), t(x′)). (9.28)

We need to show that

Gn(x)−Gn(xn) ≥ gn+1(x). (9.29)

From the Pythagorean identities for EMML we have

Gn(x)−Gn(xn) = KL(r(x), r(xn)), (9.30)

and

gn+1(x) = KL(x′, (xn)′) ≤ KL(r(x), r(xn)), (9.31)

which shows the EMML to be a member of the SUMMA class.
Consequently, the sequence {KL(y, Pxn)} converges to the infimum of

the function KL(y, Px) over all x ∈ X . The infimum is always attained at
some x ≥ 0 in the closure of X and it can be shown that the sequence {xn}
converges to a minimizer of KL(y, Px) over x in the closure of X ([30, 32]).

9.12 Conclusion

It was shown previously in [46] that the SUMMA class includes a wide
variety of optimization algorithms, including the barrier-function methods,
the proximal minimization algorithm of Censor and Zenios [60, 61], the
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entropic proximal method of Teboulle [148], and the simultaneous multi-
plicative algebraic reconstruction technique (SMART)[71, 138, 69, 30, 31].
With some reformulation, it also contains the penalty-function methods.
We have now shown that the alternating minimization methods of [70] are
included in the SUMMA class whenever the five-point property holds. As
a consequence, we learn that the EMML algorithm for Poisson mixtures
[139, 113, 149, 114, 30, 31] is also a member of the SUMMA class.
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Chapter 10

The EM Algorithm

10.1 The Context

As I began studying the EMML algorithm for emission tomography, I was
led naturally to the more general EM algorithm. The EM algorithm is not
really a single algorithm, but a framework for the design of iterative like-
lihood maximization methods for parameter estimation; nevertheless, we
shall continue to refer to the EM algorithm. The EM algorithm allows for
both discrete-variable probability functions and continuous-variable proba-
bility density functions. The usual formulation of the EM algorithm is fine
for the discrete case, but makes no sense in the continuous case. Neverthe-
less, most articles and books on the subject use this nonsensical formula-
tion. I have tried for years to see how to replace it. Finally, in 2011, while
working with Paul Eggermont, I hit on what I believe is the proper way to
formulation the continuous case. This chapter describes that formulation.

10.2 Introduction

We suppose that the random vector Y taking values in RN is governed
by a probability density function (pdf) or probability function (pf) of the
form fY (y|θ), for some value of the parameter vector θ ∈ Θ, where Θ is
the set of all legitimate values of θ. Our data consists of one realization y
of Y . The true vector of parameters is to be estimated by maximizing the
likelihood function Ly(θ) = fY (y|θ) over all θ ∈ Θ.

10.2.1 Simplifying the Computation

The basic idea underlying the EM algorithm is that there is another related
random vector X, which we shall call the preferred data, such that, had

105
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we been able to obtain one realization x of X, maximizing the likelihood
function Lx(θ) = fX(x|θ) would have been simpler than maximizing the
likelihood function Ly(θ) = fY (y|θ). In the missing-data model the pre-
ferred data is the complete data X = Z = (Y,W ), where W is called the
missing data.

The EM algorithm is not really a single algorithm, but a framework
for the design of iterative likelihood maximization methods for parameter
estimation; nevertheless, we shall continue to refer to the EM algorithm.

10.2.2 Missing Data

In the simplest version of the missing-data model, we assume that M > N
and that Z = (Y,W ), where W is the missing-data random vector, taking
values in RM−N . If there were no missing data, we would have z = (y, w),
a realization of Z, and maximizing Lz(θ) = f(z|θ) would be simpler. The
choice of W need not be unique.

More generally, the conventional formulation of the problem is that
there is a random vector X taking values in RM , where M ≥ N , with
pdf or pf of the form fX(x|θ), and a function h : RM → RN such that
Y = h(X). For example, let X1 and X2 be independent and uniformly
distributed on [0, θ0], X = (X1, X2) and Y = X1 + X2 = h(X). We can
use the missing-data model here with Z = (X1 + X2, X1 −X2). What is
missing is not unique, however; instead of W = X1 − X2 as the missing
data, we can use W = X2, or any number of other combinations of X1 and
X2 that would allow us to recapture X.

It is standard in the EM literature to call X the complete data, Y the
incomplete data, and to assume that Y = h(X) for some function h. This
is because many, but not all, of the problems to which the EM approach
is applied fit this description. As we shall attempt to convince the reader,
this formulation is somewhat restrictive; the main point is simply that
fX(x|θ) would have been easier to maximize than fY (y|θ) is, regardless of
the relationship between X and Y . For this reason we shall call Y the
given data and X the preferred data, and not assume that Y = h(X) for
some function h. We reserve the term complete data for Z of the form
Z = (Y,W ); note that, in this case we do have Y = h(Z).

We shall assume, in all our theoretical discussions, that there is a like-
lihood maximizer θML that maximizes the likelihood function Ly(θ) over
θ ∈ Θ. In specific applications, the existence of a likelihood maximizer will
depend on the problem.

In some applications, the preferred data X arises naturally from the
problem, while in other cases the user must imagine preferred data. This
choice in selecting the preferred data can be helpful in speeding up the
algorithm (see [83]).
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10.2.3 A Multinomial Example

In many applications, the entries of the vector y are independent realiza-
tions of a single real-valued or vector-valued random variable V , as they
are, at least initially, for finite mixture problems to be considered later.
This is not always the case, however, as the following example shows.

A well known example that was used in [74] and again in [120] to illus-
trate the EM algorithm concerns a multinomial model taken from genetics.
Here there are four cells, with cell probabilities 1

2 + 1
4θ0,

1
4 (1−θ0), 1

4 (1−θ0),
and 1

4θ0, for some θ0 ∈ Θ = [0, 1] to be estimated. The entries of y are the
frequencies from a sample size of 197. We then have

fY (y|θ) =
197!

y1!y2!y3!y4!
(
1
2

+
1
4
θ)y1(

1
4
(1− θ))y2(

1
4
(1− θ))y3(

1
4
θ)y4 . (10.1)

It is then supposed that the first of the original four cells can be split into
two sub-cells, with probabilities 1

2 and 1
4θ0. We then write y1 = y11 + y12,

and let
X = (Y11, Y12, Y2, Y3, Y4),

where X has a multinomial distribution with five cells. Note that we do
now have Y = h(X).

10.2.4 Difficulties with the Usual Formulation

In the literature on the EM algorithm, it is common to assume that there
is a function h : RM → RN such that Y = h(X). In the discrete case, in
which summation and finite or infinite probability functions are involved,
we then have

fY (y|θ) =
∑

x∈X (y)

fX(x|θ), (10.2)

where
X (y) = {x|h(x) = y} = h−1({y}).

The difficulty arises in the continuous case, where integration and proba-
bility density functions (pdf) are needed; the set X (y) can have measure
zero in RM , so it is incorrect to mimic Equation (10.2) and write

fY (y|θ) =
∫

x∈X (y)

fX(x|θ)dx. (10.3)

The case of X1 andX2 independent and uniformly distributed on [0, θ0],
X = (X1, X2) and Y = X1 + X2 = h(X) provides a good illustration of
the problem. Here X (y) is the set of all pairs (x1, x2) with y = x1 + x2;
this subset of R2 has Lebesgue measure zero in R2. Now fY |X(y|x, θ) is a
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delta function, which we may view as δ(x2 − (y − x1)), with the property
that ∫

g(x2)δ(x2 − (y − x1))dx2 = g(y − x1).

Then we can write

fY (y|θ) =
∫ ∫

δ(x2 − y − x1)fX(x1, x2|θ)dx2dx1 =
∫
fX(x1, y − x1)dx1.

10.2.5 A Different Formulation

For any preferred data X the EM algorithm involves two steps: given y
and the current estimate θk, the E-step of the EM algorithm is to calculate

E(log fX(X|θ)|y, θk) =
∫
fX|Y (x|y, θk) log fX(x|θ)dx, (10.4)

the conditional expected value of the random vector log fX(X|θ), given y
and θk. Then the M-step is to maximize∫

fX|Y (x|y, θk) log fX(x|θ)dx (10.5)

with respect to θ ∈ Θ to obtain θk+1. For the missing-data model Z =
(Y,W ), we shall show that the M-step is to maximize∫

fW |Y (w|y, θk) log fY,W (y, w|θ)dw. (10.6)

We shall also show that for the missing-data model we always have Ly(θk+1) ≥
Ly(θk).

This suggests that, for arbitrary preferred data X, we view X as W , the
missing data, and use Z = (Y,X). When this works, the likelihood will be
non-decreasing. As we shall see, this approach does work if the preferred
data X satisfies the acceptability condition fY |X(y|x, θ) = fY |X(y|x); that
is, the conditional distribution of Y , given X, exists and is independent of
the parameter vector θ. Consequently, whenever the preferred data X is
acceptable, we know that Ly(θk+1) ≥ Ly(θk).

For those cases involving continuous distributions in which Y = h(X)
the X is acceptable, but we must define fY |X(y|x) in terms of a delta
function; we shall not consider such cases here.

10.2.6 The Example of Finite Mixtures

We say that a random vector V taking values in RM is a finite mixture if,
for j = 1, ..., J , fj is a probability density function or probability function,
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θj ≥ 0 is a weight, the θj sum to one, and the probability density function
or probability function for V is

fV (v|θ) =
J∑

j=1

θjfj(v). (10.7)

We draw N independent samples of V , denoted vn, and let yn, the nth
entry of the vector y be the vector vn. To create the preferred data we
assume that, for each n, the vector vn is a sample of the random vector V n

whose pdf or pf is fjn
, where the probability that jn = j is θj . We then let

the N entries of the preferred data X be the indices jn. The conditional
distribution of Y , given X, clearly is independent of the parameter vector
θ, and is given by

fY (y|x, θ) =
N∏

n=1

fjn(yn).

Therefore, X is acceptable. Note that we cannot recapture the entries of
y from those of x, so the model Y = h(X) does not hold here. Note also
that, although the vector y is taken originally to be a vector whose entries
are independently drawn samples from V , when we create the preferred
data X we change our view of y. Now each entry of y is governed by a
different distribution, so y is no longer viewed as a vector of independent
sample values of a single random vector.

10.2.7 Overview

We begin by considering in detail the missing-data model. The EM algo-
rithm we obtain there leads to non-decreasing likelihood. When we attempt
to treat arbitrary preferred data X as if it were missing data, to take ad-
vantage of the non-decreasing likelihood, we find that this approach works,
provided X satisfies an acceptability condition. Acceptability also permits
the reformulation of the EM algorithm in terms of alternating minimization
of a Kullback-Leibler distance, along the lines of the work of Csiszár and
Tusnády.

We turn then to several examples. The first is the sum of independent
Poisson random variables and its application in emission tomography, lead-
ing to a special case of the EM algorithm that we call here the EMML algo-
rithm. Next, we derive the Mix-EM algorithm for finite mixture problems.
Because the preferred data is acceptable, the likelihood is non-decreasing.
Going further, we use a convergence theorem obtained elsewhere for emis-
sion tomography to prove convergence of the Mix-EM algorithm to a vector
of mixing proportions that is a likelihood maximizer.
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10.3 The Missing-Data Model

For any measurable function H(y, w) we have

E(H(Y,W )|θk) =
∫ ∫

H(y, w)fY,W (y, w|θk)dw dy, (10.8)

so that

E(H(Y,W )|θk) =
∫ (∫

H(y, w)
fY,W (y, w|θk)
fY (y|θk)

dw
)
fY (y|θk)dy. (10.9)

We also have

E(H(Y,W )|θk) =
∫ (

E(H(Y,W )|y, θk)
)
fY (y|θk)dy, (10.10)

from which we conclude that∫
H(y, w)

fY,W (y, w|θk)
fY (y|θk)

dw = E(H(Y,W )|y, θk) =
∫
H(y, w)fW |Y (w|y, θk)dw.(10.11)

Substituting log fZ(Z|θ) = log fY,W (Y,W |θ) for H(Y,W ), the E-step
of the EM algorithm becomes

E(log fZ(Z|θ)|y, θk) =
∫

log fY,W (y, w|θ)fW |Y (w|y, θk)dw. (10.12)

Then the M-step is to maximize∫
log fY,W (y, w|θ)fW |Y (w|y, θk)dw (10.13)

to get θk+1.
For the missing-data model we have the following result (see [101, 53]).

Proposition 10.1 The sequence {Ly(θk)} is non-decreasing, as k → +∞.

Proof: Begin with

log fY (y|θ) =
∫
fW |Y (w|y, θk) log fY (y|θ)dw.

Then

log fY (y|θ) =
∫
fW |Y (w|y, θk)

(
log fY,W (y, w|θ)− log fW |Y (w|y, θ)

)
dw.

Therefore,
log fY (y|θk+1)− log fY (y|θk) =
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fW |Y (w|y, θk) log fY,W (y, w|θk+1)dw−

∫
fW |Y (w|y, θk) log fY,W (y, w|θk)dw+

∫
fW |Y (w|y, θk) log fW |Y (w|y, θk)dw −

∫
fW |Y (w|y, θk) log fW |Y (w|y, θk+1)dw.(10.14)

The first difference on the right side of Equation (10.14) is non-negative
because of the M-step, while the second difference is non-negative because
of Jensen’s Inequality.

The fact that likelihood is not decreasing in the missing-data model
suggests that we try to use this model for arbitrary preferred data X, by
defining the complete data to be Z = (Y,X) and viewing X as the missing
data, that is, W = X. This approach works, provided that X satisfies the
acceptability condition.

10.4 The EM Algorithm for Acceptable X

For any preferred data X the E-step of the EM algorithm is to calculate

E(log fX(X|θ)|y, θk) =
∫
fX|Y (x|y, θk) log fX(x|θ)dx. (10.15)

Once we have y, the M-step is then to maximize

E(log fX(X|θ)|y, θk) =
∫
fX|Y (x|y, θk) log fX(x|θ)dx (10.16)

to get θ = θk+1.

10.4.1 The Likelihood is Non-Decreasing

For the moment, let X be any preferred data. We examine the behavior of
the likelihood when the EM algorithm is applied to X.

As in the proof for the missing-data model, we begin with

log fY (y|θ) =
∫
fX|Y (x|y, θk) log fY (y|θ)dx.

Then

log fY (y|θ) =
∫
fX|Y (x|y, θk)

(
log fY,X(y, x|θ)− log fX|Y (x|y, θ)

)
dx.

