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Chapter 1

Preface

The term image is used here to denote any single- or multi-dimensional
representation of a distribution of interest. The term signal processing is
also used broadly to denote the extraction of information from measured
data, usually obtained through some mode of remote sensing. This is not
a survey of the ever-growing field of medical imaging, nor is it a summary
of the history of the subject. The emphasis here is on mathematical tools
that feature prominently in medical imaging. Several areas of applications,
such as transmission and emission tomography, magnetic-resonance imag-
ing (MRI), and intensity-modulated radiation therapy, are described in
some detail, both to illustrate the importance of mathematical tools such
as the Fourier transform, iterative optimization and statistical parameter
estimation, and to provide concrete examples of medical applications.

The reader interested in learning more about computerized tomography
should consult the classical books by Kak and Slaney [141], Natterer [171],
and those edited by Herman [128] and by Herman and Natterer [129]. More
recent volumes, such as [172] and [213], should also be required reading.

Helpful introductory articles on emerging applications have appeared in
recent issues of the IEEE Signal Processing Magazine, specifically the Jan-
uary 1997, November 2001, and May 2006 issues. The January 1997 issue,
described as a special issue on medical imaging modalities, includes arti-
cles on electrical heart imaging [26], positron-emission tomography (PET)
[173], MRI [215], and ultrasound [187]. Each of these topics was fairly
well established by 1997. In contrast, the January 2001 issue, describing
emerging medical imaging technologies, looks at such newer techniques as
electromagnetic brain mapping [7], electrical impedance tomography [191],
heart strain imaging [164], and diffuse optical tomography [19]. A more re-
cent issue, in May 2006, surveys the imaging being done now at the cellular
and molecular level, with articles on fluoresence microscopy [190], molecu-
lar bioimaging [166], electron microscopy [105], cryo-electron tomography

1
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[156], and several other topics (see also [212, 223, 208, 222]).
Books on subjects such as tomographic imaging necessarily contain ma-

terial on signal processing, but their treatment is often inadequate. The
main reason for this, I believe, is that the concepts and problems of signal
processing are best presented to students through the use of physical ex-
amples; often the best examples do not fall within the subject area of the
book and the authors hesitate to include such apparently tangential mate-
rial. In contrast, I have included in these notes what I consider to be the
best real-world examples that illustrate the main ideas of signal processing,
without regard to subject area. As a result, the reader will find discussions
of solar radio-emission problems, sonar and radar imaging, ocean acoustic
tomography, and the like.

These notes are designed to be used either for a one-semester course
on signal processing in medical imaging, or a two-semester course that also
includes an in-depth treatment of iterative reconstruction methods. Topics
from the appendices should be included as needed.

Most of my referenced articles, as well as several others, are available
as pdf files at http://faculty.uml.edu/cbyrne/cbyrne.html. If you find any
typographical errors, please email me.



Chapter 2

Topics for Research
Papers

This course is not intended as an overview of medical imaging, or even an
overview of tomography; the emphasis here is on the mathematical aspects
of medical image reconstruction, and there are numerous mathematical
exercises throughout the text that the student is encouraged to attempt.
Nevertheless, students taking this course may wish to develop a broader
understanding of the various aspects of medical tomography. For that
reason, I suggest here several topics for research papers.

• 1. In this course we discuss four main types of scanning: x-ray trans-
mission tomography (CAT); positron emission tomography (PET);
single photon computed emission tomography (SPECT); and mag-
netic resonance imaging (MRI). Each of these modalities has its par-
ticular place in medical diagnosis, although there may be areas of
overlap. Investigate the uses of these different modalities. In those
areas in which more than one of these modalities are feasible, what
factors are considered in making the choice?

• 2. Select one of the four modalities listed in the previous problem
and investigate the issues currently being discussed by researchers
working on that modality. What are the current problems that they
are trying to overcome? What are the possibilities for that modality
in the future?

• 3. Sometimes, information obtained from one type of scan can be
used in another. Investigate such use of dual-modality scanning.
What are the main issues involved?

• 4. Hardware plays an important role in medical imaging. Investigate
the state-of-the art in hardware for the various modalities.

3
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• 5. The goal in medical imaging is accurate diagnosis, not nice pic-
tures. Investigate the ways in which this goal is included in the
development of reconstruction methods.

• 6. As new medical technologies are developed and medical costs
continue to rise, there will be efforts made to weigh the benefits of
the new technologies against the economic costs and potential health
risks. On Sunday, June 29, 2008, the New York Times carried a
front-page article, “Weighing the Costs of a Look Inside the Heart” ,
dealing with the benefits and costs of CT angiograms, that is, x-
ray tomographic imaging of the interiors of arteries. Increased use
of scanning devices obviously benefits the owners of these devices,
which, increasingly, are the doctors themselves. But, are these new
technologies always better than the cheaper methods they replace,
and thereby worth the added cost and potential health risks?



Chapter 3

Introduction

3.1 Overview

Before we yield to the temptation to introduce mathematical notation, it
is a good idea to survey the topics to be covered.

3.1.1 Topics

Our focus in this book is on several problems in what we shall loosely call
medical imaging, and on the various mathematical techniques currently
used to solve these problems. Specifically, we shall concentrate on problems
arising in transmission tomography, emission tomography (single-photon
(SPECT) and positron (PET)), magnetic resonance imaging (MRI) and
intensity-modulated radiation therapy (IMRT). The mathematical tech-
niques we shall consider include the Fourier transform, frequency-domain
filtering, the fast Fourier transform (FFT), super-position models and dis-
cretization, large systems of linear equations, statistical maximum-likelihood
parameter estimation, constrained optimization, iterative algorithms, ran-
domness, sensitivity to noise, regularization methods, projection onto con-
vex sets (POCS), and statistical detection and decision-making.

3.1.2 Organization

The approach we shall follow throughout this book is to begin with a chap-
ter describing a particular area of medical imaging, for example, transmis-
sion tomography, with emphasis on the mathematical formulation of the
problem, in this example, reconstruction from line integrals. We then in-
vestigate the relevant mathematical tools, which, in this example, include
the Fourier transform, frequency-domain filtering, the fast Fourier trans-
form and certain iterative algebraic reconstruction techniques. Once we

5
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have completed our discussion of the mathematical tools, we may return,
if needed, to the solution of the original medical imaging problem. These
chapters will constitute a single part of the text. We then repeat this for-
mat, as we proceed to consider several other problem areas in successive
parts of the book. Background material is included in appendices.

3.2 Transmission Tomography

Part of the text deals with transmission tomography. Previously, when
people spoke of a “CAT scan” they usually meant transmission tomogra-
phy, although the term is now used by lay people to describe any of several
scanning modalities, including single-photon emission computed tomog-
raphy (SPECT), positron emission tomography (PET), ultrasound, and
magnetic resonance imaging (MRI).

3.2.1 Brief Description

Computer-assisted tomography (CAT) scans have revolutionized medical
practice. One example of CAT is transmission tomography. The goal here
is to image the spatial distribution of various matter within the body, by
estimating the distribution of radiation attenuation. At least in theory, the
data are line integrals of the function of interest.

In transmission tomography, radiation, usually x-ray, is transmitted
through the object being scanned. The object of interest need not be a
living human being; King Tut has received a CAT-scan and industrial uses
of transmission scanning are common. Recent work [193] has shown the
practicality of using cosmic rays to scan cargo for hidden nuclear material;
tomographic reconstruction of the scattering ability of the contents can
reveal the presence of shielding.

In the simplest formulation of transmission tomography, the beams are
assumed to travel along straight lines through the object, the initial inten-
sity of the beams is known and the intensity of the beams, as they exit the
object, is measured for each line. The goal is to estimate and image the
x-ray attenuation function, which correlates closely with the spatial distri-
bution of attenuating material within the object. Unexpected absence of
attenuation can indicate a broken bone, for example.

As the x-ray beam travels along its line through the body, it is weak-
ened by the attenuating material it encounters. The reduced intensity of
the exiting beam provides a measure of how much attenuation the x-ray
encountered as it traveled along the line, but gives no indication of where
along that line it encountered the attenuation; in theory, what we have
learned is the integral of the attenuation function along the line. It is only
by repeating the process with other beams along other lines that we can
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begin to localize the attenuation and reconstruct an image of this non-
negative attenuation function. In some approaches, the lines are all in the
same plane and a reconstruction of a single slice through the object is the
goal; in other cases, a fully three-dimensional scanning occurs. The word
“tomography” itself comes from the Greek “tomos” , meaning part or slice;
the word “atom”was coined to describe something supposed to be “without
parts”.

3.2.2 The Theoretical Problem

In theory, we will have the integral of the attenuation function along every
line through the object. The Radon Transform is the operator that assigns
to each attenuation function its integrals over every line. The mathemat-
ical problem is then to invert the Radon Transform, that is, to recapture
the attenuation function from its line integrals. Is it always possible to
determine the attenuation function from its line integrals? Yes. One way
to show this is to use the Fourier transform to prove what is called the
Central Slice Theorem. The reconstruction is then inversion of the Fourier
transform; various methods for such inversion rely on frequency-domain
filtering and back-projection.

3.2.3 The Practical Problem

Practise, of course, is never quite the same as theory. The problem, as
we have described it, is an over-simplification in several respects, the main
one being that we never have all the line integrals. Ultimately, we will
construct a discrete image, made up of finitely many pixels. Consequently,
it is reasonable to assume, from the start, that the attenuation function
to be estimated is well approximated by a function that is constant across
small squares (or cubes), called pixels (or voxels), and that the goal is to
determine these finitely many pixel values.

3.2.4 The Discretized Problem

When the problem is discretized in this way, different mathematics begins
to play a role. The line integrals are replaced by finite sums, and the
problem can be viewed as one of solving a large number of linear equations,
subject to side constraints, such as the non-negativity of the pixel values.
The Fourier transform and the Central Slice Theorem are still relevant, but
in discrete form, with the fast Fourier transform (FFT) playing a major
role in discrete filtered back-projection methods. This approach provides
fast reconstruction, but is limited in other ways. Alternatively, we can
turn to iterative algorithms for solving large systems of linear equations,
subject to constraints. This approach allows for greater inclusion of the
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physics into the reconstruction, but can be slow; accelerating these iterative
reconstruction algorithms is a major concern, as is controlling sensitivity
to noise in the data.

3.2.5 Mathematical Tools

As we just saw, Fourier transformation in one and two dimensions, and
frequency-domain filtering are important tools that we need to discuss in
some detail. In the discretized formulation of the problem, periodic con-
volution of finite vectors and its implementation using the fast Fourier
transform play major roles. Because actual data is always finite, we con-
sider the issue of under-determined problems that allow for more than one
answer, and the need to include prior information to obtain reasonable
reconstructions. Under-determined problems are often solved using opti-
mization, such as maximizing the entropy or minimizing the norm of the
image, subject to the data as constraints. Constraints are often described
mathematically using the notion of convex sets. Finding an image satisfy-
ing several sets of constraints can often be viewed as finding a vector in the
intersection of convex sets, the so-called convex feasibility problem (CFP).

3.3 Emission Tomography

A second part of the text deals with emission tomography. Unlike trans-
mission tomography, emission tomography (ET) is used only with living
beings, principally humans and small animals. Although this modality was
initially used to uncover pathologies, it is now used to study normal func-
tioning, as well. In emission tomography, which includes positron emission
tomography (PET) and single photon emission tomography (SPECT), the
patient inhales, swallows, or is injected with, chemicals to which radioactive
material has been chemically attached [213]. The chemicals are designed
to accumulate in that specific region of the body we wish to image. For
example, we may be looking for tumors in the abdomen, weakness in the
heart wall, or evidence of brain activity in a selected region. In some cases,
the chemicals are designed to accumulate more in healthy regions, and less
so, or not at all, in unhealthy ones. The opposite may also be the case;
tumors may exhibit greater avidity for certain chemicals. The patient is
placed on a table surrounded by detectors that count the number of emit-
ted photons. On the basis of where the various counts were obtained, we
wish to determine the concentration of radioactivity at various locations
throughout the region of interest within the patient.

Although PET and SPECT share some applications, their uses are gen-
erally determined by the nature of the chemicals that have been designed
for this purpose, as well as by the half-life of the radionuclides employed.
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Those radioactive isotopes used in PET generally have half-lives on the
order of minutes and must be manufactured on site, adding to the expense
of PET. The isotopes used in SPECT have half-lives on the order of many
hours, or even days, so can be manufactured off-site and can also be used
in scanning procedures that extend over some appreciable period of time.

3.3.1 Coincidence-Detection PET

In PET the radionuclide emits individual positrons, which travel, on aver-
age, between 4 mm and 2.5 cm (depending on their kinetic energy) before
encountering an electron. The resulting annihilation releases two gamma-
ray photons that then proceed in essentially opposite directions. Detection
in the PET case means the recording of two photons at nearly the same
time at two different detectors. The locations of these two detectors then
provide the end points of the line segment passing, more or less, through
the site of the original positron emission. Therefore, each possible pair of
detectors determines a line of response (LOR). When a LOR is recorded,
it is assumed that a positron was emitted somewhere along that line. The
PET data consists of a chronological list of LOR that are recorded. Be-
cause the two photons detected at either end of the LOR are not detected
at exactly the same time, the time difference can be used in time-of-flight
PET to further localize the site of the emission to a smaller segment of
perhaps 8 cm in length.

3.3.2 Single-Photon Emission Tomography

Single-photon computed emission tomography (SPECT) is similar to PET
and has the same objective: to image the distribution of a radionuclide
within the body of the patient. In SPECT the radionuclide emits single
photons, which then travel through the body of the patient and, in some
fraction of the cases, are detected. Detections in SPECT correspond to
individual sensor locations outside the body. The data in SPECT are
the photon counts at each of the finitely many detector locations. Unlike
PET, in SPECT lead collimators are placed in front of the gamma-camera
detectors to eliminate photons arriving at oblique angles. While this helps
us narrow down the possible sources of detected photons, it also reduces
the number of detected photons and thereby decreases the signal-to-noise
ratio.

3.3.3 The Line-Integral Model for PET and SPECT

To solve the reconstruction problem we need a model that relates the count
data to the radionuclide density function. A somewhat unsophisticated,
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but computationally attractive, model is taken from transmission tomog-
raphy: to view the count at a particular detector as the line integral of the
radionuclide density function along the line from the detector that is per-
pendicular to the camera face. The count data then provide many such line
integrals and the reconstruction problem becomes the familiar one of esti-
mating a function from noisy measurements of line integrals. Viewing the
data as line integrals allows us to use the Fourier transform in reconstruc-
tion. The resulting filtered back-projection (FBP) algorithm is a commonly
used method for medical imaging in clinical settings.

The line-integral model for PET assumes a fixed set of possible LOR,
with most LOR recording many emissions. Another approach is list-mode
PET, in which detections are recording as they occur by listing the two
end points of the associated LOR. The number of potential LOR is much
higher in list-mode, with most of the possible LOR being recording only
once, or not at all [138, 177, 53].

3.3.4 Problems with the Line-Integral Model

It is not really accurate, however, to view the photon counts at the detectors
as line integrals. Consequently, applying filtered back-projection to the
counts at each detector can lead to distorted reconstructions. There are
at least three degradations that need to be corrected before FBP can be
successfully applied [144]: attenuation, scatter, and spatially dependent
resolution.

In the SPECT case, as in most such inverse problems, there is a trade-off
to be made between careful modeling of the physical situation and compu-
tational tractability. The FBP method slights the physics in favor of com-
putational simplicity and speed. In recent years, iterative methods, such
as the algebraic reconstruction technique (ART), its multiplicative vari-
ant, MART, the expectation maximization maximum likelihood (MLEM
or EMML) method, and the rescaled block-iterative EMML (RBI-EMML),
that incorporate more of the physics have become competitive.

3.3.5 The Stochastic Model: Discrete Poisson Emit-
ters

In iterative reconstruction we begin by discretizing the problem; that is, we
imagine the region of interest within the patient to consist of finitely many
tiny squares, called pixels for two-dimensional processing or cubes, called
voxels for three-dimensional processing. We imagine that each pixel has its
own level of concentration of radioactivity and these concentration levels
are what we want to determine. Proportional to these concentration levels
are the average rates of emission of photons. To achieve our goal we must
construct a model that relates the measured counts to these concentration
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levels at the pixels. The standard way to do this is to adopt the model
of independent Poisson emitters. Any Poisson-distributed random variable
has a mean equal to its variance. The signal-to-noise ratio (SNR) is usually
taken to be the ratio of the mean to the standard deviation, which, in the
Poisson case, is then the square root of the mean. Consequently, the Poisson
SNR increases as the mean value increases, which points to the desirability
(at least, statistically speaking) of higher dosages to the patient.

3.3.6 Reconstruction as Parameter Estimation

The goal is to reconstruct the distribution of radionuclide intensity by es-
timating the pixel concentration levels. The pixel concentration levels can
be viewed as parameters and the data are instances of random variables, so
the problem looks like a fairly standard parameter estimation problem of
the sort studied in beginning statistics. One of the basic tools for statistical
parameter estimation is likelihood maximization, which is playing an in-
creasingly important role in medical imaging. There are several problems,
however.

One problem is that the number of parameters is quite large, as large as
the number of data values, in most cases. Standard statistical parameter
estimation usually deals with the estimation of a handful of parameters.
Another problem is that we do not quite know the relationship between the
pixel concentration levels and the count data. The reason for this is that
the probability that a photon emitted from a given pixel will be detected
at a given detector will vary from one patient to the next, since whether
or not a photon makes it from a given pixel to a given detector depends on
the geometric relationship between detector and pixel, as well as what is
in the patient’s body between these two locations. If there are ribs or skull
getting in the way, the probability of making it goes down. If there are just
lungs, the probability goes up. These probabilities can change during the
scanning process, when the patient moves. Some motion is unavoidable,
such as breathing and the beating of the heart. Determining good values
of the probabilities in the absence of motion, and correcting for the effects
of motion, are important parts of SPECT image reconstruction.

3.3.7 X-Ray Fluorescence Computed Tomography

X-ray fluorescence computed tomography (XFCT) is a form of emission
tomography that seeks to reconstruct the spatial distribution of elements
of interest within the body [153]. Unlike SPECT and PET, these elements
need not be radioactive. Beams of synchrotron radiation are used to stim-
ulate the emission of fluorescence x-rays from the atoms of the elements of
interest. These fluorescence x-rays can then be detected and the distribu-
tion of the elements estimated and imaged. As with SPECT, attenuation
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is a problem; making things worse is the lack of information about the
distribution of attenuators at the various fluorescence energies.

3.4 Magnetic Resonance Imaging

In a third part of the text, we focus on magnetic resonance imaging. Pro-
tons have spin, which, for our purposes here, can be viewed as a charge
distribution in the nucleus revolving around an axis. Associated with the
resulting current is a magnetic dipole moment collinear with the axis of the
spin. In elements with an odd number of protons, such as hydrogen, the
nucleus itself will have a net magnetic moment. The objective in magnetic
resonance imaging (MRI) is to determine the density of such elements in
a volume of interest within the body. This is achieved by forcing the indi-
vidual spinning nuclei to emit signals that, while too weak to be detected
alone, are detectable in the aggregate. The signals are generated by the
precession that results when the axes of the magnetic dipole moments are
first aligned and then perturbed.

In much of MRI, it is the distribution of hydrogen in water molecules
that is the object of interest, although the imaging of phosphorus to study
energy transfer in biological processing is also important. There is ongoing
work using tracers containing fluorine, to target specific areas of the body
and avoid background resonance.

3.4.1 Alignment

In the absence of an external magnetic field, the axes of these magnetic
dipole moments have random orientation, dictated mainly by thermal ef-
fects. When an external magnetic field is introduced, it induces a small
fraction, about one in 105, of the dipole moments to begin to align their
axes with that of the external magnetic field. Only because the number
of protons per unit of volume is so large do we get a significant number
of moments aligned in this way. A strong external magnetic field, about
20, 000 times that of the earth’s, is required to produce enough alignment
to generate a detectable signal.

3.4.2 Precession

When the axes of the aligned magnetic dipole moments are perturbed,
they begin to precess, like a spinning top, around the axis of the external
magnetic field, at the Larmor frequency, which is proportional to the in-
tensity of the external magnetic field. If the magnetic field intensity varies
spatially, then so does the Larmor frequency. Each precessing magnetic
dipole moment generates a signal; taken together, they contain informa-
tion about the density of the element at the various locations within the
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body. As we shall see, when the external magnetic field is appropriately
chosen, a Fourier relationship can be established between the information
extracted from the received signal and this density function.

3.4.3 Slice Isolation

When the external magnetic field is the static field, then the Larmor fre-
quency is the same everywhere. If, instead, we impose an external magnetic
field that varies spatially, then the Larmor frequency is also spatially vary-
ing. This external field is now said to include a gradient field.

3.4.4 Tipping

When a magnetic dipole moment is given a component out of its axis of
alignment, it begins to precess around its axis of alignment, with frequency
equal to its Larmor frequency. To create this off-axis component, we apply
a radio-frequency field (rf field) for a short time. The effect of imposing this
rf field is to tip the aligned magnetic dipole moment axes away from the
axis of alignment, initiating precession. The dipoles that have been tipped
ninety degrees out of their axis of alignment generate the strongest signal.

3.4.5 Imaging

The information we seek about the proton density function is contained
within the received signal. By carefully adding gradient fields to the ex-
ternal field, we can make the Larmor frequency spatially varying, so that
each frequency component of the received signal contains a piece of the
information we seek. The proton density function is then obtained through
Fourier transformations. Fourier-transform estimation and extrapolation
techniques play a major role in this rapidly expanding field [125].

3.4.6 The Line-Integral Approach

By appropriately selecting the gradient field and the radio-frequency field,
it is possible to create a situation in which the received signal comes pri-
marily from dipoles along a given line in a preselected plane. Performing
an FFT of the received signal gives us line integrals of the density function
along lines in that plane. In this way, we obtain the three-dimensional
Radon transform of the desired density function. The Central Slice Theo-
rem for this case tells us that, in theory, we have the Fourier transform of
the density function.
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3.4.7 Phase Encoding

In the line-integral approach, the line-integral data is used to obtain values
of the Fourier transform of the density function along lines through the
origin in Fourier space. It would be more convenient for the FFT if we
have Fourier-transform values on the points of a rectangular grid. We can
obtain this by selecting the gradient fields to achieve phase encoding.

3.5 Intensity Modulated Radiation Therapy

Next, we consider intensity modulated radiation therapy (IMRT). Although
it is not actually an imaging problem, intensity modulated radiation ther-
apy is an emerging field that involves some of the same mathematical tech-
niques used to solve the medical imaging problems discusses previously,
particularly methods for solving the convex feasibility problem.

3.5.1 Brief Description

In IMRT beamlets of radiation with different intensities are transmitted
into the body of the patient. Each voxel within the patient will then
absorb a certain dose of radiation from each beamlet. The goal of IMRT
is to direct a sufficient dosage to those regions requiring the radiation,
those that are designated planned target volumes (PTV), while limiting the
dosage received by the other regions, the so-called organs at risk (OAR).

3.5.2 The Problem and the Constraints

The intensities and dosages are obviously non-negative quantities. In addi-
tion, there are implementation constraints; the available treatment machine
will impose its own requirements, such as a limit on the difference in in-
tensities between adjacent beamlets. In dosage space, there will be a lower
bound on the acceptable dosage delivered to those regions designated as
the PTV, and an upper bound on the acceptable dosage delivered to those
regions designated as the OAR. The problem is to determine the intensities
of the various beamlets to achieve these somewhat conflicting goals.

3.5.3 Convex Feasibility and IMRT

The CQ algorithm [54, 55] is an iterative algorithm for solving the convex
feasibility problem. Because it is particularly simple to implement in many
cases, it has become the focus of recent work in IMRT. In [68] Censor
et al. extend the CQ algorithm to solve what they call the multiple-set
split feasibility problem (MSSFP) . In the sequel [69] it is shown that the
constraints in IMRT can be modeled as inclusion in convex sets and the
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extended CQ algorithm is used to determine dose intensities for IMRT that
satisfy both dose constraints and radiation-source constraints.

3.6 A Word about Prior Information

An important point to keep in mind when doing signal processing is that,
while the data is usually limited, the information we seek may not be lost.
Although processing the data in a reasonable way may suggest otherwise,
other processing methods may reveal that the desired information is still
available in the data. Figure 3.1 illustrates this point.

The original image on the upper right of Figure 3.1 is a discrete rect-
angular array of intensity values simulating a slice of a head. The data
was obtained by taking the two-dimensional discrete Fourier transform of
the original image, and then discarding, that is, setting to zero, all these
spatial frequency values, except for those in a smaller rectangular region
around the origin. The problem then is under-determined. A minimum-
norm solution would seem to be a reasonable reconstruction method.

The minimum-norm solution is shown on the lower right. It is calcu-
lated simply by performing an inverse discrete Fourier transform on the
array of modified discrete Fourier transform values. The original image
has relatively large values where the skull is located, but the minimum-
norm reconstruction does not want such high values; the norm involves the
sum of squares of intensities, and high values contribute disproportionately
to the norm. Consequently, the minimum-norm reconstruction chooses in-
stead to conform to the measured data by spreading what should be the
skull intensities throughout the interior of the skull. The minimum-norm
reconstruction does tell us something about the original; it tells us about
the existence of the skull itself, which, of course, is indeed a prominent
feature of the original. However, in all likelihood, we would already know
about the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have ob-
tained from the minimum-norm reconstruction itself, we construct the prior
estimate shown in the upper left. Now we use the same data as before, and
calculate a minimum-weighted-norm reconstruction, using as the weight
vector the reciprocals of the values of the prior image. This minimum-
weighted-norm reconstruction is shown on the lower left; it is clearly almost
the same as the original image. The calculation of the minimum-weighted
norm solution can be done iteratively using the ART algorithm [195].

When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
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present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know.
As this example, and many others, show, the information we seek is often
still in the data, but needs to be brought out in a more subtle way.

Figure 3.1: Extracting information in image reconstruction.
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3.7 Broader Issues

On Sunday, June 29, 2008, the New York Times carried a front-page article,
“Weighing the Costs of a Look Inside the Heart” , dealing with the benefits
and costs of CT angiograms, that is, x-ray tomographic imaging of the inte-
riors of arteries. As the article points out, there is often financial incentive
for doctors to use this new technology, particularly if they own the scanner,
but so far there have been no large medical studies that have shown CT
angiograms to be better than the older, cheaper tests. The higher cost
of the CT angiograms, the exposure to radiation (the equivalent of up to
several hundred chest x-rays), and the possibility of allergic reaction to and
kidney damage from the contrast agents used, have led some to begin to
question the increased use of this newer technology. Attempts by the ad-
ministrators of Medicare not to pay for CT angiograms until better studies
of their effectiveness have been carried out were successfully defeated by
lobbyists for the cardiologists. The absence of clear guidelines for the use
of scans continues to be troubling.

One point skeptics often make is that CT angiograms can reveal arterial
blockage due to plaque, which may or may not indicate a medical problem,
depending on the degree of blockage, but cannot reveal if and when some
of the plaque will break away and cause a clot, which is the more serious
medical problem. Often CT angiograms are performed in conjunction with
emission tomographic scans designed to study blood flow, thereby increas-
ing the overall cost and exposure to radiation.

These issues are not limited to CT angiograms and cardiology. In the
Sunday, July 6, 2008 issue of Parade Magazine, the article “The Danger
of Too Many Tests” explored the more general issue of risks and expense
associated with the increased use of scans. The cost of diagnostic imag-
ing approaches $100 billion dollars annually in the USA. Some five million
scans are performed on children, who are ten times more sensitive to radi-
ation than adults. Scans are commonly ordered for patients complaining
of headaches, while most headaches are not indicators of a more serious
condition, unless accompanied by other symptoms. Full-body scans as vir-
tual physicals have been heavily marketed to perfectly healthy individuals,
although most experts agree that this is a bad idea for people without symp-
toms; false positives and incidental findings often lead to more imaging and
risky invasive procedures, including surgery. Even older technologies, such
as chest x-rays, can be problematic when used as a general screening de-
vice, due to false positives and increased exposure to radiation. X-rays for
back pain are commonplace, although most back pain goes away within a
few weeks.

Magnetic-resonance imaging (MRI) is an excellent method for imaging
soft tissue, and is useful for brain and cancer imaging. It does not involve
radiation, but is much more expensive than ordinary x-rays, which are
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often adequate.
The financial benefits that accrue to the owners of the scanners is not

the whole story for the rapid increase in the use of scans. Doctors have less
time to spend with patients these days, so scans provide a means for getting
quick answers. Doctors and hospitals fear malpractice suits if they miss a
serious condition because they failed to use all the available technology.
Patients often expect the “best” treatment, which, to them, usually means
the latest technology. A negative finding on a scan is an easy way to
reassure the patient and reduce anxiety.

As medical costs grow rapidly and the expense is increasingly shared
with the patient, there will be more calls for assessment of the relative costs
and benefits of modern medical technology.



Chapter 4

Urn Models for
Tomography

There seems to be a tradition in physics of using simple models or examples
involving urns and marbles to illustrate important principles. In keeping
with that tradition, we give an urn model to illustrate various aspects of
remote sensing, and apply the model to tomography.

4.1 The Urn Model for Remote Sensing

Suppose that we have J urns numbered j = 1, ..., J , each containing mar-
bles of various colors. Suppose that there are I colors, numbered i = 1, ..., I.
Suppose also that there is a box containing N small pieces of paper, and
on each piece is written the number of one of the J urns. Assume that N
is much larger than J . Assume that I know the precise contents of each
urn. My objective is to determine the precise contents of the box, that
is, to estimate the number of pieces of paper corresponding to each of the
numbers j = 1, ..., J .

Out of my view, my assistant removes one piece of paper from the box,
takes one marble from the indicated urn, announces to me the color of the
marble, and then replaces both the piece of paper and the marble. This
action is repeated many times, at the end of which I have a long list of
colors. This list is my data, from which I must determine the contents of
the box.

This is a form of remote sensing; what we have access to is not what
we are really interested in, but only related to it in some way. Sometimes
such data is called “incomplete data” , in contrast to the “complete data” ,
which would be the list of the actual urn numbers drawn from the box.

If all the marbles of one color are in a single urn, the problem is trivial;
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when I hear a color, I know immediately which urn contained that marble.
My list of colors is then a list of urn numbers; I have the complete data
now. My best estimate of the number of pieces of paper containing the urn
number j is then simply N times the proportion of draws that resulted in
urn j being selected.

At the other extreme, suppose two urns had identical contents. Then
I could not distinguish one urn from the other and would be unable to
estimate more than the total number of pieces of paper containing either
of the two urn numbers.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box. In remote sensing applications, these
issues affect our ability to resolve individual components contributing to
the data.

To introduce some mathematics, let us denote by xj the proportion of
the pieces of paper that have the number j written on them. Let Pij be
the proportion of the marbles in urn j that have the color i. Let yi be the
proportion of times the color i occurs on the list of colors. The expected
proportion of times i occurs on the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
vector with entries xj . A reasonable way to estimate x is to replace E(yi)
with the actual yi and solve the system of linear equations yi =

∑J
j=1 Pijxj ,

i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms may be needed to find such solutions. If there
are two urns, j1 and j2, such that Pij1 and Pij2 are nearly equal for all i,
then we will have a hard time distinguishing xj1 and xj2 .

In a number of applications that fit this model, such as medical tomog-
raphy, the values xj are taken to be parameters, the data yi are statistics,
and the xj are estimated by adopting a probabilistic model and maximiz-
ing the likelihood function. iterative algorithms, such as the expectation
maximization (EMML) algorithm are often used for such problems.

4.2 The Urn Model in Tomography

Now we apply this simple model to transmission and emission tomography.

4.2.1 The Case of SPECT

In the SPECT case, let there be J pixels or voxels, numbered j = 1, ..., J
and I detectors, numbered i = 1, ..., I. Let Pij be the probability that
a photon emitted at pixel j will be detected at detector i; we assume
these probabilities are known to us. Let yi be the proportion of the total
photon count that was recorded at the ith detector. Denote by xj the
(unknown) proportion of the total photon count that was emitted from
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pixel j. Selecting an urn randomly is analogous to selecting which pixel
will be the next to emit a photon. Learning the color of the marble is
analogous to learning where the photon was detected; for simplicity we are
assuming that all emitted photons are detected, but this is not essential.
The data we have, the counts at each detector, constitute the “incomplete
data” ; the “complete data” would be the counts of emissions from each of
the J pixels.

If the pixels numbered j1 and j2 are neighbors, then we would expect
Pij1 and Pij2 to be almost equal, for every i. This makes it difficult to es-
timate accurately the separate quantities xj1 and xj2 , which is a resolution
problem.

We can determine the xj by finding nonnegative solutions of the system
yi =

∑J
j=1 Pijxj ; this is what the various iterative algorithms, such as

MART, EMML and RBI-EMML, seek to do.

4.2.2 The Case of PET

In the PET case, let there be J pixels or voxels, numbered j = 1, ..., J
and I lines of response (LOR), numbered i = 1, ..., I. Let Pij be the
probability that a positron emitted at pixel j will result in a coincidence
detection associated with LOR i; we assume these probabilities are known
to us. Let yi be the proportion of the total detections that was associated
with the ith LOR. Denote by xj the (unknown) proportion of the total
count that was due to a positron emitted from pixel j. Selecting an urn
randomly is analogous to selecting which pixel will be the next to emit a
positron. Learning the color of the marble is analogous to learning which
LOR was detected; again, for simplicity we are assuming that all emitted
positrons are detected, but this is not essential. As in the SPECT case,
we can determine the xj by finding nonnegative solutions of the system
yi =

∑J
j=1 Pijxj .

4.2.3 The Case of Transmission Tomography

Assume that x-ray beams are sent along I line segments, numbered i =
1, ..., I, and that the initial strength of each beam is known. By measuring
the final strength, we determine the drop in intensity due to absorption
along the ith line segment. Associated with each line segment we then
have the proportion of transmitted photons that were absorbed, but we
do not know where along the line segment the absorption took place. The
proportion of absorbed photons for each line is our data, and corresponds to
the proportion of each color in the list. The rate of change of the intensity
of the x-ray beam as it passes through the jth pixel is proportional to the
intensity itself, to Pij , the length of the ith segment that is within the jth
pixel, and to xj , the amount of attenuating material present in the jth
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pixel. Therefore, the intensity of the x-ray beam leaving the jth pixel is
the product of the intensity of the beam upon entering the jth pixel and
the decay term, e−Pijxj .

The “complete data” is the proportion of photons entering the jth pixel
that were absorbed within it; the “incomplete data” is the proportion of
photons sent along each line segment that were absorbed. Selecting the
jth urn is analogous to having an absorption occurring at the jth pixel.
Knowing that an absorption has occurred along the ith line segment does
tell us that an absorption occurred at one of the pixels that intersections
that line segment, but that is analogous to knowing that there are certain
urns that are the only ones that contain the ith color.

The (measured) intensity of the beam at the end of the ith line segment
is e−(Px)i times the (known) intensity of the beam when it began its journey
along the ith line segment. Taking logs, we obtain a system of linear
equations which we can solve for the xj .

4.3 Hidden Markov Models

Hidden Markov models (HMM) are increasingly important in speech pro-
cessing, optical character recognition and DNA sequence analysis. In this
section we illustrate HMM using a modification of the urn model.

Suppose, once again, that we have J urns, indexed by j = 1, ..., J and
I colors of marbles, indexed by i = 1, ..., I. Associated with each of the
J urns is a box, containing a large number of pieces of paper, with the
number of one urn written on each piece. My assistant selects one box,
say the j0th box, to start the experiment. He draws a piece of paper from
that box, reads the number written on it, call it j1, goes to the urn with
the number j1 and draws out a marble. He then announces the color. He
then draws a piece of paper from box number j1, reads the next number,
say j2, proceeds to urn number j2, etc. After N marbles have been drawn,
the only data I have is a list of colors, c = {c1, c2, ..., cN}.

According to the hidden Markov model, the probability that my as-
sistant will proceed from the urn numbered k to the urn numbered j is
bjk, with

∑J
j=1 bjk = 1 for all k, and the probability that the color ci will

be drawn from the urn numbered j is aij , with
∑I

i=1 aij = 1. for all j.
The colors announced are the visible states, while the unannounced urn
numbers are the hidden states.

There are several distinct objectives one can have, when using HMM.
We assume that the data is the list of colors, c.

• Evaluation: For given probabilities aij and bjk, what is the proba-
bility that the list c was generated according to the HMM? Here, the
objective is to see if the model is a good description of the data.
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• Decoding: Given the model, the probabilities and the list c, what
list j = {j1, j2, ..., jN} of potential visited urns is the most likely?
Now, we want to infer the hidden states from the visible ones.

• Learning: We are told that there are J urns and I colors, but are not
told the probabilities aij and bjk. We are given several data vectors
c generated by the HMM; these are the training sets. The objective
is to learn the probabilities.

Once again, the EMML algorithm can play a role in solving these problems
[97].
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Part II

Transmission Tomography
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Chapter 5

Transmission Tomography
I

In this part of the text we focus on transmission tomography. This chapter
will provide a detailed description of how the data is gathered, the math-
ematical model of the scanning process, and the problem to be solved. In
subsequent chapters we shall study the various mathematical techniques
needed to solve this problem and the manner in which these techniques are
applied.

5.1 X-ray Transmission Tomography

Although transmission tomography is not limited to scanning living beings,
we shall concentrate here on the use of x-ray tomography in medical diag-
nosis and the issues that concern us in that application. The mathematical
formulation will, of course, apply more generally.

In x-ray tomography, x-rays are transmitted through the body along
many lines. In some, but not all, cases, the lines will all lie in the same
plane. The strength of the x-rays upon entering the body is assumed
known, and the strength upon leaving the body is measured. This data can
then be used to estimate the amount of attenuation the x-ray encountered
along that line, which is taken to be the integral, along that line, of the
attenuation function. On the basis of these line integrals, we estimate the
attenuation function. This estimate is presented to the physician as one or
more two-dimensional images.

27
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5.2 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types of
matter, such as soft tissue, bone, ligaments, air, each weakening the beam
to a greater or lesser extent. If the intensity of the beam upon entry is Iin

and Iout is its lower intensity after passing through the body, then

Iout = Iine
−
∫

L
f
,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being scanned
and

∫
L

f is the integral of the function f over the line L along which the
x-ray beam has passed. To see why this is the case, imagine the line L
parameterized by the variable s and consider the intensity function I(s)
as a function of s. For small ∆s > 0, the drop in intensity from the start
to the end of the interval [s, s + ∆s] is approximately proportional to the
intensity I(s), to the attenuation f(s) and to ∆s, the length of the interval;
that is,

I(s)− I(s + ∆s) ≈ f(s)I(s)∆s.

Dividing by ∆s and letting ∆s approach zero, we get

I ′(s) = −f(s)I(s).

Exercise 5.1 Show that the solution to this differential equation is

I(s) = I(0) exp(−
∫ u=s

u=0

f(u)du).

Hint: Use an integrating factor.

From knowledge of Iin and Iout, we can determine
∫

L
f . If we know

∫
L

f
for every line in the x, y-plane we can reconstruct the attenuation function
f . In the real world we know line integrals only approximately and only
for finitely many lines. The goal in x-ray transmission tomography is to
estimate the attenuation function f(x, y) in the slice, from finitely many
noisy measurements of the line integrals. We usually have prior informa-
tion about the values that f(x, y) can take on. We also expect to find
sharp boundaries separating regions where the function f(x, y) varies only
slightly. Therefore, we need algorithms capable of providing such images.

5.3 Difficulties to be Overcome

There are several problems associated with this model. X-ray beams are
not exactly straight lines; the beams tend to spread out. The x-rays are not
monochromatic, and their various frequency components are attenuated at
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different rates, resulting in beam hardening, that is, changes in the spec-
trum of the beam as it passes through the object (see the appendix on the
Laplace transform). The beams consist of photons obeying statistical laws,
so our algorithms probably should be based on these laws. How we choose
the line segments is determined by the nature of the problem; in certain
cases we are somewhat limited in our choice of these segments. Patients
move; they breathe, their hearts beat, and, occasionally, they shift position
during the scan. Compensating for these motions is an important, and dif-
ficult, aspect of the image reconstruction process. Finally, to be practical
in a clinical setting, the processing that leads to the reconstructed image
must be completed in a short time, usually around fifteen minutes. This
time constraint is what motivates viewing the three-dimensional attenua-
tion function in terms of its two-dimensional slices.

As we shall see, the Fourier transform and the associated theory of con-
volution filters play important roles in the reconstruction of transmission
tomographic images.

The data we actually obtain at the detectors are counts of detected
photons. These counts are not the line integrals; they are random quan-
tities whose means, or expected values, are related to the line integrals.
The Fourier inversion methods for solving the problem ignore its statistical
aspects; in contrast, other methods, such as likelihood maximization, are
based on a statistical model that involves Poisson-distributed emissions.

5.4 Reconstruction from Line Integrals

We turn now to the underlying problem of reconstructing attenuation func-
tions from line-integral data.

5.4.1 The Radon Transform

Our goal is to reconstruct the function f(x, y) ≥ 0 from line-integral data.
Let θ be a fixed angle in the interval [0, π). Form the t, s-axis system
with the positive t-axis making the angle θ with the positive x-axis, as
shown in Figure 5.1. Each point (x, y) in the original coordinate system
has coordinates (t, s) in the second system, where the t and s are given by

t = x cos θ + y sin θ,

and
s = −x sin θ + y cos θ.

If we have the new coordinates (t, s) of a point, the old coordinates are
(x, y) given by

x = t cos θ − s sin θ,
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and
y = t sin θ + s cos θ.

We can then write the function f as a function of the variables t and s.
For each fixed value of t, we compute the integral∫

L

f(x, y)ds =
∫

f(t cos θ − s sin θ, t sin θ + s cos θ)ds

along the single line L corresponding to the fixed values of θ and t. We
repeat this process for every value of t and then change the angle θ and
repeat again. In this way we obtain the integrals of f over every line L in
the plane. We denote by rf (θ, t) the integral

rf (θ, t) =
∫

L

f(x, y)ds.

The function rf (θ, t) is called the Radon transform of f .

5.4.2 The Central Slice Theorem

For fixed θ the function rf (θ, t) is a function of the single real variable t;
let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =
∫

rf (θ, t)eiωtdt

=
∫ ∫

f(t cos θ − s sin θ, t sin θ + s cos θ)eiωtdsdt

=
∫ ∫

f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the Central Slice Theorem. For fixed θ, as we change the value
of ω, we obtain the values of the function F along the points of the line
making the angle θ with the horizontal axis. As θ varies in [0, π), we get all
the values of the function F . Once we have F , we can obtain f using the
formula for the two-dimensional inverse Fourier transform. We conclude
that we are able to determine f from its line integrals. As we shall see,
inverting the Fourier transform can be implemented by combinations of
frequency-domain filtering and back-projection.
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Figure 5.1: The Radon transform of f at (t, θ) is the line integral of f along
line L.
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Chapter 6

Complex Exponentials

The most important signals considered in signal processing are sinusoids,
that is, sine or cosine functions. A complex sinusoid is a function of the
real variable t having the form

f(t) = cos ωt + i sinωt, (6.1)

for some real frequency ω. Complex sinusoids are also called complex ex-
ponential functions.

6.1 Why “Exponential”?

Complex exponential functions have the property f(t + u) = f(t)f(u),
which is characteristic of exponential functions. This property can be easily
verified for f(t) using trigonometric identities.

Exponential functions in calculus take the form g(t) = at, for some
positive constant a; the most famous of these is g(t) = et. The function
f(t) in Equation (6.1) has complex values, so cannot be f(t) = at for
any positive a. But, what if we let a be complex? If it is the case that
f(t) = at for some complex a, then, setting t = 1, we would have a =
f(1) = cos ω + i sinω. This is the complex number denoted ei; to see why
we consider Taylor series expansions.

6.2 Taylor-series expansions

The Taylor series expansion for the exponential function g(t) = et is

et = 1 + t +
1
2!

t2 +
1
3!

t3 + .... (6.2)
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If we replace t with iω, where i =
√
−1, we obtain

eiω = (1− 1
2!

ω2 +
1
4!

ω4 − ...) + i(ω − 1
3!

ω3 +
1
5!

ω5 − ...). (6.3)

We recognize the two series in Equation (6.3) as the Taylor-series expan-
sions for cos ω and sinω, respectively, so we can write

eiω = cos ω + i sinω.

Therefore the complex exponential function in Equation (6.1) can be writ-
ten

f(t) = (eiω)t = eiωt.

If A = |A|eiθ, then the signal h(t) = Aeiωt can be written

h(t) = |A|ei(ωt+θ);

here A is called the complex amplitude of the signal h(t), with positive
amplitude |A| and phase θ.

6.3 Basic Properties

The laws of exponents apply to the complex exponential functions, so, for
example, we can write

eiωteiωu = eiω(t+u).

Note also that the complex conjugate of eiωt is

eiωt = e−iωt

It follows directly from the definition of eiωt that

sin(ωt) =
1
2i

[eiωt − e−iωt],

and
cos(ωt) =

1
2
[eiωt + e−iωt].

Exercise 6.1 Show that

eia + eib = ei a+b
2 [ei a−b

2 + e−i a−b
2 ] = 2ei a+b

2 cos(
a− b

2
),

and

eia − eib = ei a+b
2 [ei a−b

2 − e−i a−b
2 ] = 2iei a+b

2 sin(
a− b

2
).
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Exercise 6.2 Use the formula for the sum of a geometric progression,

1 + r + r2 + ... + rk = (1− rk+1)/(1− r),

to show that

N∑
n=M

eiωn = ei M+N
2

sin(ω N−M+1
2 )

sin(ω
2 )

. (6.4)

Exercise 6.3 Express the result in the previous exercise in terms of real
and imaginary parts to show that

N∑
n=M

cos(ωn) = cos(
M + N

2
)
sin(ω N−M+1

2 )
sin(ω

2 )
,

and
N∑

n=M

sin(ωn) = sin(
M + N

2
)
sin(ω N−M+1

2 )
sin(ω

2 )
.



36 CHAPTER 6. COMPLEX EXPONENTIALS



Chapter 7

The Fourier Transform

As we noted previously, the Fourier transform in one and two dimensions
plays an important role in transmission tomographic image reconstruction,
both in the theoretical formulation and in the practical implementation.
In fact, in many areas of remote sensing, including MRI, what we want is
related by the Fourier transform to what we can measure.

In this chapter we review the basic properties of the Fourier transform.

7.1 Fourier-Transform Pairs

Let f(x) be defined for the real variable x in (−∞,∞). The Fourier trans-
form of f(x) is the function of the real variable γ given by

F (γ) =
∫ ∞

−∞
f(x)eiγxdx. (7.1)

Precisely how we interpret the infinite integrals that arise in the discussion
of the Fourier transform will depend on the properties of the function f(x).
A detailed treatment of this issue, which is beyond the scope of this book,
can be found in almost any text on the Fourier transform (see, for example,
[114]).

7.1.1 The Issue of Units

When we write cos π = −1, it is with the understanding that π is a mea-
sure of angle, in radians; the function cos will always have an independent
variable in units of radians. By extension, the same is true of the complex
exponential functions. Therefore, when we write eixγ , we understand the
product xγ to be in units of radians. If x is measured in seconds, then
γ is in units of radians per second; if x is in meters, then γ is in units of
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radians per meter. When x is in seconds, we sometimes use the variable
γ
2π ; since 2π is then in units of radians per cycle, the variable γ

2π is in units
of cycles per second, or Hertz. When we sample f(x) at values of x spaced
∆ apart, the ∆ is in units of x-units per sample, and the reciprocal, 1

∆ ,
which is called the sampling frequency, is in units of samples per x-units.
If x is in seconds, then ∆ is in units of seconds per sample, and 1

∆ is in
units of samples per second.

7.1.2 Reconstructing from Fourier-Transform Data

Our goal is often to reconstruct the function f(x) from measurements of
its Fourier transform F (γ). But, how?

If we have F (γ) for all real γ, then we can recover the function f(x)
using the Fourier Inversion Formula:

f(x) =
1
2π

∫ ∞

−∞
F (γ)e−iγxdγ. (7.2)

The functions f(x) and F (γ) are called a Fourier-transform pair. Once
again, the proper interpretation of Equation (7.2) will depend on the prop-
erties of the functions involved. If both f(x) and F (γ) are measurable
and absolutely integrable then both functions are continuous. In the next
chapter, we prove the Fourier Inversion Formula for the functions in the
Schwartz class [114].

7.1.3 An Example

Consider the function f(x) = 1
2A , for |x| ≤ A, and f(x) = 0, otherwise.

The Fourier transform of this f(x) is

F (γ) =
sin(Aγ)

Aγ
,

for all real γ 6= 0, and F (0) = 1. Note that F (γ) is nonzero throughout
the real line, except for isolated zeros, but that it goes to zero as we go
to the infinities. This is typical behavior. Notice also that the smaller the
A, the slower F (γ) dies out; the first zeros of F (γ) are at |γ| = π

A , so the
main lobe widens as A goes to zero. The function f(x) is not continuous,
so its Fourier transform cannot be absolutely integrable. In this case, the
Fourier Inversion Formula must be interpreted as involving convergence in
the L2 norm.

It may seem paradoxical that when A is larger, its Fourier transform dies
off more quickly. The Fourier transform F (γ) goes to zero faster for larger A
because of destructive interference. Because of differences in their complex
phases as x varies, the magnitude of the sum of the complex exponential
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functions eiγx is much smaller than we might expect, especially when A
is large. For smaller A the x are more similar to one another and so the
complex exponential functions are much more in phase with one another;
consequently, the magnitude of the sum remains large. A more quantitative
statement of this phenomenon is provided by the uncertainty principle (see
[56]).

7.1.4 The Dirac Delta

Consider what happens in the limit, as A → 0. Then we have an infinitely
high point source at x = 0; we denote this by δ(x), the Dirac delta. The
Fourier transform approaches the constant function with value 1, for all γ;
the Fourier transform of f(x) = δ(x) is the constant function F (γ) = 1, for
all γ. The Dirac delta δ(x) has the sifting property:∫

h(x)δ(x)dx = h(0),

for each function h(x) that is continuous at x = 0.
Because the Fourier transform of δ(x) is the function F (γ) = 1, the

Fourier inversion formula tells us that

δ(x) =
1
2π

∫ ∞

−∞
e−iγxdγ. (7.3)

Obviously, this integral cannot be understood in the usual way. The inte-
gral in Equation (7.3) is a symbolic way of saying that∫

h(x)(
1
2π

∫ ∞

−∞
e−iγxdγ)dx =

∫
h(x)δ(x)dx = h(0), (7.4)

for all h(x) that are continuous at x = 0; that is, the integral in Equation
(7.3) has the sifting property, so it acts like δ(x). Interchanging the order
of integration in Equation (7.4), we obtain∫

h(x)(
1
2π

∫ ∞

−∞
e−iγxdγ)dx =

1
2π

∫ ∞

−∞
(
∫

h(x)e−iγxdx)dγ

=
1
2π

∫ ∞

−∞
H(−γ)dγ =

1
2π

∫ ∞

−∞
H(γ)dγ = h(0).

We shall return to the Dirac delta when we consider farfield point sources.

7.2 Practical Limitations

In actual remote-sensing problems, arrays of sensors cannot be of infinite
extent. In digital signal processing, moreover, there are only finitely many
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sensors. We never measure the entire Fourier transform F (γ), but, at best,
just part of it; as we shall see in the chapter on planewave propagation,
in the direct transmission problem we measure F (γ) only for γ = k, with
|k| ≤ ω

c , with ω the frequency and c the propagation speed. In fact, the
data we are able to measure is almost never exact values of F (γ), but rather,
values of some distorted or blurred version. To describe such situations,
we usually resort to convolution-filter models.

