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Chapter 1

Complex Numbers

It is standard practice in signal processing to employ complex numbers
whenever possible. One of the main reasons for doing this is that it en-
ables us to represent the important sine and cosine functions in terms of
complex exponential functions and to replace trigonometric identities with
the somewhat simpler rules for the manipulation of exponents.

The complex numbers are the points in the x, y-plane: the complex
number z = (a, b) is identified with the point in the plane having a = Re(z),
the real part of z, for its x-coordinate and b = Im(z), the imaginary part of
z, for its y-coordinate. We call (a, b) the rectangular form of the complex
number z. The conjugate of the complex number z is z = (a,−b). We
can also represent z in its polar form: let the magnitude of z be |z| =√

a2 + b2 and the phase angle of z, denoted θ(z), be the angle in [0, 2π)
with cos θ(z) = a/|z|. Then the polar form for z is

z = (|z| cos θ(z), |z| sin θ(z)).

Any complex number z = (a, b) for which the imaginary part Im(z) = b
is zero is identified with (treated as the same as) its real part Re(z) = a;
that is, we identify a and z = (a, 0). These real complex numbers lie
along the x-axis in the plane, the so-called real line. If this were the whole
story complex numbers would be unimportant; but they are not. It is the
arithmetic associated with complex numbers that makes them important.

We add two complex numbers using their rectangular representations:

(a, b) + (c, d) = (a + c, b + d).

This is the same formula used to add two-dimensional vectors. We multiply
complex numbers more easily when they are in their polar representations:
the product of z and w has |z||w| for its magnitude and θ(z)+θ(w) modulo
2π for its phase angle. Notice that the complex number z = (0, 1) has
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4 CHAPTER 1. COMPLEX NUMBERS

θ(z) = π/2 and |z| = 1, so z2 = (−1, 0), which we identify with the real
number −1. This tells us that within the realm of complex numbers the
real number −1 has a square root, i = (0, 1); note that −i = (0,−1) is also
a square root of −1.

To multiply z = (a, b) = a + ib by w = (c, d) = c + id in rectangular
form we simply multiply the binomials

(a + ib)(c + id) = ac + ibc + iad + i2bd

and recall that i2 = −1 to get

zw = (ac − bd, bc + ad).

If (a, b) is real, that is, if b = 0, then (a, b)(c, d) = (a, 0)(c, d) = (ac, ad),
which we also write as a(c, d). Therefore, we can rewrite the polar form for
z as

z = |z|(cos θ(z), sin θ(z)) = |z|(cos θ(z) + i sin θ(z)).

We will have yet another way to write the polar form of z when we consider
the complex exponential function.

Exercise 1: Derive the formula for dividing one complex number in rect-
angular form by another (non-zero) one.

Exercise 2: Show that for any two complex numbers z and w we have

|zw| ≥ 1

2
(zw + zw). (1.1)

Hint: Write |zw| as |zw|.

Exercise 3: Show that, for any constant a with |a| 6= 1, the function

G(z) =
z − a

1 − az

has |G(z)| = 1 whenever |z| = 1.



Chapter 2

Complex Exponentials

The most important function in signal processing is the complex-valued
function of the real variable x defined by

h(x) = cos(x) + i sin(x). (2.1)

For reasons that will become clear shortly, this function is called the com-
plex exponential function. Notice that the magnitude of the complex num-
ber h(x) is always equal to one, since cos2(x) + sin2(x) = 1 for all real x.
Since the functions cos(x) and sin(x) are 2π-periodic, that is, cos(x+2π) =
cos(x) and sin(x+2π) = sin(x) for all x, the complex exponential function
h(x) is also 2π-periodic.

In calculus we encounter functions of the form g(x) = ax, where a > 0
is an arbitrary constant. These functions are the exponential functions, the
most well known of which is the function g(x) = ex. Exponential functions
are those with the property g(u+v) = g(u)g(v) for every u and v. We show
now that the function h(x) in equation (2.1) has this property, so must be
an exponential function; that is, h(x) = cx for some constant c. Since h(x)
has complex values, the constant c cannot be a real number, however.

Calculating h(u)h(v) we find

h(u)h(v) = (cos(u) cos(v) − sin(u) sin(v)) + i(cos(u) sin(v) + sin(u) cos(v))

= cos(u + v) + i sin(u + v) = h(u + v).

So h(x) is an exponential function; h(x) = cx for some complex constant
c. Inserting x = 1 we find that c is

c = cos(1) + i sin(1).

Let’s try to find another way to express c.
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6 CHAPTER 2. COMPLEX EXPONENTIALS

Recall from calculus that for exponential functions g(x) = ax with a > 0
the derivative g′(x) is

g′(x) = ax ln(a) = g(x) ln(a).

Since

h′(x) = − sin(x) + i cos(x) = i(cos(x) + i sin(x)) = ih(x)

we conjecture that ln(c) = i; but what does this mean?
For a > 0 we know that b = ln(a) means that a = eb. Therefore, we

say that ln(c) = i means c = ei; but what does it mean to take e to a
complex power? To define ei we turn to the Taylor series representation
for the exponential function g(x) = ex, defined for real x:

ex = 1 + x + x2/2! + x3/3! + ....

Inserting i in place of x and using the fact that i2 = −1, we find that

ei = (1 − 1/2! + 1/4! − ...) + i(1 − 1/3! + 1/5! − ...);

note that the two series are the Taylor series for cos(1) and sin(1), respec-
tively, so ei = cos(1) + i sin(1). Then the complex exponential function in
equation (2.1) is

h(x) = (ei)x = eix.

Inserting x = π we get

h(π) = eiπ = cos(π) + i sin(π) = −1

or
eiπ + 1 = 0,

which is the remarkable relation discovered by Euler that combines the
five most important constants in mathematics, e, π, i, 1 and 0, in a single
equation.

Note that e2πi = e0i = e0 = 1, so

e(2π+x)i = e2πieix = eix

for all x.
We know from calculus what ex means for real x and now we also know

what eix means. Using these we can define ez for any complex number
z = a + ib by ez = ea+ib = eaeib.

We know from calculus how to define ln(x) for x > 0 and we have just
defined ln(c) = i to mean c = ei. But we could also say that ln(c) = i(1 +
2πk) for any integer k; that is, the periodicity of the complex exponential
function forces the function ln(x) to be multivalued.
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For any nonzero complex number z = |z|eiθ(z) we have

ln(z) = ln(|z|) + ln(eiθ(z)) = ln(|z|) + i(θ(z) + 2πk),

for any integer k. If z = a > 0 then θ(z) = 0 and ln(z) = ln(a) + i(kπ)
for any even integer k; in calculus class we just take the value associated
with k = 0. If z = a < 0 then θ(z) = π and ln(z) = ln(−a) + i(kπ) for
any odd integer k. So we can define the logarithm of a negative number; it
just turns out not to be a real number. If z = ib with b > 0, then θ(z) = π

2
and ln(z) = ln(b) + i(π

2 + 2πk), for any integer k; if z = ib with b < 0 then
θ(z) = 3π

2 and ln(z) = ln(−b) + i( 3π
2 + 2πk) for any integer k.

Adding e−ix = cos(x) − i sin(x) to eix given by equation (2.1) we get

cos(x) =
1

2
(eix + e−ix);

subtracting, we obtain

sin(x) =
1

2i
(eix − e−ix).

These formulas allow us to extend the definition of cos and sin to complex
arguments z:

cos(z) =
1

2
(eiz + e−iz)

and

sin(z) =
1

2i
(eiz − e−iz).