Therefore,
log fY (y|θk+1)− log fY (y|θk) =∫

fX|Y (x|y, θk) log fY,X(y, x|θk+1)dx−
∫
fX|Y (x|y, θk) log fY,X(y, x|θk)dx+
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fX|Y (x|y, θk) log fX|Y (x|y, θk)dx−

∫
fX|Y (x|y, θk) log fX|Y (x|y, θk+1)dx.(10.17)

The second difference on the right side of Equation (10.17) is non-negative
because of Jensen’s Inequality. But we cannot assert that the first difference
on the right is non-negative because, in the M-step, we maximize∫

fX|Y (x|y, θk) log fX(x|θ)dx

not ∫
fX|Y (x|y, θk) log fY,X(y, x|θ)dx.

If X is acceptable, then

log fY,X(y, x|θ)− log fX(x|θ) = log fY |X(y|x)

is independent of θ and the difficulty disappears. We may then conclude
that likelihood is non-decreasing for acceptable X.

10.4.2 Generalized EM Algorithms

If, instead of maximizing∫
fX|Y (x|y, θk) log fX(x|θ)dx,

at each M-step, we simply select θk+1 so that∫
fX|Y (x|y, θk) log fY,X(y, x|θk+1)dx−

∫
fX|Y (x|y, θk) log fY,X(y, x|θk)dx > 0,

we say that we are using a generalized EM (GEM) algorithm. It is clear
from the discussion in the previous subsection that, whenever X is accept-
able, a GEM also guarantees that likelihood is non-decreasing.

10.4.3 Preferred Data as Missing Data

We know that, when the missing-data model is used and the M-step is de-
fined as maximizing the function in (10.13), the likelihood is not decreasing.
It would seem then that, for any choice of preferred data X, we could view
this data as missing and take as our complete data the pair Z = (Y,X),
with X now playing the role of W . The function in (10.13) is then∫

fX|Y (x|y, θk) log fY,X(y, x|θ)dx; (10.18)
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we maximize this function to get θk+1. It then follows that Ly(θk+1) ≥
Ly(θk). The obvious question is whether or not these two functions given
in (10.15) and (10.18) have the same maximizers.

For acceptable X we have

log fY,X(y, x|θ) = log fX(x|θ) + log fY |X(y|x), (10.19)

so the two functions given in (10.15) and (10.18) do have the same maximiz-
ers. It follows once again that, whenever the preferred data is acceptable,
we have Ly(θk+1) ≥ Ly(θk). Without additional assumptions, however, we
cannot conclude that {θk} converges to θML, nor that {fY (y|θk)} converges
to fY (y|θML).

In the discrete case in which Y = h(X) the conditional probability
fY |X(y|x, θ) is δ(y − h(x)), as a function of y, for given x, and is the
characteristic function of the set X (y), as a function of x, for given y.
Therefore, we can write

fX|Y (x|y, θ) =
{
fX(x|θ)/fY (y|θ), if x ∈ X (y);

0, if x /∈ X (y). (10.20)

For the continuous case in which Y = h(X), the pdf fY |X(y|x, θ) is again a
delta function of y, for given x; the difficulty arises when we need to view
this as a function of x, for given y. The acceptability property helps us
avoid this difficulty.

When X is acceptable, we have

fX|Y (x|y, θ) = fY |X(y|x)fX(x|θ)/fY (y|θ), (10.21)

whenever fY (y|θ) 6= 0, and is zero otherwise. Consequently, when X is
acceptable, we have a kernel model for fY (y|θ) in terms of the fX(x|θ):

fY (y|θ) =
∫
fY |X(y|x)fX(x|θ)dx; (10.22)

for the continuous case we view this as a corrected version of Equation
(10.3). In the discrete case the integral is replaced by a summation, of
course, but when we are speaking generally about either case, we shall use
the integral sign.

The acceptability of the missing data W is used in [53], but more for
computational convenience and to involve the Kullback-Leibler distance
in the formulation of the EM algorithm. It is not necessary that W be
acceptable in order for likelihood to be non-decreasing, as we have seen.

10.5 The EM and the Kullback-Leibler Dis-
tance

We illustrate the usefulness of acceptability and reformulate the M-step in
terms of cross-entropy or Kullback-Leibler distance minimization.
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10.5.1 Cross-Entropy or the Kullback-Leibler Distance

The cross-entropy or Kullback-Leibler distance is a useful tool for analyzing
the EM algorithm. For positive numbers u and v, the Kullback-Leibler
distance from u to v is

KL(u, v) = u log
u

v
+ v − u. (10.23)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL
distance is extended to nonnegative vectors component-wise, so that for
nonnegative vectors a and b we have

KL(a, b) =
J∑

j=1

KL(aj , bj). (10.24)

One of the most useful facts about the KL distance is contained in the
following lemma.

Lemma 10.1 For non-negative vectors a and b, with b+ =
∑J

j=1 bj > 0,
we have

KL(a, b) = KL(a+, b+) +KL(a,
a+

b+
b). (10.25)

10.5.2 Using Acceptable Data

The assumption that the data X is acceptable helps simplify the theoretical
discussion of the EM algorithm.

For any preferred X the M-step of the EM algorithm, in the continuous
case, is to maximize the function∫

fX|Y (x|y, θk) log fX(x|θ)dx, (10.26)

over θ ∈ Θ; the integral is replaced by a sum in the discrete case. For
notational convenience we let

b(θk) = fX|Y (x|y, θk), (10.27)

and

f(θ) = fX(x|θ). (10.28)

Then the M-step is equivalent to minimizing the Kullback-Leibler or cross-
entropy distance

KL(b(θk), f(θ)) =
∫
fX|Y (x|y, θk) log

(fX|Y (x|y, θk)
fX(x|θ)

)
dx
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=
∫
fX|Y (x|y, θk) log

(fX|Y (x|y, θk)
fX(x|θ)

)
+ fX(x|θ)− fX|Y (x|y, θk)dx.(10.29)

This holds since both fX(x|θ) and fX|Y (x|y, θk) are probability density
functions or probabilities.

For acceptable X we have

log fY,X(y, x|θ) = log fX|Y (x|y, θ) + log fY (y|θ) = log fY |X(y|x) + log fX(x|θ).(10.30)

Therefore,
log fY (y|θk+1)− log fY (y|θ) =

KL(b(θk), f(θ))−KL(b(θk), f(θk+1)) +KL(b(θk), b(θk+1))−KL(b(θk), b(θ)).(10.31)

Since θ = θk+1 minimizes KL(b(θk), f(θ)), we have that

log fY (y|θk+1)− log fY (y|θk) =

KL(b(θk), f(θk))−KL(b(θk), f(θk+1)) +KL(b(θk), b(θk+1)) ≥ 0.(10.32)

This tells us, once again, that the sequence of likelihood values {log fY (y|θk)}
is increasing, and that the sequence of its negatives, {− log fY (y|θk)}, is de-
creasing. Since we assume that there is a maximizer θML of the likelihood,
the sequence {− log fY (y|θk)} is also bounded below and the sequences
{KL(b(θk), b(θk+1))} and {KL(b(θk), f(θk)) − KL(b(θk), f(θk+1))} con-
verge to zero.

Without some notion of convergence in the parameter space Θ, we
cannot conclude that {θk} converges to a maximum likelihood estimate
θML. Without some additional assumptions, we cannot even conclude that
the functions f(θk) converge to f(θML).

10.6 The Approach of Csiszár and Tusnády

For acceptable X the M-step of the EM algorithm is to minimize the func-
tion KL(b(θk), f(θ)) over θ ∈ Θ to get θk+1. To put the EM algorithm
into the framework of the alternating minimization approach of Csiszár
and Tusnády [70], we need to view the M-step in a slightly different way;
the problem is that, for the continuous case, having found θk+1, we do not
then minimize KL(b(θ), f(θk+1)) at the next step.

10.6.1 The Framework of Csiszár and Tusnády

Following [70], we take Ψ(p, q) to be a real-valued function of the variables
p ∈ P and q ∈ Q, where P and Q are arbitrary sets. Minimizing Ψ(p, qn)
gives pn+1 and minimizing Ψ(pn+1, q) gives qn+1, so that

Ψ(pn, qn) ≥ Ψ(pn, qn+1) ≥ Ψ(pn+1, qn+1). (10.33)



116 CHAPTER 10. THE EM ALGORITHM

The objective is to find (p̂, q̂) such that

Ψ(p, q) ≥ Ψ(p̂, q̂),

for all p and q. In order to show that {Ψ(pn, qn)} converges to

d = inf
p∈P,q∈Q

Ψ(p, q)

the authors of [70] assume the three- and four-point properties.
If there is a non-negative function ∆ : P × P → R such that

Ψ(p, qn+1)−Ψ(pn+1, qn+1) ≥ ∆(p, pn+1), (10.34)

then the three-point property holds. If

∆(p, pn) + Ψ(p, q) ≥ Ψ(p, qn+1), (10.35)

for all p and q, then the four-point property holds. Combining these two
inequalities, we have

∆(p, pn)−∆(p, pn+1) ≥ Ψ(pn+1, qn+1)−Ψ(p, q). (10.36)

From the inequality in (10.36) it follows easily that the sequence {Ψ(pn, qn)}
converges to d. Suppose this is not the case. Then there are p′, q′, and
D > d with

Ψ(pn, qn) ≥ D > Ψ(p′, q′) ≥ d.

From Equation (10.36) we have

∆(p′, pn)−∆(p′, pn+1) ≥ Ψ(pn+1, qn+1)−Ψ(p′, q′) ≥ D − d > 0.

But since {∆(p′, pn)} is a decreasing sequence of positive quantities, suc-
cessive differences must converge to zero.

10.6.2 Alternating Minimization for the EM

Assume that X is acceptable. We define the function G(θ) to be

G(θ) =
∫
fX|Y (x|y, θ) log fY |X(y|x)dx, (10.37)

for the continuous case, with a sum replacing the integral for the discrete
case. Using the identities

fY,X(y, x|θ) = fX|Y (x|y, θ)fY (y|θ) = fY |X(y|x, θ)fX(x|θ) = fY |X(y|x)fX(x|θ),

we then have

log fY (y|θ) = G(θ′) +KL(b(θ′), b(θ))−KL(b(θ′), f(θ)), (10.38)
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for any parameter values θ and θ′. With the choice of θ′ = θ we have

log fY (y|θ) = G(θ)−KL(b(θ), f(θ)). (10.39)

Therefore, subtracting Equation 10.39 from Equation 10.38, we get(
KL(b(θ′), f(θ))−G(θ′)

)
−
(
KL(b(θ), f(θ))−G(θ)

)
= KL(b(θ′), b(θ)).(10.40)

Now we can put the EM algorithm into the alternating-minimization frame-
work.

Define

Ψ(b(θ′), f(θ)) = KL(b(θ′), f(θ))−G(θ′). (10.41)

We know from Equation (10.40) that

Ψ(b(θ′), f(θ))−Ψ(b(θ), f(θ)) = KL(b(θ′), b(θ)). (10.42)

Therefore, we can say that the M-step of the EM algorithm is to minimize
Ψ(b(θk), f(θ)) over θ ∈ Θ to get θk+1 and that minimizing Ψ(b(θ), f(θk+1))
gives us θ = θk+1 again. With the choice of

∆(b(θ′), b(θ)) = KL(b(θ′), b(θ)),

Equation (10.42) becomes

Ψ(b(θ′), f(θ))−Ψ(b(θ), f(θ)) = ∆(b(θ′), b(θ)), (10.43)

which is the three-point property.
With P = B(Θ) and Q = F(Θ) the collections of all functions b(θ) and

f(θ), respectively, we can view the EM algorithm as alternating minimiza-
tion of the function Ψ(p, q), over p ∈ P and q ∈ Q. As we have seen, the
three-point property holds. What about the four-point property?

The Kullback-Leibler distance is an example of a jointly convex Breg-
man distance. According to a lemma of Eggermont and LaRiccia [78, 79],
the four-point property holds for alternating minimization of such dis-
tances, provided that the objects that can occur in the second-variable
position form a convex subset of RN . In the continuous case of the EM
algorithm, we are not performing alternating minimization on the function
KL(b(θ), f(θ′)), but on KL(b(θ), f(θ′))+G(θ). In the discrete case, when-
ever Y = h(X), the function G(θ) is always zero, so we are performing
alternating minimization on the KL distance KL(b(θ), f(θ′)). In [11] the
authors consider the problem of minimizing a function of the form

Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (10.44)

where φ and ψ are convex and differentiable on RJ , Df is a Bregman
distance, and P = Q is the interior of the domain of f . In [52] it was shown
that, when Df is jointly convex, the function Λ(p, q) has the five-point
property of [70]. In some particular instances, the collection of the functions
f(θ) is a convex set, as well, so the three- and four-point properties hold.
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10.7 Sums of Independent Poisson Random
Variables

The EM is often used with aggregated data. The case of sums of indepen-
dent Poisson random variables is particularly important.

10.7.1 Poisson Sums

Let X1, ..., XN be independent Poisson random variables with expected
value E(Xn) = λn. Let X be the random vector with Xn as its entries,
λ the vector whose entries are the λn, and λ+ =

∑N
n=1 λn. Then the

probability function for X is

fX(x|λ) =
N∏

n=1

λxn
n exp(−λn)/xn! = exp(−λ+)

N∏
n=1

λxn
n /xn! . (10.45)

Now let Y =
∑N

n=1Xn. Then, the probability function for Y is

Prob(Y = y) = Prob(X1 + ...+XN = y)

=
∑

x1+...xN=y

exp(−λ+)
N∏

n=1

λxn
n /xn! . (10.46)

As we shall see shortly, we have

∑
x1+...xN=y

exp(−λ+)
N∏

n=1

λxn
n /xn! = exp(−λ+)λy

+/y! . (10.47)

Therefore, Y is a Poisson random variable with E(Y ) = λ+.
When we observe an instance of Y , we can consider the conditional

distribution fX|Y (x|y, λ) of {X1, ..., XN}, subject to y = X1 + ... + XN .
We have

fX|Y (x|y, λ) =
y!

x1!...xN !

( λ1

λ+

)x1

...
(λN

λ+

)xN

. (10.48)

This is a multinomial distribution.
Given y and λ, the conditional expected value of Xn is then

E(Xn|y, λ) = yλn/λ+.

