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Image reconstruction from limited Fourier data
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We consider the problem of reconstructing a function f with bounded support S from finitely many values of its
Fourier transform F. Although f cannot be band limited since it has bounded support, it is typically the case
that f can be modeled as the restriction to S of a �-band-limited function, say g. Our reconstruction method is
based on such a model for f. Of particular interest is the effect of the choice of ��0 on the resolution. © 2006
Optical Society of America

OCIS codes: 100.3010, 100.3020, 100.3190, 100.6640.
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. INTRODUCTION
mage reconstruction in many fields, such as x-ray dif-
raction, electron microscopy, and diffraction optics, can
e interpreted as the problem of estimating a function
rom its Fourier-transform values. While there has been
onsiderable effort in the development of algorithms, this
roblem has generally proved to be difficult. Mathemati-
ally, reconstructing a real function (i.e., object energy)
rom a finite number of Fourier values leads to an infinite
umber of potential solutions. To single out one particular
ata-consistent solution, one can require that some func-
ional of the image, such as its entropy, be optimized,1–3 or
hat the solution be closest to some other appropriate
rior estimate according to a given distance criterion.4–7

or some applications the main requirement may be that
he reconstruction algorithm be easily implemented and
apidly calculated. Best results are achieved when the cri-
eria chosen force the reconstructed image to incorporate
eatures of the true function that are known a priori, such
s support limitation.
In this paper we are concerned with the reconstruction

rom finitely many Fourier-transform values of a function
�x� with bounded support region S. The variable x may be
ultidimensional. We assume that f�x� can be approxi-
ated by the restriction to S of a function g�x� whose Fou-

ier transform G��� is zero for �����; that is, f�x� is the
estriction to S of a �-band-limited function.

The paper is organized as follows. Section 2 introduces
he theory behind the reconstruction algorithm using the
otation of the one-dimensional problem. In Section 3 we
xtend this algorithm to the two-dimensional problem.
he new algorithm is then applied to one-dimensional
nd two-dimensional simulations.

. MATHEMATICAL BACKGROUND
uppose that N Fourier-transform data sampled at fre-
uencies � , for n=1,2, . . . ,N, are represented as
n

1084-7529/06/112732-5/$15.00 © 2
F��n� =�
−�

�

f�x�exp�− jx�n�dx, �1�

or n=1,2, . . . ,N. In many applications, f�x� can be sup-
ort limited to some region S, and it is typically the case
hat this function f�x� can be well modeled as the restric-
ion to S of a function, say

g�x� = �
n=1

N

anhn�x�. �2�

n�x�, for n=1,2, . . . ,N, are basis functions. For simplic-
ty, we define S to be �x���. Here, we shall take the sinc
unction, sin���x−xn�� / ���x−xn��, as hn�x�. Although f�x�
tself cannot be band limited since it is support limited,
e take as our estimate of f�x� the data-consistent func-

ion of the form

f̂�x� = �
n=1

N

an

sin���x − xn��

��x − xn�
, �3�

or �x���. To force f̂�x� to be data consistent, that is, for

F̂��m� = F��m�, for m = 1,2, . . . ,N, �4�

e must have

F��m� = �
n=1

N

anAmn �5�

ith

Amn =�
−�

� sin���x − xn��

��x − xn�
exp�− jx�m�dx. �6�

he reconstruction procedure is to solve Eq. (5) for the co-
fficients an, for n=1,2, . . . ,N, and then substitute these
oefficients into Eq. (3).

To obtain accurate reconstruction using the algorithm
006 Optical Society of America
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n Eq. (3) for realistic applications, a priori knowledge
bout the true support domain where the object function
�x� resides is helpful, and an appropriate choice for
,x1 ,x2 , . . . ,xN is also necessary. While one may argue

hat lack of specific knowledge of the true support domain
s typically the case, the expected support domain in the
econstruction must be large enough to accomodate the
rue object function f�x� at least. A high-resolution recon-
tructed image typically requires a tight estimate of the
rue support; choosing a wide support typically gives an
mage similar to the discrete Fourier transform (DFT) es-
imate. The existence of object energy outside the ex-
ected support leads to errors, because f̂�x� is necessarily
ata consistent and requires some artifact energy in the
xpected support to compensate for object energy dis-
arded by the expected support.