In signal processing the complex exponential function is often used to de-
scribe functions of time that exhibit periodic behavior:

h(ωt + θ) = ei(ωt+θ) = cos(ωt + θ) + i sin(ωt + θ),

where the frequency ω and phase angle θ are real constants, and t denotes
time. We can alter the magnitude by multiplying h(ωt + θ) by a positive
constant |A|, called the amplitude, to get |A|h(ωt + θ). More generally, we
can combine the amplitude and the phase, writing

|A|h(ωt + θ) = |A|eiθeiωt = Aeiωt,

where A is the complex amplitude A = |A|eiθ. Many of the functions
encountered in signal processing can be modeled as linear combinations of
such complex exponential functions or sinusoids, as they are often called.

Exercise 1: Show that if sin x
2 6= 0 then

EM (x) =
∑M

m=1
eimx = eix( M+1

2
) sin(Mx/2)

sin(x/2)
. (2.2)
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Hint: Note that EM (x) is the geometric progression

EM (x) = eix + (eix)2 + (eix)3 + ... + (eix)M = eix(1 − eiMx)/(1 − eix).

Now use the fact that, for any t, we have

1 − eit = eit/2(e−it/2 − eit/2) = eit/2(−2i) sin(t/2).

Exercise 2: The Dirichlet kernel of size M is defined as

DM (x) =
∑M

m=−M
eimx.

Use equation (2.2) to obtain the closed-form expression

DM (x) =
sin((M + 1

2 )x)

sin(x
2 )

;

note that DM (x) is real-valued.
Hint: Reduce the problem to that of Exercise 1 by factoring appropriately.

Exercise 3: Use the result in equation (2.2) to obtain the closed-form
expressions

∑M

m=N
cos mx = cos(

M + N

2
x)

sin(M−N+1
2 x)

sin x
2

and ∑M

m=N
sinmx = sin(

M + N

2
x)

sin(M−N+1
2 x)

sin x
2

.

Hint: Recall that cos mx and sinmx are the real and imaginary parts of
eimx.

Exercise 4: Graph the function EM (x) for various values of M .
We note in passing that the function EM (x) equals M for x = 0 and

equals zero for the first time at x = 2π/M . This means that the main
lobe of EM (x), the inverted parabola-like portion of the graph centered at
x = 0, crosses the x-axis at x = 2π/M and x = −2π/M , so its height is M
and its width is 4π/M . As M grows larger the main lobe of EM (x) gets
higher and thinner.



Chapter 3

Convolution and the

Vector DFT

Convolution is an important concept in signal processing and occurs in
several distinct contexts. In this chapter we shall discuss non-periodic
convolution and periodic convolution of vectors. Later we shall consider the
convolution of infinite sequences and of functions of a continuous variable.
The reader may recall an earlier encounter with convolution in a course
on differential equations. The simplest example of convolution is the non-
periodic convolution of finite vectors.

Non-periodic convolution:

Recall the algebra problem of multiplying one polynomial by another. Sup-
pose

A(x) = a0 + a1x + ... + aMxM

and

B(x) = b0 + b1x + ... + bNxN .

Let C(x) = A(x)B(x). With

C(x) = c0 + c1x + ... + cM+NxM+N ,

each of the coefficients cj , j = 0, ..., M +N, can be expressed in terms of the
am and bn (an easy exercise!). The vector c = (c0, ..., cM+N ) is called the
non-periodic convolution of the vectors a = (a0, ..., aM ) and b = (b0, ..., bN ).
Non-periodic convolution can be viewed as a particular case of periodic
convolution, as we see next.
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10 CHAPTER 3. CONVOLUTION AND THE VECTOR DFT

The DFT and the vector DFT:

As we just discussed, non-periodic convolution is another way of looking
at the multiplication of two polynomials. This relationship between con-
volution on the one hand and multiplication on the other is a fundamental
aspect of convolution, whenever it occurs. Whenever we have a convolution
we should ask what related mathematical objects are being multiplied. We
ask this question now with regard to periodic convolution; the answer turns
out to be the vector discrete Fourier transform.

Given the N by 1 vector f with complex entries f0, f1, ..., fN−1 define
the discrete Fourier transform (DFT) of f to be the function DFTf (ω),
defined for ω in [0, 2π), by

DFTf (ω) =

N−1∑
n=0

fneinω.

The terminology can be confusing, since the expression ‘discrete Fourier
transform’ is often used to describe several slightly different mathematical
objects.

For example, in the exercise that follows we are interested solely in the
values Fk = DFTf (2πk/N), for k = 0, 1, ..., N − 1. In this case the DFT of
the vector f often means simply the vector F whose entries are the complex
numbers Fk, for k = 0, ..., N − 1; for the moment let us call this the vector
DFT of f and write F = vDFTf . The point of Exercise 1 is to show how
to use the vector DFT to perform the periodic convolution operation.

In some instances the numbers fn are obtained by evaluating a function
f(x) at some finite number of points xn; that is, fn = f(xn), for n =
0, ..., N − 1. As we shall see later, if the xn are equispaced, the DFT
provides an approximation of the Fourier transform of the function f(x).
Since the Fourier transform is another function of a continuous variable,
and not a vector, it is appropriate, then, to view the DFT also as such
a function. Since the practice is to use the term DFT to mean slightly
different things in different contexts, we adopt that practice here. The
reader will have to infer the precise meaning of DFT from the context.

Periodic convolution:

Given the N by 1 vectors f and d with complex entries fn and dn, respec-
tively, we define a third N by 1 vector f ∗ d, the periodic convolution of f
and d, to have the entries

(f ∗ d)n = f0dn + f1dn−1 + ... + fnd0 + fn+1dN−1 + ... + fN−1dn+1.

Periodic convolution is illustrated in Figure 3.1. The first exercise relates
the periodic convolution to the vector DFT.
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Exercise 1: Let F = vDFTf and D = vDFTd. Define a third vector E
having for its k-th entry Ek = FkDk, for k = 0, ..., N − 1. Show that E is
the vDFT of the vector f ∗ d.

The vector vDFTf can be obtained from the vector f by means of
matrix multiplcation by a certain matrix G, called the DFT matrix. The
matrix G has an inverse that is easily computed and can be used to go
from F = vDFTf back to the original f . The details are in Exercise 2.

Exercise 2: Let G be the N by N matrix whose entries are Gjk =
ei(j−1)(k−1)2π/N . The matrix G is sometimes called the DFT matrix. Show
that the inverse of G is G−1 = 1

N G†, where G† is the conjugate transpose
of the matrix G. Then f ∗ d = G−1E = 1

N G†E.
As we mentioned above, nonperiodic convolution is really a special case

of periodic convolution. Extend the M + 1 by 1 vector a to an M + N + 1
by 1 vector by appending N zero entries; similarly, extend the vector b to
an M + N + 1 by 1 vector by appending zeros. The vector c is now the
periodic convolution of these extended vectors. Therefore, since we have
an efficient algorithm for performing periodic convolution, namely the Fast
Fourier Transform algorithm (FFT), we have a fast way to do the periodic
(and thereby nonperiodic) convolution and polynomial multiplication.
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a(0)

a(1)

a(2)

a(3)

b(0)

b(1)

b(2)

b(3)

a(0)

a(1)

a(2)

a(3) b(2)

b(3)

b(0)

b(1)

a*b(0)=a(0)b(0)+a(1)b(3)+a(2)b(2) + a(3) b(1) 

a*b(1)=a(0) b(1)+a(1) b(0)+a(2)b(3) + a(3) b(2) 

Per iodic Con volution

Rot ate inner

disk clock wise

Multiply and add

Figure 3.1: Periodic convolution of vectors a = (a(0), a(1), a(2), a(3)) and
b = (b(0), b(1), b(2), b(3)).



Chapter 4

Fourier Transforms and

Fourier Series

In a previous chapter we studied the problem of isolating the individual
complex exponential components of the signal function s(t), given the data
vector d with entries s(m∆), m = 1, ..., M , where s(t) is

s(t) =
∑N

n=1
Aneiωnt;

we assume that |ωn| < π/∆. The second approach we considered involved
calculating the function

DFTd(ω) =
∑M

m=1
s(m∆)e−iωm∆

for |ω| < π/∆. This sum is an example of a (finite) Fourier series. As
we just saw, we can extend the concept of Fourier series to include infinite
sums. In fact, we can generalize to summing over a continuous variable,
using integrals in place of summation; this is what is done in the definition
of the Fourier transform.

