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1 Recalling the Wave Equation

The one-dimensional wave equation is

φtt(x, t) = c2φxx(x, t), (1.1)

where c > 0 is the propagation speed. Separating variables, we seek a solution of the

form φ(x, t) = f(t)y(x). Inserting this into Equation (1.1), we get

f ′′(t)y(x) = c2f(t)y′′(x),

or

f ′′(t)/f(t) = c2y′′(x)/y(x) = −ω2,

where ω > 0 is the separation constant. We then have the separated differential

equations

f ′′(t) + ω2f(t) = 0, (1.2)

and

y′′(x) +
ω2

c2
y(x) = 0. (1.3)

The solutions to Equation (1.3) are

y(x) = α sin
(ω

c
x

)

.

For each arbitrary ω, the corresponding solution of Equation (1.2) is

f(t) = β sin(ωt),
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or

f(t) = γ cos(ωt).

In the vibrating string problem, the string is fixed at both ends, x = 0 and x = L, so

that

φ(0, t) = φ(L, t) = 0,

for all t. Therefore, we must have y(0) = y(L) = 0, so that the solutions must have

the form

y(x) = Am sin
(ωm

c
x

)

= Am sin
(πm

L
x

)

,

where ωm = πcm
L

, for any positive integer m. Therefore, the boundary conditions limit

the choices for the separation constant ω. In addition, if the string is not moving at

time t = 0, then

f(t) = γ cos(ωmt).

We want to focus on Equation (1.3).

Equation (1.3) can be written as

y′′(x) + λy(x) = 0, (1.4)

which is an eigenvalue problem. What we have just seen is that the boundary condi-

tions y(0) = y(L) = 0 limit the possible values of λ for which there can be solutions:

we must have

λ = λm =
(ωm

c

)2

=
(πm

L

)2

,

for some positive integer m. The corresponding solutions

ym(x) = sin
(πm

L
x

)

are the eigenfunctions.

In the vibrating string problem, we typically have the condition φ(x, 0) = h(x),

where h(x) describes the initial position of the string. The problem that remains is

to find a linear combination of the eigenfunctions that satisfies this additional initial

condition. Therefore, we need to find coefficients Am so that

h(x) =
∞
∑

m=1

Am sin
(πm

L
x

)

. (1.5)

Orthogonality will help.

We multiply the equation

y′′

m = −λmym
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by yn and the equation

y′′

n = −λnyn

by ym and subtract, to get

y′′

myn − y′′

nym = (λn − λm)(ymyn).

Using

y′′

myn − y′′

nym = (yny
′

m − ymy′

n)′,

and integrating, we get

0 = yn(L)y′

m(L)−ym(L)y′

n(L)−yn(0)y′

m(0)−ym(0)y′

n(0) = (λn−λm)
∫ L

0

ym(x)yn(x)dx,

so that
∫ L

0

ym(x)yn(x)dx = 0,

for m 6= n. Using this orthogonality of the ym(x), we can easily find the coefficients

Am.

2 Overview

In what follows we shall study the Sturm-Liouville equations, a class of second-order

ordinary differential equations that contains, as a special case, the eigenvalue problem

in Equation (1.4). As we shall see, the theory follows closely what we have just

discovered about the one-dimensional wave equation. The general form for the Sturm-

Liouville Problem is

d

dx

(

p(x)y′(x)
)

+ λw(x)y(x) = 0. (2.1)

As with the one-dimensional wave equation, boundary conditions, such as y(a) =

y(b) = 0, where a = −∞ and b = +∞ are allowed, restrict the possible eigenvalues λ

to an increasing sequence of positive numbers λm. The corresponding eigenfunctions

ym(x) will be w(x)-orthogonal, meaning that

0 =
∫ b

a
ym(x)yn(x)w(x)dx,

for m 6= n. As we shall see later, for various choices of w(x) and p(x) and various

choices of a and b, we obtain several famous sets of “orthogonal” functions.

We called the problem

y′′(x) + λy(x) = 0
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an eigenvalue problem, which suggests that a theory similar to that for matrices might

be possible. This leads to the notion of self-adjoint differential operators and helps

to motivate the particular form of Sturm-Liouville problems. As we shall see, the

pleasant properties of the solutions of the boundary-value problem involving Equation

(1.4) stem from the fact that the operator Ly = y′′ is self-adjoint on functions that

are zero at the end points. Many of these properties hold, as well, for solutions to

other self-adjoint problems, in particular, to solutions of Sturm-Liouville problems.