Let � and �x1 ,x2 , . . . ,xN	 represent the basis functions’
arameters and spatial shifts, respectively. The larger �
s, the narrower the shape of the basis functions. Choos-
ng a larger value of � has a greater potential in recover-
ng finer features, whereas a good reconstruction also de-
ends on the locations of �x1 ,x2 , . . . ,xN	 as well as the
rofile of the true object function f�x�. Placing the
x1 ,x2 , . . . ,xN	 at uniform intervals is generally good; con-
entrating them either inside or outside the true support
s not recommended. In addition, the interval �xn=xn+1

ig. 1. DFT estimate from 17 computed Fourier data sampled
t frequencies �−8, . . . ,8	.

ig. 2. Estimate by Eq. (3) with �=�, �=8, and �x1 ,x2 , . . . ,x17	 s
−1,1�, (d) �−� /4 ,� /4�, (e) �−0.6,0.6�, (f) �−3,−1�. In each case
.382
109, 4.059
1011, 3.846
1013, 1.208
1013.
xn for n=1,2, . . . ,N−1 should not be an integer multiple
f � /�, since zeros of basis functions will coincide in the
ense that �xn=m� /� �m�Z�. A high-quality image is
ypically obtained by taking a great diversity of spatial
hifts of basis functions, which typically means, in turn,
hat the region spanned by �x1 ,x2 , . . . ,xN	 should be wide.

To test our developed algorithm, we applied it to com-
uted Fourier data in which 17 data samples were taken
t unit-interval frequencies accessible with low-pass fil-
ering ���1 ,�2 , . . . ,�17	= �−8, . . . ,8	�. The function f�x� be-
ng reconstructed (the solid curve) and having its support
n the range �−� /4 ,� /4� and the DFT estimate (the dot-
ed curve) are shown in Fig. 1. We apply the algorithm in
q. (3) with the points of �x1 ,x2 , . . . ,x17	 positioned at a

onstant interval. Some representative examples with dif-
erent expected support domains are shown in Figs. 2–5,
or which each takes � as 	=8 (the largest value of ��n�
or n=1,2, . . . ,17), and different locations for the
x1 , . . . ,xN	 are chosen.

Compared with the DFT estimate in Fig. 1, superior
esolution can be seen in Figs. 3 and 4, where the choices
f �=2 and �=1, respectively, are used. Comparable re-
ults in Fig. 2 are obtained when we use �=� (too large)
nd poorer results in Fig. 6 when we use �=0.7 (too
mall). Positioning all the points of �x1 ,x2 , . . . ,x17	 outside
he true support is usually not a good choice, as clearly
een in Figs. 2(f) and 3(f). On the other hand, setting all
he points inside the true support could provide an accept-
ble resolution, but not a very good one typically, as seen
n Figs. 2(e), 3(e), and 4(e).

Appropriately increasing the value of � larger than 	
an typically improve the image resolution, especially for
he case in which the region where the �x1 ,x2 , . . . ,x17	 re-
ide is not wide. If choosing larger values of � than 	 for
he examples in Figs. 4(a)–4(d), the corresponding results
re shown in Figs. 6(a)–6(d), from which the most signifi-
ant improvement can be clearly seen in part (d). This is
ecause a greater diversity of the basis function’s profile

at a constant interval over the ranges (a) �−3,3�, (b) �−2,2�, (c)
dition number of the matrix A in Eq. (5) is 2.968, 1.680
104,
ampled
the con
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sed in the reconstruction can be extended by narrowing
ts period of zeros �� /��, equivalently increasing the value
f �.

For each simulation it is typically the case that the ma-
rix A in Eq. (5) is ill-conditioned, as the condition num-
ers show in Figs. 2–6. Although the condition number for
ach example in this paper does not cause a problem for
n accurate image, it is recommended to use the regular-
zation method for noisy data in practical applications. It
s easy to improve the condition number by regulariza-
ion, such as in the Miller–Tikhonov sense, when the data
et is not large. For large problems an iterative method,
uch as the algebraic reconstruction technique, can be ap-
lied to solve the system.

ig. 4. Same as Fig. 2 but with �=1 and the condition number
1016, (d) 3.961
1016, (e) 5.301
1016, (f) 2.514
1017.

ig. 3. Same as Fig. 2 but with �=2 and the condition number
1016, (d) 1.393
1016, (e) 5.624
1016, and (f) 1.286
1016.
. TWO-DIMENSIONAL IMAGING PROBLEM
onsider the reconstruction of a two-dimensional function

�x ,y� from the Fourier values at frequencies ��n ,�n� for
=1,2, . . . ,N:

F��n,�n� =�
−�

� �
−�

�

f�x,y�exp�− jx�n − jy�n�dxdy. �7�

et f�x ,y� be bounded and its support region S defined by
x���x, �y���y. In a manner similar to the one-
imensional case, the reconstruction algorithm we con-
ider is based on a model of f�x ,y� as the restriction to S of
band limited function. The estimate is then

matrix A in Eq. (5) as (a) 7.730
1016, (b) 3.479
1016, (c) 7.162

matrix A in Eq. (5) as (a) 1.441
107, (b) 4.119
1010, (c) 1.204
of the
of the
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f̂�x,y� = �
n=1