The Fourier transform:

In our discussion of linear filtering we saw that if f is a finite vector f =
(f1, ..., fM )T or an infinite sequence f = {fm}+∞

m=−∞ then it is convenient
to consider the function F (ω) defined for |ω| ≤ π by the finite or infinite
Fourier series expression

F (ω) =
∑

fmeimω.

If f(x) is a function of the real variable x, we can associate with f the
function F (ω), the Fourier transform (FT) of f(x), defined for all real ω
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14 CHAPTER 4. FOURIER TRANSFORMS AND FOURIER SERIES

by

F (ω) =

∫
f(x)eixωdx. (4.1)

Once we have F (ω) we can recover f(x) as the inverse Fourier transform
(IFT) of F (ω):

f(x) =

∫
F (ω)e−ixωdω/2π. (4.2)

We say then that the functions f and F form a Fourier transform pair. It
may happen that one or both of the integrals above will fail to be defined in
the usual way and will be interpreted as the principal value of the integral
[97].

Note that the definitions of the FT and IFT just given may differ slightly
from the ones found elsewhere; our definitions are those of Bochner and
Chandrasekharan [18]. The differences are minor and involve only the
placement of the quantity 2π and of the minus sign in the exponent. One
sometimes sees the FT of the function f denoted f̂ ; here we shall reserve
the symbol f̂ for estimates of the function f .

As an example of a Fourier transform pair let F (ω) be the function
χΩ(ω) that equals one for |ω| ≤ Ω and is zero otherwise. Then the inverse
Fourier transform of χΩ(ω) is

f(x) =

∫ Ω

−Ω

e−iωxdω/2π =
sin(Ωx)

πx
.

The function sin(x)
x is called the sinc function, sinc (x).

Fourier series:

If there is a positive Ω such that the Fourier transform F (ω) of the function
f(x) is zero for |ω| > Ω then the function f(x) is said to be Ω-bandlimited
and F (ω) has bandwidth Ω; in this case the function F (ω) can be written,
on the interval [−Ω,Ω], as an infinite discrete sum of complex exponentials.
For |ω| ≤ Ω we have

F (ω) =
∑+∞

n=−∞
fneinω π

Ω . (4.3)

We determine the coefficients fn in much the same way as in earlier dis-
cussions.

We know that the integral

∫ Ω

−Ω

ei(n−m)ω π

Ω dω
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equals zero if m 6= n and equals 2Ω for m = n. Therefore,

fm =
1

2Ω

∫ Ω

−Ω

F (ω)e−imω π

Ω dω (4.4)

for each integer m. If we wish, we can also write the coefficient fm in
terms of the inverse Fourier transform f(x) of the function F (ω): the right
side of equation (4.4) also equals π

Ωf(m π
Ω ), from which we conclude that

fm = π
Ωf(m π

Ω ).

The Shannon Sampling Theorem: Now that we have found the coef-
ficients of the Fourier series for F (ω) we can write

F (ω) =
π

Ω

∞∑
n=−∞

f(n
π

Ω
)einω π

Ω (4.5)

for |ω| ≤ Ω. We apply the formula in equation (4.2) to get

f(x) =

∞∑
n=−∞

f(n
π

Ω
)
sin(Ωx − nπ)

Ωx − nπ
. (4.6)

This is the famous Shannon sampling theorem, which tells us that if F (ω)
is zero outside [−Ω,Ω], then f(x) is completely determined by the infinite
sequence of values {f(n π

Ω )}+∞
n=−∞. If F (ω) is continuous and F (−Ω) =

F (Ω) then F (ω) has a continuous periodic extension to all of the real line.
Then the Fourier series in equation (4.3) converges to F (ω) for every ω
at which the function F (ω) has a left and right derivative. In general, if
F (−Ω) 6= F (Ω), or if F (ω) is discontinuous for some ω in (−Ω,Ω), the
series will still converge, but to the average of the one-sided limits F (ω+0)
and F (ω − 0), again, provided that F (ω) has one-sided derivatives at that
point. If ∫ Ω

−Ω

|F (ω)|2dω < ∞

then ∑+∞

n=−∞
|f(n

π

Ω
)|2 < ∞

and the series in equation (4.6) converges to f(x) in the L2 sense. If, in
addition, we have ∑+∞

n=−∞
|f(n

π

Ω
)| < ∞,

then the series converges uniformly to f(x) for x on the real line. There
are many books that can be consulted for details concerning convergence
of Fourier series, such as [16] and [97].
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Let f = {fm} and g = {gm} be the sequences of Fourier coeffcients for
the functions F (ω) and G(ω), respectively, defined on the interval [−π, π];
that is

F (ω) =
∑∞

m=−∞
fmeimω, |ω| ≤ π.

Exercise 1: Use the orthogonality of the functions eimω on [−π, π] to
establish Parseval’s equation:

〈f, g〉 =
∑∞

m=−∞
fmgm =

∫ π

−π

F (ω)G(ω)dω/2π,

from which it follows that

〈f, f〉 =

∫ ∞

−∞
|F (ω)|2dω/2π.

Similar results hold for the Fourier transform, as we shall see in the next
chapter.

Exercise 2: Let f(x) be defined for all real x and let F (ω) be its FT. Let

g(x) =

∞∑
k=−∞

f(x + 2πk),

assuming the sum exists. Show that g is a 2π -periodic function. Compute
its Fourier series and use it to derive the Poisson summation formula:

∞∑
k=−∞

f(2πk) =
1

2π

∞∑
n=−∞

F (n).

In certain applications our main interest is the function f(x), for which we
have finitely many (usually noisy) values. For example, x may be the time
variable t and f(t) may be a short segment of spoken speech that we wish
to analyze. We model f(t) as a finite, infinite discrete or continuous sum
of complex exponentials, that is, as a Fourier series or Fourier transform,
in order to process the data, to remove the noise, to compress the data and
to identify the parameters.

In remote sensing applications (such as radar, sonar, tomography), on
the other hand, we have again noisy values of f(x), but it is not f(x) that
interests us. Instead, we are interested in F (ω), the Fourier transform of
f(x) or the sequence Fn of the complex Fourier coeffcients of f(x), if f(x) =
0 outside some finite interval. We cannot measure these quantities directly,
so we must content ourselves with estimating them from our measurements
of f(x).
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In yet a third class of applications, such as linear filtering, we are con-
cerned with constructing a digital procedure for performing certain oper-
ations on any signal we might receive as input. In such cases our goal is
to construct the sequence gn for which the associated Fourier series G(ω)
will have a desired shape. For example, we may want the filter to eliminate
all complex exponential components of the input signal whose frequency
is not in the interval [−Ω,Ω]. Then we would want G(ω) to be one for ω
within this interval and zero outside. To achieve this we would take the
sequence gn to be

gn =
sin(Ωn)

πn
.

In these applications there is no f(x) to be analyzed nor F (ω) to be esti-
mated.
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Chapter 5

Fourier Series and

Analytic Functions

We first encounter infinite series expansions for functions in calculus, when
we study Maclaurin and Taylor series. Fourier series are usually first met in
a much different context, such as partial differential equations and bound-
ary value problems. Laurent expansions come later, when we study func-
tions of a complex variable. There are, nevertheless, important connections
among these different types of infinite series expansions, which provide the
subject for this chapter.