3 Self-Adjoint Linear Differential Operators

Separation of variables in partial differential equations often leads to eigenvalue prob-

lems associated with linear differential operators. Self-adjoint linear differential oper-

ators, which generalize the notion of real symmetric matrices, are a convenient class

of operators for which the theory of eigenvalue problems is particularly fruitful.

3.1 Self-Adjoint Matrices

The usual inner product for real (column) vectors u and v is just the dot product,

written variously as

〈u, v〉 = u · v = uT v.

For any real square matrix A and any inner product, the adjoint matrix A∗ is defined

by the property

〈Au, v〉 = 〈u, A∗v〉,

for all u and v. Since, for the dot product, we have

〈Au, v〉 = (Au)T v = uT (AT v) = 〈u, AT v〉,

it follows that A∗ = AT for this inner product. Therefore, the matrices that are

self-adjoint for the usual inner product are just the symmetric matrices.

If λn and λm are distinct eigenvalues of a real symmetric matrix A then their

corresponding eigenvectors, un and um, are orthogonal: we have

(Aun)T um = uT
nAT um = uT

n (Aum) = λmuT
num,

and

(Aun)T um = λnu
T
num.

Since λn 6= λm, it follows that uT
num = 0.
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3.2 Self-Adjoint Operators

We want to extend this idea of being self-adjoint to linear differential operators and

inner products of functions.

Given any inner product on functions, written 〈y, z〉, and any linear operator on

these functions, Ly, the adjoint of L is defined by the identity

〈Ly, z〉 = 〈y, L∗z〉,

for all functions y and z. The operator L is self-adjoint on a certain class of functions

if L∗ = L for those functions.

3.2.1 The Operator Dy = y′

For example, consider the linear differential operator Dy = dy
dx

. We take for the inner

product of two functions y(x) and z(x) the integral

〈y, z〉 =
∫

1

0

y(x)z(x)dx.

For functions y and z that are zero at the end points, we have, using integration by

parts,

〈Dy, z〉 =
∫

1

0

y′(x)z(x)dx = −
∫

1

0

y(x)z′(x)dx = 〈y, D∗z〉,

from which we conclude that D∗z = − dz
dx

.

3.2.2 The Operator Ly = y′′

Now consider the linear differential operator Ly = d2y
dx2 . Using the same inner product,

restricting to functions y and z that are zero at the end points, and again using

integration by parts, we find that L∗z = d2z
dx2 = Lz; therefore, we say that this

operator is self-adjoint. Self-adjoint operators generalize real symmetric matrices.

3.2.3 General Second-Order Linear ODE’s

We are concerned, in these notes, with second-order linear differential equations with

(possibly) non-constant coefficients, that is, differential equations of the form

a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0. (3.1)

Now we ask when the linear differential operator

Ly = [a2(x)y′′ + a1(x)y′]
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is self-adjoint. Once again, we consider functions that are zero at end points x = a

and x = b and define the inner product of y and z to be

〈y, z〉 =
∫ b

a
y(x)z(x)dx.

Using integration by parts several times, we find that

L∗z = a2(x)z′′ + (2a′

2(x) − a1(x))z′ + (a′′

2(x) − a′

1(x))z.

Therefore, if it is the case that a′

2(x) = a1(x), then L∗ = L and L is self-adjoint. In

this case, we can write Equation (3.1) as

(a2(x)y′(x))′ + a0(x)y(x) = 0,

which has the form of the Sturm-Liouville problem,

d

dx

(

p(x)y′(x)
)

+ w(x)y(x) = 0.

A similar calculation shows that, for any weight function w(x) > 0, the linear differ-

ential operator

Ty =
1

w(x)
(p(x)y′(x))′

is self-adjoint with respect to the inner product defined by

〈y, z〉 =
∫ b

a
y(x)z(x)w(x)dx.

Since we can write Equation (2.1) as

1

w(x)
(p(x)y′(x))′ + λy(x) = 0,

this tells us that we are dealing with an eigenvalue problem associated with a self-

adjoint linear differential operator.

4 Qualitative Analysis of ODE

We are interested in second-order linear differential equations with possibly varying

coefficients, as given in equation (3.1), which we can also write as

y′′ + P (x)y′ + Q(x)y = 0. (4.1)

Although we can find explicit solutions of Equation (4.1) in special cases, such as

y′′ + y = 0, (4.2)

generally, we will not be able to do this. Instead, we can try to answer certain

questions about the behavior of the solution, without actually finding the solution;

such an approach is called qualitative analysis. The discussion here is based on that

in Simmons [1].
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4.1 A Simple Example

We know that the solution to Equation (4.2) satisfying y(0) = 0, and y′(0) = 1 is

y(x) = sin x; with y(0) = 1 and y′(0) = 0, the solution is y(x) = cos x. But, suppose

that we did not know these solutions; what could we find out without solving for

them?