7.3 Convolution Filtering

Imagine that what we measure are not values of F (γ), but of F (γ)H(γ),
where H(γ) is a function that describes the limitations and distorting effects
of the measuring process, including any blurring due to the medium through
which the signals have passed, such as refraction of light as it passes through
the atmosphere. If we apply the Fourier Inversion Formula to F (γ)H(γ),
instead of to F (γ), we get

g(x) =
1
2π

∫
F (γ)H(γ)e−iγxdx. (7.5)

The function g(x) that results is g(x) = (f ∗ h)(x), the convolution of the
functions f(x) and h(x), with the latter given by

h(x) =
1
2π

∫
H(γ)e−iγxdx.

Note that, if f(x) = δ(x), then g(x) = h(x); that is, our reconstruction of
the object from distorted data is the function h(x) itself. For that reason,
the function h(x) is called the point-spread function of the imaging system.

Convolution filtering refers to the process of converting any given func-
tion, say f(x), into a different function, say g(x), by convolving f(x) with
a fixed function h(x). Since this process can be achieved by multiplying
F (γ) by H(γ) and then inverse Fourier transforming, such convolution fil-
ters are studied in terms of the properties of the function H(γ), known in
this context as the system transfer function, or the optical transfer func-
tion (OTF); when γ is a frequency, rather than a spatial frequency, H(γ)
is called the frequency-response function of the filter. The function |H(γ)|,
the magnitude of H(γ), is called the modulation transfer function (MTF).
The study of convolution filters is a major part of signal processing. Such
filters provide both reasonable models for the degradation signals undergo,
and useful tools for reconstruction.

Let us rewrite Equation (7.5), replacing F (γ) and H(γ) with their def-
initions, as given by Equation (7.1). Then we have

g(x) =
1
2π

∫
(
∫

f(t)eiγtdt)(
∫

h(s)eiγsds)e−iγxdγ.
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Interchanging the order of integration, we get

g(x) =
1
2π

∫ ∫
f(t)h(s)(

∫
eiγ(x−(t+s))dγ)dsdt.

Now using Equation (7.3) to replace the inner integral with 2πδ(x−(t+s)),
the next integral becomes

2π

∫
h(s)δ(x− (t + s))ds = 2πh(x− t).

Finally, we have

g(x) =
∫

f(t)h(x− t)dt; (7.6)

this is the definition of the convolution of the functions f and h.

7.4 Low-Pass Filtering

A major problem in image reconstruction is the removal of blurring, which
is often modeled using the notion of convolution filtering. In the one-
dimensional case, we describe blurring by saying that we have available
measurements not of F (γ), but of F (γ)H(γ), where H(γ) is the frequency-
response function describing the blurring. If we know the nature of the
blurring, then we know H(γ), at least to some degree of precision. We can
try to remove the blurring by taking measurements of F (γ)H(γ), dividing
these numbers by the value of H(γ), and then inverse Fourier transform-
ing. The problem is that our measurements are always noisy, and typical
functions H(γ) have many zeros and small values, making division by H(γ)
dangerous, except where the values of H(γ) are not too small. These values
of γ tend to be the smaller ones, centered around zero, so that we end up
with estimates of F (γ) itself only for the smaller values of γ. The result is
a low-pass filtering of the object f(x).

To investigate such low-pass filtering, we suppose that H(γ) = 1, for
|γ| ≤ Γ, and is zero, otherwise. Then the filter is called the ideal Γ-lowpass
filter. In the farfield propagation model, the variable x is spatial, and the
variable γ is spatial frequency, related to how the function f(x) changes
spatially, as we move x. Rapid changes in f(x) are associated with values of
F (γ) for large γ. For the case in which the variable x is time, the variable γ
becomes frequency, and the effect of the low-pass filter on f(x) is to remove
its higher-frequency components.

One effect of low-pass filtering in image processing is to smooth out the
more rapidly changing features of an image. This can be useful if these
features are simply unwanted oscillations, but if they are important de-
tail, the smoothing presents a problem. Restoring such wanted detail is
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often viewed as removing the unwanted effects of the low-pass filtering; in
other words, we try to recapture the missing high-spatial-frequency val-
ues that have been zeroed out. Such an approach to image restoration is
called frequency-domain extrapolation . How can we hope to recover these
missing spatial frequencies, when they could have been anything? To have
some chance of estimating these missing values we need to have some prior
information about the image being reconstructed.

7.5 Two-Dimensional Fourier Transforms

More generally, we consider a function f(x, y) of two real variables. Its
Fourier transformation is

F (α, β) =
∫ ∫

f(x, y)ei(xα+yβ)dxdy. (7.7)

For example, suppose that f(x, y) = 1 for
√

x2 + y2 ≤ R, and zero,
otherwise. Then we have

F (α, β) =
∫ π

−π

∫ R

0

e−i(αr cos θ+βr sin θ)rdrdθ.

In polar coordinates, with α = ρ cos φ and β = ρ sinφ, we have

F (ρ, φ) =
∫ R

0

∫ π

−π

eirρ cos(θ−φ)dθrdr.

The inner integral is well known;∫ π

−π

eirρ cos(θ−φ)dθ = 2πJ0(rρ),

where J0 denotes the 0th order Bessel function. Using the identity∫ z

0

tnJn−1(t)dt = znJn(z),

we have
F (ρ, φ) =

2πR

ρ
J1(ρR).

Notice that, since f(x, y) is a radial function, that is, dependent only on
the distance from (0, 0) to (x, y), its Fourier transform is also radial.

The first positive zero of J1(t) is around t = 4, so when we measure
F at various locations and find F (ρ, φ) = 0 for a particular (ρ, φ), we can
estimate R ≈ 4/ρ. So, even when a distant spherical object, like a star,
is too far away to be imaged well, we can sometimes estimate its size by
finding where the intensity of the received signal is zero [146].
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7.5.1 Two-Dimensional Fourier Inversion

Just as in the one-dimensional case, the Fourier transformation that pro-
duced F (α, β) can be inverted to recover the original f(x, y). The Fourier
Inversion Formula in this case is

f(x, y) =
1

4π2

∫ ∫
F (α, β)e−i(αx+βy)dαdβ. (7.8)

It is important to note that this procedure can be viewed as two one-
dimensional Fourier inversions: first, we invert F (α, β), as a function of,
say, β only, to get the function of α and y

g(α, y) =
1
2π

∫
F (α, β)e−iβydβ;

second, we invert g(α, y), as a function of α, to get

f(x, y) =
1
2π

∫
g(α, y)e−iαxdα.

If we write the functions f(x, y) and F (α, β) in polar coordinates, we obtain
alternative ways to implement the two-dimensional Fourier inversion. We
shall consider these other ways when we discuss the tomography problem
of reconstructing a function f(x, y) from line-integral data.

7.6 Fourier Series

Students typically encounter Fourier series before they see Fourier trans-
forms. Suppose that F (γ) is zero outside of the interval [−Γ,Γ]. For
integers n and ∆ = π

Γ , the complex exponential functions eiγn∆ are 2Γ-
periodic, and mutually orthogonal; that is, for m 6= n, we have∫ Γ

−Γ

eiγn∆e−iγm∆dγ = 0.

The objective in Fourier series is to express the function F (γ), for γ in
[−Γ,Γ], as a sum of these complex exponential functions,

F (γ) =
∞∑

n=−∞
aneiγn∆, (7.9)

for some choice of the coefficients an.
Multiplying both sides of Equation (7.9) by e−iγm∆ and integrating

from −Γ to Γ, we find that∫ Γ

−Γ

F (γ)e−iγm∆dγ = 2Γam.
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Notice that ∫ Γ

−Γ

F (γ)e−iγm∆dγ = 2πf(m∆)

also. Consequently, we have

am = ∆f(m∆).

This gives us the important result that whenever F (γ) is zero outside an
interval [−Γ,Γ], we can recover F (γ), and thereby f(x) also, from the
infinite discrete set of samples f(m∆), for ∆ = π

Γ . In signal processing this
result is called Shannon’s Sampling Theorem.

If G(γ) is also zero for |γ| > Γ, then it follows from the orthogonality
of the complex exponential functions eiγn∆ that

1
2π

∫ Γ

−Γ

F (γ)G(γ)dγ = ∆
∞∑

n=−∞
f(n∆)g(n∆);

this is Parseval’s Equation.
Note that if F (γ) = 0 for |γ| > Γ, then the same is true if we replace Γ

with any larger value. It follows that in Shannon’s Sampling Theorem we
need only that ∆ ≤ π

Γ .

7.7 The Discrete Fourier Transform

Suppose again that F (γ) is zero for |γ| > Γ and let ∆ = π
Γ . In real

applications we never have the entire infinite set of samples {f(n∆)}; at
best, we would have a finite subset of these, say for n = 1 to n = N . If our
goal is to estimate F (γ), we might choose the discrete Fourier transform
(DFT) estimate

FDFT (γ) = ∆
N∑

n=1

f(n∆)ein∆γ .

The DFT estimate FDFT (γ) is data consistent; its inverse Fourier-transform
value at x = n∆ is f(n∆) for n = 1, ..., N . The DFT is sometimes used in
a slightly more general context in which the coefficients are not necessarily
viewed as samples of a function f(x).

Once we have decided to use the DFT estimate for the function F (γ),
we would want to evaluate this estimate at some number of values of γ,
so that, for example, we could plot this function. When N is not large
(say, several hundred), this poses no problem. But in many applications,
especially image processing, N is in the thousands or more, and evaluating
the DFT estimate at that many points without a fast algorithm is too
costly and time-consuming. The fast Fourier transform is an algorithm for
performing this calculation quickly.
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7.8 The Fast Fourier Transform

A fundamental problem in signal processing is to estimate finitely many
values of the function F (γ) from finitely many values of its (inverse) Fourier
transform, f(x). As we shall see, the DFT arises in several ways in that
estimation effort. The fast Fourier transform (FFT), discovered in 1965 by
Cooley and Tukey, is an important and efficient algorithm for calculating
the vector DFT [82]. John Tukey has been quoted as saying that his main
contribution to this discovery was the firm and often voiced belief that such
an algorithm must exist.

7.8.1 Evaluating a Polynomial

To illustrate the main idea underlying the FFT, consider the problem of
evaluating a real polynomial P (x) at a point, say x = c. Let the polynomial
be

P (x) = a0 + a1x + a2x
2 + ... + a2Kx2K ,

where a2K might be zero. Performing the evaluation efficiently by Horner’s
method,

P (c) = (((a2Kc + a2K−1)c + a2K−2)c + a2K−3)c + ...,

requires 2K multiplications, so the complexity is on the order of the degree
of the polynomial being evaluated. But suppose we also want P (−c). We
can write

P (x) = (a0 + a2x
2 + ... + a2Kx2K) + x(a1 + a3x

2 + ... + a2K−1x
2K−2)

or
P (x) = Q(x2) + xR(x2).

Therefore, we have P (c) = Q(c2) + cR(c2) and P (−c) = Q(c2) − cR(c2).
If we evaluate P (c) by evaluating Q(c2) and R(c2) separately, one more
multiplication gives us P (−c) as well. The FFT is based on repeated use
of this idea, which turns out to be more powerful when we are using complex
exponentials, because of their periodicity.

7.8.2 The DFT and the Vector DFT

Given the complex N -dimensional column vector f = (f0, f1, ..., fN−1)T ,
define the DFT of vector f to be the function DFTf (γ), defined for γ in
[0, 2π), given by

DFTf (γ) =
N−1∑
n=0

fneinγ .
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Let F be the complex N -dimensional vector F = (F0, F1, ..., FN−1)T , where
Fk = DFTf (2πk/N), k = 0, 1, ..., N − 1. So the vector F consists of N
values of the function DFTf , taken at N equi-spaced points 2π/N apart in
[0, 2π).

From the formula for DFTf we have, for k = 0, 1, ..., N − 1,

Fk = F (2πk/N) =
N−1∑
n=0

fne2πink/N . (7.10)

To calculate a single Fk requires N multiplications; it would seem that to
calculate all N of them would require N2 multiplications. However, using
the FFT algorithm, we can calculate vector F in approximately N log2(N)
multiplications.

7.8.3 Exploiting Redundancy

Suppose that N = 2M is even. We can rewrite Equation (7.10) as follows:

Fk =
M−1∑
m=0

f2me2πi(2m)k/N +
M−1∑
m=0

f2m+1e
2πi(2m+1)k/N ,

or, equivalently,

Fk =
M−1∑
m=0

f2me2πimk/M + e2πik/N
M−1∑
m=0

f2m+1e
2πimk/M . (7.11)

Note that if 0 ≤ k ≤ M − 1 then

Fk+M =
M−1∑
m=0

f2me2πimk/M − e2πik/N
M−1∑
m=0

f2m+1e
2πimk/M , (7.12)

so there is no additional computational cost in calculating the second half
of the entries of F, once we have calculated the first half. The FFT is the
algorithm that results when we take full advantage of the savings obtainable
by splitting a DFT calculating into two similar calculations of half the size.

We assume now that N = 2L. Notice that if we use Equations (7.11)
and (7.12) to calculate vector F, the problem reduces to the calculation of
two similar DFT evaluations, both involving half as many entries, followed
by one multiplication for each of the k between 0 and M − 1. We can split
these in half as well. The FFT algorithm involves repeated splitting of the
calculations of DFTs at each step into two similar DFTs, but with half the
number of entries, followed by as many multiplications as there are entries
in either one of these smaller DFTs. We use recursion to calculate the cost
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C(N) of computing F using this FFT method. From Equation (7.11) we
see that C(N) = 2C(N/2) + (N/2). Applying the same reasoning to get
C(N/2) = 2C(N/4) + (N/4), we obtain

C(N) = 2C(N/2) + (N/2) = 4C(N/4) + 2(N/2) = ...

= 2LC(N/2L) + L(N/2) = N + L(N/2).

Therefore, the cost required to calculate F is approximately N log2 N .
The FFT can be used to calculate the periodic convolution (or even the

nonperiodic convolution) of finite length vectors.

7.8.4 Estimating the Fourier Transform

Finally, let’s return to the original context of estimating the Fourier trans-
form F (γ) of function f(x) from finitely many samples of f(x). If we have
N equi-spaced samples, we can use them to form the vector f and perform
the FFT algorithm to get vector F consisting of N values of the DFT es-
timate of F (ω). It may happen that we wish to calculate more than N
values of the DFT estimate, perhaps to produce a smooth looking graph.
We can still use the FFT, but we must trick it into thinking we have more
data that the N samples we really have. We do this by zero-padding. In-
stead of creating the N -dimensional vector f , we make a longer vector by
appending, say, J zeros to the data, to make a vector that has dimension
N + J . The DFT estimate is still the same function of γ, since we have
only included new zero coefficients as fake data; but, the FFT thinks we
have N + J data values, so it returns N + J values of the DFT, at N + J
equi-spaced values of γ in [0, 2π).

7.8.5 The Two-Dimensional Case

Suppose now that we have the data {f(m∆x, n∆y)}, for m = 1, ...,M and
n = 1, ..., N , where ∆x > 0 and ∆y > 0 are the sample spacings in the
x and y directions, respectively. The DFT of this data is the function
FDFT (α, β) defined by

FDFT (α, β) = ∆x∆y

M∑
m=1

N∑
n=1

f(m∆x, n∆y)ei(αm∆x+βn∆y),

for |α| ≤ π/∆x and |β| ≤ π/∆y. The two-dimensional FFT produces MN
values of FDFT (α, β) on a rectangular grid of M equi-spaced values of α
and N equi-spaced values of β. This calculation proceeds as follows. First,
for each fixed value of n, a FFT of the M data points {f(m∆x, n∆y)},m =
1, ...,M is calculated, producing a function, say G(αm, n∆y), of M equi-
spaced values of α and the N equi-spaced values n∆y. Then, for each
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of the M equi-spaced values of α, the FFT is applied to the N values
G(αm, n∆y), n = 1, ..., N , to produce the final result.



Chapter 8

Properties of the Fourier
Transform

In this chapter we review the basic properties of the Fourier transform.

8.1 Fourier-Transform Pairs

As we saw previously, the functions f(x) and F (γ) form a Fourier-transform
pair, in which the Fourier transform (FT) of f(x) is given by

F (γ) =
∫ ∞

−∞
f(x)eiγxdx, (8.1)

and the inverse Fourier transform (IFT) of F (γ) is

f(x) =
1
2π

∫ ∞

−∞
F (γ)e−iγxdγ. (8.2)

Note that the definitions of the FT and IFT just given may differ slightly
from the ones found elsewhere; our definitions are those of Bochner and
Chandrasekharan [21] and Twomey [207]. The differences are minor and
involve only the placement of the quantity 2π and of the minus sign in
the exponent. One sometimes sees the Fourier transform of the function f
denoted f̂ ; here we shall reserve the symbol f̂ for estimates of the function
f .

8.1.1 Decomposing f(x)

One way to view Equation (8.2) is that it shows us the function f(x) as
a superposition of complex exponential functions e−iγx, where γ runs over

49



50 CHAPTER 8. PROPERTIES OF THE FOURIER TRANSFORM

the entire real line. The use of the minus sign here is simply for notational
convenience later. Viewed in this way, we are decomposing f(x) into the
complex exponential functions that make it up. For each fixed value of γ,
the complex number F (γ) = |F (γ)|eiθ(γ) tells us that the amount of e−iγx

in f(x) is |F (γ)|, and that eiγx involves a phase shift by θ(γ). When the
function f(x) corresponds to something physical, we must be careful not
to assume that each of the complex exponential functions also corresponds
to a physical quantity.

For example, suppose that the function f(x) is simply the function that
is one for |x| ≤ A and zero otherwise. Such a function may correspond
to a physical process that is off prior to time x = −A, then is on until
x = A, when it is turned off again. We can represent this function as
a superposition of all the complex exponential functions eiγx, for all real
γ, but no single complex exponential function corresponds to anything
physical. We need the destructive interference created by these infinitely
many complex exponential functions in order to make f(x) zero outside
[−A,A].

8.2 Basic Properties of the Fourier Trans-
form

In this section we present the basic properties of the Fourier transform.
Proofs of these assertions are left as exercises.

Exercise 8.1 Let F (γ) be the FT of the function f(x). Use the definitions
of the FT and IFT given above to establish the following basic properties
of the Fourier transform operation:

• Symmetry: The FT of the function F (x) is 2πf(−γ). For example,
the FT of the function f(x) = sin(Γx)

πx is χΓ(γ), so the FT of g(x) =
χΓ(x) is G(γ) = 2π sin(Γγ)

πγ .

• Conjugation: The FT of f(x) is F (−γ).

• Scaling: The FT of f(ax) is 1
|a|F (γ

a ) for any nonzero constant a.

• Shifting: The FT of f(x− a) is eiaγF (γ).

• Modulation: The FT of f(x) cos(γ0x) is 1
2 [F (γ + γ0) + F (γ − γ0)].

• Differentiation: The FT of the nth derivative, f (n)(x) is (−iγ)nF (γ).
The IFT of F (n)(γ) is (ix)nf(x).



8.3. SOME FOURIER-TRANSFORM PAIRS 51

• Convolution in x: Let f, F , g,G and h, H be FT pairs, with

h(x) =
∫

f(y)g(x− y)dy,

so that h(x) = (f ∗ g)(x) is the convolution of f(x) and g(x). Then
H(γ) = F (γ)G(γ). For example, if we take g(x) = f(−x), then

h(x) =
∫

f(x + y)f(y)dy =
∫

f(y)f(y − x)dy = rf (x)

is the autocorrelation function associated with f(x) and

H(γ) = |F (γ)|2 = Rf (γ) ≥ 0

is the power spectrum of f(x).

• Convolution in γ: Let f, F , g,G and h, H be FT pairs, with h(x) =
f(x)g(x). Then H(γ) = 1

2π (F ∗G)(γ).

Exercise 8.2 Let T be a linear, time-invariant operator. Show that T is a
convolution operator by showing that, for each input function f , the output
function h = Tf is the convolution of f with g, where g(t) is the inverse
FT of the function G(γ).

8.3 Some Fourier-Transform Pairs

In this section we present several Fourier-transform pairs.

Exercise 8.3 Show that the Fourier transform of f(x) = e−α2x2
is F (γ) =√

π
α e−( γ

2α )2 .

Hint: Calculate the derivative F ′(γ) by differentiating under the integral
sign in the definition of F and integrating by parts. Then solve the resulting
differential equation.

Let u(x) be the Heaviside function that is +1 if x ≥ 0 and 0 otherwise.
Let χX(x) be the characteristic function of the interval [−X, X] that is +1
for x in [−X, X] and 0 otherwise. Let sgn(x) be the sign function that is
+1 if x > 0, −1 if x < 0 and zero for x = 0.

Exercise 8.4 Show that the FT of the function f(x) = u(x)e−ax is F (γ) =
1

a−iγ , for every positive constant a.

Exercise 8.5 Show that the FT of f(x) = χX(x) is F (γ) = 2 sin(Xγ)
γ .
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Exercise 8.6 Show that the IFT of the function F (γ) = 2i/γ is f(x) =
sgn(x).

Hints: Write the formula for the inverse Fourier transform of F (γ) as

f(x) =
1
2π

∫ +∞

−∞

2i

γ
cos γxdγ − i

2π

∫ +∞

−∞

2i

γ
sin γxdγ,

which reduces to

f(x) =
1
π

∫ +∞

−∞

1
γ

sin γxdγ,

since the integrand of the first integral is odd. For x > 0 consider the
Fourier transform of the function χx(t). For x < 0 perform the change of
variables u = −x.

We saw earlier that the F (γ) = χΓ(γ) has for its inverse Fourier trans-
form the function f(x) = sin Γx

πx ; note that f(0) = Γ
π and f(x) = 0 for the

first time when Γx = π or x = π
Γ . For any Γ-band-limited function g(x) we

have G(γ) = G(γ)χΓ(γ), so that, for any x0, we have

g(x0) =
∫ ∞

−∞
g(x)

sin Γ(x− x0)
π(x− x0)

dx.

We describe this by saying that the function f(x) = sin Γx
πx has the sifting

property for all Γ-band-limited functions g(x).
As Γ grows larger, f(0) approaches +∞, while f(x) goes to zero for

x 6= 0. The limit is therefore not a function; it is a generalized function
called the Dirac delta function at zero, denoted δ(x). For this reason the
function f(x) = sin Γx

πx is called an approximate delta function. The FT
of δ(x) is the function F (γ) = 1 for all γ. The Dirac delta function δ(x)
enjoys the sifting property for all g(x); that is,

g(x0) =
∫ ∞

−∞
g(x)δ(x− x0)dx.

It follows from the sifting and shifting properties that the FT of δ(x− x0)
is the function eix0γ .

The formula for the inverse FT now says

δ(x) =
1
2π

∫ ∞

−∞
e−ixγdγ. (8.3)

If we try to make sense of this integral according to the rules of calculus we
get stuck quickly. The problem is that the integral formula doesn’t mean
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quite what it does ordinarily and the δ(x) is not really a function, but
an operator on functions; it is sometimes called a distribution. The Dirac
deltas are mathematical fictions, not in the bad sense of being lies or fakes,
but in the sense of being made up for some purpose. They provide helpful
descriptions of impulsive forces, probability densities in which a discrete
point has nonzero probability, or, in array processing, objects far enough
away to be viewed as occupying a discrete point in space.

We shall treat the relationship expressed by Equation (8.3) as a formal
statement, rather than attempt to explain the use of the integral in what
is surely an unconventional manner.

If we move the discussion into the γ domain and define the Dirac delta
function δ(γ) to be the FT of the function that has the value 1

2π for all
x, then the FT of the complex exponential function 1

2π e−iγ0x is δ(γ − γ0),
visualized as a ”spike” at γ0, that is, a generalized function that has the
value +∞ at γ = γ0 and zero elsewhere. This is a useful result, in that it
provides the motivation for considering the Fourier transform of a signal
s(t) containing hidden periodicities. If s(t) is a sum of complex exponentials
with frequencies −γn, then its Fourier transform will consist of Dirac delta
functions δ(γ− γn). If we then estimate the Fourier transform of s(t) from
sampled data, we are looking for the peaks in the Fourier transform that
approximate the infinitely high spikes of these delta functions.

Exercise 8.7 Use the fact that sgn(x) = 2u(x)− 1 and the previous exer-
cise to show that f(x) = u(x) has the FT F (γ) = i/γ + πδ(γ).

Generally, the functions f(x) and F (γ) are complex-valued, so that we
may speak about their real and imaginary parts. The next exercise explores
the connections that hold among these real-valued functions.

Exercise 8.8 Let f(x) be arbitrary and F (γ) its Fourier transform. Let
F (γ) = R(γ) + iX(γ), where R and X are real-valued functions, and sim-
ilarly, let f(x) = f1(x) + if2(x), where f1 and f2 are real-valued. Find
relationships between the pairs R,X and f1,f2.

Exercise 8.9 Let f, F be a FT pair. Let g(x) =
∫ x

−∞ f(y)dy. Show that

the FT of g(x) is G(γ) = πF (0)δ(γ) + iF (γ)
γ .

Hint: For u(x) the Heaviside function we have∫ x

−∞
f(y)dy =

∫ ∞

−∞
f(y)u(x− y)dy.
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We can use properties of the Dirac delta functions to extend the Parseval
equation to Fourier transforms, where it is usually called the Parseval-
Plancherel equation.

Exercise 8.10 Let f(x), F (γ) and g(x), G(γ) be Fourier transform pairs.
Use Equation (8.3) to establish the Parseval-Plancherel equation

〈f, g〉 =
∫

f(x)g(x)dx =
1
2π

∫
F (γ)G(γ)dγ,

from which it follows that

||f ||2 = 〈f, f〉 =
∫
|f(x)|2dx =

1
2π

∫
|F (γ)|2dγ.

Exercise 8.11 We define the even part of f(x) to be the function

fe(x) =
f(x) + f(−x)

2
,

and the odd part of f(x) to be

fo(x) =
f(x)− f(−x)

2
;

define Fe and Fo similarly for F the FT of f . Let F (γ) = R(γ)+ iX(γ) be
the decomposition of F into its real and imaginary parts. We say that f is
a causal function if f(x) = 0 for all x < 0. Show that, if f is causal, then
R and X are related; specifically, show that X is the Hilbert transform of
R, that is,

X(γ) =
1
π

∫ ∞

−∞

R(α)
γ − α

dα.

Hint: If f(x) = 0 for x < 0 then f(x)sgn(x) = f(x). Apply the convolution
theorem, then compare real and imaginary parts.

Exercise 8.12 The one-sided Laplace transform (LT) of f is F given by

F(z) =
∫ ∞

0

f(x)e−zxdx.

Compute F(z) for f(x) = u(x), the Heaviside function. Compare F(−iγ)
with the FT of u.
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8.4 Functions in the Schwartz Class

As we have already seen, the integrals in the formulas relating the two
functions of a Fourier-transform pair sometimes need to be interpreted with
care, depending on the properties of the two functions involved. One class
of functions for which we can establish the formulas is the Schwartz class.
A function f(x) is said to be in the Schwartz class, or to be a Schwartz
function if f(x) is infinitely differentiable and

|x|mf (n)(x) → 0

as x goes to −∞ and +∞. Here f (n)(x) denotes the nth derivative of f(x).
An example of a Schwartz function is f(x) = e−x2

, with Fourier transform
F (γ) =

√
πe−γ2/4. If f(x) is a Schwartz function, then so is its Fourier

transform.
To prove the Fourier Inversion Formula it is sufficient to show that

f(0) =
∫ ∞

−∞
F (γ)dγ/2π.

Write

f(x) = f(0)e−x2
+ (f(x)− f(0)e−x2

) = f(0)e−x2
+ g(x). (8.4)

Then g(0) = 0, so g(x) = xh(x). Then the Fourier transform of g(x) is the
derivative of the Fourier transform of h(x); that is,

G(γ) = H ′(γ).

The function H(γ) is a Schwartz function, so it goes to zero at the infinities.
Computing the Fourier transform of both sides of Equation (8.4), we obtain

F (γ) = f(0)
√

πe−γ2/4 + H ′(γ). (8.5)

Therefore,∫ ∞

−∞
F (γ)dγ = 2πf(0) + H(+∞)−H(−∞) = 2πf(0).

To prove the Fourier Inversion Formula, we let K(γ) = F (γ)e−ix0γ , for
fixed x0. Then the inverse Fourier transform of K(γ) is k(x) = f(x + x0),
and therefore ∫ ∞

−∞
K(γ)dγ = 2πk(0) = 2πf(x0).
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Chapter 9

Using Prior Knowledge

A basic problem in signal processing is the estimation of the function F (γ)
from finitely many values of its inverse Fourier transform f(x). The DFT
is one such estimator. As we shall see in this section, there are other
estimators that are able to make better use of prior information about
F (γ) and thereby provide a better estimate.

9.1 Over-sampling

We assume, for the moment, that F (γ) = 0 for |γ| > Γ and that ∆ = π
Γ . In

Figure 9.1 below, we show the DFT estimate for F (γ) for a case in which
Γ = π

30 . This would tell us that the proper sampling spacing is ∆ = 30.
However, it is not uncommon to have situations in which x is time and we
can take as many samples of f(x) as we wish, but must take the samples at
points x within some limited time interval, say [0, A]. In the case considered
in the figure, A = 130. If we had used ∆ = 30, we would have obtained
only four data points, which is not sufficient information. Instead, we used
∆ = 1 and took N = 129 data points; we over-sampled. There is a price
to be paid for over-sampling, however.

The DFT estimation procedure does not “know” about the true value
of Γ; it only “sees” ∆. It “assumes” incorrectly that Γ must be π, since
∆ = 1. Consequently, it “thinks” that we want it to estimate F (γ) on
the interval [−π, π]. It doesn’t “know” that we know that F (γ) is zero on
most of this interval. Therefore, the DFT spends a lot of its energy trying
to describe the part of the graph of F (γ) where it is zero, and relatively
little of its energy describing what is happening within the interval [−Γ,Γ],
which is all that we are interested in. This is why the bottom graph in the
figure shows the DFT to be poor within [−Γ,Γ]. There is a second graph
in the figure. It looks quite a bit better. How was that graph obtained?
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We know that F (γ) = 0 outside the interval [−Γ,Γ]. Can we somehow
let the estimation process know that we know this, so that it doesn’t waste
its energy outside this interval? Yes, we can.

The characteristic function of the interval [−Γ,Γ] is

χΓ(γ) =
{

1, if |γ| ≤ Γ ;
0, if |γ| > Γ .

We take as our estimator of F (γ) a function called the modified DFT,
(MDFT) having the form

MDFT (γ) = χΓ(γ)
N−1∑
m=0

ameim∆γ . (9.1)

We determine the coefficients am by making MDFT (γ) consistent with the
data. Inserting MDFT (γ) into the integral in Equation (8.2) and setting
x = n∆, for each n = 0, 1, ..., N − 1, in turn, we find that we must have

f(n∆) =
1
2π

N−1∑
m=0

am

∫ Γ

−Γ

ei(m−n)∆γdγ.

Performing the integration, we find that we need

f(n∆) =
N−1∑
m=0

am
sin(Γ(n−m)∆)

π(n−m)∆
, (9.2)

for n = 0, 1, ..., N −1. We solve for the am and insert these coefficients into
the formula for the MDFT. The graph of the MDFT is the top graph in
the figure.

The main idea in the MDFT is to use a form of the estimator that
already includes whatever important features of F (γ) we may know a pri-
ori. In the case of the MDFT, we knew that F (γ) = 0 outside the interval
[−Γ,Γ], so we introduced a factor of χΓ(γ) in the estimator. Now, whatever
coefficients we use, any estimator of the form given in Equation (9.1) will
automatically be zero outside [−Γ,Γ]. We are then free to select the coef-
ficients so as to make the MDFT consistent with the data. This involves
solving the system of linear equations in (9.2).

9.2 Using Other Prior Information

The approach that led to the MDFT estimate suggests that we can intro-
duce other prior information besides the support of F (γ). For example,
if we have some idea of the overall shape of the function F (γ), we could
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choose P (γ) > 0 to indicate this shape and use it instead of χΓ(γ) in our
estimator. This leads to the PDFT estimator, which has the form

PDFT (γ) = P (γ)
N−1∑
n=0

bmeim∆γ . (9.3)

Now we find the bm by forcing the right side of Equation (9.3) to be con-
sistent with the data. Inserting the function PDFT (γ) into the integral in
Equation (8.2), we find that we must have

f(n∆) =
1
2π

N−1∑
m=0

bm

∫ ∞

−∞
P (γ)ei(m−n)∆γdγ. (9.4)

Using p(x), the inverse Fourier transform of P (γ), given by

p(x) =
1
2π

∫ ∞

−∞
P (γ)e−ixγdγ,

we find that we must have

f(n∆) =
N−1∑
m=0

bmp((n−m)∆), (9.5)

for n = 0, 1, ..., N − 1. We solve this system of equations for the bm and
insert them into the PDFT estimator in Equation (9.3).

In Figure 9.2 we have the function F (γ) in the upper left corner. It
consists of one large bump in the center and one smaller bump toward the
right side. The DFT on the upper right side gives only slight indication
that the smaller bump exists. The data here is somewhat over-sampled, so
we can try the MDFT. The prior for the MDFT is P (γ) = χΓ(γ), which is
pictured in the center left frame; it is shown only over [−Γ,Γ], where it is
just one. The MDFT estimate is in the center right frame; it shows only
slight improvement over the DFT. Now, suppose we know that there is a
large bump in the center. Both the DFT and the MDFT tell us clearly
that this is the case, so even if we did not know it at the start, we know it
now. Let’s select as our prior a function P (γ) that includes the big bump
in the center, as shown in the lower left. The PDFT on the lower right now
shows the smaller bump more clearly.

A more dramatic illustration of the use of the PDFT is shown in Figure
9.3. The function F (γ) is a function of two variables simulating a slice of a
head. It has been approximated by a discrete image, called here the “orig-
inal” . The data was obtained by taking the two-dimensional vector DFT
of the discrete image and replacing most of its values with zeros. When
we formed the inverse vector DFT, we obtained the estimate in the lower
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right. This is essentially the DFT estimate, and it tells us nothing about
the inside of the head. From prior information, or even from the DFT
estimate itself, we know that the true F (γ) includes a skull. We therefore
select as our prior the (discretized) function of two variables shown in the
upper left. The PDFT estimate is the image in the lower left. The impor-
tant point to remember here is that the same data was used to generate
both pictures.

We saw previously how the MDFT can improve the estimate of F (γ),
by incorporating the prior information about its support. Precisely why
the improvement occurs is the subject of the next section.

9.3 Analysis of the MDFT

Let our data be f(xm), m = 1, ...,M , where the xm are arbitrary values of
the variable x. If F (γ) is zero outside [−Γ,Γ], then minimizing the energy
over [−Γ,Γ] subject to data consistency produces an estimate of the form

FΓ(γ) = χΓ(γ)
M∑

m=1

bm exp(ixmγ),

with the bm satisfying the equations

f(xn) =
M∑

m=1

bm
sin(Γ(xm − xn))

π(xm − xn)
,

for n = 1, ...,M . The matrix SΓ with entries sin(Γ(xm−xn))
π(xm−xn) we call a sinc

matrix.

9.3.1 Eigenvector Analysis of the MDFT

Although it seems reasonable that incorporating the additional information
about the support of F (γ) should improve the estimation, it would be more
convincing if we had a more mathematical argument to make. For that we
turn to an analysis of the eigenvectors of the sinc matrix. Throughout this
subsection we make the simplification that xn = n.

Exercise 9.1 The purpose of this exercise is to show that, for an Hermi-
tian nonnegative-definite M by M matrix Q, a norm-one eigenvector u1

of Q associated with its largest eigenvalue, λ1, maximizes the quadratic
form a†Qa over all vectors a with norm one. Let Q = ULU† be the
eigenvector decomposition of Q, where the columns of U are mutually or-
thogonal eigenvectors un with norms equal to one, so that U†U = I, and
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L = diag{λ1, ..., λM} is the diagonal matrix with the eigenvalues of Q as
its entries along the main diagonal. Assume that λ1 ≥ λ2 ≥ ... ≥ λM .
Then maximize

a†Qa =
M∑

n=1

λn |a†un|2,

subject to the constraint

a†a = a†U†Ua =
M∑

n=1

|a†un|2 = 1.

Hint: Show a†Qa is a convex combination of the eigenvalues of Q.

Exercise 9.2 Show that, for the sinc matrix Q = SΓ, the quadratic form
a†Qa in the previous exercise becomes

a†SΓa =
1
2π

∫ Γ

−Γ

|
M∑

n=1

aneinγ |2dγ.

Show that the norm of the vector a is the integral

1
2π

∫ π

−π

|
M∑

n=1

aneinγ |2dγ.

Exercise 9.3 For M = 30 compute the eigenvalues of the matrix SΓ for
various choices of Γ, such as Γ = π

k , for k = 2, 3, ..., 10. For each k arrange
the set of eigenvalues in decreasing order and note the proportion of them
that are not near zero. The set of eigenvalues of a matrix is sometimes
called its eigenspectrum and the nonnegative function χΓ(γ) is a power
spectrum; here is one time in which different notions of a spectrum are
related.

9.3.2 The Eigenfunctions of SΓ

Suppose that the vector u1 = (u1
1, ..., u

1
M )T is an eigenvector of SΓ corre-

sponding to the largest eigenvalue, λ1. Associate with u1 the eigenfunction

U1(γ) =
M∑

n=1

u1
neinγ .
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Then

λ1 =
∫ Γ

−Γ

|U1(γ)|2dγ/

∫ π

−π

|U1(γ)|2dγ

and U1(γ) is the function of its form that is most concentrated within the
interval [−Γ,Γ].

Similarly, if uM is an eigenvector of SΓ associated with the smallest
eigenvalue λM , then the corresponding eigenfunction UM (γ) is the function
of its form least concentrated in the interval [−Γ,Γ].

Exercise 9.4 Plot for |γ| ≤ π the functions |Um(γ)| corresponding to each
of the eigenvectors of the sinc matrix SΓ. Pay particular attention to the
places where each of these functions is zero.

The eigenvectors of SΓ corresponding to different eigenvalues are orthog-
onal, that is (um)†un = 0 if m is not n. We can write this in terms of
integrals: ∫ π

−π

Un(γ)Um(γ)dγ = 0

if m is not n. The mutual orthogonality of these eigenfunctions is related
to the locations of their roots, which were studied in the previous exercise.

Any Hermitian matrix Q is invertible if and only if none of its eigenval-
ues is zero. With λm and um, m = 1, ...,M , the eigenvalues and eigenvec-
tors of Q, the inverse of Q can then be written as

Q−1 = (1/λ1)u1(u1)† + ... + (1/λM )uM (uM )†.

Exercise 9.5 Show that the MDFT estimator given by Equation (9.1)
FΓ(γ) can be written as

FΓ(γ) = χΓ(γ)
M∑

m=1

1
λm

(um)†dUm(γ),

where d = (f(1), f(2), ..., f(M))T is the data vector.

Exercise 9.6 Show that the DFT estimate of F (γ), restricted to the in-
terval [−Γ,Γ], is

FDFT (γ) = χΓ(γ)
M∑

m=1

(um)†dUm(γ).



9.4. THE DISCRETE PDFT (DPDFT) 63

From these two exercises we can learn why it is that the estimate FΓ(γ)
resolves better than the DFT. The former makes more use of the eigen-
functions Um(γ) for higher values of m, since these are the ones for which
λm is closer to zero. Since those eigenfunctions are the ones having most of
their roots within the interval [−Γ,Γ], they have the most flexibility within
that region and are better able to describe those features in F (γ) that are
not resolved by the DFT.

9.4 The Discrete PDFT (DPDFT)

The derivation of the PDFT assumes a function f(x) of one or more con-
tinuous real variables, with the data obtained from f(x) by integration.
The discrete PDFT (DPDFT) begins with f(x) replaced by a finite vector
f = (f1, ..., fJ)T that is a discretization of f(x); say that fj = f(xj) for
some point xj . The integrals that describe the Fourier transform data can
be replaced by finite sums,

F (γn) =
J∑

j=1

fjEnj , (9.6)

where Enj = eixjγn . We have used a Riemann-sum approximation of the
integrals here, but other choices are also available. The problem then is to
solve this system of equations for the fj .

Since the N is fixed, but the J is under our control, we select J > N ,
so that the system becomes under-determined. Now we can use minimum-
norm and minimum-weighted-norms solutions of the finite-dimensional prob-
lem to obtain an approximate, discretized PDFT solution.

Since the PDFT is a minimum-weighted norm solution in the continous-
variable formulation, it is reasonable to let the DPDFT be the correspond-
ing minimum-weighted-norm solution obtained with the positive-definite
matrix Q the diagonal matrix having for its jth diagonal entry

Qjj = 1/p(xj), (9.7)

if p(xj) > 0, and zero, otherwise.

9.4.1 Calculating the DPDFT

The DPDFT is a minimum-weighted-norm solution, which can be cal-
culated using, say, the ART algorithm. We know that, in the under-
determined case, the ART provides the the solution closest to the starting
vector, in the sense of the Euclidean distance. We therefore reformulate the
system, so that the minimum-weighted norm solution becomes a minimum-
norm solution, as we did earlier, and then begin the ART iteration with
zero. For recent work involving the DPDFT se [196, 195, 197].
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9.4.2 Regularization

We noted earlier that one of the principles guiding the estimation of f(x)
from Fourier transform data should be that we do not want to overfit the
estimate to noisy data. In the PDFT, this can be avoided by adding a small
positive quantity to the main diagonal of the matrix P . In the DPDFT,
sensitivity to noise is reduced by using the iterative regularized ART [58].
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Figure 9.1: The non-iterative band-limited extrapolation method (MDFT)
(top) and the DFT (bottom) for N = 129, ∆ = 1 and Γ = π/30.
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Figure 9.2: The DFT, the MDFT, and the PDFT.



9.4. THE DISCRETE PDFT (DPDFT) 67

Figure 9.3: The PDFT in image reconstruction.
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Chapter 10

ART and MART

The algebraic reconstruction technique (ART) was introduced by Gordon,
Bender and Herman [121] as a method for discrete image reconstruction in
transmission tomography. It was noticed somewhat later that the ART is
a special case of Kaczmarz’s algorithm [140].

10.1 The ART in Tomography

For i = 1, ..., I, let Li be the set of pixel indices j for which the j-th pixel
intersects the i-th line segment, and let |Li| be the cardinality of the set
Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise. With i = k(mod I)+1,
the iterative step of the ART algorithm is

xk+1
j = xk

j +
1
|Li|

(bi − (Axk)i), (10.1)

for j in Li, and

xk+1
j = xk

j , (10.2)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

A somewhat more sophisticated version of ART allows Aij to include
the length of the i-th line segment that lies within the j-th pixel; Aij is
taken to be the ratio of this length to the length of the diagonal of the
j-pixel.

More generally, ART can be viewed as an iterative method for solving
an arbitrary system of linear equations, Ax = b.
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10.2 The ART in the General Case

Let A be a complex matrix with I rows and J columns, and let b be a
member of CI . We want to solve the system Ax = b.

For each index value i, let Hi be the hyperplane of J-dimensional vectors
given by

Hi = {x|(Ax)i = bi}, (10.3)

and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k. (10.4)

Because the ART uses only a single equation at each step, it has been called
a row-action method .

10.2.1 Calculating the ART

Given any vector z the vector in Hi closest to z, in the sense of the Euclidean
distance, has the entries

xj = zj + Aij(bi − (Az)i)/
J∑

m=1

|Aim|2. (10.5)

To simplify our calculations, we shall assume, throughout this chapter, that
the rows of A have been rescaled to have Euclidean length one; that is

J∑
j=1

|Aij |2 = 1, (10.6)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b. The ART is then the following: begin
with an arbitrary vector x0; for each nonnegative integer k, having found
xk, the next iterate xk+1 has entries

xk+1
j = xk

j + Aij(bi − (Axk)i). (10.7)

When the system Ax = b has exact solutions the ART converges to the
solution closest to x0, in the 2-norm. How fast the algorithm converges
will depend on the ordering of the equations and on whether or not we use
relaxation. In selecting the equation ordering, the important thing is to
avoid particularly bad orderings, in which the hyperplanes Hi and Hi+1

are nearly parallel.
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10.2.2 Full-cycle ART

We also consider the full-cycle ART, with iterative step zk+1 = Tzk, for

T = PIPI−1 · · · P2P1. (10.8)

When the system Ax = b has solutions, the fixed points of T are solutions.
When there are no solutions of Ax = b, the operator T will still have fixed
points, but they will no longer be exact solutions.

10.2.3 Relaxed ART

The ART employs orthogonal projections onto the individual hyperplanes.
If we permit the next iterate to fall short of the hyperplane, or somewhat
beyond it, we get a relaxed version of ART.The relaxed ART algorithm is
as follows:

Algorithm 10.1 (Relaxed ART) With ω ∈ (0, 2), x0 arbitrary, and
i = k(mod I) + 1, let

xk+1
j = xk

j + ωAij(bi − (Axk)i)). (10.9)

The relaxed ART converges to the solution closest to x0, in the consis-
tent case. In the inconsistent case, it does not converge, but subsequences
associated with the same i converge to distinct vectors, forming a limit
cycle.

10.2.4 Constrained ART

Let C be a closed, nonempty convex subset of CJ and PCx the orthogonal
projection of x onto C. If there are solutions of Ax = b that lie within C,
we can find them using the constrained ART algorithm:

Algorithm 10.2 (Constrained ART) With x0 arbitrary and i = k(mod I)+
1, let

xk+1
j = PC(xk

j + Aij(bi − (Axk)i)). (10.10)

For example, if A and b are real and we seek a nonnegative solution to
Ax = b, we can use

Algorithm 10.3 (Non-negative ART) With x0 arbitrary and i = k(mod I)+
1, let

xk+1
j = (xk

j + Aij(bi − (Axk)i))+, (10.11)

where, for any real number a, a+ = max{a, 0}.
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The constrained ART converges to a solution of Ax = b within C, whenever
such solutions exist.

Noise in the data can manifest itself in a variety of ways; we have seen
what can happen when we impose positivity on the calculated least-squares
solution, that is, when we minimize ||Ax−b||2 over all non-negative vectors
x. Theorem 10.1 tells us that when J > I, but Ax = b has no non-negative
solutions, the non-negatively constrained least-squares solution can have at
most I−1 non-zero entries, regardless of how large J is. This phenomenon
also occurs with several other approximate methods, such as those that
minimize the cross-entropy distance.

Definition 10.1 The matrix A has the full-rank property if A and every
matrix Q obtained from A by deleting columns have full rank.

Theorem 10.1 Let A have the full-rank property. Suppose there is no
nonnegative solution to the system of equations Ax = b. Then there is a
subset S of the set {j = 1, 2, ..., J}, with cardinality at most I − 1, such
that, if x̂ is any minimizer of ||Ax− b||2 subject to x ≥ 0, then x̂j = 0 for
j not in S. Therefore, x̂ is unique.

For a proof, see the chapter on optimization.

10.2.5 Convergence of ART

For the consistent case, in which the system Ax = b has exact solutions,
we have the following result.

Theorem 10.2 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (10.7). Then the sequence {||x̂−xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

10.3 The MART

The multiplicative ART (MART) [121] is an iterative algorithm closely re-
lated to the ART. It also was devised to obtain tomographic images, but,
like ART, applies more generally; MART applies to systems of linear equa-
tions Ax = b for which the bi are positive, the Aij are nonnegative, and the
solution x we seek is to have nonnegative entries. It is not so easy to see the
relation between ART and MART if we look at the most general formula-
tion of MART. For that reason, we begin with a simpler case, transmission
tomographic imaging, in which the relation is most clearly visible.
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10.3.1 A Special Case of MART

We begin by considering the application of MART to the transmission
tomography problem. For i = 1, ..., I, let Li be the set of pixel indices j
for which the j-th pixel intersects the i-th line segment, and let |Li| be the
cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xk

j +
1
|Li|

(bi − (Axk)i), (10.12)

for j in Li, and

xk+1
j = xk

j , (10.13)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

Suppose, now, that each bi is positive, and we know in advance that the
desired image we wish to reconstruct must be nonnegative. We can begin
with x0 > 0, but as we compute the ART steps, we may lose nonnegativity.
One way to avoid this loss is to correct the current xk multiplicatively,
rather than additively, as in ART. This leads to the multiplicative ART
(MART).

The MART, in this case, has the iterative step

xk+1
j = xk

j

( bi

(Axk)i

)
, (10.14)

for those j in Li, and

xk+1
j = xk

j , (10.15)

otherwise. Therefore, we can write the iterative step as

xk+1
j = xk

j

( bi

(Axk)i

)Aij

. (10.16)

10.3.2 The MART in the General Case

Taking the entries of the matrix A to be either one or zero, depending on
whether or not the j-th pixel is in the set Li, is too crude. The line Li

may just clip a corner of one pixel, but pass through the center of another.
Surely, it makes more sense to let Aij be the length of the intersection of
line Li with the j-th pixel, or, perhaps, this length divided by the length of
the diagonal of the pixel. It may also be more realistic to consider a strip,
instead of a line. Other modifications to Aij may made made, in order to
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better describe the physics of the situation. Finally, all we can be sure of
is that Aij will be nonnegative, for each i and j. In such cases, what is the
proper form for the MART?

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration.

Algorithm 10.4 (MART) Let x0 be any positive vector, and i = k(mod I)+
1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xk

j

( bi

(Axk)i

)m−1
i

Aij

, (10.17)

where mi = max {Aij |j = 1, 2, ..., J}.

Some treatments of MART leave out the mi, but require only that the
entries of A have been rescaled so that Aij ≤ 1 for all i and j. The mi is
important, however, in accelerating the convergence of MART.

The MART can be accelerated by relaxation, as well.

Algorithm 10.5 (Relaxed MART) Let x0 be any positive vector, and
i = k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xk

j

( bi

(Axk)i

)γim
−1
i

Aij

, (10.18)

where γi is in the interval (0, 1).

As with ART, finding the best relaxation parameters is a bit of an art.

10.3.3 Cross-Entropy

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler distance
from a to b be

KL(a, b) = a log
a

b
+ b− a, (10.19)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =
J∑

j=1

KL(xj , zj). (10.20)

Unlike the Euclidean distance, the KL distance is not symmetric; KL(Ax, b)
and KL(b, Ax) are distinct, and we can obtain different approximate so-
lutions of Ax = b by minimizing these two distances with respect to non-
negative x.
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10.3.4 Convergence of MART

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART.

Theorem 10.3 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 KL(xj , x

0
j ) is

minimized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =
J∑

j=1

xj log xj − xj . (10.21)

As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of
a limit cycle for MART.
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Chapter 11

Transmission Tomography
II

According to the Central Slice Theorem, if we have all the line integrals
through the attenuation function f(x, y) then we have the two-dimensional
Fourier transform of f(x, y). To get f(x, y) we need to invert the two-
dimensional Fourier transform.

11.1 Inverting the Fourier Transform

The Fourier-transform inversion formula for two-dimensional functions tells
us that the function f(x, y) can be obtained as

f(x, y) =
1

4π2

∫ ∫
F (u, v)e−i(xu+yv)dudv. (11.1)

We now derive alternative inversion formulas.

11.1.1 Back-Projection

Let g(θ, t) be any function of the variables θ and t; for example, it could be
the Radon transform. As with the Radon transform, we imagine that each
pair (θ, t) corresponds to one line through the x, y-plane. For each fixed
point (x, y) we assign to this point the sum of the quantities g(θ, t) for
every pair (θ, t) such that the point (x, y) lies on the associated line. The
summing process is integration and the back-projection function at (x, y) is

BPg(x, y) =
∫

g(θ, x cos θ + y sin θ)dθ.