Suppose that f(z) is analytic in an annulus containing the unit circle
C = {z | |z| = 1}. Then f(z) has a Laurent series expansion

f(z) =

∞∑
n=−∞

fnzn

valid for z within that annulus. Substituting z = eiθ we get f(θ), defined
for θ in the interval [−π, π] by

f(θ) = f(eiθ) =

∞∑
n=−∞

fneinθ;

here the Fourier series for f(θ) is derived from the Laurent series for the
analytic function f(z). If f(z) is actually analytic in (1 + ε)D, where
D = {z| |z| < 1} is the open unit disk, then f(z) has a Taylor series
expansion and the Fourier series for f(θ) contains only terms corresponding
to nonnegative n.

As an example, consider the rational function

f(z) =
1

z − 1
2

− 1

z − 3
= −5

2
/(z − 1

2
)(z − 3).

19
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In an annulus containing the unit circle this function has the Laurent series
expansion

f(z) =

−1∑
n=−∞

2n+1zn +

∞∑
n=0

(
1

3
)n+1zn;

replacing z with eiθ we obtain the Fourier series for the function f(θ) =
f(eiθ) defined for θ in the interval [−π, π].

The function F (z) = 1/f(z) is analytic for all complex z, but because
it has a root inside the unit circle, its reciprocal, f(z), is not analytic in
a disk containing the unit circle. Consequently, the Fourier series for f(θ)
is doubly infinite. We saw in the chapter on complex varables that the
function G(z) = z−a

1−az has |G(eiθ)| = 1. With a = 2 and H(z) = F (z)G(z)
we have

H(z) =
1

5
(z − 3)(z − 2)

and its reciprocal has the form

1/H(z) =

∞∑
n=0

anzn.

Because

G(eiθ)/H(eiθ) = 1/F (eiθ)

it follows that

|1/H(eiθ)| = |1/F (eiθ)| = |f(θ)|

and so

|f(θ)| = |
∞∑

n=0

aneinθ|.

Multiplication by G(z) permits us to move a root from inside C to outside
C without altering the magnitude of the function’s values on C.

The relationships that obtain between functions defined on C and func-
tions analytic (or harmonic) in D form the core of harmonic analysis [114].
The factorization F (z) = H(z)/G(z) above is a special case of the inner-
outer factorization for functions in Hardy spaces; the function H(z) is an
outer function and the functions G(z) and 1/G(z) are inner functions.

Instead of starting with an analytic function and restricting it to the
unit circle, we often begin with a function f(eiθ) defined on the unit circle,
or, equivalently, a function of the form f(θ) for θ in [−π, π], and wish to
view this function as the restriction to the unit circle of a function that is
analytic in a region containing the unit circle. One application of this idea
is the Fejér-Riesz factorization theorem.
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Theorem 5.1 Let h(θ) be a finite trigonometric polynomial

h(θ) =

N∑
n=−N

hneinθ

such that h(θ) ≥ 0 for all θ in the interval [−π, π]. Then there is

y(θ) =

N∑
n=0

yneinθ

with h(θ) = |y(θ)|2. The function y(z) is unique if we require, in addition,
that all its roots be outside D.

To prove this theorem we consider the function

h(z) =

N∑
n=−N

hnzn,

which is analytic in an annulus containing the unit circle, with h(eiθ) =
h(θ). The rest of the proof is contained in the following exercise.

Exercise 1: Use the fact that h−n = hn to show that zj is a root of h(z)
if and only if 1/zj is also a root. From the nonnegativity of h(eiθ) conclude
that if h(z) has a root on the unit circle then it has even multiplicity. Take
y(z) to be proportional to the product of factors z−zj for all the zj outside
D; for roots on C include them with half their multiplicities.

The Fejér-Riesz theorem is used in the derivation of Burg’s maximum
entropy method for spectrum estimation. The problem there is to estimate
a function R(θ) > 0 knowing only the values

rn =
1

2π

∫ π

−π

R(θ)e−inθdθ,

for |n| ≤ N . The approach is to estimate R(θ) by the function S(θ) > 0
that maximizes the so-called Burg entropy,

∫ π

−π
log S(θ)dθ, subject to the

data constraints.
The Euler-Lagrange equation from the calculus of variations allows us

to conclude that S(θ) has the form

S(θ) = 1/

N∑
n=−N

hneinθ.
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The function

h(θ) =

N∑
n=−N

hneinθ

is nonnegative, so, by the Fejér-Riesz theorem, it factors as h(θ) = |y(θ)|2.
We then have S(θ)y(θ) = 1/y(θ). Since all the roots of y(z) lie outside D
and none are on C, the function 1/y(z) is analytic in a region containing C
and D so it has a Taylor series expansion in that region. Restricting this
Taylor series to C we obtain a one-sided Fourier series having zero terms
for the negative indices.

Exercise 2: Show that the coefficients yn in y(z) satisfy a system of linear
equations whose coefficients are the rn.

Hint: Compare the coefficients of the terms on both sides of the equation
S(θ)y(θ) = 1/y(θ) that correspond to negative indices.

The Hilbert transform for sequences: If g(ω) has the Fourier series
expansion

g(ω) =

∞∑
n=−∞

gne−inω,

the conjugate Fourier series [125] is

h(ω) =

∞∑
n=−∞

(−i sgn(n))gne−inω.

Then

f(ω) = g(ω) + ih(ω) = g0 + 2

∞∑
n=1

gneinω

is a one-sided Fourier series. In harmonic analysis the sequence {hn} is said
to be the conjugate of the sequence {gn}; in signal processing it is called
its Hilbert transform. As we shall see in a subsequent chapter, the Hilbert
transform occurs in several different contexts.



Chapter 6

More on the Fourier

Transform

We begin with exercises that treat basic properties of the FT and then
introduce several examples of Fourier transform pairs.

Exercise 1: Let F (ω) be the FT of the function f(x). Use the definitions
of the FT and IFT given in equations (4.1) and (4.2) to establish the
following basic properties of the Fourier transform operation:

Symmetry: The FT of the function F (x) is 2πf(−ω). For example, the

FT of the function f(x) = sin(Ωx)
πx is χΩ(ω), so the FT of g(x) = χΩ(x) is

G(ω) = 2π sin(Ωω)
πω .

Conjugation: The FT of f(x) is F (−ω).

Scaling: The FT of f(ax) is 1
|a|F (ω

a ) for any nonzero constant a.

Shifting: The FT of f(x − a) is e−iaωF (ω).

Modulation: The FT of f(x) cos(ω0x) is 1
2 [F (ω + ω0) + F (ω − ω0)].

Differentiation: The FT of the n-th derivative, f (n)(x) is (−iω)nF (ω).
The IFT of F (n)(ω) is (ix)nf(x).

Convolution in x: Let f, F , g, G and h, H be FT pairs, with

h(x) =

∫
f(y)g(x − y)dy,

23
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so that h(x) = (f ∗g)(x) is the convolution of f(x) and g(x). Then H(ω) =
F (ω)G(ω). For example, if we take g(x) = f(−x), then

h(x) =

∫
f(x + y)f(y)dy =

∫
f(y)f(y − x)dy = rf (x)

is the autocorrelation function associated with f(x) and

H(ω) = |F (ω)|2 = Rf (ω) ≥ 0

is the power spectrum of f(x).

Convolution in ω: Let f, F , g, G and h, H be FT pairs, with h(x) =
f(x)g(x). Then H(ω) = 1

2π (F ∗ G)(ω).

Exercise 2: Show that the Fourier transform of f(x) = e−α2x2

is F (ω) =√
π

α e−( ω

2α
)2 . Hint: Calculate the derivative F ′(ω) by differentiating under

the integral sign in the definition of F and integrating by parts. Then solve
the resulting differential equation.

Let u(x) be the Heaviside function that is +1 if x ≥ 0 and 0 otherwise.
Let χX(x) be the characteristic function of the interval [−X, X] that is +1
for x in [−X, X] and 0 otherwise. Let sgn(x) be the sign function that is
+1 if x > 0, −1 if x < 0 and zero for x = 0.

Exercise 3: Show that the FT of the function f(x) = u(x)e−ax is F (ω) =
1

a−iω , for every positive constant a.

