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1 Random Variables as Models

When we use mathematical tools, such as differential equations, probability, or sys-

tems of linear equations, to describe a real-world situation, we say that we are employ-

ing a mathematical model. Such models must be sufficiently sophisticated to capture

the essential features of the situation, while remaining computationally manageable.

In this chapter we are interested in one particular type of mathematical model, the

random variable.

Imagine that you are holding a baseball four feet off the ground. If you drop it,

it will land on the ground directly below where you held it. The height of the ball

at any time during the fall is described by the function h(t) satisfying the ordinary

differential equation h′′(t) = −32 ft
sec2

. Solving this differential equation with the initial

conditions h(0) = 4 ft , h′(0) = 0 ft
sec

, we find that h(t) = 4 − 16t2. Solving h(T ) = 0

for T we find the elapsed time T until impact is T = 0.5 sec.. The velocity of the ball

at impact is h′(T ) = −32T = −16 ft
sec

.

Now imagine that, instead of a baseball, you are holding a feather. The feather and

the baseball are both subject to the same laws of gravity, but now other aspects of the

situation, which we could safely ignore in the case of the baseball, become important

in the case of the feather. Like the baseball, the feather is subjected to air resistance

and to whatever fluctuations in air currents may be present during its fall. Unlike the

baseball, however, the effects of the air matter to the flight of the feather; in fact, they

become the dominant factors. When we designed our differential-equation model for

the falling baseball we performed no experiments to help us understand its behavior.

We simply ignored all other aspects of the situation, and included only gravity in our
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mathematical model. Even the modeling of gravity was slightly simplified, in that

we assumed a constant gravitational acceleration, even though Newton’s Laws tell

us that it increases as we approach the center of the earth. When we drop the ball

and find that our model is accurate we feel no need to change it. When we drop the

feather we discover immediately that a new model is needed; but what?

The first thing we observe is that the feather falls in a manner that is impossible

to predict with accuracy. Dropping it once again, we notice that it behaves differently

this time, landing in a different place and, perhaps, taking longer to land. How are we

to model such a situation, in which repeated experiments produce different results?

Can we say nothing useful about what will happen when we drop the feather the next

time?

As we continue to drop the feather, we notice that, while the feather usually does

not fall directly beneath the point of release, it does not fall too far away. Suppose we

draw a grid of horizontal and vertical lines on the ground, dividing the ground into

a pattern of squares of equal area. Now we repeatedly drop the feather and record

the proportion of times the feather is (mainly) contained within each square; we also

record the elapsed time. As we are about to drop the feather the next time, we may

well assume that the outcome will be consistent with the behavior we have observed

during the previous drops. While we cannot say for certain where the feather will

fall, nor what the elapsed time will be, we feel comfortable making a probabilistic

statement about the likelihood that the feather will land in any given square and

about the elapsed time.

The squares into which the feather may land are finite, or, if we insist on creating

an infinite grid, discretely infinite, while the elapsed time can be any positive real

number. Let us number the squares as n = 1, 2, 3, ... and let pn be the proportion

of drops that resulted in the feather landing mainly in square n. Then pn ≥ 0 and
∑∞

n=1 pn = 1. The sequence p = {pn|n = 1, 2, ...} is then a discrete probability sequence

(dps), or a probability sequence, or a discrete probability. Now let N be the number

of the square that will contain the feather on the next drop. All we can say about N

is that, according to our model, the probability that N will equal n is pn. We call N

a discrete random variable with probability sequence p.

It is difficult to be more precise about what probability really means. When we

say that the probability is pn that the feather will land in square n on the next

drop, where does that probability reside? Do we believe that the numbers pn are in

the feather somehow? Do these numbers simply describe our own ignorance, so are

in our heads? Are they a combination of the two, in our heads as a result of our
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having experienced what the feather did previously? Perhaps it is best simply to

view probablity as a type of mathematical model that we choose to adopt in certain

situations.