The operation of back-projection will play an important role in what follows
in this chapter.
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11.1.2 Ramp Filter, then Back-project

Expressing the double integral in Equation (11.1) in polar coordinates
(ω, θ), with ω ≥ 0, u = ω cos θ, and v = ω sin θ, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

or
f(x, y) =

1
4π2

∫ π

0

∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dωdθ.

Now write
F (u, v) = F (ω cos θ, ω sin θ) = Rf (θ, ω),

where Rf (θ, ω) is the FT with respect to t of rf (θ, t), so that∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dω =

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω.

The function gf (θ, t) defined for t = x cos θ + y sin θ by

gf (θ, x cos θ + y sin θ) =
1
2π

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω (11.2)

is the result of a linear filtering of rf (θ, t) using a ramp filter with transfer
function H(ω) = |ω|. Then,

f(x, y) =
1
2π

∫ π

0

gf (θ, x cos θ + y sin θ)dθ (11.3)

gives f(x, y) as the result of a back-projection operator; for every fixed value
of (θ, t) add gf (θ, t) to the current value at the point (x, y) for all (x, y)
lying on the straight line determined by θ and t by t = x cos θ + y sin θ.
The final value at a fixed point (x, y) is then the average of all the values
gf (θ, t) for those (θ, t) for which (x, y) is on the line t = x cos θ + y sin θ.
It is therefore said that f(x, y) can be obtained by filtered back-projection
(FBP) of the line-integral data.

Knowing that f(x, y) is related to the complete set of line integrals by
filtered back-projection suggests that, when only finitely many line integrals
are available, a similar ramp filtering and back-projection can be used to
estimate f(x, y); in the clinic this is the most widely used method for the
reconstruction of tomographic images.

11.1.3 Back-project, then Ramp Filter

There is a second way to recover f(x, y) using back-projection and filtering,
this time in the reverse order; that is, we back-project the Radon transform
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and then ramp filter the resulting function of two variables. We begin again
with the relation

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

which we write as

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)√
u2 + v2

√
u2 + v2e−i(xu+yv)ωdωdθ

=
1

4π2

∫ 2π

0

∫ ∞

0

G(u, v)
√

u2 + v2e−i(xu+yv)ωdωdθ, (11.4)

using

G(u, v) =
F (u, v)√
u2 + v2

for (u, v) 6= (0, 0). Equation (11.4) expresses f(x, y) as the result of per-
forming a two-dimensional ramp filtering of g(x, y), the inverse Fourier
transform of G(u, v). We show now that g(x, y) is the back-projection of
the function rf (θ, t); that is, we show that

g(x, y) =
1
2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

We have

g(x, y) =
1

4π2

∫ π

0

∫ ∞

−∞
G(ω cos θ, ω sin θ)|ω|e−iω(x cos θ+y sin θ)dωdθ

=
1

4π2

∫ π

0

∫ ∞

−∞
F (ω cos θ, ω sin θ)e−iω(x cos θ+y sin θ)dωdθ

=
1

4π2

∫ π

0

∫ ∞

−∞
Rf (θ, ω)e−iω(x cos θ+y sin θ)dωdθ

=
1
2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ,

as required.

11.1.4 Radon’s Inversion Formula

To get Radon’s inversion formula, we need two basic properties of the
Fourier transform. First, if f(x) has Fourier transform F (γ) then the
derivative f ′(x) has Fourier transform −iγF (γ). Second, if F (γ) = sgn(γ),
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the function that is γ
|γ| for γ 6= 0, and equal to zero for γ = 0, then its

inverse Fourier transform is f(x) = 1
iπx .

Writing equation (11.2) as

gf (θ, t) =
1
2π

∫ ∞

−∞
ωRf (θ, ω)sgn(ω)e−iωtdω,

we see that gf is the inverse Fourier transform of the product of the two
functions ωRf (θ, ω) and sgn(ω). Consequently, gf is the convolution of
their individual inverse Fourier transforms, i ∂

∂trf (θ, t) and 1
iπt ; that is,

gf (θ, t) =
1
π

∫ ∞

−∞

∂

∂t
rf (θ, s)

1
t− s

ds,

which is the Hilbert transform of the function ∂
∂trf (θ, t), with respect to

the variable t. Radon’s inversion formula is then

f(x, y) =
1
2π

∫ π

0

HT (
∂

∂t
rf (θ, t))dθ.

11.2 From Theory to Practice

What we have just described is the theory. What happens in practice?

11.2.1 The Practical Problems

Of course, in reality we never have the Radon transform rf (θ, t) for all
values of its variables. Only finitely many angles θ are used, and, for each
θ, we will have (approximate) values of line integrals for only finitely many
t. Therefore, taking the Fourier transform of rf (θ, t), as a function of
the single variable t, is not something we can actually do. At best, we can
approximate Rf (θ, ω) for finitely many θ. From the Central Slice Theorem,
we can then say that we have approximate values of F (ω cos θ, ω sin θ), for
finitely many θ. This means that we have (approximate) Fourier transform
values for f(x, y) along finitely many lines through the origin, like the
spokes of a wheel. The farther from the origin we get, the fewer values we
have, so the coverage in Fourier space is quite uneven. The low-spatial-
frequencies are much better estimated than higher ones, meaning that we
have a low-pass version of the desired f(x, y). The filtered back-projection
approaches we have just discussed both involve ramp filtering, in which the
higher frequencies are increased, relative to the lower ones. This too can
only be implemented approximately, since the data is noisy and careless
ramp filtering will cause the reconstructed image to be unacceptably noisy.
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11.2.2 A Practical Solution: Filtered Back-Projection

We assume, to begin with, that we have finitely many line integrals, that
is, we have values rf (θ, t) for finitely many θ and finitely many t. For
each fixed θ we estimate the Fourier transform, Rf (θ, ω). This step can
be performed in various ways, and we can freely choose the values of ω
at which we perform the estimation. The FFT will almost certainly be
involved in calculating the estimates of Rf (θ, ω).

For each fixed θ we multiply our estimated values of Rf (θ, ω) by |ω| and
then use the FFT again to inverse Fourier transform, to achieve a ramp
filtering of rf (θ, t) as a function of t. Note, however, that when |ω| is large,
we may multiply by a smaller quantity, to avoid enhancing noise. We do
this for each angle θ, to get a function of (θ, t), which we then back-project
to get our final image. This is ramp-filtering, followed by back-projection,
as applied to the finite data we have.

It is also possible to mimic the second approach to inversion, that is, to
back-project onto the pixels each rf (θ, t) that we have, and then to perform
a ramp filtering of this two-dimensional array of numbers to obtain the
final image. In this case, the two-dimensional ramp filtering involves many
applications of the FFT.

There is a third approach. Invoking the Central Slice Theorem, we can
say that we have finitely many approximate values of F (u, v), the Fourier
transform of the attenuation function f(x, y), along finitely many lines
through the origin. The first step is to use these values to estimate the
values of F (u, v) at the points of a rectangular grid. This step involves
interpolation [205, 209]. Once we have (approximate) values of F (u, v) on
a rectangular grid, we perform a two-dimensional FFT to obtain our final
estimate of the (discreteized) f(x, y).

11.3 Summary

We have seen how the problem of reconstructing a function from line inte-
grals arises in transmission tomography. The Central Slice Theorem con-
nects the line integrals and the Radon transform to the Fourier transform
of the desired attenuation function. Various approaches to implementing
the Fourier Inversion Formula lead to filtered back-projection algorithms
for the reconstruction. In x-ray tomography, as well as in PET, viewing the
data as line integrals ignores the statistical aspects of the problem, and in
SPECT, it ignores, as well, the important physical effects of attenuation.
To incorporate more of the physics of the problem, iterative algorithms
based on statistical models have been developed. We shall consider some
of these algorithms later.
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Part III

Emission Tomography
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Chapter 12

Emission Tomography I

In this next part of the text we take up the subject of emission tomography.
In this chapter we describe the two modalities of emission tomography,
positron emission tomography (PET) and single photon emission computed
tomography (SPECT), and introduce the basic mathematical models for
both.

12.1 Positron Emission Tomography

As we noted previously, detection in the PET case means the recording of
two photons at nearly the same time at two different detectors. The loca-
tions of these two detectors then provide the end points of the line segment
passing, more or less, through the site of the original positron emission.
Therefore, each possible pair of detectors determines a line of response
(LOR). When a LOR is recorded, it is assumed that a positron was emit-
ted somewhere along that line. The PET data consists of a chronological
list of LOR that are recorded.

Let the LOR be parameterized by the variable s, with s = 0 and s = c
denoting the two ends, and c the distance from one end to the other. For
a fixed value s = s0, let P (s) be the probability of reaching s for a photon
resulting from an emission at s0. For small ∆s > 0 the probability that a
photon that reached s is absorbed in the interval [s, s+∆s] is approximately
µ(s)∆s, where µ(s) ≥ 0 is the photon attenuation density at s. Then
P (s + ∆s) ≈ P (s)[1− µ(s)∆s], so that

P (s + ∆s)− P (s) ≈ −P (s)µ(s)∆s.

Dividing by ∆s and letting ∆s go to zero, we get

P ′(s) = −P (s)µ(s).
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It follows that

P (s) = e
−
∫ s

s0
µ(t)dt

.

The probability that the photon will reach s = c and be detected is then

P (c) = e
−
∫ c

s0
µ(t)dt

.

Similarly, we find that the probability that a photon will succeed in reaching
s = 0 from s0 is

P (0) = e
−
∫ s0

0
µ(t)dt

.

Since having one photon reach s = 0 and the other reach s = c are indepen-
dent events, their probabilities multiply, so that the probability that both
photons reach their destinations and a coincident detection is recorded for
this LOR is

e
−
∫ c

0
µ(t)dt

.

The expected number of coincident detections along the LOR is then pro-
portional to∫ c

0

f(s)e−
∫ c

0
µ(t)dt

ds = e
−
∫ c

0
µ(t)dt

∫ c

0

f(s)ds, (12.1)

where f(s) is the intensity of radionuclide at s.
Let yi be the number of coincidence detections associated with the ith

LOR. If we are willing to equate the actual count with the expected count,
and assuming we know the attenuation function µ(s), we can estimate the
line integral

∫ c

0
f(s)ds along the ith LOR as∫ c

0

f(s)ds = yie

∫ c

0
µ(t)dt

.

So, once again, we have line-integral data pertaining to the function of
interest.

12.2 Single-Photon Emission Tomography

We turn now to single-photon computed emission tomography (SPECT).

12.2.1 Sources of Degradation to be Corrected

We remarked earlier that there are at least three degradations that need
to be corrected before the line-integral model and FBP can be successfully
applied in the SPECT case [144]: attenuation, scatter, and spatially depen-
dent resolution. There are mathematical ways to correct for both spatially
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varying resolution and uniform attenuation [200]. Correcting for the more
realistic non-uniform and patient-specific attenuation is more difficult and
is the subject of on-going research.

Some photons never reach the detectors because they are absorbed in
the body. As in the PET case, correcting for attenuation requires knowl-
edge of the patient’s body; this knowledge can be obtained by performing
a transmission scan at the same time. In contrast to the PET case, the
attenuation due to absorption is more difficult to correct, since it does not
involve merely the line integral of the attenuation function, but a half-line
integral that depends on the distribution of matter between each photon
source and each detector.

While some photons are absorbed within the body, others are first de-
flected and then detected; this is called scatter. Consequently, some of
the detected photons do not come from where they seem to come from.
The scattered photons often have reduced energy, compared to primary, or
non-scattered, photons, and scatter correction can be based on this energy
difference; see [144].

Finally, even if there were no attenuation and no scatter, it would be
incorrect to view the detected photons as having originated along a straight
line from the detector. The detectors have a cone of acceptance that widens
as it recedes from the detector. This results in spatially varying resolution.

It is not uncommon, however, to make the simplifying assumption that
all photons detected at a given detector originated along a single line. As in
the PET case previously discussed, the probability that a photon emitted
at the point on the line corresponding to the variable s = s0 will reach
s = c and be detected is then

P (s0) = e
−
∫ c

s0
µ(t)dt

.

If f(s) is the expected number of photons emitted from point s during the
scanning, then the expected number of photons detected at c and originat-
ing along this line is proportional to∫ c

0

f(s)e−
∫ c

s
µ(t)dt

ds. (12.2)

Notice the difference between the integral in Equation (12.2) and the one
in Equation (12.1).

The integral in Equation (12.2) varies with the line being considered;
the resulting function of lines is called the attenuated Radon transform.

If the attenuation function µ is constant, then the attenuated Radon
transform is called the exponential Radon transform. Since∫ c

s

µdt = µ(c− s),
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the integral in (12.2) is now

e−µc

∫ c

0

f(s)eµsds = e−µc

∫ ∞

0

f(s)e−(−µ)sds = e−µcF(−µ),

where F denotes the Laplace transform of f . Since the function f(s) is
zero outside a bounded interval, we may safely assume that the Laplace
transform is defined for all real values of the argument.

In practice, one sometimes assumes, initially, that µ = 0 and that the
counts at each detector are essentially integrals of f along a single line.
Filtered back=projection is then used to reconstruct an image. Since the
image does not reflect the effects of attenuation, it can be “corrected”
during the back-projection phase.

Spatially varying resolution complicates the quantitation problem, which
is the effort to determine the exact amount of radionuclide present within
a given region of the body, by introducing the partial volume effect and
spill-over (see [213]). To a large extent, these problems are shortcomings
of reconstruction based on the line-integral model. If we assume that all
photons detected at a particular detector came from points within a narrow
strip perpendicular to the camera face, and we reconstruct the image us-
ing this assumption, then photons coming from locations outside this strip
will be incorrectly attributed to locations within the strip (spill-over), and
therefore not correctly attributed to their true source location. If the true
source location also has its counts raised by spill-over, the net effect may
not be significant; if, however, the true source is a hot spot surrounded
by cold background, it gets no spill-over from its neighbors and its true
intensity value is underestimated, resulting in the partial-volume effect.
The term “partial volume” indicates that the hot spot is smaller than the
region that the line-integral model offers as the source of the emitted pho-
tons. One way to counter these effects is to introduce a description of the
spatially dependent blur into the reconstruction, which is then performed
by iterative methods [181].

In the SPECT case, as in most such inverse problems, there is a trade-
off to be made between careful modeling of the physical situation and
computational tractability. The FBP method slights the physics in favor
of computational simplicity and speed. In recent years, iterative methods
that incorporate more of the physics have become competitive.

12.2.2 The Discrete Model

In iterative reconstruction we begin by discretizing the problem; that is,
we imagine the region of interest within the patient to consist of finitely
many tiny squares, called pixels for two-dimensional processing or cubes,
called voxels for three-dimensional processing. In what follows we shall
not distinguish the two cases, but as a linguistic shorthand, we shall refer
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to ‘pixels’ indexed by j = 1, ..., J . The detectors are indexed by i =
1, ..., I, the count obtained at detector i is denoted yi, and the vector y =
(y1, ..., yI)T is our data. In practice, for the fully three-dimensional case, I
and J can be several hundred thousand.

We imagine that each pixel j has its own level of concentration of ra-
dioactivity and these concentration levels are what we want to determine.
Proportional to these concentration levels are the average rates of emission
of photons; the average rate for j we denote by xj . The goal is to determine
the vector x = (x1, ..., xJ)T from y.

12.2.3 Discrete Attenuated Radon Transform

To achieve our goal we must construct a model that relates y to x. One
way to do that is to discretize the attenuated Radon Transform [124, 206].

The objective is to describe the contribution to the count data from
the intensity xj at the jth pixel. We assume, for the moment, that all
the radionuclide is concentrated within the jth pixel, and we compute the
resulting attenuated Radon Transform. Following [124, 206], we adopt a
ray model for detection, which means that corresponding to each detector
is a line of acceptance and that all the counts recorded at that detector
came from pixels that intersect this line. This is a simplification, of course,
since each detector has a solid angle of acceptance, which leads to depth-
dependent blur.

For notational simplicity, we suppose that the line of acceptance asso-
ciated with the ith detector is parameterized by arc-length s ≥ 0, with
s = c > 0 corresponding to the point closest to the detector, within the
body, s = 0 corresponding to the point farthest from the detector, at which
the line leaves the body, s = b < c the point closest to the detector within
the jth pixel, and s = a < b the point farthest from the detector at which
the line leaves the jth pixel. The length of the intersection of the jth pixel
with the line is then dij = b− a.

We are assuming that all the radionuclide is within the jth pixel, with
intensity distribution (proportional to) xj , so the value at detector i of the
attenuated Radon Transform is

Aij =
∫ b

a

xje
−
∫ c

s
µ(t)dt

ds. (12.3)

We assume that the attenuation is uniformly equal to µj ≥ 0 within the
jth pixel, so we can write

Aij =
∫ b

a

xje
−
∫ b

s
µjdt−

∫ c

b
µ(t)dt

ds,

or

Aij = xje
−
∫ c

b
µ(t)dt

∫ b

a

e(s−b)µj ds.
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If µj = 0, then we have

Aij = xje
−
∫ c

b
µ(t)dt

dij ,

while if µj > 0 we have

Aij =
(
xje

−
∫ c

b
µ(t)dt

dij

)
Sij ,

where

Sij =
1

dij

∫ b

a

e(b−s)µj ds =
1

µjdij
(1− e−µjdij ).

We can then write
Aij = xjWij ,

for each j and i.
Since the function

g(t) =
1
t
(1− e−t)

is positive for positive t, g(0) = 1, and g(+∞) = 0, it is reasonable to view
Sij as the survival proportion associated with the jth pixel and the line
from the ith detector. Expanding the exponential in Sij in a power series,
we find that

Sij =
1

µjdij
(1− e−µjdij ) ≈ 1− 1

2
µjdij ,

so that the loss proportion is approximately 1
2µjdij . If we were to adopt

the decaying exponential model for a photon surviving its passage through
the jth pixel, and assume all the radionuclide was initially at the far side
of the jth pixel, we would replace Sij with e−µjdij , which is approximately
1− µjdij , so that the loss proportion is approximately µjdij . This is twice
the loss proportion that we got using the other model, and is larger because
we are assuming that all the radionuclide in the jth pixel has to attempt
to travel through the entire jth pixel, whereas, due to the spreading of the
radionuclide throughout the pixel, the average journey through the pixel is
only half of the length dij .

Having found the values Wij , we form the matrix W having these entries
and then find a non-negative solution of the system of equations Wx =
y, using one of a number of iterative algorithms, including the EMML.
Contrary to what is stated in [206], it may not be appropriate to consider
Wij as the probability that a photon emitted at the jth pixel is detected
at the ith detector, even though 0 ≤ Wij ≤ 1 for each i and j. If viewed
that way, it would be the case that

I∑
i=1

Wij
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would be the probability of detecting a photon emitted from the jth pixel;
we have no guarantee, however, that this sum is not greater than one.

It is significant that the authors in [206] realize that the EMML iterative
algorithm can be used to find a non-negative solution of Wx = y, even
though no stochastic model for the data is assumed in their derivation.
Their development involves discretizing the attenuated Radon Transform,
which involves no randomness, and viewing the count data as approximate
values of this discrete function.

There is another approach that can be used to relate the count data to
the intensity levels xj . This other approach is based on a stochastic model,
as we describe next.

12.2.4 A Stochastic Model

Another way to relate the count data to the intensities xj is to adopt the
model of independent Poisson emitters. For i = 1, ..., I and j = 1, ..., J , de-
note by Zij the random variable whose value is to be the number of photons
emitted from pixel j, and detected at detector i, during the scanning time.
We assume that the members of the collection {Zij |i = 1, ..., I, j = 1, ..., J}
are independent. In keeping with standard practice in modeling radioac-
tivity, we also assume that the Zij are Poisson-distributed.

Generally, the signal-to-noise ratio (SNR) is the ratio of the mean of
a distribution to its standard deviation (the square root of the variance).
In the case of the Poisson distribution, the variance and the mean are the
same, so the SNR is the square root of the mean; therefore, the higher the
mean the higher the SNR.

We assume that Zij is a Poisson random variable whose mean value (and
variance) is λij = Pijxj . Here the xj ≥ 0 is the average rate of emission
from pixel j, as discussed previously, and Pij ≥ 0 is the probability that a
photon emitted from pixel j will be detected at detector i. The calculation
of the Pij can be quite similar to the derivation of the Wij in the previous
subsection, with the exception that we do need to have

I∑
i=1

Pij ≤ 1.

We then define the random variables Yi =
∑J

j=1 Zij , the total counts to
be recorded at detector i; our actual count yi is then the observed value of
the random variable Yi. Note that the actual values of the individual Zij

are not observable.
Any Poisson-distributed random variable has a mean equal to its vari-

ance. The signal-to-noise ratio (SNR) is usually taken to be the ratio of
the mean to the standard deviation, which, in the Poisson case, is then the
square root of the mean. Consequently, the Poisson SNR increases as the
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mean value increases, which points to the desirability (at least, statistically
speaking) of higher dosages to the patient.

Having found the Pij , we take P to be the matrix with these entries.
Since Px is the vector of expected counts at the various detectors, and y
is the vector of actual counts, trying to find a non-negative solution of the
system y = Px may not seem completely reasonable. However, this is what
several well known iterative algorithms do, even ones such as the EMML
that were not originally designed for this purpose.

12.2.5 Reconstruction as Parameter Estimation

The goal is to estimate the distribution of radionuclide intensity by cal-
culating the vector x. The entries of x are parameters and the data are
instances of random variables, so the problem looks like a fairly standard
parameter estimation problem of the sort studied in beginning statistics.
One of the basic tools for statistical parameter estimation is likelihood
maximization, which is playing an increasingly important role in medical
imaging. There are several problems, however. One is that the number of
parameters is quite large, as large as the number of data values, in most
cases. Standard statistical parameter estimation usually deals with the es-
timation of a handful of parameters. Another problem is that we do not
know what the Pij are. These values will vary from one patient to the next,
since whether or not a photon makes it from a given pixel to a given de-
tector depends on the geometric relationship between detector i and pixel
j, as well as what is in the patient’s body between these two locations. If
there are ribs or skull getting in the way, the probability of making it goes
down. If there are just lungs, the probability goes up. These values can
change during the scanning process, when the patient moves. Some motion
is unavoidable, such as breathing and the beating of the heart. Determin-
ing good values of the Pij in the absence of motion, and correcting for the
effects of motion, are important parts of SPECT image reconstruction.

12.3 Relative Advantages

In [173], Ollinger and Fessler discuss some of the relative advantages of
these two modes of emission tomography.

Attenuation, which is primarily the scattering of photons by the body
to locations outside the field of view of the detecting cameras, is harder to
correct in SPECT. The radiopharmaceuticals used in SPECT must incor-
porate heavy isotopes, such as thallium and technetium; since these do not
occur naturally in biologically active molecules, the synthesis of physiologi-
cally useful tracers is a challenge. In contrast, in PET the positron-emitting
isotopes of carbon, nitrogen, oxygen and fluorine that are used occur natu-
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rally in many compounds of biological interest and can therefore be easily
incorporated into useful radiopharmaceuticals.

Because collimation is performed by the computer in PET, while SPECT
must employ lead collimators, which absorb many of the photons, the sensi-
tivity of the detecting gamma cameras in SPECT is reduced, in comparison
to PET.

On the other side of the balance sheet, the short half-life of most
positron-emitting isotopes necessitates an on-site cyclotron, while the iso-
topes used in SPECT have longer half-lives and can be stored. Also, the
scanners for PET are more expensive than those used in SPECT.

At any given time, computer speed limits the size of the problem that
can be dealt with. While 2D reconstructions are clinically feasible, fully 3D
imaging (not to mention dynamic, 4D imaging) poses more of a challenge,
hence the need for continuing algorithm development.
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Chapter 13

A Little Optimization

13.1 Image Reconstruction Through Optimiza-
tion

In our discussion of both transmission and emission tomography we saw
that discretization leads to systems of linear equations to be solved for the
vectorized image x. Typically, these systems are quite large, the measured
data is noisy, and there will be no non-negative x satisfying the system
exactly. In such cases, one can turn to optimization, and calculate a non-
negatively constrained least-squares solution, with or without a penalty
term.

In the stochastic approach to emission tomography, we maximize the
likelihood function with respect to the unknown image vector x. Here
again, optimization plays a role. It is reasonable, therefore, to take a brief
look at the theory of optimization, particularly constrained optimization.
In this chapter we discuss optimization with equality constraints and the
area known as convex programming (CP).

13.2 Eigenvalues and Eigenvectors Through
Optimization

Let B be any real I by J matrix. We want to find the maximum value of
the ratio ||Bx||/||x||, over all non-zero vectors x. If x̂ solves this problem,
so does cx̂ for every non-zero real number c; therefore, we may and do
constrain the vectors x to have ||x|| = 1.

We reformulate the problem as follows: maximize f(x) = ||Bx||2, sub-
ject to g(x) = ||x||2 = 1. Our approach will be to use the method of
Lagrange multipliers. Suppose that x̂ is a solution and S is the level sur-

95
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face of the function f(x) containing the vector x̂, that is,

S = {x|f(x) = f(x̂)}.

The gradient of f(x) at x̂ is a vector normal to S at x̂. Now let U be the
unit surface of all x with ||x|| = 1. We claim that S and U must be tangent
at x = x̂. If that is not the case, then U cuts through S, making it possible
to move from one side of S to the other side of S, while remaining on the
surface U . Therefore, we would be able to move along U to another vector
x with f(x) > f(x̂), which cannot happen.

Since the two surfaces are tangent at x = x̂, their gradients are parallel,
so that

∇f(x̂) = α∇g(x̂),

for some constant α. Equivalently,

∇f(x̂) + (−α)∇g(x̂) = 0.

The main idea of the Lagrange-multiplier method is to define the La-
grangian as

L(x;λ) = f(x) + λg(x),

so that, for some value of the parameter λ the gradient of L(x;λ) is zero;
here λ = −α works.

The Lagrangian for this problem is

L(x, λ) = f(x) + λg(x) = ||Bx||2 + λ||x||2.

Therefore, we have
2BT Bx̂ + 2λx̂ = 0,

or
BT Bx̂ = αx̂,

which tells us that x̂ is an eigenvector of the matrix BT B corresponding to
the eigenvalue α. Since the matrix BT B is symmetric, all its eigenvalues
are real numbers; in fact, BT B is non-negative definite, so all its eigenvalues
are non-negative.

Since
||Bx̂||2 = x̂T BT Bx̂ = αx̂T x̂ = α||x̂||2 = α,

we see that the largest value of ||Bx||2, subject to ||x|| = 1, must be α.
So α is the largest eigenvalue of the matrix BT B and x̂ is an associated
eigenvector.

The largest eigenvalue of BT B is also the largest eigenvalue of the ma-
trix BBT and is denoted ρ(BT B) = ρ(BBT ), and called the spectral radius
of BT B. We can therefore write

||Bz||2 ≤ ρ(BT B)||z||2, (13.1)

for all vectors z.
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13.3 Convex Sets and Convex Functions

A subset C of RJ is said to be convex if, for every collection c1, c2, ..., cN

of points in C and all positive constants a1, a2, ..., aN summing to one, the
point a1c1 + ... + aNcN is again in C. A function f : RJ → R is said to
be a convex function on the convex set C if, for all such combinations as
above, we have

f(a1c1 + ... + aNcN ) ≤ a1f(c1) + ... + aNf(cN ).

The function f(x) = ||Ax − b||2 is convex on C = RJ and the function
f(x) = KL(b, Ax) is convex on the set C of non-negative x in RJ .

13.4 The Convex Programming Problem

Let f and gi, i = 1, ..., I, be convex functions defined on a non-empty closed
convex subset C of RJ . The primal problem in convex programming (CP)
is the following:

minimize f(x), subject to gi(x) ≤ 0, for i = 1, ..., I. (P) (13.2)

For notational convenience, we define g(x) = (g1(x), ..., gI(x)). Then (P)
becomes

minimize f(x), subject to g(x) ≤ 0. (P) (13.3)

The feasible set for (P) is

F = {x|g(x) ≤ 0}. (13.4)

Definition 13.1 The problem (P) is said to be consistent if F is not
empty, and super-consistent if there is x in F with gi(x) < 0 for all
i = 1, ..., I. Such a point x is then called a Slater point.

Definition 13.2 The Lagrangian for the problem (P) is the function

L(x, λ) = f(x) +
I∑

i=1

λigi(x), (13.5)

defined for all x in C and λ ≥ 0.

13.5 A Simple Example

Let us minimize the function f : R2 → R given by

f(x, y) = (x + 1)2 + y2,
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subject to x ≥ 0 and y ≥ 0. To get this problem into the form of the CP
problem we introduce the functions

g1(x, y) = −x,

and
g2(x, y) = −y.

The partial derivative of f , with respect to x, is

∂f

∂x
(x, y) = 2(x + 1),

and the partial derivative of f , with respect to y, is

∂f

∂y
(x, y) = 2y.

If we simply set both partial derivatives to zero, we get x = −1 and y = 0,
which is, of course, the unconstrained minimizing point for f . But this
point does not satisfy our constraints.

If we graph the function, we see immediately that the constrained so-
lution is the origin, x = 0 and y = 0. At this point, we can move up
or down without decreasing f , and this is reflected in the fact that the
y-partial derivative at (0, 0) is zero. The x-partial derivative at (0, 0) is
not zero, however, since, if we move horizontally to the left, the function f
decreases. However, we are prevented from moving left by the constraint
that x ≥ 0, so it is not necessary that the x-partial derivative be zero at
the solution. We only need to know that if we move to the right, which
is permitted by the constraints, the function f increases; the fact that the
x-partial derivative is positive at (0, 0) guarantees this.

13.6 The Karush-Kuhn-Tucker Theorem

As we have just seen, at the solution of a CP problem it is not necessarily
the case that the partial derivatives all be zero. But what does have to be
the case?

The Karush-Kuhn Tucker Theorem gives necessary and sufficient con-
ditions for a vector x∗ to be a solution of a super-consistent problem (P).

Theorem 13.1 Let (P) be super-consistent. Then x∗ solves (P) if and
only if there is a vector λ∗ such that

• 1) λ∗ ≥ 0;

• 2) λ∗i gi(x∗) = 0, for all i = 1, ..., I;
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• 3) ∇f(x∗) +
∑I

i=1 λ∗i∇gi(x∗) = 0.

We saw in the first section that when we optimize subject to an equality
constraint the first condition of the KKT Theorem need not hold, that is,
the Lagrange multipliers need not be non-negative, and the second condi-
tion is automatically true, since the constraints are now gi(x) = 0 for all
i.

13.7 Back to our Example

Once again, the problem is to minimize f(x, y) = (x + 1)2 + y2, subject to
g1(x, y) = −x ≤ 0 and g2(x, y) = −y ≤ 0. Applying Condition 3 of the
KKT Theorem, we get

0 = 2(x + 1)− λ∗1,

and
0 = 2y − λ∗2.

From Condition 2 we know that either λ∗1 = 0, which can’t happen, since
then x = −1, or x = 0; therefore x = 0. Also from Condition 2 we know
that either λ∗2 = 0 or y = 0; therefore, y = 0. We have found the solution
to our constrained minimization problem.

13.8 Two More Examples

We illustrate the use of the gradient form of the KKT Theorem with two
more examples that appeared in the paper of Driscoll and Fox [96].

13.8.1 A Linear Programming Problem

Minimize f(x1, x2) = 3x1 +2x2, subject to the constraints 2x1 +x2 ≥ 100,
x1 + x2 ≥ 80, x1 ≥ 0 and x2 ≥ 0. We define

g1(x1, x2) = 100− 2x1 − x2 ≤ 0, (13.6)

g2(x1, x2) = 80− x1 − x2, (13.7)

g3(x1, x2) = −x1, (13.8)

and

g4(x1, x2) = −x2. (13.9)
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The Lagrangian is then

L(x, λ) = 3x1 + 2x2 + λ1(100− 2x1 − x2)

+λ2(80− x1 − x2)− λ3x1 − λ4x2.
(13.10)

From the KKT Theorem, we know that if there is a solution x∗, then there
is λ∗ ≥ 0 with

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗),

for all x. For notational simplicity, we write λ in place of λ∗.
Taking the partial derivatives of L(x, λ) with respect to the variables

x1 and x2, we get

3− 2λ1 − λ2 − λ3 = 0, (13.11)

and

2− λ1 − λ2 − λ4 = 0. (13.12)

The complementary slackness conditions are

λ1 = 0 , if 2x1 + x2 6= 100, (13.13)

λ2 = 0 , if x1 + x2 6= 80, (13.14)

λ3 = 0 , if x1 6= 0, (13.15)

and

λ4 = 0 , if x2 6= 0. (13.16)

A little thought reveals that precisely two of the four constraints must be
binding. Examining the six cases, we find that the only case satisfying all
the conditions of the KKT Theorem is λ3 = λ4 = 0. The minimum occurs
at x1 = 20 and x2 = 60 and the minimum value is f(20, 60) = 180.

13.8.2 A Nonlinear Convex Programming Problem

Minimize the function

f(x1, x2) = (x1 − 14)2 + (x2 − 11)2,

subject to

g1(x1, x2) = (x1 − 11)2 + (x2 − 13)2 − 49 ≤ 0,
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and
g2(x1, x2) = x1 + x2 − 19 ≤ 0.

The Lagrangian is then

L(x, λ) = (x1 − 14)2 + (x2 − 11)2+

λ1

(
(x1 − 11)2 + (x2 − 13)2 − 49

)
+ λ2

(
x1 + x2 − 19

)
. (13.17)

Again, we write λ in place of λ∗. Setting the partial derivatives, with
respect to x1 and x2, to zero, we get the KKT equations

2x1 − 28 + 2λ1x1 − 22λ1 + λ2 = 0, (13.18)

and

2x2 − 22 + 2λ1x2 − 26λ1 + λ2 = 0. (13.19)

The complementary slackness conditions are

λ1 = 0 , if (x1 − 11)2 + (x2 − 13)2 6= 49, (13.20)

and

λ2 = 0 , if x1 + x2 6= 19. (13.21)

There are four cases to consider. First, if neither constraint is binding, the
KKT equations have solution x1 = 14 and x2 = 11, which is not feasible. If
only the first constraint is binding, we obtain two solutions, neither feasible.
If only the second constraint is binding, we obtain x∗1 = 11, x∗2 = 8, and
λ2 = 6. This is the optimal solution. If both constraints are binding,
we obtain, with a bit of calculation, two solutions, neither feasible. The
minimum value is f(11, 8) = 18, and the sensitivity vector is λ∗ = (0, 6).

13.9 Non-Negatively Constrained Least-Squares

If there is no solution to a system of linear equations Ax = b, then we may
seek a least-squares “solution” , which is a minimizer of the function

f(x) =
I∑

i=1

(
(

J∑
m=1

Aimxm)− bi

)2

= ||Ax− b||2.

The partial derivative of f(x) with respect to the variable xj is

∂f

∂xj
(x) = 2

I∑
i=1

Aij

(
(

J∑
m=1

Aimxm)− bi

)
.
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Setting the gradient equal to zero, we find that to get a least-squares solu-
tion we must solve the system of equations

AT (Ax− b) = 0.

Now we consider what happens when the additional constraints xj ≥ 0 are
imposed.

This problem fits into the CP framework, when we define

gj(x) = −xj ,

for each j. Let x̂ be a least-squares solution. According to the KKT
Theorem, for those values of j for which x̂j is not zero we have λ∗j = 0 and
∂f
∂xj

(x̂) = 0. Therefore, if x̂j 6= 0,

0 =
I∑

i=1

Aij

(
(

J∑
m=1

Aimx̂m)− bi

)
.

Let Q be the matrix obtained from A by deleting rows j for which x̂j = 0.
Then we can write

QT (Ax̂− b) = 0.

If Q has at least I columns and has full rank, then QT is a one-to-one
linear transformation, which implies that Ax̂ = b. Therefore, when there
is no non-negative solution of Ax = b, Q must have fewer than I columns,
which means that x̂ has fewer than I non-zero entries. This is the proof of
Theorem 10.1.

This result has some practical implications in medical image reconstruc-
tion. In the hope of improving the resolution of the reconstructed image,
we may be tempted to take J , the number of pixels, larger than I, the
number of equations arising from photon counts or line integrals. Since
the vector b consists of measured data, it is noisy and there may well not
be a non-negative solution of Ax = b. As a result, the image obtained by
non-negatively constrained least-squares will have at most I − 1 non-zero
entries; many of the pixels will be zero and they will be scattered through-
out the image, making it unusable for diagnosis. The reconstructed images
resemble stars in a night sky, and, as a result, the theorem is sometimes
described as the “night sky” theorem.

This “night sky” phenomenon is not restricted to least squares. The
same thing happens with methods based on the Kullback-Leibler distance,
such as MART, EMML and SMART.

13.10 The EMML Algorithm

Maximizing the likelihood function in SPECT is equivalent to minimizing
the KL distance KL(b, Ax) over non-negative vectors x, where b is the
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vector of photon counts at the detectors and A the matrix of detection
probabilities. With f(x) = KL(b, Ax) and gj(x) = −xj , the problem
becomes a CP problem. We have

∂f

∂xj
(x) =

I∑
i=1

Aij

(
1− bi/(Ax)i

)
,

where

(Ax)i =
J∑

m=1

Aimxm.

Let x̂ be the solution. According to the KKT Theorem, one of two things
are possible: for each j either 1): x̂j = 0 or 2): both λ∗j = 0 and, conse-
quently,

∂f

∂xj
(x̂) = 0.

Therefore, for all values of the index j we have

0 = x̂j

I∑
i=1

Aij

(
1− bi/(Ax̂)i

)
,

or, equivalently,

x̂j = s−1
j

I∑
i=1

Aij

(
bi/(Ax̂)i

)
,

where sj =
∑I

i=1 Aij .
This suggests an iterative optimization algorithm whereby we insert the

current value of the vector, call it xk, into the right side of the last equation,
and call the resulting vector the next iterate, xk+1. For simplicity, we
assume sj = 1. Then the iteration becomes

xk+1
j = xk

j

( I∑
i=1

Aij(bi/(Axk)i)
)
. (13.22)

This is the EMML iterative algorithm.

13.11 The Simultaneous MART Algorithm

The MART algorithm has the following iterative step:

xk+1
j = xk

j

(
bi/(Axk)i

)Aij

,
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where i = k(mod I) + 1. The MART uses only one equation at each step.
The simultaneous MART (SMART) uses all the equations at each step.
Assuming once again that sj = 1 for all j, the iterative step of the SMART
is

xk+1
j = xk

j exp
( I∑

i=1

Aij log(bi/(Axk)i)
)
. (13.23)

The SMART is clearly closely related to the EMML algorithm, with subtle
differences, namely the exponentiation and the logarithm. As we shall
show in the next chapter, the SMART algorithm minimizes the function
KL(Ax, b), while the EMML minimizes KL(b, Ax).



Chapter 14

A Tale of Two Algorithms

14.1 Background

The expectation maximization maximum likelihood method (EMML) dis-
cussed in the previous chapter has been the subject of much attention in
the medical-imaging literature over the past decade. Statisticians like it
because it is based on the well-studied principle of likelihood maximization
for parameter estimation. Physicists like it because, unlike its competition,
filtered back-projection, it permits the inclusion of sophisticated models of
the physical situation. Mathematicians like it because it can be derived
from iterative optimization theory. Physicians like it because the images
are often better than those produced by other means. No method is per-
fect, however, and the EMML suffers from sensitivity to noise and slow
rate of convergence. Research is ongoing to find faster and less sensitive
versions of this algorithm.

Another class of iterative algorithms was introduced into medical imag-
ing by Gordon et al. in [121]. These include the algebraic reconstruction
technique (ART) and its multiplicative version, MART. These methods
were derived by viewing image reconstruction as solving systems of linear
equations, possibly subject to constraints, such as positivity. The simulta-
neous MART (SMART) [87, 192] is a variant of MART that uses all the
data at each step of the iteration.

Although the EMML and SMART algorithms have quite different his-
tories and are not typically considered together they are closely related
[43, 44]. In this chapter we examine these two algorithms in tandem, fol-
lowing [45]. Forging a link between the EMML and SMART led to a better
understanding of both of these algorithms and to new results. The proof of
convergence of the SMART in the inconsistent case [43] was based on the
analogous proof for the EMML [211], while discovery of the faster version
of the EMML, the rescaled block-iterative EMML (RBI-EMML) [46] came
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from studying the analogous block-iterative version of SMART [71]. The
proofs we give here are elementary and rely mainly on easily established
properties of the cross-entropy or Kullback-Leibler distance.

14.2 The Kullback-Leibler Distance

The The Kullback-Leibler distance KL(x, z) is defined for nonnegative vec-
tors x and z by Equations (10.19) and (10.20). Clearly, the KL distance
has the property KL(cx, cz) = cKL(x, z) for all positive scalars c.

Exercise 14.1 Let z+ =
∑J

j=1 zj > 0. Then

KL(x, z) = KL(x+, z+) + KL(x, (x+/z+)z). (14.1)

As we shall see, the KL distance mimics the ordinary Euclidean distance
in several ways that make it particularly useful in designing optimization
algorithms.

14.3 The Alternating Minimization Paradigm

Let P be an I by J matrix with entries Pij ≥ 0, such that, for each
j = 1, ..., J , we have sj =

∑I
i=1 Pij > 0. Let y = (y1, ..., yI)T with yi > 0

for each i. We shall assume throughout this chapter that sj = 1 for each j.
If this is not the case initially, we replace xj with xjsj and Pij with Pij/sj ;
the quantities (Px)i are unchanged.

For each nonnegative vector x for which (Px)i =
∑J

j=1 Pijxj > 0, let
r(x) = {r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjPij
yi

(Px)i

and
q(x)ij = xjPij .

The KL distances

KL(r(x), q(z)) =
I∑

i=1

J∑
j=i

KL(r(x)ij , q(z)ij)

and

KL(q(x), r(z)) =
I∑

i=1

J∑
j=1

KL(q(x)ij , r(z)ij)

will play important roles in the discussion that follows. Note that if there
is nonnegative x with r(x) = q(x) then y = Px.
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14.3.1 Some Pythagorean Identities Involving the KL
Distance

The iterative algorithms we discuss in this chapter are derived using the
principle of alternating minimization, according to which the distances
KL(r(x), q(z)) and KL(q(x), r(z)) are minimized, first with respect to the
variable x and then with respect to the variable z. Although the KL dis-
tance is not Euclidean, and, in particular, not even symmetric, there are
analogues of Pythagoras’ theorem that play important roles in the conver-
gence proofs.

Exercise 14.2 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) + KL(r(x), r(z)); (14.2)

KL(r(x), q(z)) = KL(r(x), q(x′)) + KL(x′, z), (14.3)

for

x′j = xj

I∑
i=1

Pij
yi

(Px)i
; (14.4)

KL(q(x), r(z)) = KL(q(x), r(x)) + KL(x, z)−KL(Px, Pz); (14.5)

KL(q(x), r(z)) = KL(q(z′′), r(z)) + KL(x, z′′), (14.6)

for

z′′j = zj exp(
I∑

i=1

Pij log
yi

(Pz)i
). (14.7)

Note that it follows from Equation (14.1) that KL(x, z)−KL(Px, Pz) ≥ 0.

14.3.2 The Two Algorithms

The algorithms we shall consider are the expectation maximization maxi-
mum likelihood method (EMML) and the simultaneous multiplicative alge-
braic reconstruction technique (SMART). When y = Px has nonnegative
solutions, both algorithms produce such a solution. In general, the EMML
gives a nonnegative minimizer of KL(y, Px), while the SMART minimizes
KL(Px,y) over nonnegative x.
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For both algorithms we begin with an arbitrary positive vector x0. The
iterative step for the EMML method is

xk+1
j = (xk)′j = xk

j

I∑
i=1

Pij
yi

(Pxk)i
. (14.8)

The iterative step for the SMART is

xm+1
j = (xm)′′j = xm

j exp
( I∑

i=1

Pij log
yi

(Pxm)i

)
. (14.9)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

Exercise 14.3 Show that, for {xk} given by Equation (14.8), {KL(y, Pxk)}
is decreasing and {KL(xk+1,xk)} → 0. Show that, for {xm} given by
Equation (14.9), {KL(Pxm,y)} is decreasing and {KL(xm,xm+1)} → 0.

Hint: Use KL(r(x), q(x)) = KL(y, Px), KL(q(x), r(x)) = KL(Px,y),
and the Pythagorean identities.

Exercise 14.4 Show that the EMML sequence {xk} is bounded by showing

J∑
j=1

xk
j =

I∑
i=1

yi.

Show that the SMART sequence {xm} is bounded by showing that

J∑
j=1

xm
j ≤

I∑
i=1

yi.

Exercise 14.5 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML
sequence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}.

Hint: Use the facts that {KL(xk+1,xk)} → 0 and {KL(xm,xm+1)} → 0.
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Exercise 14.6 Let x̂ and x̃ minimize KL(y, Px) and KL(Px,y), respec-
tively, over all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃.

Hint: Apply Pythagorean identities to KL(r(x̂), q(x̂)) and KL(q(x̃), r(x̃)).
Note that, because of convexity properties of the KL distance, even if

the minimizers x̂ and x̃ are not unique, the vectors P x̂ and P x̃ are unique.

Exercise 14.7 For the EMML sequence {xk} with cluster point x∗ and x̂
as defined previously, we have the double inequality

KL(x̂,xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂,xk+1), (14.10)

from which we conclude that the sequence {KL(x̂,xk)} is decreasing and
KL(x̂,x∗) < +∞.

Hint: For the first inequality calculate KL(r(x̂), q(xk)) in two ways. For
the second one, use (x)′j =

∑I
i=1 r(x)ij and Exercise 14.1.

Exercise 14.8 Show that, for the SMART sequence {xm} with cluster
point x∗ and x̃ as defined previously, we have

KL(x̃,xm)−KL(x̃,xm+1) = KL(Pxm+1,y)−KL(P x̃,y)+

KL(P x̃, Pxm) + KL(xm+1,xm)−KL(Pxm+1, Pxm), (14.11)

and so KL(P x̃, Px∗) = 0, the sequence {KL(x̃,xm)} is decreasing and
KL(x̃,x∗) < +∞.

Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean identities.

Exercise 14.9 For x∗ a cluster point of the EMML sequence {xk} we have
KL(y, Px∗) = KL(y, P x̂). Therefore, x∗ is a nonnegative minimizer of
KL(y, Px). Consequently, the sequence {KL(x∗,xk)} converges to zero,
and so {xk} → x∗.

Hint: Use the double inequality of Equation (14.10) and KL(r(x̂), q(x∗)).
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Exercise 14.10 For x∗ a cluster point of the SMART sequence {xm} we
have KL(Px∗,y) = KL(P x̃,y). Therefore, x∗ is a nonnegative mini-
mizer of KL(Px,y). Consequently, the sequence {KL(x∗,xm)} converges
to zero, and so {xm} → x∗. Moreover,

KL(x̃,x0) ≥ KL(x∗,x0)

for all x̃ as before.

Hints: Use Exercise 14.8. For the final assertion use the fact that the
difference KL(x̃,xm) − KL(x̃,xm+1) is independent of the choice of x̃,
since it depends only on Px∗ = P x̃. Now sum over the index m.

Both the EMML and the SMART algorithms are slow to converge. For
that reason attention has shifted, in recent years, to block-iterative versions
of these algorithms. We take up that topic in a later chapter.



Chapter 15

Block-Iterative Methods

Image reconstruction problems in tomography are often formulated as sta-
tistical likelihood maximization problems in which the pixel values of the
desired image play the role of parameters. Iterative algorithms based on
cross-entropy minimization, such as the expectation maximization maxi-
mum likelihood (EMML) method and the simultaneous multiplicative alge-
braic reconstruction technique (SMART) can be used to solve such prob-
lems. Because the EMML and SMART are slow to converge for large
amounts of data typical in imaging problems, acceleration of the algo-
rithms using blocks of data or ordered subsets has become popular. There
are a number of different ways to formulate these block-iterative versions
of EMML and SMART, involving the choice of certain normalization and
regularization parameters. These methods are not faster merely because
they are block-iterative; the correct choice of the parameters is crucial. The
purpose of this chapter is to discuss these different formulations in detail
sufficient to reveal the precise roles played by the parameters and to guide
the user in choosing them.

It is not obvious, nor, in fact, is it even true, that using block-iterative
methods will accelerate convergence. To better understand the connection
between the use of blocks and acceleration, we begin with a discussion of
the ART algorithm and its simultaneous versions, the Landweber algorithm
and more particularly, Cimmino’s method.

15.1 The ART and its Simultaneous Versions

In this section we let Ax = b denote any real system of I linear equations in
J unknowns. For each i = 1, ..., I denote by Hi the hyperplane associated
with the ith equation, that is,

Hi = {x|(Ax)i = bi},
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and Pi the orthogonal projection operator onto Hi, that is, for every vector
z, Piz is the vector in Hi closest to z. We can write Piz explicitly; we have

Piz = z + (bi − (Az)i)ai,

where ai is the ith column of the matrix AT , which we shall assume has
been normalized to have ||ai|| = 1.

15.1.1 The ART

For k = 0, 1, ... and i = i(k) = k(mod I) + 1, the ART iterative step is

xk+1 = Pix
k = xk + (bi − (Axk)i)ai.

The ART operates by projecting the current vector onto the next hyper-
plane and cycling through the hyperplanes repeatedly. The ART uses only
one equation at each step of the iteration.

Suppose that x̂ is a solution of Ax = b, so that Ax̂ = b. Each step of
the ART gets us closer to x̂, as the following calculations show.

We begin by calculating ||x̂− xk+1||2. We use

||x̂− xk+1||2 = 〈x̂− xk+1, x̂− xk+1〉

and the definition of xk+1 to get

||x̂−xk+1||2 = ||x̂−xk||2−2〈x̂−xk, (bi−(Axk)i)ai〉+〈(bi−(Axk)i)ai, (bi−(Axk)i)ai〉

= ||x̂− xk||2 − 2(bi − (Axk)i)〈x̂− xk, ai〉+ (bi − (Axk)i)2

= ||x̂−xk||2−2(bi− (Axk)i)2 +(bi− (Axk)i)2 = ||x̂−xk||2− (bi− (Axk)i)2.

Therefore, we find that

||x̂− xk||2 − ||x̂− xk+1||2 = (bi − (Axk)i)2. (15.1)

Consequently, we know that

||x̂− xk||2 ≥ ||x̂− xk+1||2.

It will help us later to know that

||x̂− x0||2 − ||x̂− xI ||2 =
I∑

i=1

(bi − (Axi−1)i)2. (15.2)

This measures how much closer to x̂ we are after we have used all the
equations one time.

There is one other consideration concerning the ART. From Equation
(15.2) we see that it is helpful to have the quantities (bi− (Axi−1)i)2 large;
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if the equations are ordered in such a way that these quantities are not
large, then the ART will not converge as quickly as it may otherwise do.
This can easily happen if the equations correspond to discrete line integrals
through the object and the lines are ordered so that each line is close to
the previous line. Ordering the lines randomly, or in any way that avoids
unfortunate ordering, greatly improves convergence speed [132].

Relaxation also helps to speed up the convergence of ART [195]. A
relaxed version of ART has the following iterative step:

xk+1 = xk + β(bi − (Axk)i)ai,

where 0 < β ≤ 1.

15.1.2 The Landweber Algorithm and Cimmino’s Method

As we just saw, the ART uses one equation at a time and, at each step
of the iteration, projects orthogonally onto the hyperplane associated with
the next equation. A simultaneous version of ART uses all the equations at
each step, projecting orthogonally onto all the hyperplanes and averaging
the result. This is Cimmino’s method, and the iterative step is

xk+1 = xk +
1
I

I∑
i=1

(bi − (Axk)i)ai = xk +
1
I
AT (b−Axk),

where, as previously, we assume that ||ai|| = 1 for all i. A more general
iterative algorithm is the Landweber algorithm, with the iterative step

xk+1 = xk + γAT (b−Axk);

for convergence of this algorithm we need 0 ≤ γ ≤ 2/ρ(AT A), where
ρ(AT A) denotes the largest eigenvalue of the matrix AT A. Since ||ai|| = 1
for all i, it follows that the trace of the matrix AAT is I, which is also
the trace of the matrix AT A; since the trace of AT A is also the sum of
the eigenvalues of AT A, it follows that the choice of γ = 1

I in Cimmino’s
method is acceptable.