To see why this is true, consider the marginal conditional distribution
fX1|Y (x1|y, λ) of X1, conditioned on y and λ, which we obtain by hold-
ing x1 fixed and summing over the remaining variables. We have

fX1|Y (x1|y, λ) =
y!

x1!(y − x1)!

( λ1

λ+

)x1
(λ′+
λ+

)y−x1 ∑
x2+...+xN=y−x1

(y − x1)!
x2!...xN !

N∏
n=2

( λn

λ′+

)xn

,
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where
λ′+ = λ+ − λ1.

As we shall show shortly,

∑
x2+...+xN=y−x1

(y − x1)!
x2!...xN !

N∏
n=2

( λn

λ′+

)xn

= 1,

so that

fX1|Y (x1|y, λ) =
y!

x1!(y − x1)!

( λ1

λ+

)x1
(λ′+
λ+

)y−x1

.

The random variable X1 is equivalent to the random number of heads
showing in y flips of a coin, with the probability of heads given by λ1/λ+.
Consequently, the conditional expected value of X1 is yλ1/λ+, as claimed.
In the next subsection we look more closely at the multinomial distribution.

10.7.2 The Multinomial Distribution

When we expand the quantity (a1 + ...+ aN )y, we obtain a sum of terms,
each having the form ax1

1 ...axN

N , with x1 + ... + xN = y. How many terms
of the same form are there? There are N variables an. We are to use xn

of the an, for each n = 1, ..., N , to get y = x1 + ...+ xN factors. Imagine y
blank spaces, each to be filled in by a variable as we do the selection. We
select x1 of these blanks and mark them a1. We can do that in

(
y
x1

)
ways.

We then select x2 of the remaining blank spaces and enter a2 in them; we
can do this in

(
y−x1

x2

)
ways. Continuing in this way, we find that we can

select the N factor types in(
y

x1

)(
y − x1

x2

)
...

(
y − (x1 + ...+ xN−2)

xN−1

)
(10.49)

ways, or in

y!
x1!(y − x1)!

...
(y − (x1 + ...+ xN−2))!

xN−1!(y − (x1 + ...+ xN−1))!
=

y!
x1!...xN !

. (10.50)

This tells us in how many different sequences the factor variables can be
selected. Applying this, we get the multinomial theorem:

(a1 + ...+ aN )y =
∑

x1+...+xN=y

y!
x1!...xN !

ax1
1 ...axN

N . (10.51)

Select an = λn/λ+. Then,

1 = 1y =
( λ1

λ+
+ ...+

λN

λ+

)y
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=
∑

x1+...+xN=y

y!
x1!...xN !

( λ1

λ+

)x1

...
(λN

λ+

)xN

. (10.52)

From this we get

∑
x1+...xN=y

exp(−λ+)
N∏

n=1

λxn
n /xn! = exp(−λ+)λy

+/y! . (10.53)

10.8 Poisson Sums in Emission Tomography

Sums of Poisson random variables and the problem of complete versus in-
complete data arise in single-photon computed emission tomography (SPECT)
(Wernick and Aarsvold (2004) [150]).

10.8.1 The SPECT Reconstruction Problem

In their 1976 paper Rockmore and Makovski [137] suggested that the prob-
lem of reconstructing a tomographic image be viewed as statistical param-
eter estimation. Shepp and Vardi (1982) [139] expanded on this idea and
suggested that the EM algorithm discussed by Dempster, Laird and Rubin
(1977) [74] be used for the reconstruction. The region of interest within the
body of the patient is discretized into J pixels (or voxels), with λj ≥ 0 the
unknown amount of radionuclide within the jth pixel; we assume that λj

is also the expected number of photons emitted from the jth pixel during
the scanning time. Emitted photons are detected at any one of I detectors
outside the body, with yi > 0 the photon count at the ith detector. The
probability that a photon emitted at the jth pixel will be detected at the
ith detector is Pij , which we assume is known; the overall probability of
detecting a photon emitted from the jth pixel is sj =

∑I
i=1 Pij > 0.

The Preferred Data

For each i and j the random variable Xij is the number of photons emitted
from the jth pixel and detected at the ith detector; the Xij are assumed to
be independent and Pijλj-Poisson. With xij a realization of Xij , the vector
x with components xij is our preferred data. The pdf for this preferred
data is a probability vector, with

fX(x|λ) =
I∏

i=1

J∏
j=1

exp−Pijλj (Pijλj)xij/xij ! . (10.54)

Given an estimate λk of the vector λ and the restriction that Yi =∑J
j=1Xij , the random variables Xi1, ..., XiJ have the multinomial distri-
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bution

Prob(xi1, ..., xiJ) =
yi!

xi1! · · · xiJ !

J∏
j=1

(Pijλj

(Pλ)i

)xij

.

Therefore, the conditional expected value of Xij , given y and λk, is

E(Xij |y, λk) = λk
jPij

( yi

(Pλk)i

)
,

and the conditional expected value of the random variable

log fX(X|λ) =
I∑

i=1

J∑
j=1

(−Pijλj) +Xij log(Pijλj) + constants

becomes

E(log fX(X|λ)|y, λk) =
I∑

i=1

J∑
j=1

(
(−Pijλj) + λk

jPij

( yi

(Pλk)i

)
log(Pijλj)

)
,

omitting terms that do not involve the parameter vector λ. In the EM algo-
rithm, we obtain the next estimate λk+1 by maximizing E(log fX(X|λ)|y, λk).

The log likelihood function for the preferred data X (omitting con-
stants) is

LLx(λ) =
I∑

i=1

J∑
j=1

(
− Pijλj +Xij log(Pijλj)

)
. (10.55)

Of course, we do not have the complete data.

The Incomplete Data

What we do have are the yi, values of the random variables

Yi =
J∑

j=1

Xij ; (10.56)

this is the given data. These random variables are also independent and
(Pλ)i-Poisson, where

(Pλ)i =
J∑

j=1

Pijλj .

The log likelihood function for the given data is

LLy(λ) =
I∑

i=1

(
− (Pλ)i + yi log((Pλ)i)

)
. (10.57)
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Maximizing LLx(λ) in Equation (10.55) is easy, while maximizing LLy(λ)
in Equation (10.57) is harder and requires an iterative method.

The EM algorithm involves two steps: in the E-step we compute the
conditional expected value of LLx(λ), conditioned on the data vector y and
the current estimate λk of λ; in the M-step we maximize this conditional
expected value to get the next λk+1. Putting these two steps together, we
have the following EMML iteration:

λk+1
j = λk

j s
−1
j

I∑
i=1

Pij
yi

(Pλk)i
. (10.58)

For any positive starting vector λ0, the sequence {λk} converges to a max-
imizer of LLy(λ), over all non-negative vectors λ.

Note that, because we are dealing with finite probability vectors in this
example, it is a simple matter to conclude that

fY (y|λ) =
∑

x∈X (y)

fX(x|λ). (10.59)

10.8.2 Using the KL Distance

In this subsection we assume, for notational convenience, that the system
y = Pλ has been normalized so that sj = 1 for each j. Maximizing
E(log fX(X|λ)|y, λk) is equivalent to minimizing KL(r(λk), q(λ)), where
r(λ) and q(λ) are I by J arrays with entries

r(λ)ij = λjPij

( yi

(Pλ)i

)
,

and
q(λ)ij = λjPij .

In terms of our previous notation we identify r(λ) with b(θ), and q(λ) with
f(θ). The set F(Θ) of all f(θ) is now a convex set and the four-point
property of [70] holds. The iterative step of the EMML algorithm is then

λk+1
j = λk

j

I∑
i=1

Pi,j
yi

(Pλk)i
. (10.60)

The sequence {λk} converges to a maximizer λML of the likelihood for any
positive starting vector.

As we noted previously, before we can discuss the possible convergence
of the sequence {λk} of parameter vectors to a maximizer of the likelihood,
it is necessary to have a notion of convergence in the parameter space.
For the problem in this section, the parameter vectors λ are non-negative.



10.9. FINITE MIXTURE PROBLEMS 123

Proof of convergence of the sequence {λk} depends heavily on the following
[30]:

KL(y, Pλk)−KL(y, Pλk+1) = KL(r(λk), r(λk+1)) +KL(λk+1, λk);(10.61)

and

KL(λML, λ
k)−KL(λML, λ

k+1) ≥ KL(y, Pλk)−KL(y, PλML).(10.62)

Any likelihood maximizer λML is also a non-negative minimizer of the
KL distance KL(y, Pλ), so the EMML algorithm can be thought of as a
method for finding a non-negative solution (or approximate solution) for
a system y = Pλ of linear equations in which yi > 0 and Pij ≥ 0 for all
indices. This will be helpful when we consider mixture problems.

10.9 Finite Mixture Problems

Estimating the combining proportions in probabilistic mixture problems
shows that there are meaningful examples of our acceptable-data model,
and provides important applications of likelihood maximization.

10.9.1 Mixtures

We say that a random vector V taking values in RM is a finite mixture (see
Everett and Hand [81]; Redner and Walker [133]) if there are probability
density functions or probabilities fj and numbers θj ≥ 0, for j = 1, ..., J ,
such that the probability density function or probability function for V has
the form

fV (v|θ) =
J∑

j=1

θjfj(v), (10.63)

for some choice of the θj ≥ 0 with
∑J

j=1 θj = 1.

10.9.2 The Likelihood Function

The data are N realizations of the random vector V , denoted vn, for
n = 1, ..., N , and the given data is the vector y = (v1, ..., vN ). The col-
umn vector θ = (θ1, ..., θJ)T is the generic parameter vector of mixture
combining proportions. The likelihood function is

Ly(θ) =
N∏

n=1

(
θ1f1(vn) + ...+ θJfJ(vn)

)
. (10.64)
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Then the log likelihood function is

LLy(θ) =
N∑

n=1

log
(
θ1f1(vn) + ...+ θJfJ(vn)

)
.

With u the column vector with entries ui = 1/N , and P the matrix with
entries Pnj = fj(vn), we define

sj =
N∑

n=1

Pnj =
N∑

n=1

fj(vn).

Maximizing LLy(θ) is equivalent to minimizing

F (θ) = KL(u, Pθ) +
J∑

j=1

(1− sj)θj . (10.65)

10.9.3 A Motivating Illustration

To motivate such mixture problems, we imagine that each data value is
generated by first selecting one value of j, with probability θj , and then
selecting a realization of a random variable governed by fj(v). For example,
there could be J bowls of colored marbles, and we randomly select a bowl,
and then randomly select a marble within the selected bowl. For each n
the number vn is the numerical code for the color of the nth marble drawn.
In this illustration we are using a mixture of probability functions, but we
could have used probability density functions.

10.9.4 The Acceptable Data

We approach the mixture problem by creating acceptable data. We imagine
that we could have obtained xn = jn, for n = 1, ..., N , where the selection
of vn is governed by the function fjn

(v). In the bowls example, jn is the
number of the bowl from which the nth marble is drawn. The acceptable-
data random vector is X = (X1, ..., XN ), where the Xn are independent
random variables taking values in the set {j = 1, ..., J}. The value jn is
one realization of Xn. Since our objective is to estimate the true θj , the
values vn are now irrelevant. Our ML estimate of the true θj is simply the
proportion of times j = jn. Given a realization x of X, the conditional
pdf or pf of Y does not involve the mixing proportions, so X is acceptable.
Notice also that it is not possible to calculate the entries of y from those
of x; the model Y = h(X) does not hold.
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10.9.5 The Mix-EM Algorithm

Using this acceptable data, we derive the EM algorithm, which we call the
Mix-EM algorithm.

With Nj denoting the number of times the value j occurs as an entry
of x, the likelihood function for X is

Lx(θ) = fX(x|θ) =
J∏

j=1

θ
Nj

j , (10.66)

and the log likelihood is

LLx(θ) = logLx(θ) =
J∑

j=1

Nj log θj . (10.67)

Then

E(logLx(θ)|y, θk) =
J∑

j=1

E(Nj |y, θk) log θj . (10.68)

To simplify the calculations in the E-step we rewrite LLx(θ) as

LLx(θ) =
N∑

n=1

J∑
j=1

Xnj log θj , (10.69)

where Xnj = 1 if j = jn and zero otherwise. Then we have

E(Xnj |y, θk) = prob (Xnj = 1|y, θk) =
θk

j fj(vn)
f(vn|θk)

. (10.70)

The function E(LLx(θ)|y, θk) becomes

E(LLx(θ)|y, θk) =
N∑

n=1

J∑
j=1

θk
j fj(vn)
f(vn|θk)

log θj . (10.71)

Maximizing with respect to θ, we get the iterative step of the Mix-EM
algorithm:

θk+1
j =

1
N
θk

j

N∑
n=1

fj(vn)
f(vn|θk)

. (10.72)

We know from our previous discussions that, since the preferred data
X is acceptable, likelihood is non-decreasing for this algorithm. We shall
go further now, and show that the sequence of probability vectors {θk}
converges to a maximizer of the likelihood.
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10.9.6 Convergence of the Mix-EM Algorithm

As we noted earlier, maximizing the likelihood in the mixture case is equiv-
alent to minimizing

F (θ) = KL(u, Pθ) +
J∑

j=1

(1− sj)θj ,

over probability vectors θ. It is easily shown that if θ̂ minimizes F (θ) over
all non-negative vectors θ, then θ̂ is a probability vector. Therefore, we
can obtain the maximum likelihood estimate of θ by minimizing F (θ) over
non-negative vectors θ.

The following theorem is found in [39].

Theorem 10.1 Let u be any positive vector, P any non-negative matrix
with sj > 0 for each j, and

F (θ) = KL(u, Pθ) +
J∑

j=1

βjKL(γj , θj).

If sj +βj > 0, αj = sj/(sj +βj), and βjγj ≥ 0, for all j, then the iterative
sequence given by

θk+1
j = αjs

−1
j θk

j

( N∑
n=1

Pn,j
un

(Pθk)n

)
+ (1− αj)γj (10.73)

converges to a non-negative minimizer of F (θ).

With the choices un = 1/N , γj = 0, and βj = 1 − sj , the iteration in
Equation (10.73) becomes that of the Mix-EM algorithm. Therefore, the
sequence {θk} converges to the maximum likelihood estimate of the mixing
proportions.