Exercise 4: Show that the FT of f(x) = χX(x) is F (ω) = 2 sin(Xω)
ω .

Exercise 5: Show that the IFT of the function F (ω) = 2i/ω is f(x) =
sgn(x).

Hints: write the formula for the inverse Fourier transform of F (ω) as

f(x) =
1

2π

∫ +∞

−∞

2i

ω
cos ωxdω − i

2π

∫ +∞

−∞

2i

ω
sinωxdω

which reduces to

f(x) =
1

π

∫ +∞

−∞

1

ω
sinωxdω,

since the integrand of the first integral is odd. For x > 0 consider the
Fourier transform of the function χx(t). For x < 0 perform the change of
variables u = −x.
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We saw earlier that the F (ω) = χΩ(ω) has for its inverse Fourier trans-
form the function f(x) = sin Ωx

πx ; note that f(0) = Ω
π and f(x) = 0 for the

first time when Ωx = π or x = π
Ω . For any Ω-bandlimited function g(x) we

have G(ω) = G(ω)χΩ(ω), so that, for any x0, we have

g(x0) =

∫ ∞

−∞
g(x)

sin Ω(x − x0)

π(x − x0)
dx.

We describe this by saying that the function f(x) = sin Ωx
πx has the sifting

property for all Ω-bandlimited functions g(x).
As Ω grows larger, f(0) approaches +∞, while f(x) goes to zero for

x 6= 0. The limit is therefore not a function; it is a generalized function
called the Dirac delta function at zero, denoted δ(x). For this reason the
function f(x) = sin Ωx

πx is called an approximate delta function. The FT
of δ(x) is the function F (ω) = 1 for all ω. The Dirac delta function δ(x)
enjoys the sifting property for all g(x); that is,

g(x0) =

∫ ∞

−∞
g(x)δ(x − x0)dx.

It follows from the sifting and shifting properties that the FT of δ(x − x0)
is the function eix0ω.

The formula for the inverse FT nows says

δ(x) =
1

2π

∫ ∞

−∞
e−ixωdω. (6.1)

If we try to make sense of this integral according to the rules of calculus we
get stuck quickly. The problem is that the integral formula doesn’t mean
quite what it does ordinarily and the δ(x) is not really a function, but
an operator on functions; it is sometimes called a distribution. The Dirac
deltas are mathematical fictions, not in the bad sense of being lies or fakes,
but in the sense of being made up for some purpose. They provide helpful
descriptions of impulsive forces, probability densities in which a discrete
point has nonzero probability, or, in array processing, objects far enough
away to be viewed as occupying a discrete point in space.

We shall treat the relationship expressed by equation (6.1) as a formal
statement, rather than attempt to explain the use of the integral in what is
surely an unconventional manner. Nevertheless, it is possible to motivate
this relationship by proving that, for any x 6= 0,∫ ∞

−∞
e−ixωdω = 0.

Assume, for convenience, that x > 0. Notice first that we can write

∫ ∞

−∞
e−ixωdω =

∞∑
k=−∞

∫ 2π

x
(k+1)

2π

x
k

e−ixωdω.
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Since

e−ixω = e−ix(ω+ 2π

x
)

we can write ∫ 2π

x
(k+1)

2π

x
k

e−ixωdω =

∫ π

x

− π

x

e−ixωdω

=

∫ π

x

0

[e−ixω + e−ix(ω− π

x
)]dω

=
1

x

∫ π

0

[e−iω(1 + eiπ)]dω

=
1

x
(1 + eiπ)

∫ π

0

e−iωdω = 0.

Clearly, when x = 0 the integrand is one for all ω, which leads to the delta
function supported at zero.

If we move the discussion into the ω domain and define the Dirac delta
function δ(ω) to be the FT of the function that has the value 1

2π for all
x, then the FT of the complex exponential function 1

2π e−iω0x is δ(ω − ω0),
visualized as a ”spike” at ω0, that is, a generalized function that has the
value +∞ at ω = ω0 and zero elsewhere. This is a useful result, in that
it provides the motivation for considering the Fourier transform of a signal
s(t) containing hidden periodicities. If s(t) is a sum of complex exponentials
with frequencies −ωn then its Fourier transform will consist of Dirac delta
functions δ(ω −ωn). If we then estimate the Fourier transform of s(t) from
sampled data, we are looking for the peaks in the Fourier transform that
approximate the infinitely high spikes of these delta functions.

Exercise 6: Use the fact that sgn(x) = 2u(x)−1 and the previous exercise
to show that f(x) = u(x) has the FT F (ω) = i/ω + πδ(ω).

Generally, the functions f(x) and F (ω) are complex-valued, so that we
may speak about their real and imaginary parts. The next exercise explores
the connections that hold among these real-valued functions.

Exercise 7: Let f(x) be arbitrary and F (ω) its Fourier transform. Let
F (ω) = R(ω) + iX(ω), where R and X are real-valued functions, and
similarly, let f(x) = f1(x) + if2(x), where f1 and f2 are real-valued. Find
relationships between the pairs R,X and f1,f2.

Exercise 8: Let f, F be a FT pair. Let g(x) =
∫ x

−∞ f(y)dy. Show that

the FT of g(x) is G(ω) = πF (0)δ(ω) + iF (ω)
ω .
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Hint: For u(x) the Heaviside function we have

∫ x

−∞
f(y)dy =

∫ ∞

−∞
f(y)u(x − y)dy.

We can use properties of the Dirac delta functions to extend the Parseval
equation to Fourier transforms, where it is usually called the Parseval-
Plancherel equation.

Exercise 9: Let f(x), F (ω) and g(x), G(ω) be Fourier transform pairs.
Use equation (6.1) to establish the Parseval-Plancherel equation

〈f, g〉 =

∫
f(x)g(x)dx =

1

2π

∫
F (ω)G(ω)dω,

from which it follows that

||f ||2 = 〈f, f〉 =

∫
|f(x)|2dx =

1

2π

∫
|F (ω)|2dω.

Exercise 10: We define the even part of f(x) to be the function

fe(x) =
f(x) + f(−x)

2
,

and the odd part of f(x) to be

fo(x) =
f(x) − f(−x)

2
;

define Fe and Fo similarly for F the FT of f . Let F (ω) = R(ω)+ iX(ω) be
the decomposition of F into its real and imaginary parts. We say that f is
a causal function if f(x) = 0 for all x < 0. Show that, if f is causal, then
R and X are related; specifically, show that X is the Hilbert transform of
R, that is,

X(ω) =
1

π

∫ ∞

−∞

R(α)

ω − α
dα.

Hint: If f(x) = 0 for x < 0 then f(x)sgn(x) = f(x). Apply the convolution
theorem, then compare real and imaginary parts.

Exercise 11: The one-sided Laplace transform (LT) of f is F given by

F(z) =

∫ ∞

0

f(x)e−zxdx.

Compute F(z) for f(x) = u(x), the Heaviside function. Compare F(−iω)
with the FT of u.
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Chapter 7

The Fast Fourier

Transform

A fundamental problem in signal processing is to estimate finitely many
values of the function F (ω) from finitely many values of its (inverse) Fourier
transform, f(t). As we have seen, the DFT arises in several ways in that
estimation effort. The fast Fourier transform (FFT), discovered in 1965 by
Cooley and Tukey, is an important and efficient algorithm for calculating
the vector DFT [74]. John Tukey has been quoted as saying that his main
contribution to this discovery was the firm and often voiced belief that such
an algorithm must exist.

To illustrate the main idea behind the FFT consider the problem of
evaluating a real polynomial P (x) at a point, say x = c: let the polynomial
be

P (x) = a0 + a1x + a2x
2 + ... + a2Kx2K ,

where a2K might be zero. Performing the evaluation efficiently by Horner’s
method,

P (c) = (((a2Kc + a2K−1)c + a2K−2)c + a2K−3)c + ...,

requires 2K multiplications, so the complexity is on the order of the degree
of the polynomial being evaluated. But suppose we also want P (−c). We
can write

P (x) = (a0 + a2x
2 + ... + a2Kx2K) + x(a1 + a3x

2 + ... + a2K−1x
2K−2)

or
P (x) = Q(x2) + xR(x2).