Now let us calculate how much closer to x̂ we get as we take one step
of the Landweber iteration. We have

||x̂−xk+1||2 = ||x̂−xk||2−2γ〈x̂−xk, AT (b−Axk)〉+γ2〈AT (b−Axk), AT (b−Axk)〉.

From the inequality (13.1) in our earlier discussion of eigenvectors and
eigenvalues in optimization, we know that, for any matrix B, we have

||Bx||2 ≤ ρ(BT B)||x||2.
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Therefore,

〈AT (b−Axk), AT (b−Axk)〉 = ||AT (b−Axk)||2 ≤ ρ(AT A)||b−Axk||2.

Using

〈x̂−xk, AT (b−Axk)〉 = 〈A(x̂−xk), b−Axk〉 = 〈b−Axk, b−Axk〉 = ||b−Axk||2,

we find that

||x̂− xk||2 − ||x̂− xk+1||2 ≥ (2γ − γ2ρ(AT A))||b−Axk||2.

For 0 < γ < 2
ρ(AT A)

the sequence {||x̂ − xk||2} is decreasing. If we take
γ = 1

ρ(AT A)
we have

||x̂− xk||2 − ||x̂− xk+1||2 ≥ 1
ρ(AT A)

||b−Axk||2. (15.3)

In the case of Cimmino’s method, we have γ = 1
I , so that

||x̂− xk||2 − ||x̂− xk+1||2 ≥ 1
I
||b−Axk||2. (15.4)

Using Equation (15.2) and the inequality in (15.4), we can make a rough
comparison between ART and Cimmino’s method, with respect to how
much closer to x̂ we get as we pass through all the equations one time. The
two quantities

I∑
i=1

(bi − (Axi−1)i)2

from Equation (15.2) and
||b−Axk||2

from the inequality in (15.4) are comparable, in that both sums are over
i = 1, ..., I, even though what is being summed is not the same in both
cases. In image reconstruction I is quite large and the most important
thing in such comparisons is the range of the summation index, so long
as what is being summed is roughly comparable. However, notice that in
the inequality in (15.4) the right side also has a factor of 1

I . This tells
us that, roughly speaking, one pass through all the equations using ART
improves the squared distance to x̂ by a factor of I, compared to using all
the equations in one step of Cimmino’s method, even though the amount
of calculation is about the same.

Because the Landweber algorithm permits other choices for the param-
eter γ, there is hope that we may obtain better results with γ 6= 1

I . The
inequality

0 < γ <
2

ρ(AT A)



15.1. THE ART AND ITS SIMULTANEOUS VERSIONS 115

suggests using γ = 1
ρ(AT A)

, which means that it would help to have a
decent estimate of ρ(AT A); the estimate used in Cimmino’s method is
ρ(AT A) = I, which is usually much too large. As a result, the choice of
γ = 1

I means that we are taking unnecessarily small steps at each iteration.
A smaller upper bound for ρ(AT A) would allow us to take bigger steps each
time, and therefore, getting close to x̂ sooner.

In many image processing applications, such as tomography, the matrix
A is sparse, which means that most of the entries of A are zero. In the
tomography problems for example, the number of non-zero entries of A is
usually on the order of

√
J ; since I and J are usually roughly compara-

ble, this means that A has about
√

I non-zero entries. In the appendix
on matrix theory we obtain an upper bound estimate for ρ(AT A) that is
particularly useful when A is sparse. Suppose that all the rows of A have
length one. Let s be the largest number of non-zero entries in any column
of A. Then ρ(AT A) does not exceed s. Notice that this estimate does not
require us to calculate the matrix AT A and makes use of the sparse nature
of A; the matrix AT A need not be sparse, and would be time-consuming
to calculate in practice, anyway.

If, for the sparse cases, we take ρ(AT A) to be approximately
√

I, and
choose γ = 1√

I
, we find that we have replaced the factor 1

I in the inequality
(15.4) with the much larger factor 1√

I
, which then improves the rate of

convergence. However, the ART is still faster by, roughly, a factor of
√

I.

15.1.3 Block-Iterative ART

The ART uses only one equation at a time, while the Landweber algorithm
uses all the equations at each step of the iteration. It is sometimes con-
venient to take a middle course, and use some, but not all, equations at
each step of the iteration. The collection of equations to be used together
constitute a block. Such methods are called block-iterative or ordered-subset
methods. Generally speaking, when unfortunate ordering of the blocks and
selection of equations within each block are avoided, and the parameters
well chosen, these block-iterative methods converge faster than the Cim-
mino algorithm by roughly a factor of the number of blocks.

We turn now to the iterative algorithms that are based on the KL
distance. For these algorithms as well, we find that using block-iterative
methods and choosing the parameters carefully, we can improve conver-
gence by roughly the number of blocks, with respect to the simultaneous
EMML and SMART methods.
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15.2 Overview of KL-based methods

The algorithms we discuss here have interesting histories, which we sketch
in this section.

15.2.1 The SMART and its variants

Like the ART, the MART has a simultaneous version, called the SMART.
Like MART, SMART applies only to nonnegative systems of equations
Ax = b. Unlike MART, SMART is a simultaneous algorithm that uses
all equations in each step of the iteration. The SMART was discovered
in 1972, independently, by Darroch and Ratcliff, working in statistics, [87]
and by Schmidlin [192] in medical imaging; neither work makes reference
to MART. Darroch and Ratcliff do consider block-iterative versions of their
algorithm, in which only some of the equations are used at each step, but
their convergence proof involves unnecessary restrictions on the system
matrix. Censor and Segman [71] seem to be the first to present the SMART
and its block-iterative variants explicitly as generalizations of MART.

15.2.2 The EMML and its variants

The expectation maximization maximum likelihood (EMML) method turns
out to be closely related to the SMART, although it has quite a different
history. The EMML algorithm we discuss here is actually a special case
of a more general approach to likelihood maximization, usually called the
EM algorithm [89]; the book by McLachnan and Krishnan [163] is a good
source for the history of this more general algorithm.

It was noticed by Rockmore and Macovski [189] that the image recon-
struction problems posed by medical tomography could be formulated as
statistical parameter estimation problems. Following up on this idea, Shepp
and Vardi [194] suggested the use of the EM algorithm for solving the re-
construction problem in emission tomography. In [151], Lange and Carson
presented an EM-type iterative method for transmission tomographic im-
age reconstruction, and pointed out a gap in the convergence proof given in
[194] for the emission case. In [211], Vardi, Shepp and Kaufman repaired
the earlier proof, relying on techniques due to Csiszár and Tusnády [85].
In [152] Lange, Bahn and Little improved the transmission and emission
algorithms, by including regularization to reduce the effects of noise. The
question of uniqueness of the solution in the inconsistent case was resolved
in [43].

The MART and SMART were initially designed to apply to consistent
systems of equations. Darroch and Ratcliff did not consider what happens
in the inconsistent case, in which the system of equations has no non-
negative solutions; this issue was resolved in [43], where it was shown that
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the SMART converges to a non-negative minimizer of the Kullback-Leibler
distance KL(Ax, b). The EMML, as a statistical parameter estimation
technique, was not originally thought to be connected to any system of lin-
ear equations. In [43] it was shown that the EMML leads to a non-negative
minimizer of the Kullback-Leibler distance KL(b, Ax), thereby exhibiting
a close connection between the SMART and the EMML methods. Conse-
quently, when the non-negative system of linear equations Ax = b has a
non-negative solution, the EMML converges to such a solution.

15.2.3 Block-iterative Versions of SMART and EMML

As we have seen, Darroch and Ratcliff included what are now called block-
iterative versions of SMART in their original paper [87]. Censor and Seg-
man [71] viewed SMART and its block-iterative versions as natural exten-
sion of the MART. Consequently, block-iterative variants of SMART have
been around for some time. The story with the EMML is quite different.

The paper of Holte, Schmidlin, et al. [135] compares the performance of
Schmidlin’s method of [192] with the EMML algorithm. Almost as an aside,
they notice the accelerating effect of what they call projection interleaving,
that is, the use of blocks. This paper contains no explicit formulas, however,
and presents no theory, so one can only make educated guesses as to the
precise iterative methods employed. Somewhat later, Hudson, Hutton and
Larkin [136, 137] observed that the EMML can be significantly accelerated
if, at each step, one employs only some of the data. They referred to this
approach as the ordered subset EM method (OSEM). They gave a proof
of convergence of the OSEM, for the consistent case. The proof relied on
a fairly restrictive relationship between the matrix A and the choice of
blocks, called subset balance. In [46] a revised version of the OSEM, called
the rescaled block-iterative EMML (RBI-EMML), was shown to converge,
in the consistent case, regardless of the choice of blocks.

15.2.4 Basic assumptions

Methods based on cross-entropy, such as the MART, SMART, EMML and
all block-iterative versions of these algorithms apply to nonnegative sys-
tems that we denote by Ax = b, where b is a vector of positive entries, A is
a matrix with entries Aij ≥ 0 such that for each j the sum sj =

∑I
i=1 Aij

is positive and we seek a solution x with nonnegative entries. If no non-
negative x satisfies b = Ax we say the system is inconsistent.

Simultaneous iterative algorithms employ all of the equations at each
step of the iteration; block-iterative methods do not. For the latter methods
we assume that the index set {i = 1, ..., I} is the (not necessarily disjoint)
union of the N sets or blocks Bn, n = 1, ..., N . We shall require that
snj =

∑
i∈Bn

Aij > 0 for each n and each j. Block-iterative methods like
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ART and MART for which each block consists of precisely one element are
called row-action or sequential methods. We begin our discussion with the
SMART and the EMML method.

15.3 The SMART and the EMML method

Both the SMART and the EMML method provide a solution of b = Ax
when such exist and (distinct) approximate solutions in the inconsistent
case. The SMART algorithm is the following:

Algorithm 15.1 (SMART) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xk

j exp
(
s−1

j

I∑
i=1

Aij log
bi

(Axk)i

)
. (15.5)

The exponential and logarithm in the SMART iterative step are compu-
tationally expensive. The EMML method is similar to the SMART, but
somewhat less costly to compute.

Algorithm 15.2 (EMML) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xk

j s−1
j

I∑
i=1

Aij
bi

(Axk)i
. (15.6)

The main results concerning the SMART are given by the following theo-
rem.

Theorem 15.1 In the consistent case the SMART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Ax, y) for which

∑J
j=1 sjKL(xj , x

0
j ) is

minimized; if A and every matrix derived from A by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Ax, y) and
at most I − 1 of its entries are nonzero.

For the EMML method the main results are the following.

Theorem 15.2 In the consistent case the EMML algorithm converges to
nonnegative solution of b = Ax. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(y, Ax); if A and every matrix
derived from A by deleting columns has full rank then there is a unique
nonnegative minimizer of KL(y, Ax) and at most I − 1 of its entries are
nonzero.
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In the consistent case there may be multiple nonnegative solutions and the
one obtained by the EMML algorithm will depend on the starting vector
x0; how it depends on x0 is an open question.

These theorems are special cases of more general results on block-
iterative methods that we shall prove later in this chapter.

Both the EMML and SMART are related to likelihood maximization.
Minimizing the function KL(y, Ax) is equivalent to maximizing the like-
lihood when the bi are taken to be measurements of independent Poisson
random variables having means (Ax)i. The entries of x are the parameters
to be determined. This situation arises in emission tomography. So the
EMML is a likelihood maximizer, as its name suggests.

The connection between SMART and likelihood maximization is a bit
more convoluted. Suppose that sj = 1 for each j. The solution of b = Ax
for which KL(x, x0) is minimized necessarily has the form

xj = x0
j exp

( I∑
i=1

Aijλi

)
(15.7)

for some vector λ with entries λi. This log linear form also arises in trans-
mission tomography, where it is natural to assume that sj = 1 for each j
and λi ≤ 0 for each i. We have the following lemma that helps to connect
the SMART algorithm with the transmission tomography problem:

Lemma 15.1 Minimizing KL(d, x) over x as in Equation (15.7) is equiv-
alent to minimizing KL(x, x0), subject to Ax = Ad.

The solution to the latter problem can be obtained using the SMART.
With x+ =

∑J
j=1 xj the vector A with entries pj = xj/x+ is a probabil-

ity vector. Let d = (d1, ..., dJ)T be a vector whose entries are nonnegative
integers, with K =

∑J
j=1 dj . Suppose that, for each j, pj is the probability

of index j and dj is the number of times index j was chosen in K trials.
The likelihood function of the parameters λi is

L(λ) =
J∏

j=1

p
dj

j (15.8)

so that the log-likelihood function is

LL(λ) =
J∑

j=1

dj log pj . (15.9)

Since A is a probability vector, maximizing L(λ) is equivalent to minimizing
KL(d, p) with respect to λ, which, according to the lemma above, can
be solved using SMART. In fact, since all of the block-iterative versions
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of SMART have the same limit whenever they have the same starting
vector, any of these methods can be used to solve this maximum likelihood
problem. In the case of transmission tomography the λi must be non-
positive, so if SMART is to be used, some modification is needed to obtain
such a solution.

Those who have used the SMART or the EMML on sizable problems
have certainly noticed that they are both slow to converge. An important
issue, therefore, is how to accelerate convergence. One popular method is
through the use of block-iterative (or ordered subset) methods.

15.4 Ordered-Subset Versions

To illustrate block-iterative methods and to motivate our subsequent dis-
cussion we consider now the ordered subset EM algorithm (OSEM), which is
a popular technique in some areas of medical imaging, as well as an anal-
ogous version of SMART, which we shall call here the OSSMART. The
OSEM is now used quite frequently in tomographic image reconstruction,
where it is acknowledged to produce usable images significantly faster then
EMML. From a theoretical perspective both OSEM and OSSMART are
incorrect. How to correct them is the subject of much that follows here.

The idea behind the OSEM (OSSMART) is simple: the iteration looks
very much like the EMML (SMART), but at each step of the iteration
the summations are taken only over the current block. The blocks are
processed cyclically.

The OSEM iteration is the following: for k = 0, 1, ... and n = k(modN)+
1, having found xk let

OSEM:

xk+1
j = xk

j s−1
nj

∑
i∈Bn

Aij
bi

(Axk)i
. (15.10)

The OSSMART has the following iterative step:

OSSMART

xk+1
j = xk

j exp
(
s−1

nj

∑
i∈Bn

Aij log
bi

(Axk)i

)
. (15.11)

In general we do not expect block-iterative algorithms to converge in the
inconsistent case, but to exhibit subsequential convergence to a limit cycle,
as we shall discuss later. We do, however, want them to converge to a
solution in the consistent case; the OSEM and OSSMART fail to do this
except when the matrix A and the set of blocks {Bn, n = 1, ..., N} satisfy
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the condition known as subset balance, which means that the sums snj

depend only on j and not on n. While this may be approximately valid in
some special cases, it is overly restrictive, eliminating, for example, almost
every set of blocks whose cardinalities are not all the same. When the
OSEM does well in practice in medical imaging it is probably because the
N is not large and only a few iterations are carried out.

The experience with the OSEM was encouraging, however, and strongly
suggested that an equally fast, but mathematically correct, block-iterative
version of EMML was to be had; this is the rescaled block-iterative EMML
(RBI-EMML). Both RBI-EMML and an analogous corrected version of
OSSMART, the RBI-SMART, provide fast convergence to a solution in
the consistent case, for any choice of blocks.

15.5 The RBI-SMART

We turn next to the block-iterative versions of the SMART, which we shall
denote BI-SMART. These methods were known prior to the discovery of
RBI-EMML and played an important role in that discovery; the importance
of rescaling for acceleration was apparently not appreciated, however.

We start by considering a formulation of BI-SMART that is general
enough to include all of the variants we wish to discuss. As we shall see,
this formulation is too general and will need to be restricted in certain ways
to obtain convergence. Let the iterative step be

xk+1
j = xk

j exp
(
βnj

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (15.12)

for j = 1, 2, ..., J , n = k(modN) + 1 and βnj and αni positive. As we
shall see, our convergence proof will require that βnj be separable, that is,
bnj = γjδn for each j and n and that

γjδnσnj ≤ 1, (15.13)

for σnj =
∑

i∈Bn
αniAij . With these conditions satisfied we have the fol-

lowing result.

Theorem 15.3 Let x be a nonnegative solution of b = Ax. For any posi-
tive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the sequence
{xk} given by Equation (15.12) converges to the unique solution of b = Ax

for which the weighted cross-entropy
∑J

j=1 γ−1
j KL(xj , x

0
j ) is minimized.

The inequality in the following lemma is the basis for the convergence proof.
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Lemma 15.2 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (15.12) we have

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) ≥ (15.14)

δn

∑
i∈Bn

αniKL(bi, (Axk)i). (15.15)

Proof: First note that

xk+1
j = xk

j exp
(
γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (15.16)

and

exp
(
γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
(15.17)

can be written as

exp
(
(1− γjδnσnj) log 1 + γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (15.18)

which, by the convexity of the exponential function, is not greater than

(1− γjδnσnj) + γjδn

∑
i∈Bn

αniAij
bi

(Axk)i
. (15.19)

It follows that

J∑
j=1

γ−1
j (xk

j − xk+1
j ) ≥ δn

∑
i∈Bn

αni((Axk)i − bi). (15.20)

We also have

log(xk+1
j /xk

j ) = γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
. (15.21)

Therefore

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) (15.22)
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=
J∑

j=1

γ−1
j (xj log(xk+1

j /xk
j ) + xk

j − xk+1
j ) (15.23)

=
J∑

j=1

xjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xk

j − xk+1
j ) (15.24)

= δn

∑
i∈Bn

αni(
J∑

j=1

xjAij) log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xk

j − xk+1
j ) (15.25)

≥ δn

( ∑
i∈Bn

αni(bi log
bi

(Axk)i
+ (Axk)i − bi)

)
= δn

∑
i∈Bn

αniKL(bi, (Axk)i).

(15.26)

This completes the proof of the lemma.
From the inequality (15.15) we conclude that the sequence

{
J∑

j=1

γ−1
j KL(xj , x

k
j )} (15.27)

is decreasing, that {xk} is therefore bounded and the sequence

{
∑

i∈Bn

αniKL(bi, (Axk)i)} (15.28)

is converging to zero. Let x∗ be any cluster point of the sequence {xk}.
Then it is not difficult to show that b = Ax∗. Replacing x with x∗ we
have that the sequence {

∑J
j=1 γ−1

j KL(x∗j , x
k
j )} is decreasing; since a sub-

sequence converges to zero, so does the whole sequence. Therefore x∗ is
the limit of the sequence {xk}. This proves that the algorithm produces
a solution of b = Ax. To conclude further that the solution is the one
for which the quantity

∑J
j=1 γ−1

j KL(xj , x
0
j ) is minimized requires further

work to replace the inequality (15.15) with an equation in which the right
side is independent of the particular solution x chosen; see the final section
of this chapter for the details.

We see from the theorem that how we select the γj is determined by
how we wish to weight the terms in the sum

∑J
j=1 γ−1

j KL(xj , x
0
j ). In

some cases we want to minimize the cross-entropy KL(x, x0) subject to
b = Ax; in this case we would select γj = 1. In other cases we may
have some prior knowledge as to the relative sizes of the xj and wish to
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emphasize the smaller values more; then we may choose γj proportional to
our prior estimate of the size of xj . Having selected the γj , we see from
the inequality (15.15) that convergence will be accelerated if we select δn

as large as permitted by the condition γjδnσnj ≤ 1. This suggests that we
take

δn = 1/ min{σnjγj , j = 1, ..., J}. (15.29)

The rescaled BI-SMART (RBI-SMART) as presented in [45, 47, 48] uses
this choice, but with αni = 1 for each n and i. For each n = 1, ..., N let

mn = max{snjs
−1
j |j = 1, ..., J}. (15.30)

The original RBI-SMART is as follows:

Algorithm 15.3 (RBI-SMART) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = xk

j exp
(
m−1

n s−1
j

∑
i∈Bn

Aij log
( bi

(Axk)i

))
. (15.31)

Notice that Equation (15.31) can be written as

log xk+1
j = (1−m−1

n s−1
j snj) log xk

j + m−1
n s−1

j

∑
i∈Bn

Aij log
(
xk

j

bi

(Axk)i

)
,

(15.32)

from which we see that xk+1
j is a weighted geometric mean of xk

j and the
terms

(Qix
k)j = xk

j

( bi

(Axk)i

)
,

for i ∈ Bn. This will be helpful in deriving block-iterative versions of the
EMML algorithm. The vectors Qi(xk) are sometimes called weighted KL
projections.

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSSMART does not generally satisfy the re-
quirements, since in (15.11) the choices are αni = 1 and βnj = s−1

nj ; the
only times this is acceptable is if the snj are separable; that is, snj = rjtn
for some rj and tn. This is slightly more general than the condition of
subset balance and is sufficient for convergence of OSSMART.

In [71] Censor and Segman make the choices βnj = 1 and αni > 0 such
that σnj ≤ 1 for all n and j. In those cases in which σnj is much less than
1 for each n and j their iterative scheme is probably excessively relaxed; it
is hard to see how one might improve the rate of convergence by altering
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only the weights αni, however. Limiting the choice to γjδn = 1 reduces our
ability to accelerate this algorithm.

The original SMART in Equation (15.5) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (15.13) is satisfied; in fact it becomes
an equality now.

For the row-action version of SMART, the multiplicative ART (MART),
due to Gordon, Bender and Herman [121], we take N = I and Bn = Bi =
{i} for i = 1, ..., I. The MART has the iterative

xk+1
j = xk

j

( bi

(Axk)i

)m−1
i

Aij

, (15.33)

for j = 1, 2, ..., J , i = k(mod I) + 1 and mi > 0 chosen so that m−1
i Aij ≤ 1

for all j. The smaller mi is the faster the convergence, so a good choice
is mi = max{Aij |, j = 1, ..., J}. Although this particular choice for mi is
not explicitly mentioned in the various discussions of MART I have seen,
it was used in implementations of MART from the beginning [131].

Darroch and Ratcliff included a discussion of a block-iterative version of
SMART in their 1972 paper [87]. Close inspection of their version reveals
that they require that snj =

∑
i∈Bn

Aij = 1 for all j. Since this is unlikely
to be the case initially, we might try to rescale the equations or unknowns
to obtain this condition. However, unless snj =

∑
i∈Bn

Aij depends only
on j and not on n, which is the subset balance property used in [137], we
cannot redefine the unknowns in a way that is independent of n.

The MART fails to converge in the inconsistent case. What is always
observed, but for which no proof exists, is that, for each fixed i = 1, 2, ..., I,
as m → +∞, the MART subsequences {xmI+i} converge to separate limit
vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to a
single vector whenever there is a nonnegative solution of b = Ax. The
greater the minimum value of KL(Ax, y) the more distinct from one an-
other the vectors of the limit cycle are. An analogous result is observed for
BI-SMART.

15.6 The RBI-EMML

As we did with SMART, we consider now a formulation of BI-EMML that
is general enough to include all of the variants we wish to discuss. Once
again, the formulation is too general and will need to be restricted in certain
ways to obtain convergence. Let the iterative step be

xk+1
j = xk

j (1− βnjσnj) + xk
j βnj

∑
i∈Bn

αniAij
bi

(Axk)i
, (15.34)

for j = 1, 2, ..., J , n = k(modN)+1 and βnj and αni positive. As in the case
of BI-SMART, our convergence proof will require that βnj be separable,
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that is,

bnj = γjδn (15.35)

for each j and n and that the inequality (15.13) hold. With these conditions
satisfied we have the following result.

Theorem 15.4 Let x be a nonnegative solution of b = Ax. For any posi-
tive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the sequence
{xk} given by Equation (15.12) converges to a nonnegative solution of
b = Ax.

When there are multiple nonnegative solutions of b = Ax the solution
obtained by BI-EMML will depend on the starting point x0, but precisely
how it depends on x0 is an open question. Also, in contrast to the case of
BI-SMART, the solution can depend on the particular choice of the blocks.
The inequality in the following lemma is the basis for the convergence proof.

Lemma 15.3 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (15.34) we have

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) ≥ (15.36)

δn

∑
i∈Bn

αniKL(bi, (Axk)i). (15.37)

Proof: From the iterative step

xk+1
j = xk

j (1− γjδnσnj) + xk
j γjδn

∑
i∈Bn

αniAij
bi

(Axk)i
(15.38)

we have

log(xk+1
j /xk

j ) = log
(
(1− γjδnσnj) + γjδn

∑
i∈Bn

αniAij
bi

(Axk)i

)
. (15.39)

By the concavity of the logarithm we obtain the inequality

log(xk+1
j /xk

j ) ≥
(
(1− γjδnσnj) log 1 + γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i

)
,

(15.40)

or

log(xk+1
j /xk

j ) ≥ γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i
. (15.41)
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Therefore

J∑
j=1

γ−1
j xj log(xk+1

j /xk
j ) ≥ δn

∑
i∈Bn

αni(
J∑

j=1

xjAij) log
bi

(Axk)i
. (15.42)

Note that it is at this step that we used the separability of the βnj . Also

J∑
j=1

γ−1
j (xk+1

j − xk
j ) = δn

∑
i∈Bn

((Axk)i − bi). (15.43)

This concludes the proof of the lemma.
From the inequality in (15.37) we conclude, as we did in the BI-SMART

case, that the sequence {
∑J

j=1 γ−1
j KL(xj , x

k
j )} is decreasing, that {xk} is

therefore bounded and the sequence {
∑

i∈Bn
αniKL(bi, (Axk)i)} is con-

verging to zero. Let x∗ be any cluster point of the sequence {x}. Then it is
not difficult to show that b = Ax∗. Replacing x with x∗ we have that the
sequence {

∑J
j=1 γ−1

j KL(x∗j , x
k
j )} is decreasing; since a subsequence con-

verges to zero, so does the whole sequence. Therefore x∗ is the limit of
the sequence {xk}. This proves that the algorithm produces a nonnegative
solution of b = Ax. So far, we have been unable to replace the inequality
in (15.37) with an equation in which the right side is independent of the
particular solution x chosen.

Having selected the γj , we see from the inequality in (15.37) that con-
vergence will be accelerated if we select δn as large as permitted by the
condition γjδnσnj ≤ 1. This suggests that once again we take

δn = 1/ min{σnjγj , j = 1, ..., J}. (15.44)

The rescaled BI-EMML (RBI-EMML) as presented in [45, 47, 48] uses this
choice, but with αni = 1 for each n and i. The original motivation for the
RBI-EMML came from consideration of Equation (15.32), replacing the
geometric means with arithmetic means. This RBI-EMML is as follows:

Algorithm 15.4 (RBI-EMML) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = (1−m−1

n s−1
j snj)xk

j + m−1
n s−1

j xk
j

∑
i∈Bn

(Aij
bi

(Axk)i
). (15.45)

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSEM does not generally satisfy the require-
ments, since in (15.10) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
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some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSEM.

The original EMML in Equation (15.6) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (15.13) is satisfied; in fact it becomes
an equality now.

Notice that the calculations required to perform the BI-SMART are
somewhat more complicated than those needed in BI-EMML. Because the
MART converges rapidly in most cases there is considerable interest in the
row-action version of EMML. It was clear from the outset that using the
OSEM in a row-action mode does not work. We see from the formula for
BI-EMML that the proper row-action version of EMML, which we call the
EM-MART, is the following:

Algorithm 15.5 (EM-MART) Let x0be an arbitrary positive vector and
i = k(mod I) + 1. Then let

xk+1
j = (1− δiγjαiiAij)xk

j + δiγjαiiAij
bi

(Axk)i
, (15.46)

with

γjδiαiiAij ≤ 1 (15.47)

for all i and j.

The optimal choice would seem to be to take δiαii as large as possible;
that is, to select δiαii = 1/ max{γjAij , j = 1, ..., J}. With this choice the
EM-MART is called the rescaled EM-MART (REM-MART).

The EM-MART fails to converge in the inconsistent case. What is
always observed, but for which no proof exists, is that, for each fixed i =
1, 2, ..., I, as m → +∞, the EM-MART subsequences {xmI+i} converge to
separate limit vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I}
reduces to a single vector whenever there is a nonnegative solution of b =
Ax. The greater the minimum value of KL(y, Ax) the more distinct from
one another the vectors of the limit cycle are. An analogous result is
observed for BI-EMML.

We must mention a method that closely resembles the REM-MART, the
row-action maximum likelihood algorithm (RAMLA), which was discovered
independently by Browne and De Pierro [27]. The RAMLA avoids the limit
cycle in the inconsistent case by using strong underrelaxation involving
a decreasing sequence of relaxation parameters λk. The RAMLA is the
following:

Algorithm 15.6 (RAMLA) Let x0 be an arbitrary positive vector, and
n = k(modN) + 1. Let the positive relaxation parameters λk be chosen to
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converge to zero and
∑+∞

k=0 λk = +∞. Then,

xk+1
j = (1− λk

∑
i∈Bn

Aij)xk
j + λkxk

j

∑
i∈Bn

Aij

( bi

(Axk)i

)
, (15.48)

15.7 RBI-SMART and Entropy Maximization

As we stated earlier, in the consistent case the sequence {xk} generated by
the BI-SMART algorithm and given by Equation (15.16) converges to the
unique solution of b = Ax for which the distance

∑J
j=1 γ−1

j KL(xj , x
0
j ) is

minimized. In this section we sketch the proof of this result as a sequence
of lemmas, each of which is easily established.

Lemma 15.4 For any nonnegative vectors a and b with a+ =
∑M

m=1 am

and b+ =
∑M

m=1 bm > 0 we have

KL(a, b) = KL(a+, b+) + KL(a+,
a+

b+
b). (15.49)

For nonnegative vectors x and z let

Gn(x, z) =
J∑

j=1

γ−1
j KL(xj , zj) (15.50)

+δn

∑
i∈Bn

αni[KL((Ax)i, bi)−KL((Ax)i, (Az)i)]. (15.51)

It follows from Lemma 15.49 and the inequality

γ−1
j − δnσnj ≥ 1 (15.52)

that Gn(x, z) ≥ 0 in all cases.

Lemma 15.5 For every x we have

Gn(x, x) = δn

∑
i∈Bn

αniKL((Ax)i, bi) (15.53)

so that

Gn(x, z) = Gn(x, x) +
J∑

j=1

γ−1
j KL(xj , zj) (15.54)

−δn

∑
i∈Bn

αniKL((Ax)i, (Az)i). (15.55)
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Therefore the distance Gn(x, z) is minimized, as a function of z, by z = x.
Now we minimize Gn(x, z) as a function of x. The following lemma shows
that the answer is

xj = z′j = zj exp
(
γjδn

∑
i∈Bn

αniAij log
bi

(Az)i

)
. (15.56)

Lemma 15.6 For each x and z we have

Gn(x, z) = Gn(z′, z) +
J∑

j=1

γ−1
j KL(xj , z

′
j). (15.57)

It is clear that (xk)′ = xk+1 for all k.
Now let b = Pu for some nonnegative vector u. We calculate Gn(u, xk)

in two ways: using the definition we have

Gn(u, xk) =
J∑

j=1

γ−1
j KL(uj , x

k
j )− δn

∑
i∈Bn

αniKL(bi, (Axk)i), (15.58)

while using Lemma 15.57 we find that

Gn(u, xk) = Gn(xk+1, xk) +
J∑

j=1

γ−1
j KL(uj , x

k+1
j ). (15.59)

Therefore

J∑
j=1

γ−1
j KL(uj , x

k
j )−

J∑
j=1

γ−1
j KL(uj , x

k+1
j ) (15.60)

= Gn(xk+1, xk) + δn

∑
i∈Bn

αniKL(bi, (Axk)i). (15.61)

We conclude several things from this.
First, the sequence {

∑J
j=1 γ−1

j KL(uj , x
k
j )} is decreasing, so that the

sequences {Gn(xk+1, xk)} and {δn

∑
i∈Bn

αniKL(bi, (Axk)i)} converge to
zero. Therefore the sequence {xk} is bounded and we may select an arbi-
trary cluster point x∗. It follows that b = Ax∗. We may therefore replace
the generic solution u with x∗ to find that {

∑J
j=1 γ−1

j KL(x∗j , x
k
j )} is a de-

creasing sequence; but since a subsequence converges to zero, the entire
sequence must converge to zero. Therefore {xk} converges to the solution
x∗.
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Finally, since the right side of Equation (15.61) does not depend on
the particular choice of solution we made, neither does the left side. By
telescoping we conclude that

J∑
j=1

γ−1
j KL(uj , x

0
j )−

J∑
j=1

γ−1
j KL(uj , x

∗
j ) (15.62)

is also independent of the choice of u. Consequently, minimizing the func-
tion

∑J
j=1 γ−1

j KL(uj , x
0
j ) over all solutions u is equivalent to minimizing∑J

j=1 γ−1
j KL(uj , x

∗
j ) over all solutions u; but the solution to the latter

problem is obviously u = x∗. This completes the proof.
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Chapter 16

Regularization

When we use an iterative algorithm, we want it to solve our problem.
We also want the solution in a reasonable amount of time, and we want
slight errors in the measurements to cause only slight perturbations in the
calculated answer. We have already discussed the use of block-iterative
methods to accelerate convergence. Now we turn to regularization as a
means of reducing sensitivity to noise. Because a number of regularization
methods can be derived using a Bayesian maximum a posteriori approach,
regularization is sometimes treated under the heading of MAP methods;
see, for example, [168, 185] and the discussion in [57]. Penalty functions
are also used for regularization [106, 2, 3].

16.1 Where Does Sensitivity Come From?

We illustrate the sensitivity problem that can arise when the inconsistent
system Ax = b has more equations than unknowns. We take A to be I by
J and we calculate the least-squares solution,

xLS = (A†A)−1A†b, (16.1)

assuming that the J by J Hermitian, nonnegative-definite matrix Q =
(A†A) is invertible, and therefore positive-definite.

The matrix Q has the eigenvalue/eigenvector decomposition

Q = λ1u1u
†
1 + · · ·+ λJuJu†J , (16.2)

where the (necessarily positive) eigenvalues of Q are

λ1 ≥ λ2 ≥ · · · ≥ λJ > 0, (16.3)

and the vectors uj are the corresponding orthonormal eigenvectors.

133



134 CHAPTER 16. REGULARIZATION

16.1.1 The Singular-Value Decomposition of A

The square roots
√

λj are called the singular values of A. The singular-
value decomposition (SVD) of A is similar to the eigenvalue/eigenvector
decomposition of Q: we have

A =
√

λ1u1v
†
1 + · · ·+

√
λIuJv†J , (16.4)

where the vj are particular eigenvectors of AA†. We see from the SVD that
the quantities

√
λj determine the relative importance of each term ujv

†
j .

The SVD is commonly used for compressing transmitted or stored im-
ages. In such cases, the rectangular matrix A is a discretized image. It
is not uncommon for many of the lowest singular values of A to be nearly
zero, and to be essentially insignificant in the reconstruction of A. Only
those terms in the SVD for which the singular values are significant need
to be transmitted or stored. The resulting images may be slightly blurred,
but can be restored later, as needed.

When the matrix A is a finite model of a linear imaging system, there
will necessarily be model error in the selection of A. Getting the dominant
terms in the SVD nearly correct is much more important (and usually much
easier) than getting the smaller ones correct. The problems arise when we
try to invert the system, to solve Ax = b for x.

16.1.2 The Inverse of Q = A†A

The inverse of Q can then be written

Q−1 = λ−1
1 u1u

†
1 + · · ·+ λ−1

J uJu†J , (16.5)

so that, with A†b = c, we have

xLS = λ−1
1 (u†1c)u1 + · · ·+ λ−1

J (u†Jc)uJ . (16.6)

Because the eigenvectors are orthonormal, we can express ||A†b||22 = ||c||22
as

||c||22 = |u†1c|2 + · · ·+ |u†Jc|2, (16.7)

and ||xLS ||22 as

||xLS ||22 = λ−1
1 |u†1c|2 + · · ·+ λ−1

J |u†Jc|2. (16.8)

It is not uncommon for the eigenvalues of Q to be quite distinct, with some
of them much larger than the others. When this is the case, we see that
||xLS ||2 can be much larger than ||c||2, because of the presence of the terms
involving the reciprocals of the small eigenvalues. When the measurements
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b are essentially noise-free, we may have |u†jc| relatively small, for the indices
near J , keeping the product λ−1

j |u†jc|2 reasonable in size, but when the b
becomes noisy, this may no longer be the case. The result is that those
terms corresponding to the reciprocals of the smallest eigenvalues dominate
the sum for xLS and the norm of xLS becomes quite large. The least-
squares solution we have computed is essentially all noise and useless.

In our discussion of the ART, we saw that when we impose a non-
negativity constraint on the solution, noise in the data can manifest itself
in a different way. When A has more columns than rows, but Ax = b has
no non-negative solution, then, at least for those A having the full-rank
property, the non-negatively constrained least-squares solution has at most
I − 1 non-zero entries. This happens also with the EMML and SMART
solutions. As with the ART, regularization can eliminate the problem.

16.1.3 Reducing the Sensitivity to Noise

As we just saw, the presence of small eigenvalues for Q and noise in b can
cause ||xLS ||2 to be much larger than ||A†b||2, with the result that xLS is
useless. In this case, even though xLS minimizes ||Ax− b||2, it does so by
overfitting to the noisy b. To reduce the sensitivity to noise and thereby
obtain a more useful approximate solution, we can regularize the problem.

It often happens in applications that, even when there is an exact so-
lution of Ax = b, noise in the vector b makes such as exact solution unde-
sirable; in such cases a regularized solution is usually used instead. Select
ε > 0 and a vector p that is a prior estimate of the desired solution. Define

Fε(x) = (1− ε)‖Ax− b‖2
2 + ε‖x− p‖2

2. (16.9)

Lemma 16.1 The function Fε always has a unique minimizer x̂ε, given
by

x̂ε = ((1− ε)A†A + εI)−1((1− ε)A†b + εp); (16.10)

this is a regularized solution of Ax = b. Here, p is a prior estimate of the
desired solution. Note that the inverse above always exists.

Note that, if p = 0, then

x̂ε = (A†A + γ2I)−1A†b, (16.11)

for γ2 = ε
1−ε . The regularized solution has been obtained by modifying

the formula for xLS , replacing the inverse of the matrix Q = A†A with
the inverse of Q + γ2I. When ε is near zero, so is γ2, and the matrices
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Q and Q + γ2I are nearly equal. What is different is that the eigenvalues
of Q + γ2I are λi + γ2, so that, when the eigenvalues are inverted, the
reciprocal eigenvalues are no larger than 1/γ2, which prevents the norm of
xε from being too large, and decreases the sensitivity to noise.

Lemma 16.2 Let ε be in (0, 1), and let I be the identity matrix whose
dimensions are understood from the context. Then

((1− ε)AA† + εI)−1A = A((1− ε)A†A + εI)−1, (16.12)

and, taking conjugate transposes,

A†((1− ε)AA† + εI)−1 = ((1− ε)A†A + εI)−1A†. (16.13)

Proof: Use the identity

A((1− ε)A†A + εI) = ((1− ε)AA† + εI)A. (16.14)

Lemma 16.3 Any vector p in RJ can be written as p = A†q + r, where
Ar = 0.

What happens to x̂ε as ε goes to zero? This will depend on which case
we are in:

Case 1: J ≤ I, and we assume that A†A is invertible; or

Case 2: J > I, and we assume that AA† is invertible.

Lemma 16.4 In Case 1, taking limits as ε → 0 on both sides of the expres-
sion for x̂ε gives x̂ε → (A†A)−1A†b, the least squares solution of Ax = b.

We consider Case 2 now. Write p = A†q + r, with Ar = 0. Then

x̂ε = A†((1− ε)AA† + εI)−1((1− ε)b + εq) + ((1− ε)A†A + εI)−1(εr).(16.15)

Lemma 16.5 (a) We have

((1− ε)A†A + εI)−1(εr) = r, (16.16)

for all ε ∈ (0, 1). (b) Taking the limit of x̂ε, as ε → 0, we get x̂ε →
A†(AA†)−1b + r. This is the solution of Ax = b closest to p.

Proof: For part (a) let

tε = ((1− ε)A†A + εI)−1(εr). (16.17)

Then, multiplying by A gives

Atε = A((1− ε)A†A + εI)−1(εr). (16.18)

Now show that Atε = 0. For part (b) draw a diagram for the case of one
equation in two unknowns.
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16.2 Iterative Regularization

It is often the case that the entries of the vector b in the system Ax = b
come from measurements, so are usually noisy. If the entries of b are noisy
but the system Ax = b remains consistent (which can easily happen in the
under-determined case, with J > I), the ART begun at x0 = 0 converges
to the solution having minimum norm, but this norm can be quite large.
The resulting solution is probably useless. Instead of solving Ax = b, we
regularize by minimizing, for example, the function Fε(x) given in Equation
(16.9). For the case of p = 0, the solution to this problem is the vector x̂ε

in Equation (16.11). However, we do not want to calculate A†A + γ2I, in
order to solve

(A†A + γ2I)x = A†b, (16.19)

when the matrix A is large. Fortunately, there are ways to find x̂ε, using
only the matrix A. We saw previously how this might be accomplished
using the ART; now we show how the Landweber algorithm can be used
to calculate this regularized solution.

16.2.1 Iterative Regularization with Landweber’s Al-
gorithm

Our goal is to minimize the function in Equation (16.9), with p = 0. Notice
that this is equivalent to minimizing the function

F (x) = ||Bx− c||22, (16.20)

for

B =
[

A
γI

]
, (16.21)

and

c =
[

b
0

]
, (16.22)

where 0 denotes a column vector with all entries equal to zero nd γ = ε
1−ε ..

The Landweber iteration for the problem Bx = c is

xk+1 = xk + αBT (c−Bxk), (16.23)

for 0 < α < 2/ρ(BT B), where ρ(BT B) is the spectral radius of BT B.
Equation (16.23) can be written as

xk+1 = (1− αγ2)xk + αAT (b−Axk). (16.24)

We see from Equation (16.24) that the Landweber algorithm for solving
the regularized least squares problem amounts to a relaxed version of the
Landweber algorithm applied to the original least squares problem.
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16.3 A Bayesian View of Reconstruction

The EMML iterative algorithm maximizes the likelihood function for the
case in which the entries of the data vector b = (b1, ..., bI)T are assumed
to be samples of independent Poisson random variables with mean val-
ues (Ax)i; here, A is an I by J matrix with nonnegative entries and
x = (x1, ..., xJ)T is the vector of nonnegative parameters to be estimated.
Equivalently, it minimizes the Kullback-Leibler distance KL(b, Ax). This
situation arises in single photon emission tomography, where the bi are the
number of photons counted at each detector i, x is the vectorized image
to be reconstructed and its entries xj are (proportional to) the radionu-
clide intensity levels at each voxel j. When the signal-to-noise ratio is low,
which is almost always the case in medical applications, maximizing like-
lihood can lead to unacceptably noisy reconstructions, particularly when
J is larger than I. One way to remedy this problem is simply to halt the
EMML algorithm after a few iterations, to avoid over-fitting the x to the
noisy data. A more mathematically sophisticated remedy is to employ a
penalized-likelihood or Bayesian approach and seek a maximum a posteriori
(MAP) estimate of x.

In the Bayesian approach we view x as an instance of a random vector
having a probability density function f(x). Instead of maximizing the like-
lihood given the data, we now maximize the posterior likelihood, given both
the data and the prior distribution for x. This is equivalent to minimizing

F (x) = KL(b, Ax)− log f(x). (16.25)

The EMML algorithm is an example of an optimization method based on
alternating minimization of a function H(x, z) > 0 of two vector variables.
The alternating minimization works this way: let x and z be vector vari-
ables and H(x, z) > 0. If we fix z and minimize H(x, z) with respect to x,
we find that the solution is x = z, the vector we fixed; that is,

H(x, z) ≥ H(z, z) (16.26)

always. If we fix x and minimize H(x, z) with respect to z, we get something
new; call it Tx. The EMML algorithm has the iterative step xk+1 = Txk.

Obviously, we can’t use an arbitrary function H; it must be related to
the function KL(b, Ax) that we wish to minimize, and we must be able to
obtain each intermediate optimizer in closed form. The clever step is to
select H(x, z) so that H(x, x) = KL(b, Ax), for any x. Now see what we
have so far:

KL(b, Axk) = H(xk, xk) ≥ H(xk, xk+1) (16.27)

≥ H(xk+1, xk+1) = KL(b, Axk+1). (16.28)
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That tells us that the algorithm makes KL(b, Axk) decrease with each
iteration. The proof doesn’t stop here, but at least it is now plausible that
the EMML iteration could minimize KL(b, Ax).

The function H(x, z) used in the EMML case is the KL distance

H(x, z) = KL(r(x), q(z)) =
I∑

i=1

J∑
j=i

KL(r(x)ij , q(z)ij); (16.29)

we define, for each nonnegative vector x for which (Ax)i =
∑J

j=1 Aijxj > 0,
the arrays r(x) = {r(x)ij} and q(x) = {q(x)ij} with entries

r(x)ij = xjAij
bi

(Ax)i
(16.30)

and

q(x)ij = xjAij . (16.31)

With x = xk fixed, we minimize with respect to z to obtain the next
EMML iterate xk+1. Having selected the prior pdf f(x), we want an itera-
tive algorithm to minimize the function F (x) in Equation (16.25). It would
be a great help if we could mimic the alternating minimization formulation
and obtain xk+1 by minimizing

KL(r(xk), q(z))− log f(z) (16.32)

with respect to z. Unfortunately, to be able to express each new xk+1 in
closed form, we need to choose f(x) carefully.

16.4 The Gamma Prior Distribution for x

In [152] Lange et al. suggest viewing the entries xj as samples of indepen-
dent gamma-distributed random variables. A gamma-distributed random
variable x takes positive values and has for its pdf the gamma distribution
defined for positive x by

γ(x) =
1

Γ(α)
(
α

β
)αxα−1e−αx/β , (16.33)

where α and β are positive parameters and Γ denotes the gamma function.
The mean of such a gamma-distributed random variable is then µ = β and
the variance is σ2 = β2/α.
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Lemma 16.6 If the entries zj of z are viewed as independent and gamma-
distributed with means µj and variances σ2

j , then minimizing the function
in line (16.32) with respect to z is equivalent to minimizing the function

KL(r(xk), q(z)) +
J∑

j=1

δjKL(γj , zj), (16.34)

for

δj =
µj

σ2
j

, γj =
µ2

j − σ2
j

µj
, (16.35)

under the assumption that the latter term is positive.

The resulting regularized EMML algorithm is the following:

Algorithm 16.1 (γ-prior Regularized EMML) Let x0 be an arbitrary
positive vector. Then let

xk+1
j =

δj

δj + sj
γj +

1
δj + sj

xk
j

I∑
i=1

Aijbi/(Axk)i, (16.36)

where sj =
∑I

i=1 Aij.

We see from Equation (16.36) that the MAP iteration using the gamma
priors generates a sequence of estimates each entry of which is a convex
combination or weighted arithmetic mean of the result of one EMML step
and the prior estimate γj . Convergence of the resulting iterative sequence
is established by Lange, Bahn and Little in [152]; see also [43].

16.5 The One-Step-Late Alternative

It may well happen that we do not wish to use the gamma priors model
and prefer some other f(x). Because we will not be able to find a closed
form expression for the z minimizing the function in line (16.32), we need
some other way to proceed with the alternating minimization. Green [122]
has offered the one-step-late (OSL) alternative.

When we try to minimize the function in line (16.32) by setting the
gradient to zero we replace the variable z that occurs in the gradient of the
term − log f(z) with xk, the previously calculated iterate. Then, we can
solve for z in closed form to obtain the new xk+1. Unfortunately, negative
entries can result and convergence is not guaranteed. There is a sizable
literature on the use of MAP methods for this problem. In [52] an interior
point algorithm (IPA) is presented that avoids the OSL issue. In [169] the
IPA is used to regularize transmission tomographic images.
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16.6 Regularizing the SMART

The SMART algorithm is not derived as a maximum likelihood method, so
regularized versions do not take the form of MAP algorithms. Neverthe-
less, in the presence of noisy data, the SMART algorithm suffers from the
same problem that afflicts the EMML, overfitting to noisy data resulting
in an unacceptably noisy image. As we saw earlier, there is a close con-
nection between the EMML and SMART algorithms. This suggests that a
regularization method for SMART can be developed along the lines of the
MAP with gamma priors used for EMML. Since the SMART is obtained by
minimizing the function KL(q(z), r(xk)) with respect to z to obtain xk+1,
it seems reasonable to attempt to derive a regularized SMART iterative
scheme by minimizing

KL(q(z), r(xk)) +
J∑

j=1

δjKL(zj , γj), (16.37)

as a function of z, for selected positive parameters δj and γj . This leads to
the following algorithm:

Algorithm 16.2 (Regularized SMART) Let x0 be an arbitrary positive
vector. Then let

log xk+1
j =

δj

δj + sj
log γj +

1
δj + sj

xk
j

I∑
i=1

Aij log[bi/(Axk)i]. (16.38)

In [43] it was shown that this iterative sequence converges to a minimizer
of the function

KL(Ax, y) +
J∑

j=1

δjKL(xj , γj). (16.39)

It is useful to note that, although it may be possible to rederive this min-
imization problem within the framework of Bayesian MAP estimation by
carefully selecting a prior pdf for the vector x, we have not done so. The
MAP approach is a special case of regularization through the use of penalty
functions. These penalty functions need not arise through a Bayesian for-
mulation of the parameter-estimation problem.

16.7 De Pierro’s Surrogate-Function Method

In [90] De Pierro presents a modified EMML algorithm that includes reg-
ularization in the form of a penalty function. His objective is the same as
ours was in the case of regularized SMART: to embed the penalty term
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in the alternating minimization framework in such a way as to make it
possible to obtain the next iterate in closed form. Because his surrogate
function method has been used subsequently by others to obtain penalized
likelihood algorithms [73], we consider his approach in some detail.

Let x and z be vector variables and H(x, z) > 0. Mimicking the be-
havior of the function H(x, z) used in Equation (16.29), we require that
if we fix z and minimize H(x, z) with respect to x, the solution should be
x = z, the vector we fixed; that is, H(x, z) ≥ H(z, z) always. If we fix
x and minimize H(x, z) with respect to z, we should get something new;
call it Tx. As with the EMML, the algorithm will have the iterative step
xk+1 = Txk.

Summarizing, we see that we need a function H(x, z) with the properties
(1) H(x, z) ≥ H(z, z) for all x and z; (2) H(x, x) is the function F (x) we
wish to minimize; and (3) minimizing H(x, z) with respect to z for fixed x
is easy.

The function to be minimized is

F (x) = KL(b, Ax) + g(x), (16.40)

where g(x) ≥ 0 is some penalty function. De Pierro uses penalty functions
g(x) of the form

g(x) =
p∑

l=1

fl(〈sl, x〉 ). (16.41)

Let us define the matrix S to have for its lth row the vector sT
l . Then

〈sl, x〉 = (Sx)l, the lth entry of the vector Sx. Therefore,

g(x) =
p∑

l=1

fl((Sx)l). (16.42)

Let λlj > 0 with
∑J

j=1 λlj = 1, for each l.
Assume that the functions fl are convex. Therefore, for each l, we have

fl((Sx)l) = fl(
J∑

j=1

Sljxj) = fl(
J∑

j=1

λlj(Slj/λlj)xj) (16.43)

≤
J∑

j=1

λljfl((Slj/λlj)xj). (16.44)

Therefore,

g(x) ≤
p∑

l=1

J∑
j=1

λljfl((Slj/λlj)xj). (16.45)
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So we have replaced g(x) with a related function in which the xj occur
separately, rather than just in the combinations (Sx)l. But we aren’t quite
done yet.