10.10 More on Convergence

There is a mistake in the proof of convergence given in Dempster, Laird,
and Rubin (1977) [74]. Wu (1983) [153] and Boyles (1983) [14] attempted
to repair the error, but also gave examples in which the EM algorithm
failed to converge to a global maximizer of likelihood. In Chapter 3 of
McLachlan and Krishnan (1997) [120] we find the basic theory of the EM
algorithm, including available results on convergence and the rate of con-
vergence. Because many authors rely on Equation (10.3), it is not clear
that these results are valid in the generality in which they are presented.
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There appears to be no single convergence theorem that is relied on uni-
versally; each application seems to require its own proof of convergence.
When the use of the EM algorithm was suggested for SPECT and PET, it
was necessary to prove convergence of the resulting iterative algorithm in
Equation (10.58), as was eventually achieved in a sequence of papers (Shepp
and Vardi (1982) [139], Lange and Carson (1984) [113], Vardi, Shepp and
Kaufman (1985) [149], Lange, Bahn and Little (1987) [114], and Byrne
(1993) [30]). When the EM algorithm was applied to list-mode data in
SPECT and PET (Barrett, White, and Parra (1997) [6], and Huesman et
al. (2000) [105], the resulting algorithm differed slightly from that in Equa-
tion (10.58) and a proof of convergence was provided in Byrne (2001) [39].
The convergence theorem in Byrne (2001) also establishes the convergence
of the iteration in Equation (10.72) to the maximum-likelihood estimate of
the mixing proportions.

10.11 Open Questions

As we have seen, the conventional formulation of the EM algorithm presents
difficulties when probability density functions are involved. We have shown
here that the use of acceptable preferred data can be helpful in resolving
this issue, but other ways may also be useful.

Proving convergence of the sequence {θk} appears to involve the se-
lection of an appropriate topology for the parameter space Θ. While it
is common to assume that Θ is a subset of Euclidean space and that the
usual norm should be used to define distance, it may be helpful to tailor
the metric to the nature of the parameters. In the case of Poisson sums, for
example, the parameters are non-negative vectors and we found that the
cross-entropy distance is more appropriate. Even so, additional assump-
tions appear necessary before convergence of the {θk} can be established.
To simplify the analysis, it is often assumed that cluster points of the se-
quence lie in the interior of the set Θ, which is not a realistic assumption
in some applications.

It may be wise to consider, instead, convergence of the functions fY (y|θk),
or maybe even to identify the parameters θ with the functions fY (y|θ).
Proving convergence to Ly(θML) of the likelihood values Ly(θk) is also an
option.

10.12 Conclusion

Difficulties with the conventional formulation of the EM algorithm in the
continuous case of probability density functions (pdf) has prompted us to
adopt a new definition, that of acceptable data. As we have shown, this
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model can be helpful in generating EM algorithms in a variety of situa-
tions. For the discrete case of probability functions (pf), the conventional
approach remains satisfactory. In both cases, the two steps of the EM al-
gorithm can be viewed as alternating minimization of the Kullback-Leibler
distance between two sets of parameterized pf or pdf, along the lines in-
vestigated by Csiszár and Tusnády [70]. In order to use the full power of
their theory, however, we need one of the sets to be convex. This does oc-
cur in the important special case of sums of independent Poisson random
variables, but is not generally the case.



Chapter 11

Kepler’s Laws of
Planetary Motion
(Chapter 5,6)

11.1 Introduction

Kepler worked from 1601 to 1612 in Prague as the Imperial Mathemati-
cian. Taking over from Tycho Brahe, and using the tremendous amount
of data gathered by Brahe from naked-eye astronomical observation, he
formulated three laws governing planetary motion. Fortunately, among his
tasks was the study of the planet Mars, whose orbit is quite unlike a circle.
This forced Kepler to consider other possibilities and ultimately led to his
discovery of elliptic orbits. These laws, which were the first “natural laws”
in the modern sense, served to divorce astronomy from theology and marry
it to physics. At last, the planets were viewed as material bodies, not
unlike earth, floating freely in space and moved by physical forces acting
on them. Although the second law preceded the first, Kepler’s Laws are
usually enumerated as follows:

• 1. the planets travel around the sun not in circles but in elliptical
orbits, with the sun at one focal point;

• 2. a planet’s speed is not uniform, but is such that the line segment
from the sun to the planet sweeps out equal areas in equal time
intervals; and, finally,

• 3. for all the planets, the time required for the planet to complete
one orbit around the sun, divided by the 3/2 power of its average
distance from the sun, is the same constant.

129
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These laws, particularly the third one, provided strong evidence for New-
ton’s law of universal gravitation. How Kepler discovered these laws with-
out the aid of analytic geometry and differential calculus, with no notion of
momentum, and only a vague conception of gravity, is a fascinating story,
perhaps best told by Koestler in [108].

Around 1684, Newton was asked by Edmund Halley, of Halley’s comet
fame, what the path would be for a planet moving around the sun, if the
force of gravity fell off as the square of the distance from the sun. Newton
responded that it would be an ellipse. Kepler had already declared that
planets moved along elliptical orbits with the sun at one focal point, but his
findings were based on observation and imagination, not deduction from
physical principles. Halley asked Newton to provide a proof. To supply
such a proof, Newton needed to write a whole book, the Principia, pub-
lished in 1687, in which he had to deal with such mathematically difficult
questions as what the gravitational force is on a point when the attracting
body is not just another point, but a sphere, like the sun.

With the help of vector calculus, a later invention, Kepler’s laws can be
derived as consequences of Newton’s inverse square law for gravitational
attraction.

11.2 Preliminaries

We consider a body with constant massmmoving through three-dimensional
space along a curve

r(t) = (x(t), y(t), z(t)),

where t is time and the sun is the origin. The velocity vector at time t is
then

v(t) = r′(t) = (x′(t), y′(t), z′(t)),

and the acceleration vector at time t is

a(t) = v′(t) = r′′(t) = (x′′(t), y′′(t), z′′(t)).

The linear momentum vector is

p(t) = mv(t).

One of the most basic laws of motion is that the vector p′(t) = mv′(t) =
ma(t) is equal to the external force exerted on the body. When a body, or
more precisely, the center of mass of the body, does not change location,
all it can do is rotate. In order for a body to rotate about an axis a torque
is required. Just as work equals force times distance moved, work done
in rotating a body equals torque times angle through which it is rotated.
Just as force is the time derivative of p(t), the linear momentum vector, we
find that torque is the time derivative of something else, called the angular
momentum vector.
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11.3 Torque and Angular Momentum

Consider a body rotating around the origin in two-dimensional space, whose
position at time t is

r(t) = (r cos θ(t), r sin θ(t)).

Then at time t+ ∆t it is at

r(t+ ∆t) = (r cos(θ(t) + ∆θ), r sin(θ(t) + ∆θ)).

Therefore, using trig identities, we find that the change in the x-coordinate
is approximately

∆x = −r∆θ sin θ(t) = −y(t)∆θ,

and the change in the y-coordinate is approximately

∆y = r∆θ cos θ(t) = x(t)∆θ.

The infinitesimal work done by a force F = (Fx, Fy) in rotating the body
through the angle ∆θ is then approximately

∆W = Fx∆x+ Fy∆y = (Fyx(t)− Fxy(t))∆θ.

Since work is torque times angle, we define the torque to be

τ = Fyx(t)− Fxy(t).

The entire motion is taking place in two dimensional space. Neverthe-
less, it is convenient to make use of the concept of cross product of three-
dimensional vectors to represent the torque. When we rewrite

r(t) = (x(t), y(t), 0),

and
F = (Fx, Fy, 0),

we find that

r(t)× F = (0, 0, Fyx(t)− Fxy(t)) = (0, 0, τ) = τ.

Now we use the fact that the force is the time derivative of the vector p(t)
to write

τ = (0, 0, τ) = r(t)× p′(t).
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Ex. 11.1 Show that

r(t)× p′(t) =
d

dt
(r(t)× p(t)). (11.1)

By analogy with force as the time derivative of linear momentum, we
define torque as the time derivative of angular momentum, which, from the
calculations just performed, leads to the definition of the angular momen-
tum vector as

L(t) = r(t)× p(t).

We need to say a word about the word “vector”. In our example of
rotation in two dimensions we introduced the third dimension as merely a
notational convenience. It is convenient to be able to represent the torque
as L′(t) = (0, 0, τ), but when we casually call L(t) the angular momentum
vector, physicists would tell us that we haven’t yet shown that angular mo-
mentum is a “vector” in the physicists’ sense. Our example was too simple,
they would point out. We had rotation about a single fixed axis that was
conveniently chosen to be one of the coordinate axes in three-dimensional
space. But what happens when the coordinate system changes?

Clearly, they would say, physical objects rotate and have angular mo-
mentum. The earth rotates around an axis, but this axis is not always
the same axis; the axis wobbles. A well thrown football rotates around its
longest axis, but this axis changes as the ball flies through the air. Can we
still say that the angular momentum can be represented as

L(t) = r(t)× p(t)?

In other words, we need to know that the torque is still the time derivative
of L(t), even as the coordinate system changes. In order for something
to be a “vector”in the physicists’ sense, it needs to behave properly as we
switch coordinate systems, that is, it needs to transform as a vector [84].
In fact, all is well. This definition of L(t) holds for bodies moving along
more general curves in three-dimensional space, and we can go on calling
L(t) the angular momentum vector. Now we begin to exploit the special
nature of the gravitational force.

11.4 Gravity is a Central Force

We are not interested here in arbitrary forces, but in the gravitational force
that the sun exerts on the body, which has special properties that we shall
exploit. In particular, this gravitational force is a central force.

Definition 11.1 We say that the force is a central force if

F(t) = h(t)r(t),
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for each t, where h(t) denotes a scalar function of t; that is, the force is
central if it is proportional to r(t) at each t.

Proposition 11.1 If F(t) is a central force, then L′(t) = 0, for all t, so
that L = L(t) is a constant vector and L = ||L(t)|| = ||L|| is a constant
scalar, for all t.

Proof: From Equation (11.1) we have

L′(t) = r(t)× p′(t) = r(t)× F(t) = h(t)r(t)× r(t) = 0.

We see then that the angular momentum vector L(t) is conserved when
the force is central.

Proposition 11.2 If L′(t) = 0, then the curve r(t) lies in a plane.

Proof: We have

r(t) · L = r(t) · L(t) = r(t) ·
(
r(t)× p(t)

)
,

which is the volume of the parallelepiped formed by the three vectors r(t),
r(t) and p(t), which is obviously zero. Therefore, for every t, the vector
r(t) is orthogonal to the constant vector L. So, the curve lies in a plane
with normal vector L.

11.5 The Second Law

We know now that, since the force is central, the curve described by r(t)
lies in a plane. This allows us to use polar coordinate notation [144]. We
write

r(t) = ρ(t)(cos θ(t), sin θ(t)) = ρ(t)ur(t),

where ρ(t) is the length of the vector r(t) and

ur(t) =
r(t)
||r(t)||

= (cos θ(t), sin θ(t))

is the unit vector in the direction of r(t). We also define

uθ(t) = (− sin θ(t), cos θ(t)),

so that
uθ(t) =

d

dθ
ur(t),

and
ur(t) = − d

dθ
uθ(t).
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Ex. 11.2 Show that

p(t) = mρ′(t)ur(t) +mρ(t)
dθ

dt
uθ(t). (11.2)

Ex. 11.3 View the vectors r(t), p(t), ur(t) and uθ(t) as vectors in three-
dimensional space, all with third component equal to zero. Show that

ur(t)× uθ(t) = k = (0, 0, 1),

for all t. Use this and Equation (11.2) to show that

L = L(t) =
(
mρ(t)2

dθ

dt

)
k,

so that L = mρ(t)2 dθ
dt , the moment of inertia times the angular velocity, is

constant.

Let t0 be some arbitrary time, and for any time t ≥ t0 let A(t) be the
area swept out by the planet in the time interval [t0, t]. Then A(t2)−A(t1)
is the area swept out in the time interval [t1, t2].

In the very short time interval [t, t + ∆t] the vector r(t) sweeps out a
very small angle ∆θ, and the very small amount of area formed is then
approximately

∆A =
1
2
ρ(t)2∆θ.

Dividing by ∆t and taking limits, as ∆t→ 0, we get

dA

dt
=

1
2
ρ(t)2

dθ

dt
=

L

2m
.

Therefore, the area swept out between times t1 and t2 is

A(t2)−A(t1) =
∫ t2

t1

dA

dt
dt =

∫ t2

t1

L

2m
dt =

L(t2 − t1)
2m

.

This is Kepler’s Second Law.

11.6 The First Law

We saw previously that the angular momentum vector is conserved when
the force is central. When Newton’s inverse-square law holds, there is
another conservation law; the Runge-Lenz vector is also conserved. We
shall use this fact to derive the First Law.

Let M denote the mass of the sun, and G Newton’s gravitational con-
stant.
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Definition 11.2 The force obeys Newton’s inverse square law if

F(t) = h(t)r(t) = −mMG

ρ(t)3
r(t).

Then we can write

F(t) = −mMG

ρ(t)2
r(t)
||r(t)||

= −mMG

ρ(t)2
ur(t).

Definition 11.3 The Runge-Lenz vector is

K(t) = p(t)× L(t)− kur(t),

where k = m2MG.

Ex. 11.4 Show that the velocity vectors r′(t) lie in the same plane as the
curve r(t).

Ex. 11.5 Use the rule

A× (A×B) = (A ·B)A− (A ·A)B

to show that K′(t) = 0, so that K = K(t) is a constant vector and K =
||K|| is a constant scalar.

So the Runge-Lenz vector is conserved when the force obeys Newton’s
inverse square law.

Ex. 11.6 Use the rule in the previous exercise to show that the constant
vector K also lies in the plane of the curve r(t).

Ex. 11.7 Show that
K · r(t) = L2 − kρ(t).

It follows from this exercise that

L2 − kρ(t) = K · r(t) = Kρ(t) cosα(t),

where α(t) is the angle between the vectors K and r(t). From this we get

ρ(t) = L2/(k +K cosα(t)).

For k > K, this is the equation of an ellipse having eccentricity e = K/k.
This is Kepler’s First Law.

Kepler initially thought that the orbits were “egg-shaped” , but later
came to realize that they were ellipses. Although Kepler did not have the
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analytical geometry tools to help him, he was familiar with the mathemat-
ical development of ellipses in the Conics, the ancient book by Apollonius,
written in Greek in Alexandria about 200 BC. Conics, or conic sections,
are the terms used to describe the two-dimensional curves, such as ellipses,
parabolas and hyperbolas, formed when a plane intersects an infinite double
cone (think “hour-glass”).