Now let T be the elapsed time for the next feather to hit the ground. What can

we say about T? Based on our prior experience, we are willing to say that, for any

interval [a, b] within (0, ∞), the probability that T will take on a value within [a, b] is

the proportion of prior drops in which the elapsed time was between a and b. Then

T is a continuous random variable, in that the values it may take on (in theory, at

least) lie in a continuum. To help us calculate the probabilities associated with T

we use our prior experience to specify a function fT (t), called the probability density

function (pdf) of T , having the property that the probability that T will lie between

a and b can be calculated as
∫ b
a fT (t)dt. Such fT (t) will have the properties fT (t) ≥ 0

for all positive t and
∫ ∞
0 fT (t)dt = 1.

In the case of the falling feather we had to perform experiments to determine

appropriate ps p and pdf fT (t). In practice, we often describe our random variables

using a ps or pdf from a well-studied parametric family of such mathematical objects.

Popular examples of such ps and pdf, such as Poisson probabilities and Gaussian pdf,

are discussed early in most courses in probability theory.

It is simplest to discuss the main points of random signal processing within the

context of discrete signals, so we return there now.

2 Discrete Random Signal Processing

Previously, we have encountered specific discrete functions, such as δk, u, eω, whose

values at each integer n are given by an exact formula. In signal processing we

must also concern ourselves with discrete functions whose values are not given by

such formulas, but rather, seem to obey only probabilistic laws. We shall need such

discrete functions to model noise. For example, imagine that, at each time n, a fair

coin is tossed and x(n) = 1 if the coin shows heads, x(n) = −1 if the coin shows

tails. We cannot determine the value of x(n) from any formula; we must simply toss

the coins. Given any discrete function x with values x(n) that are either 1 or −1,

we cannot say if x was generated by such a coin-flipping manner. In fact, any such

x could have been the result of coin flips. All we can say is how likely it is that a

particular x was so generated. For example, if x(n) = 1 for n even and x(n) = −1 for

n odd, we feel, intuitively, that it is highly unlikely that such an x came from random

coin tossing. What bothers us, of course, is that the values x(n) seem so predictable;
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randomness seems to require some degree of unpredictability. If we were given two

such sequences, the first being the one described above, with 1 and −1 alternating,

and the second exhibiting no obvious pattern, and asked to select the one generated

by independent random coin tossing, we would clearly choose the second one. There

is a subtle point here, however. When we say that we are “given an infinite sequence”

what do we really mean? Because the issue here is not the infinite nature of the

sequences, let us reformulate the discussion in terms of finite vectors of length, say,

100, with entries 1 or −1. If we are shown a print-out of two such vectors, the first

with alternating 1 and −1, and the second vector exhibiting no obvious pattern, we

would immediately say that it was the second one that was generated by the coin-

flipping procedure, even though the two vectors are equally likely to have been so

generated. The point is that we associate randomness with the absence of a pattern,

more than with probability. When there is a pattern, the vector can be described in

a way that is significantly shorter than simply listing its entries. Indeed, it has been

suggested that a vector is random if it cannot be described in a manner shorter than

simply listing its members.

2.1 The Simplest Random Sequence

We say that a sequence x = {x(n)} is a random sequence or a discrete random process

if x(n) is a random variable for each integer n. A simple, yet remarkably useful,

example is the random-coin-flip sequence, which we shall denote by c = {c(n)}. In

this model a coin is flipped for each n and c(n) = 1 if the coin comes up heads, with

c(n) = −1 if the coin comes up tails. It will be convenient to allow for the coin to be

biased, that is, for the probabilities of heads and tails to be unequal. We denote by p

the probability that heads occurs and 1 − p the probability of tails; the coin is called

unbiased or fair if p = 1/2. To find the expected value of c(n), written E(c(n)), we

multiply each possible value of c(n) by its probability and sum; that is,

E(c(n)) = (+1)p + (−1)(1 − p) = 2p − 1.

If the coin is fair then E(c(n)) = 0. The variance of the random variable c(n),

measuring its tendency to deviate from its expected value, is var(c(n)) = E([c(n) −

E(c(n))]2). We have

var(c(n)) = [+1 − (2p − 1)]2p + [−1 − (2p − 1)]2(1 − p) = 4p − 4p2.