We would like to take for De Pierro’s H(x, z) the function used in the
EMML algorithm, plus the function

p∑
l=1

J∑
j=1

λljfl((Slj/λlj)zj). (16.46)

But there is one slight problem: we need H(z, z) = F (z), which we don’t
have yet.

De Pierro’s clever trick is to replace fl((Slj/λlj)zj) with

fl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+ fl((Sx)l). (16.47)

So, De Pierro’s function H(x, z) is the sum of the H(x, z) used in the
EMML case and the function

p∑
l=1

J∑
j=1

λljfl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+

p∑
l=1

fl((Sx)l). (16.48)

Now he has the three properties he needs. Once he has computed xk, he
minimizes H(xk, z) by taking the gradient and solving the equations for
the correct z = Txk = xk+1. For the choices of fl he discusses, these
intermediate calculations can either be done in closed form (the quadratic
case) or with a simple Newton-Raphson iteration (the logcosh case).

16.8 Block-Iterative Regularization

We saw previously that it is possible to obtain a regularized least-squares
solution x̂ε, and thereby avoid the limit cycle, using only the matrix A and
the ART algorithm. This prompts us to ask if it is possible to find regular-
ized SMART solutions using block-iterative variants of SMART. Similarly,
we wonder if it is possible to do the same for EMML.

Open Question: Can we use the MART to find the minimizer of the
function

KL(Ax, b) + εKL(x, p)? (16.49)

More generally, can we obtain the minimizer using RBI-SMART?

Open Question: Can we use the RBI-EMML methods to obtain the
minimizer of the function

KL(b, Ax) + εKL(p, x)? (16.50)



144 CHAPTER 16. REGULARIZATION

There have been various attempts to include regularization in block-
iterative methods, to reduce noise sensitivity and avoid limit cycles; the
paper by Ahn and Fessler [2] is a good source, as is [3]. Most of these
approaches have been ad hoc, with little or no theoretical basis. Typically,
they simply modify each iterative step by including an additional term that
appears to be related to the regularizing penalty function. The case of the
ART is instructive, however. In that case, we obtained the desired iterative
algorithm by using an augmented set of variables, not simply by modifying
each step of the original ART algorithm. How to do this for the MART
and the other block-iterative algorithms is not obvious.

Recall that the RAMLA method in Equation (15.48) is similar to the
RBI-EMML algorithm, but employs a sequence of decreasing relaxation
parameters, which, if properly chosen, will cause the iterates to converge
to the minimizer of KL(b, Ax), thereby avoiding the limit cycle. In [92]
De Pierro and Yamaguchi present a regularized version of RAMLA, but
without guaranteed convergence.



Chapter 17

List-Mode Reconstruction
in PET

17.1 Why List-Mode Processing?

In PET the radionuclide emits individual positrons, which travel, on aver-
age, between 4 mm and 2.5 cm (depending on their kinetic energy) before
encountering an electron. The resulting annihilation releases two gamma-
ray photons that then proceed in essentially opposite directions. Detection
in the PET case means the recording of two photons at nearly the same
time at two different detectors. The locations of these two detectors then
provide the end points of the line segment passing, more or less, through
the site of the original positron emission. Therefore, each possible pair of
detectors determines a line of response. When a LOR is recorded, it is
assumed that a positron was emitted somewhere along that line.

In modern PET scanners the number of pairs of detectors, and therefore,
the number of potential LOR, often exceeds the number of detections; the
count recorded at any single i is typically one or zero. It makes sense,
therefore, to record the data as a list of those LOR corresponding to a
detection; this is list-mode data.

17.2 Correcting for Attenuation in PET

In SPECT attenuation correction is performed by modifying the probabil-
ities Pij . In PET the situation is at once simpler and more involved.

Let a given LOR be parameterized by the variable s, with s = 0 and
s = c denoting the two ends, and c the distance from one end to the other.
For a fixed value s = s0, let P (s) be the probability of reaching s for a
photon resulting from an emission at s0. For small ∆s > 0 the probability
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that a photon that reached s is absorbed in the interval [s, s + ∆s] is
approximately µ(s)∆s, where µ(s) ≥ 0 is the photon attenuation density
at s. Then P (s + ∆s) ≈ P (s)[1− µ(s)∆s], so that

P (s + ∆s)− P (s) ≈ −P (s)µ(s)∆s.

Dividing by ∆s and letting ∆s go to zero, we get

P ′(s) = −P (s)µ(s).

It follows that
P (s) = e

−
∫ s

s0
µ(t)dt

.

The probability that the photon will reach s = c and be detected is then

P (c) = e
−
∫ c

s0
µ(t)dt

.

Similarly, we find that the probability that a photon will succeed in reaching
s = 0 from s0 is

P (0) = e
−
∫ s0

0
µ(t)dt

.

Since having one photon reach s = 0 and the other reach s = c are indepen-
dent events, their probabilities multiply, so that the probability that both
photons reach their destinations and a coincident detection is recorded for
this LOR is

e
−
∫ c

0
µ(t)dt

.

The expected number of coincident detections along the LOR is then pro-
portional to∫ c

0

f(s)e−
∫ c

0
µ(t)dt

ds = e
−
∫ c

0
µ(t)dt

∫ c

0

f(s)ds, (17.1)

where f(s) is the intensity of radionuclide at s.
For each LOR i and each pixel or voxel j, let Aij be the geometric

probability that an emission at j will result in two photons traveling along
the LOR i. The probability Aij is unrelated to the attenuation presented
by the body of the patient. Then the probability that an emission at j will
result in the LOR i being added to the list is

Pij = aiAij ,

where
ai = e

−
∫

i
µ(s)ds

,

and the integral is the line integral along the line segment associated with
the LOR i. We then perform attenuation correction by using the probabil-
ities Pij in the reconstruction.
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Note that, if the number I of potential LOR is not too large and the
entries of the data vector y are not simply zero or one, we might correct
for attenuation by replacing each yi with yi/ai, which is approximately the
count we would have seen for the LOR i if there had been no attenuation.
However, in the more typical case of large I and zero or one values for the
yi, this approach does not make much sense. The effect of attenuation now
is to prevent certain i from being recorded, not to diminish the values of the
positive yi of the LOR that were recorded. Therefore, at least in theory, it
makes more sense to correct for attenuation by using the Pij . There is an
additional complication, though.

In list-mode processing, I, the number of potential LOR, is much larger
than the size of the list. To employ the EMML algorithm or one of its
block-iterative variants, we need to calculate the probabilities associated
with those LOR on the list, but it is costly to do this for all the potential
LOR; we do need to compute the sensitivities, or probabilities of detection,
for each pixel, however. If we consider only the geometry of the scanner,
calculating the sensitivities for each pixel is not difficult and can be done
once and used repeatedly; it is much more problematic if we must include
the patient-specific attenuation. For this reason, it makes sense, practically
speaking, to correct for attenuation in list-mode PET by replacing yi with
yi/ai for those yi equal to one. The reconstruction is probably much the
same, either way.

17.3 Modeling the Possible LOR

We can model the potential LOR simply as pairs of detectors, so that I, the
number of potential LOR, is very large, but finite, and finite probability
vectors, rather than probability density functions, suffice in forming the
likelihood function. The EMML algorithm applies directly to this list-mode
model. This is the approach adopted by Huesman et al. [138].

Alternatively, one can assume that the end-point coordinates form a
continuum, so that the set of potential LOR is uncountably infinite. Now
we need probability density functions to form the likelihood function. This
method, adopted by Parra and Barrett [177], makes the application of the
EMML algorithm more complicated, as discussed in [53].

17.4 EMML: The Finite LOR Model

In this section we discuss the EMML iterative algorithm for list-mode re-
construction based on the finite model.

Let the list of recorded LOR be {i1, ..., iM} and let

Qmj = Pim,j ,
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for m = 1, ...,M . Since the values of the yi are typically zero or one, the im
are typically distinct, but this is not essential here. The EMML iteration
becomes

xk+1
j = xk

j s−1
j

M∑
m=1

Qmj

( 1
(Qxk)m

)
. (17.2)

Note that we still need to use the sensitivity values

sj =
I∑

i=1

Pij ,

which are the probabilities of detection. However, for imaging the radionu-
clide we do not need to calculate the sj by first determining each of the
Pij ; we need only that the sj >

∑M
m=1 Qmj for each j and that the relative

values of the various sj be reasonably accurate. For quantitation, though,
accurate absolute values of the sj are needed.

17.5 List-mode RBI-EMML

We turn now to the block-iterative versions of EMML. For n = 1, ..., N let
Cn consist of all indices m such that the LOR im on the list is also in Bn.
The list-mode BI-EMML (LMBI-EMML) has the iterative step

xk
j = (1− γnδjsnj)xk−1

j + xk
j γnδj

∑
m∈Cn

Pij

( 1
(Qxk)m

)
, (17.3)

with γ > 0 chosen so that
snjδjγn ≤ 1.

When we select δj = s−1
j , we must then have γn ≤ µ−1

n . When we have
δj = 1, we need γn ≤ m−1

n . Generally speaking, the larger the γn the
faster the convergence. The rescaled LMBI-EMML (LMRBI-EMML) uses
the largest values of γn consistent with these constraints.

Note that, as previously, we need sj and now we also need snj . As be-
fore, though, we do not need to specify each of the Pij to obtain reasonable
choices for these values.

17.6 The Row-action LMRBI-EMML: LMEMART

The row-action or event-by-event version of the RBI-EMML algorithm, the
LMEMART, is a special case of the LMRBI-EMML in which, for m =
1, ...,M , each LOR im on the list forms its own block or subset, denoted
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Cm. Another way to say this is that we choose the original blocks Bn so
that no Bn contains more than one im. For clarity, we shall assume that the
blocks Bn are chosen so that Bm = {im} and Cm = {m}, for m = 1, ...,M .
We then let BM+1 consist of all the i not equal to some Im on the list, and
N = M + 1. Therefore, for n = 1, ...,M , we have

snj = Qnj .

In the LMEMART each iteration employs a single member of the list and we
cycle through the list repeatedly. The iteration index is now m = 1, ...,M ,
with m = m(k) = k(modM) + 1.

The LMEMART has the iterative step

xk+1
j = (1− γmδjQmj)xk

j + xk
j γmδjQmj

( 1
(Qxk)m

)
, (17.4)

with Qmjδjγm ≤ 1.

17.7 EMML: The Continuous LOR Model

When the end points of the potential LOR are allowed to take on values in
a continuum, the likelihood function involves probability density functions,
rather than finite probabilities. This poses a difficulty, in that the values
of probability density functions can be any non-negative real number; only
their integrals are required to be one. As a result, the convergence theory
for the EMML algorithm and its various block-iterative versions does not
apply unchanged.

For each pixel index j, let fj(·) be the probability density function (pdf)
whose domain is the (uncountably infinite) set of potential LOR with the
property that the probability that an emission at j results in an LOR from
the set S being recorded is the integral of fj over S. With xj the expected
number of emissions from j during the scanning time, and

x+ =
J∑

j=1

xj ,

the probability that an emission came from j, given that an emission has
happened, is xj/x+. Therefore, the probability that an LOR in the set S
will be recorded, given that an emission has happened, is the integral over
S of the pdf

f(·) =
1

x+

J∑
j=1

xjfj(·).
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For each j let dj be the probability that an emission from j will be detected,
and let

d =
1

x+

J∑
j=1

xjdj

be the probability that an emission will be detected.
The number of items on the list, M , is also a random variable, which we

model as having a Poisson distribution with mean value dx+. Therefore,
the probability of M is

p(M) = exp(−x+d)(x+d)M/M !.

Given the list of recorded LOR, the likelihood function is then

L(x) = p(M)
M∏

m=1

f(im),

and the log likelihood function to be maximized is

LL(x) = −x+d +
M∑

m=1

log(Px)m,

where the matrix P has entries

Pmj = fj(im).

Note that

(Px)m =
J∑

j=1

Pmjxj ,

so that
M∑

m=1

(Px)m =
J∑

j=1

( M∑
m=1

Pmj)xj =
J∑

j=1

cjxj ,

for

cj =
M∑

m=1

Pmj .

Maximizing the log likelihood function is equivalent to minimizing

KL(u, Px)−
M∑

m=1

(Px)m + x+d + constants,

where u is the vector whose entries are all one, and therefore equivalent to
minimizing

F (x) = KL(u, Px) +
J∑

j=1

(dj − cj)xj .
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The EMML algorithm itself will minimize only KL(u, Px). The basic
problem now is that we have values of probability density functions and
the quantities cj , which can be any positive real numbers, are unrelated to
the detectability or sensitivity dj .

It was shown in [53] that the EMML algorithm can be modified to
provide a convergent iterative method for minimizing F (x). This modified
EMML algorithm has the iterative step

xk+1
j = xk

j d−1
j

M∑
m=1

( 1
(Pxk)m

)
.

For the finite model, as in [138], this is just the usual EMML and conver-
gence follows from known results, but for the continuous model, as in [177],
this iterative scheme falls outside the EMML framework and convergence
needed to be established, as in [53].

Just as the EMML algorithm must be modified before it can be applied
to the continuous model, we must adapt the block-iterative versions as well;
see [53] for details.
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Part IV

Magnetic Resonance
Imaging
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Chapter 18

Magnetic Resonance
Imaging

In elements with an odd number of protons, such as hydrogen, the nucleus
itself will have a net magnetic moment. The objective in magnetic res-
onance imaging (MRI) is to determine the density of such elements in a
volume of interest within the body. This is achieved by forcing the indi-
vidual spinning nuclei to emit signals that, while too weak to be detected
alone, are detectable in the aggregate. Fourier-transform estimation and
extrapolation techniques play a major role in the rapidly expanding field
of magnetic resonance imaging [215, 125].

18.1 Slice Isolation

When the external magnetic field is the static field B0k, that is, the mag-
netic field has strength B0 and axis k = (0, 0, 1), then the Larmor fre-
quency is the same everywhere and equals ω0 = γB0, where γ is the gy-
romagnetic constant. If, instead, we impose an external magnetic field
(B0 +Gz(z−z0))k, for some constant Gz, then the Larmor frequency is ω0

only within the plane z = z0. This external field now includes a gradient
field.

18.2 Tipping

When a magnetic dipole moment that is aligned with k is given a compo-
nent in the x, y-plane, it begins to precess around the z-axis, with frequency
equal to its Larmor frequency. To create this x, y-plane component, we ap-
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ply a radio-frequency field (rf field)

H1(t)(cos(ωt)i + sin(ωt)j).

The function H1(t) typically lasts only for a short while, and the effect
of imposing this rf field is to tip the aligned magnetic dipole moment axes
away from the z-axis, initiating precession. Those dipole axes that tip most
are those whose Larmor frequency is ω. Therefore, if we first isolate the
slice z = z0 and then choose ω = ω0, we tip primarily those dipole axes
within the plane z = z0. The dipoles that have been tipped ninety degrees
into the x, y-plane generate the strongest signal. How much tipping occurs
also depends on H1(t), so it is common to select H1(t) to be constant over
the time interval [0, τ ], and zero elsewhere, with integral π

2γ . This H1(t)
is called a π

2 -pulse, and tips those axes with Larmor frequency ω0 into the
x, y-plane.

18.3 Imaging

The information we seek about the proton density function is contained
within the received signal. By carefully adding gradient fields to the ex-
ternal field, we can make the Larmor frequency spatially varying, so that
each frequency component of the received signal contains a piece of the
information we seek. The proton density function is then obtained through
Fourier transformations.

18.3.1 The Line-Integral Approach

Suppose that we have isolated the plane z = z0 and tipped the aligned axes
using a π

2 -pulse. After the tipping has been completed, we introduce an
external field (B0 + Gxx)k, so that now the Larmor frequency of dipoles
within the plane z = z0 is ω(x) = ω0 + γGxx, which depends on the x-
coordinate of the point. The result is that the component of the received
signal associated with the frequency ω(x) is due solely to those dipoles
having that x coordinate. Performing an FFT of the received signal gives
us line integrals of the density function along lines in the x, y-plane having
fixed x-coordinate.

More generally, if we introduce an external field (B0+Gxx+Gyy)k, the
Larmor frequency is constant at ω(x, y) = ω0 + γ(Gxx + Gyy) = ω0 + γs
along lines in the x, y-plane with equation

Gxx + Gyy = s.

Again performing an FFT on the received signal, we obtain the integral of
the density function along these lines. In this way, we obtain the three-
dimensional Radon transform of the desired density function. The central
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slice theorem for this case tells us that we can obtain the Fourier transform
of the density function by performing a one-dimensional Fourier transform
with respect to the variable s. For each fixed (Gx, Gy) we obtain this
Fourier transform along a ray through the origin. By varying the (Gx, Gy)
we get the entire Fourier transform. The desired density function is then
obtained by Fourier inversion.

18.3.2 Phase Encoding

In the line-integral approach, the line-integral data is used to obtain values
of the Fourier transform of the density function along lines through the
origin in Fourier space. It would be more convenient to have Fourier-
transform values on the points of a rectangular grid. We can obtain this
by selecting the gradient fields to achieve phase encoding.

Suppose that, after the tipping has been performed, we impose the
external field (B0+Gyy)k for T seconds. The effect is to alter the precession
frequency from ω0 to ω(y) = ω0 + γGyy. A harmonic eiω0t is changed to

eiω0teiγGyyt,

so that, after T seconds,we have

eiω0T eiγGyyT .

For t ≥ T , the harmonic eiω0t returns, but now it is

eiω0teiγGyyT .

The effect is to introduce a phase shift of γGyyT . Each point with the
same y-coordinate has the same phase shift.

After time T , when this gradient field is turned off, we impose a second
external field, (B0 + Gxx)k. Because this gradient field alters the Larmor
frequencies, at times t ≥ T the harmonic eiω0teiγGyyT is transformed into

eiω0teiγGyyT eiγGxxt.

The received signal is now

S(t) = eiω0t

∫ ∫
ρ(x, y)eiγGyyT eiγGxxtdxdy,

where ρ(x, y) is the value of the proton density function at (x, y). Removing
the eiω0t factor, we have∫ ∫

ρ(x, y)eiγGyyT eiγGxxtdxdy,

which is the Fourier transform of ρ(x, y) at the point (γGxt, γGyT ). By
selecting equi-spaced values of t and altering the Gy, we can get the Fourier
transform values on a rectangular grid.
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18.4 The General Formulation

The external magnetic field generated in the MRI scanner is generally de-
scribed by

H(r, t) = (H0 + G(t) · r)k + H1(t)(cos(ωt)i + sin(ωt)j). (18.1)

The vectors i, j, and k are the unit vectors along the coordinate axes,
and r = (x, y, z). The vector-valued function G(t) = (Gx(t), Gy(t), Gz(t))
produces the gradient field

G(t) · r.

The magnetic field component in the x, y plane is the radio frequency (rf)
field.

If G(t) = 0, then the Larmor frequency is ω0 everywhere. Using ω = ω0

in the rf field, with a π
2 -pulse, will then tip the aligned axes into the x, y-

plane and initiate precession. If G(t) = θ, for some direction vector θ, then
the Larmor frequency is constant on planes θ · r = s. Using an rf field
with frequency ω = γ(H0 + s) and a π

2 -pulse will then tip the axes in this
plane into the x, y-plane. The strength of the received signal will then be
proportional to the integral, over this plane, of the proton density function.
Therefore, the measured data will be values of the three-dimensional Radon
transform of the proton density function, which is related to its three-
dimensional Fourier transform by the Central Slice Theorem. Later, we
shall consider two more widely used examples of G(t).

18.5 The Received Signal

We assume now that the function H1(t) is a short π
2 -pulse, that is, it has

constant value over a short time interval [0, τ ] and has integral π
2γ . The

received signal produced by the precessing magnetic dipole moments is
approximately

S(t) =
∫

R3
ρ(r) exp(−iγ(

∫ t

0

G(s)ds) · r) exp(−t/T2)dr, (18.2)

where ρ(r) is the proton density function, and T2 is the transverse or spin-
spin relaxation time. The vector integral in the exponent is∫ t

0

G(s)ds = (
∫ t

0

Gx(s)ds,

∫ t

0

Gy(s)ds,

∫ t

0

Gz(s)ds).

Now imagine approximating the function Gx(s) over the interval [0, t] by
a step function that is constant over small subintervals, that is, Gx(s)
is approximately Gx(n∆) for s in the interval [n∆, (n + 1)∆), with n =



18.5. THE RECEIVED SIGNAL 159

1, ..., N and ∆ = t
N . During the interval [n∆, (n + 1)∆), the presence of

this gradient field component causes the phase to change by the amount
xγGx(n∆)∆, so that by the time we reach s = t the phase has changed by

x
N∑

n=1

Gx(n∆)∆,

which is approximately x
∫ t

0
Gx(s)ds.

18.5.1 An Example of G(t)

Suppose now that g > 0 and θ is an arbitrary direction vector. Let

G(t) = gθ, for τ ≤ t, (18.3)

and G(t) = 0 otherwise. Then the received signal S(t) is

S(t) =
∫

R3
ρ(r) exp(−iγg(t− τ)θ · r)dr

= (2π)3/2ρ̂(γg(t− τ)θ), (18.4)

for τ ≤ t << T2, where ρ̂ denotes the three-dimensional Fourier transform
of the function ρ(r).

From Equation (18.4) we see that, by selecting different direction vec-
tors and by sampling the received signal S(t) at various times, we can
obtain values of the Fourier transform of ρ along lines through the origin
in the Fourier domain, called k-space. If we had these values for all θ and
for all t we would be able to determine ρ(r) exactly. Instead, we have much
the same problem as in transmission tomography; only finitely many θ and
only finitely many samples of S(t). Noise is also a problem, because the
resonance signal is not strong, even though the external magnetic field is.

We may wish to avoid having to estimate the function ρ(r) from finitely
many noisy values of its Fourier transform. We can do this by selecting the
gradient field G(t) differently.

18.5.2 Another Example of G(t)

The vector-valued function G(t) can be written as

G(t) = (G1(t), G2(t), G3(t)).

Now we let
G2(t) = g2,
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and
G3(t) = g3,

for 0 ≤ t ≤ τ , and zero otherwise, and

G1(t) = g1,

for τ ≤ t, and zero otherwise. This means that only H0k and the rf field
are present up to time τ , and then the rf field is shut off and the gradient
field is turned on. Then, for t ≥ τ , we have

S(t) = (2π)3/2M̂0(γ(t− τ)g1, γτg2, γτg3).

By selecting
tn = n∆t + τ, for n = 1, ..., N,

g2k = k∆g,

and
g3i = i∆g,

for i, k = −m, ...,m we have values of the Fourier transform, M̂0, on a
Cartesian grid in three-dimensional k-space. The proton density function,
ρ, can then be approximated using the fast Fourier transform.

Although the reconstruction employs the FFT, obtaining the Fourier-
transform values on the Cartesian grid can take time. An abdominal scan
can last for a couple of hours, during which the patient is confined, mo-
tionless and required to hold his or her breath repeatedly. Recent work
on compressed sensing is being applied to reduce the number of Fourier-
transform values that need to be collected, and thereby reduce the scan
time [218, 161].

18.6 Compressed Sensing in Image Recon-
struction

As we have seen, the data one obtains from the scanning process can often
be interpreted as values of the Fourier transform of the desired image; this is
precisely the case in magnetic-resonance imaging, and approximately true
for x-ray transmission tomography, positron-emission tomography (PET)
and single-photon emission tomography (SPECT). The images one encoun-
ters in medical diagnosis are often approximately locally constant, so the
associated array of discrete partial derivatives will be sparse. If this sparse
derivative array can be recovered from relatively few Fourier-transform val-
ues, then the scanning time can be reduced.
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18.6.1 Incoherent Bases

The objective in CS is to exploit sparseness to reconstruct a vector f in
RJ from relatively few linear functional measurements [95].

Let U = {u1, u2, ..., uJ} and V = {v1, v2, ..., vJ} be two orthonormal
bases for RJ , with all members of RJ represented as column vectors. For
i = 1, 2, ..., J , let

µi = max
1≤j≤J

{|〈ui, vj〉|}

and
µ(U, V ) = max{mui |i = 1, ..., I}.

We know from Cauchy’s Inequality that

|〈ui, vj〉| ≤ 1,

and from Parseval’s Equation

J∑
j=1

|〈ui, vj〉|2 = ||ui||2 = 1.

Therefore, we have
1√
J
≤ µ(U, V ) ≤ 1.

The quantity µ(U, V ) is the coherence measure of the two bases; the closer
µ(U, V ) is to the lower bound of 1√

J
, the more incoherent the two bases

are.
Let f be a fixed member of RJ ; we expand f in the V basis as

f = x1v
1 + x2v

2 + ... + xJvJ .

We say that the coefficient vector x = (x1, ..., xJ) is S-sparse if S is the
number of non-zero xj .

18.6.2 Exploiting Sparseness

If S is small, most of the xj are zero, but since we do not know which ones
these are, we would have to compute all the linear functional values

xj = 〈f, vj〉

to recover f exactly. In fact, the smaller S is, the harder it would be to
learn anything from randomly selected xj , since most would be zero. The
idea in CS is to obtain measurements of f with members of a different
orthonormal basis, which we call the U basis. If the members of U are very
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much like the members of V , then nothing is gained. But, if the members of
U are quite unlike the members of V , then each inner product measurement

yi = 〈f, ui〉 = fT ui

should tell us something about f . If the two bases are sufficiently inco-
herent, then relatively few yi values should tell us quite a bit about f .
Specifically, we have the following result due to Candès and Romberg [60]:
suppose the coefficient vector x for representing f in the V basis is S-sparse.
Select uniformly randomly M ≤ J members of the U basis and compute
the measurements yi = 〈f, ui〉 . Then, if M is sufficiently large, it is highly
probable that z = x also solves the problem of minimizing the one-norm

||z||1 = |z1|+ |z2|+ ... + |zJ |,

subject to the conditions

yi = 〈g, ai〉 = gT ui,

for those M randomly selected ui, where

g = z1v
1 + z2v

2 + ... + zJvJ .

This can be formulated as a linear programming problem. The smaller
µ(U, V ) is, the smaller the M is permitted to be without reducing the
probability of perfect reconstruction.
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Chapter 19

Intensity Modulated
Radiation Therapy

In intensity modulated radiation therapy (IMRT) beamlets of radiation with
different intensities are transmitted into the body of the patient. Each voxel
within the patient will then absorb a certain dose of radiation from each
beamlet. The goal of IMRT is to direct a sufficient dosage to those regions
requiring the radiation, those that are designated planned target volumes
(PTV), while limiting the dosage received by the other regions, the so-
called organs at risk (OAR). In our discussion here we follow Censor et al.
[69].

19.1 The Forward and Inverse Problems

The forward problem is to calculate the radiation dose absorbed in the
irradiated tissue based on a given distribution of the beamlet intensities.
The inverse problem is to find a distribution of beamlet intensities, the
radiation intensity map, that will result in a clinically acceptable dose
distribution. One important constraint is that the radiation intensity map
must be implementable, that is, it is physically possible to produce such
an intensity map, given the machine’s design. There will be limits on the
change in intensity between two adjacent beamlets, for example.

19.2 Equivalent Uniform Dosage

The equivalent uniform dose (EUD) for tumors is the biologically equivalent
dose which, if given uniformly, will lead to the same cell-kill within the
tumor volume as the actual non-uniform dose.
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19.3 Constraints

Constraints on the EUD received by each voxel of the body are described in
dose space, the space of vectors whose entries are the doses received at each
voxel. Constraints on the deliverable radiation intensities of the beamlets
are best described in intensity space, the space of vectors whose entries are
the intensity levels associated with each of the beamlets. The constraints
in dose space will be upper bounds on the dosage received by the OAR
and lower bounds on the dosage received by the PTV. The constraints
in intensity space are limits on the complexity of the intensity map and
on the delivery time, and, obviously, that the intensities be non-negative.
Because the constraints operate in two different domains, it is convenient
to formulate the problem using these two domains. This leads to a split-
feasibility problem.

19.4 The Multi-Set Split-Feasibilty-Problem
Model

The split feasibility problem (SFP) is to find an x in a given closed convex
subset C of RJ such that Ax is in a given closed convex subset Q of
RI , where A is a given real I by J matrix. Because the constraints are
best described in terms of several sets in dose space and several sets in
intensity space, the SFP model needs to be expanded into the multi-set
SFP (MSSFP) [68].

It is not uncommon to find that, once the various constraints have been
specified, there is no intensity map that satisfies them all. In such cases,
it is desirable to find an intensity map that comes as close as possible to
satisfying all the constraints. One way to do this, as we shall see, is to
minimize a proximity function.

19.5 Formulating the Proximity Function

For i = 1, ..., I, and j = 1, ..., J , let hi ≥ 0 be the dose absorbed by the
i-th voxel of the patient’s body, xj ≥ 0 be the intensity of the j-th beamlet
of radiation, and Dij ≥ 0 be the dose absorbed at the i-th voxel due to a
unit intensity of radiation at the j-th beamlet. The non-negative matrix
D with entries Dij is the dose influence matrix.

In intensity space, we have the obvious constraints that xj ≥ 0. In addi-
tion, there are implementation constraints; the available treatment machine
will impose its own requirements, such as a limit on the difference in in-
tensities between adjacent beamlets. In dosage space, there will be a lower
bound on the dosage delivered to those regions designated as planned tar-
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get volumes (PTV), and an upper bound on the dosage delivered to those
regions designated as organs at risk (OAR).

19.6 Equivalent Uniform Dosage Functions

Suppose that St is either a PTV or a OAR, and suppose that St contains
Nt voxels. For each dosage vector h = (h1, ..., hI)T define the equivalent
uniform dosage function (EUD-function) et(h) by

et(h) = (
1
Nt

∑
i∈St

(hi)α)1/α, (19.1)

where 0 < α < 1 if St is a PTV, and α > 1 if St is an OAR. The function
et(h) is convex, for h nonnegative, when St is an OAR, and −et(h) is
convex, when St is a PTV. The constraints in dosage space take the form

et(h) ≤ at,

when St is an OAR, and
−et(h) ≤ bt,

when St is a PTV. Therefore, we require that h = Dx lie within the
intersection of these convex sets.
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Chapter 20

Convex Sets

Convex sets and convex functions play important roles in optimization. In
this chapter we survey the basic facts concerning the geometry of convex
sets. We begin with the geometry of RJ .

20.1 The Geometry of Real Euclidean Space

We denote by RJ the real Euclidean space consisting of all J-dimensional
column vectors x = (x1, ..., xJ)T with real entries xj ; here the superscript
T denotes the transpose of the 1 by J matrix (or, row vector) (x1, ..., xJ).

20.1.1 Inner Products

For x = (x1, ..., xJ)T and y = (y1, ..., yJ)T in RJ , the dot product x · y is
defined to be

x · y =
J∑

j=1

xjyj . (20.1)

Note that we can write

x · y = yT x = xT y, (20.2)

where juxtaposition indicates matrix multiplication. The 2-norm, or Eu-
clidean norm, or Euclidean length, of x is

||x||2 =
√

x · x =
√

xT x. (20.3)

The Euclidean distance between two vectors x and y in RJ is ||x− y||2.
The space RJ , along with its dot product, is an example of a finite-

dimensional Hilbert space.

169



170 CHAPTER 20. CONVEX SETS

Definition 20.1 Let V be a real vector space. The scalar-valued function
〈u, v〉 is called an inner product on V if the following four properties hold,
for all u, w, and v in V , and al real c:

〈u + w, v〉 = 〈u, v〉+ 〈w, v〉; (20.4)

〈cu, v〉 = c〈u, v〉; (20.5)

〈v, u〉 = 〈u, v〉; (20.6)

and

〈u, u〉 ≥ 0, (20.7)

with equality in Inequality (20.7) if and only if u = 0.

The dot product of vectors is an example of an inner product. The prop-
erties of an inner product are precisely the ones needed to prove Cauchy’s
Inequality, which then holds for any inner product. We shall favor the dot
product notation u · v for the inner product of vectors, although we shall
occasionally use the matrix multiplication form, vT u or the inner product
notation 〈u, v〉.

20.1.2 Cauchy’s Inequality

Cauchy’s Inequality, also called the Cauchy-Schwarz Inequality, tells us
that

|〈x, y〉| ≤ ||x||2||y||2, (20.8)

with equality if and only if y = αx, for some scalar α. The Cauchy-Schwarz
Inequality holds for any inner product.

A simple application of Cauchy’s inequality gives us

||x + y||2 ≤ ||x||2 + ||y||2; (20.9)

this is called the Triangle Inequality. We say that the vectors x and y are
mutually orthogonal if 〈x, y〉 = 0.

The Parallelogram Law is an easy consequence of the definition of the
2-norm:

||x + y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (20.10)

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law hold only for the 2-norm.
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20.2 A Bit of Topology

Having the norm allows us to define the distance between two points x and
y in RJ as ||x− y||. Being able to talk about how close points are to each
other enables us to define continuity of functions on RJ and to consider
topological notions of closed set, open set, interior of a set and boundary
of a set.

Definition 20.2 A subset B of RJ is closed if, whenever xk is in B for
each non-negative integer k and ||x − xk|| → 0, as k → +∞, then x is in
B.

For example, B = [0, 1] is closed as a subset of R, but B = (0, 1) is not.

Definition 20.3 We say that d ≥ 0 is the distance from the point x to the
set B if, for every ε > 0, there is bε in B, with ||x− bε||2 < d + ε, and no
b in B with ||x− b||2 < d.

The distance from the point 0 in R to the set (0, 1) is zero, while its distance
to the set (1, 2) is one. It follows easily from the definitions that, if B is
closed and d = 0, then x is in B.

Definition 20.4 The closure of a set B is the set of all points x whose
distance from B is zero.

The closure of the interval B = (0, 1) is [0, 1].

Definition 20.5 A subset U of RJ is open if its complement, the set of
all points not in U , is closed.

Definition 20.6 Let C be a subset of RJ . A point x in C is said to be
an interior point of set C if there is ε > 0 such that every point z with
||x− z|| < ε is in C. The interior of the set C, written int(C), is the set of
all interior points of C. It is also the largest open set contained within C.

For example, the open interval (0, 1) is the interior of the intervals (0, 1]
and [0, 1]. A set C is open if and only if C = int(C).

Definition 20.7 A point x in RJ is said to be a boundary point of set C
if, for every ε > 0, there are points yε in C and zε not in C, both depending
on the choice of ε, with ||x − yε|| < ε and ||x − zε|| < ε. The boundary of
C is the set of all boundary points of C. It is also the intersection of the
closure of C with the closure of its complement.

For example, the points x = 0 and x = 1 are boundary points of the set
(0, 1].
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Definition 20.8 For k = 0, 1, 2, ..., let xk be a vector in RJ . The sequence
of vectors {xk} is said to converge to the vector z if, given any ε > 0, there
is positive integer n, usually depending on ε, such that, for every k > n,
we have ||z − xk|| ≤ ε. Then we say that z is the limit of the sequence.

For example, the sequence {xk = 1
k+1} in R converges to z = 0. The

sequence {(−1)k} alternates between 1 and −1, so does not converge. How-
ever, the subsequence associated with odd k converges to z = −1, while the
subsequence associated with even k converges to z = 1. The values z = −1
and z = 1 are called subsequential limit points, or, sometimes, cluster points
of the sequence.

Definition 20.9 A sequence {xk} of vectors in RJ is said to be bounded
if there is a constant b > 0, such that ||xk|| ≤ b, for all k.

A fundamental result in analysis is the following.

Proposition 20.1 Every convergent sequence of vectors in RJ is bounded.
Every bounded sequence of vectors in RJ has at least one convergent sub-
sequence, therefore, has at least one cluster point.

20.3 Convex Sets in RJ

In preparation for our discussion of linear and nonlinear programming, we
consider some of the basic concepts from the geometry of convex sets.

20.3.1 Basic Definitions

We begin with the basic definitions.

Definition 20.10 A vector z is said to be a convex combination of the
vectors x and y if there is α in the interval [0, 1] such that z = (1−α)x+αy.

Definition 20.11 A nonempty set C in RJ is said to be convex if, for
any distinct points x and y in C, and for any real number α in the interval
(0, 1), the point (1 − α)x + αy is also in C; that is, C is closed to convex
combinations.

For example, the unit ball B in RJ , consisting of all x with ||x||2 ≤ 1, is
convex, while the surface of the ball, the set of all x with ||x||2 = 1, is not
convex.

Definition 20.12 The convex hull of a set S, denoted conv(S), is the
smallest convex set containing S.
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Proposition 20.2 The convex hull of a set S is the set C of all convex
combinations of members of S.

Definition 20.13 A subset S of RJ is a subspace if, for every x and y in
S and scalars α and β, the linear combination αx + βy is again in S.

A subspace is necessarily a convex set.

Definition 20.14 The orthogonal complement of a subspace S is the set

S⊥ = {u|uT s = 0, for every s ∈ S}, (20.11)

the set of all vectors u in RJ that are orthogonal to every member of S.

For example, in R3, the x, y-plane is a subspace and has for its orthogonal
complement the z-axis.

Definition 20.15 A subset M of RJ is a linear manifold if there is a
subspace S and a vector b such that

M = S + b = {x|x = s + b, for some s inS}.

Any linear manifold is convex.

Definition 20.16 For a fixed column vector a with Euclidean length one
and a fixed scalar γ the hyperplane determined by a and γ is the set

H(a, γ) = {z|〈a, z〉 = γ}.

The hyperplanes H(a, γ) are linear manifolds, and the hyperplanes H(a, 0)
are subspaces.

Definition 20.17 Given a subset C of RJ , the affine hull of C, denoted
aff(C), is the smallest linear manifold containing C.

For example, let C be the line segment connecting the two points (0, 1)
and (1, 2) in R2. The affine hull of C is the straight line whose equation is
y = x + 1.

Definition 20.18 The dimension of a subset of RJ is the dimension of its
affine hull, which is the dimension of the subspace of which it is a translate.

The set C above has dimension one. A set containing only one point is its
own affine hull, since it is a translate of the subspace {0}.

In R2, the line segment connecting the points (0, 1) and (1, 2) has no
interior; it is a one-dimensional subset of a two-dimensional space and can
contain no two-dimensional ball. But, the part of this set without its two
end points is a sort of interior, called the relative interior.
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Definition 20.19 The relative interior of a subset C of RJ , denoted ri(C),
is the interior of C, as defined by considering C as a subset of its affine
hull.

Since a set consisting of a single point is its own affine hull, it is its own
relative interior.

Definition 20.20 A point x in a convex set C is said to be an extreme
point of C if the set obtained by removing x from C remains convex.

Said another way, x ∈ C is an extreme point of C if x cannot be written
as

x = (1− α)y + αz, (20.12)

for y, z 6= x and α ∈ (0, 1). For example, the point x = 1 is an extreme
point of the convex set C = [0, 1]. Every point on the boundary of a sphere
in RJ is an extreme point of the sphere. The set of all extreme points of a
convex set is denoted Ext(C).

Definition 20.21 A non-zero vector d is said to be a direction of unbound-
edness of a convex set C if, for all x in C and all γ ≥ 0, the vector x + γd
is in C.

For example, if C is the non-negative orthant in RJ , then any non-negative
vector d is a direction of unboundedness.

Definition 20.22 A vector a is normal to a convex set C at the point s
in C if

〈a, c− s〉 ≤ 0, (20.13)

for all c in C.

Definition 20.23 Let C be convex and s in C. The normal cone to C at
s, denoted NC(s), is the set of all vectors a that are normal to C at s.

20.3.2 Orthogonal Projection onto Convex Sets

The following proposition is fundamental in the study of convexity and can
be found in most books on the subject; see, for example, the text by Goebel
and Reich [119].

Proposition 20.3 Given any nonempty closed convex set C and an arbi-
trary vector x in RJ , there is a unique member of C closest to x, denoted
PCx, the orthogonal (or metric) projection of x onto C.
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Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n , and ||x− cn||2 < ||x− cn−1||2. Then
the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x− (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

For example, if C = U , the unit ball, then PCx = x/||x||2, for all x such
that ||x||2 > 1, and PCx = x otherwise. If C is RJ

+, the nonnegative cone
of RJ , consisting of all vectors x with xj ≥ 0, for each j, then PCx = x+,
the vector whose entries are max (xj , 0). For any closed, convex set C, the
distance from x to C is ||x− PCx||.

If a nonempty set S is not convex, then the orthogonal projection of
a vector x onto S need not be well defined; there may be more than one
vector in S closest to x. In fact, it is known that a set S is convex if and
only if, for every x not in S, there is a unique point in S closest to x. Note
that there may well be some x for which there is a unique closest point in
S, but if S is not convex, then there must be at least one point without a
unique closest point in S.

Lemma 20.1 For H = H(a, γ), z = PHx is the vector

z = PHx = x + (γ − 〈a, x〉)a. (20.14)

We shall use this fact in our discussion of the ART algorithm.
For an arbitrary nonempty closed convex set C in RJ , the orthogonal

projection T = PC is a nonlinear operator, unless, of course, C is a sub-
space. We may not be able to describe PCx explicitly, but we do know a
useful property of PCx.

Proposition 20.4 For a given x, a vector z in C is PCx if and only if

〈c− z, z − x〉 ≥ 0, (20.15)

for all c in the set C.

Proof: Let c be arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx + α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22. (20.16)

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0, (20.17)
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so that

2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22. (20.18)

Taking the limit, as α → 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0. (20.19)

If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0, (20.20)

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0, (20.21)

and

〈z − PCx, x− z〉 ≥ 0. (20.22)

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx− z〉 ≥ 0. (20.23)

But,

〈z − PCx, PCx− z〉 = −||z − PCx||22, (20.24)

so it must be the case that z = PCx. This completes the proof.

20.4 Some Results on Projections

The characterization of the orthogonal projection operator PC given by
Proposition 20.4 has a number of important consequences.

Corollary 20.1 Let S be any subspace of RJ . Then, for any x in RJ and
s in S, we have

〈PSx− x, s〉 = 0. (20.25)

Proof: Since S is a subspace, s + PSx is again in S, for all s, as is cs, for
every scalar c.

This corollary enables us to prove the Decomposition Theorem.

Theorem 20.1 Let S be any subspace of RJ and x any member of RJ .
Then there are unique vectors s in S and u in S⊥ such that x = s+u. The
vector s is PSx and the vector u is PS⊥x.
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Proof: For the given x we take s = PSx and u = x− PSx. Corollary 20.1
assures us that u is in S⊥. Now we need to show that this decomposition
is unique. To that end, suppose that we can write x = s1 + u1, with s1

in S and u1 in S⊥. Then Proposition 20.4 tells us that, since s1 − x is
orthogonal to every member of S, s1 must be PSx.

This theorem is often presented in a slightly different manner.

Theorem 20.2 Let A be a real I by J matrix. Then every vector b in RI

can be written uniquely as b = Ax + w, where AT w = 0.

To derive Theorem 20.2 from Theorem 20.1, we simply let S = {Ax|x ∈
RJ}. Then S⊥ is the set of all w such that AT w = 0. It follows that w is
the member of the null space of AT closest to b.

Here are additional consequences of Proposition 20.4.

Corollary 20.2 Let S be any subspace of RJ , d a fixed vector, and V the
linear manifold V = S + d = {v = s + d|s ∈ S}, obtained by translating the
members of S by the vector d. Then, for every x in RJ and every v in V ,
we have

〈PV x− x, v − PV x〉 = 0. (20.26)

Proof: Since v and PV x are in V , they have the form v = s + d, and
PV x = ŝ + d, for some s and ŝ in S. Then v − PV x = s− ŝ.

Corollary 20.3 Let H be the hyperplane H(a, γ). Then, for every x, and
every h in H, we have

〈PHx− x, h− PHx〉 = 0. (20.27)

Corollary 20.4 Let S be a subspace of RJ . Then (S⊥)⊥ = S.

Proof: Every x in RJ has the form x = s + u, with s in S and u in S⊥.
Suppose x is in (S⊥)⊥. Then u = 0.
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Chapter 21

The Split Feasibility
Problem

The split feasibility problem (SFP) [67] is to find c ∈ C with Ac ∈ Q, if such
points exist, where A is a real I by J matrix and C and Q are nonempty,
closed convex sets in RJ and RI , respectively. In this chapter we discuss
the CQ algorithm for solving the SFP, as well as recent extensions and
applications.

21.1 The CQ Algorithm

In [54] the CQ algorithm for solving the SFP was presented, for the real
case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (21.1)

where I is the identity operator and γ ∈ (0, 2/ρ(AT A)), for ρ(AT A) the
spectral radius of the matrix AT A, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (21.2)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1
2
||PQAx−Ax||22

179
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over the set C, provided such constrained minimizers exist [55]. The CQ al-
gorithm employs the relaxation parameter γ in the interval (0, 2/L), where
L is the largest eigenvalue of the matrix AT A. Choosing the best relaxation
parameter in any algorithm is a nontrivial procedure. Generally speaking,
we want to select γ near to 1/L. If A is normalized so that each row has
length one, then the spectral radius of AT A does not exceed the maximum
number of nonzero elements in any column of A. A similar upper bound
on ρ(AT A) can be obtained for non-normalized, ε-sparse A.

21.2 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C ⊆ RJ and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RJ , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. Generally,
we cannot solve the SFP in closed form and iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber
[149] and projected Landweber methods (see [15]), are particular cases of
the CQ algorithm.

21.2.1 The Landweber algorithm

With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b−Axk). (21.3)

This is the Landweber algorithm.

21.2.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ..., the
projected Landweber method for finding a solution of Ax = b in C has the
iterative step

xk+1 = PC(xk + γAT (b−Axk)). (21.4)

21.2.3 Convergence of the Landweber Algorithms

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever
such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution
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of Ax = b, while the projected Landweber algorithm will converge to a
minimizer, over the set C, of the function ||b − Ax||2, whenever such a
minimizer exists.

21.2.4 The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous algebraic recon-
struction technique (SART) [4] for solving Ax = b, for nonnegative matrix
A. Let A be an I by J matrix with nonnegative entries. Let Ai+ > 0 be
the sum of the entries in the ith row of A and A+j > 0 be the sum of the
entries in the jth column of A. Consider the (possibly inconsistent) system
Ax = b. The SART algorithm has the following iterative step:

xk+1
j = xk

j +
1

A+j

∑I

i=1
Aij(bi − (Axk)i)/Ai+.

We make the following changes of variables:

Bij = Aij/(Ai+)1/2(A+j)1/2,

zj = xj(A+j)1/2,

and
ci = bi/(Ai+)1/2.

Then the SART iterative step can be written as

zk+1 = zk + BT (c−Bzk).

This is a particular case of the Landweber algorithm, with γ = 1. The
convergence of SART follows from that of the CQ algorithm, once we know
that the largest eigenvalue of BT B is less than two; in fact, we show that
it is one [54].

If BT B had an eigenvalue greater than one and some of the entries of A
are zero, then, replacing these zero entries with very small positive entries,
we could obtain a new A whose associated BT B also had an eigenvalue
greater than one. Therefore, we assume, without loss of generality, that A
has all positive entries. Since the new BT B also has only positive entries,
this matrix is irreducible and the Perron-Frobenius Theorem applies. We
shall use this to complete the proof.

Let u = (u1, ..., uJ)T with uj = (A+j)1/2 and v = (v1, ..., vI)T , with vi =
(Ai+)1/2. Then we have Bu = v and BT v = u; that is, u is an eigenvector
of BT B with associated eigenvalue equal to one, and all the entries of u
are positive, by assumption. The Perron-Frobenius theorem applies and
tells us that the eigenvector associated with the largest eigenvalue has all
positive entries. Since the matrix BT B is symmetric its eigenvectors are
orthogonal; therefore u itself must be an eigenvector associated with the
largest eigenvalue of BT B. The convergence of SART follows.
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21.2.5 Application of the CQ Algorithm in Dynamic
ET

To illustrate how an image reconstruction problem can be formulated as
a SFP, we consider briefly emission computed tomography (ET) image re-
construction. The objective in ET is to reconstruct the internal spatial
distribution of intensity of a radionuclide from counts of photons detected
outside the patient. In static ET the intensity distribution is assumed con-
stant over the scanning time. Our data are photon counts at the detectors,
forming the positive vector b and we have a matrix A of detection proba-
bilities; our model is Ax = b, for x a nonnegative vector. We could then
take Q = {b} and C = RN

+ , the nonnegative cone in RN .
In dynamic ET [104] the intensity levels at each voxel may vary with

time. The observation time is subdivided into, say, T intervals and one
static image, call it xt, is associated with the time interval denoted by t,
for t = 1, ..., T . The vector x is the concatenation of these T image vectors
xt. The discrete time interval at which each data value is collected is also
recorded and the problem is to reconstruct this succession of images.

Because the data associated with a single time interval is insufficient, by
itself, to generate a useful image, one often uses prior information concern-
ing the time history at each fixed voxel to devise a model of the behavior
of the intensity levels at each voxel, as functions of time. One may, for
example, assume that the radionuclide intensities at a fixed voxel are in-
creasing with time, or are concave (or convex) with time. The problem
then is to find x ≥ 0 with Ax = b and Dx ≥ 0, where D is a matrix chosen
to describe this additional prior information. For example, we may wish to
require that, for each fixed voxel, the intensity is an increasing function of
(discrete) time; then we want

xt+1
j − xt

j ≥ 0,

for each t and each voxel index j. Or, we may wish to require that the
intensity at each voxel describes a concave function of time, in which case
nonnegative second differences would be imposed:

(xt+1
j − xt

j)− (xt+2
j − xt+1

j ) ≥ 0.

In either case, the matrix D can be selected to include the left sides of
these inequalities, while the set Q can include the nonnegative cone as one
factor.

21.2.6 More on the CQ Algorithm

One of the obvious drawbacks to the use of the CQ algorithm is that we
would need the projections PC and PQ to be easily calculated. Several
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authors have offered remedies for that problem, using approximations of the
convex sets by the intersection of hyperplanes and orthogonal projections
onto those hyperplanes [217].
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Chapter 22

Appendix: Some
Probability Theory

In this chapter we review a few important results from the theory of prob-
ability.

22.1 Independent Random Variables

Let X1, ..., XN be N independent real random variables with the same mean
(that is, expected value) µ and same variance σ2. The main consequence
of independence is that E(XiXj) = E(Xi)E(Xj) = µ2 for i 6= j. Then, it
is easily shown that the sample average

X̄ = N−1
N∑

n=1

Xn

has µ for its mean and σ2/N for its variance.

Exercise 22.1 Prove these two assertions.

22.2 Maximum Likelihood Parameter Esti-
mation

Suppose that the random variable X has a probability density function
p(x; θ), where θ is an unknown parameter. A common problem in statistics
is to estimate θ from independently sampled values of X, say x1, ..., xN . A
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frequently used approach is to maximize the function of θ given by

L(θ) = L(θ;x1, ..., xN ) =
N∏

n=1

p(xn; θ).

The function L(θ) is the likelihood function and a value of θ maximizing
L(θ) is a maximum likelihood estimate. We give two examples of maximum
likelihood (ML) estimation.

22.2.1 An Example: The Bias of a Coin

Let θ in the interval [0, 1] be the unknown probability of success on one trial
of a binomial distribution (a coin flip, for example), so that the probability
of k successes in N trials is L(θ; k,N) = N !

k!(N−k)!θ
k(1 − θ)N−k, for k =

0, 1, ..., N . If we have observed N trials and have recorded k successes, we
can estimate θ by selecting that θ̂ for which L(θ, k,N) is maximized as a
function of θ.

Exercise 22.2 Show that, for the binomial case described above, the max-
imum likelihood estimate of θ is θ̂ = k/N .