Apollonius was interested in astronomy and Ptolemy was certainly
aware of the work of Apollonius, but it took Kepler to overcome the bias
toward circular motion and introduce conic sections into astronomy. As
related by Bochner [13], there is a bit of mystery concerning Kepler’s use
of the Conics. He shows that he is familiar with a part of the Conics that
existed only in Arabic until translated into Latin in 1661, well after his
time. How he gained that familiarity is the mystery.

11.7 The Third Law

As the planet moves around its orbit, the closest distance to the sun is

ρmin = L2/(k +K),

and the farthest distance is

ρmax = L2/(k −K).

The average of these two is

a =
1
2

(
ρmin + ρmax

)
= 2kL2/(k2 −K2);

this is the semi-major axis of the ellipse. The semi-minor axis has length
b, where

b2 = a2(1− e2).
Therefore,

b =
L
√
a√
k
.

The area of this ellipse is πab. But we know from the first law that the
area of the ellipse is L

2m times the time T required to complete a full orbit.
Equating the two expressions for the area, we get

T 2 =
2π
MG

a3.

This is the third law.
The first two laws deal with the behavior of one planet; the third law

is different. The third law describes behavior that is common to all the
planets in the solar system, thereby suggesting a universality to the force
of gravity.
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11.8 From Kepler to Newton

Our goal, up to now, has been to show how Kepler’s three laws can be
derived from Newton’s inverse-square law, which, of course, is not how
Kepler obtained the laws. Kepler arrived at his laws empirically, by study-
ing the astronomical data. Newton was aware of Kepler’s laws and they
influenced his work on universal gravitation. When asked what would ex-
plain Kepler’s elliptical orbits, Newton replied that he had calculated that
an inverse-square law would do it. Newton found that the force required
to cause the moon to deviate from a tangent line was approximately that
given by an inverse-square fall-off in gravity.

It is interesting to ask if the inverse-square law can be derived from
Kepler’s three laws; the answer is yes, as we shall see in this section. What
follows is taken from [94].

We found previously that

dA

dt
=

1
2
ρ(t)2

dθ

dt
=

L

2m
= c. (11.3)

Differentiating with respect to t, we get

ρ(t)ρ′(t)
dθ

dt
+

1
2
ρ(t)2

d2θ

dt2
= 0, (11.4)

so that

2ρ′(t)
dθ

dt
+ ρ(t)

d2θ

dt2
= 0. (11.5)

From this, we shall prove that the force is central, directed towards the
sun.

As we did earlier, we write the position vector r(t) as

r(t) = ρ(t)ur(t),

so, suppressing the dependence on the time t, and using the identities

dur

dt
= uθ

dθ

dt
,

and
duθ

dt
= −ur

dρ

dt
,

we write the velocity vector as

v =
dr
dt

=
dρ

dt
ur + ρ

dur

dt
=
dρ

dt
ur + ρ

dur

dθ

dθ

dt
=
dρ

dt
ur + ρ

dθ

dt
uθ,
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and the acceleration vector as

a =
d2ρ

dt2
ur +

dρ

dt

dur

dt
+
dρ

dt

dθ

dt
uθ + ρ

d2θ

dt2
uθ + ρ

dθ

dt

duθ

dt

=
d2ρ

dt2
ur +

dρ

dt

dθ

dt
uθ +

dρ

dt

dθ

dt
uθ + ρ

d2θ

dt2
uθ − ρ

dθ

dt

dθ

dt
ur.

Therefore, we have

a =
(d2ρ

dt2
− ρ(dθ

dt
)2
)
ur +

(
2
dρ

dt

dθ

dt
+ ρ

d2θ

dt2

)
uθ.

Using Equation (11.4), this reduces to

a =
(d2ρ

dt2
− ρ(dθ

dt
)2
)
ur, (11.6)

which tells us that the acceleration, and therefore the force, is directed
along the line joining the planet to the sun; it is a central force.

Ex. 11.8 Prove the following two identities:

dρ

dt
=
dρ

dθ

dθ

dt
=

2c
ρ2

dρ

dt
(11.7)

and

d2ρ

dt2
=

4c2

ρ4

d2ρ

dθ2
− 8c2

ρ5

(dρ
dθ

)2

. (11.8)

Therefore, we can write the acceleration vector as

a =

(
4c2

ρ4

d2ρ

dθ2
− 8c2

ρ5

(dρ
dθ

)2

− 4c2

ρ3

)
ur.

To simplify, we substitute u = ρ−1.

Ex. 11.9 Prove that the acceleration vector can be written as

a =

(
4c2u2

(
− 1
u2

d2u

dθ2
+

2
u3

(du
dθ

)2
)
− 8c2u5

(
− 1
u2

du

dθ

)2

− 4c2u3

)
ur,

so that

a = −4c2u2
(d2u

dθ2
+ u
)
ur. (11.9)
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Kepler’s First Law tells us that

ρ(t) =
L2

k +K cosα(t)
=

a(1− e2)
1 + e cosα(t)

,

where e = K/k and a is the semi-major axis. Therefore,

u =
1 + e cosα(t)
a(1− e2)

.

Using Equation (11.9), we can write the acceleration as

a = − 4c2

a(1− e2)
u2ur = − 4c2

a(1− e2)
r−2ur,

which tells us that the force obeys an inverse-square law. We still must
show that this same law applies to each of the planets, that is, that the
constant c2

a(1−e2) does not depend on the particular planet.

Ex. 11.10 Show that
c2

a(1− e2)
=
π2a3

T 2
,

which is independent of the particular planet, according to Kepler’s Third
Law.

11.9 Newton’s Own Proof of the Second Law

Although Newton invented calculus, he relied on geometry for many of his
mathematical arguments. A good example is his proof of Kepler’s Second
Law.

He begins by imagining the planet at the point 0 in Figure 11.1. If there
were no force coming from the sun, then, by the principle of inertia, the
planet would continue in a straight line, with constant speed. The distance
∆ from the point 0 to the point 1 is the same as the distance from 1 to 2
and the same as the distance from 2 to 3. The areas of the three triangles
formed by the sun and the points 0 and 1, the sun and the points 1 and
2, and the sun and the points 2 and 3 are all equal, since they all equal
half of the base ∆ times the height H. Therefore, in the absence of a force
from the sun, the planet sweeps out equal areas in equal times. Now what
happens when there is a force from the sun?

Newton now assumes that ∆ is very small, and that during the short
time it would have taken for the planet to move from 1 to 3 there is a force
on the planet, directed toward the sun. Because of the small size of ∆, he
safely assumes that the direction of this force is unchanged and is directed
along the line from 2, the midpoint of 1 and 3, to the sun. The effect of
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such a force is to pull the planet away from 3, along the line from 3 to 4.
The areas of the two triangles formed by the sun and the points 2 and 3
and the sun and the points 2 and 4 are both equal to half of the distance
from the sun to 2, times the distance from 2 to B. So we still have equal
areas in equal times.

We can corroborate Newton’s approximations using vector calculus.
Consider the planet at 2 at time t = 0. Suppose that the acceleration
is a(t) = (b, c), where (b, c) is a vector parallel to the line segment from
the sun to 2. Then the velocity vector is v(t) = t(b, c) + (0,∆), where, for
simplicity, we assume that, in the absence of the force from the sun, the
planet travels at a speed of ∆ units per second. The position vector is then

r(t) =
1
2
t2(b, c) + t(0,∆) + r(0).

At time t = 1, instead of the planet being at 3, it is now at

r(1) =
1
2
(b, c) + (0,∆) + r(0).

Since the point 3 corresponds to the position (0,∆) + r(0), we see that the
point 4 lies along the line from 3 parallel to the vector (b, c).

11.10 Armchair Physics

Mathematicians tend to ignore things like units, when they do calculus
problems. Physicists know that you can often learn a lot just by paying
attention to the units involved, or by asking questions like what happens to
velocity when length is converted from feet to inches and time from minutes
to seconds. This is sometimes called “armchair physics” . To illustrate, we
apply this approach to Kepler’s Third Law.

11.10.1 Rescaling

Suppose that the spatial variables (x, y, z) are replaced by (αx, αy, αz) and
time changed from t to βt. Then velocity, since it is distance divided by
time, is changed from v to αβ−1v. Velocity squared, and therefore kinetic
and potential energies, are changed by a factor of α2β−2.

11.10.2 Gravitational Potential

The gravitational potential function φ(x, y, z) associated with the gravita-
tional field due to the sun is given by

φ(x, y, z) =
−C√

x2 + y2 + z2
, (11.10)
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where C > 0 is some constant and we assume that the sun is at the origin.
The gradient of φ(x, y, z) is

∇φ(x, y, z) =
( −C
x2 + y2 + z2

)( x√
x2 + y2 + z2

,
y√

x2 + y2 + z2
,

z√
x2 + y2 + z2

)
.

The gravitational force on a massive object at point (x, y, z) is therefore a
vector of magnitude C

x2+y2+z2 , directed from (x, y, z) toward (0, 0, 0), which
says that the force is central and falls off as the reciprocal of the distance
squared.

The potential function φ(x, y, z) is (−1)-homogeneous, meaning that
when we replace x with αx, y with αy, and z with αz, the new potential
is the old one times α−1.

We also know, though, that when we rescale the space variables by α
and time by β the potential energy is multiplied by a factor of α2β−2. It
follows that

α−1 = α2β−2,

so that

β2 = α3. (11.11)

Suppose that we have two planets, P1 and P2, orbiting the sun in circular
orbits, with the length of the the orbit of P2 equal to α times that of P1.
We can view the orbital data from P2 as that from P1, after a rescaling of
the spatial variables by α. According to Equation (11.11), the orbital time
of P2 is then that of P1 multiplied by β = α3/2. This is Kepler’s Third
Law.

Kepler took several decades to arrive at his third law, which he obtained
not from basic physical principles, but from analysis of observational data.
Could he have saved himself much time and effort if he had stayed in his
armchair and considered rescaling, as we have just done? No. The impor-
tance of Kepler’s Third Law lies in its universality, the fact that it applies
not just to one planet but to all. We have implicitly assumed universality
by postulating a potential function that governs the gravitational field from
the sun.

11.10.3 Gravity on Earth

We turn now to the gravitational pull of the earth on an object near its
surface. We have just seen that the potential function is proportional to
the reciprocal of the distance from the center of the earth to the object.
Let the radius of the earth be R and let the object be at a height h above
the surface of the earth. Then the potential is

φ(R+ h) =
−B
R+ h

,
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for some constant B. The potential at the surface of the earth is

φ(R) =
−B
R
.

The potential difference between the object at height h and the surface of
the earth is then

PD(h) =
B

R
− B

R+ h
= B

( 1
R
− 1
R+ h

)
= B

(R+ h−R
R(R+ h)

)
.

If h is very small relative to R, then we can say that

PD(h) =
B

R2
h,

so is linear in h. The potential difference is therefore 1-homogeneous; if we
rescale the spatial variables by α the potential difference is also rescaled by
α. But, as we saw previously, the potential difference is also rescaled by
α2β−2. Therefore,

α = α2β−2,

or
β = α1/2.

This makes sense. Consider a ball dropped from a tall building. In order
to double the time of fall (multiply t by β = 2) we must quadruple the
height from which it is dropped (multiply h by α = β2 = 4).
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Figure 11.1: Newton’s Own Diagram.
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Chapter 12

A Brief History of
Electromagnetism
(Chapter 5,6)

12.1 Overview

Understanding the connections between magnetism and electricity and ex-
ploiting that understanding for technological innovation dominated science
in the nineteenth century, and yet no one saw it coming. In the index to
Butterfield’s classic history of the scientific revolution [22], which he locates
roughly from 1300 to 1800, the word “electricity” does not appear.

Electricity, as we now call it, was not completely unknown, of course.
In the late sixteenth century, Gilbert, famous for his studies of magnetism,
discovered that certain materials, mainly crystals, could be made attractive
by rubbing them with a cloth. He called these materials electrics. Among
Gilbert’s accomplishments was his overturning of the conventional wisdom
about magnets, when he showed, experimentally, that magnets could still
attract nails after being rubbed with garlic. Sometime after Gilbert, elec-
trostatic repulsion and induction were discovered, making the analogy with
magnetism obvious. However, until some way was found to study electric-
ity in the laboratory, the mysteries of electricity would remain hidden and
its importance unappreciated.

Nobody in 1800 could have imagined that, within a hundred years or so,
people would live in cities illuminated by electric light, work with machinery
driven by electricity, in factories cooled by electric-powered refrigeration,
and go home to listen to a radio and talk to neighbors on a telephone. How
we got there is the subject of this note.

145
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12.2 “What’s Past is Prologue”

The history of science is not simply important for its own sake, but as a
bridge connecting the arts with the sciences. When we study the history
of science, we begin to see science as an integral part of the broader quest
by human beings to understand themselves and their world. Progress in
science comes not only from finding answers to questions, but from learn-
ing to ask better questions. The questions we are able to ask, indeed the
observations we are able to make, are conditioned by our society, our his-
tory, and our intellectual outlook. Science does not exist in a vacuum. As
Shakespeare’s line, carved into the wall of the National Archives building
in Washington, D.C., suggests, the past sets the stage for what comes next,
indeed, for what can come next.

12.3 Are We There Yet?

We should be a little careful when we talk about progress, either within
science or more generally. Reasonable people can argue about whether
or not the development of atomic weapons ought to be called progress.
Einstein and others warned, at the beginning of the atomic age, that the
emotional and psychological development of human beings had not kept
pace with technological development, that we did not have the capacity to
control our technology. It does seem that we have a difficult time concerning
ourselves, as a society, with problems that will become more serious in the
future, preferring instead the motto “I won’t be there. You won’t be there.”

We can certainly agree, though, that science, overall, has led us to a
better, even if not complete, understanding of ourselves and our world and
to the technology that is capable of providing decent life and health to far
more people than in the past. These successes have given science and scien-
tists a certain amount of political power that is not universally welcomed,
however. Recent attempts to challenge the status of science within the
community, most notably in the debate over creation “science” and evo-
lution, have really been attempts to lessen the political power of science,
not debates within science itself; the decades long attacks on science by
the cigarette industry and efforts to weaken the EPA show clearly that it is
not only some religious groups that want the political influence of science
diminished.