N

an

sin����x − xn��

���x − xn�

sin����y − yn��

���y − yn�
, �8�

or �x���x, �y���y. In Eq. (8), the coefficients an for n
1,2, . . . ,N will satisfy

F��m,�m� = �
n=1

N

anAmnBmn �9�

ith

Amn =�
−�x

�x sin����x − xn��

���x − xn�
exp�− jx�m�dx �10�

nd

Bmn =�
−�y

�y sin����y − yn��

���y − yn�
exp�− jy�m�dy. �11�

ig. 5. Same as Fig. 2 but with �=0.7 and the condition num
.695
1016, (d) 9.364
1016, (e) 1.575
1017, and (f) 2.109
1017.

ig. 6. Estimate by Eq. (3) with �=1 and (a) �=13 with �x1 ,x
17 with �x1 ,x2 , . . . ,x17	 over the range �−2,2�, (c) �=18 and �x1 ,
ange �−� /4 ,� /4�. In each case the condition number of the ma
espectively.
The integrals in Eqs. (10) and (11) can be computed in
erms of the sine integral and cosine integral functions.
he sine integral function is defined for −�
x
� by8

Si�x� =�
x

� sin�t�

t
dt, �12�

nd the cosine integral function is defined for 0
x
� by

Ci�x� =�
x

� cos�t�

t
dt. �13�

y changing variables and using the trigonometric iden-
ities, the definition of Amn in Eq. (10) can be equivalently
ritten as

the matrix A in Eq. (5) as (a) 7.402
1017, (b) 7.684
1016, (c)

17	 sampled at a constant interval over the range �−3,3�, (b) �
x17	 over the range �−1,1�, (d) �=13 and �x1 ,x2 , . . . ,x17	 over the
in Eq. (5) is 5.931
1014, 3.024
1012, 2.055
1014, 1.830
1016,
ber of
2 , . . . ,x
x2 , . . . ,
trix A
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Amn = D�
−�x

�x sin����x − xn��

��x − xn�
exp�− j�x − xn��m�dx

=
D

2�
�Si�h1� − Si�h2� + Si�h3� − Si�h4��

+
jD

2�
�Ci�h1� − Ci�h2� − Ci�h3� + Ci�h4��, �14�

here D=� exp�−j�mxn� /��, h1= ���+�m��−�x−xn�, h2
���+�m���x−xn�, h3= ���−�m��−�x−xn�, and h4= ���−�m�
��x−xn�. The evaluation of Bmn can be done in similar

ashion.
To illustrate the algorithm for two-dimensional imag-

ng applications, we simulate an example of reconstruct-
ng a two-dimensional function from its Fourier values
9
9 low-pass data). In Fig. 7, the resolution of the esti-

ate by Eq. (8) is clearly superior to the DFT estimate by
aking good choices of ��, ��, �x, �y, and ��xn ,yn� �n
1,2, . . . ,81	.

. CONCLUSIONS
ur algorithm models the function to be reconstructed as

he restriction to a finite domain of a �-band-limited func-
ion. Having chosen the form of the estimate as the super-
osition of such band-limited functions, the coefficients
re chosen so as to satisfy consistency with the finitely
any Fourier-transform data values. The algorithm in-

olves the selection of several parameters, such as the
idth � of the true support of the function, the degree � of
and limitation, and the center points for the several sinc
unctions that appear in the superposition model. We

ig. 7. Reconstruction of a two-dimensional function from its
imited Fourier values with (a) the object function, (b) the DFT
stimate, (c) the estimate by Eq. (8) with �x=�y=1.5, ��=��=4,
nd ��xn ,yn� �n=1,2, . . . ,81� sampled on a regular grid over the
ange −3�x�3, −3�y�3, (d) the same as (c) but with ��=��

6.
ave seen that the � should accommodate the true sup-
ort at least, in order to produce an acceptable recon-
truction or better. The resolution can be improved as the
increases, allowing us to overcome, to a degree, the limi-

ations imposed by the finite data. If we take � too large,
he sinc functions centered at the points xn will have main
obes that are essentially disjoint; in the limit, as � goes
o infinity, the reconstructed image will consist of delta
unctions supported at the xn. This suggests that, in fu-
ure work, we may want to consider nonuniformly distrib-
ted points xn and values of � that are allowed to vary
ith n. This will allow us to concentrate higher resolution
here needed. One possible application of this approach

ould be to reducing the partial-volume effect in emission
omography.9

Our discussion here has focused on Fourier data, but
hat is not essential. We have left the issue of sensitivity
o noise for future work, apart from noting that choosing �
oo small causes the reconstruction to fail.
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