22.2.2 Estimating a Poisson Mean

A random variable X taking on only nonnegative integer values is said to
have the Poisson distribution with parameter λ > 0 if, for each nonnegative
integer k, the probability pk that X will take on the value k is given by

pk = e−λλk/k!.

Exercise 22.3 Show that the sequence {pk}∞k=0 sums to one.

Exercise 22.4 Show that the expected value E(X) is λ, where the expected
value in this case is

E(X) =
∞∑

k=0

kpk.

Exercise 22.5 Show that the variance of X is also λ, where the variance
of X in this case is

var(X) =
∞∑

k=0

(k − λ)2pk.

Exercise 22.6 Show that the ML estimate of λ based on N independent
samples is the sample mean.
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22.3 Independent Poisson Random Variables

Let Z1, ..., ZN be independent Poisson random variables with expected
value E(Zn) = λn. Let Z be the random vector with Zn as its entries,
λ the vector whose entries are the λn, and λ+ =

∑N
n=1 λn. Then the

probability function for Z is

f(Z|λ) =
N∏

n=1

λzn
n exp(−λn)/zn! = exp(−λ+)

N∏
n=1

λzn
n /zn! . (22.1)

Now let Y =
∑N

n=1 Zn. Then, the probability function for Y is

Prob(Y = y) = Prob(Z1 + ... + ZN = y)

=
∑

z1+...zN=y

exp(−λ+)
N∏

n=1

λzn
n /zn! . (22.2)

But, as we shall see shortly, we have

∑
z1+...zN=y

exp(−λ+)
N∏

n=1

λzn
n /zn! = exp(−λ+)λy

+/y! . (22.3)

Therefore, Y is a Poisson random variable with E(Y ) = λ+.
When we observe an instance of y, we can consider the conditional

distribution f(Z|λ, y) of {Z1, ..., ZN}, subject to y = Z1 + ... + ZN . We
have

f(Z|λ, y) =
y!

z1!...zN !
(
λ1

λ+
)z1 ...(

λN

λ+
)zN . (22.4)

This is a multinomial distribution. Given y and λ, the conditional expected
value of Zn is then E(Zn|λ, y) = yλn/λ+. To see why Equation (22.3) is
true, we discuss the multinomial distribution.

22.4 The Multinomial Distribution

When we expand the quantity (a1 + ... + aN )y, we obtain a sum of terms,
each of the form az1

1 ...azN

N , with z1 + ... + zN = y. How many terms of the
same form are there? There are N variables. We are to select zn of type
n, for each n = 1, ..., N , to get y = z1 + ... + zN factors. Imagine y blank
spaces, to be filled in by various factor types as we do the selection. We
select z1 of these blanks and mark them a1, for type one. We can do that
in
(

y
z1

)
ways. We then select z2 of the remaining blank spaces and enter
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a2 in them; we can do this in
(
y−z1

z2

)
ways. Continuing in this way, we find

that we can select the N factor types in(
y

z1

)(
y − z1

z2

)
...

(
y − (z1 + ... + zN−2)

zN−1

)
(22.5)

ways, or in

y!
z1!(y − z1)!

...
(y − (z1 + ... + zN−2))!

zN−1!(y − (z1 + ... + zN−1))!
=

y!
z1!...zN !

. (22.6)

This tells us in how many different sequences the factor types can be se-
lected. Applying this, we get the multinomial theorem:

(a1 + ... + aN )y =
∑

z1+...+zN=y

y!
z1!...zN !

az1
1 ...azN

N . (22.7)

Select an = λn/λ+. Then,

1 = 1y = (
λ1

λ+
+ ... +

λN

λ+
)y

=
∑

z1+...+zN=y

y!
z1!...zN !

(
λ1

λ+
)z1 ...(

λN

λ+
)zN . (22.8)

From this we get

∑
z1+...zN=y

exp(−λ+)
N∏

n=1

λzn
n /zn! = exp(−λ+)λy

+/y! . (22.9)

22.5 Characteristic Functions

The Fourier transform shows up in probability theory in the guise of the
characteristic function of a random variable. The characteristic function
is related to, but more general than, the moment-generating function and
serves much the same purposes.

A real-valued random variable X is said to have the probability density
function (pdf) f(x) if, for any interval [a, b], the probability that X takes
its value within this interval is given by the integral

∫ b

a
f(x)dx. To be a

pdf, f(x) must be nonnegative and
∫∞
−∞ f(x)dx = 1. The characteristic

function of X is then

F (ω) =
∫ ∞

−∞
f(x)eixωdx.

The formulas for differentiating the Fourier transform are quite useful in
determining the moments of a random variable.
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The expected value of X is

E(X) =
∫ ∞

−∞
xf(x)dx,

and for any real-valued function g(x) the expected value of the random
variable g(X) is

E(g(X)) =
∫ ∞

−∞
g(x)f(x)dx.

The nth moment of X is

E(Xn) =
∫ ∞

−∞
xnf(x)dx;

the variance of X is then var(X)= E(X2) − E(X)2. It follows, therefore,
that the nth moment of the random variable X is given by

E(Xn) = (i)nF (n)(0).

If we have N real-valued random variables X1, ..., XN , their joint prob-
ability density function is f(x1, ..., xN ) ≥ 0 having the property that, for
any intervals [a1, b1], ..., [aN , bN ], the probability that Xn takes its value
within [an, bn], for each n, is given by the multiple integral∫ b1

a1

· · ·
∫ bN

aN

f(x1, ..., xN )dx1 · · · dxN .

The joint moments are then

E(Xm1
1 · · ·XmN

N ) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
xm1

1 · · · xmN

N f(x1, ..., xN )dx1 · · · dxN .

The joint moments can be calculated by evaluating at zero the partial
derivatives of the characteristic function of the joint pdf.

The random variables are said to be independent if

f(x1, ..., xN ) = f(x1) · · · f(xN ),

where, in keeping with the convention used in the probability literature,
f(xn) denotes the pdf of the random variable Xn.

If X and Y are independent random variables with probability density
functions f(x) and g(y), then the probability density function for the ran-
dom variable Z = X + Y is (f ∗ g)(z), the convolution of f and g. To see
this, we first calculate the cumulative distribution function

H(z) = Prob (X + Y ≤ z),



192 CHAPTER 22. APPENDIX: SOME PROBABILITY THEORY

which is

H(z) =
∫ +∞

x=−∞

∫ z−x

y=−∞
f(x)g(y)dydx.

Using the change of variable t = x + y, we get

H(z) =
∫ +∞

x=−∞

∫ z

t=−∞
f(x)g(t− x)dtdx.

The pdf for the random variable Z is h(z) = H ′(z), the derivative of H(z).
Differentiating the inner integral with respect to z, we obtain

h(z) =
∫ +∞

x=−∞
f(x)g(z − x)dx;

therefore, h(z) = (f ∗ g)(z). It follows that the characteristic function
for the random variable Z = X + Y is the product of the characteristic
functions for X and Y .

22.6 Gaussian Random Variables

A real-valued random variable X is called Gaussian or normal with mean
µ and variance σ2 if its probabilty density function (pdf) is

f(x) =
1

σ
√

2π
exp(− (x− µ)2

2σ2
). (22.10)

In the statistical literature a normal random variable is standard if its mean
is µ = 0 and its variance is σ2 = 1.

22.6.1 Gaussian Random Vectors

Suppose now that Z1, ..., ZN are independent standard normal random vari-
ables. Then, their joint pdf is the function

f(z1, ..., zN ) =
N∏

n=1

1√
2π

exp(−1
2
z2
n) =

1
(
√

2π)N
exp(−1

2
(z2

1 + ... + z2
N )).

By taking linear combinations of these random variables, we can obtain a
new set of normal random variables that are no longer independent. For
each m = 1, ...,M let

Xm =
N∑

n=1

AmnZn.

Then E(Xm) = 0.
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The covariance matrix associated with the Xm is the matrix R with
entries Rmn = E(XmXn), m, n = 1, 2, ...,M . We have

E(XmXn) =
N∑

k=1

Amk

N∑
j=1

AnjE(ZkZj).

Since the Zn are independent with mean zero, we have E(ZkZj) = 0 for
k 6= j and E(Z2

k) = 1. Therefore,

E(XmXn) =
N∑

k=1

AmkAnk,

and the covariance matrix is R = AAT .
Writing X = (X1, ..., XM )T and Z = (Z1, ..., ZN )T , we have X = AZ,

where A is the M by N matrix with entries Amn. Using the standard
formulas for changing variables, we find that the joint pdf for the random
variables X1, ..., XM is

f(x1, ..., xM ) =
1√

det (R)
1

(
√

2π)N
exp(−1

2
xT R−1x),

with x = (x1, ..., xN )T . For the remainder of this chapter, we limit the
discussion to the case of M = N = 2 and use the notation X1 = X,
X2 = Y and f(x1, x2) = f(x, y). We also let ρ = E(XY )/σ1σ2.

The two-dimensional FT of the function f(x, y), the characteristic func-
tion of the Gaussian random vector X, is

F (α, β) = exp(−1
2
(σ2

1α2 + σ2
2β2 + 2σ1σ2ραβ)).

Exercise 22.7 Use partial derivatives of F (α, β) to show that E(X2Y 2) =
2σ2

1σ2
2ρ2.

Exercise 22.8 Show that E(X2Y 2) = E(X2)E(Y 2) + 2E(XY )2.
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22.6.2 Complex Gaussian Random Variables

Let X and Y be independent real Gaussian random variables with means
µx and µy, respectively, and common variance σ2. Then W = X + iY is a
complex Gaussian random variable with mean µw = E(W ) = µx + iµy and
variance σ2

w = 2σ2.
The results of Exercise 22.7 extend to complex Gaussian random vari-

ables W and V . In the complex case we have

E(|V |2|W |2) = E(|V |2)E(|W |2) + |E(V W )|2.

This is important in optical image processing, where it is called the Hanbury-
Brown Twiss effect and provides the basis for intensity interferometry
[113]. The main point is that we can obtain magnitude information about
E(V W ), but not phase information, by measuring the correlation be-
tween the magnitudes of V and W ; that is, we learn something about
E(V W ) from intensity measurements. Since we have only the magnitude
of E(V W ), we then have a phase problem.



Chapter 23

Appendix: Bayesian
Methods

23.1 Using A Priori Information

We know that to get information out we need to put information in; but
how to do it is the problem. One approach that is quite popular within the
image-reconstruction community is the use of statistical Bayesian methods
and maximum a posteriori (MAP) estimation.

23.2 Conditional Probabilities and Bayes’ Rule

Suppose that A and B are two events with positive probabilities P (A) and
P (B), respectively. The conditional probability of B, given A, is defined to
be P (B|A) = P (A ∩B)/P (A). It follows that Bayes’ Rule holds:

P (A|B) = P (B|A)P (A)/P (B).

To illustrate the use of this rule, we consider the following example.

23.2.1 An Example of Bayes’ Rule

Suppose that, in a certain town, 10 percent of the adults over 50 have dia-
betes. The town doctor correctly diagnoses those with diabetes as having
the disease 95 percent of the time. In two percent of the cases he incor-
rectly diagnoses those not having the disease as having it. Let D mean that
the patient has diabetes, N that the patient does not have the disease, A
that a diagnosis of diabetes is made, and B that a diagnosis of diabetes is
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not made. The probability that he will diagnose a given adult as having
diabetes is given by the rule of total probability:

P (A) = P (A|D)P (D) + P (A|N)P (N).

In this example, we obtain P (A) = 0.113. Now suppose a patient receives a
diagnosis of diabetes. What is the probability that this diagnosis is correct?
In other words, what is P (D|A)? For this we use Bayes’ Rule:

P (D|A) = P (A|D)P (D)/P (A),

which turns out to be 0.84.

23.2.2 Using Prior Probabilities

So far nothing is controversial. The fun begins when we attempt to broaden
the use of Bayes’ Rule to ascribe a priori probabilities to quantities that
are not random. The example used originally by Thomas Bayes in the
eighteenth century is as follows. Imagine a billiard table with a line drawn
across it parallel to its shorter side, cutting the table into two rectangular
regions, the nearer called A and the farther B. Balls are tossed on to the
table, coming to rest in either of the two regions. Suppose that we are told
only that after N such tosses n of the balls ended up in region A. What is
the probability that the next ball will end up in region A?

At first it would seem that we cannot answer this question unless we
are told the probability of any ball ending up in region A; Bayes argues
differently, however. Let A be the event that a ball comes to rest in region
A, and let P (A) = x be the unknown probability of coming to rest in region
A; we may consider x to be the relative area of region A, although this is
not necessary. Let D be the event that n out of N balls end up in A. Then,

P (D|x) =
(

N

n

)
xn(1− x)N−n.

Bayes then adopts the view that the horizontal line on the table was ran-
domly positioned so that the unknown x can be treated as a random vari-
able. Using Bayes’ Rule, we have

P (x|D) = P (D|x)P (x)/P (D),

where P (x) is the probability density function (pdf) of the random variable
x, which Bayes takes to be uniform over the interval [0, 1]. Therefore, we
have

P (x|D) = c

(
N

n

)
xn(1− x)N−n,

where c is chosen so as to make P (x|D) a pdf.
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Exercise 23.1 Use integration by parts, or look up facts about the Beta
function, to show that(

N

n

)∫ 1

0

xn(1− x)N−ndx = 1/(N + 1),

and (
N + 1
n + 1

)∫ 1

0

xn+1(1− x)N−ndx = 1/(N + 2)

for n = 0, 1, ..., N .

From the exercise we can conclude that c = N + 1; therefore we have the
pdf P (x|D). Now we want to estimate x itself. One way to do this is to
calculate the expected value of this pdf, which, according to the exercise, is
(n + 1)/(N + 2). So even though we do not know x, we can reasonably say
(n + 1)/(N + 2) is the probability that the next ball will end up in region
A, given the behavior of the previous N balls.

There is a second way to estimate x; we can find the value of x for
which the pdf reaches its maximum. A quick calculation shows this value
to be n/N . This estimate of x is not the same as the one we calculated
using the expected value but they are close for large N .

What is controversial here is the decision to treat the positioning of the
line as a random act, with the resulting probability x a random variable,
as well as the specification of the pdf governing x. Even if x were a random
variable, we do not necessarily know its pdf. Bayes takes the pdf to be
uniform over [0, 1] more as an expression of ignorance than of knowledge. It
is this broader use of prior probabilities that is generally known as Bayesian
methods and not the use of Bayes’ Rule itself.

23.3 Maximum A Posteriori Estimation

Bayesian methods provide us with an alternative to maximum likelihood
parameter estimation. Suppose that a random variable (or vector) Z has
the pdf f(z; θ), where θ is a parameter. When this pdf is viewed as a
function of θ, not of z, it is called the likelihood function. Having observed
an instance of Z, call it z, we can estimate the parameter θ by selecting
that value for which the likelihood function f(z; θ) has its maximum. This
is the maximum likelihood (ML) estimator. Alternatively, suppose that we
treat θ itself as one value of a random variable Θ having its own pdf, say
g(θ). Then, Bayes’ Rule says that the conditional pdf of Θ, given z, is

g(θ|z) = f(z; θ)g(θ)/f(z),
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where
f(z) =

∫
f(z; θ)g(θ)dθ.

The maximum a posteriori (MAP) estimate of θ is the one for which the
function g(θ|z) is maximized. Taking logs and ignoring terms that do not
involve θ, we find that the MAP estimate of θ maximizes the function
log f(z; θ) + log g(θ).

Because the ML estimate maximizes log f(z; θ), the MAP estimate is
viewed as involving a penalty term log g(θ) missing in the ML approach.
This penalty function is based on the prior pdf g(θ). We choose g(θ) in a
way that expresses our prior knowledge of the parameter θ.

23.4 MAP Reconstruction of Images

In emission tomography the parameter θ is actually a vectorized image
that we wish to reconstruct and the observed data constitute z. Our prior
knowledge about θ may be that the true image is near some prior estimate,
say ρ, of the correct answer, in which case g(θ) is selected to peak at ρ
[152]. Frequently our prior knowledge of θ is that the image it represents is
nearly constant locally, except for edges. Then g(θ) is designed to weight
more heavily the locally-constant images and less heavily the others [116,
122, 154, 127, 158].

23.5 Penalty Function Methods

The so-called penalty function that appears in the MAP approach comes
from a prior pdf for θ. This suggests more general methods that involve a
penalty function term that does not necessarily emerge from Bayes’ Rule
[43]. Such methods are well-known in optimization. We are free to estimate
θ as the maximizer of a suitable objective function whether or not that
function is a posterior probability. Using penalty function methods permits
us to avoid the controversies that accompany Bayesian methods.
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Appendix: Discrete Signal
Processing

Although we usually model real-world distributions as functions of contin-
uous variables, while the data we actually obtain are finite, it is standard
practice to develop signal processing fundamentals within the context of in-
finite sequences, or functions of discrete variables. Infinite sequences arise
when we sample functions of continuous variables, or when we extend fi-
nite data. Within the context of discrete signal processing, Fourier series
replace Fourier transforms as the key mathematical tool. The Shannon
sampling theorem provides the link between these two branches of Fourier
analysis.

24.1 Discrete Signals

A discrete signal is a function x = {x(n)} defined for all integers n. In
signal processing, such discrete signals are often the result of sampling a
function of a continuous variable. In our discussion of farfield propagation,
we saw that the data gathered at each sensor effected a sampling of the
Fourier transform, F (γ), of the distant distribution f(x). In the theoretical
situation in which we had available an infinite discrete set of sensors, we
would have an infinite sequence, obtained by sampling the function F (γ).
In many applications, the function that is being sampled is a function of
time, say f(t); we shall use this example in our discussion here.

In the most common case, that of equispaced sampling, we have x(n) =
f(n∆), where ∆ > 0 is the sampling interval. Generally, such discrete sig-
nals are neither a realistic model of the physical situation nor an accurate
description of what we have actually obtained through measurement. Nev-
ertheless, discrete signals provide the most convenient framework within
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which to study the the basic tools of signal processing coming from Fourier
analysis.

24.2 Notation

It is common practice to denote functions of a discrete variable by the
letters x, y or z, as well as f, g or h. So we speak of the discrete signals
x = {x(n) = 2n − 1, −∞ < n < ∞} or y = {y(n) = −n3 + n, −∞ < n <
∞}. For convenience, we often just say x(n) = 2n − 1 or y(n) = n3 + n
when we mean the whole function x or y. However, if k is regarded as a
fixed, but unspecified, integer, x(k) means the value of the function x at
k. This is really the same thing that we do in calculus, when we define a
function f(x) = ax2 + bx + c; the x is a variable, while the a, b, and c are
parameters that do not change during the discussion of this function. Now
n is a variable, while k is a parameter.

There are two special discrete signals with reserved names, δ and u:
δ(0) = 1 and δ(n) = 0, for n 6= 0; u(n) = 1, for n ≥ 0 and u(n) = 0 for
n < 0. When we say that their names are reserved we mean that whenever
you see these names you can (usually) assume that they refer to the same
functions as just defined; in calculus ex and sinx are reserved names, while
in signal processing δ and u are reserved names.

24.3 Operations on Discrete Signals

Because discrete signals are functions, we can perform on them many of the
operations we perform on functions of a continuous variable. For instance,
we can add discrete signals x and y, to get the discrete signal x+y, we can
multiply x by a real number c to get the discrete signal cx, we can multiply
x and y to get xy, and so on. We can shift x to the right k units to get y
with y(n) = x(n − k). Notice that, if we shift x = δ to the right k units,
we have y with y(k) = 1 and y(n) = 0 for n 6= k; we call this function δk,
so we sometimes say that δ = δ0.

In general, an operation, or, to use the official word, an operator, T
works on a discrete signal x to produce another discrete signal y; we de-
scribe this situation by writing y = T (x). For example, the operator T = Sk

shifts any x to the right by k units; for example, S3(δ) = δ3. We are par-
ticularly interested in operators that possess certain nice properties.

24.3.1 Linear Operators

An operator T is called linear if, for any x and z and numbers a and b we
have T (ax + bz) = aT (x) + bT (z); for example, the operator T = Sk is
linear.
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Exercise 24.1 Which of the following operators are linear?

a. T (x)(n) = x(n− 1) + x(n);

b. T (x)(n) = nx(n);

c. T (x)(n) = x(n)2.

24.3.2 Shift-invariant Operators

Notice that operators are also functions, although not the sort that we
usually study; their domains and ranges consist of functions. We have seen
such operator-type functions in calculus class- the operator that transforms
a function into its derivative is an operator-type function. Therefore we
can combine operators using composition, in the same way we compose
functions. The composition of operators T and S is the operator that first
performs S and then performs T on the result; that is, the composition
of T and S begins with x and ends with y = T (S(x)). Notice that, just
as with ordinary functions, the order of the operators in the composition
matters; T (S(x)) and S(T (x)) need not be the same discrete signal. We
say that operators T and S commute if T (S(x)) = S(T (x)), for all x; in
that case we write TS = ST .

An operator T is said to be shift-invariant if TSk = SkT for all integers
k. This means that if y is the output of the system described by T when
the input is x, then when we shift the input by k, from x to Skx, all that
happens to the output is that the y is also shifted by k, from y to Sky.
For example, suppose that T is the squaring operator, defined by T (x) = y
with y(n) = x(n)2. Then T is shift-invariant. On the other hand, the
operator T with y = T (x) such that y(n) = x(−n) is not shift-invariant.

Exercise 24.2 Which of the following operators are shift-invariant?

a. T (x)(n) = x(0) + x(n);

b. T (x)(n) = x(n) + x(−n);

c. T (x)(n) =
∑2

k=−2 x(n + k).

We are most interested in operators T that are both linear and shift-
invariant; these are called LSI operators. An LSI operator T is often viewed
as a linear system having inputs called x and outputs called y, where y =
T (x), and we speak of a LSI system.

24.3.3 Convolution Operators

Let h be a fixed discrete signal. For any discrete signal x define y = T (x)
by

y(n) =
∞∑

k=−∞

h(k)x(n− k),
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for any integer n. We then say that y is the convolution of x with h and
write y = x ∗ h. Notice that x ∗ h = h ∗ x; that is,

∞∑
k=−∞

h(k)x(n− k) =
∞∑

k=−∞

x(k)h(n− k).

The operator T is then the convolution with h operator. Any such T is
linear.

24.3.4 LSI Filters are Convolutions

The operator T that is convolution with h is linear and shift-invariant. The
most important fact in signal processing is that every T that is linear and
shift-invariant (LSI) must be convolution with h, for some fixed discrete
signal h.

Because of the importance of this result we give a proof now. First,
we must find the h. To do this we let x = δ; the h we seek is then the
output h = T (δ). Now we must show that, for any other input x, we have
T (x) = x ∗ h. Note that for any k we have δk = Sk(δ), so that

T (δk) = T (Sk(δ)) = Sk(T (δ)) = Sk(h),

and so
T (δk)(n) = Sk(h)(n) = h(n− k).

We can write an arbitrary x in terms of the δk as

x =
∞∑

k=−∞

x(k)δk.

Then

T (x)(n) = T (
∞∑

k=−∞

x(k)δk)(n) =
∞∑

k=−∞

x(k)T (δk)(n) =
∞∑

k=−∞

x(k)h(n−k).

Therefore, T (x) = x ∗ h, as we claimed. Because the h associated with the
operator T is h = T (δ), the discrete signal h is called the impulse-response
function of the system.

24.4 Special Types of Discrete Signals

Some of our calculations, such as convolution, involve infinite sums. In or-
der for these sums to make sense we would need to impose certain restric-
tions on the discrete signals involved. Some books consider only discrete
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signals x that are absolutely summable, that is, for which
∞∑

n=−∞
|x(n)| < ∞,

or, at least, x that are bounded, which means that there is a positive con-
stant b > 0 with |x(n)| ≤ b for all n. Sometimes the condition of absolute
summability is imposed only on discrete functions h that are to be asso-
ciated with LSI operators. Operators T whose h is absolutely summable
have the desirable property of stability; that is, if the input function x is
bounded, so is the output function y = T (x). This property is also called
the bounded in, bounded out (BIBO) property.

Exercise 24.3 Show that the operator T is a stable operator if and only
if its associated h is absolutely summable. Hint: If h is not absolutely
summable, consider the input sequence with x(n) = h(−n)/|h(n)|.

In order to make use of the full power of Fourier methods some texts
require that discrete signals x be absolutely square-summable, that is,

∞∑
n=−∞

|x(n)|2 < ∞.

Exercise 24.4 Show that the discrete signal x(n) = 1
|n|+1 is absolutely

square-summable, but not absolutely summable.

Our approach will be to avoid discussing specific requirements, with the
understanding that some requirements will usually be needed to make the
mathematics rigorous.

24.5 The Frequency-Response Function

Just as sine and cosine functions play important roles in calculus, so do
their discrete counterparts in signal processing. The discrete sine function
with frequency ω is the discrete signal sinω with

sinω(n) = sin(ωn),

for each integer n. Similarly, the discrete cosine function with frequency ω
is cosω with

cosω(n) = cos(ωn).

It is convenient to include in the discussion the complex exponential eω

defined by
eω(n) = cosω(n) + i sinω(n) = eiωn.

Since these discrete signals are the same for ω and ω + 2π we assume that
ω lies in the interval [−π, π).
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24.5.1 The Response of a LSI System to x = eω

Let T denote a LSI system and let ω be fixed. We show now that

T (eω) = Heω,

for some constant H. Since the H can vary as we change ω it is really a
function of ω, so we denote it H = H(ω).

Let v = {v(n)} be the signal v = eω − S1(eω). Then we have

v(n) = einω − ei(n−1)ω = (1− e−iω)einω.

Therefore, we can write
v = (1− e−iω)eω,

from which it follows that

T (v) = (1− e−iω)T (eω). (24.1)

But we also have

T (v) = T (eω − S1(eω)) = T (eω)− TS1(eω),

and, since T is shift-invariant, TS1 = S1T , we know that

T (v) = T (eω)− S1T (eω). (24.2)

Combining Equations (24.1) and (24.2), we get

(1− e−iω)T (eω) = T (eω)− S1T (eω).

Therefore,
S1T (eω) = e−iωT (eω),

or
T (eω)(n− 1) = S1T (eω)(n) = e−iωT (eω)(n).

We conclude from this that

einωT (eω)(0) = T (eω)(n),

for all n. Finally, we let H(ω) = T (eω)(0).
It is useful to note that we did not use here the fact that T is a convolu-

tion operator. However, since we do know that T (x) = x ∗ h, for h = T (δ),
we can relate the function H(ω) to h.
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24.5.2 Relating H(ω) to h = T (δ)

Since T is a LSI operator, T operates by convolving with h = T (δ). Con-
sider what happens when we select for the input the discrete signal x = eω.
Then the output is y = T (eω) with

y(n) =
∞∑

k=−∞

h(k)eiω(n−k) = H(eiω)eiωn,

where

H(eiω) =
∞∑

k=−∞

h(k)e−iωk (24.3)

is the value, at ω, of the frequency-response function of T . The point
here is that when the input is x = eω the output is a multiple of eω,
the multiplier being the (possibly complex) number H(eiω). Linear, shift-
invariant systems T do not alter the frequency of the input, but just change
its amplitude and/or phase. The constant H(eiω) is the same as H(ω)
obtained earlier; having two different notations for the same function is an
unfortunate, but common, occurrence in the signal-processing literature.

It is important to note that the infinite sum in Equation (24.3) need not
converge for arbitrary h = {h(k)}. It does converge, obviously, whenever
h is finitely nonzero; it will also converge for infinitely nonzero sequences
that are suitably restricted.

A common problem in signal processing is to design a LSI filter with
a desired frequency-response function H(eiω). To determine h(m), given
H(eiω), we multiply both sides of Equation (24.3) by eiωm, multiply by 1

2π ,
integrate over the interval [−π, π], and use the helpful fact that∫ π

−π

ei(m−k)ωdω = 0,

for m 6= k. The result is

h(m) =
1
2π

∫ π

−π

H(eiω)eiωmdω. (24.4)

It is useful to extend the definition of H(eiω) to permit eiω to be replaced
by any complex number z. Then we get the z-transform of h, given by

H(z) =
∞∑

k=−∞

h(k)z−k.

We can study the working of the system T on more general inputs x by
representing x as a sum of complex-exponential discrete signals eω.
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The representation, in Equation (24.4), of the infinite sequence h =
{h(k)} as a superposition of complex-exponential discrete signals suggests
the possibility that such a representation is available for general infinite
discrete signals, a notion we take up in the next section.

24.6 The Discrete Fourier Transform

A common theme running through mathematics is the representation of
complicated objects in terms of simpler ones. Taylor-series expansion en-
ables us to view quite general functions as infinite versions of polynomials
by representing them as infinite sums of the power functions. Fourier-series
expansions give representations of quite general functions as infinite sums
of sines and cosines. Here we obtain similar representation for discrete
signals, as infinite sums of the complex exponentials, eω, for ω in [−π, π).

Our goal is to represent a general discrete signal x as a sum of the eω,
for ω in the interval [−π, π). Such a sum is, in general, an integral over ω.
So we seek to represent x as

x(n) =
1
2π

∫ π

−π

X(ω)eiωndω, (24.5)

where X(ω) is a function to be determined. As we shall see, the function
we seek is the discrete Fourier transform (DFT) of x, defined by

X(ω) =
∞∑

m=−∞
x(m)e−iωm. (24.6)

This follows from the discussion leading up to Equation (24.4). Notice
that in the case x = h the function H(ω) is the same as the frequency-
response function H(eiω) defined earlier. For this reason the notation X(ω)
and X(eiω) are used interchangably. The DFT of the discrete signal x is
sometimes called the discrete-time Fourier transform (DTFT).

The sum in Equation (24.6) is the Fourier-series expansion for the func-
tion X(ω), over the interval [−π, π); the x(n) are its Fourier coefficients.

The infinite series in Equation (24.4) that is used to define X(ω) may
not converge. For example, suppose that x is an exponential signal, with
x(n) = eiω0n. Then the infinite sum would be

∞∑
m=−∞

ei(ω0−ω)m,

which obviously does not converge, at least in any ordinary sense. Consider,
though, what happens when we put this sum inside an integral and reverse
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the order of integration and summation. Specifically, consider

1
2π

∫ π

−π

F (ω)
∞∑

m=−∞
ei(ω0−ω)mdω,

=
∞∑

m=−∞
(

1
2π

∫ π

−π

F (ω)ei(ω0−ω)mdω),

=
∞∑

m=−∞
eiω0mf(m) = F (ω0).

So, the infinite sum acts like the Dirac delta δ(ω−ω0). This motivates the
following definition of the infinite sum:

∞∑
m=−∞

ei(ω0−ω)m = δ(ω − ω0). (24.7)

A different approach to the infinite sum is to consider

lim
N→+∞

1
2N + 1

N∑
m=−N

ei(ω0−ω)m.

According to Equation (6.4), we have

N∑
n=−N

eiωn =
sin(ω(N + 1

2 ))
sin(ω

2 )
.

Therefore,

lim
N→+∞

1
2N + 1

N∑
m=−N

ei(ω0−ω)m = 1, (24.8)

for ω = ω0, and zero, otherwise.

24.7 The Convolution Theorem

Once again, let y = T (x), where T is a LSI operator with associated filter
h = {h(k)}. Because we can write

x(n) =
1
2π

∫ π

−π

X(ω)eω(n)dω,

or, in shorthand, leaving out the n, as

x =
1
2π

∫ π

−π

X(ω)eωdω,
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we have
y = T (x) =

1
2π

∫ π

−π

X(ω)T (eω)dω,

=
1
2π

∫ π

−π

X(ω)H(ω)eωdω,

or
y(n) =

1
2π

∫ π

−π

X(ω)H(ω)eω(n)dω.

But we also have
y(n) =

1
2π

∫ π

−π

Y (ω)eω(n)dω,

from which we conclude that

Y (ω) = X(ω)H(ω), (24.9)

for each ω in [−π, π).
Equation (24.9) is the most important equation in signal processing. It

describes the activity of an LSI system by telling us that the system simply
multiplies the DFT of the input x by the DFT of the h, the frequency-
response function of the system, to produce the DFT of the output y.
Since y = x ∗h it also tells us that whenever y is formed by convolving two
discrete signals x and h, its DFT is the product of the DFT of x and the
DFT of h.

24.8 Sampling and Aliasing

The term sampling refers to the transition from a function f(t) of a con-
tinuous variable to a discrete signal x, defined by x(n) = f(n∆), where
∆ > 0 is the sample spacing. For example, suppose that f(t) = sin(γt) for
some frequency γ > 0. Then x(n) = sin(γn∆) = sin(ωn), where ω = γ∆.
We define X(ω), the DFT of the discrete signal x, for |ω| ≤ π, so we need
|γ|∆ ≤ π. This means we must select ∆ so that ∆ ≤ π/|γ|. In general, if
the function f(t) has sinusoidal components with frequencies γ such that
|γ| ≤ Γ then we should select ∆ ≤ π/Γ.

If we select ∆ too large, then a frequency component of f(t) correspond-
ing to |γ| > π/∆ will be mistaken for a frequency with smaller magnitude.
This is aliasing. For example, if f(t) = sin(3t), but ∆ = π/2, then the
frequency γ = 3 is mistaken for the frequency γ = −1, which lies in [−2, 2].
When we sample we get

x(n) = sin(3∆n) = sin(−∆n + 4∆n) = sin(−∆n + 2πn) = sin(−∆n),

for each n.



Chapter 25

Appendix: Randomness
in Signal Processing

We treat noise in our data using the probabilistic concept of random vari-
able. The term is not self-explanatory, so we begin by explaining what a
random variable is.

25.1 Random Variables as Models

When we use mathematical tools, such as differential equations, probabil-
ity, or systems of linear equations, to describe a real-world situation, we say
that we are employing a mathematical model. Such models must be suffi-
ciently sophisticated to capture the essential features of the situation, while
remaining computationally manageable. In this chapter we are interested
in one particular type of mathematical model, the random variable.

Imagine that you are holding a baseball four feet off the ground. If you
drop it, it will land on the ground directly below where you held it. The
height of the ball at any time during the fall is described by the function h(t)
satisfying the ordinary differential equation h′′(t) = −32 ft

sec2 . Solving this
differential equation with the initial conditions h(0) = 4 ft , h′(0) = 0 ft

sec ,
we find that h(t) = 4 − 16t2. Solving h(T ) = 0 for T we find the elapsed
time T until impact is T = 0.5 sec.. The velocity of the ball at impact is
h′(T ) = −32T = −16 ft

sec .
Now imagine that, instead of a baseball, you are holding a feather. The

feather and the baseball are both subject to the same laws of gravity, but
now other aspects of the situation, which we could safely ignore in the case
of the baseball, become important in the case of the feather. Like the base-
ball, the feather is subjected to air resistance and to whatever fluctuations
in air currents may be present during its fall. Unlike the baseball, however,

209
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the effects of the air matter to the flight of the feather; in fact, they become
the dominant factors. When we designed our differential-equation model
for the falling baseball we performed no experiments to help us understand
its behavior. We simply ignored all other aspects of the situation, and
included only gravity in our mathematical model. Even the modeling of
gravity was slightly simplified, in that we assumed a constant gravitational
acceleration, even though Newton’s Laws tell us that it increases as we
approach the center of the earth. When we drop the ball and find that our
model is accurate we feel no need to change it. When we drop the feather
we discover immediately that a new model is needed; but what?

The first thing we observe is that the feather falls in a manner that is
impossible to predict with accuracy. Dropping it once again, we notice that
it behaves differently this time, landing in a different place and, perhaps,
taking longer to land. How are we to model such a situation, in which
repeated experiments produce different results? Can we say nothing useful
about what will happen when we drop the feather the next time?

As we continue to drop the feather, we notice that, while the feather
usually does not fall directly beneath the point of release, it does not fall
too far away. Suppose we draw a grid of horizontal and vertical lines on
the ground, dividing the ground into a pattern of squares of equal area.
Now we repeatedly drop the feather and record the proportion of times
the feather is (mainly) contained within each square; we also record the
elapsed time. As we are about to drop the feather the next time, we may
well assume that the outcome will be consistent with the behavior we have
observed during the previous drops. While we cannot say for certain where
the feather will fall, nor what the elapsed time will be, we feel comfortable
making a probabilistic statement about the likelihood that the feather will
land in any given square and about the elapsed time.

The squares into which the feather may land are finite, or, if we insist
on creating an infinite grid, discretely infinite, while the elapsed time can
be any positive real number. Let us number the squares as n = 1, 2, 3, ...
and let pn be the proportion of drops that resulted in the feather landing
mainly in square n. Then pn ≥ 0 and

∑∞
n=1 pn = 1. The sequence p =

{pn|n = 1, 2, ...} is then a discrete probability sequence (dps), or a probability
sequence, or a discrete probability. Now let N be the number of the square
that will contain the feather on the next drop. All we can say about N
is that, according to our model, the probability that N will equal n is pn.
We call N a discrete random variable with probability sequence p.

It is difficult to be more precise about what probability really means.
When we say that the probability is pn that the feather will land in square
n on the next drop, where does that probability reside? Do we believe that
the numbers pn are in the feather somehow? Do these numbers simply
describe our own ignorance, so are in our heads? Are they a combination
of the two, in our heads as a result of our having experienced what the
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feather did previously? Perhaps it is best simply to view probablity as a
type of mathematical model that we choose to adopt in certain situations.

Now let T be the elapsed time for the next feather to hit the ground.
What can we say about T? Based on our prior experience, we are willing
to say that, for any interval [a, b] within (0,∞), the probability that T
will take on a value within [a, b] is the proportion of prior drops in which
the elapsed time was between a and b. Then T is a continuous random
variable, in that the values it may take on (in theory, at least) lie in a
continuum. To help us calculate the probabilities associated with T we
use our prior experience to specify a function fT (t), called the probability
density function (pdf) of T , having the property that the probability that
T will lie between a and b can be calculated as

∫ b

a
fT (t)dt. Such fT (t) will

have the properties fT (t) ≥ 0 for all positive t and
∫∞
0

fT (t)dt = 1.
In the case of the falling feather we had to perform experiments to

determine appropriate ps p and pdf fT (t). In practice, we often describe
our random variables using a ps or pdf from a well-studied parametric
family of such mathematical objects. Popular examples of such ps and pdf,
such as Poisson probabilities and Gaussian pdf, are discussed early in most
courses in probability theory.

It is simplest to discuss the main points of random signal processing
within the context of discrete signals, so we return there now.

25.2 Discrete Random Signal Processing

Previously, we have encountered specific discrete functions, such as δk,
u, eω, whose values at each integer n are given by an exact formula. In
signal processing we must also concern ourselves with discrete functions
whose values are not given by such formulas, but rather, seem to obey
only probabilistic laws. We shall need such discrete functions to model
noise. For example, imagine that, at each time n, a fair coin is tossed and
x(n) = 1 if the coin shows heads, x(n) = −1 if the coin shows tails. We
cannot determine the value of x(n) from any formula; we must simply toss
the coins. Given any discrete function x with values x(n) that are either
1 or −1, we cannot say if x was generated by such a coin-flipping manner.
In fact, any such x could have been the result of coin flips. All we can
say is how likely it is that a particular x was so generated. For example,
if x(n) = 1 for n even and x(n) = −1 for n odd, we feel, intuitively,
that it is highly unlikely that such an x came from random coin tossing.
What bothers us, of course, is that the values x(n) seem so predictable;
randomness seems to require some degree of unpredictability. If we were
given two such sequences, the first being the one described above, with
1 and −1 alternating, and the second exhibiting no obvious pattern, and
asked to select the one generated by independent random coin tossing, we
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would clearly choose the second one. There is a subtle point here, however.
When we say that we are “given an infinite sequence” what do we really
mean? Because the issue here is not the infinite nature of the sequences,
let us reformulate the discussion in terms of finite vectors of length, say,
100, with entries 1 or −1. If we are shown a print-out of two such vectors,
the first with alternating 1 and −1, and the second vector exhibiting no
obvious pattern, we would immediately say that it was the second one
that was generated by the coin-flipping procedure, even though the two
vectors are equally likely to have been so generated. The point is that
we associate randomness with the absence of a pattern, more than with
probability. When there is a pattern, the vector can be described in a
way that is significantly shorter than simply listing its entries. Indeed, it
has been suggested that a vector is random if it cannot be described in a
manner shorter than simply listing its members.

25.2.1 The Simplest Random Sequence

We say that a sequence x = {x(n)} is a random sequence or a discrete
random process if x(n) is a random variable for each integer n. A simple,
yet remarkably useful, example is the random-coin-flip sequence, which we
shall denote by c = {c(n)}. In this model a coin is flipped for each n and
c(n) = 1 if the coin comes up heads, with c(n) = −1 if the coin comes
up tails. It will be convenient to allow for the coin to be biased, that is,
for the probabilities of heads and tails to be unequal. We denote by p the
probability that heads occurs and 1 − p the probability of tails; the coin
is called unbiased or fair if p = 1/2. To find the expected value of c(n),
written E(c(n)), we multiply each possible value of c(n) by its probability
and sum; that is,

E(c(n)) = (+1)p + (−1)(1− p) = 2p− 1.

If the coin is fair then E(c(n)) = 0. The variance of the random vari-
able c(n), measuring its tendency to deviate from its expected value, is
var(c(n)) = E([c(n)− E(c(n))]2). We have

var(c(n)) = [+1− (2p− 1)]2p + [−1− (2p− 1)]2(1− p) = 4p− 4p2.

If the coin is fair then var(c(n)) = 1. It is important to note that we do not
change the coin at any time during the generation of the random sequence
c; in particular, the p does not depend on n.

The random-coin-flip sequence c is the simplest example of a discrete
random process or a random discrete function. It is important to remember
that a random discrete function is not any one particular discrete function,
but rather a probabilistic model chosen to allow us to talk about the prob-
abilities associated with the values of the x(n). In the next section we
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shall use this discrete random process to generate a wide class of discrete
random processes, obtained by viewing c = c(n) as the input into a linear,
shift-invariant (LSI) filter.

25.3 Random Discrete Functions or Discrete
Random Processes

A linear, shift-invariant (LSI) operator T with impulse response function
h = {h(k)} operates on any input sequence x = {x(n)} to produce the
output sequence y = {y(n)} according to the convolution formula

y(n) =
∞∑

k=−∞

h(k)x(n− k) =
∞∑

k=−∞

x(k)h(n− k). (25.1)

We learn more about the system that T represents when we select as input
sinusoids at fixed frequencies. Let ω be a fixed frequency in the interval
[−π, π) and let x = eω, so that x(n) = einω for each integer n. Then
Equation (25.1) shows us that the output is

y(n) = H(eiω)x(n),

where

H(eiω) =
∞∑

k=−∞

h(k)e−ikω. (25.2)

This function of ω is called the frequency-response function of the system.
We can learn even more about the system by selecting as input the sequence
x(n) = zn, where z is an arbitrary complex number. Then Equation (25.1)
gives the output as

y(n) = H(z)x(n),

where

H(z) =
∞∑

k=−∞

h(k)z−k. (25.3)

Note that if we select z = eiω then H(z) = H(eiω) as given by Equation
(25.2). The function H(z) of the complex variable z is the z-transform of
the sequence h and also the transfer function of the system determined by
h.

Now we take this approach one step further. Let us select as our input
x = {x(n)} the random-coin-flip sequence c = {c(n)}, with p = 0.5. It
is important to note that such an x is not one specific discrete function,
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but a random model for such functions. The output y = {y(n)} is again a
random sequence, with

y(n) =
∞∑

k=−∞

h(k)c(n− k). (25.4)

Clearly, in order for the infinite sum to converge we would need to place
restrictions on the sequence h; if h(k) is zero except for finitely many values
of k then we have no problem. We shall put off discussion of convergence
issues and focus on statistical properties of the output random sequence y.

Let u and v be (possibly complex-valued) random variables with ex-
pected values E(u) and E(v), respectively. The covariance between u and
v is defined to be

cov(u, v) = E([u− E(u))(v − E(v))]),

and the cross-correlation between u and v is

corr(u, v) = E(uv).

It is easily shown that cov(u, v) = corr(u, v)− E(u)E(v). When u = v we
get cov(u, u) = var(u) and corr(u, u) = E(|u|2). If E(u) = E(v) = 0 then
cov(u, v) = corr(u, v).

To illustrate, let u = c(n) and v = c(n − m). Then, since the coin is
fair, E(c(n)) = E(c(n−m)) = 0 and

cov(c(n), c(n−m)) = corr(c(n), c(n−m)) = E(c(n)c(n−m)).

Because the c(n) are independent, E(c(n)c(n−m)) = 0 for m not equal to
0, and E(|c(n)|2) = var(c(n)) = 1. Therefore

cov(c(n), c(n−m)) = corr(c(n), c(n−m)) = 0, form 6= 0,

and
cov(c(n), c(n)) = corr(c(n), c(n)) = 1.

Returning now to the output sequence y = {y(n)} we compute the
correlation corr(y(n), y(n−m)) = E(y(n)y(n−m)). Using the convolution
formula Equation (25.4) we find that

corr(y(n), y(n−m)) =
∞∑

k=−∞

∞∑
j=−∞

h(k)h(j)corr(c(n− k), c(n−m− j)).

Since
corr(c(n− k), c(n−m− j)) = 0, for k 6= m + j,
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we have

corr(y(n), y(n−m)) =
∞∑

k=−∞

h(k)h(k −m). (25.5)

The expression of the right side of Equation (25.5) is the definition of the
autocorrelaton of the sequence h, denoted ρh(m); that is,

ρh(m) =
∞∑

k=−∞

h(k)h(k −m). (25.6)

It is important to note that the expected value of y(n) is

E(y(n)) =
∞∑

k=−∞

h(k)E(c(n− k)) = 0

and the correlation corr(y(n), y(n−m)) depends only on m; neither quan-
tity depends on n and the sequence y is therefore called weak-sense sta-
tionary. Let’s consider an example.

Take h(0) = h(1) = 0.5 and h(k) = 0 otherwise. Then the system is
the two-point moving-average, with

y(n) = 0.5x(n) + 0.5x(n− 1).

With x(n) = c(n) we have

y(n) = 0.5c(n) + 0.5c(n− 1).

In the case of the random-coin-flip sequence c each c(n) is unrelated to
any other c(m); the coin flips are independent. This is no longer the case
for the y(n); one effect of the filter h is to introduce correlation into the
output. To illustrate, since y(0) and y(1) both depend, to some degree, on
the value c(0), they are related. Using Equation (25.6) we have

ρh(0) = h(0)h(0) + h(1)h(1) = 0.25 + 0.25 = 0.5,

ρh(−1) = h(0)h(1) = 0.25,

ρh(+1) = h(1)h(0) = 0.25,

and
ρh(m) = 0, otherwise.

So we see that y(n) and y(n −m) are related, for m = −1, 0,+1, but not
otherwise.
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25.4 Correlation Functions and Power Spec-
tra

As we have seen, any nonrandom sequence h = {h(k)} has its autocorrela-
tion function defined, for each integer m, by

ρh(m) =
∞∑

k=−∞

h(k)h(k −m).

For a random sequence y(n) that is wide-sense stationary, its correlation
function is defined to be

ρy(m) = E(y(n)y(n−m)).

The power spectrum of h is defined for ω in [−π, π] by

Sh(ω) =
∞∑

m=−∞
ρh(m)e−imω.

It is easy to see that
Sh(ω) = |H(eiω)|2,

so that Sh(ω) ≥ 0. The power spectrum of the random sequence y = {y(n)}
is defined as

Sy(ω) =
∞∑

m=−∞
ρy(m)e−imω.

Although it is not immediately obvious, we also have Sy(ω) ≥ 0. One way
to see this is to consider

Y (eiω) =
∞∑

n=−∞
y(n)e−inω

and to calculate

E(|Y (eiω)|2) =
∞∑

m=−∞
E(y(n)y(n−m))e−imω = Sy(ω).

Given any power spectrum Sy(ω) we can construct H(eiω) by selecting an
arbitrary phase angle θ and letting

H(eiω) =
√

Sy(ω)eiθ.

We then obtain the nonrandom sequence h associated with H(eiω) using

h(n) =
∫ π

−π

H(eiω)einωdω/2π.
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It follows that ρh(m) = ρy(m) for each m and Sh(ω) = Sy(ω) for each ω.
What we have discovered is that, when the input to the system is the

random-coin-flip sequence c, the output sequence y has a correlation func-
tion ρy(m) that is equal to the autocorrelation of the sequence h. As we
just saw, for any weak-sense stationary random sequence y with expected
value E(y(n)) constant and correlation function corr(y(n), y(n − m)) in-
dependent of n, there is a LSI system h with ρh(m) = ρy(m) for each m.
Therefore, any weak-sense stationary random sequence y can be viewed
as the output of an LSI system, when the input is the random-coin-flip
sequence c = {c(n)}.

25.5 Random Sinusoidal Sequences

If A = |A|eiθ, with amplitude |A| a positive-valued random variable and
phase angle θ a random variable taking values in the interval [−π, π] then
A is a complex-valued random variable. For a fixed frequency ω0 we define
a random sinusoidal sequence s = {s(n)} by s(n) = Aeinω0 . We assume
that θ has the uniform distribution over [−π, π] so that the expected value
of s(n) is zero. The correlation function for s is

ρs(m) = E(s(n)s(n−m)) = E(|A|2)eimω0

and the power spectrum of s is

Ss(ω) = E(|A|2)
∞∑

m=−∞
eim(ω0−ω),

so that, by Equation (24.7), we have

Ss(ω) = E(|A|2)δ(ω − ω0).

We generalize this example to the case of multiple independent sinusoids.
Suppose that, for j = 1, ..., J , we have fixed frequencies ωj and indepen-
dent complex-valued random variables Aj . We let our random sequence be
defined by

s(n) =
J∑

j=1

Aje
inωj .

Then the correlation function for x is

ρs(m) =
J∑

j=1

E(|Aj |2)eimωj
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and the power spectrum for s is

Ss(ω) =
J∑

j=1

E(|Aj |2)δ(ω − ωj).

A commonly used model in signal processing is that of independent sinu-
soids in additive noise.

Let q = {q(n)} be an arbitrary weak-sense stationary discrete random
sequence, with correlation function ρq(m) and power spectrum Sq(ω). We
say that q is white noise if ρq(m) = 0 for m not equal to zero, or, equiv-
alently, if the power spectrum Sq(ω) is constant over the interval [−π, π].
The independent sinusoids in additive noise model is a random sequence
of the form

x(n) =
J∑

j=1

Aje
inωj + q(n).

The signal power is defined to be ρs(0), which is the sum of the E(|Aj |2),
while the noise power is ρq(0). The signal-to-noise ratio (SNR) is the ratio
of signal power to noise power.

It is often the case that the SNR is quite low and it is desirable to
process the x to enhance this ratio. The data we have is typically finitely
many values of x(n), say for n = 1, 2, ..., N . One way to process the data is
to estimate ρx(m) for some small number of integers m around zero, using,
for example, the lag products estimate

ρ̂x(m) =
1

N −m

N−m∑
n=1

x(n)x(n−m),

for m = 0, 1, ...,M < N and ρ̂x(−m) = ρ̂x(m). Because ρq(m) = 0 for
m not equal to zero, we will have ρ̂x(m) approximating ρs(m) for nonzero
values of m, thereby reducing the effect of the noise.

The additive noise is said to be correlated or non-white if it is not
the case that ρx(m) = 0 for all nonzero m. In this case the noise power
spectrum is not constant, and so may be concentrated in certain regions of
the interval [−π, π].