Many of the issues our society will have to deal with in the near future,
including nuclear power, terrorism, genetic engineering, energy, climate
change, control of technology, space travel, and so on, involve science and
demand a more sophisticated understanding of science on the part of the
general public. The recent book Physics for Future Presidents: the Science
Behind the Headlines [127] discusses many of these topics, supposedly as
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an attempt by the author to educate presidents-to-be, who will be called
on to make decisions, to initiate legislation, and to guide the public debate
concerning these issues.

History reminds us that progress need not be permanent. The tech-
nological expertise and artistic heights achieved by the Romans, even the
mathematical sophistication of Archimedes, were essentially lost, at least
in the west, for fifteen hundred years.

History also teaches us how unpredictable the future can be, which is,
in fact, the underlying theme of this chapter. No one in 1800 could have
imagined the electrification that transformed society over the nineteenth
century, just as no one in 1900 could have imagined Hiroshima and Na-
gasaki, only a few decades in the future, let alone the world of today.

12.4 Why Do Things Move?

In his famous “The Origins of Modern Science” [22] Butterfield singles out
the problem of motion as the most significant intellectual hurdle the human
mind has confronted and overcome in the last fifteen hundred years. The
ancients had theories of motion, but for Aristotle, as a scientist perhaps
more of a biologist than a physicist, motion as change in location was
insignificant compared to motion as qualitative change, as, say, when an
acorn grows into a tree. The change experienced by the acorn is clearly
oriented toward a goal, to make a tree. By focusing on qualitative change,
Aristotle placed too much emphasis on the importance of a goal. His idea
that even physical motion was change toward a goal, that objects had
a “natural” place to which they “sought” to return, infected science for
almost two thousand years.

We must not be too quick to dismiss Aristotle’s view, however. General
relativity asserts that space-time is curved and that clocks slow down where
gravity is stronger. Indeed, a clock on the top of the Empire State Building
runs slightly faster than one at street level. As Brian Greene puts it,

Right now, according to these ideas, you are anchored to the floor be-
cause your body is trying to slide down an indentation in space (really,
spacetime) caused by the earth. In a sense, all objects “want” to age as
slowly as possible [96].

The one instance of motion as change in location whose importance
the ancients appreciated was the motion of the heavens. Aristotle had
his theories of the heavens and Ptolemy his astronomical system of an
earth-centered universe. Because the objects in the heavens, the moon,
the planets and the stars, certainly appear to move rapidly, they must be
made of an unearthly material, the quintessence. So things stood until
the middle ages. In the fourteenth century the French theologian Nicole
Oresme considered the possibility that the earth rotated daily around its
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own axis [117]. This hypothesis certainly simplified things considerably,
and removed the need for the heavens to spin around the earth daily at
enormous speeds. But even Oresme himself was hesitant to push this idea,
since it conflicted with scripture.

Gradually, natural philosophers, the term used to describe scientists
prior to the nineteenth century, began to take a more serious interest in
motion as change in location, due, in part, to their growing interest in
military matters and the motion of cannon balls. Now, motion on earth
and motion of the heavenly bodies came to be studied by some of the same
people, such as Galileo, and this set the stage for the unified theory of
motion due to gravity that would come later, with Newton.

Copernicus’ theory of a sun-centered astronomical system, Tycho Brahe’s
naked-eye observations of the heavens, Kepler’s systematizing of planetary
motion, the invention of the telescope and its use by Galileo to observe
the pock-marked moon and the mini-planetary system of Jupiter, Galileo’s
study of balls rolling down inclined planes, and finally Newton’s Law of Uni-
versal Gravitation marked a century of tremendous progress in the study of
motion and put mechanics at the top of the list of scientific paradigms for
the next century. Most of the theoretical developments of the eighteenth
century involved the expansion of Newton’s mechanics to ever more com-
plex systems, so that, by the end of that century, celestial mechanics and
potential theory were well developed mathematical subjects.

As we shall see, the early development of the field we now call elec-
tromagnetism involved little mathematics. As the subject evolved, the
mathematics of potential theory, borrowed from the study of gravitation
and celestial mechanics, was combined with the newly discovered vector
calculus and the mathematical treatment of heat propagation to give the
theoretical formulation of electromagnetism familiar to us today.

12.5 Go Fly a Kite

The ancients knew about magnets and used them as compasses. Static
electricity was easily observed and thought to be similar to magnetism. As
had been known for centuries, static electricity exhibited both attraction
and repulsion. For that reason, it was argued that there were two distinct
types of electricity. Benjamin Franklin opposed this idea, insisting instead
on two types of charge, positive and negative. Some progress was made
in capturing electricity for study with the invention of the Leyden jar, a
device for storing relatively large electrostatic charge (and giving rather
large shocks). The discharge from the Leyden jar reminded Franklin of
lightning and prompted him and others to fly kites in thunderstorms and to
discover that lightning would charge a Leyden jar; lightning was electricity.
These experiments led to his invention of the lightning rod, a conducting
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device attached to houses to direct lightning strikes down to the ground.
The obvious analogies with magnetism had been noticed by Gilbert and

others in the late sixteenth century, and near the end of the eighteenth cen-
tury Coulomb found that both magnetic and electrical attraction fell off as
the square of the distance, as did gravity, according to Newton. Indeed, the
physical connection between magnetism and gravity seemed more plausi-
ble than one between magnetism and electricity, and more worth studying.
But things were about to change.

12.6 Bring in the Frogs

In 1791 Galvani observed that a twitching of the muscles of a dead frog
he was dissecting seemed to be caused by sparks from a nearby discharge
of a Leyden jar. He noticed that the sparks need not actually touch the
muscles, provided a metal scalpel touched the muscles at the time of dis-
charge. He also saw twitching muscles when the frog was suspended by
brass hooks on an iron railing in a thunderstorm. Eventually, he real-
ized that the Leyden jar and thunderstorm played no essential roles; two
scalpels of different metals touching the muscles were sufficient to produce
the twitching. Galvani concluded that the electricity was in the muscles;
it was animal electricity.

12.7 Lose the Frogs

In 1800 Volta discovered that electricity could be produced by two dis-
similar metals, copper and zinc, say, in salt water; no animal electricity
here, and no further need for the frogs. He had discovered the battery
and introduced electrodynamics. Only six weeks after Volta’s initial re-
port, Nicholson and Carlisle discovered electrolysis, the loosening up and
separating of distinct atoms in molecules, such as the hydrogen and oxygen
atoms in water.

The fact that chemical reactions produced electric currents suggested
the reverse, that electrical currents could stimulate chemical reactions; this
is electrochemistry, which led to the discovery and isolation of many new
elements in the decades that followed. In 1807 Humphry Davy isolated
some active metals from their liquid compounds and became the first to
form sodium, potassium, calcium, strontium, barium, and magnesium.

In 1821 Seebeck found that the electric current would continue as long
as the temperatures of the two metals were kept different; this is thermo-
electricity and provides the basis for the thermocouple, which could then
be used as a thermometer.
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12.8 Bring in the Magnets

In 1819 Oersted placed a current-carrying wire over a compass, not expect-
ing anything in particular to happen. The needle turned violently perpen-
dicular to the axis of the wire. When Oersted reversed the direction of the
current, the needle jerked around 180 degrees. This meant that magnetism
and electricity were not just analogous, but intimately related; electromag-
netism was born. Soon after, Arago demonstrated that a wire carrying
an electric current behaved like a magnet. Ampere, in 1820, confirmed
that a wire carrying a current was a magnet by demonstrating attraction
and repulsion between two separate current-carrying wires. He also exper-
imented with wires in various configurations and related the strength of
the magnetic force to the strength of the current in the wire. This con-
nection between electric current and magnetism led fairly soon after to the
telegraph, and later in the century, to the telephone.

12.9 Enter Faraday

So electric currents can produce magnetism. But can magnets produce elec-
tric currents? Can the relationship be reversed? In 1831, Michael Faraday
tried to see if a current would be produced in a wire if it was placed in a
magnetic field created by another current-carrying wire. The experiment
failed, sort of. When the current was turned on in the second wire, gener-
ating the magnetic field, the first wire experienced a brief current, but then
nothing; when the current was turned off, again a brief current in the first
wire. Faraday, an experimental genius who, as a young man, had been an
assistant to Davy, and later the inventor of refrigeration, made the right
conjecture that it is not the mere presence of the magnetic field that causes
a current, but changes in that magnetic field. He confirmed this conjec-
ture by showing that a current would flow through a coiled wire when a
magnetized rod was moved in and out of the coil; he (and, independently,
Henry in the USA) had invented electromagnetic induction and the electric
generator and, like Columbus, had discovered a new world.

12.10 Do The Math

Mathematics has yet to appear in our brief history of electromagnetism,
but that was about to change. Although Faraday, often described as being
innocent of mathematics, developed his concept of lines of force in what
we would view as an unsophisticated manner, he was a great scientist and
his intuition would prove to be remarkably accurate.

In the summer of 1831, the same summer in which the forty-year old
Faraday first observed the phenomenon of electromagnetic induction, the
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creation of an electric current by a changing magnetic field, James Clerk
Maxwell was born in Edinburgh, Scotland.

Maxwell’s first paper on electromagnetism, “On Faraday’s Lines of
Force” , appeared in 1855, when he was about 25 years old. The paper
involved a mathematical development of the results of Faraday and others
and established the mathematical methods Maxwell would use later in his
more famous work “On Physical Lines of Force” .

Although Maxwell did not have available all of the compact vector no-
tation we have today, his work was mathematically difficult. The following
is an excerpt from a letter Faraday himself sent to Maxwell concerning this
point.

There is one thing I would be glad to ask you. When a mathemati-
cian engaged in investigating physical actions and results has arrived at
his conclusions, may they not be expressed in common language as fully,
clearly and definitely as in mathematical formulae? If so, would it not be
a great boon to such as I to express them so? - translating them out of
their hieroglyphics, that we may work upon them by experiment. Hasn’t
every beginning student of vector calculus and electromagnetism wished
that Maxwell and his followers had heeded Faraday’s pleas?

Maxwell reasoned that, since an electric current sets up a magnetic field,
and a changing magnetic field creates an electrical field, there should be
what we now call electromagnetic waves, as these two types of fields leap-
frog across (empty?) space. These waves would obey partial differential
equations, called Maxwell’s equations, although their familiar form came
later and is due to Heaviside [92]. Analyzing the mathematical properties
of the resulting wave equations, Maxwell discovered that the propagation
speed of these waves was the same as that of light, leading to the conclusion
that light itself is an electromagnetic phenomenon, distinguished from other
electromagnetic radiation only by its frequency. That light also exhibits
behavior more particle-like than wave-like is part of the story of the science
of the next century.

Maxwell predicted that electromagnetic radiation could exist at vari-
ous frequencies, not only those associated with visible light. Infrared and
ultraviolet radiation had been known since early in the century, and per-
haps they too were part of a spectrum of electromagnetic radiation. After
Maxwell’s death from cancer at forty-eight, Hertz demonstrated, in 1888,
the possibility of electromagnetic radiation at very low frequencies, radio
waves. In 1895 Röntgen discovered electromagnetic waves at the high-
frequency end of the spectrum, the so-called x-rays.
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12.11 Just Dot the i’s and Cross the t’s?

By the end of the nineteenth century, some scientists felt that all that was
left to do in physics was to dot the i’s and cross the t’s. However, other
scientists saw paradoxes and worried that there were problems yet to be
solved; how serious these might turn out to be was not always clear.

Maxwell himself had noted, about 1869, that his work on the specific
heats of gases revealed conflicts between rigorous theory and experimental
findings that he was unable to explain; it seemed that internal vibration of
atoms was being “frozen out”at sufficiently low temperatures, something for
which classical physics could not account. His was probably the first sugges-
tion that classical physics could be “wrong”. There were also the mysteries,
observed by Newton, associated with the partial reflection of light by thick
glass. Advances in geology and biology had suggested strongly that the
earth and the sun were much older than previously thought, which was not
possible, according to the physics of the day; unless a new form of energy
was operating, the sun would have burned out a long time ago.

Newton thought that light was a stream of particles. Others at the
time, notably Robert Hooke and Christiaan Huygens, felt that light was a
wave phenomenon. Both sides were hindered by a lack of a proper scientific
vocabulary to express their views.

Around 1800 Young demonstrated that a beam of light displayed in-
terference effects similar to water waves. Eventually, his work convinced
people that Newton had been wrong on this point and most accepted that
light is a wave phenomenon. Faraday, Maxwell, Hertz and others further
developed the wave theory of light and related light to other forms of elec-
tromagnetic radiation. Ironically, it was Hertz, in 1887, who discovered
the photo-electric effect, later given by Einstein as confirming evidence
that light has a particle nature. When light strikes a metal, it can cause
the metal to release an electrically charged particle, an electron. If light
were simply a wave, there would not be enough energy in the small part
of the wave that hits the metal to displace the electron; in 1905 Einstein
will argue that light is quantized, that is, it consists of individual bundles
or particles, later called photons, each with enough energy to cause the
electron to be released.

It was recognized that there were other problems with the wave theory
of light. All known waves required a medium in which to propagate. Sound
cannot propagate in a vacuum; it needs air or water or something. The
sound waves are actually compressions and rarefactions of the medium,
and how fast the waves propagate depends on how fast the material in the
medium can perform these movements; sound travels faster in water than
in air, for example.

Light travels extremely fast, but does not propagate instantaneously,
as Olaus Roemer first demonstrated around 1700. He observed that the
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eclipses of the moons of Jupiter appeared to happen sooner when Jupiter
was moving closer to Earth, and later when it was moving away. He rea-
soned, correctly, that the light takes a finite amount of time to travel from
the moons to Earth, and when Jupiter is moving away the distance is
growing longer.

If light travels through a medium, which scientists called the ether,
then the ether must be a very strange substance indeed. The material that
makes up the ether must be able to compress and expand very quickly.
Light comes to us from great distances so the ether must extend throughout
all of space. The earth moves around the sun, and therefore through this
ether, at a very great speed, and yet there are no friction effects, while
very much slower winds produce a great deal of weathering. Light can
also be polarized, so the medium must be capable of supporting transverse
waves, not just longitudinal waves, as in acoustics. To top it all off, the
Michelson-Morley experiment, performed in Cleveland in 1887, failed to
detect the presence of the ether.