Suppose that y(x) = s(x) satisfies Equation (4.2), with s(0) = 0, s(π) = 0, and

s′(0) = 1. As the graph of s(x) leaves the point (0, 0) with x increasing, the slope is

initially s′(0) = 1, so the graph climbs above the x-axis. But since y′′(x) = −y(x), the

second derivative is negative for y(x) > 0, and becomes increasingly so as y(x) climbs

higher; therefore, the derivative is decreasing from s′(0) = 1, eventually equaling zero,

at say x = m, and continuing to become negative. The function s(x) will be zero

again at x = π, and, by symmetry, we have m = π
2
.

Now let y(x) = c(x) solve Equation (4.2), but with c(0) = 1, and c′(0) = 0.

Since y(x) = s(x) satisfies Equation (4.2), so does y(x) = s′(x), with s′(0) = 1 and

s′′(0) = 0. Therefore, c(x) = s′(x). Since the derivative of the function s(x)2 + c(x)2

is zero, this function must be equal to one for all x. In the section that follows, we

shall investigate the zeros of solutions.

4.2 Sturm Separation Theorem

Theorem 4.1 Let y1(x) and y2(x) be linearly independent solutions of Equation

(4.1). Then their zeros are distinct and occur alternately.

Proof: Since, for each x, a = b = 0 is the only solution of the system

ay1(x) + by2(x) = 0,

ay′

1(x) + by′

2(x) = 0,

the Wronskian,

W (y1, y2) = y1(x)y′

2(x) − y2(x)y′

1(x),

which is the determinant of this two-by-two linear system of equations, can never

be zero, so must have constant sign, as x varies. Therefore, the two functions y1(x)

and y2(x) have no common zero. Suppose that y2(x1) = y2(x2) = 0, with x1 < x2

successive zeros of y2(x). Suppose, in addition, that y2(x) > 0 in the interval (x1, x2).

Therefore, we have y′

2(x1) > 0 and y′

2(x2) < 0. It follows that y1(x1) and y1(x2) have

opposite signs, and there must be a zero between x1 and x2.
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4.3 From Standard to Normal Form

Equation (4.1) is called the standard form of the differential equation. To put the

equation into normal form, by which we mean an equation of the form

u′′(x) + q(x)u(x) = 0, (4.3)

we write y(x) = u(x)v(x). Inserting this product into Equation (4.1), we obtain

vu′′ + (2v′ + Pv)u + (v′′ + Pv′ + Qv)u = 0.

With

v = exp(−1

2

∫

Pdx),

the coefficient of u′ becomes zero. Now we set

q(x) = Q(x) − 1

4
P (x)2 − 1

2
P ′(x),

to get

u′′(x) + q(x)u(x) = 0.

It can be shown that, if q(x) < 0 and u(x) satisfies Equation (4.3), then either

u(x) = 0, for all x, or u(x) has at most one zero. Since we are interested in oscillatory

solutions, we restrict q(x) to be (eventually) positive. With q(x) > 0 and

∫

∞

1

q(x)dx = ∞,

the solution u(x) will have infinitely many zeros, but only finitely many on any

bounded interval.

4.4 Sturm Comparison Theorem

Solutions to

y′′ + 4y = 0

oscillate faster than solutions of Equation (4.2). This leads to the Sturm Comparison

Theorem:

Theorem 4.2 Let y′′ + q(x)y = 0 and z′′ + r(x)z = 0, with 0 < r(x) < q(x), for all

x. Then between any two zeros of z(x) is a zero of y(x).
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4.4.1 Bessel’s Equation

Bessel’s Equation is

x2y′′ + xy′ + (x2 − p2)y = 0. (4.4)

In normal form, it becomes

u′′ +
(

1 +
1 − 4p2

4x2

)

u = 0. (4.5)

Information about the zeros of solutions of Bessel’s Equation can be obtained by

using Sturm’s Comparison Theorem and comparing with solutions of Equation (4.2).