Therefore we have P (c) = Q(c2) + cR(c2) and P (−c) = Q(c2) − cR(c2).
If we evaluate P (c) by evaluating Q(c2) and R(c2) separately, one more
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multiplication gives us P (−c) as well. The FFT is based on repeated use
of this idea, which turns out to be more powerful when we are using complex
exponentials, because of their periodicity.

Say the data are the samples are {f(n∆), n = 1, ..., N}, where ∆ > 0 is
the sampling increment or sampling spacing.

The DFT estimate of F (ω) is the function FDFT (ω), defined for ω in
[−π/∆, π/∆], and given by

FDFT (ω) = ∆

N∑
n=1

f(n∆)ein∆ω.

The DFT estimate FDFT (ω) is data consistent; its inverse Fourier trans-
form value at t = n∆ is f(n∆) for n = 1, ..., N . The DFT is sometimes
used in a slightly more general context in which the coefficients are not
necessarily viewed as samples of a function f(t).

Given the complex N -dimensional column vector f = (f0, f1, ..., fN−1)
T

define the DFT of vector f to be the function DFTf (ω), defined for ω in
[0, 2π), given by

DFTf (ω) =

N−1∑
n=0

fneinω.

Let F be the complex N -dimensional vector F = (F0, F1, ..., FN−1)
T , where

Fk = DFTf (2πk/N), k = 0, 1, ..., N−1. So the vector F consists of N values
of the function DFTf , taken at N equispaced points 2π/N apart in [0, 2π).

From the formula for DFTf we have, for k = 0, 1, ..., N − 1,

Fk = F (2πk/N) =

N−1∑
n=0

fne2πink/N . (7.1)

To calculate a single Fk requires N multiplications; it would seem that to
calculate all N of them would require N2 multiplications. However, using
the FFT algorithm we can calculate vector F in approximately N log2(N)
multiplications.

Suppose that N = 2M is even. We can rewrite equation(7.1) as follows:

Fk =

M−1∑
m=0

f2me2πi(2m)k/N +

M−1∑
m=0

f2m+1e
2πi(2m+1)k/N ,

or, equivalently,

Fk =

M−1∑
m=0

f2me2πimk/M + e2πik/N
M−1∑
m=0

f2m+1e
2πimk/M . (7.2)
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Note that if 0 ≤ k ≤ M − 1 then

Fk+M =

M−1∑
m=0

f2me2πimk/M − e2πik/N
M−1∑
m=0

f2m+1e
2πimk/M , (7.3)

so there is no additional computational cost in calculating the second half
of the entries of F, once we have calculated the first half. The FFT is the
algorithm that results when take full advantage of the savings obtainable
by splitting a DFT calculating into two similar calculations of half the size.

We assume now that N = 2L. Notice that if we use equations (7.2) and
(7.3) to calculate vector F, the problem reduces to the calculation of two
similar DFT evaluations, both involving half as many entries, followed by
one multiplication for each of the k between 0 and M − 1. We can split
these in half as well. The FFT algorithm involves repeated splitting of the
calculations of DFTs at each step into two similar DFTs, but with half the
number of entries, followed by as many multiplications as there are entries
in either one of these smaller DFTs. We use recursion to calculate the cost
C(N) of computing F using this FFT method. From equation (7.2) we
see that C(N) = 2C(N/2) + (N/2). Applying the same reasoning to get
C(N/2) = 2C(N/4) + (N/4), we obtain

C(N) = 2C(N/2) + (N/2) = 4C(N/4) + 2(N/2) = ...

= 2LC(N/2L) + L(N/2) = N + L(N/2).

Therefore the cost required to calculate F is approximately N log2 N .
From our earlier discussion of discrete linear filters and convolution we

see that the FFT can be used to calculate the periodic convolution (or even
the non-periodic convolution) of finite length vectors.

Finally, let’s return to the original context of estimating the Fourier
transform F (ω) of function f(t) from finitely many samples of f(t). If we
have N equispaced samples we can use them to form the vector f as above
and perform the FFT algorithm to get vector F consisting of N values of
the DFT estimate of F (ω). It may happen that we wish to calculate more
than N values of the DFT estimate, perhaps to produce a smooth looking
graph. We can still use the FFT, but we must trick it into thinking we have
more data that the N samples we really have. We do this by zero-padding.
Instead of creating the N -dimensional vector f , we make a longer vector by
appending, say, J zeros to the data, to make a vector that has dimension
N + J . The DFT estimate is still the same function of ω, since we have
only included new zero coefficients as fake data. But the FFT thinks we
have N + J data values, so it returns N + J values of the DFT, at N + J
equispaced values of ω in [0, 2π).
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Chapter 8

Bandlimited

Extrapolation

Let f(x) and F (ω) be a Fourier transform pair. We know from the formulas
in equations (4.1) and (4.2) that we can determine F from f and vice versa.
But what happens if we have some, but not all, of the values f(x)? Can
we still find F (ω) for all ω? If we can, then we can also recover the missing
values of f , which says that there must be considerable redundancy in the
way f stores information. We shall investigate this matter further now for
the important case in which F has bounded support; that is, there is some
Ω > 0 such that F (ω) = 0, for |ω| > Ω. The function f(x) is then said to
be Ω-bandlimited.

We shall assume throughout this chapter that f is Ω-bandlimited and
ask how much we need to know about f to recover F (ω) for all ω. Because
recovering F (ω) for all ω is equivalent to finding f(x) for all x, this problem
is called the bandlimited extrapolation problem.

We have already encountered one result along these lines. According
to Shannon’s sampling theorem, if we have the values {f(n∆), −∞ < n <
∞}, for some ∆ ∈ (0, π

Ω ], then we can recover F (ω) for all ω and thereby
f(x) for all x. Therefore, these infinite sequences of samples of f contain
complete information about f . Other results of this sort have quite a
different flavor.

Since F (ω) = 0 outside its interval of support [−Ω,Ω] the extension of
f(x) to complex z, given by the Fourier-Laplace transform

f(z) =

∫ ∞

−∞
F (ω)e−izωdω/2π, (8.1)

can be differentiated under the integral sign since the limits of integration
are now finite. In fact, the function f(z) is a complex-valued function that
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is analytic throughout the complex plane. Such functions have power series
expansions that converge for all z.

Exercise 1: Show that there can be no Fourier transform pair f, F for
which positive constants a and b exist such that f(x) = 0 for |x| > a and
F (ω) = 0 for |ω| > b. Thus it is not possible for both f and F to be
band-limited.

Hint: Use the analyticity of the function f(z).

The coefficients needed for such a power series expansion are determined
by the derivatives of f(z) at a single point, say z = 0. Therefore, if we have
the values of f(z) for z in some small disc around z = 0 we have all the
information we need. Actually, even this amount of knowledge about f is
too much; to calculate the derivatives at z = 0 we need only know f(xn)
for some sequence {xn} of real numbers converging to z = 0.

This is fine in theory, but, of course, we cannot hope to calculate all the
derivatives of f at z = 0. Even calculating a few derivatives in the presence
of noisy measurements of f is hopeless. In [152] Papoulis presents an iter-
ative scheme for determining F (ω) from knowledge of f(x) for x within an
interval A = [a, b] of the real line. This is not a practical technique, since it
uses infinitely many samples of f(x), but can be modified to provide useful
algorithms, as we shall see. The iterative and non-iterative methods we
describe below are usually called super-resolution techniques in the signal
processing literature. Similar methods applied in sonar and radar array
processing are called super-directive methods [75].