12.12 Seeing is Believing

If radio waves could travel around the earth through an invisible ether,
and if hypnotists can mesmerize their subjects, why can’t human beings
communicate with each other and with the dead, telepathically? Why
should atoms exist when we cannot see them, while ghosts must not, even
when, as some claimed, they have shown up in photographs? When is
seeing believing?

In the late 1800’s the experimental physicist William Crooke claimed
to have discovered radiant matter [82]. When he passed an electric current
through a glass tube filled with a low-pressure gas, a small object within
the tube could be made to move from one end to the other, driven, so
Crooke claimed, by radiant particles of matter, later called cathode rays,
streaming from one end of the tube to the other. Crooke then went on,
without much success, to find material explanation for some of the alleged
effects of spiritualism. He felt that it ought to be possible for humans to
receive transmissions in much the same way as a radio receives signals. It
was a time of considerable uncertainty, and it was not clear that Crooke’s
radiant matter, atoms, x-rays, radio waves, radioactivity, and the ether
were any more real than ghosts, table tapping, and communicating with
the dead; they all called into question established physics.

Crooke felt that scientists had a calling to investigate all these myster-
ies, and should avoid preconceptions about what was true or false. Others
accused him of betraying his scientific calling and of being duped by spiritu-
alists. Perhaps remembering that even the word “scientist” was unknown
prior to the 1830’s, they knew, nevertheless, that, if the history of the nine-
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teenth century taught them anything, it was that there were also serious
problems on the horizon of which they were completely unaware.

12.13 If You Can Spray Them, They Exist

Up through the seventeenth century, philosophy, especially the works of
Aristotle, had colored the way scientists looked at the physical world. By
the end of the nineteenth century, most scientists would have agreed that
philosophy had been banished from science, that metaphysics, that is, state-
ments that could not be empirically verified, had no place in science. But
philosophy began to sneak back in, as questions about causality and the
existence of objects we cannot see, such as atoms, started to be asked [5].
Most scientists are probably realists, believing that the objects they study
have an existence independent of the instruments used to probe them. On
the other side of the debate, positivists, or, at least, the more extreme pos-
itivists, hold that we have no way of observing an observer-independent
reality, and therefore cannot verify that there is such a reality. Positivists
hold that scientific theories are simply instruments used to hold together
observed facts and make predictions. They do accept that the theories
describe an empirical reality that is the same for all observers, but not a
reality independent of observation. At first, scientists felt that it was safe
for them to carry on without worrying too much about these philosophical
points, but quantum theory would change things [98].

The idea that matter is composed of very small indivisible atoms goes
back to the ancient Greeks. But it wasn’t until after Einstein’s 1905 pa-
per on Brownian motion and subsequent experimental confirmations of his
predictions that the actual existence of atoms was more or less universally
accepted.

I recall reading somewhere about a conversation between a philosopher
of science and an experimental physicist, in which the physicist was ex-
plaining how he sprayed an object with positrons. The philosopher then
asked him if he really believed that positrons exist. The physicist answered,
“If you can spray them, they exist.”

12.14 What’s Going On Here?

Experiments with cathode rays revealed that they were deflected by mag-
nets, unlike any form of radiation similar to light, and unresponsive to
gravity. Maybe they were very small electrically charged particles. In
1897 J.J. Thomson established that the cathode rays were, indeed, elec-
trically charged particles, which he called electrons. For this discovery he
was awarded the Nobel Prize in Physics in 1906. Perhaps there were two
fundamental objects in nature, the atoms of materials and the electrons.
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However, Volta’s experiments suggested the electrons were within the ma-
terial and involved in chemical reactions. In 1899 Thomson investigated
the photo-electric effect and found that cathode rays could be produced
by shining light on certain metals; the photo-electric effect revealed that
electrons were inside the materials. Were they between the atoms, or in-
side the atoms? If they were within the atoms, perhaps their number and
configuration could help explain Mendeleev’s periodic table and the variety
of elements found in nature.

In 1912, Max von Laue demonstrated that Röntgen’s x-ray beams can
be diffracted; this provided a powerful tool for determining the structure
of crystals and molecules and later played an important role in the dis-
covery of the double-helix structure of DNA. In 1923, the French physicist
Louis de Broglie suggested that moving particles, such as electrons, should
exhibit wave-like properties characterized by a wave-length. In particular,
he suggested that beams of electrons sent through a narrow aperture could
be diffracted. In 1937 G.P. Thomson, the son of J.J. Thomson, shared the
Nobel Prize in Physics with Clinton Davisson for their work demonstrating
that beams of electrons can be diffracted. As someone once put it, “The
father won the prize for showing that electrons are particles, and the son
won it for showing that they aren’t.” Some suggested that, since beams of
electrons exhibited wave-like properties, they should give rise to the sort
of interference effects Young had shown were exhibited by beams of light.
The first laboratory experiment showing double-slit interference effects of
beams of electrons was performed in 1989.

J.J. Thomson also discovered that the kinetic energy of the emitted
electrons depended not at all on the intensity of the light, but only on
its frequency. This puzzling aspect of the photo-electric effect prompted
Einstein to consider the possibility that light is quantized, that is, it comes
in small “packages”, or light quanta, later called photons. Max Planck had
earlier suggested that energy might be quantized, in order to explain the
absence of the ultraviolet catastrophe in black-body radiation. It was his
1905 work on the photo-electric effect, not his work on special and general
relativity, that eventually won for Einstein the 1921 Nobel Prize in Physics.

Einstein’s 1905 paper that deals with the photo-electric effect is really
a paper about the particle nature of light. But this idea met with great
resistance, and it was made clear to Einstein that his prize was not for the
whole paper, but for that part dealing with the photo-electric effect. He
was even asked not to mention the particle nature of light in his Nobel
speech.

Were the electrons the only sub-atomic particles? No, as Rutherford’s
discovery of the atomic nucleus in 1911 would reveal. And what is radioac-
tivity, anyway? The new century was dawning, and all these questions
were in the air. It was about 1900, Planck had just discovered the quan-
tum theory, Einstein was in the patent office, where he would remain until
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1909, Bohr and Schrödinger schoolboys, Heisenberg not yet born. A new
scientific revolution was about to occur, and, as in 1800, nobody could have
guessed what was coming next [118].

12.15 The Year of the Golden Eggs

As Rigden relates in [135], toward the end of his life Einstein looked back
to 1905, when he was twenty-six, and told Leo Szilard, “They were the
happiest years of my life. Nobody expected me to lay golden eggs.” It
is appropriate to end our story in 1905 because it was both an end and
a beginning. In five great papers published in that year, Einstein solved
several of the major outstanding problems that had worried physicists for
years, but the way he answered them was revolutionary and began a whole
new era of physics. After 1905 the development of electromagnetism merges
with that of quantum mechanics, and becomes too big a story to relate here.

The problems that attracted Einstein involved apparent contradictions,
and his answers were surprising. Is matter continuous or discrete? It is
discrete; atoms do exist. Is light wave-like or particle-like? It is both. Are
the laws of thermodynamics absolute or statistical? They are statistical.
Are the laws of physics the same for observers moving with uniform velocity
relative to one another? Yes; in particular, each will measure the speed of
light to be the same. And, by the way, our notion of three-dimensional
space and a separate dimension of time is wrong (special relativity), and
gravity and acceleration are really the same thing (general relativity). Is
inertial mass the same as gravitational mass? Yes. And what is mass,
anyway? It is really energy, as E = mc2 tells us.

12.16 Do Individuals Matter?

Our brief history of electromagnetism has focused on a handful of extraor-
dinary people. But how important are individuals in the development of
science, or in the course of history generally? An ongoing debate among
those who study history is over the role of the Great Man [75]. On one side
of the debate is the British writer and hero-worshipper Carlyle: “Universal
history, the history of what man has accomplished in this world, is at bot-
tom the History of the Great Men who have worked here.” On the other
side is the German political leader Bismarck: “The statesman’s task is to
hear God’s footsteps marching through history, and to try to catch on to
His coattails as He marches past.”

If Mozart had never lived, nobody else would have composed his music.
If Picasso had never lived, nobody else would have painted his pictures.
If Winston Churchill had never lived, or had he died of his injuries when,
in 1930, he was hit by a car on Fifth Avenue in New York City, western
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Europe would probably be different today. If Hitler had died in 1930, when
the car he was riding in was hit by a truck, recent history would certainly
be different, in ways hard for us to imagine. But, I think the jury is still
out on this debate, at least as it applies to science.

If Darwin had never lived, someone else would have published roughly
the same ideas, at about the same time; in fact, Alfred Russel Wallace did
just that. If Einstein had not lived, somebody else, maybe Poincaré, would
have hit on roughly the same ideas, perhaps a bit later. Relativity would
have been discovered by someone else. The fact that light behaves both
like a wave and like a particle would have become apparent to someone
else. The fact that atoms do really exist would have been demonstrated by
someone else, although perhaps in a different way.

Nevertheless, just as Mozart’s work is unique, even though it was ob-
viously influenced by the times in which he composed and is clearly in the
style of the late 18th century, Darwin’s view of what he was doing differed
somewhat from the view taken by Wallace, and Einstein’s work reflected
his own fascination with apparent contradiction and a remarkable ability,
“to think outside the box” , as the currently popular expression has it.
Each of the people we have encountered in this brief history made a unique
contribution, even though, had they not lived, others would probably have
made their discoveries, one way or another.

People matter in another way, as well. Science is the work of individual
people just as art, music and politics are. The book of nature, as some
call it, is not easily read. Science is a human activity. Scientists are often
mistaken and blind to what their training and culture prevent them from
seeing. The history of the development of science is, like all history, our
own story.

12.17 What’s Next?

The twentieth century has taught us that all natural phenomena are based
on two physical principles, quantum mechanics and relativity. The combi-
nation of special relativity and quantum mechanics led to a unification of
three of the four fundamental forces of nature, electromagnetic force and
the weak and strong nuclear forces, originally thought to be unrelated. The
remaining quest is to combine quantum mechanics with general relativity,
which describes gravity. Such a unification seems necessary if one is to
solve the mysteries posed by dark matter and dark energy [16], which make
up over three-quarters of the stuff of the universe, but of which nothing is
known and whose existence can only be inferred from their gravitational
effects. Perhaps what will be needed is a paradigm shift, to use Kuhn’s
popular phrase; perhaps the notion of a fundamental particle, or even of an
observer will need to be abandoned.
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The June 2010 issue of Scientific American contains an article called
“Twelve events that will change everything”. The article identifies twelve
events, both natural and man-made, that could happen at any time and
would transform society. It also rates the events in terms of how likely they
are to occur: fusion energy (very unlikely); extraterrestrial intelligence,
nuclear exchange, and asteroid collision (unlikely); deadly pandemic, room-
temperature superconductors, and extra dimensions (50-50); cloning of a
human, machine self-awareness, and polar meltdown (likely); and creation
of life, and Pacific earthquake (almost certain). Our brief study of the
history of electromagnetism should convince us that the event that will
really change everything is not on this list nor on anyone else’s list. As
Brian Greene suggests [96], people in the year 2100 may look back on today
as the time when the first primitive notions of parallel universes began to
take shape.

12.18 Epilogue

As Butterfield points out in [22], science became modern in the period
1300 to 1800 not when experiment and observation replaced adherence to
the authority of ancient philosophers, but when the experimentation was
performed under the control of mathematics. New mathematical tools,
logarithms, algebra, analytic geometry, and calculus, certainly played an
important role, but so did mathematical thinking, measuring quantities,
rather than speculating about qualities, idealizing and abstracting from a
physical situation, and the like. Astronomy and mechanics were the first to
benefit from this new approach. Paradoxically, our understanding of elec-
tromagnetism rests largely on a century or more of intuition, conjecture,
experimentation and invention that was almost completely free of math-
ematics. To a degree, this was because the objects of interest, magnets
and electricity, were close at hand and, increasingly, available for study.
In contrast, Newton’s synthesis of terrestrial and celestial gravitation was
necessarily largely a mathematical achievement; observational data was
available, but experimentation was not possible.

With Maxwell and the mathematicians, electromagnetism became a
modern science. Now electromagnetism could be studied with a pencil and
paper, as well as with generators. Consequences of the equations could be
tested in the laboratory and used to advance technology. The incomplete-
ness of the theory, with regard to the ether, the arrow of time, the finite
speed of light, also served to motivate further theoretical and experimental
investigation.

As electromagnetism, in particular, and physics, generally, became more
mathematical, studies of the very small (nuclear physics), the very large
(the universe), and the very long ago (cosmology) became possible. The
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search for unifying theories of everything became mathematical studies, the
consequences of the theories largely beyond observation [147].

In 2000 the mathematical physicist Ed Witten wrote a paper describing
the physics of the century just ending [151]. Even the title is revealing; the
quest is for mathematical understanding. He points out that, as physics
became more mathematical in the first half of the twentieth century, with
relativity and non-relativistic quantum mechanics, it had a broad influence
on mathematics itself. The equations involved were familiar to the math-
ematicians of the day, even if the applications were not, and their use in
physics prompted further mathematical development, and the emergence
of new fields, such as functional analysis. In contrast, the physics of the
second half of the century involves mathematics, principally quantum con-
cepts applied to fields, not just particles, the foundations of which are not
well understood by mathematicians. This is mathematics with which even
the mathematicians are not familiar. Providing a mathematical foundation
for the standard model for particle physics should keep the mathematicians
of the next century busy for a while. The most interesting sentence in [151]
is The quest to understand string theory may well prove to be a central
theme in physics of the twenty-first century. Are physicists now just trying
to understand their own mathematics, instead of the physical world?
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Chapter 13

The Trans-Atlantic Cable
(Chapters 4,12)

13.1 Introduction

In 1815, at the end of the war with England, the US was a developing coun-
try, with most people living on small farms, eating whatever they could
grow themselves. Only those living near navigable water could market
their crops. Poor transportation and communication kept them isolated.
By 1848, at the end of the next war, this time with Mexico, things were
different. The US was a transcontinental power, integrated by railroads,
telegraph, steamboats, the Erie Canal, and innovations in mass production
and agriculture. In 1828, the newly elected President, Andrew Jackson,
arrived in Washington by horse-drawn carriage; he left in 1837 by train.
The most revolutionary change was in communication, where the recent
advances in understanding electromagnetism produced the telegraph. It
wasn’t long before efforts began to lay a telegraph cable under the At-
lantic Ocean, even though some wondered what England and the US could
possibly have to say to one another.