25.6 Spread-Spectrum Communication

In this section we return to the random-coin-flip model, this time allowing
the coin to be biased, that is, p need not be 0.5. Let s = {s(n)} be a random
sequence, such as s(n) = Aeinω0 , with E(s(n)) = µ and correlation function
ρs(m). Define a second random sequence x by

x(n) = s(n)c(n).
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The random sequence x is generated from the random signal s by randomly
changing its signs. We can show that

E(x(n)) = µ(2p− 1)

and, for m not equal to zero,

ρx(m) = ρs(m)(2p− 1)2,

with ρx(0) = ρs(0) + 4p(1 − p)µ2. Therefore, if p = 1 or p = 0 we get
ρx(m) = ρs(m) for all m, but for p = 0.5 we get ρx(m) = 0 for m not equal
to zero. If the coin is unbiased, then the random sign changes convert the
original signal s into white noise. Generally, we have

Sx(ω) = (2p− 1)2Ss(ω) + (1− (2p− 1)2)(µ2 + ρs(0)),

which says that the power spectrum of x is a combination of the signal
power spectrum and a white-noise power spectrum, approaching the white-
noise power spectrum as p approaches 0.5. If the original signal power
spectrum is concentrated within a small interval, then the effect of the
random sign changes is to spread that spectrum. Once we know what the
sequence c is we can recapture the original signal from s(n) = x(n)c(n).
The use of such a spread spectrum permits the sending of multiple narrow-
band signals, without confusion, as well as protecting against any narrow-
band additive interference.

25.7 Stochastic Difference Equations

The ordinary first-order differential equation y′(t) + ay(t) = f(t), with
initial condition y(0) = 0, has for its solution y(t) = e−at

∫ t

0
easf(s)ds.

One way to look at such differential equations is to consider f(t) to be
the input to a system having y(t) as its output. The system determines
which terms will occur on the left side of the differential equation. In many
applications the input f(t) is viewed as random noise and the output is then
a continuous-time random process. Here we want to consider the discrete
analog of such differential equations.

We replace the first derivative with the first difference, y(n + 1)− y(n)
and we replace the input with the random-coin-flip sequence c = {c(n)},
to obtain the random difference equation

y(n + 1)− y(n) + ay(n) = c(n). (25.7)

With b = 1− a and 0 < b < 1 we have

y(n + 1)− by(n) = c(n). (25.8)
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The solution is y = {y(n)} given by

y(n) = bn
n∑

k=−∞

b−kc(k). (25.9)

Comparing this with the solution of the differential equation, we see that
the term bn plays the role of e−at = (e−a)t, so that b = 1− a is substitut-
ing for e−a. The infinite sum replaces the infinite integral, with b−kc(k)
replacing the integrand easf(s).

The solution sequence y given by Equation (25.9) is a weak-sense sta-
tionary random sequence and its correlation function is

ρy(m) = bm/(1− b2).

Since

bn
n∑

k=−∞

b−k = 1− b

the random sequence (1 − b)−1y(n) is an infinite moving-average random
sequence formed from the random sequence c.

We can derive the solution in Equation (25.9) using z-transforms. The
expression y(n) − by(n − 1) can be viewed as the output of a LSI system
with h(0) = 1 and h(1) = −b. Then H(z) = 1− bz−1 = (z − b)/z and the
inverse H(z)−1 = z/(z − b) describes the inverse system. Since

H(z)−1 = z/(z − b) = 1/(1− bz−1) = 1 + bz−1 + b2z−2 + ...

the inverse system applied to input c = {c(n)} is

y(n) = c(n) + bc(n− 1) + b2c(n− 2) + ... = bn
n∑

k=−∞

b−kc(k).

25.8 Random Vectors and Correlation Ma-
trices

In estimation and detection theory, the task is to distinguish signal vectors
from noise vectors. In order to perform such a task, we need to know how
signal vectors differ from noise vectors. Most frequently, what we have is
statistical information. The signal vectors of interest, which we denote by
s = (s1, ..., sN )T , typically exhibit some patterns of behavior among their
entries. For example, a constant signal, such as s = (1, 1, ..., 1)T , has all its
entries identical. A sinusoidal signal, such as s = (1,−1, 1,−1, ..., 1,−1)T ,
exhibits a periodicity in its entries. If the signal is a vectorization of a two-
dimensional image, then the patterns will be more difficult to describe, but
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will be there, nevertheless. In contrast, a typical noise vector, denoted
q = (q1, ..., qN )T , may have entries that are unrelated to each other, as
in white noise. Of course, what is signal and what is noise depends on
the context; unwanted interference in radio may be viewed as noise, even
though it may be a weather report or a song.

To deal with these notions mathematically, we adopt statistical models.
The entries of s and q are taken to be random variables, so that s and q are
random vectors. Often we assume that the mean values, E(s) and E(q),
are zero. Then patterns that may exist among the entries of these vectors
are described in terms of correlations. The noise covariance matrix, which
we denote by Q, has for its entries Qmn = E((qm − E(qm))(qn − E(qn))),
for m,n = 1, ..., N . The signal covariance matrix is defined similarly. If
E(qn) = 0 and E(|qn|2) = 1 for each n, then Q is the noise correlation
matrix. Such matrices Q are Hermitian and non-negative definite, that is,
x†Qx is non-negative, for every vector x. If Q is a positive multiple of the
identity matrix, then the noise is said to be white noise.
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Chapter 26

Appendix: Detection and
Classification

In some applications of remote sensing, our goal is simply to see what is
“out there”; in sonar mapping of the sea floor, the data are the acoustic
signals as reflected from the bottom, from which the changes in depth can
be inferred. Such problems are estimation problems.

In other applications, such as sonar target detection or medical diag-
nostic imaging, we are looking for certain things, evidence of a surface
vessel or submarine, in the sonar case, or a tumor or other abnormality
in the medical case. These are detection problems. In the sonar case, the
data may be used directly in the detection task, or may be processed in
some way, perhaps frequency-filtered, prior to being used for detection. In
the medical case, or in synthetic-aperture radar (SAR), the data is usually
used to construct an image, which is then used for the detection task. In
estimation, the goal can be to determine how much of something is present;
detection is then a special case, in which we want to decide if the amount
present is zero or not.

The detection problem is also a special case of discrimination, in which
the goal is to decide which of two possibilities is true; in detection the
possibilities are simply the presence or absence of the sought-for signal.

More generally, in classification or identification, the objective is to
decide, on the basis of measured data, which of several possibilities is true.

223
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26.1 Estimation

We consider only estimates that are linear in the data, that is, estimates
of the form

γ̂ = b†x =
N∑

n=1

bnxn, (26.1)

where x = (x1, ..., xN )T is the vector of data and b† denotes the conjugate
transpose of the vector b = (b1, ..., bN )T . The vector b that we use will be
the best linear unbiased estimator (BLUE) [57] for the particular estimation
problem.

26.1.1 The simplest case: a constant in noise

We begin with the simplest case, estimating the value of a constant, given
several instances of the constant in additive noise. Our data are xn = γ+qn,
for n = 1, ..., N , where γ is the constant to be estimated, and the qn are
noises. For convenience, we write

x = γu + q, (26.2)

where x = (x1, ..., xN )T , q = (q1, ..., qN )T , u = (1, ..., 1)T , the expected
value of the random vector q is E(q) = 0, and the covariance matrix of q
is E(qqT ) = Q. The BLUE employs the vector

b =
1

u†Q−1u
Q−1u. (26.3)

The BLUE estimate of γ is

γ̂ =
1

u†Q−1u
u†Q−1x. (26.4)

If Q = σ2I, for some σ > 0, with I the identity matrix, then the noise
q is said to be white. In this case, the BLUE estimate of γ is simply the
average of the xn.

26.1.2 A known signal vector in noise

Generalizing somewhat, we consider the case in which the data vector x
has the form

x = γs + q, (26.5)

where s = (s1, ..., sN )T is a known signal vector. The BLUE estimator is

b =
1

s†Q−1s
Q−1s (26.6)
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and the BLUE estimate of γ is now

γ̂ =
1

s†Q−1s
s†Q−1x. (26.7)

In numerous applications of signal processing, the signal vectors take the
form of sampled sinusoids; that is, s = eθ, with

eθ =
1√
N

(e−iθ, e−2iθ, ..., e−Niθ)T , (26.8)

where θ is a frequency in the interval [0, 2π). If the noise is white, then the
BLUE estimate of γ is

γ̂ =
1√
N

N∑
n=1

xneinθ, (26.9)

which is the discrete Fourier transform(DFT) of the data, evaluated at the
frequency θ.

26.1.3 Multiple signals in noise

Suppose now that the data values are

xn =
M∑

m=1

γmsm
n + qn, (26.10)

where the signal vectors sm = (sm
1 , ..., sm

N )T are known and we want to
estimate the γm. We write this in matrix-vector notation as

x = Sc + q, (26.11)

where S is the matrix with entries Snm = sm
n , and our goal is to find

c = (γ1, ..., γN )T , the vector of coefficients. The BLUE estimate of the
vector c is

ĉ = (S†Q−1S)−1S†Q−1x, (26.12)

assuming that the matrix S†Q−1S is invertible, in which case we must have
M ≤ N .

If the signals sm are mutually orthogonal and have length one, then
S†S = I; if, in addition, the noise is white, the BLUE estimate of c is
ĉ = S†x, so that

ĉm =
N∑

n=1

xnsm
n . (26.13)



226CHAPTER 26. APPENDIX: DETECTION AND CLASSIFICATION

This case arises when the signals are sm = eθm , for θm = 2πm/M , for
m = 1, ...,M , in which case the BLUE estimate of cm is

ĉm =
1√
N

N∑
n=1

xne2πimn/M , (26.14)

the DFT of the data, evaluated at the frequency θm. Note that when
the frequencies θm are not these, the matrix S†S is not I, and the BLUE
estimate is not obtained from the DFT of the data.

26.2 Detection

As we noted previously, the detection problem is a special case of esti-
mation. Detecting the known signal s in noise is equivalent to deciding
if the coefficient γ is zero or not. The procedure is to calculate γ̂, the
BLUE estimate of γ, and say that s has been detected if |γ̂| exceeds a cer-
tain threshold. In the case of multiple known signals, we calculate ĉ, the
BLUE estimate of the coefficient vector c, and base our decisions on the
magnitudes of each entry of ĉ.

26.2.1 Parametrized signal

It is sometimes the case that we know that the signal s we seek to detect is
a member of a parametrized family, {sθ|θ ∈ Θ}, of potential signal vectors,
but we do not know the value of the parameter θ. For example, we may
be trying to detect a sinusoidal signal, s = eθ, where θ is an unknown
frequency in the interval [0, 2π). In sonar direction-of-arrival estimation,
we seek to detect a farfield point source of acoustic energy, but do not know
the direction of the source. The BLUE estimator can be extended to these
cases, as well [57]. For each fixed value of the parameter θ, we estimate γ
using the BLUE, obtaining the estimate

γ̂(θ) =
1

s†θQ
−1sθ

s†θQ
−1x, (26.15)

which is then a function of θ. If the maximum of the magnitude of this
function exceeds a specified threshold, then we may say that there is a
signal present corresponding to that value of θ.

Another approach would be to extend the model of multiple signals
to include a continuum of possibilities, replacing the finite sum with an
integral. Then the model of the data becomes

x =
∫

θ∈Θ

γ(θ)sθdθ + q. (26.16)
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Let S now denote the integral operator

S(γ) =
∫

θ∈Θ

γ(θ)sθdθ (26.17)

that transforms a function γ of the variable θ into a vector. The adjoint
operator, S†, transforms any N -vector v into a function of θ, according to

S†(v)(θ) =
N∑

n=1

vn(sθ)n = s†θv . (26.18)

Consequently, S†Q−1S is the function of θ given by

g(θ) = (S†Q−1S)(θ) =
N∑

n=1

N∑
j=1

Q−1
nj (sθ)j(sθ)n, (26.19)

so

g(θ) = s†θQ
−1sθ. (26.20)

The generalized BLUE estimate of γ(θ) is then

γ̂(θ) =
1

g(θ)

N∑
j=1

aj(sθ)j =
1

g(θ)
s†θa , (26.21)

where x = Qa or

xn =
N∑

j=1

ajQnj , (26.22)

for j = 1, ..., N , and so a = Q−1x. This is the same estimate we obtained
in the previous paragraph. The only difference is that, in the first case, we
assume that there is only one signal active, and apply the BLUE for each
fixed θ, looking for the one most likely to be active. In the second case,
we choose to view the data as a noisy superposition of a continuum of the
sθ, not just one. The resulting estimate of γ(θ) describes how each of the
individual signal vectors sθ contribute to the data vector x. Nevertheless,
the calculations we perform are the same.

If the noise is white, we have aj = xj for each j. The function g(θ)
becomes

g(θ) =
N∑

n=1

|(sθ)n|2, (26.23)
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which is simply the square of the length of the vector sθ. If, in addition,
the signal vectors all have length one, then the estimate of the function
γ(θ) becomes

γ̂(θ) =
N∑

n=1

xn(sθ)n = s†θx. (26.24)

Finally, if the signals are sinusoids sθ = eθ, then

γ̂(θ) =
1√
N

N∑
n=1

xneinθ, (26.25)

again, the DFT of the data vector.

26.3 Discrimination

The problem now is to decide if the data is x = s1 + q or x = s2 + q,
where s1 and s2 are known vectors. This problem can be converted into a
detection problem: Do we have x− s1 = q or x− s1 = s2 − s1 + q? Then
the BLUE involves the vector Q−1(s2− s1) and the discrimination is made
based on the quantity (s2 − s1)†Q−1x. If this quantity is near enough to
zero we say that the signal is s1; otherwise, we say that it is s2. The BLUE
in this case is sometimes called the Hotelling linear discriminant, and a
procedure that uses this method to perform medical diagnostics is called a
Hotelling observer.

More generally, suppose we want to decide if a given vector x comes
from class C1 or from class C2. If we can find a vector b such that bT x > a
for every x that comes from C1, and bT x < a for every x that comes from
C2, then the vector b is a linear discriminant for deciding between the
classes C1 and C2.

26.3.1 Channelized Observers

The N by N matrix Q can be quite large, particularly when x and q are
vectorizations of two-dimensional images. If, in additional, the matrix Q
is obtained from K observed instances of the random vector q, then for Q
to be invertible, we need K ≥ N . To avoid these and other difficulties,
the channelized Hotelling linear discriminant is often used. The idea here
is to replace the data vector x with Ux for an appropriately chosen J
by N matrix U , with J much smaller than N ; the value J = 3 is used
in [118], with the channels chosen to capture image information within
selected frequency bands.
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26.3.2 An Example of Discrimination

Suppose that there are two groups of students, the first group denoted G1,
the second G2. The math SAT score for the students in G1 is always above
500, while their verbal scores are always below 500. For the students in G2

the opposite is true; the math scores are below 500, the verbal above. For
each student we create the two-dimensional vector x = (x1, x2)T of SAT
scores, with x1 the math score, x2 the verbal score. Let b = (1,−1)T . Then
for every student in G1 we have bT x > 0, while for those in G2, we have
bT x < 0. Therefore, the vector b provides a linear discriminant.

Suppose we have a third group, G3, whose math scores and verbal scores
are both below 500. To discriminate between members of G1 and G3 we
can use the vector b = (1, 0)T and a = 500. To discriminate between the
groups G2 and G3, we can use the vector b = (0, 1)T and a = 500.

Now suppose that we want to decide from which of the three groups
the vector x comes; this is classification.

26.4 Classification

The classification problem is to determine to which of several classes of
vectors a given vector x belongs. For simplicity, we assume all vectors
are real. The simplest approach to solving this problem is to seek linear
discriminant functions; that is, for each class we want to have a vector b
with the property that bT x > 0 if and only if x is in the class. If the vectors
x are randomly distributed according to one of the parametrized family of
probability density functions (pdf) p(x;ω) and the ith class corresponds
to the parameter value ωi then we can often determine the discriminant
vectors bi from these pdf. In many cases, however, we do not have the pdf
and the bi must be estimated through a learning or training step before
they are used on as yet unclassified data vectors. In the discussion that
follows we focus on obtaining b for one class, suppressing the index i.

26.4.1 The Training Stage

In the training stage a candidate for b is tested on vectors whose class
membership is known, say {x1, ..., xM}. First, we replace each vector xm

that is not in the class with its negative. Then we seek b such that bT xm > 0
for all m. With A the matrix whose mth row is (xm)T we can write the
problem as Ab > 0. If the b we obtain has some entries very close to zero
it might not work well enough on actual data; it is often better, then, to
take a vector ε with small positive entries and require Ab ≥ ε. When we
have found b for each class we then have the machinery to perform the
classification task.
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There are several problems to be overcome, obviously. The main one is
that there may not be a vector b for each class; the problem Ab ≥ ε need
not have a solution. In classification this is described by saying that the
vectors xm are not linearly separable [97]. The second problem is finding
the b for each class; we need an algorithm to solve Ab ≥ ε.

One approach to designing an algorithm for finding b is the following: for
arbitrary b let f(b) be the number of the xm misclassified by vector b. Then
minimize f(b) with respect to b. Alternatively, we can minimize the func-
tion g(b) defined to be the sum of the values −bT xm, taken over all the xm

that are misclassified; the g(b) has the advantage of being continuously val-
ued. The batch Perceptron algorithm [97] uses gradient descent methods to
minimize g(b). Another approach is to use the Agmon-Motzkin-Schoenberg
(AMS) algorithm to solve the system of linear inequalities Ab ≥ ε [57].

When the training set of vectors is linearly separable, the batch Percep-
tron and the AMS algorithms converge to a solution, for each class. When
the training vectors are not linearly separable there will be a class for which
the problem Ab ≥ ε will have no solution. Iterative algorithms in this case
cannot converge to a solution. Instead, they may converge to an approxi-
mate solution or, as with the AMS algorithm, converge subsequentially to
a limit cycle of more than one vector.

26.4.2 Our Example Again

We return to the example given earlier, involving the three groups of stu-
dents and their SAT scores. To be consistent with the conventions of this
section, we define x = (x1, x2)T differently now. Let x1 be the math SAT
score, minus 500, and x2 be the verbal SAT score, minus 500. The vector
b = (1, 0)T has the property that bT x > 0 for each x coming from G1, but
bT x < 0 for each x not coming from G1. Similarly, the vector b = (0, 1)T

has the property that bT x > 0 for all x coming from G2, while bT x < 0 for
all x not coming from G2. However, there is no vector b with the property
that bT x > 0 for x coming from G3, but bT x < 0 for all x not coming
from G3; the group G3 is not linearly separable from the others. Notice,
however, that if we perform our classification sequentially, we can employ
linear classifiers. First, we use the vector b = (1, 0)T to decide if the vector
x comes from G1 or not. If it does, fine; if not, then use vector b = (0, 1)T

to decide if it comes from G2 or G3.

26.5 More realistic models

In many important estimation and detection problems, the signal vector s
is not known precisely. In medical diagnostics, we may be trying to detect
a lesion, and may know it when we see it, but may not be able to describe it
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using a single vector s, which now would be a vectorized image. Similarly,
in discrimination or classification problems, we may have several examples
of each type we wish to identify, but will be unable to reduce these types to
single representative vectors. We now have to derive an analog of the BLUE
that is optimal with respect to the examples that have been presented for
training. The linear procedure we seek will be one that has performed best,
with respect to a training set of examples. The Fisher linear discriminant
is an example of such a procedure.

26.5.1 The Fisher linear discriminant

Suppose that we have available for training K vectors x1, ..., xK in RN ,
with vectors x1, ..., xJ in the class A, and the remaining K − J vectors in
the class B. Let w be an arbitrary vector of length one, and for each k let
yk = wT xk be the projected data. The numbers yk, k = 1, ..., J , form the
set YA, the remaining ones the set YB . Let

µA =
1
J

J∑
k=1

xk, (26.26)

µB =
1

K − J

K∑
k=J+1

xk, (26.27)

mA =
1
J

J∑
k=1

yk = wT µA, (26.28)

and

mB =
1

K − J

K∑
k=J+1

yk = wT µB . (26.29)

Let

σ2
A =

J∑
k=1

(yk −mA)2, (26.30)

and

σ2
B =

K∑
k=J+1

(yk −mB)2. (26.31)
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The quantity σ2 = σ2
A +σ2

B is the total within-class scatter of the projected
data. Define the function F (w) to be

F (w) =
(mA −mB)2

σ2
. (26.32)

The Fisher linear discriminant is the vector w for which F (w) achieves its
maximum.

Define the scatter matrices SA and SB as follows:

SA =
J∑

k=1

(xk − µA)(xk − µA)T , (26.33)

and

SB =
K∑

k=J+1

(xk − µB)(xk − µB)T . (26.34)

Then

Swithin = SA + SB (26.35)

is the within-class scatter matrix and

Sbetween = (µA − µB)(µA − µB)T (26.36)

is the between-class scatter matrix. The function F (w) can then be written
as

F (w) = wT Sbetweenw/wT Swithinw. (26.37)

The w for which F (w) achieves its maximum value is then

w = S−1
within(µA − µB). (26.38)

This vector w is the Fisher linear discriminant. When a new data vector x
is obtained, we decide to which of the two classes it belongs by calculating
wT x.

26.6 A more general estimation problem

It is often the case, in practice, that the object of interest is a function of
one or several continuous variables, and our data consists of finitely many
linear functional values. For example, suppose that our object of interest is
the function of two real variables f(u, v), and that our data are the values

xn =
∫ ∫

f(u, v)hn(u, v)dudv + qn, (26.39)
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for noise qn and known functions hn(u, v), n = 1, ..., N . Our goal may
be to reconstruct the function f(u, v) itself, or, more modestly, to esti-
mate some other linear functional value,

∫ ∫
f(u, v)g(u, v)dudv, such as

the integral of f(u, v) over some two-dimensional set A. We consider
only estimates that are linear in the data x. Unfortunately, we can ob-
tain an unbiased estimate of

∫ ∫
f(u, v)g(u, v)dudv only if we can calculate∫ ∫

f(u, v)g(u, v)dudv from noise-free data, for any f(u, v), which can be
done only if the function g(u, v) has the form

g(u, v) =
N∑

n=1

anhn(u, v), (26.40)

for some constants an. This rather negative result suggests that the in-
formation about f(u, v) that we can expect to extract from the data is
quite limited. On the other hand, if we should know, in advance, that
f(u, v) is a member of a parametrized family of functions and if the data
is sufficient to calculate the parameter, then not only can we estimate∫ ∫

f(u, v)g(u, v)dudv from the data, for every g(u, v), but we can deter-
mine f(u, v) itself.

To investigate this problem further, we assume that f and the hn are
members of a Hilbert space X, such as L2(R) or L2(R2). Since the problem
of obtaining an unbiased linear estimate is equivalent to that of achieving
perfect reconstruction from noise-free data, we assume that the data we
have are

xn = 〈f, hn〉, (26.41)

where 〈a, b〉 denotes the inner product in the space X. For X = L2(R2) we
have

〈a, b〉 =
∫ ∫

a(u, v)b(u, v)dudv. (26.42)

The goal is to reconstruct the linear functional 〈f, g〉 as a linear combination
of the entries of the data vector x.

Each g in X can be written in the form

g =
N∑

n=1

cnhn + z, (26.43)

for some choice of constants cn and some z with the property that

〈z, hn〉 = 0, (26.44)

for each n. Then we have

〈f, g〉 =
N∑

n=1

cn〈f, hn〉 + 〈f, z〉 =
N∑

n=1

cnxn + 〈f, z〉. (26.45)
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The problem then is that we cannot determine the quantity 〈f, z〉 from the
data, in general.

However, if it should be the case that f is a linear combination of the
hn, that is, there are constants an so that

f =
N∑

n=1

anhn, (26.46)

then 〈f, z〉 = 0. But why should it be the case?
Notice that the data we have measured exists prior to the specification

of the Hilbert space X. By choosing different Hilbert spaces, the data
can be represented in different ways, using different inner products and
different hn. To make this somewhat abstract statement more concrete,
consider the example of Fourier-transform data.

26.6.1 An Example: Fourier-Transform Data

Suppose that the object of interest is f(r), a function of the single real
variable r. Suppose that our data values are

xn = F (ωn) =
∫

f(r)e−iωnrdr, (26.47)

for n = 1, ..., N , and ωn arbitrary frequencies. With X = L2(R), we can
write

xn = F (ωn) = 〈f, hn〉, (26.48)

for

hn(r) = eiωnr. (26.49)

Then we will have f in the span of the hn if f can be written

f(r) =
N∑

n=1

aneiωnr, (26.50)

for some constants an. However, unless N is very large, or the hn(r) have
been carefully chosen, f will probably not be well described by such a sum.

But we should not give up! We can also write

xn =
∫

f(r)p(r)e−iωnrp(r)−1dr, (26.51)

where p(r) > 0. If we define X now to be the Hilbert space with

〈s, t〉 =
∫

s(r)t(r)p(r)−1dr, (26.52)
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then

hn(r) = p(r)eiωnr. (26.53)

Now we will have f in the span of the hn if

f(r) = p(r)
N∑

n=1

aneiωnr, (26.54)

for some an. If we have prior knowledge about f(r), or, more precisely,
about |f(r)|, such as its support, or any prominent components that it
may have, we can include them in a prior estimate p(r) of |f(r)|, making
it much more likely that f lies in the span of the hn, or, at least, can be
well approximately by members of this span.

This approach was developed for image reconstruction from Fourier
data in [34, 35, 41]. In those papers it was called the PDFT estimator. See
the appendix for more discussion of Fourier-transform estimation.

26.6.2 More Generally

In general, if we want to make it plausible that f lies in the span of the
hn, we can alter the ambient Hilbert space, and its inner product, so that
the hn that represent the data also have a good chance of capturing the
desired f within their span. This freedom to tailor the Hilbert space to the
f , using prior knowledge of f , is the way out that we need to overcome the
negative result we saw early on.

26.7 Conclusions

We always have finite data. In the absence of additional knowledge about
f , we can say little, unless the data set is large. But, in most reconstruc-
tion problems we do have additional information, often qualitiative, about
the object f to be recovered. We may, for instance, be willing to say that
f is well-approximated by a finite sum of pixels, voxels, or blobs. Finite
data, if there is enough of it, will then suffice to recover f , at least approx-
imately, from which we can calculate any desired linear-functional value.
The example above, involving Fourier data, shows how we can use prior
knowledge to tailor the ambient Hilbert space, to get beyond the negative
earlier result. The negative result reinforces the point that there is no one-
size-fits-all method that will work for all f , but for each individual f , if we
have prior knowledge about it, all is not lost. There have been a great many
papers stressing the importance of prior information in reconstruction from
limited data [38, 86].
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Chapter 27

Appendix: Planewave
Propagation

In this chapter we demonstrate how the Fourier transform arises naturally
as we study the signals received in the farfield from an array of tranmitters
or reflectors. We restrict our attention to single-frequency, or narrowband,
signals.

27.1 Transmission and Remote-Sensing

For pedagogical reasons, we shall discuss separately what we shall call the
transmission and the remote-sensing problems, although the two problems
are opposite sides of the same coin, in a sense. In the one-dimensional
transmission problem, it is convenient to imagine the transmitters located
at points (x, 0) within a bounded interval [−A,A] of the x-axis, and the
measurements taken at points P lying on a circle of radius D, centered
at the origin. The radius D is large, with respect to A. It may well be
the case that no actual sensing is to be performed, but rather, we are
simply interested in what the received signal pattern is at points P distant
from the transmitters. Such would be the case, for example, if we were
analyzing or constructing a transmission pattern of radio broadcasts. In the
remote-sensing problem, in contrast, we imagine, in the one-dimensional
case, that our sensors occupy a bounded interval of the x-axis, and the
transmitters or reflectors are points of a circle whose radius is large, with
respect to the size of the bounded interval. The actual size of the radius
does not matter and we are interested in determining the amplitudes of the
transmitted or reflected signals, as a function of angle only. Such is the case
in astronomy, farfield sonar or radar, and the like. Both the transmission
and remote-sensing problems illustrate the important role played by the

237
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Fourier transform.

27.2 The Transmission Problem

We identify two distinct transmission problems: the direct problem and
the inverse problem. In the direct transmission problem, we wish to deter-
mine the farfield pattern, given the complex amplitudes of the transmitted
signals. In the inverse transmission problem, the array of transmitters or
reflectors is the object of interest; we are given, or we measure, the farfield
pattern and wish to determine the amplitudes. For simplicity, we consider
only single-frequency signals.

We suppose that each point x in the interval [−A,A] transmits the
signal f(x)eiωt, where f(x) is the complex amplitude of the signal and
ω > 0 is the common fixed frequency of the signals. Let D > 0 be large,
with respect to A, and consider the signal received at each point P given
in polar coordinates by P = (D, θ). The distance from (x, 0) to P is
approximately D − x cos θ, so that, at time t, the point P receives from
(x, 0) the signal f(x)eiω(t−(D−x cos θ)/c), where c is the propagation speed.
Therefore, the combined signal received at P is

B(P, t) = eiωte−iωD/c

∫ A

−A

f(x)eix ω cos θ
c dx. (27.1)

The integral term, which gives the farfield pattern of the transmission, is

F (
ω cos θ

c
) =

∫ A

−A

f(x)eix ω cos θ
c dx, (27.2)

where F (γ) is the Fourier transform of f(x), given by

F (γ) =
∫ A

−A

f(x)eixγdx. (27.3)

How F (ω cos θ
c ) behaves, as a function of θ, as we change A and ω, is dis-

cussed in some detail in the chapter in [57] on direct transmission.
Consider, for example, the function f(x) = 1, for |x| ≤ A, and f(x) = 0,

otherwise. The Fourier transform of f(x) is

F (γ) = 2Asinc(Aγ), (27.4)

where sinc(t) is defined to be

sinc(t) =
sin(t)

t
, (27.5)
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for t 6= 0, and sinc(0) = 1. Then F (ω cos θ
c ) = 2A when cos θ = 0, so when

θ = π
2 and θ = 3π

2 . We will have F (ω cos θ
c ) = 0 when Aω cos θ

c = π, or
cos θ = πc

Aω . Therefore, the transmission pattern has no nulls if πc
Aω > 1. In

order for the transmission pattern to have nulls, we need A > λ
2 , where λ =

2πc
ω is the wavelength. This rather counterintuitive fact, namely that we

need more signals transmitted in order to receive less at certain locations,
illustrates the phenomenon of destructive interference.

27.3 Reciprocity

For certain remote-sensing applications, such as sonar and radar array pro-
cessing and astronomy, it is convenient to switch the roles of sender and
receiver. Imagine that superimposed planewave fields are sensed at points
within some bounded region of the interior of the sphere, having been
transmitted or reflected from the points P on the surface of a sphere whose
radius D is large with respect to the bounded region. The reciprocity prin-
ciple tells us that the same mathematical relation holds between points P
and (x, 0), regardless of which is the sender and which the receiver. Con-
sequently, the data obtained at the points (x, 0) are then values of the
inverse Fourier transform of the function describing the amplitude of the
signal sent from each point P .

27.4 Remote Sensing

A basic problem in remote sensing is to determine the nature of a distant
object by measuring signals transmitted by or reflected from that object.
If the object of interest is sufficiently remote, that is, is in the farfield, the
data we obtain by sampling the propagating spatio-temporal field is related,
approximately, to what we want by Fourier transformation. The problem
is then to estimate a function from finitely many (usually noisy) values
of its Fourier transform. The application we consider here is a common
one of remote-sensing of transmitted or reflected waves propagating from
distant sources. Examples include optical imaging of planets and asteroids
using reflected sunlight, radio-astronomy imaging of distant sources of radio
waves, active and passive sonar, and radar imaging.

27.5 The Wave Equation

In many areas of remote sensing, what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
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as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u, (27.6)

where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More
complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.

We use the method of separation of variables at this point, to get some
idea about the nature of solutions of the wave equation. Assume, for the
moment, that the solution u(t, x, y, z) has the simple form

u(t, x, y, z) = f(t)g(x, y, z). (27.7)

Inserting this separated form into the wave equation, we get

f ′′(t)g(x, y, z) = c2f(t)∇2g(x, y, z) (27.8)

or

f ′′(t)/f(t) = c2∇2g(x, y, z)/g(x, y, z). (27.9)

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

f ′′(t) + ω2f(t) = 0, (27.10)

and

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0. (27.11)

Equation (27.11) is the Helmholtz equation.
Equation (27.10) has for its solutions the functions f(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions f(t) = eiωt

and f(t) = e−iωt. Functions u(t, x, y, z) = f(t)g(x, y, z) with such time
dependence are called time-harmonic solutions.

27.6 Planewave Solutions

Suppose that, beginning at time t = 0, there is a localized disturbance.
As time passes, that disturbance spreads out spherically. When the radius
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of the sphere is very large, the surface of the sphere appears planar, to
an observer on that surface, who is said then to be in the far field. This
motivates the study of solutions of the wave equation that are constant on
planes; the so-called planewave solutions.

Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Then we can show
that u satisfies the wave equation utt = c2∇2u for any real vector k, so long
as ||k||2 = ω2/c2. This solution is a planewave associated with frequency
ω and wavevector k; at any fixed time the function u(s, t) is constant on
any plane in three-dimensional space having k as a normal vector.

In radar and sonar, the field u(s, t) being sampled is usually viewed as
a discrete or continuous superposition of planewave solutions with various
amplitudes, frequencies, and wavevectors. We sample the field at various
spatial locations s, for various times t. Here we simplify the situation a
bit by assuming that all the planewave solutions are associated with the
same frequency, ω. If not, we can perform an FFT on the functions of time
received at each sensor location s and keep only the value associated with
the desired frequency ω.

27.7 Superposition and the Fourier Transform

In the continuous superposition model, the field is

u(s, t) = eiωt

∫
F (k)eik·sdk. (27.12)

Our measurements at the sensor locations s give us the values

f(s) =
∫

F (k)eik·sdk. (27.13)

The data are then Fourier transform values of the complex function F (k);
F (k) is defined for all three-dimensional real vectors k, but is zero, in
theory, at least, for those k whose squared length ||k||2 is not equal to
ω2/c2. Our goal is then to estimate F (k) from measured values of its
Fourier transform. Since each k is a normal vector for its planewave field
component, determining the value of F (k) will tell us the strength of the
planewave component coming from the direction k.

27.7.1 The Spherical Model

We can imagine that the sources of the planewave fields are the points P
that lie on the surface of a large sphere centered at the origin. For each
P , the ray from the origin to P is parallel to some wavevector k. The
function F (k) can then be viewed as a function F (P ) of the points P . Our
measurements will be taken at points s inside this sphere. The radius of
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the sphere is assumed to be orders of magnitude larger than the distance
between sensors. The situation is that of astronomical observation of the
heavens using ground-based antennas. The sources of the optical or electro-
magnetic signals reaching the antennas are viewed as lying on a large sphere
surrounding the earth. Distance to the sources is not considered now, and
all we are interested in are the amplitudes F (k) of the fields associated
with each direction k.

27.8 Sensor Arrays

In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays.

27.8.1 The Two-Dimensional Array

Suppose now that the sensors are in locations s = (x, y, 0), for various x
and y; then we have a planar array of sensors. Then the dot product s · k
that occurs in Equation (27.13) is

s · k = xk1 + yk2; (27.14)

we cannot see the third component, k3. However, since we know the size
of the vector k, we can determine |k3|. The only ambiguity that remains
is that we cannot distinguish sources on the upper hemisphere from those
on the lower one. In most cases, such as astronomy, it is obvious in which
hemisphere the sources lie, so the ambiguity is resolved.

The function F (k) can then be viewed as F (k1, k2), a function of the
two variables k1 and k2. Our measurements give us values of f(x, y), the
two-dimensional Fourier transform of F (k1, k2). Because of the limitation
||k|| = ω

c , the function F (k1, k2) has bounded support. Consequently, its
Fourier transform cannot have bounded support. As a result, we can never
have all the values of f(x, y), and so cannot hope to reconstruct F (k1, k2)
exactly, even for noise-free data.

27.8.2 The One-Dimensional Array

If the sensors are located at points s having the form s = (x, 0, 0), then we
have a line array of sensors. The dot product in Equation (27.13) becomes

s · k = xk1. (27.15)

Now the ambiguity is greater than in the planar array case. Once we have
k1, we know that

k2
2 + k2

3 = (
ω

c
)2 − k2

1, (27.16)
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which describes points P lying on a circle on the surface of the distant
sphere, with the vector (k1, 0, 0) pointing at the center of the circle. It
is said then that we have a cone of ambiguity. One way to resolve the
situation is to assume k3 = 0; then |k2| can be determined and we have
remaining only the ambiguity involving the sign of k2. Once again, in many
applications, this remaining ambiguity can be resolved by other means.

Once we have resolved any ambiguity, we can view the function F (k)
as F (k1), a function of the single variable k1. Our measurements give us
values of f(x), the Fourier transform of F (k1). As in the two-dimensional
case, the restriction on the size of the vectors k means that the function
F (k1) has bounded support. Consequently, its Fourier transform, f(x),
cannot have bounded support. Therefore, we shall never have all of f(x),
and so cannot hope to reconstruct F (k1) exactly, even for noise-free data.

27.8.3 Limited Aperture

In both the one- and two-dimensional problems, the sensors will be placed
within some bounded region, such as |x| ≤ A, |y| ≤ B for the two-
dimensional problem, or |x| ≤ A for the one-dimensional case. These
bounded regions are the apertures of the arrays. The larger these apertures
are, in units of the wavelength, the better the resolution of the reconstruc-
tions.

In digital array processing there are only finitely many sensors, which
then places added limitations on our ability to reconstruction the field
amplitude function F (k).

27.9 The Remote-Sensing Problem

We shall begin our discussion of the remote-sensing problem by consid-
ering an extended object transmitting or reflecting a single-frequency, or
narrowband, signal. The narrowband, extended-object case is a good place
to begin, since a point object is simply a limiting case of an extended ob-
ject, and broadband received signals can always be filtered to reduce their
frequency band.

27.9.1 The Solar-Emission Problem

In [23] Bracewell discusses the solar-emission problem. In 1942, it was
observed that radio-wave emissions in the one-meter wavelength range were
arriving from the sun. Were they coming from the entire disk of the sun
or were the sources more localized, in sunspots, for example? The problem
then was to view each location on the sun’s surface as a potential source of
these radio waves and to determine the intensity of emission corresponding
to each location.
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For electromagnetic waves the propagation speed is the speed of light
in a vacuum, which we shall take here to be c = 3× 108 meters per second.
The wavelength λ for gamma rays is around one Angstrom, which is 10−10

meters; for x-rays it is about one millimicron, or 10−9 meters. The visi-
ble spectrum has wavelengths that are a little less than one micron, that
is, 10−6 meters. Shortwave radio has a wavelength around one millime-
ter; microwaves have wavelengths between one centimeter and one meter.
Broadcast radio has a λ running from about 10 meters to 1000 meters,
while the so-called long radio waves can have wavelengths several thousand
meters long.

The sun has an angular diameter of 30 min. of arc, or one-half of a
degree, when viewed from earth, but the needed resolution was more like
3 min. of arc. As we shall see shortly, such resolution requires a radio
telescope 1000 wavelengths across, which means a diameter of 1km at a
wavelength of 1 meter; in 1942 the largest military radar antennas were
less than 5 meters across. A solution was found, using the method of
reconstructing an object from line-integral data, a technique that surfaced
again in tomography. The problem here is inherently two-dimensional, but,
for simplicity, we shall begin with the one-dimensional case.

27.10 Sampling

In the one-dimensional case, the signal received at the point (x, 0, 0) is
essentially the inverse Fourier transform f(x) of the function F (k1); for
notational simplicity, we write k = k1. The F (k) supported on a bounded
interval |k| ≤ ω

c , so f(x) cannot have bounded support. As we noted
earlier, to determine F (k) exactly, we would need measurements of f(x)
on an unbounded set. But, which unbounded set?

Because the function F (k) is zero outside the interval [−ω
c , ω

c ], the func-
tion f(x) is band-limited. The Nyquist spacing in the variable x is therefore

∆x =
πc

ω
. (27.17)

The wavelength λ associated with the frequency ω is defined to be

λ =
2πc

ω
, (27.18)

so that

∆x =
λ

2
. (27.19)

The significance of the Nyquist spacing comes from Shannon’s Sampling
Theorem, which says that if we have the values f(m∆x), for all integers m,
then we have enough information to recover F (k) exactly. In practice, of
course, this is never the case.
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27.11 The Limited-Aperture Problem

In the remote-sensing problem, our measurements at points (x, 0, 0) in the
farfield give us the values f(x). Suppose now that we are able to take
measurements only for limited values of x, say for |x| ≤ A; then 2A is the
aperture of our antenna or array of sensors. We describe this by saying that
we have available measurements of f(x)h(x), where h(x) = χA(x) = 1, for
|x| ≤ A, and zero otherwise. So, in addition to describing blurring and
low-pass filtering, the convolution-filter model can also be used to model
the limited-aperture problem. As in the low-pass case, the limited-aperture
problem can be attacked using extrapolation, but with the same sort of risks
described for the low-pass case. A much different approach is to increase
the aperture by physically moving the array of sensors, as in synthetic
aperture radar (SAR).

Returning to the farfield remote-sensing model, if we have Fourier trans-
form data only for |x| ≤ A, then we have f(x) for |x| ≤ A. Using
h(x) = χA(x) to describe the limited aperture of the system, the point-
spread function is H(γ) = 2Asinc(γA), the Fourier transform of h(x). The
first zeros of the numerator occur at |γ| = π

A , so the main lobe of the
point-spread function has width 2π

A . For this reason, the resolution of such
a limited-aperture imaging system is said to be on the order of 1

A . Since
|k| ≤ ω

c , we can write k = ω
c cos θ, where θ denotes the angle between

the positive x-axis and the vector k = (k1, k2, 0); that is, θ points in the
direction of the point P associated with the wavevector k. The resolution,
as measured by the width of the main lobe of the point-spread function
H(γ), in units of k, is 2π

A , but, the angular resolution will depend also on
the frequency ω. Since k = 2π

λ cos θ, a distance of one unit in k may corre-
spond to a large change in θ when ω is small, but only to a relatively small
change in θ when ω is large. For this reason, the aperture of the array is
usually measured in units of the wavelength; an aperture of A = 5 meters
may be acceptable if the frequency is high, so that the wavelength is small,
but not if the radiation is in the one-meter-wavelength range.

27.12 Resolution

If F (k) = δ(k) and h(x) = χA(x) describes the aperture-limitation of the
imaging system, then the point-spread function is H(γ) = 2Asinc(γA).
The maximum of H(γ) still occurs at γ = 0, but the main lobe of H(γ)
extends from − π

A to π
A ; the point source has been spread out. If the point-

source object shifts, so that F (k) = δ(k−a), then the reconstructed image
of the object is H(k−a), so the peak is still in the proper place. If we know
a priori that the object is a single point source, but we do not know its
location, the spreading of the point poses no problem; we simply look for
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the maximum in the reconstructed image. Problems arise when the object
contains several point sources, or when we do not know a priori what we
are looking at, or when the object contains no point sources, but is just a
continuous distribution.

Suppose that F (k) = δ(k − a) + δ(k − b); that is, the object consists
of two point sources. Then Fourier transformation of the aperture-limited
data leads to the reconstructed image

R(k) = 2A
(
sinc(A(k − a)) + sinc(A(k − b))

)
. (27.20)

If |b − a| is large enough, R(k) will have two distinct maxima, at approx-
imately k = a and k = b, respectively. For this to happen, we need π/A,
the width of the main lobe of the function sinc(Ak), to be less than |b−a|.
In other words, to resolve the two point sources a distance |b−a| apart, we
need A ≥ π/|b − a|. However, if |b − a| is too small, the distinct maxima
merge into one, at k = a+b

2 and resolution will be lost. How small is too
small will depend on both A and ω.

Suppose now that F (k) = δ(k − a), but we do not know a priori that
the object is a single point source. We calculate

R(k) = H(k − a) = 2Asinc(A(k − a)) (27.21)

and use this function as our reconstructed image of the object, for all k.
What we see when we look at R(k) for some k = b 6= a is R(b), which is
the same thing we see when the point source is at k = b and we look at
k = a. Point-spreading is, therefore, more than a cosmetic problem. When
the object is a point source at k = a, but we do not know a priori that it
is a point source, the spreading of the point causes us to believe that the
object function F (k) is nonzero at values of k other than k = a. When we
look at, say, k = b, we see a nonzero value that is caused by the presence
of the point source at k = a.

Suppose now that the object function F (k) contains no point sources,
but is simply an ordinary function of k. If the aperture A is very small, then
the function H(k) is nearly constant over the entire extent of the object.
The convolution of F (k) and H(k) is essentially the integral of F (k), so
the reconstructed object is R(k) =

∫
F (k)dk, for all k.

Let’s see what this means for the solar-emission problem discussed ear-
lier.

27.12.1 The Solar-Emission Problem Revisited

The wavelength of the radiation is λ = 1 meter. Therefore, ω
c = 2π, and

k in the interval [−2π, 2π] corresponds to the angle θ in [0, π]. The sun
has an angular diameter of 30 minutes of arc, which is about 10−2 radians.
Therefore, the sun subtends the angles θ in [π

2 −(0.5)·10−2, π
2 +(0.5)·10−2],
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which corresponds roughly to the variable k in the interval [−3 · 10−2, 3 ·
10−2]. Resolution of 3 minutes of arc means resolution in the variable k of
3 · 10−3. If the aperture is 2A, then to achieve this resolution, we need

π

A
≤ 3 · 10−3, (27.22)

or

A ≥ π

3
· 103 (27.23)

meters, or A not less than about 1000 meters.
The radio-wave signals emitted by the sun are focused, using a parabolic

radio-telescope. The telescope is pointed at the center of the sun. Because
the sun is a great distance from the earth and the subtended arc is small
(30 min.), the signals from each point on the sun’s surface arrive at the
parabola nearly head-on, that is, parallel to the line from the vertex to the
focal point, and are reflected to the receiver located at the focal point of
the parabola. The effect of the parabolic antenna is not to discriminate
against signals coming from other directions, since there are none, but to
effect a summation of the signals received at points (x, 0, 0), for |x| ≤ A,
where 2A is the diameter of the parabola. When the aperture is large, the
function h(x) is nearly one for all x and the signal received at the focal
point is essentially ∫

f(x)dx = F (0); (27.24)

we are now able to distinguish between F (0) and other values F (k). When
the aperture is small, h(x) is essentially δ(x) and the signal received at the
focal point is essentially∫

f(x)δ(x)dx = f(0) =
∫

F (k)dk; (27.25)

now all we get is the contribution from all the k, superimposed, and all
resolution is lost.

Since the solar emission problem is clearly two-dimensional, and we need
3 min. resolution in both dimensions, it would seem that we would need a
circular antenna with a diameter of about one kilometer, or a rectangular
antenna roughly one kilometer on a side. We shall return to this problem
later, once when we discuss multi-dimensional Fourier transforms, and then
again when we consider tomographic reconstruction of images from line
integrals.

27.13 Discrete Data

A familiar topic in signal processing is the passage from functions of con-
tinuous variables to discrete sequences. This transition is achieved by sam-
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pling, that is, extracting values of the continuous-variable function at dis-
crete points in its domain. Our example of farfield propagation can be used
to explore some of the issues involved in sampling.

Imagine an infinite uniform line array of sensors formed by placing
receivers at the points (n∆, 0, 0), for some ∆ > 0 and all integers n. Then
our data are the values f(n∆). Because we defined k = ω

c cos θ, it is clear
that the function F (k) is zero for k outside the interval [−ω

c , ω
c ].

Our discrete array of sensors cannot distinguish between the signal ar-
riving from θ and a signal with the same amplitude, coming from an angle
α with

ω

c
cos α =

ω

c
cos θ +

2π

∆
m, (27.26)

where m is an integer. To resolve this ambiguity, we select ∆ > 0 so that

−ω

c
+

2π

∆
≥ ω

c
, (27.27)

or

∆ ≤ πc

ω
=

λ

2
. (27.28)

The sensor spacing ∆s = λ
2 is the Nyquist spacing.

In the sunspot example, the object function F (k) is zero for k outside
of an interval much smaller than [−ω

c , ω
c ]. Knowing that F (k) = 0 for

|k| > K, for some 0 < K < ω
c , we can accept ambiguities that confuse

θ with another angle that lies outside the angular diameter of the object.
Consequently, we can redefine the Nyquist spacing to be

∆s =
π

K
. (27.29)

This tells us that when we are imaging a distant object with a small angular
diameter, the Nyquist spacing is greater than λ

2 . If our sensor spacing has
been chosen to be λ

2 , then we have oversampled. In the oversampled case,
band-limited extrapolation methods can be used to improve resolution .

27.13.1 Reconstruction from Samples

From the data gathered at our infinite array we have extracted the Fourier
transform values f(n∆), for all integers n. The obvious question is whether
or not the data is sufficient to reconstruct F (k). We know that, to avoid
ambiguity, we must have ∆ ≤ πc

ω . The good news is that, provided this
condition holds, F (k) is uniquely determined by this data and formulas
exist for reconstructing F (k) from the data; this is the content of the
Shannon’s Sampling Theorem. Of course, this is only of theoretical interest,
since we never have infinite data. Nevertheless, a considerable amount of
traditional signal-processing exposition makes use of this infinite-sequence
model. The real problem, of course, is that our data is always finite.
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27.14 The Finite-Data Problem

Suppose that we build a uniform line array of sensors by placing receivers
at the points (n∆, 0, 0), for some ∆ > 0 and n = −N, ..., N . Then our data
are the values f(n∆), for n = −N, ..., N . Suppose, as previously, that the
object of interest, the function F (k), is nonzero only for values of k in the
interval [−K, K], for some 0 < K < ω

c . Once again, we must have ∆ ≤ πc
ω

to avoid ambiguity; but this is not enough, now. The finite Fourier data
is no longer sufficient to determine a unique F (k). The best we can hope
to do is to estimate the true F (k), using both our measured Fourier data
and whatever prior knowledge we may have about the function F (k), such
as where it is nonzero, if it consists of Dirac delta point sources, or if it is
nonnegative. The data is also noisy, and that must be accounted for in the
reconstruction process.

In certain applications, such as sonar array processing, the sensors are
not necessarily arrayed at equal intervals along a line, or even at the grid
points of a rectangle, but in an essentially arbitrary pattern in two, or even
three, dimensions. In such cases, we have values of the Fourier transform
of the object function, but at essentially arbitrary values of the variable.
How best to reconstruct the object function in such cases is not obvious.

27.15 Functions of Several Variables

Fourier transformation applies, as well, to functions of several variables. As
in the one-dimensional case, we can motivate the multi-dimensional Fourier
transform using the farfield propagation model. As we noted earlier, the
solar emission problem is inherently a two-dimensional problem.

27.15.1 Two-Dimensional Farfield Object

Assume that our sensors are located at points s = (x, y, 0) in the x,y-plane.
As discussed previously, we assume that the function F (k) can be viewed
as a function F (k1, k2). Since, in most applications, the distant object has
a small angular diameter when viewed from a great distance - the sun’s is
only 30 minutes of arc - the function F (k1, k2) will be supported on a small
subset of vectors (k1, k2).

27.15.2 Limited Apertures in Two Dimensions

Suppose we have the values of the Fourier transform, f(x, y), for |x| ≤ A
and |y| ≤ A. We describe this limited-data problem using the function
h(x, y) that is one for |x| ≤ A, and |y| ≤ A, and zero, otherwise. Then the
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point-spread function is the Fourier transform of this h(x, y), given by

H(α, β) = 4ABsinc(Aα)sinc(Bβ). (27.30)

The resolution in the horizontal (x) direction is on the order of 1
A , and

1
B in the vertical, where, as in the one-dimensional case, aperture is best
measured in units of wavelength.

Suppose our aperture is circular, with radius A. Then we have Fourier
transform values f(x, y) for

√
x2 + y2 ≤ A. Let h(x, y) equal one, for√

x2 + y2 ≤ A, and zero, otherwise. Then the point-spread function of
this limited-aperture system is the Fourier transform of h(x, y), given by
H(α, β) = 2πA

r J1(rA), with r =
√

α2 + β2. The resolution of this system is
roughly the distance from the origin to the first null of the function J1(rA),
which means that rA = 4, roughly.