Papoulis’ iterative method: Let g0(x) = χA(x)f(x). Having found
gk(x) let Gk(ω) be the FT of gk, Hk(ω) = χΩ(ω)Gk(ω) and hk(x) the
inverse FT of Hk(ω). Then take gk+1(x) = f(x) for x ∈ A and gk+1(x) =
hk(x) otherwise. The sequence {hk(x)} converges to f(x) for all x and the
sequence {Hk} converges in the mean square sense to F .

In practice we have only finitely many values of f(x). This is not, of
course, enough information to determine F (ω). We seek an estimate of F ,
or, equivalently, an approximate extrapolation of the data. We consider
now several practical variants of Papoulis’ iterative method.

Gerchberg-Papoulis iteration (I): The algorithm discussed in this sec-
tion is called the Gerchberg-Papoulis (GP) bandlimited iteration method
[100], [151]. For notational convenience we shall assume that Ω < π and
that we have the finite data f(n), n = 0, 1, ..., M − 1. We seek to esti-
mate the values f(n), n = M, M + 1, ..., N for some choice of N > M .
We begin with g0 the N -dimensional vector with entries g0(n) = f(n) for
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n = 0, 1, ..., M − 1 and g0(n) = 0 for n = M, M +1, ..., N − 1. Then having
found the vector gk we let

Gk
m =

N−1∑
n=0

gk(n) exp(2πimn/N),

for m = 0, 1, ..., N − 1. We interpret these values as samples of a function
Gk(ω) defined on [−π, π]; specifically, we take

Gk
m = Gk(2πm/N)

for m = 0, 1, ..., N
2 and

Gk
m = Gk(−2π + 2πm/N)

for m = N
2 + 1, ..., N − 1; for convenience we assume that N is even.

Mimicking the definition of Hk(ω), we define Hk
m to be Gk

m for those m =
0, 1, ..., N

2 such that 2πm/N ≤ Ω and for those m = N
2 + 1, ..., N − 1 for

which −2π+2πm/N ≥ −Ω. For all other values of m we set Hk
m = 0. Now

calculate

hk
n =

1

N

N−1∑
m=0

Hk
m exp(−2πimn/N),

for n = 0, 1, ..., N − 1. Finally, set gk+1
n = f(n), for n = 0, 1, ..., M − 1

and gk+1
n = hk

n for n = M, M + 1, ..., N − 1. The limit vector g∞ has
g∞

n = f(n) for n = 0, 1, ..., M −1, but in order to have G∞
m = 0 for those m

corresponding to frequencies outside [−Ω,Ω] we need to take N ≥ Mπ/Ω.
The values g∞

n for n = M, M +1, ..., N −1 are then our extrapolated values
of f .

The advantages of this approach are that only finite data is used and
the calculations can be performed using the fast Fourier transform. The
vectors obtained are optimal in some sense [53], [54]. Obviously, one draw-
back is that we do not extrapolate f(n) for all integers n, but only for a
finite subset. Also, we do not obtain a function G∞(ω) of the continuous
variable ω that is equal to zero for all ω outside the band [−Ω,Ω] and whose
corresponding g∞(x) is consistent with the finite data. To remedy this we
consider another variant of the GP algorithm.

Gerchberg-Papoulis iteration (II): We shall assume again that Ω < π
and that we have the finite data f(n), n = 0, 1, ..., M − 1. Since

F (ω) =

∞∑
n=−∞

f(n) exp(inω)

for ω ∈ [−π, π], we seek to extrapolate f(n) for n not in the set {0, 1, ..., M−
1}.
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Mimicking the algorithm in the previous section, we begin with the
infinite sequence g0 = {g0

n, −∞ < n < ∞} where g0
n = f(n) for n =

0, 1, ..., M − 1 and g0
n = 0 otherwise. Having found the infinite sequence gk

we define

Gk(ω) =

∞∑
n=−∞

gk
n exp(inω)

for ω ∈ [−π, π]. Then we set

Hk(ω) = χΩ(ω)Gk(ω)

and

hk
n =

1

2π

∫ π

−π

Hk(ω) exp(−inω)dω.

Then let gk+1
n = f(n) for n = 0, 1, ..., M − 1 and gk+1

n = hk
n otherwise.

It would appear that this iterative scheme cannot actually be performed
because it requires calculating gk+1

n for all integers n. Fortunately, there is
a way out.

Non-iterative bandlimited extrapolation: Note that Gk+1(ω) can be
written as

Gk+1(ω) = Hk(ω) + G0(ω) −
N−1∑
n=0

hk
n exp(inω),

so that

Hk+1(ω) − Hk(ω) = χΩ(ω)

N−1∑
n=0

ak
n exp(inω) (8.2)

for some ak
0 , ..., ak

N−1. If we wish we can implement the GP iterative method
by iteratively updating these constants. There is a better way to proceed,
however.

It follows from equation (8.2) and the definition of H0 that the limit
H∞(ω) has the form

H∞(ω) = χΩ(ω)

N−1∑
n=0

an exp(inω) (8.3)

for some constants a0, ..., aN−1. We then solve for these coefficients using
our data. Taking the inverse Fourier transform of both sides of equation
(8.3)and forcing data consistency, we obtain the system of equations

f(m) =

N−1∑
n=0

an
sin Ω(m − n)

π(m − n)
, (8.4)
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m = 0, ..., N − 1, which we solve to find the coefficients. Once we have
the coefficients we insert them into the expression for H∞(ω) to obtain
a function supported on the interval [−Ω,Ω] whose associated h∞(x) is
consistent with the data. The extrapolated sequence is then {h∞(n)} for
integers n not between 0 and M − 1. This noniterative implementation of
the GP extrapolation is not new; it was presented in [45], and has been
rediscovered several times since then (see p. 209 of [170]).

Because our data usually contains noise we need to exercise some care
in solving the system in equation (8.4). The matrix S whose entries are

Smn =
sin Ω(m − n)

π(m − n)

is typically ill-conditioned, particularly when Ω is much smaller than π.
To reduce sensitivity to noise we can regularize; one way is to multiply
the entries on the main diagonal of S by, say, 1.0001. This increases the
eigenvalues of S, thereby decreasing the eigenvalues of S−1 and making the
computed solution less sensitive to the noise.

The finite data we have tells us nothing about the values f(n) we have
not measured, in the sense that we can define f(M) any way we wish and
still construct an Ω-bandlimited function consistent with the data and with
this chosen value of f(M). In a similar sense our finite data also tells us
nothing about the value of Ω; we can select any interval [a, b] and find a
function H(ω) supported on [a, b] whose h(x) is consistent with the data.
But this is not quite the whole story; finite data cannot rule out anything,
but it can suggest strongly that certain things are false. For example, if
we select the interval [a, b] disjoint from [−Ω,Ω] the function H(ω) will
probably have large energy; that is, the integral

∫ b

a

|H(ω)|2dω

will be much larger than

∫ Ω

−Ω

|H∞(ω)|2dω.

We can use this fact to help us decide if we have chosen a good value for Ω.
In [43] this same idea was used to obtain an iterative algorithm for solving
the phase retrieval problem discussed in a later chapter.

When the data set is large, as usually happens in multi-dimensional
problems such as image reconstruction, solving the equations (8.4) is some-
times performed iteratively. Nevertheless, the algorithm still differs from
the first GP method in that we are still extrapolating infinitely many values
of f(n); we are just doing it using a finite parameter model.
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The non-iterative implementation of the Gerchberg-Papoulis bandlim-
ited extrapolation method can be extended in several ways to solve Fourier
transform estimation problems. The modified DFT (MDFT) estimator gen-
eralizes the non-iterative GP method to accomodate non-equispaced sam-
pling. More generally, the PDFT method permits us to include other prior
information about the shape of F (ω) beyond knowledge of its support; it
also applies to multi-dimensional problems. Constructing the matrix used
in the system of equations can be difficult when the data sets are large;
an iterative discrete implementation of the PDFT, the DPDFT, allows us
to avoid dealing with this large matrix. There is also a nonlinear version
of the PDFT, the indirect PDFT (IPDFT), that extends the maximum
entropy method for extrapolating autocorrelation data.
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[76] Csiszár, I., and Tusnády, G. (1984) Information geometry and alter-
nating minimization procedures, Statistics and Decisions, Supp. 1, pp.
205–237.