The laying of the trans-Atlantic cable was, in many ways, the 19th
century equivalent of landing a man on the moon, involving, as it did,
considerable expense, too frequent failure, and a level of precision in en-
gineering design and manufacturing never before attempted. From a sci-
entific perspective, it was probably more difficult, given that the study of
electromagnetism was in its infancy at the time.

Early on, Faraday and others worried that sending a message across a
vast distance would take a long time, but they reasoned, incorrectly, that
this would be similar to filling a very long hose with water. What they
did not realize initially was that, as William Thomson was to discover,
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the transmission of a pulse through an undersea cable was described more
by a heat equation than a wave equation. This meant that a signal that
started out as a sharp pulse would be spread out as time went on, making
communication extremely slow. The problem was the increased capacitance
with the ground.

Somewhat later, Oliver Heaviside realized that, when all four of the
basic elements of the electrical circuit, the inductance, the resistance, the
conductance to the ground and the capacitance to the ground, were consid-
ered together, it might be possible to adjust these parameters, in particular,
to increase the inductance, so as to produce undistorted signals. Heaviside
died in poverty, but his ideas eventually were adopted.

In 1859 Queen Victoria sent President Buchanan a 99 word greeting
using an early version of the cable, but the message took over sixteen hours
to be received. By 1866 one could transmit eight words a minute along a
cable that stretched from Ireland to Newfoundland, at a cost of about 1500
dollars per word in today’s money. With improvements in insulation, using
gutta percha, a gum from a tropical tree also used to make golf balls, and
the development of magnetic alloys that increased the inductance of the
cable, messages could be sent faster and more cheaply.

In this chapter we survey the development of the mathematics of the
problem. We focus, in particular, on the partial differential equations that
were used to describe the transmission problem. What we give here is a
brief glimpse; more detailed discussion of this problem is found in the books
by Körner [109], Gonzalez-Velasco [91], and Wylie [154].

13.2 The Electrical Circuit ODE

We begin with the ordinary differential equation that describes the hori-
zontal motion of a block of wood attached to a spring. We let x(t) be the
position of the block relative to the equilibrium position x = 0, with x(0)
and x′(0) denoting the initial position and velocity of the block. When an
external force f(t) is imposed, a portion of this force is devoted to over-
coming the inertia of the block, a portion to compressing or stretching
the spring, and the remaining portion to resisting friction. Therefore, the
differential equation describing the motion is

mx′′(t) + ax′(t) + kx(t) = f(t), (13.1)

where m is the mass of the block, a the coefficient of friction, and k the
spring constant.

The charge Q(t) deposited on a capacitor in an electrical circuit due to
an imposed electromotive force E(t) is similarly described by the ordinary
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differential equation

LQ′′(t) +RQ′(t) +
1
C
Q(t) = E(t). (13.2)

The first term, containing the inductance coefficient L, describes the por-
tion of the force E(t) devoted to overcoming the effect of a change in the
current I(t) = Q′(t); here L is analogous to the mass m. The second term,
containing the resistance coefficient R, describes that portion of the force
E(t) needed to overcome resistance to the current I(t); now R is analogous
to the friction coefficient a. Finally, the third term, containing the recipro-
cal of the capacitance C, describes the portion of E(t) used to store charge
on the capacitor; now 1

C is analogous to k, the spring constant.

13.3 The Telegraph Equation

The objective here is to describe the behavior of u(x, t), the voltage at
location x along the cable, at time t. In the beginning, it was believed that
the partial differential equation describing the voltage would be the wave
equation

uxx = α2utt.

If this were the case, an initial pulse

E(t) = H(t)−H(t− T )

would move along the cable undistorted; hereH(t) is the Heaviside function
that is zero for t < 0 and one for t ≥ 0. Thomson (later Sir William
Thomson, and even later, Lord Kelvin) thought otherwise.

Thomson argued that there would be a voltage drop over an interval
[x, x+∆x] due to resistance to the current i(x, t) passing through the cable,
so that

u(x+ ∆x, t)− u(x, t) = −Ri(x, t)∆x,

and so
∂u

∂x
= −Ri.

He also argued that there would be capacitance to the ground, made more
significant under water. Since the apparent change in current due to the
changing voltage across the capacitor is

i(x+ ∆x, t)− i(x, t) = −Cut(x, t)∆x,

we have
∂i

∂x
= −C ∂u

∂t
.
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Eliminating the i(x, t), we can write

uxx(x, t) = CRut(x, t), (13.3)

which is the heat equation, not the wave equation.

13.4 Consequences of Thomson’s Model

To see what Thomson’s model predicts, we consider the following problem.
Suppose we have a semi-infinite cable, that the voltage is u(x, t) for x ≥ 0,
and t ≥ 0, and that u(0, t) = E(t). Let U(x, s) be the Laplace transform
of u(x, t), viewed as a function of t. Then, from Thomson’s model we have

U(x, s) = L(E)(s)e−
√

CRsx,

where L(E)(s) denotes the Laplace transform of E(t). Since U(x, s) is the
product of two functions of s, the convolution theorem applies. But first,
it is helpful to find out which function has for its Laplace transform the
function e−αx

√
s. The answer comes from the following fact: the function

be−b2/4t/2
√
πt3/2

has for its Laplace transform the function e−b
√

s. Therefore, we can write

u(x, t) =
√
CRx

2
√
π

∫ t

0

E(t− τ)e
−CRx2/4τ

τ
√
τ

dτ.

Now we consider two special cases.

13.4.1 Special Case 1: E(t) = H(t)

Suppose now that E(t) = H(t), the Heaviside function. Using the substi-
tution

z = CRx2/4τ,

we find that

u(x, t) = 1− 2√
π

∫ √
CRx/2

√
π

0

e−z2
dz. (13.4)

The function
erf(r) =

2√
π

∫ r

0

e−z2
dz

is the well known error function, so we can write

u(x, t) = 1− erf
(√CRx

2
√
t

)
. (13.5)
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13.4.2 Special Case 2: E(t) = H(t)−H(t− T )

Now suppose that E(t) is the pulse H(t) − H(t − T ). Using the results
from the previous subsection, we find that, for t > T ,

u(x, t) = erf
( √CRx

2
√
t− T

)
− erf

(√CRx
2
√
t

)
. (13.6)

For fixed x, u(x, t) is proportional to the area under the function e−z2
,

over an interval that, as time goes on, moves steadily to the left and de-
creases in length. For small t the interval involves only large z, where
the function e−z2

is nearly zero and the integral is nearly zero. As t in-
creases, the interval of integration moves to the left, so that the integrand
grows larger, but the length of the interval grows smaller. The net effect
is that the voltage at x increases gradually over time, and then decreases
gradually; the sharp initial pulse is smoothed out in time.

13.5 Heaviside to the Rescue

It seemed that Thomson had solved the mathematical problem and discov-
ered why the behavior was not wave-like. Since it is not really possible to
reduce the resistance along the cable, and capacitance to the ground would
probably remain a serious issue, particularly under water, it appeared that
little could be done to improve the situation. But Heaviside had a solution.

Heaviside argued that Thomson had ignored two other circuit compo-
nents, the leakage of current to the ground, and the self-inductance of the
cable. He revised Thomson’s equations, obtaining

ux = −Lit −Ri,

and
ix = −Cut −Gu,

where L is the inductance and G is the coefficient of leakage of current to
the ground. The partial differential equation governing u(x, t) now becomes

uxx = LCutt + (LG+RC)ut +RGu, (13.7)

which is the formulation used by Kirchhoff. As Körner remarks, never
before had so much money been riding on the solution of one partial dif-
ferential equation.

13.5.1 A Special Case: G = 0

If we take G = 0, thereby assuming that no current passes into the ground,
the partial differential equation becomes

uxx = LCutt +RCut, (13.8)
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or

1
CL

uxx = utt +
R

L
ut. (13.9)

If R/L could be made small, we would have a wave equation again, but
with a propagation speed of 1/

√
CL. This suggested to Heaviside that one

way to obtain undistorted signaling would be to increase L, since we cannot
realistically hope to change R. He argued for years for the use of cables
with higher inductance, which eventually became the practice, helped along
by the invention of new materials, such as magnetic alloys, that could be
incorporated into the cables.

13.5.2 Another Special Case

Assume now that E(t) is the pulse. Applying the Laplace transform method
described earlier to Equation (13.7), we obtain

Uxx(x, s) = (Cs+G)(Ls+R)U(x, s) = λ2U(x, s),

from which we get

U(x, s) = A(s)eλx +
(1
s
(1− e−Ts)−A(s)

)
e−λx.

If it happens that GL = CR, we can solve easily for λ:

λ =
√
CLs+

√
GR.

Then we have

U(x, s) = e−
√

GRx 1
s
(1− e−Ts)e−

√
CLxs,

so that

u(x, t) = e−
√

GRx
(
H(t− x

√
CL)−H(t− T − x

√
CL)

)
. (13.10)

This tells us that we have an undistorted pulse that arrives at the point x
at the time t = x

√
CL.

In order to have GL = CR, we need L = CR/G. Since C and R are
more or less fixed, and G is typically reduced by insulation, L will need to
be large. Again, this argues for increasing the inductance in the cable.



Chapter 14

Hermite’s Equations and
Quantum Mechanics
(Chapter 10,11)

14.1 The Schrödinger Wave Function

In quantum mechanics, the behavior of a particle with mass m subject to
a potential V (x, t) satisfies the Schrödinger Equation

ih̄
∂ψ(x, t)
∂t

= − h̄

2m
∂2ψ(x, t)
∂x2

+ V (x, t)ψ(x, t), (14.1)

where h̄ is Planck’s constant. Here the x is one-dimensional, but extensions
to higher dimensions are also possible.

When the solution ψ(x, t) is selected so that

|ψ(x, t)| → 0,

as |x| → ∞, and ∫ ∞

−∞
|ψ(x, t)|2dx = 1,

then, for each fixed t, the function |ψ(x, t)|2 is a probability density function
governing the position of the particle. In other words, the probability of
finding the particle in the interval [a, b] at time t is∫ b

a

|ψ(x, t)|2dx.

An important special case is that of time-independent potentials.
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14.2 Time-Independent Potentials

We say that V (x, t) is time-independent if V (x, t) = V (x), for all t. We
then attempt to solve Equation (14.1) by separating the variables; we take
ψ(x, t) = f(t)g(x) and insert this product into Equation (14.1).

The time function is easily shown to be

f(t) = e−Et/h̄,

where E is defined to be the energy. The function g(x) satisfies the time-
independent Schrödinger Equation

− h̄

2m
g′′(x) + V (x)g(x) = Eg(x). (14.2)

An important special case is the harmonic oscillator.

14.3 The Harmonic Oscillator

The case of the harmonic oscillator corresponds to the potential V (x) =
1
2kx

2.

14.3.1 The Classical Spring Problem

To motivate the development of the harmonic oscillator in quantum me-
chanics, it is helpful to recall the classical spring problem. In this problem
a mass m slides back and forth along a frictionless surface, with position
x(t) at time t. It is connected to a fixed structure by a spring with spring
constant k > 0. The restoring force acting on the mass at any time is −kx,
with x = 0 the equilibrium position of the mass. The equation of motion
is

mx′′(t) = −kx(t),

and the solution is

x(t) = x(0) cos

√
k

m
t.

The period of oscillation is T = 2π
√

m
k and the frequency of oscillation is

ν = 1
T = 1

2π

√
k
m , from which we obtain the equation

k = 4π2mν2.

The potential energy is 1
2kx

2, while the kinetic energy is 1
2mẋ

2. The sum of
the kinetic and potential energies is the total energy, E(t). Since E′(t) = 0,
the energy is constant.
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14.3.2 Back to the Harmonic Oscillator

When the potential function is V (x) = 1
2kx

2, Equation (14.2) becomes

h̄

2m
g′′(x) + (E − 1

2
kx2)g(x) = 0, (14.3)

where k = mω2, for ω = 2πν. With u =
√

mω
h̄ and ε = 2E

h̄ω , we have

d2g

du2
+ (ε− u2)g = 0. (14.4)

Equation (14.4) is equivalent to

w′′(x) + (2p+ 1− x2)w(x) = 0,

which can be transformed into Hermite’s Equation

y′′ − 2xy′ + 2py = 0,

by writing y(x) = w(x)ex2/2.
In order for the solutions of Equation (14.3) to be physically admissible

solutions, it is necessary that p be a non-negative integer, which means
that

E = h̄ω(n+
1
2
),

for some non-negative integer n; this gives the quantized energy levels for
the harmonic oscillator.

14.4 Dirac’s Equation

Einstein’s theory of special relativity tells us that there are four variables,
not just three, that have length for their units of measurement: the familiar
three-dimensional spatial coordinates, and ct, where c is the speed of light
and t is time. Looked at this way, Schrödinger’s Equation (14.1), extended
to three spatial dimensions, is peculiar, in that it treats the variable ct
differently from the others. There is only a first partial derivative in t,
but second partial derivatives in the other variables. In 1930 the British
mathematician Paul Dirac presented his relativistically correct version of
Schrödinger’s Equation.

Dirac’s Equation, a version of which is inscribed on the wall of West-
minster Abbey, is the following:

ih̄
∂ψ

∂t
=
h̄c

i

(
α1

∂ψ

∂x1
+ α2

∂ψ

∂x2
+ α3

∂ψ

∂x3

)
+ α4mc

2ψ. (14.5)

Here the αi are the Dirac matrices.
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This equation agreed remarkably well with experimental data on the
behavior of electrons in electric and magnetic fields, but it also seemed to
allow for nonsensical solutions, such as spinning electrons with negative
energy. The next year, Dirac realized that what the equation was calling
for was anti-matter, a particle with the same mass as the electron, but with
a positive charge. In the summer of 1932 Carl Anderson, working at Cal
Tech, presented clear evidence for the existence of such a particle, which
we now call the positron. What seemed like the height of science fiction in
1930 has become commonplace today.

When a positron collides with an electron their masses vanish and two
gamma ray photons of pure energy are produced. These photons then move
off in opposite directions. In positron emission tomography (PET) certain
positron-emitting chemicals, such as a glucose with radioactive fluorine
chemically attached, are injected into the patient. When the PET scanner
detects two photons arriving at the two ends of a line segment at (almost)
the same time, called coincidence detection, it concludes that a positron
was emitted somewhere along that line. This is repeated thousands of
times. Once all this data has been collected, the mathematicians take over
and use these clues to reconstruct an image of where the glucose is in the
body. It is this image that the doctor sees.
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