For the solar emission problem, this says that we would need a circular
aperture with radius approximately one kilometer to achieve 3 minutes of
arc resolution. But this holds only if the antenna is stationary; a moving
antenna is different! The solar emission problem was solved by using a
rectangular antenna with a large A, but a small B, and exploiting the
rotation of the earth. The resolution is then good in the horizontal, but bad
in the vertical, so that the imaging system discriminates well between two
distinct vertical lines, but cannot resolve sources within the same vertical
line. Because B is small, what we end up with is essentially the integral
of the function f(x, z) along each vertical line. By tilting the antenna, and
waiting for the earth to rotate enough, we can get these integrals along
any set of parallel lines. The problem then is to reconstruct F (k1, k2) from
such line integrals. This is also the main problem in tomography.

27.16 Broadband Signals

We have spent considerable time discussing the case of a distant point
source or an extended object transmitting or reflecting a single-frequency
signal. If the signal consists of many frequencies, the so-called broadband
case, we can still analyze the received signals at the sensors in terms of
time delays, but we cannot easily convert the delays to phase differences,
and thereby make good use of the Fourier transform. One approach is
to filter each received signal, to remove components at all but a single
frequency, and then to proceed as previously discussed. In this way we can
process one frequency at a time. The object now is described in terms of a
function of both k and ω, with F (k, ω) the complex amplitude associated
with the wave vector k and the frequency ω. In the case of radar, the
function F (k, ω) tells us how the material at P reflects the radio waves at
the various frequencies ω, and thereby gives information about the nature
of the material making up the object near the point P .
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There are times, of course, when we do not want to decompose a broad-
band signal into single-frequency components. A satellite reflecting a TV
signal is a broadband point source. All we are interested in is receiving the
broadband signal clearly, free of any other interfering sources. The direc-
tion of the satellite is known and the antenna is turned to face the satellite.
Each location on the parabolic dish reflects the same signal. Because of its
parabolic shape, the signals reflected off the dish and picked up at the focal
point have exactly the same travel time from the satellite, so they combine
coherently, to give us the desired TV signal.
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Chapter 28

Appendix:
Conjugate-Direction
Methods

Finding the least-squares solution of a possibly inconsistent system of linear
equations Ax = b is equivalent to minimizing the quadratic function f(x) =
1
2 ||Ax − b||22 and so can be viewed within the framework of optimization.
Iterative optimization methods can then be used to provide, or at least
suggest, algorithms for obtaining the least-squares solution. The conjugate
gradient method is one such method.

28.1 Iterative Minimization

Iterative methods for minimizing a real-valued function f(x) over the vector
variable x usually take the following form: having obtained xk−1, a new
direction vector dk is selected, an appropriate scalar αk > 0 is determined
and the next member of the iterative sequence is given by

xk = xk−1 + αkdk. (28.1)

Ideally, one would choose the αk to be the value of α for which the function
f(xk−1+αdk) is minimized. It is assumed that the direction dk is a descent
direction; that is, for small positive α the function f(xk−1 +αdk) is strictly
decreasing. Finding the optimal value of α at each step of the iteration is
difficult, if not impossible, in most cases, and approximate methods, using
line searches, are commonly used.

253
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Exercise 28.1 Differentiate the function f(xk−1+αdk) with respect to the
variable α to show that

∇f(xk) · dk = 0. (28.2)

Since the gradient ∇f(xk) is orthogonal to the previous direction vector
dk and also because −∇f(x) is the direction of greatest decrease of f(x),
the choice of dk+1 = −∇f(xk) as the next direction vector is a reasonable
one. With this choice we obtain Cauchy’s steepest descent method [160]:

xk+1 = xk − αk+1∇f(xk).

The steepest descent method need not converge in general and even when
it does, it can do so slowly, suggesting that there may be better choices
for the direction vectors. For example, the Newton-Raphson method [170]
employs the following iteration:

xk+1 = xk −∇2f(xk)−1∇f(xk),

where ∇2f(x) is the Hessian matrix for f(x) at x. To investigate further
the issues associated with the selection of the direction vectors, we consider
the more tractable special case of quadratic optimization.

28.2 Quadratic Optimization

Let A be an arbitrary real I by J matrix. The linear system of equations
Ax = b need not have any solutions, and we may wish to find a least-squares
solution x = x̂ that minimizes

f(x) =
1
2
||b−Ax||22. (28.3)

The vector b can be written

b = Ax̂ + ŵ,

where AT ŵ = 0 and a least squares solution is an exact solution of the
linear system Qx = c, with Q = AT A and c = AT b. We shall assume
that Q is invertible and there is a unique least squares solution; this is the
typical case.

We consider now the iterative scheme described by Equation (28.1) for
f(x) as in Equation (28.3). For this f(x) the gradient becomes

∇f(x) = Qx− c.

The optimal αk for the iteration can be obtained in closed form.



28.2. QUADRATIC OPTIMIZATION 255

Exercise 28.2 Show that the optimal αk is

αk =
rk · dk

dk ·Qdk
, (28.4)

where rk = c−Qxk−1.

Exercise 28.3 Let ||x||2Q = x ·Qx denote the square of the Q-norm of x.
Show that

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0

for any direction vectors dk.

If the sequence of direction vectors {dk} is completely general, the iter-
ative sequence need not converge. However, if the set of direction vectors
is finite and spans RJ and we employ them cyclically, convergence follows.

Theorem 28.1 Let {d1, ..., dJ} be any finite set whose span is all of RJ .
Let αk be chosen according to Equation (28.4). Then, for k = 0, 1, ...,
j = k(modJ) + 1, and any x0, the sequence defined by

xk = xk−1 + αkdj

converges to the least squares solution.

Proof: The sequence {||x̂ − xk||2Q} is decreasing and, therefore, the se-
quence {(rk · dk)2/dk · Qdk must converge to zero. Therefore, the vectors
xk are bounded, and for each j = 1, ..., J , the subsequences {xmJ+j , m =
0, 1, ...} have cluster points, say x∗,j with

x∗,j = x∗,j−1 +
(c−Qx∗,j−1) · dj

dj ·Qdj
dj .

Since
rmJ+j · dj → 0,

it follows that, for each j = 1, ..., J ,

(c−Qx∗,j) · dj = 0.

Therefore,
x∗,1 = ... = x∗,J = x∗
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with Qx∗ = c. Consequently, x∗ is the least squares solution and the
sequence {||x∗−xk||Q} is decreasing. But a subsequence converges to zero;
therefore, {||x∗ − xk||Q} → 0. This completes the proof.

There is an interesting corollary to this theorem that pertains to a mod-
ified version of the ART algorithm. For k = 0, 1, ... and i = k(modM) + 1
and with the rows of A normalized to have length one, the ART iterative
step is

xk+1 = xk + (bi − (Axk)i)ai,

where ai is the ith column of AT . When Ax = b has no solutions, the
ART algorithm does not converge to the least-squares solution; rather,
it exhibits subsequential convergence to a limit cycle. However, using the
previous theorem, we can show that the following modification of the ART,
which we shall call the least squares ART (LS-ART), converges to the least-
squares solution for every x0:

xk+1 = xk +
rk+1 · ai

ai ·Qai
ai.

In the quadratic case the steepest descent iteration has the form

xk = xk−1 +
rk · rk

rk ·Qrk
rk.

We have the following result.

Theorem 28.2 The steepest descent method converges to the least-squares
solution.

Proof: As in the proof of the previous theorem, we have

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0,

where now the direction vectors are dk = rk. So, the sequence {||x̂−xk||2Q}
is decreasing, and therefore the sequence {(rk ·rk)2/rk ·Qrk} must converge
to zero. The sequence {xk} is bounded; let x∗ be a cluster point. It follows
that c − Qx∗ = 0, so that x∗ is the least-squares solution x̂. The rest of
the proof follows as in the proof of the previous theorem.

28.3 Conjugate Bases for RJ

If the set {v1, ..., vJ} is a basis for RJ , then any vector x in RJ can be
expressed as a linear combination of the basis vectors; that is, there are
real numbers a1, ..., aJ for which

x = a1v
1 + a2v

2 + ... + aJvJ .
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For each x the coefficients aj are unique. To determine the aj we write

x · vm = a1v
1 · vm + a2v

2 · vm + ... + aJvJ · vm,

for m = 1, ...,M . Having calculated the quantities x · vm and vj · vm, we
solve the resulting system of linear equations for the aj .

If the set {u1, ..., uM} is an orthogonal basis, that is, then uj · um = 0,
unless j = m, then the system of linear equations is now trivial to solve.
The solution is aj = x · uj/uj · uj , for each j. Of course, we still need to
compute the quantities x · uj .

The least-squares solution of the linear system of equations Ax = b is

x̂ = (AT A)−1AT b = Q−1c.

To express x̂ as a linear combination of the members of an orthogonal basis
{u1, ..., uJ} we need the quantities x̂ ·uj , which usually means that we need
to know x̂ first. For a special kind of basis, a Q-conjugate basis, knowing x̂
ahead of time is not necessary; we need only know Q and c. Therefore, we
can use such a basis to find x̂. This is the essence of the conjugate gradient
method (CGM), in which we calculate a conjugate basis and, in the process,
determine x̂.

28.3.1 Conjugate Directions

From Equation (28.2) we have

(c−Qxk+1) · dk = 0,

which can be expressed as

(x̂− xk+1) ·Qdk = (x̂− xk+1)T Qdk = 0.

Two vectors x and y are said to be Q-orthogonal (or Q-conjugate, or just
conjugate), if x · Qy = 0. So, the least-squares solution that we seek lies
in a direction from xk+1 that is Q-orthogonal to dk. This suggests that
we can do better than steepest descent if we take the next direction to be
Q-orthogonal to the previous one, rather than just orthogonal. This leads
us to conjugate direction methods.

Exercise 28.4 Say that the set {p1, ..., pn} is a conjugate set for RJ if
pi · Qpj = 0 for i 6= j. Prove that a conjugate set that does not contain
zero is linearly independent. Show that if pn 6= 0 for n = 1, ..., J , then the
least-squares vector x̂ can be written as

x̂ = a1p
1 + ... + aJpJ ,

with aj = c ·pj/pj ·Qpj for each j. Hint: use the Q-inner product 〈x, y〉Q =
x ·Qy.
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Therefore, once we have a conjugate basis, computing the least squares
solution is trivial. Generating a conjugate basis can obviously be done
using the standard Gram-Schmidt approach.

28.3.2 The Gram-Schmidt Method

Let {v1, ..., vJ} be a linearly independent set of vectors in the space RM ,
where J ≤ M . The Gram-Schmidt method uses the vj to create an or-
thogonal basis {u1, ..., uJ} for the span of the vj . Begin by taking u1 = v1.
For j = 2, ..., J , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1.

To apply this approach to obtain a conjugate basis, we would simply replace
the dot products uk · vj and uk · uk with the Q-inner products, that is,

pj = vj − p1 ·Qvj

p1 ·Qp1
p1 − ...− pj−1 ·Qvj

pj−1 ·Qpj−1
pj−1. (28.5)

Even though the Q-inner products can always be written as x·Qy = Ax·Ay,
so that we need not compute the matrix Q, calculating a conjugate basis
using Gram-Schmidt is not practical for large J . There is a way out,
fortunately.

If we take p1 = v1 and vj = Qpj−1, we have a much more efficient
mechanism for generating a conjugate basis, namely a three-term recursion
formula [160]. The set {p1, Qp1, ..., QpJ−1} need not be a linearly indepen-
dent set, in general, but, if our goal is to find x̂, and not really to calculate
a full conjugate basis, this does not matter, as we shall see.

Theorem 28.3 Let p1 6= 0 be arbitrary. Let p2 be given by

p2 = Qp1 − Qp1 ·Qp1

p1 ·Qp1
p1,

so that p2 ·Qp1 = 0. Then, for n ≥ 2, let pn+1 be given by

pn+1 = Qpn − Qpn ·Qpn

pn ·Qpn
pn − Qpn−1 ·Qpn

pn−1 ·Qpn−1
pn−1. (28.6)

Then, the set {p1, ..., pJ} is a conjugate set for RJ . If pn 6= 0 for each n,
then the set is a conjugate basis for RJ .

Proof: We consider the induction step of the proof. Assume that {p1, ..., pn}
is a Q-orthogonal set of vectors; we then show that {p1, ..., pn+1} is also,
provided that n ≤ J − 1. It is clear from Equation (28.6) that

pn+1 ·Qpn = pn+1 ·Qpn−1 = 0.
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For j ≤ n− 2, we have

pn+1 ·Qpj = pj ·Qpn+1 = pj ·Q2pn − apj ·Qpn − bpj ·Qpn−1,

for constants a and b. The second and third terms on the right side are
then zero because of the induction hypothesis. The first term is also zero
since

pj ·Q2pn = (Qpj) ·Qpn = 0

because Qpj is in the span of {p1, ..., pj+1}, and so is Q-orthogonal to pn.

The calculations in the three-term recursion formula Equation (28.6)
also occur in the Gram-Schmidt approach in Equation (28.5); the point is
that Equation (28.6) uses only the first three terms, in every case.

28.4 The Conjugate Gradient Method

The main idea in the conjugate gradient method (CGM) is to build the
conjugate set as we calculate the least squares solution using the iterative
algorithm

xn = xn−1 + αnpn. (28.7)

The αn is chosen so as to minimize the function of α defined by f(xn−1 +
αpn), and so we have

αn =
rn · pn

pn ·Qpn
,

where rn = c − Qxn−1. Since the function f(x) = 1
2 ||Ax − b||22 has for

its gradient ∇f(x) = AT (Ax − b) = Qx − c, the residual vector rn =
c − Qxn−1 is the direction of steepest descent from the point x = xn−1.
The CGM combines the use of the negative gradient directions from the
steepest descent method with the use of a conjugate basis of directions, by
using the rn+1 to construct the next direction pn+1 in such a way as to
form a conjugate set {p1, ..., p

J}.
As before, there is an efficient recursive formula that provides the next

direction: let p1 = r1 = (c−Qx0) and

pn+1 = rn+1 − rn+1 ·Qpn

pn ·Qpn
pn. (28.8)

Since the αn is the optimal choice and

rn+1 = −∇f(xn),

we have, according to Equation (28.2),

rn+1 · pn = 0.
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Exercise 28.5 Prove that rn+1 = 0 whenever pn+1 = 0, in which case we
have c = Qxn, so that xn is the least-squares solution.

In theory, the CGM converges to the least squares solution in finitely
many steps, since we either reach pn+1 = 0 or n + 1 = J . In practice, the
CGM can be employed as a fully iterative method by cycling back through
the previously used directions.

An induction proof similar to the one used to prove Theorem 28.3 es-
tablishes that the set {p1, ..., pJ} is a conjugate set [160, 170]. In fact, we
can say more.

Theorem 28.4 For n = 1, 2, ..., J and j = 1, ..., n−1 we have a) rn·rj = 0;
b) rn · pj = 0; and c) pn ·Qpj = 0.

The proof presented here through a series of exercises is based on that given
in [170].

The proof uses induction on the number n. Throughout the following
exercises assume that the statements in the theorem hold for some n < J .
We prove that they hold also for n + 1.

Exercise 28.6 Use the fact that

rj+1 = rj − αjQpj ,

to show that Qpj is in the span of the vectors rj and rj+1.

Exercise 28.7 Show that rn+1 · rn = 0. Hint: establish that

αn =
rn · rn

pn ·Qpn
.

Exercise 28.8 Show that rn+1 · rj = 0, for j = 1, ..., n− 1. Hint: use the
induction hypothesis.

Exercise 28.9 Show that rn+1 · pj = 0, for j = 1, ..., n. Hint: first,
establish that

pj = rj − βj−1p
j−1,

where

βj−1 =
rj ·Qpj−1

pj−1 ·Qpj−1
,

and
rn+1 = rn − αnQpn.

Exercise 28.10 Show that pn+1 ·Qpj = 0, for j = 1, ..., n− 1. Hint: use

Qpj = α−1
j (rj − rj+1).
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The final step in the proof is contained in the following exercise.

Exercise 28.11 Show that pn+1 ·Qpn = 0. Hint: establish that

βn = −rn+1 · rn+1

rn · rn
.

The convergence rate of the CGM depends on the condition number of
the matrix Q, which is the ratio of its largest to its smallest eigenvalues.
When the condition number is much greater than one convergence can be
accelerated by preconditioning the matrix Q; this means replacing Q with
P−1/2QP−1/2, for some positive-definite approximation P of Q (see [6]).

There are versions of the CGM for the minimization of nonquadratic
functions. In the quadratic case the next conjugate direction pn+1 is built
from the residual rn+1 and pn. Since, in that case, rn+1 = −∇f(xn), this
suggests that in the nonquadratic case we build pn+1 from −∇f(xn) and
pn. This leads to the Fletcher-Reeves method. Other similar algorithms,
such as the Polak-Ribiere and the Hestenes-Stiefel methods, perform better
on certain problems [170].



262CHAPTER 28. APPENDIX: CONJUGATE-DIRECTION METHODS



Chapter 29

Appendix: Matrix Theory

29.1 Matrix Inverses

A square matrix A is said to have inverse A−1 provided that

AA−1 = A−1A = I,

where I is the identity matrix. The 2 by 2 matrix A =
[

a b
c d

]
has an

inverse

A−1 =
1

ad− bc

[
d −b
−c a

]
whenever the determinant of A, det(A) = ad− bc is not zero. More gener-
ally, associated with every complex square matrix is the complex number
called its determinant, which is obtained from the entries of the matrix
using formulas that can be found in any text on linear algebra. The sig-
nificance of the determinant is that the matrix is invertible if and only
if its determinant is not zero. This is of more theoretical than practical
importance, since no computer can tell when a number is precisely zero.
A matrix A that is not square cannot have an inverse, but does have a
pseudo-inverse, which is found using the singular-value decomposition.

29.2 Basic Linear Algebra

In this section we discuss systems of linear equations, Gaussian elimination,
and the notions of basic and non-basic variables.

29.2.1 Bases and Dimension

The notions of a basis and of linear independence are fundamental in linear
algebra. Let V be a vector space.

263
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Definition 29.1 A collection of vectors {u1, ..., uN} in V is linearly inde-
pendent if there is no choice of scalars α1, ..., αN , not all zero, such that

0 = α1u
1 + ... + αNuN . (29.1)

Definition 29.2 The span of a collection of vectors {u1, ..., uN} in V is
the set of all vectors x that can be written as linear combinations of the un;
that is, for which there are scalars c1, ..., cN , such that

x = c1u
1 + ... + cNuN . (29.2)

Definition 29.3 A collection of vectors {w1, ..., wN} in V is called a span-
ning set for a subspace S if the set S is their span.

Definition 29.4 A collection of vectors {u1, ..., uN} in V is called a basis
for a subspace S if the collection is linearly independent and S is their span.

Definition 29.5 A collection of vectors {u1, ..., uN} in V is called or-
thonormal if ||un||2 = 1, for all n, and 〈um, un〉 = 0, for m 6= n.

Suppose that S is a subspace of V, that {w1, ..., wN} is a spanning set
for S, and {u1, ..., uM} is a linearly independent subset of S. Beginning
with w1, we augment the set {u1, ..., uM} with wj if wj is not in the span of
the um and the wk previously included. At the end of this process, we have
a linearly independent spanning set, and therefore, a basis, for S (Why?).
Similarly, beginning with w1, we remove wj from the set {w1, ..., wN} if wj

is a linear combination of the wk, k = 1, ..., j − 1. In this way we obtain
a linearly independent set that spans S, hence another basis for S. The
following lemma will allow us to prove that all bases for a subspace S have
the same number of elements.

Lemma 29.1 Let W = {w1, ..., wN} be a spanning set for a subspace S
in RI , and V = {v1, ..., vM} a linearly independent subset of S. Then
M ≤ N .

Proof: Suppose that M > N . Let B0 = {w1, ..., wN}. To obtain the set
B1, form the set C1 = {v1, w1, ..., wN} and remove the first member of C1

that is a linear combination of members of C1 that occur to its left in the
listing; since v1 has no members to its left, it is not removed. Since W is a
spanning set, v1 is a linear combination of the members of W , so that some
member of W is a linear combination of v1 and the remaining members of
W ; remove the first member of W for which this is true.

We note that the set B1 is a spanning set for S and has N members.
Having obtained the spanning set Bk, with N members and whose first k
members are vk, ..., v1, we form the set Ck+1 = Bk ∪ {vk+1}, listing the
members so that the first k+1 of them are {vk+1, vk, ..., v1}. To get the set
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Bk+1 we remove the first member of Ck+1 that is a linear combination of
the members to its left; there must be one, since Bk is a spanning set, and
so vk+1 is a linear combination of the members of Bk. Since the set V is
linearly independent, the member removed is from the set W . Continuing
in this fashion, we obtain a sequence of spanning sets B1, ..., BN , each with
N members. The set BN is BN = {v1, ..., vN} and vN+1 must then be
a linear combination of the members of BN , which contradicts the linear
independence of V .

Corollary 29.1 Every basis for a subspace S has the same number of el-
ements.

Definition 29.6 The dimension of a subspace S is the number of elements
in any basis.

Lemma 29.2 For any matrix A, the number of linearly independent rows
equals the number of linearly independent columns.

Proof: See Exercise 29.2.

Definition 29.7 The rank of A is the number of linearly independent rows
or of linearly independent columns of A.

Exercise 29.1 Let W = {w1, ..., wN} be a spanning set for a subspace S
in RI , and V = {v1, ..., vM} a linearly independent subset of S. Then,
according to Lemma 29.1, M ≤ N . Let A be the I by M matrix whose
columns are the vectors vm and B the I by N matrix whose columns are
the wn. Since W is a spanning set for S, there is an N by M matrix C such
that A = BC. Prove Lemma 29.1 by considering the space of solutions of
the system Ax = 0.

Exercise 29.2 Prove Lemma 29.2. Hints: Suppose that A is an I by J
matrix, and that the row space of A, that is, the subspace RS(A) of RI

spanned by the columns of A, has dimension K, for some K ≤ J . Show
that there is an I by K matrix U and a K by J matrix M such that
A = UM . Use AT = MT UT to show that the column space of A, the
subspace CS(A) of RJ spanned by the rows of A, has a spanning set with
K members. Conclude that the dimensions of RS(A) and CS(A) are the
same; this number is the rank of A.

29.2.2 Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 +2x2 +2x4 +x5 = 0
−x1 −x2 +x3 +x4 = 0
x1 +2x2 −3x3 −x4 −2x5 = 0

. (29.3)
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This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =

 1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2

 , (29.4)

and x = (x1, x2, x3, x4, x5)T . Applying Gaussian elimination to this sys-
tem, we obtain a second, simpler, system with the same solutions:

x1 −2x4 +x5 = 0
x2 +2x4 = 0

x3 +x4 +x5 = 0
. (29.5)

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others de-
pendent. The variables x1, x2 and x3 are then called basic variables. To
obtain a basis of solutions we can let x4 = 1 and x5 = 0, obtaining the
solution x = (2,−2,−1, 1, 0)T , and then choose x4 = 0 and x5 = 1 to get
the solution x = (−1, 0,−1, 0, 1)T . Every solution to Ax = 0 is then a
linear combination of these two solutions. Notice that which variables are
basic and which are non-basic is somewhat arbitrary, in that we could have
chosen as the non-basic variables any two whose columns are independent.

Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A as A = [B N ], where B is the square invertible
matrix

B =

 1 2 0
−1 −1 1
1 2 −3

 , (29.6)

and N is the matrix

N =

 2 1
1 0
−1 −2

 . (29.7)

With xB = (x1, x2, x3)T and xN = (x4, x5)T we can write

Ax = BxB + NxN = 0, (29.8)

so that

xB = −B−1NxN . (29.9)
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29.2.3 Real and Complex Systems of Linear Equations

A system Ax = b of linear equations is called a complex system, or a real
system if the entries of A, x and b are complex, or real, respectively. For any
matrix A, we denote by AT and A† the transpose and conjugate transpose
of A, respectively.

Any complex system can be converted to a real system in the following
way. A complex matrix A can be written as A = A1 + iA2, where A1 and
A2 are real matrices and i =

√
−1. Similarly, x = x1 + ix2 and b = b1 + ib2,

where x1, x2, b1 and b2 are real vectors. Denote by Ã the real matrix

Ã =
[

A1 −A2

A2 A1

]
, (29.10)

by x̃ the real vector

x̃ =
[

x1

x2

]
, (29.11)

and by b̃ the real vector

b̃ =
[

b1

b2

]
. (29.12)

Then x satisfies the system Ax = b if and only if x̃ satisfies the system
Ãx̃ = b̃.

Definition 29.8 A square matrix A is symmetric if AT = A and Hermi-
tian if A† = A.

Definition 29.9 A non-zero vector x is said to be an eigenvector of the
square matrix A if there is a scalar λ such that Ax = λx. Then λ is said
to be an eigenvalue of A.

If x is an eigenvector of A with eigenvalue λ, then the matrix A − λI has
no inverse, so its determinant is zero; here I is the identity matrix with
ones on the main diagonal and zeros elsewhere. Solving for the roots of the
determinant is one way to calculate the eigenvalues of A. For example, the
eigenvalues of the Hermitian matrix

B =
[

1 2 + i
2− i 1

]
(29.13)

are λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding eigenvectors u =
(
√

5, 2 − i)T and v = (
√

5, i − 2)T , respectively. Then B̃ has the same
eigenvalues, but both with multiplicity two. Finally, the associated eigen-
vectors of B̃ are [

u1

u2

]
, (29.14)
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and [
−u2

u1

]
, (29.15)

for λ = 1 +
√

5, and [
v1

v2

]
, (29.16)

and [
−v2

v1

]
, (29.17)

for λ = 1−
√

5.

29.3 Solutions of Under-determined Systems
of Linear Equations

Suppose that Ax = b is a consistent linear system of M equations in
N unknowns, where M < N . Then there are infinitely many solutions.
A standard procedure in such cases is to find that solution x having the
smallest norm

||x|| =

√√√√ N∑
n=1

|xn|2.

As we shall see shortly, the minimum norm solution of Ax = b is a vector
of the form x = A†z, where A† denotes the conjugate transpose of the
matrix A. Then Ax = b becomes AA†z = b. Typically, (AA†)−1 will
exist, and we get z = (AA†)−1b, from which it follows that the minimum
norm solution is x = A†(AA†)−1b. When M and N are not too large,
forming the matrix AA† and solving for z is not prohibitively expensive
and time-consuming. However, in image processing the vector x is often a
vectorization of a two-dimensional (or even three-dimensional) image and
M and N can be on the order of tens of thousands or more. The ART
algorithm gives us a fast method for finding the minimum norm solution
without computing AA†.

We begin by proving that the minimum norm solution of Ax = b has
the form x = A†z for some M -dimensional complex vector z.

Let the null space of the matrix A be all N -dimensional complex vectors
w with Aw = 0. If Ax = b then A(x + w) = b for all w in the null space
of A. If x = A†z and w is in the null space of A, then

||x + w||2 = ||A†z + w||2 = (A†z + w)†(A†z + w)
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= (A†z)†(A†z) + (A†z)†w + w†(A†z) + w†w

= ||A†z||2 + (A†z)†w + w†(A†z) + ||w||2

= ||A†z||2 + ||w||2,

since
w†(A†z) = (Aw)†z = 0†z = 0

and
(A†z)†w = z†Aw = z†0 = 0.

Therefore, ||x + w|| = ||A†z + w|| > ||A†z|| = ||x|| unless w = 0. This
completes the proof.

Exercise 29.3 Show that if z = (z1, ..., zN )T is a column vector with com-
plex entries and H = H† is an N by N Hermitian matrix with com-
plex entries then the quadratic form z†Hz is a real number. Show that
the quadratic form z†Hz can be calculated using only real numbers. Let
z = x + iy, with x and y real vectors and let H = A + iB, where A and
B are real matrices. Then show that AT = A, BT = −B, xT Bx = 0 and
finally,

z†Hz = [xT yT ]
[

A −B
B A

] [
x
y

]
.

Use the fact that z†Hz is real for every vector z to conclude that the eigen-
values of H are real.

29.4 Eigenvalues and Eigenvectors

Given N by N complex matrix A, we say that a complex number λ is an
eigenvalue of A if there is a nonzero vector u with Au = λu. The column
vector u is then called an eigenvector of A associated with eigenvalue λ;
clearly, if u is an eigenvector of A, then so is cu, for any constant c 6= 0.
If λ is an eigenvalue of A, then the matrix A− λI fails to have an inverse,
since (A − λI)u = 0 but u 6= 0. If we treat λ as a variable and compute
the determinant of A − λI, we obtain a polynomial of degree N in λ. Its
roots λ1, ..., λN are then the eigenvalues of A. If ||u||2 = u†u = 1 then
u†Au = λu†u = λ.

It can be shown that it is possible to find a set of N mutually orthogonal
eigenvectors of the Hermitian matrix H; call them {u1, ...,uN}. The matrix
H can then be written as

H =
N∑

n=1

λnun(un)†,
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a linear superposition of the dyad matrices un(un)†. We can also write H =
ULU†, where U is the matrix whose nth column is the column vector un

and L is the diagonal matrix with the eigenvalues down the main diagonal
and zero elsewhere.

The matrix H is invertible if and only if none of the λ are zero and its
inverse is

H−1 =
N∑

n=1

λ−1
n un(un)†.

We also have H−1 = UL−1U†.
A Hermitian matrix Q is said to be nonnegative-definite (positive-

definite) if all the eigenvalues of Q are nonnegative (positive). The matrix
Q is a nonnegative-definite matrix if and only if there is another matrix
C such that Q = C†C. Since the eigenvalues of Q are nonnegative, the
diagonal matrix L has a square root,

√
L. Using the fact that U†U = I,

we have
Q = ULU† = U

√
LU†U

√
LU†;

we then take C = U
√

LU†, so C† = C. Then z†Qz = z†C†Cz = ||Cz||2,
so that Q is positive-definite if and only if C is invertible.

Exercise 29.4 Let A be an M by N matrix with complex entries. View
A as a linear function with domain CN , the space of all N -dimensional
complex column vectors, and range contained within CM , via the expression
A(x) = Ax. Suppose that M > N . The range of A, denoted R(A), cannot
be all of CM . Show that every vector z in CM can be written uniquely in
the form z = Ax + w, where A†w = 0. Show that ‖z‖2 = ‖Ax‖2 + ‖w‖2,
where ‖z‖2 denotes the square of the norm of z.

Hint: If z = Ax + w then consider A†z. Assume A†A is invertible.

29.5 Vectorization of a Matrix

When the complex M by N matrix A is stored in the computer it is usually
vectorized; that is, the matrix

A =


A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN
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becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN )T .

Exercise 29.5 (a) Show that the complex dot product vec(A)·vec(B) =
vec(B)†vec(A) can be obtained by

vec(A)·vec(B) = trace (AB†) = tr(AB†),

where, for a square matrix C, trace (C) means the sum of the entries along
the main diagonal of C. We can therefore use the trace to define an inner
product between matrices: < A, B >= trace (AB†).

(b) Show that trace (AA†) ≥ 0 for all A, so that we can use the trace to
define a norm on matrices: ||A||2 = trace (AA†).

Exercise 29.6 Let B = ULD† be an M by N matrix in diagonalized form;
that is, L is an M by N diagonal matrix with entries λ1, ..., λK on its main
diagonal, where K = min(M,N), and U and V are square matrices. Let
the n-th column of U be denoted un and similarly for the columns of V .
Such a diagonal decomposition occurs in the singular value decomposition
(SVD). Show that we can write

B = λ1u1(v1)† + ... + λKuK(vK)†.

If B is an N by N Hermitian matrix, then we can take U = V and K =
M = N , with the columns of U the eigenvectors of B, normalized to
have Euclidean norm equal to one, and the λn to be the eigenvalues of
B. In this case we may also assume that U is a unitary matrix; that is,
UU† = U†U = I, where I denotes the identity matrix.

29.6 The Singular Value Decomposition (SVD)

We have just seen that an N by N Hermitian matrix H can be written in
terms of its eigenvalues and eigenvectors as H = ULU† or as

H =
N∑

n=1

λnun(un)†.

The singular value decomposition (SVD) is a similar result that applies to
any rectangular matrix. It is an important tool in image compression and
pseudo-inversion.
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Let C be any N by K complex matrix. In presenting the SVD of C
we shall assume that K ≥ N ; the SVD of C† will come from that of C.
Let A = C†C and B = CC†; we assume, reasonably, that B, the smaller
of the two matrices, is invertible, so all the eigenvalues λ1, ..., λN of B are
positive. Then, write the eigenvalue/eigenvector decomposition of B as
B = ULU†.

Exercise 29.7 Show that the nonzero eigenvalues of A and B are the
same.

Let V be the K by K matrix whose first N columns are those of the
matrix C†UL−1/2 and whose remaining K −N columns are any mutually
orthogonal norm-one vectors that are all orthogonal to each of the first
N columns. Let M be the N by K matrix with diagonal entries Mnn =√

λn for n = 1, ..., N and whose remaining entries are zero. The nonzero
entries of M ,

√
λn, are called the singular values of C. The singular value

decomposition (SVD) of C is C = UMV †. The SVD of C† is C† = V MT U†.

Exercise 29.8 Show that UMV † equals C.

Using the SVD of C we can write

C =
N∑

n=1

√
λnun(vn)†,

where vn denotes the nth column of the matrix V .
In image processing, matrices such as C are used to represent discrete

two-dimensional images, with the entries of C corresponding to the grey
level or color at each pixel. It is common to find that most of the N singular
values of C are nearly zero, so that C can be written approximately as a
sum of far fewer than N dyads; this is SVD image compression.

If N 6= K then C cannot have an inverse; it does, however, have a
pseudo-inverse, C∗ = V M∗U†, where M∗ is the matrix obtained from M
by taking the inverse of each of its nonzero entries and leaving the remaining
zeros the same. The pseudo-inverse of C† is

(C†)∗ = (C∗)† = U(M∗)T V † = U(M†)∗V †.

Some important properties of the pseudo-inverse are the following:

1. CC∗C = C,
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2. C∗CC∗ = C∗,

3. (C∗C)† = C∗C,

4. (CC∗)† = CC∗.

The pseudo-inverse of an arbitrary I by J matrix G can be used in much
the same way as the inverse of nonsingular matrices to find approximate or
exact solutions of systems of equations Gx = d. The following examples
illustrate this point.

Exercise 29.9 If I > J the system Gx = d probably has no exact solution.
Show that whenever G†G is invertible the pseudo-inverse of G is G∗ =
(G†G)−1G† so that the vector x = G∗d is the least squares approximate
solution.

Exercise 29.10 If I < J the system Gx = d probably has infinitely many
solutions. Show that whenever the matrix GG† is invertible the pseudo-
inverse of G is G∗ = G†(GG†)−1, so that the vector x = G∗d is the exact
solution of Gx = d closest to the origin; that is, it is the minimum norm
solution.

29.7 Singular Values of Sparse Matrices

In image reconstruction from projections the M by N matrix A is usually
quite large and often ε-sparse; that is, most of its elements do not exceed ε
in absolute value, where ε denotes a small positive quantity. In transmission
tomography each column of A corresponds to a single pixel in the digitized
image, while each row of A corresponds to a line segment through the
object, along which an x-ray beam has traveled. The entries of a given
row of A are nonzero only for those columns whose associated pixel lies on
that line segment; clearly, most of the entries of any given row of A will
then be zero. In emission tomography the I by J nonnegative matrix P
has entries Pij ≥ 0; for each detector i and pixel j, Pij is the probability
that an emission at the jth pixel will be detected at the ith detector.
When a detection is recorded at the ith detector, we want the likely source
of the emission to be one of only a small number of pixels. For single
photon emission tomography (SPECT), a lead collimator is used to permit
detection of only those photons approaching the detector straight on. In
positron emission tomography (PET), coincidence detection serves much
the same purpose. In both cases the probabilities Pij will be zero (or
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nearly zero) for most combinations of i and j. Such matrices are called
sparse (or almost sparse). We discuss now a convenient estimate for the
largest singular value of an almost sparse matrix A, which, for notational
convenience only, we take to be real.

In [54] it was shown that if A is normalized so that each row has length
one, then the spectral radius of AT A, which is the square of the largest
singular value of A itself, does not exceed the maximum number of nonzero
elements in any column of A. A similar upper bound on ρ(AT A) can be
obtained for non-normalized, ε-sparse A.

Let A be an M by N matrix. For each n = 1, ..., N , let sn > 0 be
the number of nonzero entries in the nth column of A, and let s be the
maximum of the sn. Let G be the M by N matrix with entries

Gmn = Amn/(
N∑

l=1

slA
2
ml)

1/2.

Lent has shown that the eigenvalues of the matrix GT G do not exceed one
[157]. This result suggested the following proposition, whose proof was
given in [54].

Proposition 29.1 Let A be an M by N matrix. For each m = 1, ...,M let
νm =

∑N
n=1 A2

mn > 0. For each n = 1, ..., N let σn =
∑M

m=1 emnνm, where
emn = 1 if Amn 6= 0 and emn = 0 otherwise. Let σ denote the maximum
of the σn. Then the eigenvalues of the matrix AT A do not exceed σ. If A
is normalized so that the Euclidean length of each of its rows is one, then
the eigenvalues of AT A do not exceed s, the maximum number of nonzero
elements in any column of A.

Proof: For simplicity, we consider only the normalized case; the proof for
the more general case is similar.

Let AT Av = cv for some nonzero vector v. We show that c ≤ s. We
have AAT Av = cAv and so wT AAT w = vT AT AAT Av = cvT AT Av =
cwT w, for w = Av. Then, with emn = 1 if Amn 6= 0 and emn = 0
otherwise, we have

(
M∑

m=1

Amnwm)2 = (
M∑

m=1

Amnemnwm)2

≤ (
M∑

m=1

A2
mnw2

m)(
M∑

m=1

e2
mn) =

(
M∑

m=1

A2
mnw2

m)sj ≤ (
M∑

m=1

A2
mnw2

m)s.
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Therefore,

wT AAT w =
N∑

n=1

(
M∑

m=1

Amnwm)2 ≤
N∑

n=1

(
M∑

m=1

A2
mnw2

m)s,

and

wT AAT w = c
M∑

m=1

w2
m = c

M∑
m=1

w2
m(

N∑
n=1

A2
mn)

= c
M∑

m=1

N∑
n=1

w2
mA2

mn.

The result follows immediately.
If we normalize A so that its rows have length one, then the trace of

the matrix AAT is tr(AAT ) = M , which is also the sum of the eigenvalues
of AT A. Consequently, the maximum eigenvalue of AT A does not exceed
M ; this result improves that upper bound considerably, if A is sparse and
so s << M .

In image reconstruction from projection data that includes scattering we
often encounter matrices A most of whose entries are small, if not exactly
zero. A slight modification of the proof provides us with a useful upper
bound for L, the largest eigenvalue of AT A, in such cases. Assume that
the rows of A have length one. For ε > 0 let s be the largest number of
entries in any column of A whose magnitudes exceed ε. Then we have

L ≤ s + MNε2 + 2ε(MNs)1/2.

The proof of this result is similar to that for Proposition 29.1.
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Chapter 30

Appendix: Constrained
Iteration Methods

The ART and its simultaneous and block-iterative versions are designed to
solve general systems of linear equations Ax = b. The SMART, EMML
and RBI methods require that the entries of A be nonnegative, those of b
positive and produce nonnegative x. In this chapter we present variations
of the SMART and EMML that impose the constraints uj ≤ xj ≤ vj ,
where the uj and vj are selected lower and upper bounds on the individual
entries xj . These algorithms were used in [169] as a method for including in
transmission tomographic reconstruction spatially varying upper and lower
bounds on the x-ray attenuation.

30.1 Modifying the KL distance

The SMART, EMML and RBI methods are based on the Kullback-Leibler
distance between nonnegative vectors. To impose more general constraints
on the entries of x we derive algorithms based on shifted KL distances, also
called Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) + KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the interval
[uj , vj ]. Our objective is to mimic the derivation of the SMART, EMML
and RBI methods, replacing KL distances with shifted KL distances, to
obtain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each j.
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The algorithms that result are the ABMART and ABEMML block-iterative
methods. These algorithms were originally presented in [49], in which the
vectors u and v were called a and b, hence the names of the algorithms.
Throughout this chapter we shall assume that the entries of the matrix A
are nonnegative. We shall denote by Bn, n = 1, ..., N a partition of the
index set {i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN)+1.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.

30.2 The ABMART Algorithm

We assume that (Au)i ≤ bi ≤ (Av)i and seek a solution of Ax = b with
uj ≤ xj ≤ vj , for each j. The algorithm begins with an initial vector x0

satisfying uj ≤ x0
j ≤ vj , for each j. Having calculated xk, we take

xk+1
j = αk

j vj + (1− αk
j )uj , (30.1)

with n = n(k),

αk
j =

ck
j

∏n(dk
i )Aij

1 + ck
j

∏n(dk
i )Aij

, (30.2)

ck
j =

(xk
j − uj)

(vj − xk
j )

, (30.3)

and

dk
j =

(bi − (Au)i)((Av)i − (Axk)i)
((Av)i − bi)((Axk)i − (Au)i)

, (30.4)

where
∏n denotes the product over those indices i in Bn(k). Notice that,

at each step of the iteration, xk
j is a convex combination of the endpoints

uj and vj , so that xk
j lies in the interval [uj , vj ].

We have the following theorem concerning the convergence of the AB-
MART algorithm:

Theorem 30.1 If there is a soluton of the system Ax = b that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
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blocks Bn, the ABMART sequence converges to that constrained solution
of Ax = b for which the Fermi-Dirac generalized entropic distance from x
to x0,

KL(x− u, x0 − u) + KL(v − x, v − x0),

is minimized. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to the minimizer of

KL(Ax−Au, b−Au) + KL(Av −Ax,Av − b)

for which
KL(x− u, x0 − u) + KL(v − x, v − x0)

is minimized.

The proof is similar to that for RBI-SMART and is found in [49].

30.3 The ABEMML Algorithm

We make the same assumptions as in the previous section. The iterative
step of the ABEMML algorithm is

xk+1
j = αk

j vj + (1− αk
j )uj , (30.5)

where

αk
j = γk

j /dk
j , (30.6)

γk
j = (xk

j − uj)ek
j , (30.7)

βk
j = (vj − xk

j )fk
j , (30.8)

dk
j = γk

j + βk
j , (30.9)

ek
j =

(
1−

∑
i∈Bn

Aij

)
+
∑

i∈Bn

Aij

(
bi − (Au)i

(Axk)i − (Au)i

)
, (30.10)

and

fk
j =

(
1−

∑
i∈Bn

Aij

)
+
∑

i∈Bn

Aij

(
(Av)i − bi

(Av)i − (Axk)i

)
. (30.11)

We have the following theorem concerning the convergence of the ABE-
MML algorithm:
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Theorem 30.2 If there is a soluton of the system Ax = b that satisfies
the constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice
of the blocks Bn, the ABEMML sequence converges to such a constrained
solution of Ax = b. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to a constrained minimizer of

KL(Ax−Au, b−Au) + KL(Av −Ax, Av − b).

The proof is similar to that for RBI-EMML and is to be found in [49]. In
contrast to the ABMART theorem, this is all we can say about the limits
of the ABEMML sequences.

Open Question: How does the limit of the ABEMML iterative sequence
depend, in the consistent case, on the choice of blocks, and, in general, on
the choice of x0?



Chapter 31

Appendix: Inverse
Problems and the Laplace
Transform

In farfield propagation problems, the measured data are often related to
the desired object function by a Fourier transformation. The image recon-
struction problem then became one of estimating a function from finitely
many noisy values of its Fourier transform. In this chapter we consider
some inverse problems involving the Laplace transform.

31.1 The Laplace Transform and the Ozone
Layer

The example is taken from Twomey’s book [207].

31.1.1 The Laplace Transform

The Laplace transform of the function f(x) defined for 0 ≤ x < +∞ is the
function

F(s) =
∫ +∞

0

f(x)e−sxdx. (31.1)

31.1.2 Scattering of Ultraviolet Radiation

The sun emits ultraviolet (UV) radiation that enters the Earth’s atmo-
sphere at an angle θ0 that depends on the sun’s position, and with intensity
I(0). Let the x-axis be vertical, with x = 0 at the top of the atmosphere
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and x increasing as we move down to the Earth’s surface, at x = X. The
intensity at x is given by

I(x) = I(0)e−kx/ cos θ0 . (31.2)

Within the ozone layer, the amount of UV radiation scattered in the direc-
tion θ is given by

S(θ, θ0)I(0)e−kx/ cos θ0∆p, (31.3)

where S(θ, θ0) is a known parameter, and ∆p is the change in the pressure
of the ozone within the infinitesimal layer [x, x+∆x], and so is proportional
to the concentration of ozone within that layer.

31.1.3 Measuring the Scattered Intensity

The radiation scattered at the angle θ then travels to the ground, a distance
of X − x, weakened along the way, and reaches the ground with intensity

S(θ, θ0)I(0)e−kx/ cos θ0e−k(X−x)/ cos θ∆p. (31.4)

The total scattered intensity at angle θ is then a superposition of the in-
tensities due to scattering at each of the thin layers, and is then

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβdp, (31.5)

where

β = k[
1

cos θ0
− 1

cos θ
]. (31.6)

This superposition of intensity can then be written as

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβp′(x)dx. (31.7)

31.1.4 The Laplace Transform Data

Using integration by parts, we get∫ X

0

e−xβp′(x)dx = p(X)e−βX − p(0) + β

∫ X

0

e−βxp(x)dx. (31.8)

Since p(0) = 0 and p(X) can be measured, our data is then the Laplace
transform value ∫ +∞

0

e−βxp(x)dx; (31.9)
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note that we can replace the upper limit X with +∞ if we extend p(x) as
zero beyond x = X.

The variable β depends on the two angles θ and θ0. We can alter θ as
we measure and θ0 changes as the sun moves relative to the earth. In this
way we get values of the Laplace transform of p(x) for various values of β.
The problem then is to recover p(x) from these values. Because the Laplace
transform involves a smoothing of the function p(x), recovering p(x) from
its Laplace transform is more ill-conditioned than is the Fourier transform
inversion problem.

31.2 The Laplace Transform and Energy Spec-
tral Estimation

In x-ray transmission tomography, x-ray beams are sent through the object
and the drop in intensity is measured. These measurements are then used
to estimate the distribution of attenuating material within the object. A
typical x-ray beam contains components with different energy levels. Be-
cause components at different energy levels will be attenuated differently,
it is important to know the relative contribution of each energy level to the
entering beam. The energy spectrum is the function f(E) that describes
the intensity of the components at each energy level E > 0.

31.2.1 The attenuation coefficient function

Each specific material, say aluminum, for example, is associated with at-
tenuation coefficients, which is a function of energy, which we shall denote
by µ(E). A beam with the single energy E passing through a thickness x of
the material will be weakened by the factor e−µ(E)x. By passing the beam
through various thicknesses x of aluminum and registering the intensity
drops, one obtains values of the absorption function

R(x) =
∫ ∞

0

f(E)e−µ(E)xdE. (31.10)

Using a change of variable, we can write R(x) as a Laplace transform.

31.2.2 The absorption function as a Laplace transform

For each material, the attenuation function µ(E) is a strictly decreasing
function of E, so µ(E) has an inverse, which we denote by g; that is,
g(t) = E, for t = µ(E). Equation (31.10) can then be rewritten as

R(x) =
∫ ∞

0

f(g(t))e−txg′(t)dt. (31.11)
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We see then that R(x) is the Laplace transform of the function r(t) =
f(g(t))g′(t). Our measurements of the intensity drops provide values of
R(x), for various values of x, from which we must estimate the functions
r(t), and, ultimately, f(E).

31.3 The Laplace Transform in SPECT

As we saw in our discussion of SPECT, the probability that an emitted
photon will escape the body without being absorbed is given by the at-
tenuated Radon transform. If the attenuation function µ is constant, then
the attenuated Radon transform is called the exponential Radon transform.
Since ∫ c

s

µdt = µ(c− s),

the integral in (12.2) is now

e−µc

∫ c

0

f(s)eµsds = e−µc

∫ ∞

0

f(s)e−(−µ)sds = e−µcF(−µ),

where F denotes the Laplace transform of f . Since the function f(s) is
zero outside a bounded interval, we may safely assume that the Laplace
transform is defined for all real values of the argument.
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correlation matrix, 221
covariance matrix, 193, 221
CP, 97
CQ algorithm, 179

303



304 INDEX

data consistency, 60
Decomposition Theorem, 176
detection, 223
DFT, 44, 46, 225
Dirac delta, 39
direction of unboundedness, 174
discrete Fourier transform, 44, 206,

225
discrete-time Fourier transform, 206
discrimination, 223
distance from a point to a set, 171
DPDFT, 63
dynamic ET, 182

eigenvalue, 96, 267, 269, 274
eigenvector, 60, 96, 267, 269
EM-MART, 128
emission tomography, 8, 85, 182, 273
EMML algorithm, 116
equivalent uniform dose, 165
estimation, 223
ET, 182
Euclidean distance, 169
Euclidean length, 169
Euclidean norm, 169
EUD, 165
even part, 54
expectation maximization maximum

likelihood method, 116
expected value, 188, 191
exponential Radon transform, 87, 284
Ext(C), 174
extreme point, 174

fast Fourier transform, 45
Fermi-Dirac generalized entropies, 277
FFT, 45
filtered back-projection, 78
Fisher linear discriminant, 231
Fourier coefficients, 206
Fourier Inversion Formula, 38, 43
Fourier transform, 37, 239
Fourier-series expansion, 206
Fourier-transform pair, 38

frequency, 33
frequency-domain extrapolation, 42
frequency-response function, 40
full-cycle ART, 71
full-rank property, 72, 135

gamma distribution, 139
gradient field, 13, 155
Gram-Schmidt method, 258

Hanbury-Brown Twiss effect, 194
Heaviside function, 51
Helmholtz equation, 240
Hermitian, 270
Hermitian matrix, 267
Hilbert space, 169
Hilbert transform, 54, 80
Horner’s method, 45
Hotelling linear discriminant, 228
Hotelling observer, 228
hyperplane, 173

identification, 223
IMRT, 14, 165
incoherent bases, 161
independent random variables, 191
inner product, 170
intensity modulated radiation ther-

apy, 14, 165
interior of a set, 171
interior point, 171

KL distance, 74
Kullback-Leibler distance, 74

Lagrange multipliers, 95
Lagrangian, 96, 97
Landweber algorithm, 113, 180
Laplace transform, 54
Larmor frequency, 12
least squares ART, 256
least squares solution, 254, 273
likelihood function, 188, 197
limit of a sequence, 172
line array, 242



INDEX 305

line of response, 9, 85
linear independence, 264
linear manifold, 173
list-mode processing, 145
LS-ART, 256

magnetic resonance imaging, 12, 155
MAP, 138
MART, 72
matrix inverse, 269
maximum likelihood, 187
maximum likelihood estimate, 188
maximum a posteriori, 138
minimum norm solution, 268, 273
modified DFT, 58
modulation transfer function, 40
MRI, 12, 155
MSSFP, 14
multinomial distribution, 189
multiple-set split feasibility problem,

14
multiplicative ART, 72

narrowband signal, 243
Newton-Raphson algorithm, 254
non-iterative band-limited extrapo-

lation, 62
nonnegative-definite, 270
normal cone, 174
normal vector, 174
Nyquist spacing, 248

odd part, 54
open set, 171
optical transfer function, 40
ordered subset EM method, 117
ordered-subset methods, 115
orthogonal, 270
orthogonal complement, 173
orthonormal, 264
OSEM, 117
over-sampling, 57

Parallelogram Law, 170
Parseval’s Equation, 44

Parseval-Plancherel equation, 54
partial volume effect, 88
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