[77] Csiszár, I. (1989)A geometric interpretation of Darroch and Ratcliff’s
generalized iterative scaling, The Annals of Statistics, 17 (3), pp.
1409–1413.

[78] Csiszár, I. (1991) Why least squares and maximum entropy? An ax-
iomatic approach to inference for linear inverse problems, The Annals
of Statistics, 19 (4), pp. 2032–2066.

[79] Dainty, C., and Fiddy, M. (1984) The essential role of prior knowleldge
in phase retrieval, Optica Acta, 31, pp. 325–330.

[80] Darroch, J., and Ratcliff, D. (1972) Generalized iterative scaling for
log-linear models, Annals of Mathematical Statistics, 43, pp. 1470–
1480.

[81] De Bruijn, N. (1967) Uncertainty principles in Fourier analysis, in
Inequalties, O. Shisha, (ed.), Academic Press, pp. 57–71.

[82] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum like-
lihood from incomplete data via the EM algorithm, Journal of the

Royal Statistical Society, Series B, 37: 1–38.

[83] De Pierro, A. (1995) A modified expectation maximization algorithm
for penalized likelihood estimation in emission tomography, IEEE
Transactions on Medical Imaging, 14, pp. 132–137.

[84] De Pierro, A., and Iusem, A. (1990) On the asymptotic behaviour of
some alternate smoothing series expansion iterative methods, Linear

Algebra and its Applications, 130, pp. 3–24.

[85] Dhanantwari, A., Stergiopoulos, S., and Iakovidis, I. (2001) Correct-
ing organ motion artifacts in x-ray CT medical imaging systems by
adaptive processing. I. Theory, Med. Phys., 28(8), pp. 1562–1576.

[86] Dolidze, Z.O. (1982) Solution of variational inequalities associated
with a class of monotone maps, Ekonomika i Matem. Metody, 18
(5), pp. 925–927 (in Russian).

[87] Dugundji, J. (1970) Topology, Allyn and Bacon, Inc., Boston.

[88] Eggermont, P.P.B., Herman, G.T., and Lent, A. (1981) Iterative algo-
rithms for large partitioned linear systems, with applications to image
reconstruction, Linear Algebra and its Applications, 40, pp. 37–67.



46 BIBLIOGRAPHY

[89] Everitt, B., and Hand, D. (1981) Finite Mixture Distributions, Chap-
man and Hall, London.

[90] Feuillade, C., DelBalzo, D., and Rowe, M. (1989) Environmental mis-
match in shallow-water matched-field processing: geoacoustic param-
eter variability, Journal of the Acoustical Society of America, 85, pp.
2354–2364.

[91] Feynman, R., Leighton, R., and Sands, M. (1963) The Feynman Lec-
tures on Physics, Vol. 1, Addison-Wesley.

[92] Fiddy, M. (1983) The phase retrieval problem, in Inverse Optics, SPIE
Proceedings 413 (A.J. Devaney, ed.), pp. 176–181.

[93] Fienup, J. (1979) Space object imaging through the turbulent atmo-
sphere, Optical Engineering, 18, pp. 529–534.

[94] Fienup, J. (1987) Reconstruction of a complex-valued object from the
modulus of its Fourier transform using a support constraint, Journal
of the Optical Society of America A, 4(1), pp. 118–123.

[95] Frieden, B. R. (1982) Probability, Statistical Optics and Data Testing,
Springer.

[96] Gabor, D. (1946) Theory of communication, Journal of the IEE (Lon-
don), 93, pp. 429–457.

[97] Gasquet, C., and Witomski, F. (1998) Fourier Analysis and Applica-
tions, Springer.

[98] Gelb, A. (1974) (ed.) Applied Optimal Estimation, written by the tech-
nical staff of The Analytic Sciences Corporation, MIT Press.

[99] Geman, S., and Geman, D. (1984) Stochastic relaxation, Gibbs dis-
tributions and the Bayesian restoration of images, IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-6, pp. 721–741.

[100] Gerchberg, R. W. (1974) Super-restoration through error energy re-
duction, Optica Acta, 21, pp. 709–720.

[101] Golshtein, E., and Tretyakov, N. (1996) Modified Lagrangians and
Monotone Maps in Optimization, John Wiley, NY.

[102] Gordon, R., Bender, R., and Herman, G.T. (1970) Algebraic recon-
struction techniques (ART) for three-dimensional electron microscopy
and x-ray photography, J. Theoret. Biol., 29, pp. 471-481.

[103] Green, P. (1990) Bayesian reconstructions from emission tomography
data using a modified EM algorithm, IEEE Transactions on Medical
Imaging, 9, pp. 84–93.



BIBLIOGRAPHY 47

[104] Groetsch, C. (1999) Inverse Problems: Activities for Undergraduates,
The Mathematical Association of America.

[105] Gubin, L.G., Polyak, B.T. and Raik, E.V. (1967) The method of
projections for finding the common point of convex sets, USSR Com-

putational Mathematics and Mathematical Physics, 7: 1–24.

[106] Haykin, S. (1985) Array Signal Processing, Prentice-Hall.

[107] Hebert, T., and Leahy, R. (1989) A generalized EM algorithm for 3-D
Bayesian reconstruction from Poisson data using Gibbs priors, IEEE
Transactions on Medical Imaging, 8, pp. 194–202.

[108] Herman, G.T. (1999) private communication.

[109] Herman, G. T. and Meyer, L. (1993) Algebraic reconstruction tech-
niques can be made computationally efficient, IEEE Transactions on
Medical Imaging, 12, pp. 600-609.

[110] Higbee, S. (2004) private communication.

[111] Hildreth, C. (1957) A quadratic programming procedure, Naval Re-

search Logistics Quarterly, 4, pp. 79–85. Erratum, ibid., p. 361.

[112] Hinich, M. (1973) Maximum likelihood signal processing for a vertical
array, Journal of the Acoustical Society of America, 54, pp. 499–503.

[113] Hinich, M. (1979) Maximum likelihood estimation of the position of
a radiating source in a waveguide, Journal of the Acoustical Society of
America, 66, pp. 480–483.

[114] Hoffman, K. (1962) Banach Spaces of Analytic Functions, Prentice-
Hall.

[115] Hogg, R., and Craig, A. (1978) Introduction to Mathematical Statis-
tics, MacMillan.

[116] Holte, S., Schmidlin, P., Linden, A., Rosenqvist, G. and Eriksson, L.
(1990) Iterative image reconstruction for positron emission tomogra-
phy: a study of convergence and quantitation problems, IEEE Trans-

actions on Nuclear Science, 37, pp. 629–635.

[117] Hubbard, B. (1998) The World According to Wavelets, A.K. Peters,
Publ., Natick, MA.

[118] Hudson, H. M., and Larkin, R. S. (1994) Accelerated image recon-
struction using ordered subsets of projection data, IEEE Transactions

on Medical Imaging, 13, pp. 601-609.



48 BIBLIOGRAPHY

[119] R. Huesman, G. Klein, W. Moses, J. Qi, B. Ruetter and P. Virador
(2000) IEEE Transactions on Medical Imaging, 19 (5), pp. 532–537.

[120] Hutton, B., Kyme, A., Lau, Y., Skerrett, D., and Fulton, R. (2002)
A hybrid 3-D reconstruction/registration algorithm for correction of
head motion in emission tomography, IEEE Transactions on Nuclear
Science, 49 (1), pp. 188–194.

[121] Johnson, R. (1960) Advanced Euclidean Geometry, Dover.
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