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1 Background

The expectation maximization maximum likelihood method (EMML) has been the

subject of much attention in the medical-imaging literature over the past decade.

Statisticians like it because it is based on the well-studied principle of likelihood

maximization for parameter estimation. Physicists like it because, unlike its compe-

tition, filtered backprojection, it permits the inclusion of sophisticated models of the

physical situation. Mathematicians like it because it can be derived from iterative

optimization theory. Physicians like it because the images are often better than those

produced by other means. No method is perfect, however, and the EMML suffers

from sensitivity to noise and slow rate of convergence. Research is ongoing to find

faster and less sensitive versions of this algorithm.

Another class of iterative algorithms was introduced into medical imaging by

Gordon et al. in [9]. These include the algebraic reconstruction technique (ART)

and its multiplicative version, MART. These methods were derived by viewing image

reconstruction as solving systems of linear equations, possibly subject to constraints,

such as positivity. The simultaneous MART (SMART) [7, 10] is a variant of MART

that uses all the data at each step of the iteration.

Although the EMML and SMART algorithms have quite different histories and

are not typically considered together they are closely related [1, 2]. In this paper we

examine these two algorithms in tandem, following [3]. Forging a link between the

EMML and SMART led to a better understanding of both of these algorithms and

to new results. The proof of convergence of the SMART in the inconsistent case [1]

was based on the analogous proof for the EMML [6, 11], while discovery of the faster
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version of the EMML, the rescaled block-iterative EMML (RBI-EMML) [4] came from

studying the analogous block-iterative version of SMART [5]. The proofs we give here

are elementary and rely mainly on easily established properties of the cross-entropy

or Kullback-Leibler distance. The alternating minimization method used in these

proofs forms the basis for De Pierro’s surrogate-function method for regularization.

2 The Kullback-Leibler Distance

For a > 0 and b > 0, we define

KL(a, b) = a log(
a

b
) + b − a, (2.1)

with KL(a, 0) = +∞, KL(0, b) = b, and KL(0, 0) = 0. For vectors x and z with

non-negative entries, we define the Kullback-Leibler distance KL(x, z) by

KL(x, z) =
N

∑

n=1

KL(xn, zn). (2.2)

The function KL(x, z) is not a distance in the true sense, but is non-negative and

equals zero if and only if x = z. Clearly, the KL distance has the property KL(cx, cz) =

cKL(x, z) for all positive scalars c.

Exercise 2.1 Let z+ =
∑J

j=1 zj > 0. Then

KL(x, z) = KL(x+, z+) + KL(x, (x+/z+)z). (2.3)

As we shall see, the KL distance mimics the ordinary square of the Euclidean distance

in several ways that make it particularly useful in designing optimization algorithms.

3 The Alternating Minimization Paradigm

Let P be an I by J matrix with entries Pij ≥ 0, such that, for each j = 1, ..., J ,

we have sj =
∑I

i=1 Pij > 0. Let y = (y1, ..., yI)
T with yi > 0 for each i. We shall

assume throughout this paper that sj = 1 for each j. If this is not the case initially,

we replace xj with xjsj and Pij with Pij/sj; the quantities (Px)i are unchanged.

For each nonnegative vector x for which (Px)i =
∑J

j=1 Pijxj > 0, let r(x) =

{r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjPij

yi

(Px)i

2



and

q(x)ij = xjPij.

The KL distances

KL(r(x), q(z)) =
I

∑

i=1

J
∑

j=i

KL(r(x)ij, q(z)ij)

and

KL(q(x), r(z)) =
I

∑

i=1

J
∑

j=1

KL(q(x)ij, r(z)ij)

will play important roles in the discussion that follows. Note that if there is nonneg-

ative x with r(x) = q(x) then y = Px.

4 Some Pythagorean Identities Involving the KL

Distance

The iterative algorithms we discuss in this paper are derived using the principle

of alternating minimization, according to which the distances KL(r(x), q(z)) and

KL(q(x), r(z)) are minimized, first with respect to the variable x and then with re-

spect to the variable z. Although the KL distance is not Euclidean, and, in particular,

not even symmetric, there are analogues of Pythagoras’ theorem that play important

roles in the convergence proofs.