5 Sturm-Liouville Equations

The Sturm-Liouville Equations have the form

d

dx

(

p(x)
dy

dx

)

+ λw(x)y = 0. (5.1)

Here we assume that p(x) > 0 and w(x) > 0 are continuous, and p′(x) is continuous.

5.1 Special Cases

The problem of the vibrations of a hanging chain leads to the equation

∂

∂x

(

gx
∂y

∂x

)

=
∂2y

∂t2
, (5.2)

and, after separating variables, to

d

dx

(

gx
du

dx

)

+ λu = 0. (5.3)

The problem of the vibrations of a non-homogeneous string leads to

∂2y

∂x2
=

m(x)

T

∂2y

∂t2
, (5.4)

and, after separating the variables, to

u′′ + λm(x)u = 0, (5.5)

with u(0) = u(π) = 0.
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5.2 Normal Form

We can put an equation in the Sturm-Liouville form into normal form by first writing

it in standard form. There is a better way, though. With the change of variable from

x to µ, where

µ(x) =
∫ x

a

1

p(t)
dt,

and

µ′(x) = 1/p(x),

we can show that
dy

dx
=

1

p(x)

dy

dµ

and
d2y

dx2
=

1

p2

d2y

dµ2
− p′(x)

p(x)

dy

dµ
.

It follows that

d2y

dµ2
+ q1(µ)y = 0. (5.6)

For that reason, we study equations of the form

y′′ + q(x)y = 0. (5.7)

6 Analysis of y′′ + q(x)y = 0

Using the Sturm Comparison Theorem, we have the following lemma.

Lemma 6.1 Let y′′ + q(x)y = 0, and z′′ + r(x)z = 0, with 0 < r(x) < q(x). Let

y(b0) = z(b0) = 0 and z(bj) = 0, and bj < bj+1, for j = 1, 2, .... Then, y has at least

as many zeros as z in [b0, bn]. If y(aj) = 0, for b0 < a1 < a2 < ..., then an < bn.

Lemma 6.2 Suppose that 0 < m2 < q(x) < M2 on [a, b], and y(x) solves y′′+q(x)y =

0 on [a, b]. If x1 and x2 are successive zeros of y(x) then

π

M
< x2 − x1 <

π

m
.

If y(a) = y(b) = 0 and y(x) = 0 for n − 1 other points in (a, b), then

m(b − a)

π
< n <

M(b − a)

π
.
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Lemma 6.3 Let yλ solve

y′′ + λq(x)y = 0,

with yλ(a) = 0, and y′

λ(a) = 1. Then, there exist λ1 < λ2 < ..., converging to +∞,

such that yλ(b) = 0 if and only if λ = λn, for some n. The solution yλn
has exactly

n − 1 roots in (a, b).

6.1 The Original Problem

Returning to the original Sturm-Liouville Equation (5.1), we let yn(x) be the solution

corresponding to λn, with yn(a) = yn(b) = 0; these are the eigenfunction solutions.

We have the following orthogonality theorem.

Theorem 6.1 For m not equal to n, we have
∫ b

a
ym(x)yn(x)w(x)dx = 0. (6.1)

Proof: We multiply the equation

d

dx

(

p(x)y′

m(x)
)

+ λmw(x)ym(x) = 0

by yn(x), the equation

d

dx

(

p(x)y′

n(x)
)

+ λnw(x)yn(x) = 0

by ym(x), and subtract, to get

d

dx

(

p(x)(yn(x)y′

m(x) − ym(x)y′

n(x))
)

= (λn − λm)ym(x)yn(x)w(x).

Integrating, and using the fact that

ym(a) = yn(a) = ym(b) = yn(b) = 0,

we get

0 =
∫ b

a
ym(x)yn(x)w(x)dx,

for m 6= n.

We can then associate with (most) functions h(x) on [a, b] an expansion in terms

of the eigenfunctions:

h(x) =
∞
∑

n=1

anyn(x), (6.2)

with

an =
∫ b

a
h(x)yn(x)w(x)dx/

∫ b

a
yn(x)2w(x)dx. (6.3)
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6.2 Famous Examples

Well known examples of Sturm-Liouville problems include

• Legendre:
d

dx

(

(1 − x2)
dy

dx

)

+ λy = 0;

• Chebyshev:
d

dx

(√
1 − x2

dy

dx

)

+ λ(1 − x2)−1/2y = 0;

• Hermite:
d

dx

(

e−x2 dy

dx

)

+ λe−x2

y = 0;

and

• Laguerre:
d

dx

(

xe−x dy

dx

)

+ λe−xy = 0.
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