If the coin is fair then var(c(n)) = 1. It is important to note that we do not change

the coin at any time during the generation of the random sequence c; in particular,

the p does not depend on n.

4



The random-coin-flip sequence c is the simplest example of a discrete random

process or a random discrete function. It is important to remember that a random

discrete function is not any one particular discrete function, but rather a probabilistic

model chosen to allow us to talk about the probabilities associated with the values

of the x(n). In the next section we shall use this discrete random process to generate

a wide class of discrete random processes, obtained by viewing c = c(n) as the input

into a linear, shift-invariant (LSI) filter.

3 Random Discrete Functions or Discrete Random

Processes

A linear, shift-invariant (LSI) operator T with impulse response function h = {h(k)}

operates on any input sequence x = {x(n)} to produce the output sequence y =

{y(n)} according to the convolution formula

y(n) =
∞
∑

k=−∞

h(k)x(n − k) =
∞
∑

k=−∞

x(k)h(n − k). (3.1)

We learn more about the system that T represents when we select as input sinusoids

at fixed frequencies. Let ω be a fixed frequency in the interval [−π, π) and let x = eω,

so that x(n) = einω for each integer n. Then Equation (3.1) shows us that the output

is

y(n) = H(eiω)x(n),

where

H(eiω) =
∞
∑

k=−∞

h(k)e−ikω. (3.2)

This function of ω is called the frequency-response function of the system. We can

learn even more about the system by selecting as input the sequence x(n) = zn, where

z is an arbitrary complex number. Then Equation (3.1) gives the output as

y(n) = H(z)x(n),

where

H(z) =
∞
∑

k=−∞

h(k)z−k. (3.3)

Note that if we select z = eiω then H(z) = H(eiω) as given by Equation (3.2). The

function H(z) of the complex variable z is the z-transform of the sequence h and also

the transfer function of the system determined by h.
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Now we take this approach one step further. Let us select as our input x = {x(n)}

the random-coin-flip sequence c = {c(n)}, with p = 0.5. It is important to note that

such an x is not one specific discrete function, but a random model for such functions.

The output y = {y(n)} is again a random sequence, with

y(n) =
∞
∑

k=−∞

h(k)c(n − k). (3.4)

Clearly, in order for the infinite sum to converge we would need to place restrictions

on the sequence h; if h(k) is zero except for finitely many values of k then we have

no problem. We shall put off discussion of convergence issues and focus on statistical

properties of the output random sequence y.

Let u and v be (possibly complex-valued) random variables with expected values

E(u) and E(v), respectively. The covariance between u and v is defined to be

cov(u, v) = E([u − E(u))(v − E(v))]),

and the cross-correlation between u and v is

corr(u, v) = E(uv).

It is easily shown that cov(u, v) = corr(u, v) − E(u)E(v). When u = v we get

cov(u, u) = var(u) and corr(u, u) = E(|u|2). If E(u) = E(v) = 0 then cov(u, v) =

corr(u, v).

To illustrate, let u = c(n) and v = c(n − m). Then, since the coin is fair,

E(c(n)) = E(c(n − m)) = 0 and

cov(c(n), c(n − m)) = corr(c(n), c(n − m)) = E(c(n)c(n − m)).

Because the c(n) are independent, E(c(n)c(n − m)) = 0 for m not equal to 0, and

E(|c(n)|2) = var(c(n)) = 1. Therefore

cov(c(n), c(n − m)) = corr(c(n), c(n − m)) = 0, for m 6= 0,

and

cov(c(n), c(n)) = corr(c(n), c(n)) = 1.