Exercise 4.1 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) + KL(r(x), r(z)); (4.1)

KL(r(x), q(z)) = KL(r(x), q(x′)) + KL(x′, z), (4.2)

for

x′

j = xj

I
∑

i=1

Pij

yi

(Px)i

; (4.3)

KL(q(x), r(z)) = KL(q(x), r(x)) + KL(x, z) − KL(Px, Pz); (4.4)

KL(q(x), r(z)) = KL(q(z′′), r(z)) + KL(x, z′′), (4.5)

for

z′′

j = zj exp(
I

∑

i=1

Pij log
yi

(Pz)i

). (4.6)

Note that it follows from Equation (2.3) that KL(x, z) − KL(Px, Pz) ≥ 0.
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5 The Two Algorithms

The algorithms we shall consider are the expectation maximization maximum like-

lihood method (EMML) and the simultaneous multiplicative algebraic reconstruc-

tion technique (SMART). When y = Px has nonnegative solutions, both algorithms

produce such a solution. In general, the EMML gives a nonnegative minimizer of

KL(y, Px), while the SMART minimizes KL(Px,y) over nonnegative x.

For both algorithms we begin with an arbitrary positive vector x0. The iterative

step for the EMML method is

xk+1

j = (xk)′

j = xk
j

I
∑

i=1

Pij

yi

(Pxk)i

. (5.1)

The iterative step for the SMART is

xm+1

j = (xm)′′

j = xm
j exp

(

I
∑

i=1

Pij log
yi

(Pxm)i

)

. (5.2)

Note that, to avoid confusion, we use k for the iteration number of the EMML and

m for the SMART.

Exercise 5.1 Show that, for {xk} given by Equation (5.1), {KL(y, Pxk)} is de-

creasing and {KL(xk+1,xk)} → 0. Show that, for {xm} given by Equation (5.2),

{KL(Pxm,y)} is decreasing and {KL(xm,xm+1)} → 0.

Hint: Use KL(r(x), q(x)) = KL(y, Px), KL(q(x), r(x)) = KL(Px,y), and the

Pythagorean identities.

Exercise 5.2 Show that the EMML sequence {xk} is bounded by showing

J
∑

j=1

xk
j =

I
∑

i=1

yi.

Show that the SMART sequence {xm} is bounded by showing that

J
∑

j=1

xm
j ≤

I
∑

i=1

yi.
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Exercise 5.3 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML sequence

{xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART sequence {xm}.

Hint: Use the facts that {KL(xk+1,xk)} → 0 and {KL(xm,xm+1)} → 0.

Exercise 5.4 Let x̂ and x̃ minimize KL(y, Px) and KL(Px,y), respectively, over

all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃.

Hint: Apply Pythagorean identities to KL(r(x̂), q(x̂)) and KL(q(x̃), r(x̃)).

Note that, because of convexity properties of the KL distance, even if the mini-

mizers x̂ and x̃ are not unique, the vectors P x̂ and P x̃ are unique.

Exercise 5.5 For the EMML sequence {xk} with cluster point x∗ and x̂ as defined

previously, we have the double inequality

KL(x̂,xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂,xk+1), (5.3)

from which we conclude that the sequence {KL(x̂,xk)} is decreasing and KL(x̂,x∗) <

+∞.

Hint: For the first inequality calculate KL(r(x̂), q(xk)) in two ways. For the second

one, use (x)′

j =
∑I

i=1 r(x)ij and Exercise 2.1.

Exercise 5.6 Show that, for the SMART sequence {xm} with cluster point x∗ and x̃

as defined previously, we have

KL(x̃,xm) − KL(x̃,xm+1) = KL(Pxm+1,y) − KL(P x̃,y)+

KL(P x̃, Pxm) + KL(xm+1,xm) − KL(Pxm+1, Pxm), (5.4)

and so KL(P x̃, Px∗) = 0, the sequence {KL(x̃,xm)} is decreasing and KL(x̃,x∗) <

+∞.

Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean identities.
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Exercise 5.7 For x∗ a cluster point of the EMML sequence {xk} we have KL(y, Px∗) =

KL(y, P x̂). Therefore, x∗ is a nonnegative minimizer of KL(y, Px). Consequently,

the sequence {KL(x∗,xk)} converges to zero, and so {xk} → x∗.

Hint: Use the double inequality of Equation (5.3) and KL(r(x̂), q(x∗)).

Exercise 5.8 For x∗ a cluster point of the SMART sequence {xm} we have KL(Px∗,y) =

KL(P x̃,y). Therefore, x∗ is a nonnegative minimizer of KL(Px,y). Consequently,

the sequence {KL(x∗,xm)} converges to zero, and so {xm} → x∗. Moreover,

KL(x̃,x0) ≥ KL(x∗,x0)

for all x̃ as before.

Hints: Use Exercise 5.6. For the final assertion use the fact that the difference

KL(x̃,xm)−KL(x̃,xm+1) is independent of the choice of x̃, since it depends only on

Px∗ = P x̃. Now sum over the index m.

Both the EMML and the SMART algorithms are slow to converge. For that reason

attention has shifted, in recent years, to block-iterative versions of these algorithms.
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