Returning now to the output sequence y = {y(n)} we compute the correlation

corr(y(n), y(n − m)) = E(y(n)y(n − m)). Using the convolution formula Equation

(3.4) we find that

corr(y(n), y(n − m)) =
∞
∑

k=−∞

∞
∑

j=−∞

h(k)h(j)corr(c(n − k), c(n − m − j)).
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Since

corr(c(n − k), c(n − m − j)) = 0, for k 6= m + j,

we have

corr(y(n), y(n − m)) =
∞
∑

k=−∞

h(k)h(k − m). (3.5)

The expression of the right side of Equation (3.5) is the definition of the autocorrelaton

of the sequence h, denoted ρh(m); that is,

ρh(m) =
∞
∑

k=−∞

h(k)h(k − m). (3.6)

It is important to note that the expected value of y(n) is

E(y(n)) =
∞
∑

k=−∞

h(k)E(c(n − k)) = 0

and the correlation corr(y(n), y(n−m)) depends only on m; neither quantity depends

on n and the sequence y is therefore called weak-sense stationary. Let’s consider an

example.

Take h(0) = h(1) = 0.5 and h(k) = 0 otherwise. Then the system is the two-point

moving-average, with

y(n) = 0.5x(n) + 0.5x(n − 1).

With x(n) = c(n) we have

y(n) = 0.5c(n) + 0.5c(n − 1).

In the case of the random-coin-flip sequence c each c(n) is unrelated to any other

c(m); the coin flips are independent. This is no longer the case for the y(n); one

effect of the filter h is to introduce correlation into the output. To illustrate, since

y(0) and y(1) both depend, to some degree, on the value c(0), they are related. Using

Equation (3.6) we have

ρh(0) = h(0)h(0) + h(1)h(1) = 0.25 + 0.25 = 0.5,

ρh(−1) = h(0)h(1) = 0.25,

ρh(+1) = h(1)h(0) = 0.25,

and

ρh(m) = 0, otherwise.

So we see that y(n) and y(n − m) are related, for m = −1, 0, +1, but not otherwise.
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4 Correlation Functions and Power Spectra

As we have seen, any nonrandom sequence h = {h(k)} has its autocorrelation function

defined, for each integer m, by

ρh(m) =
∞
∑

k=−∞

h(k)h(k − m).

For a random sequence y(n) that is wide-sense stationary, its correlation function is

defined to be

ρy(m) = E(y(n)y(n − m)).

The power spectrum of h is defined for ω in [−π, π] by

Sh(ω) =
∞
∑

m=−∞

ρh(m)e−imω.

It is easy to see that

Sh(ω) = |H(eiω)|2,

so that Sh(ω) ≥ 0. The power spectrum of the random sequence y = {y(n)} is defined

as

Sy(ω) =
∞
∑

m=−∞

ρy(m)e−imω.

Although it is not immediately obvious, we also have Sy(ω) ≥ 0. One way to see this

is to consider

Y (eiω) =
∞
∑

n=−∞

y(n)e−inω

and to calculate

E(|Y (eiω)|2) =
∞
∑

m=−∞

E(y(n)y(n − m))e−imω = Sy(ω).

Given any power spectrum Sy(ω) we can construct H(eiω) by selecting an arbitrary

phase angle θ and letting

H(eiω) =
√

Sy(ω)eiθ.

We then obtain the nonrandom sequence h associated with H(eiω) using

h(n) =
∫ π

−π
H(eiω)einωdω/2π.

It follows that ρh(m) = ρy(m) for each m and Sh(ω) = Sy(ω) for each ω.

What we have discovered is that, when the input to the system is the random-coin-

flip sequence c, the output sequence y has a correlation function ρy(m) that is equal to
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the autocorrelation of the sequence h. As we just saw, for any weak-sense stationary

random sequence y with expected value E(y(n)) constant and correlation function

corr(y(n), y(n − m)) independent of n, there is a LSI system h with ρh(m) = ρy(m)

for each m. Therefore, any weak-sense stationary random sequence y can be viewed

as the output of an LSI system, when the input is the random-coin-flip sequence

c = {c(n)}.

5 Random Sinusoidal Sequences

If A = |A|eiθ, with amplitude |A| a positive-valued random variable and phase angle

θ a random variable taking values in the interval [−π, π] then A is a complex-valued

random variable. For a fixed frequency ω0 we define a random sinusoidal sequence

s = {s(n)} by s(n) = Aeinω0 . We assume that θ has the uniform distribution over

[−π, π] so that the expected value of s(n) is zero. The correlation function for s is

ρs(m) = E(s(n)s(n − m)) = E(|A|2)eimω0

and the power spectrum of s is

Ss(ω) = E(|A|2)
∞
∑

m=−∞

eim(ω0−ω),

so that, by Equation (??), we have

Ss(ω) = E(|A|2)δ(ω − ω0).

We generalize this example to the case of multiple independent sinusoids. Suppose

that, for j = 1, ..., J , we have fixed frequencies ωj and independent complex-valued

random variables Aj. We let our random sequence be defined by

s(n) =
J

∑

j=1

Aje
inωj .

Then the correlation function for x is

ρs(m) =
J

∑

j=1

E(|Aj|
2)eimωj

and the power spectrum for s is

Ss(ω) =
J

∑

j=1

E(|Aj|
2)δ(ω − ωj).
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A commonly used model in signal processing is that of independent sinusoids in

additive noise.

Let q = {q(n)} be an arbitrary weak-sense stationary discrete random sequence,

with correlation function ρq(m) and power spectrum Sq(ω). We say that q is white

noise if ρq(m) = 0 for m not equal to zero, or, equivalently, if the power spectrum

Sq(ω) is constant over the interval [−π, π]. The independent sinusoids in additive

noise model is a random sequence of the form

x(n) =
J

∑

j=1

Aje
inωj + q(n).

The signal power is defined to be ρs(0), which is the sum of the E(|Aj|
2), while the

noise power is ρq(0). The signal-to-noise ratio (SNR) is the ratio of signal power to

noise power.

It is often the case that the SNR is quite low and it is desirable to process the x

to enhance this ratio. The data we have is typically finitely many values of x(n), say

for n = 1, 2, ..., N . One way to process the data is to estimate ρx(m) for some small

number of integers m around zero, using, for example, the lag products estimate

ρ̂x(m) =
1

N − m

N−m
∑

n=1

x(n)x(n − m),

for m = 0, 1, ..., M < N and ρ̂x(−m) = ρ̂x(m). Because ρq(m) = 0 for m not equal

to zero, we will have ρ̂x(m) approximating ρs(m) for nonzero values of m, thereby

reducing the effect of the noise.

The additive noise is said to be correlated or non-white if it is not the case that

ρx(m) = 0 for all nonzero m. In this case the noise power spectrum is not constant,

and so may be concentrated in certain regions of the interval [−π, π].

6 Spread-Spectrum Communication

In this section we return to the random-coin-flip model, this time allowing the coin

to be biased, that is, p need not be 0.5. Let s = {s(n)} be a random sequence, such

as s(n) = Aeinω0 , with E(s(n)) = µ and correlation function ρs(m). Define a second

random sequence x by

x(n) = s(n)c(n).

The random sequence x is generated from the random signal s by randomly changing

its signs. We can show that

E(x(n)) = µ(2p − 1)
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and, for m not equal to zero,

ρx(m) = ρs(m)(2p − 1)2,

with ρx(0) = ρs(0) + 4p(1 − p)µ2. Therefore, if p = 1 or p = 0 we get ρx(m) = ρs(m)

for all m, but for p = 0.5 we get ρx(m) = 0 for m not equal to zero. If the coin is

unbiased, then the random sign changes convert the original signal s into white noise.

Generally, we have

Sx(ω) = (2p − 1)2Ss(ω) + (1 − (2p − 1)2)(µ2 + ρs(0)),

which says that the power spectrum of x is a combination of the signal power spectrum

and a white-noise power spectrum, approaching the white-noise power spectrum as

p approaches 0.5. If the original signal power spectrum is concentrated within a

small interval, then the effect of the random sign changes is to spread that spectrum.

Once we know what the sequence c is we can recapture the original signal from

s(n) = x(n)c(n). The use of such a spread spectrum permits the sending of multiple

narrow-band signals, without confusion, as well as protecting against any narrow-

band additive interference.

7 Stochastic Difference Equations

The ordinary first-order differential equation y′(t)+ay(t) = f(t), with initial condition

y(0) = 0, has for its solution y(t) = e−at
∫ t
0 easf(s)ds. One way to look at such

differential equations is to consider f(t) to be the input to a system having y(t) as

its output. The system determines which terms will occur on the left side of the

differential equation. In many applications the input f(t) is viewed as random noise

and the output is then a continuous-time random process. Here we want to consider

the discrete analog of such differential equations.

We replace the first derivative with the first difference, y(n + 1) − y(n) and we

replace the input with the random-coin-flip sequence c = {c(n)}, to obtain the random

difference equation

y(n + 1) − y(n) + ay(n) = c(n). (7.1)

With b = 1 − a and 0 < b < 1 we have

y(n + 1) − by(n) = c(n). (7.2)
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The solution is y = {y(n)} given by

y(n) = bn
n

∑

k=−∞

b−kc(k). (7.3)

Comparing this with the solution of the differential equation, we see that the term bn

plays the role of e−at = (e−a)t, so that b = 1 − a is substituting for e−a. The infinite

sum replaces the infinite integral, with b−kc(k) replacing the integrand easf(s).

The solution sequence y given by Equation (7.3) is a weak-sense stationary random

sequence and its correlation function is

ρy(m) = bm/(1 − b2).

Since

bn
n

∑

k=−∞

b−k = 1 − b

the random sequence (1 − b)−1y(n) is an infinite moving-average random sequence

formed from the random sequence c.

We can derive the solution in Equation (7.3) using z-transforms. The expression

y(n) − by(n − 1) can be viewed as the output of a LSI system with h(0) = 1 and

h(1) = −b. Then H(z) = 1 − bz−1 = (z − b)/z and the inverse H(z)−1 = z/(z − b)

describes the inverse system. Since

H(z)−1 = z/(z − b) = 1/(1 − bz−1) = 1 + bz−1 + b2z−2 + ...

the inverse system applied to input c = {c(n)} is

y(n) = c(n) + bc(n − 1) + b2c(n − 2) + ... = bn
n

∑

k=−∞

b−kc(k).

8 Random Vectors and Correlation Matrices

In estimation and detection theory, the task is to distinguish signal vectors from

noise vectors. In order to perform such a task, we need to know how signal vectors

differ from noise vectors. Most frequently, what we have is statistical information.

The signal vectors of interest, which we denote by s = (s1, ..., sN)T , typically ex-

hibit some patterns of behavior among their entries. For example, a constant signal,

such as s = (1, 1, ..., 1)T , has all its entries identical. A sinusoidal signal, such as

s = (1, −1, 1, −1, ..., 1, −1)T , exhibits a periodicity in its entries. If the signal is a

vectorization of a two-dimensional image, then the patterns will be more difficult to
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describe, but will be there, nevertheless. In contrast, a typical noise vector, denoted

q = (q1, ..., qN)T , may have entries that are unrelated to each other, as in white noise.

Of course, what is signal and what is noise depends on the context; unwanted inter-

ference in radio may be viewed as noise, even though it may be a weather report or

a song.

To deal with these notions mathematically, we adopt statistical models. The

entries of s and q are taken to be random variables, so that s and q are random

vectors. Often we assume that the mean values, E(s) and E(q), are zero. Then

patterns that may exist among the entries of these vectors are described in terms of

correlations. The noise covariance matrix, which we denote by Q, has for its entries

Qmn = E((qm − E(qm))(qn − E(qn))), for m, n = 1, ..., N . The signal covariance

matrix is defined similarly. If E(qn) = 0 and E(|qn|
2) = 1 for each n, then Q is the

noise correlation matrix. Such matrices Q are Hermitian and non-negative definite,

that is, x†Qx is non-negative, for every vector x. If Q is a positive multiple of the

identity matrix, then the noise is said to be white noise.
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